TC9400EJD [MICROCHIP]

Voltage-to-Frequency/Frequency-to-Voltage Converters; 电压 - 频率/频率 - 电压转换器
TC9400EJD
型号: TC9400EJD
厂家: MICROCHIP    MICROCHIP
描述:

Voltage-to-Frequency/Frequency-to-Voltage Converters
电压 - 频率/频率 - 电压转换器

转换器 模拟特殊功能转换器
文件: 总20页 (文件大小:504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC9400/9401/9402  
Voltage-to-Frequency/Frequency-to-Voltage Converters  
Features  
General Description  
The TC9400/TC9401/TC9402 are low cost voltage-to-  
frequency (V/F) converters, utilizing low power CMOS  
technology. The converters accept a variable analog  
input signal and generate an output pulse train, whose  
frequency is linearly proportional to the input voltage.  
VOLTAGE-TO-FREQUENCY  
• Choice of Linearity  
- TC9401: 0.01%  
- TC9400: 0.05%  
The devices can also be used as highly accurate fre-  
quency-to-voltage (F/V) converters, accepting virtually  
any input frequency waveform and providing a linearly  
proportional voltage output.  
- TC9402: 0.25%  
• DC to 100kHz (F/V) or 1Hz to 100kHz (V/F)  
• Low Power Dissipation: 27mW (Typ.)  
• Single/Dual Supply Operation  
- +8V to +15V or ±4V to ±7.5V  
• Gain Temperature Stability: ±25 ppm/°C (Typ.)  
• Programmable Scale Factor  
A complete V/F or F/V system only requires the addi-  
tion of two capacitors, three resistors, and reference  
voltage.  
Package Type  
FREQUENCY-TO-VOLTAGE  
14-Pin Plastic DIP/CERDIP  
• Operation: DC to 100kHz  
• Choice of Linearity  
- TC9401: 0.02%  
I
BIAS  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
DD  
ZERO ADJ  
NC  
- TC9400: 0.05%  
- TC9402: 0.25%  
I
AMPLIFIER OUT  
IN  
TC9400  
TC9401  
TC9402  
• Programmable Scale Factor  
THRESHOLD  
DETECTOR  
V
SS  
Applications  
V
OUT  
GND  
10 FREQ/2 OUT  
REF  
µP Data Acquisition  
9
8
OUTPUT COMMON  
PULSE FREQ OUT  
• 13-bit Analog-to-Digital Converters  
• Analog Data Transmission and Recording  
• Phase Locked Loops  
V
REF  
• Frequency Meters/Tachometer  
• Motor Control  
14-Pin SOIC  
• FM Demodulation  
I
BIAS  
14  
1
V
DD  
Device Selection Table  
ZERO ADJ  
2
3
4
5
6
7
13  
12  
11  
NC  
I
IN  
AMPLIFIER OUT  
Part  
Number  
Linearity  
(V/F)  
Temperature  
Range  
Package  
TC9400  
TC9401  
TC9402  
V
THRESHOLD  
DETECTOR  
SS  
TC9400COD  
0.05%  
14-Pin SOIC  
(Narrow)  
0°C to +70°C  
V
OUT  
GND  
REF  
FREQ/2 OUT  
10  
9
TC9400CPD  
TC9400EJD  
TC9401CPD  
TC9401EJD  
TC9402CPD  
TC9402EJD  
0.05%  
0.05%  
0.01%  
0.01%  
0.25%  
0.25%  
14-Pin PDIP  
0°C to +70°C  
OUTPUT COMMON  
PULSE FREQ OUT  
14-Pin CerDIP -40°C to +85°C  
14-Pin PDIP 0°C to +70°C  
14-Pin CerDIP -40°C to +85°C  
V
REF  
8
NC = No Internal Connection  
14-Pin PDIP  
0°C to +70°C  
°C to +85°C  
14-Pin CerDIP  
2002 Microchip Technology Inc.  
DS21483B-page 1  
TC9400/9401/9402  
Functional Block Diagram  
Integrator  
Integrator  
Capacitor  
Threshold  
Detector  
One  
Shot  
Op Amp  
R
IN  
Input  
Voltage  
I
IN  
Pulse Output  
÷2  
Pulse/2 Output  
Reference  
Capacitor  
TC9400  
I
REF  
Reference  
Voltage  
DS21483B-page 2  
2002 Microchip Technology Inc.  
TC9400/9401/9402  
*Stresses above those listed under "Absolute Maximum  
Ratings" may cause permanent damage to the device. These  
are stress ratings only and functional operation of the device  
at these or any other conditions above those indicated in the  
operation sections of the specifications is not implied.  
Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings*  
V
– V  
...........................................................+18V  
DD  
SS  
I
........................................................................ 10mA  
IN  
V
V
OUTMAX – V  
Common...................................... 23V  
OUT  
– V ..........................................................-1.5V  
REF  
SS  
Storage Temperature Range.............. -65°C to +150°C  
Operating Temperature Range:  
C Device ........................................... 0°C to +70°C  
E Device......................................... -40°C to +85°C  
Package Dissipation (T 70°C):  
A
8-Pin CerDIP..............................................800mW  
8-Pin Plastic DIP ........................................730mW  
8-Pin SOIC.................................................470mW  
TC940X ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: VDD = +5V, VSS = -5V, VGND = 0V, VREF = -5V, RBIAS = 100k, Full Scale = 10kHz, unless otherwise  
specified. TA = +25°C, unless temperature range is specified (-40°C to +85°C for E device, 0°C to +70°C for C device).  
Parameter  
Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max  
Units  
Test Conditions  
Voltage-to-Frequency  
Accuracy  
TC9400  
TC9401  
TC9402  
Linearity 10kHz  
0.01  
0.05  
0.25  
0.004 0.01  
0.05  
0.25  
0.5  
%
Output Deviation from  
Full Scale Straight Line Between  
Normalized Zero and  
Full Scale Input  
Linearity 100kHz  
0.1  
0.04  
0.08  
0.25  
%
Output Deviation from  
Full Scale Straight Line Between  
Normalized Zero Read-  
ing and Full Scale Input  
Gain Temperature  
Drift (Note 1)  
±25  
±10  
±10  
±40  
±25  
±10  
±10  
±40  
±50  
±10  
±20  
±100  
ppm/°C Variation in Gain A due  
Full Scale to Temperature Change  
Gain Variance  
% of  
Variation from Ideal  
Nominal Accuracy  
Zero Offset  
±50  
±50  
±100  
mV  
Correction at Zero  
(Note 2)  
Adjust for Zero Output  
when Input is Zero  
Zero Temperature  
Drift (Note 1)  
±25  
±50  
±25  
±50  
±50  
±100  
µV/°C  
Variation in Zero Offset  
Due to Temperature  
Change  
Note 1: Full temperature range; not tested.  
2: IIN = 0.  
3: Full temperature range, IOUT = 10mA.  
4: IOUT = 10µA.  
5: Threshold Detect = 5V, Amp Out = 0V, full temperature range.  
6: 10Hz to 100kHz; not tested.  
7: 5µsec minimum positive pulse width and 0.5µsec minimum negative pulse width.  
8: tR = tF = 20nsec.  
9: RL 2k, tested @ 10kΩ.  
10: Full temperature range, VIN = -0.1V.  
2002 Microchip Technology Inc.  
DS21483B-page 3  
TC9400/9401/9402  
TC940X ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: VDD = +5V, VSS = -5V, VGND = 0V, VREF = -5V, RBIAS = 100k, Full Scale = 10kHz, unless otherwise  
specified. TA = +25°C, unless temperature range is specified (-40°C to +85°C for E device, 0°C to +70°C for C device).  
Parameter  
Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max  
Units  
Test Conditions  
Analog Input  
IIN Full Scale  
10  
10  
10  
µA  
Full Scale Analog Input  
Current to achieve  
Specified Accuracy  
IIN Over Range  
Response Time  
2
50  
2
50  
2
50  
µA  
Over Range Current  
Cycle  
Settling Time to 0.1%  
Full Scale  
Digital Section  
TC9400  
TC9401  
TC9402  
VSAT @ IOL = 10mA  
0.2  
0.4  
18  
0.2  
0.4  
18  
0.2  
0.4  
18  
V
V
Logic "0" Output  
Voltage (Note 3)  
VOUTMAX – VOUT  
Common (Note 4)  
3
3
3
Voltage Range  
Between Output and  
Common  
Pulse Frequency  
Output Width  
µsec  
Frequency-to-Voltage  
Supply Current  
IDD Quiescent  
(Note 5)  
1.5  
6
1.5  
6
3
10  
mA  
mA  
Current Required from  
Positive Supply during  
Operation  
ISS Quiescent  
(Note 5)  
-1.5  
-6  
-1.5  
-6  
-3  
-10  
Current Required from  
Negative Supply during  
Operation  
VDD Supply  
VSS Supply  
4
7.5  
4
7.5  
4
7.5  
V
V
Operating Range of  
Positive Supply  
-4  
-7.5  
-4  
-7.5  
-4  
-7.5  
Operating Range of  
Negative Supply  
Reference Voltage  
VREF – VSS  
-2.5  
-2.5  
-2.5  
V
Range of Voltage  
Reference Input  
Accuracy  
Non-Linearity  
0.02  
0.05  
0.01  
0.02  
0.05  
0.25  
%
Deviation from ideal  
(Note 10)  
Full Scale Transfer Function as a  
Percentage Full Scale  
Voltage  
Input Frequency  
Range  
10  
100k  
10  
100k  
10  
100k  
Hz  
Frequency Range for  
Specified Non-Linearity  
(Notes 7 and 8)  
Note 1: Full temperature range; not tested.  
2: IIN = 0.  
3: Full temperature range, IOUT = 10mA.  
4: IOUT = 10µA.  
5: Threshold Detect = 5V, Amp Out = 0V, full temperature range.  
6: 10Hz to 100kHz; not tested.  
7: 5µsec minimum positive pulse width and 0.5µsec minimum negative pulse width.  
8: tR = tF = 20nsec.  
9: RL 2k, tested @ 10kΩ.  
10: Full temperature range, VIN = -0.1V.  
DS21483B-page 4  
2002 Microchip Technology Inc.  
TC9400/9401/9402  
TC940X ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: VDD = +5V, VSS = -5V, VGND = 0V, VREF = -5V, RBIAS = 100k, Full Scale = 10kHz, unless otherwise  
specified. TA = +25°C, unless temperature range is specified (-40°C to +85°C for E device, 0°C to +70°C for C device).  
Parameter  
Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max  
Units  
Test Conditions  
Frequency Input  
Positive Excursion  
0.4  
VDD  
0.4  
-0.4  
VDD  
0.4  
-0.4  
VDD  
V
Voltage Required to  
Turn Threshold  
Detector On  
Negative Excursion  
-0.4  
-2  
5
-2  
5
-2  
V
Voltage Required to  
Turn Threshold  
Detector Off  
Minimum Positive  
Pulse Width  
(Note 8)  
5
µsec  
µsec  
Time between  
Threshold Crossings  
Minimum Negative  
Pulse Width  
(Note 8)  
0.5  
0.5  
0.5  
Time Between  
Threshold Crossings  
Input Impedance  
10  
10  
10  
MΩ  
Analog Outputs  
TC9400  
TC9401  
VDD – 1  
TC9402  
VDD – 1  
Output Voltage  
(Note 9)  
V
DD – 1  
2
V
Voltage Range of Op  
Amp Output for Speci-  
fied Non-Linearity  
Output Loading  
2
2
kΩ  
Resistive Loading at  
Output of Op Amp  
Supply Current  
TC9400  
TC9401  
TC9402  
IDD Quiescent  
(Note 10)  
1.5  
6
1.5  
6
3
10  
mA  
mA  
Current Required from  
Positive Supply During  
Operation  
ISS Quiescent  
-1.5  
-6  
-1.5  
-6  
-3  
-10  
Current Required from  
Negative Supply  
(Note 10)  
During Operation  
VDD Supply  
VSS Supply  
4
7.5  
4
7.5  
4
7.5  
V
V
Operating Range of  
Positive Supply  
-4  
-7.5  
-4  
-7.5  
-4  
-7.5  
Operating Range of  
Negative Supply  
Reference Voltage  
VREF – VSS  
-2.5  
-2.5  
-2.5  
V
Range of Voltage  
Reference Input  
Note 1: Full temperature range; not tested.  
2: IIN = 0.  
3: Full temperature range, IOUT = 10mA.  
4: IOUT = 10µA.  
5: Threshold Detect = 5V, Amp Out = 0V, full temperature range.  
6: 10Hz to 100kHz; not tested.  
7: 5µsec minimum positive pulse width and 0.5µsec minimum negative pulse width.  
8: tR = tF = 20nsec.  
9: RL 2k, tested @ 10kΩ.  
10: Full temperature range, VIN = -0.1V.  
2002 Microchip Technology Inc.  
DS21483B-page 5  
TC9400/9401/9402  
2.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Pin No.  
14-Pin PDIP/CERDIP  
14-Pin SOIC (Narrow)  
Symbol  
Description  
1
2
3
4
5
6
7
8
IBIAS  
ZERO ADJ  
IIN  
This pin sets bias current in the TC9400. Connect to VSS through a 100kresistor.  
Low frequency adjustment input.  
Input current connection for the V/F converter.  
Negative power supply voltage connection, typically -5V.  
Reference capacitor connection.  
VSS  
VREF OUT  
GND  
Analog ground.  
VREF  
Voltage reference input, typically -5V.  
PULSE FREQ  
OUT  
Frequency output. This open drain output will pulse LOW each time the Freq.  
Threshold Detector limit is reached. The pulse rate is proportional to input voltage.  
9
OUTPUT  
Source connection for the open drain output FETs.  
COMMON  
10  
11  
FREQ/2 OUT  
This open drain output is a square wave at one-half the frequency of the pulse output  
(Pin 8). Output transitions of this pin occur on the rising edge of Pin 8.  
THRESHOLD  
DETECTOR  
Input to the Threshold Detector. This pin is the frequency input during F/V operation.  
12  
13  
14  
AMPLIFIER OUT Output of the integrator amplifier.  
NC  
No internal connection.  
VDD  
Positive power supply connection, typically +5V.  
DS21483B-page 6  
2002 Microchip Technology Inc.  
TC9400/9401/9402  
input is balanced out by fixed charges from the refer-  
ence voltage. As the input voltage is increased, the  
number of reference pulses required to maintain bal-  
ance increases, which causes the output frequency to  
also increase. Since each charge increment is fixed, the  
increase in frequency with voltage is linear. In addition,  
the accuracy of the output pulse width does not directly  
affect the linearity of the V/F. The pulse must simply be  
long enough for full charge transfer to take place.  
3.0  
3.1  
DETAILED DESCRIPTION  
Voltage-to-Frequency (V/F) Circuit  
Description  
The TC9400 V/F converter operates on the principal of  
charge balancing. The operation of the TC9400 is eas-  
ily understood by referring to Figure 3-1. The input volt-  
age (V ) is converted to a current (I ) by the input  
IN  
IN  
resistor. This current is then converted to a charge on  
the integrating capacitor and shows up as a linearly  
decreasing voltage at the output of the Op Amp. The  
lower limit of the output swing is set by the threshold  
detector, which causes the reference voltage to be  
applied to the reference capacitor for a time period long  
enough to charge the capacitor to the reference volt-  
age. This action reduces the charge on the integrating  
The TC9400 contains a "self-start" circuit to ensure the  
V/F converter always operates properly when power is  
first applied. In the event that, during power-on, the Op  
Amp output is below the threshold and C  
is already  
REF  
charged, a positive voltage step will not occur. The Op  
Amp output will continue to decrease until it crosses the  
-3.0V threshold of the "self-start" comparator. When  
this happens, an internal resistor is connected to the  
Op Amp input, which forces the output to go positive  
until the TC9400 is in its Normal Operating mode.  
capacitor by a fixed amount (q = C  
x V  
), causing  
REF  
REF  
the Op Amp output to step up a finite amount.  
At the end of the charging period, C is shorted out.  
REF  
The TC9400 utilizes low power CMOS processing for  
low input bias and offset currents, with very low power  
dissipation. The open drain N-channel output FETs  
provide high voltage and high current sink capability.  
This dissipates the charge stored on the reference  
capacitor, so that when the output again crosses zero,  
the system is ready to recycle. In this manner, the con-  
tinued discharging of the integrating capacitor by the  
FIGURE 3-1:  
10Hz TO 10kHz V/F CONVERTER  
+5V  
+
5V  
14  
V
R
10kΩ  
L
DD  
F
Threshold  
OUT  
8
11  
Detect  
3µsec  
Delay  
+
5V  
Threshold  
Detector  
R
10kΩ  
L
F
/2  
OUT  
10  
9
Self-  
Start  
÷2  
-3V  
12 AMP OUT  
Output  
Common  
V
OUT  
REF  
5
20kΩ  
C
INT  
820pF  
TC9400  
TC9401  
TC9402  
C
180pF  
REF  
12pF  
R
IN  
1MΩ  
INPUT  
60pF  
I
IN  
3
V
IN  
+5V  
Op Amp  
+
Zero Adjust  
0V 10V  
50kΩ  
510kΩ  
2
V
V
7
I
GND  
6
SS  
REF  
BIAS  
-5V  
Offset  
1
4
10kΩ  
R
Adjust  
BIAS  
100kΩ  
Reference Voltage  
(Typically -5V)  
-5V  
2002 Microchip Technology Inc.  
DS21483B-page 7  
TC9400/9401/9402  
3.2  
Voltage-to-Time Measurements  
4.0  
4.1  
PIN FUNCTIONS  
The TC9400 output can be measured in the time  
domain as well as the frequency domain. Some micro-  
computers, for example, have extensive timing capabil-  
ity, but limited counter capability. Also, the response  
time of a time domain measurement is only the period  
between two output pulses, while the frequency mea-  
surement must accumulate pulses during the entire  
counter time-base period.  
Threshold Detector Input  
In the V/F mode, this input is connected to the AMPLI-  
FIER OUT output (Pin 12) and triggers a 3µsec pulse  
when the input voltage passes through its threshold. In  
the F/V mode, the input frequency is applied to this  
input.  
The nominal threshold of the detector is half way  
Time measurements can be made from either the  
TC9400's PULSE FREQ OUT output, or from the  
FREQ/2 OUT output. The FREQ/2 OUT output  
changes state on the rising edge of PULSE FREQ  
OUT, so FREQ/2 OUT is a symmetrical square wave at  
one-half the pulse output frequency. Timing measure-  
ments can, therefore, be made between successive  
PULSE FREQ OUT pulses, or while FREQ/2 OUT is  
high (or low).  
between the power supplies, or (V + V )/2 ±400mV.  
DD  
SS  
The TC9400's charge balancing V/F technique is not  
dependent on precision comparator threshold,  
a
because the threshold only sets the lower limit of the  
Op Amp output. The Op Amp's peak-to-peak output  
swing, which determines the frequency, is only  
influenced by external capacitors and by V  
.
REF  
4.2  
Pulse Freq Out  
This output is an open drain N-channel FET, which pro-  
vides a pulse waveform whose frequency is propor-  
tional to the input voltage. This output requires a pull-  
up resistor and interfaces directly with MOS, CMOS,  
and TTL logic (see Figure 4-1).  
FIGURE 4-1:  
OUTPUT WAVEFORMS  
3µsec  
Typ.  
F
OUT  
1/f  
F /2  
OUT  
C
REF  
C
INT  
V
REF  
0V  
Amp Out  
Notes: 1. To adjust F  
, set V = 10mV and adjust the 50koffset for 10Hz output.  
IN  
MIN  
2. To adjust F  
MAX  
3. To increase F  
, set V = 10V and adjust R or V  
for 10kHz output.  
IN  
MAX to 100kHz, change C  
IN  
REF  
to 2pF and C to 75pF.  
INT  
OUT  
REF  
4. For high performance applications, use high stability components for R , C (metal film  
, V  
IN REF REF  
resistors and glass capacitors). Also, separate output ground (Pin 9) from input ground (Pin 6).  
DS21483B-page 8  
2002 Microchip Technology Inc.  
TC9400/9401/9402  
4.3  
Freq/2 Out  
4.8  
IIN  
This output is an open drain N-channel FET, which pro-  
vides a square wave one-half the frequency of the  
pulse frequency output. The FREQ/2 OUT output will  
change state on the rising edge of PULSE FREQ OUT.  
This output requires a pull-up resistor and interfaces  
directly with MOS, CMOS, and TTL logic.  
The inverting input of the operational amplifier and the  
summing junction when connected in the V/F mode. An  
input current of 10µA is specified, but an over range  
current up to 50µA can be used without detrimental  
effect to the circuit operation. I connects the summing  
IN  
junction of an operational amplifier. Voltage sources  
cannot be attached directly, but must be buffered by  
external resistors.  
4.4  
Output Common  
The sources of both the FREQ/2 OUT and the PULSE  
FREQ OUT are connected to this pin. An output level  
4.9  
VREF  
swing from the drain voltage to ground, or to the V  
A reference voltage from either a precision source, or  
SS  
supply, may be obtained by connecting this pin to the  
appropriate point.  
the V supply is applied to this pin. Accuracy of the  
TC9400 is dependent on the voltage regulation and  
temperature characteristics of the reference circuitry.  
SS  
4.5  
RBIAS  
Since the TC9400 is a charge balancing V/F converter,  
the reference current will be equal to the input current.  
For this reason, the DC impedance of the reference  
voltage source must be kept low enough to prevent lin-  
earity errors. For linearity of 0.01%, a reference imped-  
ance of 200W or less is recommended. A 0.1µF bypass  
An external resistor, connected to V , sets the bias  
point for the TC9400. Specifications for the TC9400 are  
based on R  
noted.  
SS  
= 100k±10%, unless otherwise  
BIAS  
Increasing the maximum frequency of the TC9400  
beyond 100kHz is limited by the pulse width of the  
capacitor should be connected from V  
to ground.  
REF  
pulse output (typically 3µsec). Reducing R  
decrease the pulse width and increase the maximum  
operating frequency, but linearity errors will also  
will  
BIAS  
4.10 VREF Out  
The charging current for C  
is supplied through this  
REF  
increase. R  
can be reduced to 20k, which will  
pin. When the Op Amp output reaches the threshold  
level, this pin is internally connected to the reference  
BIAS  
typically produce a maximum full scale frequency of  
500kHz.  
voltage and a charge, equal to V  
x C  
, is removed  
REF  
REF  
from the integrator capacitor. After about 3µsec, this pin  
is internally connected to the summing junction of the  
4.6  
Amplifier Out  
Op Amp to discharge C . Break-before-make switch-  
ing ensures that the reference voltage is not directly  
applied to the summing junction.  
REF  
This pin is the output stage of the operational amplifier.  
During V/F operation, a negative going ramp signal is  
available at this pin. In the F/V mode, a voltage  
proportional to the frequency input is generated.  
4.7  
Zero Adjust  
This pin is the non-inverting input of the operational  
amplifier. The low frequency set point is determined by  
adjusting the voltage at this pin.  
2002 Microchip Technology Inc.  
DS21483B-page 9  
TC9400/9401/9402  
FIGURE 5-1:  
RECOMMENDED  
VS. V  
5.0  
VOLTAGE-TO-FREQUENCY  
(V/F) CONVERTER DESIGN  
INFORMATION  
C
REF  
REF  
500  
400  
300  
V
V
= +5V  
= -5V  
= 1MΩ  
= +10V  
DD  
SS  
R
IN  
IN  
A
5.1  
Input/Output Relationships  
V
T
= +25°C  
The output frequency (F  
input voltage (V ) by the transfer equation:  
) is related to the analog  
OUT  
10kHz  
IN  
EQUATION 5-1:  
200  
100  
V
R
1
)(V  
IN  
, x  
Frequency Out =  
(V  
)
REF  
REF  
IN  
100kHz  
-2 -3 -4  
0
-5 -6  
-7  
-1  
5.2  
External Component Selection  
V
(V)  
REF  
5.2.1  
R
IN  
5.2.4  
V
, V  
DD  
SS  
The value of this component is chosen to give a full  
Power supplies of ±5V are recommended. For high  
accuracy requirements, 0.05% line and load regulation  
and 0.1µF disc decoupling capacitors, located near the  
pins, are recommended.  
scale input current of approximately 10µA:  
EQUATION 5-2:  
FULLSCALE  
V
IN  
R
IN  
10µA  
5.3  
Adjustment Procedure  
Figure 3-1 shows a circuit for trimming the zero loca-  
tion. Full scale may be trimmed by adjusting R , V  
EQUATION 5-3:  
,
IN REF  
or C . Recommended procedure for a 10kHz full  
scale frequency is as follows:  
REF  
10V  
R
= 1MΩ  
IN  
10µA  
1. Set V to 10mV and trim the zero adjust circuit  
IN  
to obtain a 10Hz output frequency.  
Note that the value is an approximation and the exact  
relationship is defined by the transfer equation. In prac-  
2. Set V to 10V and trim either R , V  
, or C  
REF  
IN  
IN REF  
tice, the value of R typically would be trimmed to  
to obtain a 10kHz output frequency.  
IN  
obtain full scale frequency at V  
full scale (see  
IN  
If adjustments are performed in this order, there should  
be no interaction and they should not have to be  
repeated.  
Section 5.3, Adjustment Procedure). Metal film resis-  
tors with 1% tolerance or better are recommended for  
high accuracy applications because of their thermal  
stability and low noise generation.  
5.4  
Improved Single Supply V/F  
Converter Operation  
5.2.2  
C
INT  
A TC9400, which operates from a single 12 to 15V vari-  
able power source, is shown in Figure 5-2. This circuit  
uses two Zener diodes to set stable biasing levels for  
the TC9400. The Zener diodes also provide the refer-  
ence voltage, so the output impedance and tempera-  
ture coefficient of the Zeners will directly affect power  
supply rejection and temperature performance. Full  
scale adjustment is accomplished by trimming the input  
current. Trimming the reference voltage is not recom-  
mended for high accuracy applications unless an  
Op Amp is used as a buffer, because the TC9400  
requires a low impedance reference (see Section 4.9,  
The exact value is not critical but is related to C  
the relationship:  
by  
REF  
3C  
C  
10C  
INT REF  
REF  
Improved stability and linearity are obtained when  
4C . Low leakage types are recommended,  
C
INT  
REF  
although mica and ceramic devices can be used in  
applications where their temperature limits are not  
exceeded. Locate as close as possible to Pins 12  
and 13.  
5.2.3  
C
REF  
V
pin description, for more information).  
REF  
The exact value is not critical and may be used to trim  
the full scale frequency (see Section 7.1, Input/Output  
Relationships). Glass film or air trimmer capacitors are  
recommended because of their stability and low leak-  
age. Locate as close as possible to Pins 5 and 3 (see  
Figure 5-1).  
The circuit of Figure 5-2 will directly interface with  
CMOS logic operating at 12V to 15V. TTL or 5V CMOS  
logic can be accommodated by connecting the output  
pull-up resistors to the +5V supply. An optoisolator can  
also be used if an isolated output is required; also, see  
Figure 5-3.  
DS21483B-page 10  
2002 Microchip Technology Inc.  
TC9400/9401/9402  
FIGURE 5-2:  
VOLTAGE TO FREQUENCY  
+12 to +15V  
1.2k  
14  
V
DD  
1µF  
Threshold  
Detect  
11  
12  
5
R
910k  
R
4
100k  
1
C
INT  
10k  
10k  
Amp Out  
D
5.1VZ  
2
C
REF  
C
REF  
R
3
TC9400  
Gain  
3
2
6
I
8
IN  
F
OUT  
Zero Adjust  
100k  
10  
9
Output  
Frequency  
GND  
F
/2  
OUT  
R
910k  
R
5
2
D
1
5.1VZ  
91k  
0.1µ  
Output  
Common  
7
1
V
REF  
Rp  
I
BIAS  
Offset  
20k  
V
100k  
SS  
Digital  
Ground  
Input  
Voltage  
4
(0 to 10V)  
Analog Ground  
Component Selection  
CREF  
CINT  
F/S FREQ.  
2200pF 4700pF  
1kHz  
180pF  
27pF  
470pF  
75pF  
10kHz  
100kHz  
FIGURE 5-3:  
FIXED VOLTAGE - SINGLE SUPPLY OPERATION  
V+ = 8V to 15V (Fixed)  
R
2
14  
10kΩ  
V
2
0.9  
1
2
6
5V  
R
8
F
OUT  
0.01  
µF  
8.2  
kΩ  
Gain  
Adjust  
TC9400  
10kΩ  
7
10  
F
/2  
V
2
kΩ  
OUT  
REF  
11  
0.01  
µF  
Offset  
Adjust  
0.2  
1
12  
5
R
R
1MΩ  
820  
pF  
IN  
180  
pF  
3
I
IN  
V
IN  
0V10V  
I
1
4
9
IN  
100kΩ  
R
R
2
1
V+  
1
F
= I  
IN  
OUT  
(V  
V ) (C  
)
REF  
10V  
1M10kΩ  
2
7
12V 1.4M14kΩ  
15V  
2M20kΩ  
(V V )  
IN  
(V+ V )  
2
2
+
=
I
IN  
R
(0.9R + 0.2R )  
1 1  
IN  
2002 Microchip Technology Inc.  
DS21483B-page 11  
TC9400/9401/9402  
C
can be increased to lower the ripple. Values of 1µF  
6.0  
FREQUENCY-TO-VOLTAGE  
(F/V) CIRCUIT DESCRIPTION  
INT  
to 100µF are perfectly acceptable for low frequencies.  
When the TC9400 is used in the Single Supply mode,  
When used as an F/V converter, the TC9400 generates  
an output voltage linearly proportional to the input  
frequency waveform.  
V
is defined as the voltage difference between Pin 7  
REF  
and Pin 2.  
7.2  
Input Voltage Levels  
Each zero crossing at the threshold detector's input  
causes a precise amount of charge (q = C  
V  
)
REF  
REF  
The input frequency is applied to the Threshold Detec-  
tor input (Pin 11). As discussed in the V/F circuit section  
of this data sheet, the threshold of Pin 11 is approxi-  
to be dispensed into the Op Amp's summing junction.  
This charge, in turn, flows through the feedback resis-  
tor, generating voltage pulses at the output of the Op  
mately (V  
+ V )/2 ±400mV. Pin 11's input voltage  
DD  
SS  
Amp. A capacitor (C ) across R  
averages these  
INT  
INT  
range extends from V to about 2.5V below the thresh-  
DD  
pulses into a DC voltage, which is linearly proportional  
to the input frequency.  
old. If the voltage on Pin 11 goes more than 2.5 volts  
below the threshold, the V/F mode start-up comparator  
will turn on and corrupt the output voltage. The Thresh-  
old Detector input has about 200mV of hysteresis.  
7.0  
7.1  
F/V CONVERTER DESIGN  
INFORMATION  
In ±5V applications, the input voltage levels for the  
TC9400 are ±400mV, minimum. If the frequency  
source being measured is unipolar, such as TTL or  
CMOS operating from a +5V source, then an AC cou-  
pled level shifter should be used. One such circuit is  
shown in Figure 7-1(a).  
Input/Output Relationships  
The output voltage is related to the input frequency  
(F ) by the transfer equation:  
IN  
The level shifter circuit in Figure 7-1(b) can be used in  
single supply F/V applications. The resistor divider  
ensures that the input threshold will track the supply  
voltages. The diode clamp prevents the input from  
going far enough in the negative direction to turn on the  
start-up comparator. The diode's forward voltage  
decreases by 2.1mV/°C, so for high ambient tempera-  
ture operation, two diodes in series are recommended;  
also, see Figure 7-2.  
EQUATION 7-1:  
V
= [V  
C R ] F  
REF REF INT IN  
OUT  
The response time to a change in F is equal to (R  
IN  
INT  
C
). The amount of ripple on V  
is inversely  
INT  
OUT  
proportional to C  
and the input frequency.  
INT  
FIGURE 7-1:  
FREQUENCY INPUT LEVEL SHIFTER  
+8V to +5V  
14  
+5V  
14  
V
V
DD  
DD  
10k  
TC9400  
TC9400  
0.01µF  
33k  
0.01µF  
33k  
11  
Frequency  
Input  
11  
Frequency  
Input  
DET  
DET  
IN914  
+5V  
0V  
1.0M  
+5V  
0V  
IN914 1.0M  
V
GND  
6
V
SS  
SS  
10k  
0.1µF  
4
4
-5V  
(b) Single Supply  
(a) 5V Supply  
DS21483B-page 12  
2002 Microchip Technology Inc.  
TC9400/9401/9402  
FIGURE 7-2:  
F/V SINGLE SUPPLY F/V CONVERTER  
V+ = 10V to 15V  
14  
10k  
V
DD  
6
GND  
.01µF  
TC9400  
6.2V  
10k  
5
3
V
OUT  
REF  
500k  
2
Zero  
Adjust  
47pF  
100k  
V+  
I
IN  
Offset  
Adjust  
.001µF  
1M  
12  
6
Amp Out  
1.0k  
0.01µF  
33k  
Frequency  
11  
V
OUT  
DET  
Input  
GND  
V
IN914  
I
V
BIAS  
1.0M  
REF  
7
SS  
4
0.1µF  
1.0k  
100k  
Note: The output is referenced to Pin 6, which is at 6.2V (Vz). For frequency meter applications,  
a 1mA meter with a series scaling resistor can be placed across Pins 6 and 12.  
FIGURE 7-3:  
F/V DIGITAL OUTPUTS  
7.3  
Input Buffer  
F
and F  
/2 are not used in the F/V mode. How-  
OUT  
OUT  
5.0µsec  
Min  
0.5µsec  
ever, these outputs may be useful for some applica-  
tions, such as a buffer to feed additional circuitry. Then,  
F
Min  
Input  
will follow the input frequency waveform, except  
OUT  
that F  
will go high 3µsec after F goes high;  
OUT  
IN  
F
/2 will be square wave with a frequency of  
F
OUT  
OUT  
one-half F  
.
OUT  
Delay = 3µsec  
If these outputs are not used, Pins 8, 9 and 10 should be  
connected to ground (see Figure 7-3 and Figure 7-4).  
F
OUT  
/2  
2002 Microchip Technology Inc.  
DS21483B-page 13  
TC9400/9401/9402  
FIGURE 7-4:  
DC - 10kHz CONVERTER  
+5V  
14  
V+  
V+  
V
DD  
*
F
/2  
OUT  
10  
9
TC9400A  
TC9401A  
TC9402A  
42  
Output  
Common  
See  
*
Figure 7-1:  
Threshold  
Detect  
*
"Frequency  
Input Level  
Shifter"  
F
OUT  
8
11  
3µsec  
Delay  
F
IN  
*Optional/If  
Buffer is Needed  
Threshold  
Detector  
V
REF  
OUT  
5
C
REF  
56pF  
12pF  
60pF  
Offset  
Adjust  
I
IN  
3
R
INT  
C
INT  
1000pF  
+
+5V  
100kΩ  
2.2kΩ  
Amp  
Out  
1MΩ  
12  
Op  
Amp  
+
V
OUT  
Zero Adjust  
2
2kΩ  
I
V
V
7
BIAS  
SS  
4
REF  
GND  
6
1
10kΩ  
V
REF  
(Typically -5V)  
-5V  
FIGURE 7-5:  
RIPPLE FILTER  
7.4  
Output Filtering  
The output of the TC9400 has a sawtooth ripple super-  
imposed on a DC level. The ripple will be rejected if the  
TC9400 output is converted to a digital value by an inte-  
grating analog-to-digital converter, such as the TC7107  
or TC7109. The ripple can also be reduced by increas-  
ing the value of the integrating capacitor, although this  
will reduce the response time of the F/V converter.  
5
3
V
OUT  
REF  
47pF  
TC9400  
I
IN  
.001µF  
1M  
200  
12  
AMP OUT  
The sawtooth ripple on the output of an F/V can be  
eliminated without affecting the F/V's response time by  
using the circuit in Figure 7-5. The circuit is a capaci-  
tance multiplier, where the output coupling capacitor is  
multiplied by the AC gain of the Op Amp. A moderately  
fast Op Amp, such as the TL071, should be used.  
1M  
0.1µF  
.01µF  
GND  
+5  
6
V
OUT  
7
4
2
6
TL071  
3
+
1M  
-5  
DS21483B-page 14  
2002 Microchip Technology Inc.  
TC9400/9401/9402  
In some cases, however, the TC9400 output must be  
zero at power-on without a frequency input. In such  
8.0  
F/V POWER-ON RESET  
In F/V mode, the TC9400 output voltage will occasion-  
ally be at its maximum value when power is first  
applied. This condition remains until the first pulse is  
applied to F . In most frequency measurement appli-  
cations, this is not a problem because proper operation  
begins as soon as the frequency input is applied.  
cases, a capacitor connected from Pin 11 to V  
will  
DD  
usually be sufficient to pulse the TC9400 and provide a  
Power-on Reset (see Figure 8-1 (a) and (b)). Where  
predictable power-on operation is critical, a more com-  
plicated circuit, such as Figure 8-1 (b), may be  
required.  
IN  
FIGURE 8-1:  
POWER-ON OPERATION/RESET  
(a)  
(b)  
V
DD  
V
DD  
14  
16  
5
2
1
1000pF  
V
B
R
C
CC  
3
4
CLRA  
1kΩ  
F
IN  
Threshold  
Detector  
11  
100kΩ  
1µF  
CD4538  
6
To TC9400  
Q
A
V
SS  
F
IN  
TC9400  
8
2002 Microchip Technology Inc.  
DS21483B-page 15  
TC9400/9401/9402  
9.0  
9.1  
PACKAGE INFORMATION  
Package Marking Information  
Package marking data is not available at this time.  
9.2  
Taping Form  
Component Taping Orientation for 14-Pin SOIC (Narrow) Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Reel Size, and Number of Components Per Reel  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
14-Pin SOIC (N)  
12 mm  
8 mm  
2500  
13 in  
9.3  
Package Dimensions  
14-Pin CDIP (Narrow)  
PIN 1  
.300 (7.62)  
.230 (5.84)  
.098 (2.49) MAX.  
.030 (0.76) MIN.  
.780 (19.81)  
.740 (18.80)  
.320 (8.13)  
.290 (7.37)  
.040 (1.02)  
.020 (0.51)  
.200 (5.08)  
.160 (4.06)  
.015 (0.38)  
.008 (0.20)  
3° MIN.  
.200 (5.08)  
.125 (3.18)  
.150 (3.81)  
MIN.  
.400 (10.16)  
.320 (8.13)  
.020 (0.51)  
.016 (0.41)  
.110 (2.79)  
.090 (2.29)  
.065 (1.65)  
.045 (1.14)  
Dimensions: inches (mm)  
DS21483B-page 16  
2002 Microchip Technology Inc.  
TC9400/9401/9402  
9.3  
Package Dimensions (Continued)  
14-Pin PDIP (Narrow)  
PIN 1  
.260 (6.60)  
.240 (6.10)  
.310 (7.87)  
.290 (7.37)  
.770 (19.56)  
.745 (18.92)  
.200 (5.08)  
.140 (3.56)  
.040 (1.02)  
.020 (0.51)  
.015 (0.38)  
3° MIN.  
.150 (3.81)  
.115 (2.92)  
.008 (0.20)  
.400 (10.16)  
.310 (7.87)  
.110 (2.79) .070 (1.78)  
.090 (2.29) .045 (1.14)  
.022 (0.56)  
.015 (0.38)  
Dimensions: inches (mm)  
14-Pin SOIC (Narrow)  
PIN 1  
.157 (3.99) .244 (6.20)  
.150 (3.81) .228 (5.79)  
.050 (1.27) TYP.  
.344 (8.74)  
.337 (8.56)  
.069 (1.75)  
.053 (1.35)  
.010 (0.25)  
.007 (0.18)  
8° MAX.  
.010 (0.25)  
.004 (0.10)  
.050 (1.27)  
.016 (0.40)  
.018 (0.46)  
.014 (0.36)  
Dimensions: inches (mm)  
2002 Microchip Technology Inc.  
DS21483B-page 17  
TC9400/9401/9402  
SALES AND SUPPORT  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
DS21483B-page 18  
2002 Microchip Technology Inc.  
TC9400/9401/9402  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode  
and Total Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
DS21483B-page 19  
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
China - Chengdu  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Chengdu 610016, China  
Tel: 86-28-6766200 Fax: 86-28-6766599  
Tel: 630-285-0071 Fax: 630-285-0075  
China - Fuzhou  
Dallas  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
EUROPE  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Tel: 972-818-7423 Fax: 972-818-2924  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Tel: 86-591-7503506 Fax: 86-591-7503521  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
Hong Kong  
Italy  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Microchip Technology Inc.  
India Liaison Office  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
03/01/02  
DS21483B-page 20  
2002 Microchip Technology Inc.  

相关型号:

TC9400EJDG

VOLTAGE-FREQUENCY CONVERTER, 0.1 MHz, CDIP14, CERDIP-14
MICROCHIP

TC9400F

SIGMA-DELTA MODULATION SYSTEM DA CONVERTER WITH A BUILT-IN 8-TIMES OVER SAMPLING DIGITAL FILTER / DIGITALATTENUATOR
TOSHIBA

TC9400N

SIGMA-DELTA MODULATION SYSTEM DA CONVERTER WITH A BUILT-IN 8-TIMES OVER SAMPLING DIGITAL FILTER / DIGITALATTENUATOR
TOSHIBA

TC9400_06

Voltage-to-Frequency/Frequency-to-Voltage Converters
MICROCHIP

TC9401

Voltage-to-Frequency/Frequency-to-Voltage Converters
MICROCHIP

TC9401

VOLTAGE-TO-FREQUENCY/FREQUENCY-TO-VOLTAGE CONVERTERS
TELCOM

TC9401CPD

Voltage-to-Frequency/Frequency-to-Voltage Converters
MICROCHIP

TC9401CPD

VOLTAGE-TO-FREQUENCY/FREQUENCY-TO-VOLTAGE CONVERTERS
TELCOM

TC9401E/OD

IC,VOLTAGE-TO-FREQUENCY CONVERTER,CMOS,SOP,14PIN
MICROCHIP

TC9401EJD

Voltage-to-Frequency/Frequency-to-Voltage Converters
MICROCHIP

TC9401EJD

VOLTAGE-TO-FREQUENCY/FREQUENCY-TO-VOLTAGE CONVERTERS
TELCOM

TC9402

Voltage-to-Frequency/Frequency-to-Voltage Converters
MICROCHIP