TC7129CJL [MICROCHIP]

1-CH DUAL-SLOPE ADC, CDIP40, CERAMIC, DIP-40;
TC7129CJL
型号: TC7129CJL
厂家: MICROCHIP    MICROCHIP
描述:

1-CH DUAL-SLOPE ADC, CDIP40, CERAMIC, DIP-40

CD 转换器
文件: 总28页 (文件大小:544K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC7129  
4-1/2 Digit Analog-to-Digital Converters with  
On-Chip LCD Drivers  
Features:  
General Description:  
• Count Resolution: ±19,999  
The TC7129 is a 4-1/2 digit Analog-to-Digital Converter  
(ADC) that directly drives a multiplexed Liquid Crystal  
Display (LCD). Fabricated in high-performance, low-  
power CMOS, the TC7129 ADC is designed specifi-  
cally for high-resolution, battery-powered digital multi-  
meter applications. The traditional dual-slope method  
of A/D conversion has been enhanced with a succes-  
sive integration technique to produce readings accu-  
rate to better than 0.005% of full-scale and resolution  
down to 10 μV per count.  
• Resolution on 200 mV Scale: 10 μV  
• True Differential Input and Reference  
• Low Power Consumption: 500 μA at 9V  
• Direct LCD Driver for 4-1/2 Digits, Decimal Points,  
Low Battery Indicator, and Continuity Indicator  
• Overrange and Underrange Outputs  
• Range Select Input: 10:1  
• High Common Mode Rejection Ratio: 110 dB  
• External Phase Compensation Not Required  
The TC7129 includes features important to multimeter  
applications. It detects and indicates low battery condi-  
tion. A continuity output drives an annunciator on the  
display and can be used with an external driver to sound  
an audible alarm. Overrange and underrange outputs,  
along with a range-change input, provide the ability to  
create auto-ranging instruments. For snapshot read-  
ings, the TC7129 includes a latch-and-hold input to  
freeze the present reading. This combination of features  
makes the TC7129 the ideal choice for full-featured  
multimeter and digital measurement applications.  
Applications:  
• Full-Featured Multimeters  
• Digital Measurement Devices  
Device Selection Table  
Package  
Code  
Pin  
Layout  
Temperature  
Range  
Package  
TC7129CPL  
Normal  
40-Pin PDIP  
44-PinPQFP  
44-PinPLCC  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
TC7129CKW Formed  
TC7129CLW  
Typical Application  
Low Battery  
Continuity  
V+  
5 pF  
20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
120 kHz  
TC7129  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
330 kΩ  
*
0.1 µF  
10 pF  
V+  
0.1  
+
µF  
20  
kΩ  
0.1 µF  
1 µF  
150 kΩ  
10 kΩ  
+
100 kΩ  
9V  
+
V
IN  
*Note: RC network between pins 26 and 28 is not required.  
© 2006 Microchip Technology Inc.  
DS21459D-page 1  
TC7129  
Package Types  
40-Pin PDIP  
OSC1  
OSC3  
40 OSC2  
1
2
39 DP  
1
38 DP  
2
ANNUNICATOR  
B , C , CONT  
3
37  
4
RANGE  
1
1
A , G , D  
5
36 DGND  
1
1
1
1
F , E , DP  
6
REF LO  
REF HI  
IN HI  
1
1
35  
34  
33  
32  
B , C , LO BATT  
7
2
2
A , G , D  
8
2
2
2
2
F , E , DP  
9
2
2
IN LO  
31 BUFF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
B , C MINUS  
TC7129CPL  
3
3
,
Display  
Output  
Lines  
A , G , D  
C
C
-
30  
29  
28  
3
3
3
3
5
4
4
REF  
F , E , DP  
+
3
3
REF  
B , C BC  
COMMON  
4
4
,
A , G , D  
27 CONTINUITY  
26 INT OUT  
25 INT IN  
24 V+  
4
4
F , E , DP  
4
4
BP  
BP  
BP  
3
2
1
23 V-  
V
22  
LATCH/HOLD  
DISP  
DP /OR  
21 DP /UR  
3
4
44-Pin QFP  
44-Pin PLCC  
6
5
4
3
2
1
44 43 42 41 40  
44 43 42 41 40 39 38 37 36 35 34  
F , E , DP  
F , E , DP  
1
REF LO  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
7
39  
38 REF HI  
IN HI  
1
2
3
4
REF LO  
REF HI  
1
1
1
1
1
8
B , C , BATT  
B , C , BATT  
2 2  
2
2
A , G , D  
A , G , D  
2 2 2  
9
37  
36 IN LO  
IN HI  
IN LO  
BUFF  
NC  
2
2
2
F , E , DP  
F , E , DP  
2 2 2  
10  
11  
12  
13  
14  
15  
16  
2
2
2
B , C MINUS  
B , C MINUS  
35  
34  
33  
32  
31  
30  
29  
BUFF  
NC  
5
6
3
3
,
3
3
,
NC  
NC  
TC7129CKW  
TC7129CLW  
A , G , D  
A , G , D  
C
-
7
C
-
3
3
3
3
3
3
3
3
REF  
REF  
REF  
REF  
F , E , DP  
F , E , DP  
3 3  
C
+
8
C
+
3
3
B , C BC  
B , C BC  
4 4 5  
,
9
COMMON  
CONTINUITY  
INT OUT  
4
4
5
COMMON  
CONTINUITY  
INT OUT  
,
A , G , D  
A , G , D  
4 4 4  
10  
11  
4
4
4
F , E , DP  
F , E , DP 17  
4 4 4  
4
4
4
18 19 20 21 22 23 24 25 26 27 28  
12 13 14 15 16 17 18 19 20 21 22  
DS21459D-page 2  
© 2006 Microchip Technology Inc.  
TC7129  
*Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. These  
are stress ratings only and functional operation of the device  
at these or any other conditions above those indicated in the  
operation sections of the specifications is not implied.  
Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings*  
Supply Voltage (V+ to V-).......................................15V  
Reference Voltage (REF HI or REF LO) ........ V+ to V–  
Input Voltage (IN HI or IN LO) (Note 1).......... V+ to V–  
VDISP.......................................... V+ to (DGND – 0.3V)  
Digital Input (Pins 1, 2, 19, 20,  
21, 22, 27, 37, 39, 40).......................... DGND to V+  
Analog Input (Pins 25, 29, 30) ....................... V+ to V–  
Package Power Dissipation (TA 70°C)  
Plastic DIP .....................................................1.23W  
PLCC .............................................................1.23W  
Plastic QFP ....................................................1.00W  
Operating Temperature Range ............... 0°C to +70°C  
Storage Temperature Range..............-65°C to +150°C  
TC7129 ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: V+ to V– = 9V, VREF = 1V, TA = +25°C, fCLK = 120 kHz, unless otherwise indicated.  
Pin numbers refer to 40-pin DIP.  
Symbol  
Input  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Zero Input Reading  
–0000  
0000  
±0.5  
+0000 Counts VIN = 0V, 200 mV scale  
μV/°C VIN = 0V, 0°C < TA < +70°C  
Zero Reading Drift  
Ratiometric Reading  
9996  
10000 Counts VIN = VREF = 1000 mV,  
Range = 2V  
Range Change Accuracy  
0.9999  
1.0000 1.0001  
Ratio VIN = 1V on High Range,  
VIN = 0.1V on Low Range  
RE  
NL  
Rollover Error  
Linearity Error  
1
1
2
Counts VIN– = VIN+ = 199 mV  
Counts 200mV Scale  
CMRR Common Mode Rejection Ratio  
110  
dB  
VCM = 1V, VIN = 0V,  
200 mV scale  
CMVR Common Mode Voltage Range  
(V-) +  
1.5  
V
VIN = 0V  
(V+) – 1  
14  
V
200 mV scale  
eN  
IIN  
Noise (Peak-to-Peak Value not  
Exceeded 95% of Time)  
μVP-P VIN = 0V  
200 mV scale  
VIN = 0V, pins 32, 33  
Input Leakage Current  
1
2
10  
7
pA  
Scale Factor Temperature  
Coefficient  
ppm/°C VIN = 199 mV,  
0°C < TA < +70°C  
External VREF = 0 ppm/°C  
Note 1: Input voltages may exceed supply voltages, provided input current is limited to ±400 μA. Currents above  
this value may result in invalid display readings, but will not destroy the device if limited to ±1 mA.  
Dissipation ratings assume device is mounted with all leads soldered to printed circuit board.  
© 2006 Microchip Technology Inc.  
DS21459D-page 3  
TC7129  
TC7129 ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: V+ to V– = 9V, VREF = 1V, TA = +25°C, fCLK = 120 kHz, unless otherwise indicated.  
Pin numbers refer to 40-pin DIP.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Power  
VCOM  
Common Voltage  
2.8  
4.5  
6
3.2  
0.6  
10  
3.5  
V
mA  
μA  
V
V+ to pin 28  
Common Sink Current  
ΔCommon = +0.1V  
ΔCommon = -0.1V  
V+ to pin 36, V+ to V– = 9V  
ΔDGND = +0.5V  
V+ to V–  
Common Source Current  
DGND Digital Ground Voltage  
Sink Current  
5.3  
1.2  
9
5.8  
mA  
V
Supply Voltage Range  
12  
1.3  
IS  
Supply Current Excluding  
Common Current  
0.8  
mA  
V+ to V– = 9V  
fCLK  
Clock Frequency  
VDISP Resistance  
120  
50  
360  
kHz  
kΩ  
V
VDISP to V+  
V+ to V–  
Low Battery Flag Activation  
Voltage  
6.3  
7.2  
7.7  
Digital  
Continuity Comparator Threshold  
Voltages  
100  
200  
200  
2
400  
10  
mV  
mV  
μA  
μA  
μA  
μA  
μA  
VOUT pin 27 = High  
VOUT pin 27 = Low  
Pins 37, 38, 39  
Pull-down Current  
“Weak Output” Current  
Sink/Source  
3/3  
3/9  
40  
3
Pins 20, 21 sink/source  
Pin 27 sink/source  
Pin 22 Source Current  
Pin 22 Sink Current  
Note 1: Input voltages may exceed supply voltages, provided input current is limited to ±400 μA. Currents above  
this value may result in invalid display readings, but will not destroy the device if limited to ±1 mA.  
Dissipation ratings assume device is mounted with all leads soldered to printed circuit board.  
DS21459D-page 4  
© 2006 Microchip Technology Inc.  
TC7129  
2.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Pin No.  
Pin No.  
Pin No.  
Symbol  
Function  
40-Pin PDIP 44-Pin PQFP 44-Pin PLCC  
1
2
3
4
5
6
7
40  
41  
42  
43  
44  
1
2
3
4
5
6
7
8
OSC1  
OSC3  
Input to first clock inverter.  
Output of second clock inverter.  
ANNUNCIATOR Backplane square wave output for driving annunciators.  
B , C , CONT  
Output to display segments.  
Output to display segments.  
Output to display segments.  
Output to display segments.  
1
1
A , G , D  
1
1
1
F , E , DP  
1
1
1
2
B , C ,  
2 2  
LO BATT  
8
3
4
9
A , G , D  
Output to display segments.  
Output to display segments.  
Output to display segments.  
Output to display segments.  
Output to display segments.  
Output to display segments.  
Output to display segments.  
Output to display segments.  
Backplane #3 output to display.  
Backplane #2 output to display.  
Backplane #1 output to display.  
Negative rail for display drivers.  
2
2
2
9
10  
11  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
F , E , DP  
2 2  
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
5
B , C , MINUS  
3 3  
7
A , G , D  
3 3 3  
8
F , E , DP  
3 3 3  
9
B , C , BC  
4 4  
5
10  
11  
12  
13  
14  
15  
16  
A , D , G  
4
4
4
F , E , DP  
4
4
4
BP  
3
2
1
BP  
BP  
V
DISP  
DP /OR  
Input: When high, turns on most significant decimal point.  
Output: Pulled high when result count exceeds ±19,999.  
4
21  
22  
18  
19  
24  
25  
DP /UR  
Input: Second-most significant decimal point on when high.  
Output: Pulled high when result count is less than ±1000.  
3
LATCH/HOLD  
Input: When floating, ADC operates in Free Run mode. When  
pulled high, the last displayed reading is held. When pulled low,  
the result counter contents are shown incrementing during the  
de-integrate phase of cycle.  
Output: Negative going edge occurs when the data latches are  
updated. Can be used for converter status signal.  
23  
24  
20  
21  
26  
27  
V–  
V+  
Negative power supply terminal.  
Positive power supply terminal and positive rail for display  
drivers.  
25  
26  
27  
22  
23  
24  
28  
29  
30  
INT IN  
INT OUT  
Input to integrator amplifier.  
Output of integrator amplifier.  
CONTINUITY  
Input: When low, continuity flag on the display is off. When high,  
continuity flag is on.  
Output: High when voltage between inputs is less than +200 mV.  
Low when voltage between inputs is more than +200 mV.  
28  
25  
31  
COMMON  
Sets common mode voltage of 3.2V below V+ for DE, 10X, etc.  
Can be used as pre-regulator for external reference.  
29  
30  
31  
32  
33  
34  
35  
26  
27  
29  
30  
31  
32  
33  
32  
33  
35  
36  
37  
38  
39  
C
C
+
Positive side of external reference capacitor.  
Negative side of external reference capacitor.  
Output of buffer amplifier.  
REF  
REF  
BUFFER  
IN LO  
Negative input voltage terminal.  
Positive input voltage terminal.  
Positive reference voltage.  
IN HI  
REF HI  
REF LO  
Negative reference voltage  
© 2006 Microchip Technology Inc.  
DS21459D-page 5  
TC7129  
TABLE 2-1:  
PIN FUNCTION TABLE (CONTINUED)  
Pin No.  
Pin No.  
Pin No.  
Symbol  
Function  
40-Pin PDIP 44-Pin PQFP 44-Pin PLCC  
36  
34  
40  
DGND  
Internal ground reference for digital section. See Section 4.2.1  
“±5V Power Supply”.  
37  
35  
41  
RANGE  
3 μA pull-down for 200 mV scale. Pulled high externally for 2V  
scale.  
38  
39  
40  
36  
37  
38  
42  
43  
44  
DP  
Internal 3 μA pull-down. When high, decimal point 2 will be on.  
Internal 3 μA pull-down. When high, decimal point 1 will be on.  
Output of first clock inverter. Input of second clock inverter.  
No connection.  
2
DP  
1
OSC2  
NC  
6,17, 28, 39 12, 23, 34, 1  
DS21459D-page 6  
© 2006 Microchip Technology Inc.  
TC7129  
The resistor and capacitor values are not critical; those  
shown work for most applications. In some situations,  
the capacitor values may have to be adjusted to  
compensate for parasitic capacitance in the circuit. The  
capacitors can be low-cost ceramic devices.  
3.0  
DETAILED DESCRIPTION  
(All pin designations refer to 40-pin PDIP.)  
The TC7129 is designed to be the heart of a high-  
resolution analog measurement instrument. The only  
additional components required are a few passive  
elements: a voltage reference, a LCD and a power  
source. Most component values are not critical;  
substitutes can be chosen based on the information  
given below.  
Some applications can use a simple RC network  
instead of a crystal oscillator. The RC oscillator has  
more potential for jitter, especially in the least  
significant digit. See Section 4.5 “RC Oscillator”.  
The basic circuit for a digital multimeter application is  
shown in Figure 3-1. See Section 4.0 “Typical Appli-  
cations”, for variations. Typical values for each  
component are shown. The sections below give  
component selection criteria.  
3.2  
Integrating Resistor (RINT)  
The integrating resistor sets the charging current for  
the integrating capacitor. Choose a value that provides  
a current between 5 μA and 20 μA at 2V, the maximum  
full-scale input. The typical value chosen gives a  
charging current of 13.3 μA:  
3.1  
Oscillator (X  
, C , C , R )  
OSC O1 O2 O  
EQUATION 3-1:  
The primary criterion for selecting the crystal oscillator  
is to choose a frequency that achieves maximum rejec-  
tion of line frequency noise. To do this, the integration  
phase should last an integral number of line cycles.  
The integration phase of the TC7129 is 10,000 clock  
cycles on the 200 mV range and 1000 clock cycles on  
the 2V range. One clock cycle is equal to two oscillator  
cycles. For 60 Hz rejection, the oscillator frequency  
should be chosen so that the period of one line cycle  
equals the integration time for the 2V range.  
2V  
150 kΩ  
ICHARGE  
=
13.3 µA  
Too high a value for RINT increases the sensitivity to  
noise pickup and increases errors due to leakage  
current. Too low a value degrades the linearity of the  
integration, leading to inaccurate readings.  
EQUATION 3-1:  
1/60 second = 16.7 msec =  
1000 clock cycles *2 OSC cycles/clock cycle  
OSC Frequency  
This equation gives an oscillator frequency of 120 kHz.  
A similar calculation gives an optimum frequency of  
100 kHz for 50 Hz rejection.  
© 2006 Microchip Technology Inc.  
DS21459D-page 7  
TC7129  
Low Battery  
Continuity  
V+  
C
5 pF  
O1  
20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Display Drive Outputs  
TC7129  
120  
kHz  
Crystal  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
330 kΩ  
R
O
C
INT  
0.1 µF  
C
10 pF  
O2  
R
D
REF  
C
+
0.1  
µF  
REF  
20  
kΩ  
REF  
1 µF  
C
RF  
0.1 µF  
V+  
150 kΩ  
R
C
IF  
INT  
10 kΩ  
BIAS  
+
R
IF  
100 kΩ  
R
9V  
+
V
IN  
Figure 3-1:  
Standard Circuit.  
The capacitor should have low dielectric absorption to  
ensure good integration linearity. Polypropylene and  
Teflon® capacitors are usually suitable. A good  
measurement of the dielectric absorption is to connect  
the reference capacitor across the inputs by  
connecting:  
3.3 Integrating Capacitor (C  
)
INT  
The charge stored in the integrating capacitor during  
the integrate phase is directly proportional to the input  
voltage. The primary selection criterion for CINT is to  
choose a value that gives the highest voltage swing  
while remaining within the high-linearity portion of the  
integrator output range. An integrator swing of 2V is the  
recommended value. The capacitor value can be  
calculated using the following equation:  
Pin-to-Pin:  
20 33 (CREF+ to IN HI)  
30 32 (CREF– to IN LO)  
EQUATION 3-1:  
A reading between 10,000 and 9998 is acceptable;  
anything lower indicates unacceptably high dielectric  
absorption.  
tINT x IINT  
CINT  
=
VSWING  
Where tINT is the integration time.  
3.4  
Reference Capacitor (C  
)
REF  
The reference capacitor stores the reference voltage  
during several phases of the measurement cycle. Low  
leakage is the primary selection criterion for this com-  
ponent. The value must be high enough to offset the  
effect of stray capacitance at the capacitor terminals. A  
value of at least 1 μF is recommended.  
Using the values derived above (assuming 60 Hz  
operation), the equation becomes:  
EQUATION 3-2:  
16.7 msec x 13.3 μA  
CINT  
=
= 0.1 μA  
2V  
DS21459D-page 8  
© 2006 Microchip Technology Inc.  
TC7129  
3.5  
Voltage Reference  
(D , R , R , C  
+5V  
)
RF  
REF REF BIAS  
TC7129  
The reference potentiometer (RREF) provides an  
adjustment for adjusting the reference voltage; any  
value above 20 kΩ is adequate. The bias resistor  
(RBIAS) limits the current through DREF to less than  
150 μA. The reference filter capacitor (CRF) forms an  
RC filter with RBIAS to help eliminate noise.  
24  
V+  
34  
REF HI  
0.1 µF  
35  
REF LO  
36  
DGND  
3.6  
Input Filter (R , C )  
IF IF  
28  
33  
COMMON  
0.1 µF  
For added stability, an RC input noise filter is usually  
included in the circuit. The input filter resistor value  
should not exceed 100 kΩ. A typical RC time constant  
value is 16.7 msec to help reject line frequency noise.  
The input filter capacitor should have low leakage for a  
high-impedance input.  
+
IN HI  
V
IN  
32  
0.1 µF  
IN LO  
V–  
23  
3.7  
Battery  
-5V  
The typical circuit uses a 9V battery as a power source.  
However, any value between 6V and 12V can be used.  
For operation from batteries with voltages lower than  
6V and for operation from power supplies, see  
Section 4.2 “Powering the TC7129”.  
Figure 4-1:  
a ±5V Power Supply.  
Powering the TC7129 From  
4.2.2  
Low Voltage Battery Source  
A battery with voltage between 3.8V and 6V can be  
used to power the TC7129 when used with a voltage  
doubler circuit, as shown in Figure 4-2. The voltage  
doubler uses the TC7660 DC-to-DC voltage converter  
and two external capacitors.  
4.0  
4.1  
TYPICAL APPLICATIONS  
TC7129 as a Replacement Part  
The TC7129 is a direct pin-for-pin replacement part for  
the ICL7129. Note, however, that the ICL7129 requires  
a capacitor and resistor between pins 26 and 28 for  
phase compensation. Since the TC7129 uses internal  
phase compensation, these parts are not required and,  
in fact, must be removed from the circuit for stable  
operation.  
24  
V+  
34  
REF HI  
36  
DGND  
+
3.8V  
to  
6V  
35  
REF LO  
28  
33  
32  
COMMON  
4.2  
Powering the TC7129  
TC7129  
+
IN HI  
While the most common power source for the TC7129  
is a 9V battery, there are other possibilities. Some of  
the more common ones are explained below.  
V
IN  
8
IN LO  
V–  
2
+
23  
10 µF  
4.2.1  
±5V Power Supply  
TC7660  
4
5
Measurements are made with respect to power supply  
ground. DGND (pin 36) is set internally to about 5V less  
than V+ (pin 24); it is not intended to be a power supply  
input and must not be tied directly to power supply  
ground. It can be used as a reference for external logic,  
as explained in Section 4.3 “Connecting to External  
Logic”, (see Figure 4-1).  
10 µF  
+
3
Figure 4-2:  
Powering the TC7129 From  
a Low-Voltage Battery.  
© 2006 Microchip Technology Inc.  
DS21459D-page 9  
TC7129  
4.2.3  
+5V Power Supply  
+
V
Measurements are made with respect to power supply  
ground. COMMON (pin 28) is connected to REF LO  
(pin 35). A voltage doubler is needed, since the supply  
voltage is less than the 6V minimum needed by the  
TC7129. DGND (pin 36) must be isolated from power  
supply ground (see Figure 4-3).  
24  
External  
Logic  
TC7129  
+5V  
36  
DGND  
I
LOGIC  
24  
V+  
34  
23  
V-  
0.1 µF  
TC7129  
35  
Figure 4-4:  
Directly to DGND.  
External Logic Referenced  
36  
DGND  
28  
33  
32  
0.1 µF  
+
V
IN  
V+  
24  
8
V+  
2
V–  
23  
+
10 µF  
TC7660  
4
5
External  
Logic  
GND  
3
10 µF  
+
TC7129  
Figure 4-3:  
a +5V Power Supply.  
Powering the TC7129 From  
36  
+
DGND  
I
LOGIC  
23  
4.3  
Connecting to External Logic  
External logic can be directly referenced to DGND  
(pin 36), provided that the supply current of the external  
logic does not exceed the sink current of DGND  
(Figure 4-4). A safe value for DGND sink current is  
1.2 mA. If the sink current is expected to exceed this  
value, a buffer is recommended (see Figure 4-5).  
V–  
Figure 4-5:  
to DGND with Buffer.  
External Logic Referenced  
4.4  
Temperature Compensation  
For most applications, VDISP (pin 19) can be connected  
directly to DGND (pin 36). For applications with a wide  
temperature range, some LCDs require that the drive  
levels vary with temperature to maintain good viewing  
angle and display contrast. Figure 4-6 shows two  
circuits that can be adjusted to give temperature com-  
pensation of about 10 mV/°C between V+ (pin 24) and  
VDISP. The diode between DGND and VDISP should  
have a low turn-on voltage because VDISP cannot  
exceed 0.3V below DGND.  
DS21459D-page 10  
© 2006 Microchip Technology Inc.  
TC7129  
V+  
V+  
1N4148  
39 kΩ  
39 kΩ  
24  
24  
200 kΩ  
TC7129  
20 kΩ  
2N2222  
19  
TC7129  
+
19  
36  
V
DISP  
V
DISP  
5 kΩ  
36  
DGND  
DGND  
75 kΩ  
18 kΩ  
23  
23  
V–  
V–  
Figure 4-6:  
Temperature Compensating Circuits.  
4.5 RC Oscillator  
4.6  
Measuring Techniques  
For applications in which 3-1/2 digit (100 μV) resolution  
is sufficient, an RC oscillator is adequate. A recom-  
mended value for the capacitor is 51 pF. Other values  
can be used as long as they are sufficiently larger than  
the circuit parasitic capacitance. The resistor value is  
calculated as:  
Two important techniques are used in the TC7129:  
successive integration and digital auto-zeroing.  
Successive integration is a refinement to the traditional  
dual-slope conversion technique.  
4.7  
Dual-Slope Conversion  
EQUATION 4-1:  
A dual-slope conversion has two basic phases: inte-  
grate and de-integrate. During the integrate phase, the  
input signal is integrated for a fixed period of time; the  
integrated voltage level is thus proportional to the input  
voltage. During the de-integrate phase, the integrated  
voltage is ramped down at a fixed slope, and a counter  
counts the clock cycles until the integrator voltage  
crosses zero. The count is a measurement of the time  
to ramp the integrated voltage to zero and is, therefore,  
proportional to the input voltage being measured. This  
count can then be scaled and displayed as a measure-  
ment of the input voltage. Figure 4-8 shows the phases  
of the dual-slope conversion.  
0.45  
R =  
Freq * C  
For 120 kHz frequency and C = 51 pF, the calculated  
value of R is 75 kΩ. The RC oscillator and the crystal  
oscillator circuits are shown in Figure 4-7.  
TC7129  
1
40  
2
270 kΩ  
10 pF  
De-integrate  
Integrate  
5 pF  
120 kHz  
V+  
V+  
Zero  
Crossing  
TC7129  
Time  
1
40  
2
Figure 4-8:  
Dual-Slope Conversion.  
75 kΩ  
51 pF  
The dual-slope method has a fundamental limitation.  
The count can only stop on a clock cycle, so that mea-  
surement accuracy is limited to the clock frequency. In  
addition, a delay in the zero-crossing comparator can  
add to the inaccuracy. Figure 4-9 shows these errors in  
an actual measurement.  
Figure 4-7:  
Oscillator Circuits.  
© 2006 Microchip Technology Inc.  
DS21459D-page 11  
TC7129  
De-integrate  
Integrate  
Overshoot due to zero-crossing between  
clock pulses  
Time  
Integrator Residue Voltage  
Overshoot caused by comparator  
delay of 1 clock pulse  
Clock Pulses  
Figure 4-9:  
Accuracy Errors in Dual-Slope Conversion.  
Zero Integrate  
and Latch  
INT  
DE  
1
De-integrate  
1
REST X10  
DE  
REST X10  
DE  
Zero Integrate  
Integrate  
2
3
TC7129  
Integrator  
Note: Shaded area greatly expanded in time and amplitude.  
Residual Voltage  
Figure 4-10:  
Integration Waveform.  
DS21459D-page 12  
© 2006 Microchip Technology Inc.  
TC7129  
4.8  
Successive Integration  
4.9  
Digital Auto-Zeroing  
The successive integration technique picks up where  
dual-slope conversion ends. The overshoot voltage  
shown in Figure 4-9 (called the “integrator residue  
voltage”) is measured to obtain a correction to the initial  
count. Figure 4-10 shows the cycles in a successive  
integration measurement.  
To eliminate the effect of amplifier offset errors, the  
TC7129 uses a digital auto-zeroing technique. After the  
input voltage is measured as described above, the  
measurement is repeated with the inputs shorted  
internally. The reading with inputs shorted is a  
measurement of the internal errors and is subtracted  
from the previous reading to obtain a corrected  
measurement. Digital auto-zeroing eliminates the need  
for an external auto-zeroing capacitor used in other  
ADCs.  
The waveform shown is for a negative input signal. The  
sequence of events during the measurement cycle is  
shown in Table 4-1.  
TABLE 4-1:  
MEASUREMENT CYCLE  
SEQUENCE  
4.10 Inside the TC7129  
Figure 4-11 shows a simplified block diagram of the  
TC7129.  
Phase  
Description  
INT  
Input signal is integrated for fixed time (1000 clock  
cycles on 2V scale, 10,000 on 200 mV).  
1
DE  
Integrator voltage is ramped to zero. Counter  
counts up until zero-crossing to produce reading  
accurate to 3-1/2 digits. Residue represents an  
overshoot of the actual input voltage.  
1
REST Rest; circuit settles.  
X10 Residue voltage is amplified 10 times and  
inverted.  
DE  
Integrator voltage is ramped to zero. Counter  
counts down until zero-crossing to correct reading  
to 4-1/2 digits. Residue represents an undershoot  
of the actual input voltage.  
2
REST Rest; circuit settles.  
X10 Residue voltage is amplified 10 times and  
inverted.  
DE  
Integrator voltage is ramped to zero. Counter  
counts up until zero-crossing to correct reading to  
5-1/2 digits. Residue is discarded.  
3
© 2006 Microchip Technology Inc.  
DS21459D-page 13  
TC7129  
Low Battery  
Continuity  
Backplane  
Drives  
Segment Drives  
Annunciator  
Drive  
TC7129  
OSC1  
OSC2  
OSC3  
V
Latch, Decode Display Multiplexer  
DISP  
Up/Down Results Counter  
Sequence Counter/Decoder  
Control Logic  
RANGE  
DP  
DP  
1
2
L/H  
CONT  
UR/DP  
3
OR/DP  
4
V+  
V–  
Analog Section  
REF HI  
DGND  
REF LO  
INT OUT  
INT IN  
BUFF  
COMMON  
IN IN  
HI LO  
Figure 4-11:  
TC7129 Functional Block Diagram.  
C
C
REF  
R
INT  
INT  
REF HI  
REF LO  
DE  
DE  
X10  
Integrator  
+
10  
pF  
Comparator 1  
INT  
1
IN HI  
+
To Digital  
Section  
Buffer  
DE-  
DE+  
DE–  
+
100 pF  
Comparator 2  
DE+  
ZI, X10  
Common  
IN LO  
INT  
REST  
INT INT  
1
,
2
500 kΩ  
TC7129  
+
+
V
Continuity  
Comparator  
200 mV  
Continuity  
To Display Driver  
Figure 4-12:  
Integrator Block Diagram.  
DS21459D-page 14  
© 2006 Microchip Technology Inc.  
TC7129  
4.11 Integrator Section  
The integrator section includes the integrator, compar-  
ator, input buffer amplifier and analog switches (see  
Table 4-2) used to change the circuit configuration  
during the separate measurement phases described  
earlier. (See Figure 4-12).  
+
IN HI  
COM  
Buffer  
TABLE 4-2:  
SWITCH LEGENDS  
Label  
Description  
Label  
DE  
Meaning.  
TC7129  
Open during all de-integrate phases.  
IN LO  
DE–  
Closed during all de-integrate phases when  
input voltage is negative.  
+
500 kΩ  
200 mV  
V
To Display Driver  
(Not Latched)  
DE+  
Closed during all de-integrate phases when  
input voltage is positive.  
CONT  
INT  
INT  
Closed during the first integrate phase  
(measurement of the input voltage).  
1
2
Closed during the second integrate phase  
(measurement of the amplifier offset).  
Figure 4-13:  
Continuity Indicator Circuit.  
INT  
REST  
ZI  
Open during both integrate phases.  
Closed during the rest phase.  
TC7129  
Closed during the zero integrate phase.  
Closed during the X10 phase.  
Open during the X10 phase.  
X10  
X10  
500 kΩ  
DP /OR, Pin 20  
4
The buffer amplifier has a common mode input voltage  
range from 1.5V above V– to 1V below V+. The integra-  
tor amplifier can swing to within 0.3V of the rails.  
However, for best linearity, the swing is usually limited  
to within 1V. Both amplifiers can supply up to 80 μA of  
output current, but should be limited to 20 μA for good  
linearity.  
DP /UR, Pin 21  
3
LATCH/HOLD Pin 22  
CONTINUITY, Pin 27  
Figure 4-14:  
Input/Output Pin Schematic.  
4.13 Common and Digital Ground  
4.12 Continuity Indicator  
The common and digital ground (DGND) outputs are  
generated from internal Zener diodes. The voltage  
between V+ and DGND is the internal supply voltage  
for the digital section of the TC7129. Common can  
source approximately 12 μA; DGND has essentially no  
source capability (see Figure 4-15).  
A comparator with a 200 mV threshold is connected  
between IN HI (pin 33) and IN LO (pin 32). Whenever  
the voltage between inputs is less than 200 mV, the  
CONTINUITY output (pin 27) will be pulled high,  
activating the continuity annunciator on the display.  
The continuity pin can also be used as an input to drive  
the continuity annunciator directly from an external  
source (see Figure 4-13).  
A schematic of the input/output nature of this pin is also  
shown in Figure 4-14.  
© 2006 Microchip Technology Inc.  
DS21459D-page 15  
TC7129  
4.17 LATCH/Hold  
24  
3.2V  
28  
V+  
The L/H output goes low during the last 100 cycles of  
each conversion. This pulse latches the conversion  
data into the display driver section of the TC7129. This  
pin can also be used as an input. When driven high, the  
display will not be updated; the previous reading is  
displayed. When driven low, the display reading is not  
latched; the sequence counter reading will be  
displayed. Since the counter is counting much faster  
than the backplanes are being updated, the reading  
shown in this mode is somewhat erratic.  
12 µA  
COM  
N
5V  
+
Logic  
Section  
36  
23  
DGND  
P
TC7129  
N
4.18 Display Driver  
The TC7129 drives a triplexed LCD with three back-  
planes. The LCD can include decimal points, polarity  
sign and annunciators for continuity and low battery.  
Figure 4-16 shows the assignment of the display  
segments to the backplanes and segment drive lines.  
The backplane drive frequency is obtained by dividing  
the oscillator frequency by 1200. This results in a back-  
plane drive frequency of 100 Hz for 60 Hz operation  
(120 kHz crystal) and 83.3 Hz for 50 Hz operation  
(100 kHz crystal).  
V–  
Figure 4-15:  
Common Outputs.  
Digital Ground (DGND) and  
4.14 Low Battery  
The low battery annunciator turns on when supply volt-  
age between V– and V+ drops below 6.8V. The internal  
zener diode has a threshold of 6.3V. When the supply  
voltage drops below 6.8V, the transistor tied to V– turns  
off pulling the “Low Battery” point high.  
Backplane waveforms are shown in Figure 4-17.  
These appear on outputs BP1, BP2, BP3 (pins 16, 17  
and 18). They remain the same, regardless of the  
segments being driven.  
4.15 Sequence and Results Counter  
Other display output lines (pins 4 through 15) have  
waveforms that vary depending on the displayed  
values. Figure 4-18 shows a set of waveforms for the  
A, G, D outputs (pins 5, 8, 11 and 14) for several  
combinations of “ON” segments.  
A sequence counter and associated control logic pro-  
vide signals that operate the analog switches in the  
integrator section. The comparator output from the inte-  
grator gates the results counter. The results counter is  
a six-section up/down decade counter that holds the  
intermediate results from each successive integration.  
The ANNUNCIATOR DRIVE output (pin 3) is a square  
wave, running at the backplane frequency (100 Hz or  
83.3 Hz) with a peak-to-peak voltage equal to DGND  
voltage. Connecting an annunciator to pin 3 turns it on;  
connecting it to its backplane turns it off.  
4.16 Overrange and Underrange  
Outputs  
When the results counter holds a value greater than  
±19,999, the DP4/OR output (Pin 20) is driven high.  
When the results counter value is less than ±1000, the  
DP3/UR output (Pin 21) is driven high. Both signals are  
valid on the falling edge of LATCH/HOLD (L/H) and do  
not change until the end of the next conversion cycle.  
The signals are updated at the end of each conversion,  
unless the L/H input (Pin 22) is held high. Pins 20 and  
21 can also be used as inputs for external control of  
decimal points 3 and 4. Figure 4-14 shows a schematic  
of the input/output nature of these pins.  
DS21459D-page 16  
© 2006 Microchip Technology Inc.  
TC7129  
Low Battery  
Continuity  
BP  
BP  
1
2
Backplane  
Connections  
BP  
3
Low Battery  
Continuity  
F
E
DP  
D
4
4
4
4
4
3
3
B
1
,
C
Continuity  
,
,
1
,
A
G
4
4
A
1
,
F
1
,
B
2
,
A
2
,
G
D
,
,
1
1
,
B
C
BC  
4
4
3
E
DP  
1
,
,
,
1
,
F
E
DP  
D
3
C
Low Battery  
,
2
,
A
G
3
G
E
D
2
3
,
,
2
,
B
C
MINUS  
3
F
2
,
DP  
2
3
2
,
,
,
Figure 4-16:  
Display Segment Assignments.  
V
V
DD  
H
b Segment  
Line  
All Off  
BP  
1
V
V
L
DISP  
V
V
DD  
H
a Segment  
On  
d, g Off  
BP  
2
V
V
L
DISP  
V
V
DD  
H
a, g On  
d Off  
BP  
3
V
V
L
DISP  
V
V
DD  
H
Figure 4-17:  
Backplane Waveforms.  
All On  
V
V
L
DISP  
Figure 4-18:  
Typical Display Output  
Waveforms.  
© 2006 Microchip Technology Inc.  
DS21459D-page 17  
TC7129  
5.0  
PACKAGING INFORMATION  
5.1  
Package Marking Information  
Package marking data not available a this time.  
5.2  
Taping Forms  
User Direction of Feed  
W, Width  
of C arrier  
Tape  
P in 1  
P in 1  
P , P itch  
R everse R eel C omponent Orientation  
S tandard R eel C omponent Orientation  
Component Taping Orientation for 44-Pin PQFP Devices  
User Direction of Feed  
Pin 1  
W
P
Standard Reel Component Orientation  
for 713 Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
44-Pin PQFP  
24 mm  
16 mm  
500  
13 in  
Note: Drawing does not represent total number of pins.  
DS21459D-page 18  
© 2006 Microchip Technology Inc.  
TC7129  
40-Lead Plastic Dual In-line (P) – 600 mil Body (PDIP)  
E1  
D
2
α
n
1
E
A2  
A
L
c
B1  
B
β
A1  
p
eB  
Units  
INCHES*  
NOM  
40  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
40  
MAX  
n
p
Number of Pins  
Pitch  
.100  
2.54  
Top to Seating Plane  
A
.160  
.175  
.190  
.160  
4.06  
3.56  
4.45  
3.81  
4.83  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.140  
.015  
.595  
.530  
2.045  
.120  
.008  
.030  
.014  
.620  
5
.150  
4.06  
0.38  
15.11  
13.46  
51.94  
3.05  
0.20  
0.76  
0.36  
15.75  
5
.600  
.545  
2.058  
.130  
.012  
.050  
.018  
.650  
10  
.625  
.560  
2.065  
.135  
.015  
.070  
.022  
.680  
15  
15.24  
13.84  
52.26  
3.30  
0.29  
1.27  
0.46  
16.51  
10  
15.88  
14.22  
52.45  
3.43  
0.38  
1.78  
0.56  
17.27  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
§
eB  
α
β
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
5
10  
15  
5
10  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MO-011  
Drawing No. C04-016  
© 2006 Microchip Technology Inc.  
DS21459D-page 19  
TC7129  
44-Lead Plastic Leaded Chip Carrier (LW) – Square (PLCC)  
E
E1  
#leads=n1  
D
D1  
n 1 2  
CH2 x 45°  
CH1 x 45°  
α
A3  
A2  
A
35°  
B1  
B
c
A1  
β
p
E2  
D2  
Units  
INCHES*  
NOM  
44  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
.050  
1.27  
11  
Pins per Side  
Overall Height  
n1  
A
11  
.173  
.153  
.028  
.029  
.045  
.005  
.690  
.690  
.653  
.653  
.620  
.620  
.011  
.029  
.020  
5
.165  
.145  
.020  
.024  
.040  
.000  
.685  
.685  
.650  
.650  
.590  
.590  
.008  
.026  
.013  
0
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
17.40  
17.40  
16.51  
16.51  
14.99  
14.99  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
17.53  
17.53  
16.59  
16.59  
15.75  
15.75  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
A2  
A1  
A3  
CH1  
CH2  
E
.160  
.035  
.034  
.050  
.010  
.695  
.695  
.656  
.656  
.630  
.630  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
17.65  
17.65  
16.66  
16.66  
16.00  
16.00  
0.33  
0.81  
0.53  
10  
Standoff  
§
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-048  
DS21459D-page 20  
© 2006 Microchip Technology Inc.  
TC7129  
44-Lead Plastic Quad Flatpack (KW) 10x10x2.0 mm Body, 1.95/0.25 mm Lead Form (PQFP)  
E
E1  
p
D1  
D
2
1
B
n
CHAMFER VARIES  
α
c
φ
A2  
A
β
L
F
A1  
Units  
INCHES  
NOM  
MILLIMETERS  
*
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
44  
44  
.031 BSC  
0.80 BSC  
Overall Height  
A
A2  
A1  
L
-
-
.096  
.083  
-
-
2.45  
2.10  
Molded Package Thickness  
Standoff  
.077  
.010  
.029  
.079  
1.95  
2.00  
§
-
-
0.25  
0.73  
-
-
Foot Length  
.035  
.077 REF.  
3.5°  
.547 BSC  
.041  
0.88  
1.95 REF.  
3.5°  
13.90 BSC  
1.03  
Footprint  
F
φ
Foot Angle  
0°  
7°  
0°  
7°  
Overall Width  
E
D
Overall Length  
.547 BSC  
.394 BSC  
.394 BSC  
13.90 BSC  
10.00 BSC  
10.00 BSC  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E1  
D1  
c
.004  
.012  
-
-
-
-
.009  
.018  
16°  
0.11  
0.30  
-
-
-
-
0.23  
0.45  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
5°  
5°  
5°  
5°  
16°  
16°  
16°  
*
Controlling Parameter  
§
Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MO-112 AA-1  
Drawing No. C04-119  
Revised 07-21-05  
© 2006 Microchip Technology Inc.  
DS21459D-page 21  
TC7129  
NOTES:  
DS21459D-page 22  
© 2006 Microchip Technology Inc.  
TC7129  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
X
XX  
XX  
Examples:  
a) TC7129CPL:  
40-Pin PDIP  
44-Pin PQFP  
Tape and Reel  
44-Pin PLCC  
Device  
Temp.  
Pkg  
Taping  
Direction  
b) TC7129CKW713:  
c) TC7129CLW:  
Device:  
TC7129: 4-1/2 Digit Analog-to-Digital Converter  
Temperature:  
C
I
=
=
0°C to +70°C  
-25°C to +85°C  
Package:  
PL  
KW  
LW  
JL  
=
=
=
=
40-Pin PDIP  
40-Pin PQFP  
44-Pin PLCC  
40-Pin CDIP  
Taping Direction:  
713 = Standard Taping  
© 2006 Microchip Technology Inc.  
DS21459D-page 23  
TC7129  
NOTES:  
DS21459D-page 24  
© 2006 Microchip Technology Inc.  
TC7129  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2006 Microchip Technology Inc.  
DS21459D-page 25  
TC7129  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
TC7129  
DS21459D  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS21459D-page 26  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi,  
MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM,  
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select  
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,  
WiperLock and ZENA are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS21459D-page 27  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenzhen  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
02/16/06  
DS21459D-page 28  
© 2006 Microchip Technology Inc.  

相关型号:

TC7129CJL713

4-1/2 Digit Analog-to-Digital Converters with On-Chip LCD Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7129CKW

4-1/2 Digit Analog-to-Digital Converters with On-Chip LCD Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7129CKW

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TELCOM

TC7129CKW713

4-1/2 Digit Analog-to-Digital Converters with On-Chip LCD Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7129CLW

4-1/2 Digit Analog-to-Digital Converters with On-Chip LCD Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7129CLW

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TELCOM

TC7129CLW713

4-1/2 Digit Analog-to-Digital Converters with On-Chip LCD Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7129CPL

4-1/2 Digit Analog-to-Digital Converters with On-Chip LCD Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7129CPL

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER WITH ON-CHIP LCD DRIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TELCOM

TC7129CPL713

4-1/2 Digit Analog-to-Digital Converters with On-Chip LCD Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7129IJL

1-CH DUAL-SLOPE ADC, CDIP40, CERAMIC, DIP-40

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC7129IJL713

4-1/2 Digit Analog-to-Digital Converters with On-Chip LCD Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP