LE792388VQC [MICROSEMI]

PCM Codec,;
LE792388VQC
型号: LE792388VQC
厂家: Microsemi    Microsemi
描述:

PCM Codec,

PC 电信 电信集成电路
文件: 总63页 (文件大小:1492K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Le79238  
Octal Subscriber Line Audio-Processing Circuit  
Next Generation Carrier Chipset (NGCC)  
Data Sheet  
Document ID#: 081193  
Version 17  
June 2012  
Applications  
Cost-effective voice solution for long or short  
loops providing POTS, IVD and integrated test  
capabilities:  
Ordering Information  
Le792388TVC 176-Pin LQFP (Green)1 Tr3  
Le792388VQC 164-Pin LGA (Green)1 Tray
ZL792388GDG 196-Pin BGA (RoHS-5)2 Tra
IVD, DLC, CO  
ZL792388GDF 196-Pin BGA (RoHS-5)2 Tape el  
ZL792388GDG2 196-Pin BGA (Gen)1 Tray  
Voice-enabled DSLAM  
PBX/KTS  
ZL792388GDF2 196-Pin BG(Gree1 Tape anReel  
1. The green package meets oHS Directiv2002/95C of the  
European Council to mize the environmal impact of  
electrical equipment
MDU, MSAP, MSAN  
2. The RoHS-5 package is compliwith the requirements of the  
European UnionRestriction on Uof Hazardous Substances  
(“RoHS”) Directive, 002/95/EC, with e following Exemption:  
Lead (Pb) in the soldeerminations used in the product.  
Features  
Optimized for Next Generation Broadband xDSL  
and triple play applications  
3. For a apackinystem, add a "T" suffix.  
Eliminates CO transients that could cause CRC  
errors  
Standard CM and MPI digital interfaces  
General purpse I/O pins, can be used as relay  
drivrs  
Best-in-class testing, GR-844 equivalent with  
Next Generation VoiceEdgeTM Control Processor  
(NGVCP)  
Fatures with Le79124 NGVCP  
Wideband 16 kHz sampling mode capability (
product code F and later revisions)  
72 hannel call aggregation  
GR-844 equivalent line testing  
Ideal for high density, medium and larg
count applications  
API-compatible with VE790 Series dsigns  
High performance digital sigal process
provides programmable ctrol of all major ine  
card functions  
2
4
8
VDD33  
VDD18  
AVDDxx  
A1/B1  
SLIC  
SLIC  
SLIC  
SLIC  
SLIC  
SLIC  
SLIC  
SLIC  
LD1  
4
P0-P2, SEL  
8
6
8
A-law/µ-law and near co/filter  
DGND  
AGND  
A2/B2  
A3/B3  
A4/B4  
LD2  
LD3  
Transmit and receivgain, To-wire AC  
8
8
8
IO_0, IO_1  
impedance, Transhybribalanc, Equalization  
TSCA, TSCB  
DC loop feing  
Lopervisi
DRA, DRB  
DXA, DXB  
FS  
LD4  
LD5  
8
8
ng geration and ring-trip  
Octal SLAC  
PCLK  
A5/B5  
CS  
RST  
ration and shaping (12 kHz and  
1
A6/B6  
A7/B7  
A8/B8  
LD6  
LD7  
INT  
DCLK  
8
8
Enhanced line control and line-test support  
DIN  
DOUT  
TMF and Modem Tone Detection  
IREF  
LD8  
GR-909 plus extensive line and self test  
capabilities  
SLB  
SHB  
SPB  
BATL  
BATH  
BATP  
Tone generation (DTMF, FSK, and arbitrary  
tone)  
Figure 1 - Block Diagram  
1
Microsemi Corporation  
Le79238  
Data Sheet  
Related Literature  
126583 NGCC Hardware Design Guide  
128623 NGCC Designer’s Guide  
081555 Le79271 NGSLIC Device Data Sheet  
138884 Le79272 Dual NGSLIC Device Data Sheet  
136868 ZL79258 External Ringing NGSLAC Device Data Sheet  
081567 Le79124 NGVCP Device Data Sheet  
133514 Le79234 NGVCP Device Data Sheet  
127671 Le79124-SW NGVCP Software Package  
133545 Le79234-SW NGVCP Software Package  
135486 LE71SK7920-SW Ve792 Software Package  
127063 VoicePath™ Profile Wizard User’s Guide  
VoicePath™ API-II Reference Guide  
Description  
The Le79238 Next Generation Octal Subscriber Line Aud-processing rcuit (SLAC), in combination with the  
Le79271 SLIC, implements a DSL friendly, high density 8channel uiversal tephone line interface with wideband  
capability. This enables the design of a low cost, high perrmane, fully software programmable line interface with  
worldwide applicability. All AC, DC, and signaling parametare progrmmable via a microprocessor interface.  
The Le79238 has an integrated test tool box whibe usestandlone or with an NGVCP to resolve faults to  
the line or line circuit.  
Change Summary  
Below are the changes from the Mrch 20versione 2012 version.  
Page  
8, 9  
Section  
1.0  
Description  
Ennced product description.  
26  
7.1, No. 11 & Reducpower dissipation values. Test and use condition values provided.  
N
27  
7.2, o. 4  
Expanded idle channel noise test description.  
2
Microsemi Corporation  
Le79238  
Data Sheet  
Table of Contents  
1.0 Product Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.1 Wideband Codec Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.2 Le79238 Device Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.3 Features of the NGCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.0 Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3.0 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.0 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.1 Green Package Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.0 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.1 Environmental Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.2 Electrical Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.0 Programming of the SLAC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.1 AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.2 DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.3 Ringing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.4 Tone and Metering Signal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.0 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.1 AC/DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.2 Transmission Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.3 Transmit and Receive Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.4 Attenuation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.5 Group Delay Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.6 Single Frequency Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.7 Gain Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.8 Total Distortion Including Quantizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7.9 Overload Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7.10 Discrimination Against Out-of-and In. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.11 Spurious Out-of-Band Signals ahe Anaut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
8.0 Reset at Power-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.0 Host Bus Control Interfae (HBI) Overvie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9.1 Transport Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9.1.1 Interface Addressg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.1.2 Command ructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.1.3 Paged Offset ccess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.1.4 Diect Page OffsAccess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.1.5 StaMailbox c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.1.6 Contine Mailbox Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
nfigurInterfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
t Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
CL Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
ciated Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9.2 Cding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
9.2.1 Code Load Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
9.2.2 Host Boot Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9.2.3 Partial Code Load Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
9.Application Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.4 Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.4.1 Microprocessor Interface (MPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10.0 PCM Highway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.1 PCM Transmit Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3
Microsemi Corporation - CMPG  
Le79238  
Data Sheet  
Table of Contents  
10.2 PCM Receive Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.3 PCM Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
11.0 P-Bus and GPIO Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
11.1 SLIC Device Bus Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
12.0 Relay Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
13.0 Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
13.1 176-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
13.2 164-Pin LGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
13.3 196-Pin BGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
4
Microsemi Corporation - CMPG  
Le79238  
Data Sheet  
List of Figures  
Figure 1 - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2 - NGCC System with Le79124 VCP Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 3 - Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 4 - 196-Pin BGA Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 5 - 164-Pin Land Grid Array (LGA) Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 6 - 176-Pin LQFP Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 7 - Narrowband Transmit Path Attenuation vs. Frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 8 - Narrowband Receive Path Attenuation vs. Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 9 - Group Delay Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 10 - A-law Gain Linearity with Tone Input (Both Paths) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 11 - µ-law Gain Linearity with Tone Input (Both Paths). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 12 - Total Distortion with Tone Input, Both Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 13 - A/A Overload Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 14 - Discrimination Against Out-of-Band Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 15 - Spurious Out-of-Band Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 16 - Reset Sequence when VDD33 and VDD18 are Powered Up Separately . . . . . . . . . . . . . . . . . . . . . 35  
Figure 18 - Host Bus Interface Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 19 - Host Bus Interface Address Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 20 - NGCC SLAC Programmer’s Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 21 - 4-wire Master-Slave Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 22 - 3-wire Master-Slave Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 23 - CS Framing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 24 - One Data Word Write in Byte Frami. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 25 - One Data Word Read in Word Fr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 26 - Microprocessor Interface (Input M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 27 - Microprocessor Interface (Otput Mo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 28 - PCM Highway 8-bit Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 29 - PCM Highway 16-bit ransfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 30 - PCM Highway Timng for XE = 0 (Trsmit on Negative PCLK Edge) . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 31 - PCM Highway Ting for E = 1 (Transmit on Positive PCLK Edge) . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 32 - Channel Timng for Ps SLIC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 33 - Global Timing r SLIC evice Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 34 - SLIC Device Bus iming Wveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 35 - OpeRelay Dvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
5
Microsemi Corporation  
Le79238  
Data Sheet  
List of Tables  
Table 1 - 196-Pin BGA Pin Numbers and Pin Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 2 - 164-Pin LGA Pin Numbers and Pin Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 3 - AC/DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 4 - Transmission Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 5 - Wideband Attenuation vs. Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 6 - Minimum Specifications for Out-of-Band Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 7 - Limits for Spurious Out-of-Band Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 8 - Recommended Reset Sequence Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 9 - Host Bus Interface Transport Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 10 - CL Page Base Address High Register (User) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 11 - CL Page Base Address Low Register (User) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 12 - CL Page CRC High Register (User) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 13 - CL Page CRC Low Register (User). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 14 - Mailbox Flag Register (User and DSP, located in DSPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 15 - SPI Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 16 - MPI Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 17 - PCM Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 18 - PCM Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 19 - P-Bus and SLAC IO Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 20 - SLIC Device Bus Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
6
Microsemi Corporation  
Le79238  
Data Sheet  
1.0 Product Description  
The Next Generation Carrier Chipset integrates all the functions of eight voice subscriber lines. Eight Le79271 SLIC  
devices and one Le79238 Octal SLAC device make up the chipset.  
The Le79271 SLIC device is a high voltage, bipolar IC that drives the subscriber line and senses line  
conditions.  
The Le79238 SLAC device is a low voltage CMOS IC that provides conversion and DSP funcions for eight  
channels and senses line conditions.  
The SLIC device is built with a high voltage bipolar technology to provide the power necessary twi
variety of subscriber lines. It can be programmed by the SLAC device to operate in eigt differendes that  
control power consumption and signaling. The SLIC design is based on a voltage feed, urrensense ahitecture.  
The SLAC device processes information regarding line voltage and loop current fm the SLIC dvice. he SLIC  
device senses the A and B lead currents, computes the metallic loop current nd fds it in analoform to the  
SLAC device. The SLAC device also senses A and B lead voltages and monitors battery oltage levels.  
The output signals supplied by the SLAC device to the SLIC device are:  
A lead (DCA) and B lead (DCB) DC voltages for DC feed or internal ringing.  
AC transmission and 12 or 16 kHz metering signals (on the RC, RCVP
The SLAC device controls the SLIC device mode via the SLIC control buP0-P2, SEL and the load signal LD.  
The SLAC device contains high-performance circuitthat prove A/D aD/A conversion for voice  
(codec/filter), DC-feed control, ringing, and supervisin signls. The SLAC device contains a DSP core that  
handles signaling, DC-feed, supervision and line diagnscs for all eght channels. The DSP core also  
interfaces to a standard PCM/MPI backplane. se funcons invove converting an analog voice signal into  
digital PCM samples and converting digitaples bck to an analog signal. During conversion,  
digital filters are used to band-limit the ve PCM codes can be:  
8-bit companded A-law with 8 kHz sampli
8-bit companded µ-law with 8 kHz smpling  
16-bit linear two’s-complemet with 8 kHsampli
16-bit linear two’s-complment with 16 kHz mpling (wideband mode)  
The SLAC device provides a omlete software configurable solution to the BORSCHT functions as well as  
complete programmable control ver subscriber line DC-feed characteristics, such as current limit and feed  
resistance. In addition, the LAC dece provides extensive loop supervision capability including off-hook, ring-trip  
and ground-key detection. Detction thesholds for these functions are programmable. A programmable debounce  
timer is available at elnates lse detection due to contact bounce.  
User-programmable lters include receive and transmit gain and bandwidth, transhybrid balance, two-wire  
termindanceand frequency attenuation (equalization) of the receive and transmit signals. All  
progl filter coefficients can be calculated using WinSLAC™ software. This PC software allows the  
desiescription of system requirements, WinSLACthen computes the necessary coefficients and  
plots stem results.  
7
Microsemi Corporation  
Le79238  
Data Sheet  
The main functions that can be observed and/or controlled through the SLAC device backplane interface are:  
Narrowband 3.4 kHz or wideband 7.0 kHz codec modes  
DC-feed characteristics  
Ground-key detection  
Off-hook detection  
DTMF tone detection  
Modem tone detection  
Metering signal  
DC voltages on A and B leads  
Subscriber line voltage and currents  
Ring-trip detection  
Abrupt and smooth reversal  
Subscriber line impedance matching  
Ringing signal generation  
Sophisticated line and circuit tests  
These functions are all handled in a manner to limit voice sevice transientsMinimizing disturbances caused by the  
CO line circuit helps to eliminate cyclic redundancy chec(CRC) erors in IVD ystems.  
For subscriber line diagnostics, AC and DC line conditions cabe monitred using built in test tools. DTMF and  
modem tone detection functions are also built-in. Mured pameters an be compared to programmed threshold  
levels to set a pass/fail bit. Both longitudinal c resisne and capacitance can be measured, which  
allows leakage resistance, line capacitance, to be identified.  
The Le79124 Next Generation Voice Control Pr) provides integrated test software routines to perform  
comprehensive line diagnostics. Self-tesand linabilities can resolve faults to the line or line circuit. In  
addition, the VCP device provides ggregatd codecr and call control.  
The SLAC device requires twpower supplies. Lw power consumption is achieved by use of a separate +1.8 VDC  
supply for the DSP core and te DSP ore Power Reduction firmware algorithm. The analog and digital I/O circuitry  
is powered from a +3.3 VDC sul
Figure 2 presents an overew of te NGCC system. Refer to the Next Generation Carrier Chipset Hardware  
Design Guide (Document ID 16583) for detailed Application Circuits and Parts Lists for various applications.  
8
Microsemi Corporation  
Le79238  
Data Sheet  
+3.3 V  
VCC  
+3.3 V  
+1.8 V  
+3.3 V  
+1.8 V  
VDD18  
DVDD  
PLL_VDD  
VDD18  
VDD33  
AVDDxx  
RCVP  
RCVPi  
A1 (Tip)  
AD  
BD  
RCVN  
DCA  
RCVNi  
DCAi  
GPIOx  
GPIOx  
CS  
Protection  
INT  
B1 (Ring)  
Le79124  
VCP  
Device  
VREF  
VREFi  
Le79238  
SLAC  
Device  
DCB  
IMT  
DCBi  
CANCELi  
IMTi  
MPI  
SPI  
GPI  
CONTROL  
ONTROL  
Le79271  
SLIC  
VIMTi  
Device  
VACi  
IAi  
IA  
IB  
IBi  
LD  
SEL  
P0  
LDi  
SEL  
P0  
PLL_VSS  
DVSS  
PCM  
P1  
P1  
P2  
P2  
BGND  
AGND  
PCM  
P2  
P0  
DATA  
SEL  
P1  
VB  
ND  
DG
Fure 2 - GCC Sm with Le79124 VCP Device  
1.1 Wideband Codec ode  
The Le79238 device cn be oted in a wideband mode to provide better voice quality. Wideband mode is  
intended to be used with a acket bsed processor with an adaptive echo canceller algorithm.  
When wideband mode is selecd, the nominal voice bandwidth is doubled to 7000 Hz. The wideband mode can be  
selected on a pehannesin this mode, internal clocks are doubled, increasing the sampling rates of the  
internal digital filterNarrowband and wideband modes require their own unique set of coefficients. Therefore if  
switchinen PCoperating modes on a given channel, the coefficients must be reprogrammed.  
In whe PCM interface transmits and receives two evenly spaced sets of 16-bit timeslots in each  
framcts one timeslot during the first 62.5 µS of the frame. The first set of 16-bits will transmit or  
receiis timeslot. The timeslot for the second set of 16-bits is generated automatically and placed  
25/2 µirst timeslot.  
Note: Wideband mode is supported by Product Code F and later revisions.  
9
Microsemi Corporation  
Le79238  
Data Sheet  
1.2 Le79238 Device Internal Block Diagram  
DCLK  
DOUT  
DIN  
RCVP1  
RCVN1  
DCA1  
DCB1  
VREF1  
IA1  
IB1  
IMT1  
VIMT1  
VAC1  
SVA1  
SVB1  
SLIC2  
SLIC3  
Microprocessor  
Interface  
CS  
INT  
Ch 1  
A/D D/A Converters  
Block  
RST  
SLIC1  
LD1  
LD2  
LD3  
L4  
LD5  
LD6  
LD7  
S
Control  
Logic  
LD8  
SEL  
P0  
Ch 2  
A/D D/A  
Converters  
Block  
P1  
P2  
Ch 3  
A/D D/A  
Converters  
Block  
Ch 4  
A/D D/A  
Converters  
Block  
SLIC4  
gital  
nal  
ssor  
FS  
PCLK  
DXA  
PCM  
Interface  
and  
Time Slot  
Assigner  
5  
A/D A  
Convert
Block  
TSCA  
DRA  
SLIC5  
SLIC
LIC7  
LIC8  
DXB  
TSCB  
DRB  
Ch 6  
A/D D/A  
Converters  
Block  
IO1_0  
IO1_1  
IO2_0  
IO2_1  
IO3_0  
IO3_1  
IO4_0  
IO4_1  
IO5_0  
IO5_1  
IO6_0  
IO6_1  
IO7_0  
IO7_1  
IO8_0  
IO8_1  
Ch 7  
A/D D/A  
Converters  
Block  
Logic Interface  
Ch 8  
A/D D/A  
Converters  
Block  
SLB  
SHB  
SPB  
IREF  
Global Circuitry  
Figure 3 - Internal Block Diagram  
10  
Microsemi Corporation  
Le79238  
Data Sheet  
1.3 Features of the NGCC  
Performs all battery feed, ringing, signaling, hybrid  
and test (BORSCHT) functions  
Programmable metering cadencing  
Smooth polarity reversal  
Controlled state changes to eliminate transients  
that could cause CRC errors  
Supports both loop-start and ground-start  
signaling  
Two or three chip solution supports high density,  
multi-channel architecture  
SPI and PCM interfaces  
Exceeds LSSGR and CCITT central
requirements  
Supports two negative batteries and one positive  
battery  
On-hook transmission  
Single hardware design meets multiple country  
requirements through software programming of:  
Power/service denial ode  
Ringing waveform and frequency  
DC loop-feed characteristics and current-limit  
Loop-supervision detection thresholds  
Off-hook debounce circuit  
Line-feed charactiss independeof battery  
voltage  
Low idle-powper line  
Compatible with expensive protection networks  
Monio-wire intrface voltages and currents  
for subriber line dostics  
Ground-key and ring-trip filters  
Off-hook detect de-bounce interval  
Two-wire AC impedance  
Can monitand/or drive A and B lead  
independentl
Auomatic CID and Signaling and FSK and DTMF  
odes  
Transhybrid balance impedance  
Transmit and receive gains  
Equalization  
Tne gneration  
Howler  
Digital I/O pins  
Call Progress  
DTMF  
A-law/µ-law and linear selection  
Supports wideband 7.0 kHz odec mode  
Supports internal ringing ith DC bas  
Modem support  
DTMF tone detection  
Programmed ringing canc
Dial Pulse and Flash detection  
Power-cross, fault, and foreign voltage detection  
Integrated line-test and self-test features  
Self-contained ringig genetion and control  
Integrated ring-trip filteand sofware enabled  
manual or tomringip mode  
GR-909 and GR-844 equivalent  
Built-in voice path test modes  
15 kHz noise filter  
Supports externaringing (with ZL79258 SLAC)  
Suing geration with envelope  
s
11  
Microsemi Corporation  
Le79238  
Data Sheet  
2.0 Connection Diagrams  
B
F
G
A
C
E
H
J
K
L
M
N
P
D
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
1
BOTTOM VIEW  
Figure 4 - 196-Pin BGA Diagram  
12  
Microsemi Corporation  
Le79238  
Data Sheet  
BGA  
Pin#  
BGA  
Pin#  
BGA  
Pin#  
BGA  
Pin#  
BGA  
Pin#  
Pin Name  
VAC1  
Pin Name  
Pin Name  
Pin Name  
Pin Name  
A1  
A2  
A3  
A4  
A5  
A6  
D1  
D2  
D3  
D4  
D5  
D6  
CANCEL2  
SVB2  
G1  
G2  
G3  
G4  
G5  
G6  
VAC2  
DCA2  
VREF2  
IA2  
K1  
K2  
K3  
K4  
K5  
K6  
VIMT3  
N1  
IMT4  
VIMT1  
DCB3  
N2  
N3  
N4  
N5  
6  
SVA4  
VREF4  
IMT1  
VREF1  
VREF3  
CANCEL1  
VDD18_4A  
TSCB  
RSVD_B1  
AVDD12A  
RSVD_B3  
AVDD34A  
DGND_2  
AGND2  
IO1_1  
A  
L
DEBUG_  
CLK  
A7  
DRA  
D7  
TSCA  
G7  
IO2_0  
IO8_1  
IO7_1  
SLB  
K7  
IO4_0  
N7  
P2  
A8  
PCLK  
DIN  
D8  
DCLK  
G8  
K8  
IO_0  
N8  
EL  
A9  
D9  
RST  
G9  
K9  
DGND_3  
DD56  
RSV_B6  
RCV
SVA6  
N9  
LD6  
A10  
A11  
A12  
A13  
A14  
B1  
VDD18_3  
DCB8  
DCA8  
VAC8  
VIMT8  
DCA1  
SVB1  
RCVN1  
IB1  
D10  
D11  
D12  
D13  
D14  
E1  
AVDD78A  
RSVD_B8  
RCVN8  
DCA7  
G10  
G11  
G12  
G13  
G14  
H1  
K10  
K11  
12  
K13  
K14  
L1  
N0  
N11  
N12  
N13  
N14  
P1  
DGND_4  
IB5  
IB7  
RCVN7  
SVB
ANCEL7  
CACE3  
SVB3  
N3  
RCVN5  
SVB5  
DCA5  
VIMT4  
VAC4  
DCA4  
DCB4  
VDD18_1  
LD2  
VAC7  
MT6  
IMT2  
VAC3  
B2  
E2  
SVA2  
H
L
DCA3  
P2  
B3  
E3  
RCVN2  
RSVD_B2  
AVDD
DD33_2  
DGND_6  
IO_0  
L3  
RCVN4  
RSVD_B4  
AGND3  
AGND4  
VDD33_1  
RSVD_O  
AGND5  
AVDD56A  
RSVD_B5  
VREF5  
SVB6  
P3  
B4  
E4  
L4  
P4  
B5  
VDD18_4  
DRB  
E5  
H
D2A  
O2_1  
IO4_1  
IO5_1  
IO6_1  
SPB  
L5  
P5  
B6  
E6  
H6  
L6  
P6  
B7  
DXA  
E7  
7  
L7  
P7  
LD4  
B8  
FS  
E8  
H8  
L8  
P8  
LD5  
B9  
DOUT  
DGND_5  
IB8  
E9  
GND8  
AVD78  
RSVD_B7  
VREF7  
DCB7  
H9  
L9  
P9  
LD7  
B10  
B11  
B12  
B13  
B1
E1
E11  
E12  
E13  
E14  
H10  
H11  
H12  
H13  
H14  
L10  
L11  
L12  
L13  
L14  
P10  
P11  
P12  
P13  
P14  
VDD18_2  
CANCEL5  
IMT5  
IA6  
VREF8  
VREF6  
DCA6  
VAC6  
VIMT5  
VAC5  
VIMT7  
CANCEL6  
Table 1 - 196-Pin BGA Pin Numbers and Pin Names  
13  
Microsemi Corporation  
Le79238  
Data Sheet  
BGA  
Pin#  
BGA  
Pin#  
BGA  
Pin#  
BGA  
Pin#  
BGA  
Pin#  
Pin Name  
DCB1  
Pin Name  
Pin Name  
Pin Name  
Pin Name  
C1  
C2  
C3  
C4  
C5  
C6  
F1  
F2  
F3  
F4  
F5  
F6  
VIMT2  
DCB2  
RCVP2  
IB2  
J1  
J2  
J3  
J4  
J5  
J6  
IMT3  
M1  
M2  
M3  
M4  
M5  
M6  
CANCEL4  
SVB4  
SVA1  
SVA3  
RCVP3  
IA3  
RCVP1  
IA1  
RCVP4  
IB4  
DGND_1  
IREF  
AVDD34  
IO3_1  
AGND4A  
LD1  
DEBUG_  
IO  
AGND1  
C7  
DXB  
F7  
IO1_0  
IO7_0  
AGND7  
RSVD_C  
IA7  
J7  
IO3_0  
IO6_0  
AGND6  
SHB  
M7  
P1  
C8  
CS  
F8  
J8  
M8  
P
C9  
INT  
F9  
J9  
M9  
LD8  
C10  
C11  
C12  
C13  
C14  
AGND8A  
IA8  
F10  
F11  
F12  
F13  
F14  
J10  
J11  
J12  
J13  
J14  
M10  
M11  
12  
M13  
M14  
ND5A  
IA5  
IB6  
RCVP8  
SVB8  
CANCEL8  
RCVP7  
SVA7  
RCVP6  
DCB
MT6  
RCV
SVA5  
CB5  
IMT7  
Table 1 - 196-Pin BGA Pin umers and Pin Names  
14  
Microsemi Corporation  
Le79238  
Data Sheet  
A1  
A2  
A66  
A65  
B1  
B2  
B57  
B56  
A3  
A4  
B3  
B4  
B55  
B
A5  
A6  
62  
1  
B5  
B6  
B53  
B52  
A7  
A8  
A60  
A59  
B7  
B8  
B51  
B
A9  
A58  
A57  
A10  
B9  
B49  
B48  
A11  
A12  
A56  
A55  
B10  
164-Pin LGA  
B11  
B12  
B13  
B47  
B46  
B45  
A13  
A14  
A54  
A53  
A15  
A16  
A52  
A51  
B14  
B44  
B15  
B16  
B43  
B42  
A17  
A18  
A50  
A49  
B17  
B18  
B41  
B40  
A19  
A20  
A48  
A47  
osed Pad  
B19  
B39  
A21  
A22  
A46  
A45  
TOP VIEW  
Figure 5 - 164-Pin Land Grid Array (LGA) Diagram  
15  
Microsemi Corporation  
Le79238  
Data Sheet  
LGA  
Pin#  
LGA  
Pin#  
LGA  
Pin#  
LGA  
Pin#  
LGA  
Pin#  
Pin Name  
RCVN1  
Pin Name  
Pin Name  
Pin Name  
Pin Name  
A1  
A34  
A35  
A36  
A37  
A38  
A39  
A40  
A41  
A42  
A43  
A44  
A45  
A46  
A47  
A48  
A49  
A50  
A51  
A52  
A53  
A54  
A
A56  
57  
A58  
A59  
A60  
61  
SEL  
A67  
A68  
A69  
A70  
A71  
A72  
A73  
A74  
A75  
A76  
A77  
A78  
A79  
A80  
A81  
A82  
A8
A87  
A8  
CANCEL8  
IA8  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B
B24  
B25  
B2
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
SVB3  
VIMT3  
CANCEL3  
DCA3  
DCB3  
RCVN3  
IO3_1  
SVA
IB4  
B44  
VREF6  
RCVP6  
IO6_0  
B  
A2  
IO1_1  
SVA2  
IB2  
LD6  
B45  
B46  
B47  
B48  
49  
B5
B51  
B52  
53  
B54  
B55  
B56  
B57  
B58  
B59  
B60  
B61  
B62  
B63  
B64  
B65  
B66  
B67  
B68  
B69  
B70  
B71  
A3  
LD8  
VREF8  
RCVN8  
IO8_1  
IO8_0  
INT  
A4  
SVA5  
IB5  
A5  
VAC2  
CANCEL2  
IA2  
I
A6  
VAC5  
IMT5  
A7  
VA7  
IMT7  
A8  
DCA2  
DCB2  
RCVP2  
IO2_0  
SVA3  
IB3  
DCA5  
VREF5  
RCVN5  
IO5_1  
IO5_0  
SVB6  
VIMT6  
AVDD56  
IMT6  
DOUT  
DCLK  
VDD33_2  
PCLK  
DXA  
A9  
DCA7  
AVDD78  
RCVP7  
IO7_0  
SVB8  
VIMT8  
IMT8  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A2
VAC4  
IM4  
VREF
RCVN4  
IO4_1  
VDD18_1  
LD2  
DXB  
VAC3  
IMT3  
TSB  
EBUG_I
SVA
IA3  
DCA8  
DCB8  
RCVP8  
RST  
VREF3  
AVDD34  
RCVP3  
IO3_0  
SVB4  
VIMT4  
NC  
DCA6  
DCB6  
RCVN6  
IO6_1  
SHB  
1  
LD4  
P0  
EL1  
P2  
LD5  
VDD18_3  
DIN  
VREF1  
NC  
LD7  
SLB  
VDD18_2  
SVB5  
VIMT5  
CANCEL5  
IA5  
CS  
B7  
VT7  
CANCEL7  
7  
FS  
CANCEL4  
IA4  
B1  
B2  
B3  
B4  
B5  
RCVP1  
IO1_0  
DRA  
VDD18_4  
TSCA  
DRB  
DCA4  
4  
SVB2  
VREF7  
DCB7  
VIMT2  
AVDD12  
DCB5  
RCVP5  
DEBUG_  
CLK  
A2
A30  
A31  
A32  
A33  
A62  
A63  
A64  
A65  
A66  
RCVN7  
IO7_1  
SVA8  
IB8  
B6  
B7  
B8  
B9  
B10  
IMT2  
B39  
B40  
B41  
B42  
B43  
SVA6  
IB6  
B72  
B73  
B74  
B75  
B76  
SVB1  
VIMT1  
IMT1  
VREF2  
RCVN2  
IO2_1  
IREF  
LD3  
VAC6  
CANCEL6  
IA6  
VDD33_1  
P1  
DCA1  
DCB1  
VAC8  
The Exposed Pad is the AGND and DGND connection. Connect to a PCB ground plane using a thermal pad and a grid of  
thermal vias. Refer to the Hardware Design Guide for use and considerations.  
Table 2 - 164-Pin LGA Pin Numbers and Pin Names  
16  
Microsemi Corporation  
Le79238  
Data Sheet  
176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133  
132  
1
2
RCVN1  
RCVP1  
VAC8  
VIMT8  
8  
VA8  
AGND7  
IO7_0  
IO7_1  
3
IO1_1  
IO1_0  
AGND1  
SVA2  
SVB2  
IB2  
VIMT2  
VAC2  
AVDD12  
CANCEL2  
IMT2  
IA2  
DCA2  
VREF2  
DCB2  
RCVN2  
4
5
6
1
7
125  
8
124  
9
RCVP7  
RCVN7  
AVDD78  
DCB7  
VREF7  
DCA7  
IA7  
IMT7  
123  
10  
2  
11  
12  
121  
120  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
119  
118  
117  
116  
CANCEL7  
VAC7  
VIMT7  
IB7  
SVB7  
SVA7  
SLB  
SHB  
115  
114  
RCVP2  
IO2_1  
IO2_0  
AGND2  
IREF  
113  
112  
111  
176-pin QFP  
110  
109  
SVA3  
108  
SPB  
AGND6  
IO6_0  
IO6_1  
RCVP6  
RCVN6  
DCB6  
VREF6  
DCA6  
IA6  
IMT6  
CANCEL6  
AVDD56  
VAC6  
VIMT6  
IB6  
SVB3  
IB3  
VIMT3  
VAC3  
107  
106  
105  
104  
CANCEL3  
IMT3  
103  
102  
IA3  
DCA3  
101  
100  
VREF3  
DCB3  
AVDD34  
RCVN3  
RCVP3  
IO3_1  
99  
98  
97  
96  
95  
94  
IO3_0  
AGND3  
93  
92  
SVB6  
SVA4  
SVB4  
IB4  
91  
SVA6  
AGND5  
IO5_0  
90  
89  
VIMT4  
46 47 48 0 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88  
Figure 6 - 176-Pin LQFP Diagram  
17  
Microsemi Corporation  
Le79238  
Data Sheet  
3.0 Pin Descriptions  
Pin Name  
LQFP Pin #  
LGA Pin #  
BGA Pin #  
Type  
Description  
5, 22, 40,  
56, 90, 107,  
127, 143  
F6, G5, L5,  
L6, L9, J9,  
F9, E9  
AGND[1:8]  
EPAD  
Analog ground. Separate analog and digital grounds are  
provided to allow noise isolation, however the rounds must be  
connected together on the circuit board.  
Ground  
AGND2A,  
AGND4A,  
AGND5A,  
AGND8A  
H5, M5,  
M10, C10  
AVDD12,  
AVDD34,  
AVDD56  
AVDD78  
11, 35, 96,  
122  
B5, A18,  
A48, B53  
E5, J5,  
K10, E10  
+3.3 VDC analog power ply inputs. For st perfmance,  
all of the AVDD and V33 ower supply pins ould be  
connected together t the dev. Four decoupling capacitors  
should be used. Place a decouplcapacitor near AVDD12,  
AVDD34, AVDD5and AVDD78. AD12A, AVDD34A,  
AVDD56A, and AVD78A do not requitheir own decoupling  
capacitors.  
Supply  
AVDD12A,  
AVDD34A,  
AVDD56A  
AVDD78A  
D5, K5,  
L10, D10  
A85, A6,  
B13, A24,  
B35, B42,  
A58, A67  
A4, D1,  
H1, M1,  
P11, L14,  
G14, C14  
171, 12, 29,  
46, 80, 97,  
116, 133  
Metering cancation output. If metering is used, connect a  
capacior from thpin to the respective channel’s IMT pin. If  
meting is not used, let this pin float.  
CANCEL[1:8]  
CS  
Outpu
ut  
MPI interfachip select. A logic low placed on this pin enables  
sal datransmission into DIN or out of the DOUT port.  
151  
B65  
C8  
B75, A8,  
B14, A26,  
A41, A50,  
B52, B59  
B1,
P3, N
H13, D13
A12  
174, 15, 32,  
49, 83, 100,  
119, 136  
DC feed and low-frequency voltage control of the SLIC device’s  
A lead amplifiers.  
DCA[1:8]  
B7A9,  
B5, A27,  
7, A51,  
A6B6
C1, F2, ,  
P4, M14,  
J13, E13,  
A11  
176, 17, 34,  
51, 85, 102,  
121, 138  
DC feed and low-frequency voltage control of the SLIC device’s  
B lead amplifiers.  
DCB[1:8]  
Output  
MPI interface data clock. Provides data control for MPI interface  
control.  
DCLK  
150  
65  
64  
A75  
A81  
D8  
D6  
C6  
Input  
Input  
DEBUG Clock. This node needs to be tied to VDD33 through a  
0 resistor.  
DEBUG_CLK  
Input/  
DEBUG input output. This node needs to be tied to DGND  
through a 0 resistor.  
DEB
Output  
C5, K6,  
K9, N10,  
B10, E7  
, 64,  
6, 152  
DGN
DGND2A  
EPAD  
Digital ground. Separate analog and digital grounds are  
provided to allow noise isolation, however the grounds must be  
connected together on the circuit board.  
Ground  
Input  
N5  
MPI interface control data input. Control data is serially written  
into the Le79238 device via the DIN pin with the MSB first. DIN  
can be tied to DOUT for a single bi-directional interface. The  
data clock (DCLK) determines the data rate.  
DIN  
149  
B64  
A9  
18  
Microsemi Corporation  
Le79238  
Data Sheet  
Pin Name  
LQFP Pin #  
LGA Pin #  
BGA Pin #  
Type  
Description  
MPI interface control data output. Control data is serially read  
out of the Le79238 device via the DOUT pin with the MSB first.  
DOUT can be tied to DIN for a single bi-directional inteace.  
The data clock (DCLK) determines the data rate. DOUT iigh  
impedance except when data is being transmitted from the  
Le79238 device under control of CS.  
DOUT  
148  
A74  
B9  
Output  
PCM highway data receive ports. The receive input  
serially through the DRA or DRB ports. Data is iv
with the most significant bit first. For compressed , 1 byte  
of data is received every 125 µs at thPCLK rate. the Linear  
mode, 2 consecutive bytes of ata for eh channare  
received every 125 µs at thPCLK rate. In deband ode, the  
frame sync stays at 8 khe Le79238 operes internally at  
16 kHz and outputs da twiper frame in evespaced  
timeslots. If an input is not usede to DGND.  
DRA, DRB  
156, 163  
B67, B70  
A7, B6  
Input  
PCM highway data ansmit ports. Thransmit PCM data is  
transmitted serially thugh the DXA or DXB ports. Data is  
always transmitted mosgnificant bit first. The output is  
availaveµs and e data is shifted out in 8-bit (16-bit  
in Linear de) bursts at thCLK rate. In Wideband mode, the  
rame sync ys at 8 kHz, the Le79238 operates internally at  
16 kHz and outs data twice per frame in evenly spaced  
timesls. DXA anDXB are high impedance between bursts  
anwhile the device is in the inactive mode. If an output is not  
ed, let the pfloat.  
DXA, DXB  
157, 160  
A78, A79  
B7, C7  
Output  
M higway frame sync. PCM operation is selected by the  
pree of an 8 kHz frame sync signal on this pin in  
conjunction with the PCM clock on the PCLK pin. This 8 kHz  
pulse identifies the beginning of a frame. The Le79238 device  
references individual timeslots with respect to this input, which  
must be synchronized to PCLK.  
FS  
154  
B66  
B
A86A7,  
A, A25,  
6, B43,  
AA68  
C4, G44,  
N4, M11
H11, F11,  
C11  
173, 14, 31,  
48, 82, 99,  
118, 135  
IA[1:8]  
IB[1:8]  
Input  
Input  
Input current is proportional to current in SLIC’s A lead.  
Input current is proportional to current in SLIC’s B lead.  
A83, A
13, B19,  
A3B40,  
B4965  
B4, F4, H4,  
M4, N11,  
J11, G11,  
B11  
168, 8, 26,  
43, 77, 93,  
30  
B74, B6,  
A15, B21,  
A40, A49,  
B51, B58  
A3, E1, J1,  
N1, P12,  
K14, F14,  
B14  
172, 13, ,  
81, 98
134  
Input current is proportional to the differential current in the  
SLIC’s AD and BD leads. AGND on this node indicates a SLIC  
thermal overload condition.  
IMT[1
INT  
Input  
Interrupt. When a subscriber line requires service, this pin goes  
to a logic 0 to interrupt a high level processor. Logic drive is  
selectable between open drain and TTL-compatible outputs.  
45  
A73  
C9  
Output  
General purpose logic input/output and relay driver port. These  
pins can be programmed as an input or an output. These pins  
can be programmed as an open drain 50 mA relay driver.  
Unused pins should either be tied to AGND through a 10 KΩ  
resistor or programmed as low outputs.  
B2, A11,  
A20, A29,  
A45, B46,  
B55, A72  
4, 21, 39,  
55, 89, 106,  
126, 142  
F7, G7, J7,  
K7, K8, J8,  
F8, E8  
Input/  
IO[1:80  
Output  
19  
Microsemi Corporation  
Le79238  
Data Sheet  
Pin Name  
LQFP Pin #  
LGA Pin #  
BGA Pin #  
Type  
Description  
A2, B9,  
B17, B24,  
A44, A53,  
A63, A71  
General purpose logic input/output. These pins can be  
programmed as an input or an output. Unused pins should  
either be tied to AGND through a 10 Kresistor or progrmmed  
as low outputs.  
3, 20, 38,  
54, 88, 105,  
125, 141  
G6, H6, J6,  
H7, H8,  
H9, G9, G8  
Input/  
IO[1:8]_1  
Output  
External resistor (R  
) connected between this pin and  
REF  
IREF  
23  
B10  
F5  
Input  
analog ground generates an accurate, on-chence  
current for the A/D’s and D/A’s on the Le7923
A30, B26,  
A31, B27,  
B30, A35,  
B31, A36  
M6, P6,  
N6, P7,  
P8, N9,  
P9, M9  
Logic output that controls data traner into the Sevice.  
When LD is Low, the data on outputs PP2 is tranrred to the  
respective data latches as dirted by thSEL pin. hen LD is  
High, the data is locked in e latches.  
59, 60, 61,  
62, 69, 70,  
71, 72  
LD[1:8]  
NC  
Output  
A23, A88  
No connect. This pin not innally connected.  
PCM highway clk. A valid PCLK iequired for overall device  
operation. PCLK drmines the rate which PCM data is  
serially shifted into or of the PCM ports. The minimum clock  
frequey for linear/comnded data is 1.536 MHz.  
PCLK  
155  
A77  
A8  
Input  
B28, A33,  
B29  
M8, M7,  
N7  
bus. Cools the operating modes of the SLIC and LCAS  
devices connted to the Le79238 device.  
P[0:2]  
RST  
65, 66, 67  
144  
Output  
Hardre reset. Tpin should be driven by a logic signal (0V  
an+3.3 V) or else an external RC circuit (capacitor between  
ST and DG, resistor between RST and VDD33) should be  
sed to apy a low signal for enough time to guarantee that all  
splies re valid before the reset is de-asserted.  
B62  
D9  
Input  
A1, B8,  
B16, B23,  
A43, A52,  
A62, A70  
B3
H3, L
N12, K12
G2, D12  
1, 18, 36,  
52, 86, 103,  
123, 139  
Receive signal output (Inverting). Voice and metering control  
voltage signals for SLIC amplifiers.  
RCVN[1:8]  
RCVP[1:8]  
Output  
B110,  
A9, A28,  
8, B45,  
B5B6
C3, F3, ,  
M3, M12,  
J12, F12,  
C12  
2, 19, 37,  
53, 87, 104,  
124, 140  
Receive signal output (Noninverting). Voice and metering  
control voltage signals for SLIC amplifiers.  
D4, E4,  
K4, L4,  
L11, K11,  
E11, D11,  
F10, L8  
RSVD_B[1:8],  
RSVD_C,  
RSVD_O  
Reserved. These pins are internally connected. Pins must be  
left floating.  
Reserved  
Output  
Logic output that selects data outputs P0–P2 to either control  
the SLIC’s operating modes or the SLIC’s switch states.  
SEL  
68  
A34  
N8  
Battery sense leads. Resistors that sense the high, low, and  
positive battery voltages connect here. If only one negative  
battery is used, connect both negative battery resistors to the  
same supply or leave SLB unconnected. If the positive battery  
is not used, connect the SPB resistor to AGND or leave the pin  
unconnected. These pins are current inputs into pins whose  
voltage is held at VREF, do not short these pins together.  
SHB, SL
SPB  
09, 110,  
108  
A54, A55,  
B47  
J10, G10,  
H10  
Input  
Input  
A82, A3,  
A12, B18,  
A37, B39,  
B48, A64  
C2, E2, J2,  
N2, M13,  
K13, F13,  
B13  
166, 6, 24,  
41, 75, 91,  
111, 128  
SVA[1:8]  
Senses the voltages on A lead through external sense resistors.  
20  
Microsemi Corporation  
Le79238  
Data Sheet  
Pin Name  
LQFP Pin #  
LGA Pin #  
BGA Pin #  
Type  
Description  
B72, B3,  
B11, A21,  
B33, A46,  
A56, B56  
B2, D2,  
H2, M2,  
N13, L13,  
G13, C13  
167, 7, 25,  
42, 76, 92,  
112, 129  
SVB[1:8]  
Input  
Senses the voltages on B lead through external sense resistors.  
PCM highway backplane driver enables. TSCA or TSCB are  
active low when PCM data is output on the DDXB pins,  
respectively. The outputs are open-drain and
inactive (high impedance). Pull-up loads should cted  
to VDD33. If output not used, let thpin float.  
TSCA, TSCB  
VAC[1:8]  
161, 162  
B69, A80  
D7, A6  
Output  
A84, A5,  
A14, B20,  
A39, B41,  
B50, A66  
A1, G1, L1,  
P2, P14,  
H14, D14,  
A13  
170, 10, 28,  
45, 79, 95,  
115, 132  
Voice (AC only) signal prortional to the Icurreof the  
SLIC.  
Input  
Supply  
Supply  
ut  
57, 73, 147,  
159  
B25, B32,  
B63, B68  
P5, P10,  
A10, B5  
+1.8 VDC digitaower supply inpPlace a decoupling  
capacitor near VDD_1, VDD18_2, D18_3, and VDD18_4.  
VDD18_4A does not ruire its own decoupling capacitor. A  
bulk doupling capacitos also advised.  
VDD18_[1:4]  
VDD18_4A  
A5  
3.3 VDC gital power supply inputs. For best performance, all  
of the VDD3nd AVDD power supply pins should be  
connected togeer at the device. A decoupling capacitor  
shoulbe used on ach pin.  
VDD33_[1:2]  
VIMT[1:8]  
63, 153  
A32, A76  
L7, E6  
B73, B4,  
B12, A22,  
B34, A47,  
A57, B57  
A2, F1, K1,  
P1, P13,  
J14, E14
A1
169, 9, 27,  
44, 78, 94,  
114, 131  
gnal proortional to the IMT current of the SLIC.  
A87, B7,  
A17, B22,  
A42, B44,  
A60, A9  
D3, G
K3, N3,  
L, H12,  
E1B12  
175, 16, 33,  
50, 84, 101,  
120, 137  
This pin provides a +1.5 V, single-ended reference to the  
respective SLIC. This pin requires an external capacitor to  
AGND, whether the output is used or not.  
VREF[1:8]  
21  
Microsemi Corporation  
Le79238  
Data Sheet  
4.0 Absolute Maximum Ratings  
Stresses greater than those listed under Absolute Maximum Ratings can cause permanent device failure.  
Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods  
can affect device reliability.  
Storage Temperature  
–55ºC TA +125ºC  
–40ºC TA +85ºC  
Ambient Temperature, under Bias  
Ambient relative humidity (non condensing)  
VDD33 with respect to AGND or DGND  
VDD18 with respect to AGND or DGND  
AVDD with respect to AGND or DGND  
5% to 95%  
–0.4 V to +4.0 V  
–0.4 V to +1.98 V  
–0.4 V to +4.0 V  
±0.4 V  
AVDD with respect to VDD33  
IMT, VIMT, VAC, IA, IB with respect to AGND or DGND  
–0.4 V to (AD + 0.4 V)  
75 mA  
IO [1:8]_0 current  
AGND  
D±0.4 V  
Latch up immunity (any pin)  
Any other pin with respect to DGND  
ESD Immunity (Human Body Model)  
±100 A  
–0.4 V to DD33 + 0.5 V)  
JSD22 Class C compliant  
4.1 Green Package Assembly  
The green package devices are assembled wenviroental compatible lead-free, halogen-free, and  
antimony-free materials. The leads posselating which is compatible with conventional board  
assembly processes or newer lead-free by processes. Refer to IPC/JEDEC J-Std-020 for  
recommended peak soldering temperate and stemperature profile.  
The package referred to as a LaGrid Arra(LGA) ihis document uses a Cu Alloy Leadframe as the substrate  
and its construction is such at it would be assified as a QFN per JEDEC Standard JESD30. Refer to the  
Hardware Design Guide for B mouing of the GA.  
22  
Microsemi Corporation  
Le79238  
Data Sheet  
5.0 Operating Ranges  
Microsemi guarantees the performance of this device over commercial (0º to 70ºC) and industrial (40º to 85ºC)  
temperature ranges by conducting electrical characterization over each range and by conducting a production test  
with single insertion coupled to periodic sampling. These characterization and test procedures comply with the  
Telcordia GR-357-CORE Generic Requirements for Assuring the Reliability of Components Usd in  
Telecommunications Equipment.  
5.1 Environmental Ranges  
Ambient Temperature  
–40 to +85ºC  
15 to 85%  
Ambient Relative Humidity  
5.2 Electrical Ranges  
Analog Supply AVDD  
Digital Supply VDD33  
+3.3 V ±5%, VDD33 ±50 mV  
+3.3 V ±5%  
+1.8 V ±5%  
Refer “Reset at Power-Up” on  
page 35 r supply and reset  
equencin
Digital Supply VDD18  
DGND  
AGND  
0 V  
DGND ±10 mV  
6.0 Programming of the SLAC Parameters  
The line circuit parameters are stored in a Devicfile. TDevie Profile files are generated by Microsemi’s  
application support programs WinSLAC™ anrd. ThDevice Profile file is loaded into the Le79238  
SLAC through the API-II software interface.  
The Device Profile file consists of a Sstem-Dand a number of optional parameter profiles. If the  
NGVCP is used, profiles for cadencing anCaller dded. The following optional files pertain to parameters  
that are programmable in the SLC:  
6.1 AC Parameters  
Input impedance Z  
D
2-4W Hybrid balance impdance
Test terminatimance
Transmit RelativLevel and frequency response equalization  
Reve Lel and frequency response equalization  
Abit linear, or wideband PCM encoding  
23  
Microsemi Corporation  
Le79238  
Data Sheet  
6.2 DC Parameters  
Loop current limit value  
Feed resistance before current limit  
Metallic voltage at transition between current limit and resistive feed  
Anti-saturation headroom voltage  
Abrupt or smooth reversal  
Off-hook detection threshold  
GND start threshold  
DC fault detection threshold  
AC fault detection threshold  
6.3 Ringing Parameters  
A lead DC voltage V  
B lead DC voltage V  
during internal ringing  
during internal ringing  
DCA  
DCB  
Balanced or unbalanced internal ringing  
Amplitude of internal ringing  
Frequency of internal ringing  
Wave shape of internal ringing  
Short loop ring trip threshold  
Long loop ring trip threshold  
6.4 Tone and Metering Signal Paramet
Frequency  
Amplitude  
For a complete description of aramters, consult the WinSLAC™ Software User’s Guide (Document ID 080779)  
and the Profile Wizard Uer’s Gu(Document ID 127063).  
24  
Microsemi Corporation  
Le79238  
Data Sheet  
7.0 Electrical Characteristics  
7.1 AC/DC Specifications  
Typical values are for TA = 25ºC and nominal supply voltage. Minimum and maximum values are oer the  
temperature and supply voltage ranges as shown in “Operating Ranges” on page 23, except as noted. PCLand  
FS are present and valid.  
Refer to the Next Generation Carrier Chipset Hardware Design Guide (Document ID 126583) for e nodes  
that have trace capacitance restrictions.  
No.  
Item  
Condition  
Min  
Typ  
x  
t  
Note  
Input Low Voltage (VIL)  
1
–0.50  
0.80  
V
Digital inputs and IO[1:8]_[0:1] programmed as  
an input  
Input High Voltage (VIH  
)
VD3 +  
0.5  
2
2.0  
V
Digital inputs and IO[1:8]_[0:1] programmed as  
an input  
Input Leakage Current, IO[1:8]_[0:1]  
All other digital inputs  
–1
+10  
3
4
0 to VDD33  
µA  
V
–120  
+180  
Input hysteresis  
PCLK, FS, DRA, DRB, DCLK, DIN and  
IO[1:8]_[0:1] programmed as an input  
0.15  
0.30  
0.4  
2
Output Low Voltage (VOL  
)
DXA, DXB, DOUT, IO[1:8]_[0:1], INT, TSCA,  
TSCB  
5
V
IO[1:8]_0 when programmed as relay river  
P[0:2], LD, SEL  
Iol
0.7  
0.4  
Output High Voltage (VOH  
)
VDD33 –  
0.4  
6
7
h = 400 µA  
1
V
All digital outputs excepNT in open rain  
mode and TSCA, TSCB  
Input Leakage Curre
IMT  
–1  
µA  
Full scalltels, inpor output  
DCA, DCB  
VREF±1.2  
Normal gain  
High gain  
VREF±0.6  
VREF±1.2  
VREF±0.6  
VREF±1.2  
See Note  
N  
8
V
Normal gain  
High gain  
VIMT  
VAC  
3
4
See Note  
Load current  
= 0 to 0.8 mA,  
Source or  
Sink  
9
Output voltage, VREF[1:8]  
1.47  
1.50  
1.53  
V
Table 3 - AC/DC Specifications  
25  
Microsemi Corporation  
Le79238  
Data Sheet  
No.  
Item  
Condition  
Min  
Typ  
Max  
Unit  
Note  
% of input  
voltage  
Battery read A/D relative error  
Battery read A/D absolute error  
–3%  
+3%  
10  
2, 7  
–0.5  
80  
27  
43  
14  
72  
2
5
+0.5  
110  
40  
60  
2  
V
Active state  
+3.3 V Supply Power Dissipation,  
Nonoperational, Power per channel  
Standby state  
Active state  
11  
8
+1.8 V Supply Power Dissipation,  
Nonoperational, Power per channel  
Standby state  
Active state  
+3.3 V Supply Power Dissipation,  
Operational, Power per channel  
Standby state  
Disabled state  
Active state  
12  
mW  
9, 10  
36  
2
+1.8 V Supply Power Dissipation,  
Standby state  
Disabled state  
Operational, Mean power per channel  
Table 3 - AC/DC Scifications  
7.2 Transmission Specifications  
Transmission specifications are tested with the X-filter, R-filtGX, and GR set to a gain of 1, the Z-filter, B-filter,  
AISN, and DISN set to a gain of 0, the VDAC gadB, thDRgain set to 5/8, and the VAC gain set to 15.  
The receive path 0 dB output level is defined ms per in on RCVP-RCVN (0.36944 Vrms differential)  
and the transmit path 0 dB input level is de9 Vrms on the VAC pin. Supplies are as specified in  
“Electrical Ranges” on page 23. PCLK and FS d valid.  
No.  
Item  
Conition  
Min  
Typ  
Max  
Unit  
Note  
Input: 1014 Hz, 0 dBm0  
GR = GX = 0 dB; AISN, R, X, B and Z  
disabled  
Insertion Loss  
A-D, D-A  
–0.25  
0
+0.25  
1
dB  
7
Temperature = 25°C  
–0.15  
–0.1  
0
0
+0.15  
+0.1  
A-D + D-A  
Variation over temperature  
Level set error rror between  
d actuaalue)  
2
3
A-D, D-A  
–0.1  
–0.3  
0
0
0.1  
dB  
dB  
7
7
DR Input: 1014 Hz, –10 dBm0  
GR=GX=0 dB; AISN, R, X, B and Z  
filters default  
n full digital  
+0.3  
Table 4 - Transmission Specifications  
26  
Microsemi Corporation  
Le79238  
Data Sheet  
No.  
Item  
Condition  
Min  
Typ  
Max  
Unit  
Note  
A-D (DX output)  
–69  
–78  
+19  
+12  
Idle Channel Noise  
Psophometric Weighted (A-law)  
dBm0p  
dBrnC0  
dBrn
D-A (RCVN, RCVP output)  
A-D (DX output)  
50  
C Message weighted (µ-law)  
4
D-A (RCVN, RCVP output)  
A-A (VAC input any channel, RCVN,  
RCVP output any other channel, DX  
tied to DR)  
15 kHz flat (Wideband linear mode)  
16  
1
PSRR Image frequency (VDDxx)  
A-D  
Input: 4.8 to 7.8 kHz,  
200 mVp-p  
37  
37  
5
µS  
Measure at:  
8000 Hz Input frequency  
D-A  
1014 Hz, –10 dBm0;  
B=Z=0; X=R=1  
6
7
8
End-to-end absolute group delay  
725  
2, 6  
–75  
–75  
–75  
–75  
Crosstalk  
TX to RX  
RX to TX  
300 Hz to 3400 Hz, 0 dBm0  
1014 Hz, 0 dBm0  
same channel  
dBm0  
2
Crosstalk  
TX or RX to TX  
TX or RX to RX  
other channel  
Table 4 - Transmission Secificatons  
Note 1: Not tested or partially tested in production. Tis guarteby characterization or correlation to other tests.  
Note 2: Guaranteed by design.  
Note 3: VIMT has an analog range of VREF ±1.2 V, F ±1.0 V is used by the A/D input.  
Note 4: Full scale voltage level for VAC is VRF ± (1.0
Note 5: The specification holds for any etting oX gain f12 dB or GR from 0 to –12 dB when tested with a transmission  
level point of 0 dBr.  
Note 6: The end-to-end group delis the absolute grp delay at the echo path with the B-filter turned off. Refer to the Next  
Generation Carrier Chipt DesigneGuide foore information. See Figure 9 for Group Delay Distortion versus frequency.  
Note 7: Requires that the calibraticomand be performed to achieve this performance.  
Note 8: Firmware and DC fd not optional.  
Note 9: Firmware and DC feed perationbatteries applied.  
Note 10: DSP Core Power Reductienable.  
7.3 Transmit ad Receive Paths  
In this tranmit path is defined as the analog input to the Le79238 device (VAC) to the PCM voice  
outppath is defined as the PCM voice input to the Le79238 analog output (RCVN, RCVP). All limits  
definn are tested with B = 0, Z = 0 and X = R = GR = GX = 1, unless otherwise specified. These  
transeristics are valid for 0 to 70º C.  
27  
Microsemi Corporation  
Le79238  
Data Sheet  
7.4 Attenuation Distortion  
The attenuation of the signal in either path is nominally independent of the frequency. The deviations from nominal  
attenuation will stay within the limits shown in Figure 7 and Figure 8 for narrowband operation and within the limits  
shown in Table 5 for wideband operation when the calibration command is performed and equalized coefficients are  
used.  
The reference signal level is –10 dBm0. The minimum transmit attenuation at 60 Hz is 24 dB.  
2
1
0.80  
65  
0.6  
0.2  
0.25  
0.125  
0
Acceptable Region  
Frequen()  
-0.125  
0
Figure 7 - NarrowbaPath tenuation vs. Frequency  
2
0.75  
0.125  
Acceptable Region  
Frequency (Hz)  
0
0
-0.125  
0
Figure 8 - Narrowband Receive Path Attenuation vs. Frequency  
28  
Microsemi Corporation  
Le79238  
Data Sheet  
No.  
Item  
Condition  
Min  
Typ  
Max  
Unit  
Relative to 1020 Hz:  
50 Hz  
+20  
+20  
60 Hz  
200 Hz  
0
+3.0  
+0.5  
+0.3  
+0.3  
+5  
+0.75  
+1.0  
300 Hz  
–0.25  
–0.25  
–0.25  
–0.25  
–0.2
0
500 Hz  
1
Transmit Path Loss  
4800 Hz  
6000 Hz  
6400 Hz  
6800 Hz  
8000 Hz  
9200 Hz  
Relative to 1020 Hz:  
50 Hz  
+14  
+
0
60 Hz  
0
200 Hz  
0
+2.0  
+0.5  
+0.3  
+0.3  
+0.5  
+0.75  
+1.0  
300 Hz  
–0.25  
–0.25  
–0.25  
–0.25  
–0.25  
0
600 Hz  
2
Receive Path Loss  
4
6
6400
800 Hz  
80Hz  
9200 H
12000 Hz  
dB  
+14  
+28  
+28  
Tab5 - Wideband Attenuation vs. Frequency  
Note:  
Not tested or partiallsteoductioThese parameters are guaranteed by characterization or correlation to other tests.  
29  
Microsemi Corporation  
Le79238  
Data Sheet  
7.5 Group Delay Distortion  
For either transmission path, the group delay distortion is within the limits shown in Figure 9. The minimum value of  
the group delay is taken as the reference. The signal level is –10 dBm0.  
420  
Delay (µS)  
150  
90  
Acceptable  
Region  
0
uency (Hz)  
FiguDelaistortion  
7.6 Single Frequency Distortion  
The output signal level, at any singe frequncy in te of 300 to 3400 Hz, other than that due to an applied 0  
dBm0 sine wave signal with freqency f in thsame fruency range, is less than –46 dBm0. With f swept between  
0 Hz to 300 Hz and 3.4 kHz 12 kHz, any geerated output signals other than f are less than –28 dBm0. This  
specification is valid for eitheransmision path.  
30  
Microsemi Corporation  
Le79238  
Data Sheet  
7.7 Gain Linearity  
The gain deviation relative to the gain at –10 dBm0 is within the limits shown in Figure 10 (A-law) and Figure 11 (µ-  
law) for either transmission path when the input is a sine wave signal of 1014 Hz.  
1.5  
0.55  
0.25  
Inp
Level  
Acceptable Region  
Gain (dB)  
0
-55 -50  
-40  
-10  
+3  
(dBm0)  
-0.25  
-0.55  
-1.5  
Figure 10 - A-law Gaarity wth TonInput (Both Paths)  
1.4  
.45  
0.25  
Input  
Level  
Acceptable Region  
Gain (d
0
+3  
-55 -50  
-37  
-10  
0
(dBm0)  
-0.45  
-1.4  
Figure 11 - µ-law Gain Linearity with Tone Input (Both Paths)  
31  
Microsemi Corporation  
Le79238  
Data Sheet  
7.8 Total Distortion Including Quantizing Distortion  
The signal to total distortion ratio will exceed the limits shown in Figure 12 for either path when the input signal is a  
sine wave signal of frequency 1014 Hz.  
Acceptable Region  
B
A
A-Law  
µ-Law  
A
B
C
D
35.5dB 35.5dB  
35.5dB 35.5dB  
C
D
30dB  
25dB  
31d
27dB  
Sial-to-To
Distortion (dB)  
-45 -40  
-30  
Input Level Bm0)  
Figure 12 - Total Distortiowith Tone Input, Both Paths  
7.9 Overload Compression  
Figure 13 shows the acceptable region of ut signal levels above the reference input power (0  
dBm0). The conditions for this figure are:  
(1) With GX in the range of +1 dB < GX 12 dB y WinSLAC™; (2) GR in the range of –12 dB GR < –1  
dB as set by WinSLAC™; (3) Dital voice otput concted to digital voice input; and (4) measurement analog to  
analog.  
9
8
7
6
Fundamental  
Output Power  
Acceptable  
Region  
5
4
3
(dBm0)  
2.6  
2
1
7
8
9
1
2
3
4
5
6
Fundamental Input Power (dBm0)  
Figure 13 - A/A Overload Compression  
32  
Microsemi Corporation  
Le79238  
Data Sheet  
7.10 Discrimination Against Out-of-Band Input Signals  
When an out-of-band sine wave signal with frequency and level A is applied to the analog input, there may be  
frequency components below 4 kHz at the digital output which are caused by the out-of-band signal. These  
components are at least the specified dB level below the level of a signal at the same output originating from a  
1014 Hz sine wave signal with a level of A dBm0 also applied to the analog input. The specificatios for  
narrowband mode are shown below.  
Frequency of Out-of-Band Signal  
Amplitude of Out-of-Band Signal  
Level belo
16.6 Hz < f < 45 Hz  
45 Hz < f < 65 Hz  
–25 dBm0 < A 0 dBm0  
–25 dBm0 < A 0 dBm0  
–25 dBm0 < A 0 dBm0  
–25 dBm0 < A 0 dBm0  
–25 dBm0 < A 0 dBm0  
18 dB  
5 dB  
65 Hz < f < 100 Hz  
3400 Hz < f < 4600 Hz  
4600 Hz < f < 100 kHz  
10
see Figure
32 dB  
Table 6 - Minimum Specifications for Out-of-Band nput Signal
0
-10  
-20  
Level  
below A  
(dB)  
-30  
-
-50  
3.4  
4.0  
4.6  
Frequency (kHz)  
Figure 14 - Discrimination Against Out-of-Band Signals  
Note:  
The ataveform elow amplitude A between 3400 Hz and 4000 Hz is given by the formula:  
π(4000 f)  
----------------------------  
Attenuation = 14 14sin  
dB  
1200  
The atteation of the waveform below amplitude A between 4000 Hz and 4600 Hz is given by the formula:  
π(4000 f)  
----------------------------  
Attenuation = 14 18sin  
dB  
1200  
33  
Microsemi Corporation  
Le79238  
Data Sheet  
7.11 Spurious Out-of-Band Signals at the Analog Output  
With PCM code words representing a sine wave signal in the range of 300 Hz to 3400 Hz at a level of 0 dBm0  
applied to the digital input, the level of the spurious out-of-band signals at the analog output for narrowband mode is  
less than the limits shown below.  
Frequency  
Level  
4.6 kHz to 40 kHz  
40 kHz to 240 kHz  
240 kHz to 1 MHz  
–32 dBm0  
–46 dBm0  
–36 dBm0  
Table 7 - Limits for Spurious Out-of-Band Signals  
0
-10  
-20  
-28 dBm0  
-32 dBm0  
-30  
-40  
-50  
Level (dBm0)  
3.4  
4.6  
Frequency (kHz)  
Figure 15 - Spurious Out-of-Band Signals  
Note:  
The amplitude of the spurious out-of-bd signals between 3400 Hz and 4600 Hz is given by the formula:  
π(f 4000)  
dBm0  
----------------------------  
Level = 14 14sin  
1200  
34  
Microsemi Corporation  
Le79238  
Data Sheet  
8.0 Reset at Power-Up  
This section discusses the handling of the reset signal at power-up. Two power-up sequences are presented.  
If VDD33 and VDD18 power supplies are powered up separately, refer to Figure 16. For this sequence, VDD33 is  
powered up shortly before VDD18 is powered up (period D). Reset can be held high or low at power-up; PCK can  
be running or turned off initially. After VDD18 is powered up and stabilized, a short reset (B) needs to be assted  
(within period A). When reset is de-asserted, PCLK must be running and main device initialization functions c
now proceed.  
If VDD33 and VDD18 power supplies are powered up at the same time, refer to Figure 16. For this se, res
must be held low at power-up; PCLK can be running or turned off initially. After the suppliehave staed, reset  
needs to be de-asserted (within period A). At this point PCLK must be running anmaidevice itialization  
functions can now proceed.  
Note: If the intent for either power-up sequence is to hold the line card in reset, apply the initial short set, -assert, then waieriod C before  
re-asserting reset. Reset can then be held indefinitely, with or without PCLK operational.  
D
VDD18  
VDD33  
PCLK  
RST  
C
B
Figure 16 - Ret Sequencwhen VDD33 and VDD18 are Powered Up Separately  
VD33  
A
DD18  
PCLK  
RST  
C
Figure 17. Reset Sequence when VDD33 and VDD18 are Powered Up Together  
Note: A valid reset should be applied as soon as possible after power-up.  
35  
Microsemi Corporation  
Le79238  
Data Sheet  
No.  
Parameter  
Min.  
Typ  
Max  
Unit  
A
B
Time after power supplies are stable until reset is de-asserted  
Reset pulse width  
300  
1
See note  
See note  
µ
Time after reset is de-asserted until reset can be re-asserted. (Only applies  
to initial power-up sequence.)  
C
D
1000  
500  
Delay between VDD33 and VDD18 power-up  
See not
Table 8 - Recommended Reset Sequence Timing  
9.0 Host Bus Control Interface (HBI) Overview  
The Host Bus Interface provides a means for exchanging control, configuration ad status iormatiwith an  
external processor. This is accomplished by allowing the host to access regions oe DSP memo, and selected  
hardware registers. Essentially, the host peeks and pokes internal memory to ehangdata.  
This interface is implemented through a combination of hardware and firmwre. The desigis layered as shown in  
Figure 18. Hardware provides a generic means for transporting data between he host and ternal memory. The  
interpretation of the data is provided by firmware running on the DSP. This layerearchitecture allows the definition  
of the application level interface to change by modifying the DSP fir
Prdes the plication pgrammer’s interface. Defines  
the aninof payload data passed over the interface.  
Firmware  
Application Layer  
oves 1bit data ords between the physical layer and  
Transport Layer  
al memry.  
Hardware  
Physical Layer  
he pins, signal timing and electrical characteristics  
terface.  
MPI  
Figure 18 - Host Bus Interface Layers  
The transport layer movs 16-bit ta words between the physical interface and internal DSP memory or hardware  
registers on an internal buIt defins the structure of a transport frame, which consists of a 16-bit command word  
followed by 0 or more 16-bit pyload da words. It also defines the interface address model, and provides mapping  
between interfainternal adresses.  
The application laydefines the programmer’s interface, and is almost entirely implemented in firmware. The  
exceptiandful f configuration registers implemented in hardware. This layer defines the meaning of the  
payloered the transport layer. Because it is implemented in firmware, the definition of the  
progce can change by providing new software.  
The provides the functionality needed to electrically interface with a network processor. The  
Microprerface (MPI) implements a common, industry standard 3-wire or 4-wire synchronous serial slave  
interface included with many DSPs and microcontrollers.  
9.1 ansport Layer  
Thprimary responsibility of the transport layer is to move 16-bit data words between the physical interface and  
locations on an internal bus, which includes DSP memory. Data is organized into transport frames, which consist of  
a 16-bit command word followed by 0 or more data words. The command word provides address and length  
36  
Microsemi Corporation  
Le79238  
Data Sheet  
information to the transport hardware. In a sense, this hardware provides an internal DMA-like function, moving  
data over the internal bus under host control.  
9.1.1 Interface Addressing  
The transport command word provides address information to the interface hardware.  
The host interface address model is based on a paged memory scheme, as shown in Figure 19. The comman
design permits up to 257 pages, with up to 128 offset-addressable 16-bit wide register locationefore, an  
interface address is composed of an 8-bit page number and a 7-bit register offset. Pages are selecg a  
command to write the page register. All data access commands operate on the selected page. One exn is the  
direct page, which can be accessed at any time without changing the page register.  
127  
118 - 127 Reserved  
Notes:  
1.  
For NGCC SLAC, N = 15.  
Offset  
Address  
16-Bit  
Registers  
Direct Page  
Page 0  
Page 1... N  
CL Page  
0
Figure nterfacAddress Mode  
9.1.2 Command Structure  
All transport frames start with a 16bit commnd worowed by 0 or more 16-bit data words.  
Command Bit Position  
Number of  
Transport Command  
5  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
16-bit  
Data Words  
0
Offset Address (0 - 127)  
Length (0 - 127)  
PageAccess  
Length + 1  
Length + 1  
w1  
1
Offset Addressb (0 - 118)  
0
irect Pe  
Acces
Lengthb (0 - 15)  
r/w  
1
0
1
0
1
1
1
0
0
1
0
1
0
r/w  
r/w  
0
ox Access  
Length + 1  
Length + 1  
0
Length (0 - 255)  
1
1
1
1
1
1
1
1
Continue Mailbox  
Access  
Length (0 - 255)  
1
1
Reserved  
Reserved  
Table 9 - Host Bus Interface Transport Commands  
37  
Microsemi Corporation  
Le79238  
Data Sheet  
Command Bit Position  
Number of  
Transport Command  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
0
8
0
1
16-bit  
Data Words  
1
1
1
1
1
1
Configure Interfaces  
Select Page  
Select CL Page  
Reserved  
0
0
0
0
0
Interface Option Bits  
1
0
1
1
1
1
1
1
1
0
1
0
1
1
1
1
1
0
1
0
1
1
1
1
1
0
1
0
1
1
1
1
1
1
1
0
Page Number (0 - 15)  
1
0
1
1
1
1
1
0
1
1
1
1
1
0
1
1
1
1
0
0
1
1
1
NOP  
Table 9 - Host Bus Interface Transpt mand
1. Read / Write select bit. 0 = Read. 1 = Write.  
b. Addresses 120-127 on the Direct Page are reserved.  
9.1.3 Paged Offset Access  
This command accesses one or more contiguous 16-bit risters on the currently selected page; it must be  
preceded by a page selection command. The 7pecifithe starting address on the page. The command  
is followed by (Length + 1) 16-bit data wordsth field allows accessing between 1 and 128 locations  
with a single transport frame. For nonzeraddress automatically increments, and consecutive  
locations are accessed.  
9.1.4 Direct Page Offset Acess  
Direct Offset Access is the me as Pged OffsAccess, except that the direct page is the target. By using this  
command, the direct page can e aessed at any time without modifying the page register. The 4-bit Length field  
allows accessing betwen 1 an16 locations on a single transport frame. For nonzero Lengths, the address  
automatically increments, ad consutive locations are accessed.  
9.1.5 Start Mlbox ce
This commd acceses a contiguous stream of 16-bit data words starting from offset 0 on the currently selected  
page. nd is flowed by (Length + 1) 16-bit data words. The 8-bit Length field allows accessing between  
1 an(i.e., up to 512 bytes) with a single transport frame. Access always begins from offset 0, and  
the cally increments.  
9.1.6 e Mailbox Access  
Contine Mailbox Access is the same as Start Mailbox Access, except that access starts from where the last  
mailboaccess left off. By using this command, packets of arbitrary length can be supported. Note that Offset  
Accescommands can be executed between multiple Mailbox Access commands. This gives the host the freedom  
to spit data transfers into smaller sizes if desired.  
38  
Microsemi Corporation  
Le79238  
Data Sheet  
9.1.7 Configure Interfaces  
This global command is used to configure various physical interface options. It is a write only global command and  
is followed by 0 data words.  
Interface Configuration Register (Configure)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HBI  
INT  
Data Byte  
RSVD  
RSVD  
RSVD  
RSVD  
RSV
VD  
WAKE  
DRIVE  
INT_DRIVE:  
INT pin drive mode.  
0: open drain (default).  
1: TTL.  
HBI_WAKE:  
Assert Wake to the DSP. This bit will be cleared by harware on the first HBI  
clock after the DSP has responded.  
0: No Wake event is present from HBI (defau
1: HBI is forcing a wake event to the DSP and ccks.  
Note: RSVD pins need to bwritten s zero.  
9.1.8 Select Page  
This command selects the active interface page. It is a write ny commanand is followed by 0 data words. The 4-  
bit page field allows up to 16 selectable pages per C to be efined.  
9.1.9 Select CL Page  
This command selects the special CL Code Lis a write only command and is followed by 0 data  
words.  
9.1.10 NOP  
A command is reserved to servaa NOP. Note that all commands, except for the Offset Access commands, are  
implemented by reservinan addrss from the direct page.  
9.1.11 Assoted Regisers  
The following regisrs are used by the HBI CL Page Base Address Register (special type of base address  
register code ading) and Mailbox Flag Register.  
9.1.1e Base Address Register  
Address:  
Direct Page Offset 06 (High) and 07 (Low)  
0000 0000h  
Power Up Default:  
This spcial base address register is used for code loading.  
39  
Microsemi Corporation  
Le79238  
Data Sheet  
D15  
0
D14  
0
D13  
D12  
D4  
D11  
D10  
D9  
D1  
D8  
Data Byte  
Data Byte  
BASE_ADDR[29:24]  
D7  
D6  
D5  
D3  
D2  
D
BASE_ADDR[23:16]  
Table 10 - CL Page Base Address High Register (User)  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
BASE_ADDR[15:8
D4 D3  
D11  
D10  
D2  
D9  
D1  
D8  
D0  
Data Byte  
Data Byte  
RSVD  
Table 11 - CL Page Base AddLow Regier (User)  
9.1.11.2 CL Page CRC  
Address:  
Direct Page Oset 04 (Hgh) and 0(Low)  
Power Up Default:  
0000 0000h  
This special register is used to check code loagrity. Tis a witable and readable register. The booting  
sequence should always write a predetermino this ster before loading the memory. Each write  
through the CL page is fed into a CRC genunique code in this register. At the end of the booting  
sequence, the user software should check for lue in this register.  
D15  
D7  
14  
D6  
D13  
D5  
D12  
D11  
D10  
D2  
D9  
D1  
D8  
D0  
Data Byte  
Data Byte  
SEED[31:24]  
D4  
D3  
SEED[23:16]  
Table 12 - CL Page CRC High Register (User)  
40  
Microsemi Corporation  
Le79238  
Data Sheet  
D15  
D7  
D14  
D6  
D13  
D12  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
0  
Data Byte  
Data Byte  
SEED[15:8]  
D5  
D4  
SEED[7:0]  
Table 13 - CL Page CRC Low Register (User)  
SEED[31:0]: Current CRC value of data written to the CL page.  
9.1.11.3 Mailbox Flag Register  
Address:  
Power Up Default:  
Direct Page Offset 03  
0000 0000h  
This register is used to communicate the handshaking control flags betweethe DSP anthe host. There is one  
flag for each mailbox in the system.  
D15  
D14  
D13  
D1
D1
D10  
D9  
D8  
D0  
Data Byte  
Data Byte  
MBOX_FAG[15:8]  
D7  
D6  
5  
4  
MBOX_FAG[7:0]  
Table 14 - Mailboegiste(Useand DSP, located in DSPIO)  
D
D2  
D1  
MBOX_FLAG[15:0]: Mailbox flags. These bitd for downstream or upstream handshaking in order to  
determine whether the host or the DSP owns box at any given point in time.  
9.2 Code Loading  
The NGCC SLAC device will aways come up n boot mode during a power-on reset or when the reset pin of the  
chip is de-asserted. The DSwill hold f program execution until the on-chip CM location 0 has been written by the  
host via the MPI interface. Thenaling or disabling of the boot operation during a hardware reset command is  
controlled by the boot seuence ister bit in the Hardware Reset register. If the boot sequence is disabled when  
the hardware reset commad is issud, the DSP immediately starts program execution from address 0 without any  
boot operation.  
The CL page basaddress regresides in the direct page and is accessible by the host. When the host writes  
the upper 24-bits of he destination address to the CL page base address register and the lower 7-bits of the  
addresset adress field of the paged offset command, the host can write up to 128 words of code/data  
into addreses with the paged offset commands. The formula to compute the AMBA bus address  
for pss commands with the CL page is:  
AMBA address = base_addr * 256 + offset_ address * 2  
9.2.1 Code Load Integrity  
Code iegrity is guaranteed by CRC hardware which resides in this block. The CL Page CRC High and Low  
regists are writable and readable registers. Any boot sequence should start with writing a seed into these  
sters. Each subsequent write through the CL page will appropriately alter the value held in that register. It is  
modified by both the address and the data of the write access. After all memory is loaded the user should read the  
new value in the CL Page CRC register and compare it with the expected value. Any discrepancy indicates that the  
code should be rebooted.  
41  
Microsemi Corporation  
Le79238  
Data Sheet  
9.2.2 Host Boot Procedure  
The sequence to perform the boot procedure through the MPI interface is outlined below.  
1. Power-On Reset, hardware pin reset, or a hardware reset command with boot sequence enabled will put the  
DSP into boot mode.  
2. Initialize the CL Page CRC register with the desired seed.  
3. Select the CL Page on an individual SLAC or to ALL SLAC devices.  
4. Write the higher 24-bits of the destination bus address into the CL page base address registers, ae-  
bits of the address into the offset address field of the paged offset access command. Usthe pageset  
access command to write a block of code into DSP memory. Each access command can ite up to 28 16-bit  
words of data.  
5. Repeat step 4 for the next block of code into another block of DSP memory spc
6. After all the program codes are loaded, repeat steps 4-5 for PM data memory and DM data memory.  
7. Check the CL Page CRC register to verify proper code load. If a loading err is present tn repeat starting at  
step 2.  
8. When all DSP memories are loaded, issue a paged offset access mnd to Caddress 0 in order to trigger  
the DSP to start program execution.  
9.2.3 Partial Code Load Procedure  
After the boot procedure, the DSP will execute instructionconnuously. Ithe system wants to load a new codec  
program, it requires a pre-defined mechanism between firmwe and thhost software so that the DSP would not  
execute from the same code memory space this tryito ownload with new program code. There will  
be a performance hit on the DSP, as each ite stels one cycle from the DSP operation. Since a  
complete code load could take as long as 1host can not wait that long to process any interrupt.  
Thus, the partial code load needs to patition thto manageable blocks in order to allow the system to  
service an interrupt. The sequence to perrm paroading is outlined below.  
1. Trigger the handshake betwn the DSP fmware and the host software to exchange information and ensure  
the destination CM code emory is not being used by the DSP firmware. This mechanism is pre-defined by  
firmware without any hardare asistance.  
2. Initialize the CL Page RC witthe desired seed.  
3. Select the CL Page registr on an dividual SLAC or on ALL SLAC devices.  
4. Write the hig24-of thestined bus address into full access base register, and the lower 7-bit of the  
address into the ffset address field of the paged offset access command. Use the paged offset access com-  
mand te a blok of code into DSP memory. Each access command can write up to 128 16-bit words of  
da
5. Rthe next block of code with size up to 128 16-bit words. Fill codes into different blocks of DSP  
m
6. Finishe program code in the present block, then allow interrupts to be serviced by the host. At the end  
of interrupt service routine or if no interrupt exists, go back to step 4 to load a new block of program code until all  
the locks are loaded.  
7. Chk the CL Page CRC registers to verify proper code load. If a loading error is present then repeat starting at  
stp 2.  
8. After all the program codes are loaded, trigger another predefined handshake between the DSP firmware and  
the host software to indicate the end of partial code loading.  
42  
Microsemi Corporation  
Le79238  
Data Sheet  
9.3 Application Layer  
The application layer defines the programmer’s interface and is almost entirely implemented in firmware. The  
exception is a handful of configuration registers implemented in hardware. This layer defines the meaning of the  
payload data delivered by the transport layer. Because it is implemented in firmware, the definition of the host  
programmer’s interface can change by providing a new ROM firmware image. The NG-SLAC programmer’s odel  
is depicted in Figure 20.  
The programmer’s model dedicates HBI pages 0 through 7 for channel specific registers, page 8 foCommand  
Mailbox, and page 9 for the Response Mailbox. These register locations are all implemented in DSP
The direct page contains a small number of registers implemented by the hardware blocks n the AMbus. The  
remainder of direct page registers are dedicated to global (not specific to a channel) registers, nd are iplemented  
in DSP memory by the firmware.  
Event Queue  
Host Interface Address Spa(16-bit wo
Direct Page: Dict System Regers  
Interrupt egister  
Mailbox FlaRester  
gisters
el (Indirect) Pages  
External SPI Bus  
Page mmand Mailbox  
ge 9: Response Mailbox  
INT  
RAM Test Chip Code Memory  
CL Page: Code Memory Window  
Figure 20 - NGCC SLAC Programmer’s Mode  
9.4 yer  
9.4.1 Microprocessor Interface (MPI)  
The mroprocessor Interface is an external interface of the NGCC SLAC device used by the external host to  
commnicate with the device. The MPI interface is compatible with the SPI interface used by general DSPs, so that  
thoschips can interface with the NGCC SLAC device without any glue logic.  
43  
Microsemi Corporation  
Le79238  
Data Sheet  
9.4.1.1 MPI External Pins Connection  
The MPI is a 3-wire or 4-wire synchronized serial interface used in many DSPs and micro controllers. The data is  
transferred bidirectionally from master to slave and from slave to master. The master provides clock SCK to  
synchronize the data transfer, and the signals SIMO and SOMI are for the data bit stream. SPI master can be a 3-  
wire or 4-wire SPI master, depending on if the master drives the SS signal. If the master is a 3-wire SPI masr, the  
master does not drive SS. Otherwise, the 4-wire SPI master pulls SS Low when transferring data. If the master a  
3-wire SPI master, the SS pin at the slave can be tied Low in the single master/slave pair or connected to the GPI
output of the master in the multiple slaves system.  
Signal Name  
(SLAC MPI Pin Name)  
SCK (DCLK)  
SIMO (DIN)  
Type  
Description  
I
SPI clock  
I
SPI slave input/master output  
SPI slave output/master input  
SPI Slave select low  
SOMI (DOUT)  
SS (CS)  
O
I
Table 15 - SPI Signals  
The NGCC SLAC device will be the SPI slave, and the external ht will be I master. Signal SIMO will  
connect to the DIN pin and signal SOMI will connect to the DOUT pin f the NGCC SLAC device. NGCC SLAC  
devices sample the input signal DIN on the rising edge of he clock and hange the output signal DOUT on the  
falling edge of the clock.  
Figure 21 shows the SPI interface system with a 4-wire SPI mater. TI DSs and Motorola 68HC12s have a 4-wire  
SPI master. For example, TI TMS320F28x chcan st the cip as the master (SPICTL[2]=1), 8-bit  
(SPICCR[3:0]=7) transfer with clock polarity (1 fallig), lock phase (CPICTL[3]=0 no delay) or with  
SPICCR[6]=0 (rising), CPICTL[3]=1 (delaythe NGCC SLAC device. Figure 22 shows the SPI  
interface system with a 3-wire SPI master. MP/controllers, except 68HC12 and ADI DSP, have 3-  
wire SPI masters. For example, Motora 68HCregister can set the Clock Phase (CPHA=0) with the  
clock polarity (CPOL=0) or CPHA=1 with POL=1 ace with the NGCC SLAC device. One of the GPIO pins  
is needed to drive the SS pin of te NGCC LAC dee. As the NGCC SLAC device supports command framing  
on the SS pin, the GPIO pin of he master conncting to the SS pin of the slave is required, as shown in Figure 22.  
SIMO  
SOMI  
SIMO  
SOMI  
DIN  
SPI  
DOUT  
SPI Slave (MPI)  
Master  
SCK  
SS  
SCK  
SS  
DCLK  
CS  
NGCC SLAC device(s)  
Figure 21 - 4-wire Master-Slave Connections  
44  
Microsemi Corporation  
Le79238  
Data Sheet  
SIMO  
SOMI  
DIN  
SIMO  
SOMI  
SPI  
Master  
DOUT  
SPI Slave (MPI)  
SCK  
DCLK  
CS  
SCK  
SS  
GIO  
NGCC SLAC device(s)  
Figure 22 - 3-wire Master-Slave Connectios  
9.4.1.2 MPI Features  
In order to connect to different SPI masters, the MPI of the GCC SLAC dice has the following designs:  
Separate input and output pins.  
No daisy chain support.  
No read latency: no latency between the reand wd ad the first data word.  
CS pin supports byte/word framing, and ng mode, as shown in Figure 23. The SPI slave  
state machine will reset if CS returns to Hmber of active DCLK pulses is not equal to 8 or 16.  
If there is no clock, CS has to be Lw for mns to be recognized to reset SPI slave state  
machine. In command framing modehe tranCS to High means the command has ended. This  
event resets the SPI slave stae machi, and text falling edge of CS starts a new command.  
Figure 23 shows three kinds oframing modes bsed on the behavior of CS. In byte/word framing mode, CS is Low  
for 8/16 SCK clocks. For a tw-word cmmand, CS needs to toggle 4/2 times to complete the command transfer. In  
command framing mode, CS Lw for the whole duration of the command transfer. When the command is  
finished, CS will go back o Highf CS Low lasts shorter than the expected command length, the command is  
aborted and the SPI slave tate mhine resets. However if the user pulls CS Low longer than the expected  
command length, the extra wrds will start a new command sequence. In both byte/word framing mode and  
command framinmode, K n be free-running or absent when CS is inactive High.  
Every timreturnto High and the number of active DCLK pulses is not equal to 8 or 16, the SPI slave state  
machiThe ext CS Low starts a new command sequence. In command framing mode, the transition  
back the end of the command. If CS Low lasts less than 16 SCK clock cycles, no command byte is  
proclasts more than 16 clock cycles, each 16-clock cycles triggers the SPI slave to process the  
word back to High. The SPI slave will not reset state machine when CS Low lasts exactly 8 or 16  
CK clo support byte/word framing mode. In byte/word framing mode, the user has to be aware of the  
command length, as there is no indication of command boundary.  
45  
Microsemi Corporation  
Le79238  
Data Sheet  
CS  
DCLK  
or  
DCLK  
cmd_wd byte hi  
cmd_wd byte lo  
Byte framing mode  
data_wd byte low  
DIN/  
DOUT  
data_wd byte hi  
CS  
DCLK  
or  
DCLK  
command word  
data wrd  
DIN/  
DOUT  
Word framg mode  
CS  
DCLK  
or  
DCLK  
DIN/  
DOUT  
commad word  
data word  
Command framing mode  
Figure 23 - CS Framing Modes  
46  
Microsemi Corporation  
Le79238  
Data Sheet  
The timing requirements for read and write accesses are shown in the following timing diagrams. The single data  
word read and write command is shown in Figure 24 and Figure 25.  
CS  
DCLK  
or  
DCLK  
DIN  
cmd_wd[15:8]  
cmd_wd[7:0]  
data_wd[15:8]  
data_wd[0]  
DOUT  
Figure 24 - One Data Word Write in Byte Framng Mode  
CS  
DCLK  
or  
DCLK  
command
. . . .  
DIN  
DOUT  
data word  
Figu25 - One Data Word Read in Word Framing Mode  
47  
Microsemi Corporation  
Le79238  
Data Sheet  
9.4.1.3 MPI Timing Specifications  
Min and max values are valid for all digital outputs with a 150 pF load. Pictorial definitions for these parameters can  
be found in Figure 26 and Figure 27.  
Timing Diagram No.  
Symbol  
tDCY  
Parameter  
Data clock period  
Min  
Typ  
Max  
Unit  
te  
1
2
122  
30  
48  
tDCH  
Data clock HIGH pulse width  
Data clock LOW pulse width  
Rise time of clock  
1
1
tDCL  
3
tDCR  
4
25  
tDCF  
5
Fall time of clock  
25  
tICSS  
tICSH  
tICSL  
tICSO  
tIDS  
tDCY–10  
tD–20  
6
Chip select setup time, Input mode  
Chip select hold time, Input mode  
Chip select pulse width, Input mode  
Chip select off time, Input mode  
Input data setup time  
30  
0
7
CY  
8
tDCY  
9
1
tDCY–10  
tDCY–10  
tDCY–10  
tDCH–20  
10  
11  
13  
14  
15  
16  
17  
18  
19  
20  
5  
30  
30  
0
ns  
tIDH  
Input data hold time  
tOCSS  
tOCSH  
tOCSL  
tOCSO  
tODD  
tODH  
tODOF  
tOD
Chip select setup time, Ouut mode  
Chip select hold time, Outpumode  
Chip select pulse Output mde  
Chip select de  
Output data
Outpdata hold
8tDCY  
35  
35  
35  
tDCY  
1
2
3
Output daturn off d
Output data val
0
3
Table 16 - MPI Specifications  
Note 1: DCLK may be stopped n the Higor Low state indefinitely without loss of information.  
Note 2: The first data bit is enableon the fing edge of CS or on the falling edge of DCLK, whichever occurs last.  
48  
Microsemi Corporation  
Le79238  
Data Sheet  
9.4.1.4 Timing Diagrams  
1
2
5
VIH  
VIH  
DCLK  
VIL  
VIL  
3
7
9
4
CS  
6
8
10  
11  
Data  
Valid  
Data  
Valid  
Data  
Valid  
DIN  
Figure 26 - r Interface (Input Mode)  
VIH  
VIL  
DCLK  
3  
14  
16  
15  
20  
CS  
18  
19  
VOH  
VOL  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Three-State  
Three-State  
DOUT  
Figure 27 - Microprocessor Interface (Output Mode)  
49  
Microsemi Corporation  
Le79238  
Data Sheet  
10.0 PCM Highway  
PCM interface features:  
The PCM interface supports two transmit and receive PCM highways (A & B) using shared PCLK and FS  
timing references.  
The following PCLK (or highway) rates are supported for narrowband or wideband modes: 1.536 MHz, 2.08  
MHz, 3.072 MHz, 4.096 MHz, 6.144 MHz, and 8.192 MHz (default). For narrowband mode, the following  
PCLK rates are also supported: 1.544 MHz, 3.088 MHz, and 6.176 MHz. A valid PCLK is requr overall  
device operation. These clock frequencies mean that 24 to 128 timeslots of 8 bits per highwale  
in one frame of data. The timeslots are user programmable but are common for both highway cs. The  
transmit data can be sent out either highway A or highway B or both highways simultaeously (ch is  
programmable on a per channel basis).  
An 8-kHz frame sync signal indicating the beginning of a transmit/receive framshall be suplied bthe  
system and all timeslots shall be referenced to it.  
The PCM interface can transmit/receive 8-bit compressed (A-law/µ-law) or 16-bit liar data with 8 kHz  
sampling (narrowband), or 16-bit linear data with 16 kHz sampling (widand). Each te slot can carry one  
A-law or µ-law PCM voice channel. Two timeslots are required to carry 16it linear data. n wideband mode,  
two evenly spaced sets of 16-bit timeslots are exchanged in each frame. The ser programs the first timeslot  
and the second set is generated automatically and placed 125om the fit timeslot (all wideband  
supported PCLK frequencies exhibit an even number of timeslotsWhen progming transmit and receive  
timeslots for wideband mode, the programmed timeslot must occur uring the first 62.5 µS of the frame.  
Data can be transmitted on the positive or negative ege of PCLK. Recive data is always evaluated on the  
negative edge of PCLK.  
To avoid timing and clock skew problems, the PCM intee has a cck slot feature that allows the transmit  
and receive data to be independently offset fre zero meslot efined in relation to the frame sync signal  
applied. The clock slot permits 0-7 PCLK lay frote position defined by the applied frame  
synchronization signal.  
Pin Name  
DXA  
Type  
Res
Description  
O
O
O
O
Z
Z
Z
Z
Primarwnstream serial data output  
Scondary downstream serial data output  
Primary timeslot control signal (active low - open drain)  
Secondary timeslot control signal (active low - open drain)  
Primary upstream serial data input  
DXB  
TSCA  
TSCB  
DRA  
DR
I
Secondary upstream serial data input  
1.536 MHz - 8.192 MHz PCM Interface clock  
8-kHz frame sync  
PCLK  
I
I
Table 17 - PCM Interface Pins  
10.1 smit Interface  
The PCM transmit interface controls the transmission of data onto the PCM highway through the output port  
selectin circuitry and the time and clock slot control block. The timeslot control signals (TSCA/TSCB) go low  
wheneer PCM data is transmitted on the DXA/DXB pin. These signals can be used for arbitration when there are  
multipdevices connected to the PCM bus. The data can be transmitted on either edge of PCLK. The clock edge  
hich the data is transmitted is selected by the XE bit in the PCM Configuration Register. The data is transmitted  
with the most significant bit first.  
The Frame Sync (FS) pulse identifies timeslot 0 of the transmit frame and all timeslots are referenced to it.  
50  
Microsemi Corporation  
Le79238  
Data Sheet  
10.2 PCM Receive Interface  
The PCM Receive interface logic controls the reception of the data bytes from the PCM highway. Each timeslot is  
associated with one 8-bit data byte. The data is received with the most significant bit first. The received data coming  
on the DR pin is latched at the falling edge of PCLK.  
CASE 1 : DEFAULT: XE = RCS = TCS = 0 (8-bit TRANSFERS)  
PCLK  
FS  
RX6  
RX4  
RX2  
TX2  
RX0  
TX0  
RX7  
RX5  
RX1  
TX1  
RX3  
DR  
TX5  
TX4  
DX  
TX6  
TX3  
TX7  
Timeslot 0  
TSC  
CASE 2 : XE = 1 RCS = 2 TCS = 4 (8-bit TSFERS)  
PCLK  
FS  
DR  
RX6  
RX4  
T
RX2  
TX4  
RX0  
TX2  
RX7  
RX5  
7  
RX1  
TX3  
RX3  
X5  
DX  
TSC  
Timeslot 0  
Fige 28 - hway 8-bit Transfers  
51  
Microsemi Corporation  
Le79238  
Data Sheet  
CASE 1 : XE = RCS = TCS = 0 (16-BIT TRANSFERS)  
PCLK  
FS  
DR  
RX9  
RX7  
RX4  
RX14 RX13 RX12 RX11 RX10  
RX8  
RX6 RX5  
RX3 RX2 RX1 RX0  
RX15  
TX9  
TX7  
TX4  
TX14 TX13 TX12 TX11 TX10  
TX8  
TX6 TX5  
TX3 TX2 TX1 TX0  
TX15  
DX  
timeslot1  
timeslot0  
TSC  
CASE 2 : XE = 1 RCS = TCS = 0 (16-BIT TRANSFER
PCLK  
FS  
DR  
RX9  
TX9  
RX7  
TX7  
RX4  
TX4  
RX14 RX13 RX12 RX11 RX10  
RX8  
TX8  
RX6 RX5  
TXTX5  
RX3 RX2 RX1 RX0  
TX3 TX2 TX1 TX0  
RX15  
TX14 TX13 TX12 TX11 TX10  
TX15  
DX  
timeslot1  
timeslot0  
TSC  
Figure 29 - PCM Highy 16-bit ransfers  
52  
Microsemi Corporation  
Le79238  
Data Sheet  
10.3 PCM Interface Timing  
Min and max values are valid for all digital outputs with a 150 pF load. Pictorial definitions for these parameters can  
be found in Figure 30 and Figure 31. PCLK accuracy = ± 100 PPM.  
Timing Diagram No.  
Symbol  
tPCY  
Parameter  
PCM clock period  
Min.  
Typ  
Max  
Unit  
ote  
22  
23  
24  
25  
26  
27  
122  
48  
48  
651  
1
tPCH  
tPCL  
PCM clock HIGH pulse width  
PCM clock LOW pulse width  
Fall time of clock  
tPCF  
8
tPCR  
tFSS  
Rise time of clock  
tPCY–30  
FS setup time  
30  
25000-  
3t--30  
tFSH  
28  
FS hold time  
50  
tTSD  
tTSO  
tDXD  
tDXH  
tDXZ  
tDRS  
tDRH  
29  
30  
31  
32  
33  
34  
35  
Delay to TSCX valid  
5
25  
10  
2
3
ns  
Delay to TSCX off  
PCM data output delay  
PCM data output hold time  
PCM data output delay to hi-Z  
PCM data input setup time  
5
25  
5
25  
0
10  
3
tPCY–10  
tPCY–20  
5  
PCM data input
5
Narrowband itter time  
Wideband PCLK r time  
–60  
–30  
60  
30  
tFST  
ble 18 pecifications  
Note:  
1. Supported PCM clock (PCLK) quencies ae listed in “CM Highway” on page 50.  
2. TSCX is delayed from FS by a tyal ve of N • tPCY, where N is the value stored in the time/clock slot register.  
3. TSCX is an open drain drir. The tTSis defined as the delay time the output driver turns off after the PCLK transaction. The actual delay  
time is dependent on the loaircuitry. Tmaximum load capacitance on TSCX is 150 pF and the minimum pull-up resistance is 360 .  
53  
Microsemi Corporation  
Le79238  
Data Sheet  
Time Slot Zero, Clock Slot Zero  
27  
22  
25  
26  
VIH  
VIL  
PCLK  
23  
24  
28  
FS  
30  
29  
TSCA  
See Note 4  
31  
32  
33  
VOH  
First  
DXA  
DRA  
Bit  
VOL  
35  
Fi
Bit  
d  
Figure 30 PCM HighwTiming for XE = 0 (Transmit on Negative PCLK Edge)  
54  
Microsemi Corporation  
Le79238  
Data Sheet  
Time Slot Zero, Clock Slot Zero  
27  
22  
25  
26  
VIH  
VIL  
PCLK  
23  
24  
FS  
28  
30  
29  
TSCA  
DXA  
See Note 4  
31  
32  
33  
VOH  
First  
Bit  
VOL  
First  
Bit  
DRA  
Figure 31 - PM Highway ming for XE = 1 (Transmit on Positive PCLK Edge)  
55  
Microsemi Corporation  
Le79238  
Data Sheet  
11.0 P-Bus and GPIO Interfaces  
The SLAC utilizes a digital control bus (P-Bus) to send control signals to SLIC devices. The P-Bus interface uses a  
4 bit parallel bus (SEL, P[2:0]) and eight individual load or chip select pins (LD[7:0]) to control the FXS state and  
Switch state of up to eight SLIC devices. The SEL signal determines whether the P[2:0] value is assigned to the  
FXS state (SEL=0) or the Switch state (SEL=1). The P[2:0] and SEL values are latched inside the SLIC n the  
rising edge of the active low LD[n] signal. The P-Bus operates continuously so that each channel’s FXS and Swch  
states are automatically refreshed every 128 msec or whenever a SLIC mode changes.  
Each channel is assigned two general purpose SLAC IO pins, IOn_0 and IOn_1. IOn_0 can be confither  
a CMOS input, a CMOS output, or an open drain 50 mA relay driver. IOn_1 can be configured as eCMOS  
input or CMOS output.  
State in  
Reset  
Pin Name  
Type  
Descrtion  
P[2:0]  
SEL  
O
O
0
0
P-Bus for controlling SLIC FXS anSLIC Switch stes.  
0 = P-Bus defines SLIC FXS state.  
1 = P-Bus defines SLIC h state.  
LD[7:0]  
O
1
Active Low Load sinal for S and Switch states.  
The P[2:0] and SL pin valuere latched inside the SLIC on the rising  
edge of LD[n]
IO1_[1:0]  
IO2_[1:0]  
IO3_[1:0]  
IO4_[1:0]  
IO5_[1:0]  
IO6_[1:0]  
IO7_[1:0]  
IO8_[1:0]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Int  
SLAC Inpuutput foChannel 1  
SLAC Input/Oufor Chann2  
SOutput r Chnnel 3  
put for Channel 4  
These pins change state on  
the rising edge of FS.  
ut for Channel 5  
SLAutput for Channel 6  
LAC Input/Output for Channel 7  
SLInput/Output for Channel 8  
Table 19 - P-Bus and SLAC IO Pins  
P-Bus timing is derived from n internl 49.152 MHz SLAC clock and the 8 kHz FS input. The clock is used to  
generate the timfor P[2:0SEL, and LD[n] signals for each channel. The 8 kHz FS timing reference is used  
to generate the 16 sec delay between channel loads (see Figure 32 and Figure 33).  
When is wren which initiates a change to an FXS or Switch state, the new value is written to the SLIC  
devi.  
56  
Microsemi Corporation  
Le79238  
Data Sheet  
SEL  
FXS State SW State  
FXS State SW State  
P0,P1,P2  
LD1  
LD2  
5.2 us  
5.2 us  
10.4 us  
16 ms  
Figure 32 - Channel Timing for P-Bs SLIC Ince  
128 s (7.8125 z)  
LD1  
LD2  
LD3  
LD4  
LD5  
LD6  
LD7  
LD8  
16 ms  
Figure 33 - Global Timing for SLIC Device Bus Interface  
Note:  
An additional P-bus interaction will occur in no more than 625 µs following a drive state change request. Then, the affected LD line will return to  
its norm128 ms refresh cycle.  
57  
Microsemi Corporation  
Le79238  
Data Sheet  
11.1 SLIC Device Bus Timing Specifications  
Pictorial definitions for these parameters can be found in Figure 34.  
Timing  
Diagram No.  
Symbol  
trSLD  
Signal  
LD[1:8]  
Parameter  
Rise time  
Min  
Typ  
Max  
U
1
2
3
4
5
6
2
2
tfSLD  
LD[1:8]  
Fall time  
tSLDPW  
tSDXSU  
tSDXHD  
tSDXPW  
LD[1:8]  
Pulse width  
Setup time  
Hold time  
Pulse width  
3
2
2
7
s  
P0, P1, P2, SEL  
P0, P1, P2, SEL  
P0, P1, P2, SEL  
Table 20 - SLIC Device Bus Timing Specifications  
SEL  
FXS State SW State  
FXS State SW State  
P0,P1,P2  
LD1  
LD2  
5.2 us  
5.2 us  
10.4 us  
V
VOL  
LD[1:8]  
2
3
6
4
5
P0,P1,P2,SEL  
Figure 34 - SLIC Device Bus Timing Waveform  
58  
Microsemi Corporation  
Le79238  
Data Sheet  
12.0 Relay Drivers  
The IO[1:8]_0 pins can be programmed as open drain relay drivers. They are capable of sinking 50 mA of current  
@ 0.7 V.  
Built-in integrated flyback diodes eliminate the need for external diodes across the relay coils.  
The IO[1:8]_1 pins are capable of sinking 10 mA as an output. They can be used with an external transistor to dre  
a relay.  
+3.
sply  
VDD33_[1;2]  
Relay  
coil  
IO[1:8]_0  
Le79238  
DGND_[1:6]  
Figuain Relay Drivers  
59  
Microsemi Corporation  
Le79238  
Data Sheet  
13.0 Physical Dimensions  
13.1 176-Pin LQFP  
NoPackages may have mold tooling markings on the surface. These markings have no impact on the form, fit or function of the  
device. Markings will vary with the mold tool used in manufacturing.  
60  
Microsemi Corporation  
Le79238  
Data Sheet  
13.2 164-Pin LGA  
See 4.1, “Green Package Assembly“ for additional information on this package.  
Note: Packages may have mold tooling markings on the surface. These markings have no impact on the form, fit or function of the  
device. Markings will vary with the mold tool used in manufacturing.  
61  
Microsemi Corporation  
Le79238  
Data Sheet  
13.3 196-Pin BGA  
Note: Packages may have mold tooling markings on the surface. These markings have no impact on the form, fit or function of the  
device. Markings will vary with the mold tool used in manufacturing.  
62  
Microsemi Corporation  
Le79238  
Data Sheet  
For more information about all Microsemi CMPG pducts  
visit our Web Site at  
www.microsemi.com  
Information relating to products and services furnished herein by Microsemi Coration its subsidiaries (collectively “Microsemi”) is believed to be reliable.  
However, Microsemi assumes no liability for errors that may appear in this publicon, for liability oerwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual prty rights ownby third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or e conveys y license, ther express or implied, under patents or other intellectual  
property rights owned by Microsemi or licensed from third parties by hatsoeveurchers of products are also hereby notified that the use of product  
in certain ways or in combination with Microsemi, or non-Microseor servis ay infringe patents or other intellectual property rights owned by  
Microsemi.  
This publication is issued to provide information only and (unlen writing) may not be used, applied or reproduced for any purpose nor form  
part of any order or contract nor to be regarded as a representatiucts or services concerned. The products, their specifications, services and  
other information appearing in this publication are subjto changout notice. No warranty or guarantee express or implied is made regarding  
the capability, performance or suitability of any product service. Ierning possible methods of use is provided as a guide only and does not  
constitute any guarantee that such methods of use will satisfactocific piece of equipment. It is the user’s responsibility to fully determine the  
performance and suitability of any equipment ug such infoation and re that any publication or data used is up to date and has not been superseded.  
Manufacturing does not necessarily include ting of all functioor paramrs. These products are not suitable for use in any medical products whose failure to  
perform may result in significant injury or deh to the user. All prodts and materials are sold and services provided subject to Microsemi’s conditions of sale which  
are available on request.  
Microsemi, the Microsemi logo, rlink, and binations thereof, Power Matters, SLAC, VeriVoice, VoiceEdge, VoicePort, and VoicePath are trademarks or  
registered trademarks of Microsemi rporationl other trademarks mentioned in this document are the property of their respective owners.  
Copyright © 2012. All Rights Reserved  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  
Microsmi documents marked "Preliminary" relate to products which are not yet released to production and are identified with an "ENG" suffix in their part number.  
products and their associated Preliminary Data Sheet specifications are supplied only for testing and on the express understanding that (i) such products have  
not been fully tested or characterized under intended modes of operation and may contain defects; (ii) Microsemi makes no representation or warranty regarding such  
products or Preliminary Data Sheets; and (iii) Microsemi disclaims any liability for claims,demands and damages, including and without limitation special, indirect and  
consequential damages resulting from any loss arising out of the application, use or performance of such products or specifications. Such products and Preliminary  
Data Sheets may be changed or discontinued by Microsemi at any time without notice.  
63  
Microsemi Corporation  

相关型号:

LE7925SC

SLIC, PDSO28, MO-059, SOIC-28
ZARLINK

LE7942B-1DJC

SLIC, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE7942B-1DJC

SLIC, 2-4 Conversion, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
ZARLINK

LE7942B-1JC

SLIC, 2-4 Conversion, PQCC32, PLASTIC, MS-016, LCC-32
ZARLINK

LE7942B-2DJC

SLIC, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE7942B-2DJC

SLIC, 2-4 Conversion, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
ZARLINK

LE7942B-2JC

SLIC, 2-4 Conversion, PQCC32, PLASTIC, MS-016, LCC-32
ZARLINK

LE7942BDJC

SLIC, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE7942BDJC

SLIC, 2-4 Conversion, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
ZARLINK

LE7942BJC

SLIC, 2-4 Conversion, PQCC32, PLASTIC, MS-016, LCC-32
ZARLINK

LE79489-2DJC

SLIC, 2-4 Conversion, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
ZARLINK

LE79489-2DJC

SLIC, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI