LX1665ACN-TR [MICROSEMI]

Switching Controller;
LX1665ACN-TR
型号: LX1665ACN-TR
厂家: Microsemi    Microsemi
描述:

Switching Controller

输出元件 控制器
文件: 总17页 (文件大小:353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
T H E I N F I N I T E P O W E R O F I N N O V A T I O N  
P R O D U C T I O N D A T A S H E E T  
DESCRIPTION  
KEY FEATURES  
I 5-bit Programmable Output For CPU Core  
The LX1664/64A and LX1665/65A are  
monolithic switching regulator con-  
troller IC’s designed to provide a low cost,  
high performance adjustable power supply  
for advanced microprocessors and other  
applications requiring a very fast transient  
response and a high degree of accuracy.  
Short-circuit Current Limiting with-  
out Expensive Current Sense Resistors.  
Current-sensing mechanism can use PCB  
trace resistance or the parasitic resistance of  
the main inductor. The LX1664A and  
LX1665A have reduced current sense com-  
parator threshold for optimum perfor-  
mance using a sense resistor. For applica-  
tions requiring a high degree of accuracy, a  
conventional sense resistor can be used to  
sense current.  
set by a DIP switch on the motherboard, or  
hardwired into the processor’s package (as  
Supply  
I Adjustable Linear Regulator Driver Output  
I No Sense Resistor Required For Short-  
Circuit Current Limiting  
I Designed To Drive Either Synchronous Or  
Non-Synchronous Output Stages  
I Soft-Start Capability  
I Modulated, Constant Off-Time Architecture  
For Fast Transient Response And Simple  
System Design  
I Available Over-Voltage Protection (OVP)  
Crowbar Driver And Power Good Flag  
(LX1665 only)  
in the case of Pentium® Pro and Pentium II  
processors). The 5-bit code adjusts the  
output voltage between 1.30 and 2.05V in  
50mVincrementsandbetween2.0and3.5V  
in 100mV increments, conforming to the  
Intel Corporation specification. The device  
candrivedualMOSFET’sresultingintypical  
efficiencies of 85 - 90% even with loads in  
excess of 10 amperes. For cost sensitive  
applications, the bottom MOSFET can be  
replaced with a Schottky diode (non-syn-  
chronous operation).  
Linear Regulator Driver. The LX1664/  
65 family of devices have a secondary  
regulator output. This can drive a MOSFET  
or bipolar transistor as a pass element to  
construct a low-cost adjustable linear regu-  
lator suitable for powering a 1.5V GTL+ bus  
or 2.5V clock supply.  
APPLICATIONS  
I Socket 7 (Pentium Class) Microprocessor  
Supplies (including Intel Pentium Processor,  
AMD-K6TM And Cyrix® 6x86TM, Gx86TM and  
M2TM Processors)  
Programmable Synchronous Recti-  
fier Driver for CPU Core. The main  
output is adjustable from 1.3V to 3.5V using  
a 5-bit code. The IC can read a VID signal  
I Pentium II and Deschutes Processor & L2-  
(continued next page)  
Cache Supplies  
I Voltage Regulator Modules  
IMPORTANT: For the most current data, consult LinFinity's web site: http://www.linfinity.com.  
PRODUCT HIGHLIGHT  
LX1665 IN A PENTIUM II SINGLE-CHIP POWER SUPPLY SOLUTION  
F1 20A  
12V  
5V  
L2  
1µH  
C3  
0.1µF  
6.3V  
C5  
1µF  
U1  
LX1665  
1500µF x3  
C2  
Q1  
IRL3102  
1
2
3
4
5
6
7
8
9
18  
R1  
0.0025  
SS  
VC1  
TDRV  
GND  
BDRV  
VCC  
Supply Voltage  
for CPU Core  
17  
16  
15  
14  
13  
12  
11  
10  
L1  
INV  
VOUT  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
LFB  
2.5µH  
Q2  
IRL3303  
C1  
VID0  
VID1  
VID2  
VID3  
VID4  
6.3V, 1500µF x 3**  
** Three capacitors for Pentium  
Four capacitors for Pentium II  
C9  
330µF  
CT  
C8  
680pF  
OV  
Q4  
Supply Voltage  
For I/O Chipset or GTL+ Bus  
LDRV  
IRLZ44  
PWRGD  
R5  
C7  
330µF  
18-pin  
Wide-Body SOIC  
OV  
PWRGD  
R6  
PACKAGE ORDER INFORMATION  
Plastic DIP  
16-pin  
Plastic DIP  
18-pin  
Plastic SOIC  
16-pin  
Plastic SOIC Wide  
18-pin  
TA (°C)  
0 to 70  
N
N
D
DW  
LX1664CN  
LX1665CN  
LX1664CD  
LX1665CDW  
LX1664ACN  
LX1665ACN  
LX1664ACD  
LX1665ACDW  
Note: All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number. (e.g. LX1664CDT)  
L I N F I N I T Y M I C R O E L E C T R O N I C S I N C .  
11861 WESTERN AVENUE, GARDEN GROVE, CA. 92841, 714-898-8121, FAX: 714-893-2570  
Copyright © 1999  
Rev. 1.2 11/99  
1
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
DESCRIPTION (con't.)  
PACKAGE PIN OUTS  
Smallest Package Size. The LX1664 is  
sient response for a given inductor, reduc-  
ing output capacitor requirements, and re-  
ducing the total regulator system cost.  
Over-Voltage Protection and Power  
Good Flag. The OVP output in the LX1665  
& LX1665A can be used to drive an SCR  
crowbar circuit to protect the load in the  
event of a short-circuit of the main MOSFET.  
The LX1665 & LX1665A also have a logic-  
level Power Good Flag to signal when the  
output voltage is out of specified limits.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
SS  
INV  
VC1  
available in a narrow body 16-pin surface  
mount IC package for space sensitive appli-  
cations. TheLX1665providestheadditional  
functions of Over Voltage Protection (OVP)  
and Power Good (PWRGD) output drives  
for applications requiring output voltage  
monitoring and protection functions.  
Ultra-Fast Transient Response re-  
duces system cost. The modulated off-  
time architecture results in the fastest tran-  
TDRV  
GND  
BDRV  
VCC  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
CT  
LDRV  
LFB  
N PACKAGE — 16-Pin  
LX1664/1664A (Top View)  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
SS  
INV  
VC1  
TDRV  
GND  
BDRV  
VCC  
DEVICE SELECTION GUIDE  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
LFB  
OVP and  
Current-Sense  
DEVICE  
Packages  
Power Good  
Comp. Thresh. (mV) Optimal Load  
CT  
LX1664  
16-pin SOIC  
& DIP  
100  
60  
Pentium-class (<10A)  
OV  
No  
LDRV  
LX1664A  
LX1665  
Pentium II (> 10A)  
Pentium-class (<10A)  
Pentium II (> 10A)  
PWRGD  
18-pin SOIC  
& DIP  
100  
60  
Yes  
N PACKAGE — 18-Pin  
LX1665/1665A (Top View)  
LX1665A  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
1
16  
15  
14  
13  
12  
11  
10  
9
SS  
INV  
VC1  
2
3
4
5
6
7
8
TDRV  
GND  
BDRV  
VCC  
Supply Voltage (VC1) .................................................................................................... 25V  
Supply Voltage (VCC) .................................................................................................... 15V  
Output Drive Peak Current Source (500ns)............................................................... 1.5A  
Output Drive Peak Current Sink (500ns)................................................................... 1.5A  
Input Voltage (SS, INV, VCC_CORE, CT, VID0-VID4)........................................... -0.3V to 6V  
Operating Junction Temperature  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
CT  
LDRV  
LFB  
D PACKAGE — 16-Pin  
LX1664/1664A (Top View)  
Plastic (N, D & DW Packages) ............................................................................. 150°C  
Storage Temperature Range .................................................................... -65°C to +150°C  
Lead Temperature (Soldering, 10 Seconds)............................................................. 300°C  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
SS  
INV  
VC1  
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect  
to Ground. Currents are positive into, negative out of the specified terminal. Pin  
numbers refer to DIL packages only.  
TDRV  
GND  
BDRV  
VCC  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
LFB  
CT  
THERMAL DATA  
OV  
LDRV  
N (16-PIN DIP) PACKAGE:  
PWRGD  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
N (18-PIN DIP) PACKAGE:  
65°C/W  
60°C/W  
120°C/W  
90°C/W  
DW PACKAGE — 18-Pin  
LX1665/1665A (Top View)  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
D PACKAGE:  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
DW PACKAGE:  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
Junction Temperature Calculation: TJ = TA + (PD x θJA).  
The θJA numbers are guidelines for the thermal performance of the device/pc-board system.  
All of the above assume no ambient airflow  
Copyright © 1999  
Rev. 1.2 11/99  
2
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
(
Unless otherwise specified, 10.8 < VCC < 13.2, 0°C TA 70°C. Test conditions: VCC = 12V, T = 25°C. Use Application Circuit.)  
LX1664/1665 (A)  
Parameter  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
Reference & DAC Section (See Table 1 - Next Page)  
Regulation Accuracy (See Table 1)  
Regulation Accuracy  
(Less 40mV output adaptive positioning), VCC = 12V, ILOAD = 6A  
-30  
-1  
30  
1
mV  
%
1.8V VOUT 2.8V  
Timing Section  
Off Time Initial  
OT  
VCC_CORE = 1.3V, CT = 390pF  
VCC_CORE = 3.5V, CT = 390pF  
VCC_CORE = 1.3V to 3.5V  
2
1
40  
210  
2
µs  
µs  
ppm  
µA  
V
Off Time Temp Stability  
Discharging Current  
Ramp Peak  
180  
240  
IDIS  
VP  
VCC_CORE = 1.3V, VCT = 1.5V  
0.9  
0.37  
1
0.42  
100  
1.1  
0.47  
V
V
Ramp Peak-Valley  
VRPP  
VCC_CORE = 1.3V  
VCC_CORE = 3.5V  
10% Overdrive  
ns  
Ramp Valley Delay to Output  
Error Comparator Section  
Input Bias Current  
IB  
1.3V < VSS = VINV < 3.5V  
10% Overdrive  
0.8  
41  
2
46  
µA  
mV  
ns  
36  
Input Offset Voltage  
EC Delay to Output  
VIO  
200  
Current Sense Section  
Input Bias Current (VCC_CORE Pin)  
IB  
1.3V < VINV = VCC_CORE < 3.5V  
Initial Accuracy  
27  
100  
60  
35  
115  
70  
µA  
mV  
mV  
ns  
Pulse By Pulse CL  
LX1664/1665  
VCLP  
85  
50  
LX1664A/1665A  
Initial Accuracy  
200  
CS Delay to Output  
10% Overdrive  
Output Drivers Section  
Drive Rise Time  
Drive Fall Time  
TR  
TF  
VC1 = VCC = 12V, CL = 3000pF  
VC1 = VCC = 12V, CL = 3000pF  
VCC = VCC = 12V, ISOURCE = 20mA  
VCC = VCC = 12V, ISINK = 200mA  
VCC = VCC = 12V, ISOURCE = 20mA  
70  
70  
11  
ns  
ns  
V
Drive High  
VDH  
10  
V
V
V
0.06  
0.8  
0.8  
0.1  
1.2  
1.4  
Drive Low  
VDL  
VPD  
V
CC = VCC = 12V, ISINK = 200mA  
V
Output Pull Down  
VCC = VC = 0, IPULL UP = 2mA  
UVLO and S.S. Section  
Start-Up Threshold  
Hysteresis  
VST  
VHYST  
ISD  
9.9  
2
10.1  
0.31  
5.5  
10.4  
V
V
mA  
V
SS Sink Current  
VC1 = 10.1V  
0.15  
0.6  
27  
92  
SS Sat Voltage  
VOL  
VC1 = 9V, ISD = 200µA  
Supply Current Section  
Dynamic Operating Current  
ICD  
VCC = VC1 = 12V, Out Freq = 200kHz, CL = 0  
mA  
Power Good / Over-Voltage Protection Section (LX1665 Only)  
Lower Threshold  
Hysteresis  
(VCC_CORE / DACOUT  
)
88  
90  
1
%
%
Power Good Voltage Low  
Over-Voltage Threshold  
OVP Sourcing Current  
I
PWRGD = 5mA  
0.5  
117  
45  
0.7  
125  
V
%
mA  
110  
30  
(VCC_CORE / VDAC  
)
VOV = 5V  
Linear Regulator Section  
Output Voltage  
Set by external resistors  
1.5  
3.6  
1.5  
V
%
Setpoint Accuracy  
IL = 0.5A using 0.5% resistors  
-1.5  
40  
70  
ppm  
%
Output Temperature Drift  
Load Regulation  
1.5  
3
%
mA  
Cummulative Accuracy  
Op-Amp Output Current  
50  
Open Loop  
Copyright © 1999  
Rev. 1.2 11/99  
3
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
Table 1 - Adaptive Transient Voltage Output (Output Voltage Setpoint — Typical)  
Processor Pins  
Output Voltage (VCC_CORE  
)
0 = Ground, 1 = Open (Floating)  
VID4 VID3 VID2 VID1 VID0  
0.0A  
Nominal Output*  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.34V  
1.39V  
1.44V  
1.49V  
1.54V  
1.59V  
1.64V  
1.69V  
1.74V  
1.79V  
1.84V  
1.89V  
1.94V  
1.99V  
2.04V  
2.09V  
2.04V  
2.14V  
2.24V  
2.34V  
2.44V  
2.54V  
2.64V  
2.74V  
2.84V  
2.94V  
3.04V  
3.14V  
3.24V  
3.34V  
3.44V  
3.54V  
1.30V  
1.35V  
1.40V  
1.45V  
1.50V  
1.55V  
1.60V  
1.65V  
1.70V  
1.75V  
1.80V  
1.85V  
1.90V  
1.95V  
2.00V  
2.05V  
2.00V  
2.10V  
2.20V  
2.30V  
2.40V  
2.50V  
2.60V  
2.70V  
2.80V  
2.90V  
3.00V  
3.10V  
3.20V  
3.30V  
3.40V  
3.50V  
* Nominal = DAC setpoint voltage with no adaptive output voltage positioning.  
Note:  
Adaptive Transient Voltage Output  
In order to improve transient response a 40mV  
offsetisbuiltintotheCurrentSensecomparator.  
Athighcurrents, thepeakoutputvoltagewillbe  
lower than the nominal set point, as shown in  
Figure 1. The actual output voltage will be a  
function of the sense resistor, the output current  
and output ripple.  
Time - 100µs/Div.  
FIGURE 1 — Output Transient Response  
(using 5msense resistor and 5µH output inductor)  
Copyright © 1999  
Rev. 1.2 11/99  
4
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
CHARACTERISTICS CURVES  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
Output Set Point  
Output Set Point  
EFFICIENCY AT 3.1V  
EFFICIENCY AT 3.1V  
EFFICIENCY AT 2.8V  
EFFICIENCY AT 1.8V  
EFFICIENCY AT 2.8V  
75  
EFFICIENCY AT 1.8V  
70  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
IOUT (A)  
IOUT (A)  
FIGURE 2 Efficiency Test Results:  
FIGURE 3 Efficiency Test Results:  
Non-Synchronous Operation, VIN = 5V  
Synchronous Operation, VIN = 5V  
90  
85  
80  
75  
70  
65  
60  
Output Set Point  
1.8V EFFICIENCY  
2.8V EFFICIENCY  
3.3V EFFICIENCY  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
IOUT (A)  
FIGURE 4 Efficiency Test Results: Synchronous Operation, VIN = 12V.  
Note: Non-synchronous operation not recommended for 12V operation, due to power loss in Schottky diode.  
Copyright © 1999  
Rev. 1.2 11/99  
5
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
BLOCK DIAGRAM  
VCC  
VC1  
18  
1
SS  
PWM Latch  
Trimmed  
2V REF  
2V Out  
UVLO  
S
Q
TDRV  
GND  
BDRV  
17  
16  
15  
R DOM  
10.6/10.1  
R
Q
Internal  
VCC  
VREG  
Break  
40mV  
Before  
Make  
2
INV  
0.7V  
Error Comp  
CS Comp  
Off-Time  
Controller  
SYNC EN  
Comp  
VCC  
14  
100mV **  
3
VCC_CORE  
OV Comp  
13  
CT  
OV*  
12  
10  
PWRGD*  
UV Comp  
10k  
DAC OUT  
LX1665/1665A ONLY  
Linear Op Amp  
1.5V  
DAC  
LDRV  
11  
9
LFB  
4
5
6
7
8
VID4  
Note: Pin numbers are correct for LX1665/1665A, 18-pin package.  
* Not connected on LX1664/1664A.  
VID0  
VID1  
VID2  
VID3  
** 60mV in LX1664A/1665A.  
FIGURE 5 LX1664/1665 Block Diagram  
Copyright © 1999  
Rev. 1.2 11/99  
6
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
FUNCTIONAL PIN DESCRIPTION  
Pin  
Name  
LX1664  
Pin #  
LX1665  
Pin #  
Description  
SS  
INV  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Soft-Start pin, internally connected to the non-inverting input of the error comparator.  
Inverting input of the error comparator.  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
Output voltage. Connected to non-inverting input of the current-sense comparator.  
Voltage Identification pin (LSB) input used to set output voltage.  
Voltage Identification pin (2nd SB) input.  
Voltage Identification pin (3rd SB) input.  
Voltage Identification pin (4th SB) input.  
Voltage Identification pin (MSB) input. This pin is also the range select pin — when low  
(CLOSED), output voltage is set to between 1.30 and 2.05V in 0.05V increments. When high  
(OPEN), output is adjusted from 2.0 to 3.5V in 0.1V increments.  
LFB  
9
9
Linear regulator feedback pin. 1.5V reference is connected to a resistor divider to set desired  
output voltage.  
PWRGD  
LDRV  
N.C.  
10  
10  
11  
12  
13  
14  
15  
Open collector output pulls low when the output voltage is out of limits.  
Linear regulator drive pin. Connect to gate of MOSFET for linear regulator function.  
SCR driver goes high when the processor's supply is over specified voltage limits.  
The off-time is programmed by connecting a timing capacitor to this pin.  
This is the (12V) supply to the IC, as well as gate drive to the bottom FET.  
OV  
N.C.  
11  
CT  
VCC  
12  
BDRV  
13  
ThisisthegatedrivetothebottomFET. Leaveopeninnon-synchronousoperation(whenbottom  
FET is replaced by a Schottky diode).  
GND  
TDRV  
VC1  
14  
15  
16  
16  
17  
18  
Both power and signal ground of the device.  
Gate drive for top MOSFET.  
This pin is a separate power supply input for the top drive. Can be connected to a charge pump  
when only 12V is available.  
Copyright © 1999  
Rev. 1.2 11/99  
7
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
THEORY OF OPERATION  
IC OPERATION  
PROGRAMMING THE OUTPUT VOLTAGE  
Referring to the block diagram and typical application circuit, the  
output turns ON the top MOSFET, allowing the inductor current to  
increase. At the error comparator threshold, the PWM latch is reset,  
thetopMOSFETturnsOFFandthesynchronousMOSFETturnsON.  
The OFF-time capacitor CT is now allowed to discharge. At the  
valley voltage, the synchronous MOSFET turns OFF and the top  
MOSFET turns on. A special break-before-make circuit prevents  
simultaneous conduction of the two MOSFETS.  
The VCC_CORE pin is offset by +40mV to enhance transient  
response. The INV pin is connected to the positive side of the  
current sense resistor, so the controller regulates the positive side  
of the sense resistor. At light loads, the output voltage will be  
regulated above the nominal setpoint voltage. At heavy loads, the  
output voltage will drop below the nominal setpoint voltage. To  
minimizefrequencyvariationwithvaryingoutputvoltage, theOFF-  
time is modulated as a function of the voltage at the VCC_CORE pin.  
The output voltage is set by means of a 5-bit digital Voltage  
Identification(VID)word(SeeTable1). TheVIDcodemaybehard-  
wired into the package of the processor which do not have a VID  
code, the output voltage can be set by means of a DIP switch or  
jumpers. Foralowor'0'signal, connecttheVIDpintoground(DIP  
switch ON); for a high or '1' signal, leave the VID pin open (DIP  
switch OFF).  
The five VID pins on the LX166x series are designed to interface  
directly with a Pentium Pro or Pentium II processor. Therefore, all  
inputs are expected to be either ground or floating. Any floating  
input will be pulled high by internal connections. If using a Socket  
7 processor, or other load, the VID code can be set directly by  
connecting jumpers or DIP switches to the VID[0:4] pins.  
The VID pins are not designed to take TTL inputs, and  
should not be connected high. Unpredictable output voltages  
may result. If the LX166x devices are to be connected to a logic  
circuit, such as BIOS, for programming of output voltage, they  
should be buffered using a CMOS gate with open-drain, such as a  
74HC125 or 74C906.  
ERROR VOLTAGE COMPARATOR  
The error voltage comparator compares the voltage at the positive  
side of the sense resistor to the set voltage plus 40mV. An external  
filter is recommended for high-frequency noise.  
POWER GOOD SIGNAL (LX1665 only)  
An open collector output is provided which presents high imped-  
ance when the output voltage is between 90% and 117% of the  
programmed VID voltage, measured at the SS pin. Outside this  
window the output presents a low impedance path to ground. The  
Power Good function also toggles low during OVP operation.  
CURRENT LIMIT  
Current limiting is done by sensing the inductor current. Exceeding  
the current sense threshold turns the output drive OFF and latches  
it OFF until the PWM latch Set input goes high again. See Current  
Limit Section in "Using The LX1664/65 Devices" later in this data  
sheet.  
OVER-VOLTAGE PROTECTION  
The controller is inherently protected from an over-voltage condi-  
tion due to its constant OFF-time architecture. However, should a  
failure occur at the power switch, an over-voltage drive pin is  
provided (on the LX1665 only) which can drive an external SCR  
crowbar (Q3), and so blow a fuse (F1). the fault condition must be  
removed and power recycled for the LX1665 to resume normal  
operation (See Figure 9).  
OFF-TIME CONTROL TIMING  
The timing capacitor CT allows programming of the OFF-time. The  
timing capacitor is quickly charged during the ON time of the top  
MOSFET and allowed to discharge when the top MOSFET is OFF.  
In order to minimize frequency variations while providing different  
supply voltages, the discharge current is modulated by the voltage  
at the VCC_CORE pin. The OFF-time is inversely proportional to the  
VCC_CORE voltage.  
LINEAR REGULATOR  
The product highlight application shows an application schematic  
using a MOSFET as the pass element for a linear regulator. this  
output is suitable for converting the 5V system supply to 3.3V for  
processorI/Obuffers,memory,chipsetandothercomponents. The  
output can be adjusted to any voltage between 1.5V and 3.6V in  
order to supply other (lower) power requirements on a mother-  
board. See section "Using the LX1664/1665 Devices" at the end of  
this data sheet.  
UNDER VOLTAGE LOCKOUT  
The purpose of the UVLO is to keep the output drive off until the  
input voltage reaches the start-up threshold. At voltages below the  
start-upvoltage, theUVLOcomparatordisablestheinternalbiasing,  
and turns off the output drives. The SS (Soft-Start) pin is pulled low.  
SYNCHRONOUS CONTROL  
The synchronous control section incorporates a unique break-  
before-make function to ensure that the primary switch and the  
synchronous switch are not turned on at the same time. Approxi-  
mately 100 nanoseconds of deadtime is provided by the break-  
before-make circuitry to protect the MOSFET switches.  
Copyright © 1999  
Rev. 1.2 11/99  
8
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
APPLICATION INFORMATION  
12V  
5V  
C3  
0.1µF  
6.3V  
C5  
1500µF x3  
U1  
LX1664  
1µF  
C2  
1
2
3
4
5
6
7
8
16  
SS  
VC1  
TDRV  
GND  
BDRV  
VCC  
Q1  
15  
14  
13  
12  
11  
10  
9
INV  
R1  
2.5m  
IRL3102  
Supply Voltage  
for CPU Core  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
L1, 2.5µH  
W
VID0  
VID1  
VID2  
VID3  
VID4  
VOUT  
Q2  
IRL3303  
C1  
CT  
C8  
680pF  
6.3V, 1500µF x 3**  
** Three capacitors for Pentium  
Four capacitors for Pentium II  
LDRV  
C9  
LFB  
330µF  
16-pin  
Narrow Body SOIC  
Q4  
IRLZ44  
R5  
Supply Voltage  
For I/O Chipset or GTL+ Bus  
C7  
330µF  
R6  
FIGURE 6 LX1664 In A Pentium / Socket 7 Single-Chip Power Supply Controller Solution (Synchronous)  
12V  
5V  
C3  
0.1µF  
6.3V  
1500µF x3  
U1  
LX1664  
C5  
C2  
1
2
3
4
5
6
7
8
16  
1µF  
SS  
VC1  
TDRV  
GND  
BDRV  
VCC  
15  
14  
13  
12  
11  
10  
9
INV  
R1  
0.005  
Supply Voltage  
for CPU Core  
Q1  
IRL3102  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
L1, 5µH  
VID0  
VOUT  
D1  
VID1  
VID2  
VID3  
VID4  
C1  
6.3V, 1500µF x 3**  
CT  
C9  
330µF  
** Three capacitors for Pentium  
Four capacitors for Pentium II  
LDRV  
Q4  
IRLZ44  
C8  
680pF  
Supply Voltage  
For I/O Chipset or GTL+ Bus  
LFB  
16-pin  
Narrow Body SOIC  
C7  
330µF  
R5  
R6  
FIGURE 7 LX1664 In A Non-Synchronous / Socket 7 Power Supply Application  
Copyright © 1999  
Rev. 1.2 11/99  
9
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
APPLICATION INFORMATION  
CS  
F1 15A  
12V  
5V  
L2  
1µH  
C3  
0.1µF  
RS  
C5  
1µF  
C2  
U1  
LX1665  
6.3V  
1500µF x3  
Q1  
IRL3102  
1
2
3
4
5
6
7
8
9
18  
SS  
VC1  
TDRV  
GND  
BDRV  
VCC  
Supply Voltage  
for CPU Core  
17  
16  
15  
14  
13  
12  
11  
10  
L1  
INV  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
LFB  
2.5µH  
VOUT  
Q2  
IRL3303  
VID0  
VID1  
VID2  
VID3  
VID4  
5V or 3.3V  
Supply  
C1  
CT  
6.3V, 1500µF x 3  
** Three capacitors for Pentium  
Four capacitors for Pentium II  
C8  
680pF  
OV  
C9  
330µF  
LDRV  
PWRGD  
Q4  
1.5V for  
GTL+ Bus Supply  
18-pin  
Wide Body SOIC  
OV  
PWRGD  
IRLZ44  
R5  
C7  
330µF  
R6  
FIGURE 8 VRM 8.2 (Pentium II / Deschutes) Reference Design With Loss-Less Current Sensing  
D2  
D3  
12V 5V  
6.3V  
F1 20A  
1N4148  
1N4148  
C10  
0.1µF  
C3  
0.1µF  
C5  
1500µF x3  
U1  
R7  
10  
C2  
LX1665  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
Q1  
IRL3303  
R1  
SS  
VC1  
TDRV  
GND  
BDRV  
VCC  
Supply Voltage  
for CPU Core  
L1 2.5µH  
0.0025  
INV  
VCC_CORE  
VID0  
VID1  
VID2  
VID3  
VID4  
LFB  
VOUT  
Q2  
IRL3102  
VID0  
C9  
330µF  
VID1  
VID2  
VID3  
VID4  
CT  
Q3  
D4  
C1  
C8  
1500µF  
SCR  
2N6504  
1N5817  
OV  
LDRV  
PWRGD  
Q4  
IRLZ44  
R2, 10k  
18-pin  
Wide-Body SOIC  
Supply Voltage  
PWRGD  
For I/O Chipset or GTL+ Bus  
C7  
330µF  
R5  
R6  
FIGURE 9 Full-Featured Pentium II Processor Supply With 12V Power Input  
Copyright © 1999  
Rev. 1.2 11/99  
10  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
BILL OF MATERIALS  
LX1665 Bill of Materials (Refer to Product Highlight)  
Ref  
Description  
Part Number / Manufacturer  
Qty.  
C1  
1500µF, 6.3V capacitor  
1500µF, 6.3V capacitor  
330µF, Electrolytic  
0.1µF  
MV-GX Sanyo  
MV-GX Sanyo  
MV-GX Sanyo  
SMD Cap  
4
2
2
1
1
1
1
1
1
1
1
1
2
1
1
C2  
C7, C9  
C3  
C4  
390pF  
SMD Cap  
C8  
680pF  
SMD Cap  
C5  
1µF, 16V  
SMD Ceramic  
HM0096832 BI or equivalent  
L1  
2.5µH Inductor  
1µH Inductor  
L2  
Q1  
Q2  
Q3  
R5, R6  
R1  
MOSFET  
IRL3102 International Rectifier or equivalent  
IRL3303 International Rectifier or equivalent  
IRLZ44 International Rectifier or equivalent  
SMD Resistor  
MOSFET  
MOSFET  
Resistor (See Table 6 for values)  
2.5mSense Resistor  
Controller IC  
IRC OARS-1 or PCB trace  
U1  
LX1665CDW Linfinity  
Total  
21  
USING THE LX1664/65 DEVICES  
The LX1664/65 devices are very easy to design with, requiring  
only a few simple calculations to implement a given design. The  
following procedures and considerations should provide effec-  
tive operation for virtually all applications. Refer to the Appli-  
cation Information section for component reference designa-  
tors.  
When using a 5V input voltage, the switching frequency (fS)  
can be approximated as follows:  
IDIS  
C = 0.621  
*
T
fS  
Choosing a 680pF capacitor will result in an operating  
frequency of 183kHz at VOUT = 2.8V. When a 12V power input  
is used, he capacitor value must be changed (the optimal timing  
capacitor for 12V input will be in the range of 1000-1500pF).  
TIMING CAPACITOR SELECTION  
The frequency of operation of the LX166x is a function of duty  
cycle and OFF-time. The OFF-time is proportional to the timing  
capacitor (which is shown as C8 in all application schematics in  
this data sheet), and is modulated to minimize frequency  
variations with duty cycle. The frequency is constant, during  
steady-state operation, due to the modulation of the OFF-time.  
The timing capacitor (CT) should be selected using the  
following equation:  
L1 OUTPUT INDUCTOR SELECTION  
The inductance value chosen determines the ripple current  
present at the output of the power supply. Size the inductance  
to allow a nominal 10% swing above and below the nominal DC  
load current, using the equation L = VL T/I, where T is the  
*
OFF-time, VL is the voltage across the inductor during the OFF-  
time, and I is peak-to-peak ripple current in the inductor. Be  
sure to select a high-frequency core material which can handle  
the DC current, such as 3C8, which is sized for the correct power  
level. Typical inductance values can range from 2 to 10µH.  
Note that ripple current will increase with a smaller inductor.  
Exceeding the ripple current rating of the capacitors could cause  
reliability problems.  
(1 - VOUT /V )  
I
DIS  
*
IN  
CT =  
f (1.52 - 0.29  
V
)
*
S
OUT  
Where IDIS is fixed at 200µA and fS is the switching frequency  
(recommended to be around 200kHz for optimal operation and  
component selection).  
Copyright © 1999  
Rev. 1.2 11/99  
11  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1664/65 DEVICES  
INPUT INDUCTOR SELECTION  
C1 FILTER CAPACITOR SELECTION (continued)  
In order to cope with faster transient load changes, a smaller  
output inductor is needed. However, reducing the size of the  
output inductor will result in a higher ripple voltage on the input  
supply. This noise on the 5V rail can affect other loads, such as  
graphics cards. It is recommended that a smaller input inductor,  
L2 (1 - 1.5µH), is used on the 5V rail to filter out the ripple. Ensure  
that this inductor has the same current rating as the output  
inductor.  
aluminum electrolytic, and have demonstrated reliability. The  
Oscon series from Sanyo generally provides the very best  
performance in terms of long term ESR stability and general  
reliability, but at a substantial cost penalty. The MV-GX series  
provides excellent ESR performance, meeting all Intel transient  
specifications,atareasonablecost. Bewareofoff-brand,very-low  
cost filter capacitors, which have been shown to degrade in both  
ESR and general electrolyte characteristics over time.  
C1 FILTER CAPACITOR SELECTION  
CURRENT LIMIT  
The capacitors on the output of the PWM section are used to filter  
the output current ripple, as well as help during transient load  
conditions, and the capacitor bank should be sized to meet ripple  
and transient performance specifications.  
Current limiting occurs when a sensed voltage, proportional to  
load current, exceeds the current-sense comparator threshold  
value. The current can be sensed either by using a fixed sense  
resistor in series with the inductor to cause a voltage drop  
proportional to current, or by using a resistor and capacitor in  
parallel with the inductor to sense the voltage drop across the  
parasitic resistance of the inductor.  
The LX166x family offers two different comparator thresholds.  
TheLX1664&1665haveathresholdof100mV, whiletheLX1664A  
and LX1665A have a threshold of 60mV. The 60mV threshold is  
better suited to higher current loads, such as a Pentium II or  
Deschutes processor.  
When a transient (step) load current change occurs, the output  
voltage will have a step which equals the product of the Effective  
Series Resistance (ESR) of the capacitor and the current step (I).  
when current increases from low (in sleep mode) to high, the  
output voltage will drop below its steady state value. In the  
advanced microprocessor power supply, the capacitor should  
usually be selected on the basis of its ESR value, rather than the  
capacitance or RMS current capability. Capacitors that satisfy the  
ESR requirement usually have a larger capacitance and current  
capabilitythanneededfortheapplication. TheallowableESRcan  
be found by:  
Sense Resistor  
Thecurrentsenseresistor, R1, isselectedaccordingtotheformula:  
ESR * (IRIPPLE + I) < VEX  
R1 = VTRIP / ITRIP  
Where VEX is the allowable output voltage excursion in the  
transient and IRIPPLE is the inductor ripple current. Regulators such  
as the LX166x series, have adaptive output voltage positioning,  
which adds 40mV to the DC set-point voltage — VEX is therefore  
the difference between the low load voltage and the minimum  
dynamic voltage allowed for the microprocessor.  
Where VTRIP is the current sense comparator threshold (100mV  
for LX1664/65 and 60mV for LX1664A/65A) and ITRIPis the desired  
current limit. Typical choices are shown below.  
TABLE 2 - Current Sense Resistor Selection Guide  
Sense Resistor  
Value  
Recommended  
Controller  
Load  
Ripple current is a function of the output inductor value (LOUT),  
and can be approximated as follows:  
Pentium-Class Processor (<10A)  
Pentium II Class (>10A)  
5mΩ  
2.5mΩ  
LX1664 or LX1665  
V
IN - VOUT  
VOUT  
VIN  
LX1664A or LX1665A  
IRIPPLE  
=
*
fS  
L
*
OUT  
A smaller sense resistor will result in lower heat dissipation (I²R)  
and also a smaller output voltage droop at higher currents.  
There are several alternative types of sense resistor. The  
surface-mount metal “staple” form of resistor has the advantage of  
exposure to free air to dissipate heat and its value can be  
controlled very tightly. Its main drawback, however, is cost. An  
alternative is to construct the sense resistor using a copper PCB  
trace. Although the resistance cannot be controlled as tightly, the  
PCB trace is very low cost.  
Where fS is the switching frequency.  
Electrolytic capacitors can be used for the output filter capaci-  
tor bank, but are less stable with age than tantalum capacitors. As  
they age, their ESR degrades, reducing the system performance  
and increasing the risk of failure. It is recommended that multiple  
parallel capacitors are used so that, as ESR increases with age,  
overall performance will still meet the processor's requirements.  
There is frequently strong pressure to use the least expensive  
components possible, however, this could lead to degraded long-  
termreliability,especiallyinthecaseoffiltercapacitors. Linfinity's  
demo boards use Sanyo MV-GX filter capacitors, which are  
Copyright © 1999  
Rev. 1.2 11/99  
12  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1664/65 DEVICES  
CURRENT LIMIT (continued)  
CURRENT LIMIT (continued)  
The current flowing through the inductor is a triangle wave. If the  
sensor components are selected such that:  
PCB Sense Resistor  
A PCB sense resistor should be constructed as shown in Figure  
10. By attaching directly to the large pads for the capacitor and  
inductor, heatisdissipatedefficientlybythelargercoppermasses.  
Connect the current sense lines as shown to avoid any errors.  
L/RL = RS CS  
*
The voltage across the capacitor will be equal to the current  
flowing through the resistor, i.e.  
2.5m  
W
Sense Resistor  
VCS = ILRL  
100mil Wide, 850mil Long  
2.5mm x 22mm (2 oz/ft2 copper)  
Since VCS reflects the inductor current, by selecting the  
appropriate RS and CS, VCS can be made to reach the comparator  
voltage (60mV for LX166xA or 100mV for the LX166x) at the  
desired trip current.  
Inductor  
Design Example  
(Pentium II circuit, with a maximum static current of 14.2A)  
The gain of the sensor can be characterized as:  
Output  
Capacitor Pad  
|T( )|  
j
w
Sense Lines  
FIGURE 10 Sense Resistor Construction Diagram  
RL  
Recommended sense resistor sizes are given in the following  
table:  
L/RSCS  
TABLE 3 - PCB Sense Resistor Selection Guide  
Copper Copper Desired Resistor Dimensions (w x l)  
Weight Thickness Value  
2 oz/ft2  
68µm 2.5m  
5m  
w
mm  
inches  
1/RSCS RL/L  
FIGURE 12 Sensor Gain  
2.5 x 22  
2.5 x 43  
0.1 x 0.85  
0.1 x 1.7  
The dc/static tripping current Itrip,S satisfies:  
Loss-Less Current Sensing Using Resistance of Inductor  
Any inductor has a parasitic resistance, RL, which causes a DC  
voltage drop when current flows through the inductor. Figure 11  
shows a sensor circuit comprising of a surface mount resistor, RS,  
and capacitor, CS, in parallel with the inductor, eliminating the  
current sense resistor.  
Vtrip  
Itrip,S  
=
RL  
Select L/RSCS RL to have higher dynamic tripping current  
than the static one. The dynamic tripping current Itrip,d satisfies:  
Vtrip  
Itrip,d  
=
L/(RSCS)  
L
RL  
Load  
General Guidelines for Selecting RS , CS , and RL  
Vtrip  
RL =  
Select: RS 10 kΩ  
Itrip,S  
RS  
Ln  
CS  
RS2  
and CS according to:  
CS n  
=
RL RS  
Current  
Sense  
Comparator  
The above equation has taken into account the current-de-  
pendency of the inductance.  
VCS  
The test circuit (Figure 6) used the following parameters:  
RL = 3m, RS = 9k, CS = 0.1µF, and L is 2.5µH at 0A current.  
FIGURE 11 Current Sense Circuit  
Copyright © 1999  
Rev. 1.2 11/99  
13  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1664/65 DEVICES  
CURRENT LIMIT (continued)  
FET SELECTION (continued)  
In cases where RL is so large that the trip point current would  
belowerthanthedesiredshort-circuitcurrentlimit, aresistor(RS2)  
canbeputinparallelwithCS, asshowninFigure11. Theselection  
of components is as follows:  
For the IRL3102 (13mRDS(ON)), converting 5V to 2.8V at 14A  
will result in typical heat dissipation of 1.48W.  
Synchronous Rectification Lower MOSFET  
The lower pass element can be either a MOSFET or a Schottky  
diode.TheuseofaMOSFET(synchronousrectification)willresult  
in higher efficiency, but at higher cost than using a Schottky diode  
(non-synchronous).  
RL (Required)  
RL (Actual)  
RS2  
=
RS2 + RS  
L
L
RS + RS2  
RS2  
Power dissipated in the bottom MOSFET will be:  
CS =  
=
*
RL (Actual) (RS2 // RS)  
RL (Actual)  
R
*
S
*
PD = I2  
R
[1 - Duty Cycle] = 2.24W  
*
*
DS(ON)  
[IRL3303 or 1.12W for the IRL3102]  
Again, select (RS2//RS) < 10k.  
Catch Diode Lower MOSFET  
FET SELECTION  
A low-power Schottky diode, such as a 1N5817, is recommended  
to be connected between the gate and source of the lower  
MOSFETwhenoperatingfroma12V-powersupply(seeFigure9).  
This will help protect the controller IC against latch-up due to the  
inductorvoltagegoingnegative.Althoughlatch-upisunlikely,the  
use of such a catch diode will improve reliability and is highly  
recommended.  
To insure reliable operation, the operating junction temperature  
of the FET switches must be kept below certain limits. The Intel  
specification states that 115°C maximum junction temperature  
should be maintained with an ambient of 50°C. This is achieved  
by properly derating the part, and by adequate heat sinking. One  
of the most critical parameters for FET selection is the RDS ON  
resistance. This parameter directly contributes to the power  
dissipation of the FET devices, and thus impacts heat sink design,  
mechanical layout, and reliability. In general, the larger the  
current handling capability of the FET, the lower the RDS ON will  
be, since more die area is available.  
Non-Synchronous Operation - Schottky Diode  
AtypicalSchottkydiode,withaforwarddropof0.6Vwilldissipate  
0.6 14 [12.8/5]=3.7W(comparedtothe1.1to2.2Wdissipated  
*
*
by a MOSFET under the same conditions). This power loss  
becomes much more significant at lower duty cycles – synchro-  
nous rectification is recommended especially when a 12V-power  
input is used. The use of a dual Schottky diode in a single TO-220  
package (e.g. the MBR2535) helps improve thermal dissipation.  
TABLE 4 - FET Selection Guide  
This table gives selection of suitable FETs from International Rectifier.  
Device  
RDS(ON)  
@
ID @  
Max. Break-  
10V (m)  
TC = 100°C  
down Voltage  
IRL3803  
IRL22203N  
IRL3103  
IRL3102  
IRL3303  
IRL2703  
6
83  
71  
40  
56  
24  
17  
30  
30  
30  
20  
30  
30  
MOSFET GATE BIAS  
7
The power MOSFETs can be biased by one of two methods:  
charge pump or 12V supply connected to VC1.  
14  
13  
26  
40  
1) Charge Pump (Bootstrap)  
When 12V is supplied to the drain of the MOSFET, as in  
Figure 9, the gate drive needs to be higher than 12V in order  
to turn the MOSFET on. Capacitor C10 and diodes D2 & D3  
are used as a charge pump voltage doubling circuit to raise  
the voltage of VC1 so that the TDRV pin always provides a  
high enough voltage to turn on Q1. The 12V supply must  
always be connected to VCC to provide power for the IC  
itself, as well as gate drive for the bottom MOSFET.  
All devices in TO-220 package. For surface mount devices (TO-263 /  
D2-Pak), add 'S' to part number, e.g. IRL3103S.  
The recommended solution is to use IRL3102 for the high side  
and IRL3303 for the low side FET, for the best combination of cost  
and performance. Alternative FET’s from any manufacturer could  
be used, provided they meet the same criteria for RDS(ON)  
.
Heat Dissipated In Upper MOSFET  
The heat dissipated in the top MOSFET will be:  
2) 12V Supply  
When 5V is supplied to the drain of Q1, a 12V supply should  
be connected to both VCC and VC1.  
PD = (I2  
R
Duty Cycle) + (0.51  
V
t
f )  
*
S
*
*
*
*
DS(ON)  
IN  
SW  
Where tSW is switching transition line for body diode (~100ns)  
and fS is the switching frequency.  
Copyright © 1999  
Rev. 1.2 11/99  
14  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1664/65 DEVICES  
LINEAR REGULATOR  
LINEAR REGULATOR (continued)  
Referring to the front page Product Highlight, a schematic is  
presented which uses a MOSFET as a series pass element for a  
linear regulator. The MOSFET is driven by the LX1664 controller,  
and down-converts a +5V or +3.3V supply to the desired VOUT  
level, between 1.5 & 3.5V, as determined by the feedback  
resistors.  
The current available from the Linear regulator is dictated by  
the supply capability, as well as the MOSFET ratings, and will  
typically lie in the 3-5 ampere range. This output is well suited  
for I/O buffers, memory, chipset and other components. Using  
3.3V supply to convert to 1.5V for GTL+ Bus will significantly  
reduce heat dissipation in the MOSFET.  
MOSFET Comments  
Heatsinking the MOSFET becomes important, since the linear  
stage output current could approach 5 amperes in some applica-  
tions. Since there are no switching losses, power dissipation in  
the MOSFET is simply defined by PD = (VIN - VOUT  
)
I output  
*
current. This means that a +5VIN to +3.3VOUT at 5A will require that  
the MOSFET dissipate (5-3.3) 5 = 8.5 watts. This amount of  
*
FIGURE 13 Typical Transient Response  
power in a MOSFET calls for a heatsink, which will be the same  
physical size as that required for a monolithic LDO, such as the  
LX8384 device.  
Channel 2 = Linear Regulator Output.  
Set point = 3.3V @ 2A (20mV/div.)  
Channel 4 = Switching Regulator Output.  
VCC_CORE set point = 2.8V  
Thedropoutvoltageforthelinearregulatorstageistheproduct  
of RDS ON  
IOUT. Using a 2SK1388 device at 5A, the dropout  
*
voltage will be (worst case) 37 milliohms x 5A = 185mV.  
Note that the RDS ON of the (linear regulator) MOSFET does not  
affect heat dissipation, only dropout voltage. For reasons of  
economy, a FET with a higher resistance can be chosen for the  
linear regulator, e.g. 2SK1388 or IRLZ44.  
Channel 3 = Switching Regulator Load Current  
Transient 0 - 13A  
Output Voltage Setting  
As shown in Application Information Figures 6-9, two resistors (R5  
& R6) set the linear regulator stage output voltage:  
TABLE 5 - Linear Regulator MOSFET Selection Guide  
VOUT = 1.5 (R + R ) / R  
*
6
Device  
RDS(ON)  
@
ID @  
Max. Break-  
5
6
10V (m)  
TC = 100°C  
down Voltage  
As an example, to set resistor magnitudes, assume a desired  
VOUT of 3.3 volts:  
IRFZ24N  
IRL2703  
IRLZ44N  
70  
40  
22  
12  
17  
29  
55  
30  
55  
1.5 (12.1k + 10k) / 10k = 3.3 volts (approximately)  
*
In general, the divider resistor values should be in the vicinity  
of 10-12k ohm for optimal noise performance. Please refer to  
Table 6.  
Avoiding Crosstalk  
To avoid a load transient on the switching output affecting the  
linear regulator, follow these guidelines:  
1) Separate 5V supply traces to switching & linear FETs as  
much as possible.  
2) Place capacitor C9 as close to drain of Q4 as possible.  
Typical transient response is shown in Figure 13.  
Copyright © 1999  
Rev. 1.2 11/99  
15  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/64A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1664/65 DEVICES  
LINEAR REGULATOR (continued)  
TABLE 6 -  
LAYOUT GUIDELINES - THERMAL DESIGN  
A great deal of time and effort were spent optimizing the thermal  
design of the demo boards. Any user who intends to implement  
an embedded motherboard would be well advised to carefully  
read and follow these guidelines. If the FET switches have been  
carefully selected, external heatsinking is generally not required.  
However, this means that copper trace on the PC board must now  
be used. This is a potential trouble spot;as much copper area as  
possible must be dedicated to heatsinking the FET switches, and  
the diode as well if a non-synchronous solution is used.  
In our VRM module, heatsink area was taken from internal  
ground and VCC planes which were actually split and connected  
with VIAS to the power device tabs. The TO-220 and TO-263  
cases are well suited for this application, and are the preferred  
packages. Remember to remove any conformal coating from all  
exposed PC traces which are involved in heatsinking.  
Resistors Settings for Linear Regulator Output Voltage  
Nominal  
Set Point (V)  
R5 (k)  
R6 (k)  
VOUT (V)  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
12  
10  
10  
10.7  
11  
3.30  
3.20  
3.08  
3.00  
2.90  
2.80  
2.71  
2.59  
2.50  
2.41  
2.31  
2.21  
2.10  
2.00  
2.13  
1.80  
1.70  
1.61  
1.50  
11.3  
11.3  
11  
10.3  
10  
11  
11.5  
12.4  
13.7  
14.7  
14.7  
16.5  
18.7  
22.1  
26.7  
21  
35.7  
53.6  
100  
10  
10  
9.76  
8.87  
8.87  
8.87  
8.87  
8.87  
8.87  
7.15  
7.15  
7.15  
7.15  
General Notes  
As always, be sure to provide local capacitive decoupling close to  
the chip. Be sure use ground plane construction for all high-  
frequency work. Use low ESR capacitors where justified, but be  
alert for damping and ringing problems. High-frequency designs  
demand careful routing and layout, and may require several  
iterations to achieve desired performance levels.  
Capacitor Selection  
ReferringtotheProductHighlightschematiconthefrontpage,the  
standardvaluetouseasthelinearregulatorstageoutputcapacitor  
is on the order of 330µF. This provides sufficient hold-up for all  
expected transient load events in memory and I/O circuitry.  
Power Traces  
To reduce power losses due to ohmic resistance, careful consid-  
eration should be given to the layout of traces that carry high  
currents. The main paths to consider are:  
Disabling Linear Output  
Linear regulator output can be disabled by pulling feedback pin  
(LFB) up to 5V as shown in Figure 14.  
I Input power from 5V supply to drain of top MOSFET.  
I Trace between top MOSFET and lower MOSFET or Schottky  
diode.  
TABLE 7 - Linear Enable (LIN EN) Function Table  
LIN EN  
LIN OUTPUT  
I Trace between lower MOSFET or Schottky diode and  
ground.  
I Trace between source of top MOSFET and inductor, sense  
resistor and load.  
H
L
Disabled  
Enabled  
5V  
Input  
5V or 12V  
LX1664  
C9  
330µF  
C10  
0.1µF  
10  
9
LDRV  
LFB  
Q4  
IRLZ44  
Supply Voltage  
For I/O Chipset  
C7  
330µF  
LX166x  
Output  
R5  
R6  
10k  
10k  
LIN EN  
2N2222  
FIGURE 14 Enabling Linear Regulator  
FIGURE 15 Power Traces  
Copyright © 1999  
Rev. 1.2 11/99  
16  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1664/1664A, LX1665/65A  
DUAL OUTPUT PWM CONTROLLERS WITH 5-BIT DAC  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1664/65 DEVICES  
LAYOUT GUIDELINES - THERMAL DESIGN (continued)  
All of these traces should be made as wide and thick as  
possible, in order to minimize resistance and hence power losses.  
Itisalsorecommendedthat,wheneverpossible,theground,input  
and output power signals should be on separate planes (PCB  
layers). See Figure 15 – bold traces are power traces.  
Layout Assistance  
Please contact Linfinity’s Applications Engineers for assistance  
with any layout or component selection issues. A Gerber file  
with layout for the most popular devices is available upon re-  
quest.  
Evaluation boards are also available upon request. Please  
check Linfinity's web site for further application notes.  
C5 Input Decoupling (VCC) Capacitor  
Ensure that this 1µF capacitor is placed as close to the IC as  
possible to minimize the effects of noise on the device.  
RELATED DEVICES  
LX1662/1663 - Single Output PWM Controllers  
LX1553 - PWM Controller for 5V - 3.3V Conversion  
LX1668 - Triple Output PWM Controller  
Pentium is a registered trademark of Intel Corporation.  
Cyrix is a registered trademark and 6x86 and Gx86 are trademarks of Cyrix Corporation. K6 is a trademark of AMD.  
Power PC is a trademark of International Business Machines Corporation. Alpha is a trademark of Digital Equipment Corporation.  
PRODUCTIONDATA-InformationcontainedinthisdocumentisproprietarytoLinFinity, andiscurrentasofpublicationdate. Thisdocument  
may not be modified in any way without the express written consent of LinFinity. Product processing does not necessarily include testing of  
all parameters. Linfinity reserves the right to change the configuration and performance of the product and to discontinue product at any time.  
Copyright © 1999  
Rev. 1.2 11/99  
17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY