TC1055-5.0VCT713 [MICROCHIP]

50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown and ERROR Output; 50毫安100 mA和150毫安CMOS LDO,具有关断和错误输出
TC1055-5.0VCT713
型号: TC1055-5.0VCT713
厂家: MICROCHIP    MICROCHIP
描述:

50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown and ERROR Output
50毫安100 mA和150毫安CMOS LDO,具有关断和错误输出

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总18页 (文件大小:375K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC1054/TC1055/TC1186  
50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown  
and ERROR Output  
Features  
General Description  
• Low Ground Current for Longer Battery Life  
• Low Dropout Voltage  
The TC1054, TC1055 and TC1186 are high accuracy  
(typically ±0.5%) CMOS upgrades for older (bipolar)  
low dropout regulators. Designed specifically for  
battery-operated systems, the devices’ CMOS  
construction minimizes ground current, extending  
battery life. Total supply current is typically 50 µA at full  
load (20 to 60 times lower than in bipolar regulators).  
• Choice of 50 mA (TC1054), 100 mA (TC1055)  
and 150 mA (TC1186) Output  
• High Output Voltage Accuracy  
• Standard or Custom Output Voltages:  
- 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V,  
3.3V, 3.6V, 4.0V, 5.0V  
The devices’ key features include low noise operation,  
low dropout voltage – typically 85 mV (TC1054),  
180 mV (TC1055) and 270 mV (TC1186) at full load —  
and fast response to step changes in load. An error  
output (ERROR) is asserted when the devices are out-  
of-regulation (due to a low input voltage or excessive  
output current). ERROR can be used as a low battery  
warning or as a processor RESET signal (with the  
addition of an external RC network). Supply current is  
reduced to 0.5 µA (max), with both VOUT and ERROR  
disabled when the shutdown input is low. The devices  
incorporate both over-temperature and over-current  
protection.  
• Power-Saving Shutdown Mode  
• ERROR Output Can Be Used as a Low Battery  
Detector or Microcontroller Reset Generator  
• Overcurrent and Overtemperature Protection  
• 5-Pin SOT-23 Package  
• Pin Compatible Upgrades for Bipolar Regulators  
Applications  
• Battery Operated Systems  
• Portable Computers  
• Medical Instruments  
• Instrumentation  
The TC1054, TC1055 and TC1186 are stable with an  
output capacitor of only 1 µF and have a maximum  
output current of 50 mA, 100 mA and 150 mA,  
respectively. For higher output current regulators,  
please refer to the TC1173 (IOUT = 300 mA) data sheet  
(DS21632).  
• Cellular/GSM/PHS Phones  
• Linear Post-Regulators for SMPS  
• Pagers  
Typical Application  
Package Type  
5-Pin SOT-23  
1
2
5
VOUT  
ERROR  
VIN  
VIN  
VOUT  
VOUT  
+
TC1054  
TC1055  
TC1186  
5
4
1 µF  
TC1054  
TC1055  
TC1186  
GND  
1 MΩ  
3
3
1
2
4
SHDN ERROR  
ERROR  
VIN  
GND SHDN  
NOTE: 5-Pin SOT-23 is equivalent to the EIAJ (SC-74A)  
Shutdown Control  
(from Power Control Logic)  
© 2007 Microchip Technology Inc.  
DS21350D-page 1  
TC1054/TC1055/TC1186  
† Stresses above those listed under "Absolute Maximum  
Ratings" may cause permanent damage to the device. These  
are stress ratings only and functional operation of the device  
at these or any other conditions above those indicated in the  
operation sections of the specifications is not implied.  
Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Input Voltage ....................................................................6.5V  
Output Voltage .....................................(-0.3V) to (VIN + 0.3V)  
Power Dissipation ......................... Internally Limited (Note 6)  
Maximum Voltage on Any Pin ...................VIN +0.3V to -0.3V  
Operating Junction Temperature Range ..-40°C < TJ < 125°C  
Storage Temperature.....................................-65°C to +150°C  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, VIN = VOUT + 1V, IL = 100 µA, CL = 3.3 µF, SHDN > VIH, TA = +25°C.  
Boldface type specifications apply for junction temperatures of -40°C to +125°C.  
Parameters  
Sym  
Min  
2.7  
Typ  
Max  
6.0  
Units  
Conditions  
Input Operating Voltage  
Maximum Output Current  
VIN  
V
Note 8  
IOUTMAX  
50  
100  
150  
mA  
TC1054  
TC1055  
TC1186  
Output Voltage  
VOUT  
VR – 2.5% VR ±0.5% VR + 2.5%  
V
Note 1  
VOUT Temperature Coefficient  
TCVOUT  
20  
40  
ppm/°C Note 2  
Line Regulation  
Load Regulation:  
ΔVOUT/ΔVIN  
ΔVOUT/VOUT  
0.05  
0.35  
%
%
(VR + 1V) VIN 6V  
(Note 3)  
IL = 0.1 mA to IOUTMAX  
IL = 0.1 mA to IOUTMAX  
TC1054; TC1055  
0.5  
0.5  
2
3
TC1186  
Dropout Voltage:  
VIN-VOUT  
2
65  
85  
180  
270  
120  
250  
400  
mV  
IL = 100 µA  
IL = 20 mA  
IL = 50 mA  
IL = 100 mA  
IL = 150 mA (Note 4)  
TC1055; TC1186  
TC1186  
Supply Current  
IIN  
IINSD  
50  
0.05  
64  
80  
0.5  
µA  
µA  
dB  
mA  
SHDN = VIH, IL = 0 µA (Note 9)  
SHDN = 0V  
Shutdown Supply Current  
Power Supply Rejection Ratio  
Output Short Circuit Current  
Thermal Regulation  
PSRR  
IOUTSC  
ΔVOUT/ΔPD  
TSD  
f 1 kHz  
300  
0.04  
160  
450  
VOUT = 0V  
V/W Notes 5, 6  
Thermal Shutdown Die  
Temperature  
°C  
Thermal Shutdown Hysteresis  
ΔTSD  
10  
°C  
Note 1: VR is the regulator output voltage setting. For example: VR = 1.8V, 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.  
6
2:  
TC V  
= (VOUTMAX – VOUTMIN)x 10  
OUT  
V
x ΔT  
OUT  
3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the thermal regulation specification.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal  
value.  
5: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to ILMAX at VIN = 6V for T = 10 ms.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction-to-air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation causes the device to initiate thermal shutdown. Please see Section 5.0 “Thermal Considerations”, “Ther-  
mal Considerations”, for more details.  
7: Hysteresis voltage is referenced by VR.  
8: The minimum VIN has to justify the conditions: VIN VR + VDROPOUT and VIN 2.7V for IL = 0.1 mA to IOUTMAX  
9: Apply for junction temperatures of -40C to +85C.  
.
DS21350D-page 2  
© 2007 Microchip Technology Inc.  
TC1054/TC1055/TC1186  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, VIN = VOUT + 1V, IL = 100 µA, CL = 3.3 µF, SHDN > VIH, TA = +25°C.  
Boldface type specifications apply for junction temperatures of -40°C to +125°C.  
Parameters  
Output Noise  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
eN  
260  
nV/Hz IL = IOUTMAX  
SHDN Input  
SHDN Input High Threshold  
SHDN Input Low Threshold  
ERROR Output  
VIH  
VIL  
45  
%VIN VIN = 2.5V to 6.5V  
%VIN VIN = 2.5V to 6.5V  
15  
Minimum VIN Operating Voltage  
Output Logic Low Voltage  
ERROR Threshold Voltage  
ERROR Positive Hysteresis  
VOUT to ERROR Delay  
VINMIN  
VOL  
1.0  
400  
V
mV  
V
1 mA Flows to ERROR  
See Figure 4-2  
VTH  
0.95 x VR  
50  
VHYS  
tDELAY  
mV  
ms  
Note 7  
2.5  
VOUT falling from VR to VR - 10%  
Note 1:  
2:  
V
TC V  
R is the regulator output voltage setting. For example: VR = 1.8V, 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.  
6
= (VOUTMAX – VOUTMIN)x 10  
OUT  
V
x ΔT  
OUT  
3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the thermal regulation specification.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal  
value.  
5: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to ILMAX at VIN = 6V for T = 10 ms.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction-to-air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation causes the device to initiate thermal shutdown. Please see Section 5.0 “Thermal Considerations”, “Ther-  
mal Considerations”, for more details.  
7: Hysteresis voltage is referenced by VR.  
8: The minimum VIN has to justify the conditions: VIN VR + VDROPOUT and VIN 2.7V for IL = 0.1 mA to IOUTMAX  
9: Apply for junction temperatures of -40C to +85C.  
.
© 2007 Microchip Technology Inc.  
DS21350D-page 3  
TC1054/TC1055/TC1186  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VIN = VOUT + 1V, IL = 100 µA, CL = 3.3 µF, SHDN > VIH, TA = +25°C.  
0.020  
0.018  
0.016  
0.014  
0.012  
0.010  
0.008  
0.006  
0.004  
0.002  
0.000  
0.100  
0.090  
0.080  
0.070  
0.060  
0.050  
0.040  
0.030  
0.020  
0.010  
0.000  
I
= 10 mA  
I
= 50 mA  
LOAD  
LOAD  
C
C
= 1 μF  
C
C
= 1 μF  
IN  
OUT  
IN  
OUT  
= 1 μF  
= 1 μF  
-40  
-20  
0
20  
50  
70  
125  
-40  
-20  
0
20  
50  
70  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 2-1:  
Temperature (I  
Dropout Voltage vs.  
= 10 mA).  
FIGURE 2-4:  
Temperature (I  
Dropout Voltage vs.  
= 50 mA).  
LOAD  
LOAD  
0.300  
0.200  
I
LOAD  
= 100 mA  
I
= 150 mA  
0.180  
LOAD  
0.250  
0.200  
0.150  
0.100  
0.050  
0.160  
0.140  
0.120  
0.100  
0.080  
0.060  
0.040  
C
C
= 1 μF  
C
C
= 1 μF  
IN  
OUT  
IN  
OUT  
0.020  
0.000  
= 1 μF  
= 1 μF  
0.000  
-40  
-20  
0
20  
50  
70  
125  
-40  
-20  
0
20  
50  
70  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 2-2:  
Temperature (I  
Dropout Voltage vs.  
= 100 mA).  
FIGURE 2-5:  
Temperature (I  
Dropout Voltage vs.  
= 150 mA).  
LOAD  
LOAD  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 100 mA  
LOAD  
I
= 10 mA  
LOAD  
C
C
= 1 μF  
IN  
OUT  
C
IN  
OUT  
= 1 μF  
= 1 μF  
C
= 1 μF  
0 0.5 1 1.5  
2
2.5  
3
3.5 4 4.5  
(V)  
5 5.5 6 6.5 7 7.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5 4 4.5  
(V)  
5
5.5 6 6.5  
7
7.5  
V
IN  
V
IN  
FIGURE 2-3:  
(I = 10 mA).  
Ground Current vs. V  
FIGURE 2-6:  
(I = 100 mA).  
Ground Current vs. V  
IN  
IN  
LOAD  
LOAD  
DS21350D-page 4  
© 2007 Microchip Technology Inc.  
TC1054/TC1055/TC1186  
Note: Unless otherwise indicated, VIN = VOUT + 1V, IL = 100 µA, CL = 3.3 µF, SHDN > VIH, TA = +25°C.  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.5  
3
I
= 0  
I
= 150 mA  
LOAD  
LOAD  
2.5  
2
1.5  
1
0.5  
0
C
C
= 1 μF  
IN  
OUT  
C
C
= 1 μF  
IN  
OUT  
= 1 μF  
= 1 μF  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
(V)  
4
4.5  
5
5.5  
6
6.5  
7
0 0.5  
1
1.5  
2
2.5  
3
3.5 4 4.5  
(V)  
5 5.5 6 6.5 7 7.5  
V
V
IN  
IN  
FIGURE 2-7:  
Ground Current vs. V  
FIGURE 2-10:  
(I = 0 mA).  
V
vs. V  
IN  
IN  
OUT  
(I  
= 150 mA).  
LOAD  
LOAD  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.320  
3.315  
I
= 100 mA  
I
= 10 mA  
LOAD  
LOAD  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
C
C
V
= 1 μF  
IN  
OUT  
IN  
= 1 μF  
C
C
= 1 μF  
= 4.3V  
IN  
OUT  
= 1 μF  
-40  
-20  
-10  
0
20  
40  
85  
125  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
(V)  
4
4.5  
5
5.5  
6
6.5  
7
V
TEMPERATURE (°C)  
IN  
FIGURE 2-8:  
(I = 100 mA).  
V
vs. V  
FIGURE 2-11:  
Temperature (I  
Output Voltage (3.3V) vs.  
= 10 mA).  
OUT  
IN  
LOAD  
LOAD  
3.290  
I
= 150 mA  
5.025  
LOAD  
3.288  
3.286  
3.284  
3.282  
3.280  
3.278  
3.276  
3.274  
I
= 10 mA  
LOAD  
5.020  
5.015  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
V
= 6V  
IN  
C
C
V
= 1 μF  
IN  
OUT  
IN  
C
C
= 1 μF  
IN  
OUT  
= 1 μF  
= 1 μF  
= 4.3V  
-40  
-20  
-10  
0
20  
40  
85  
125  
-40  
-20  
-10  
0
20  
40  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 2-9:  
(I = 150 mA).  
V
vs. V  
FIGURE 2-12:  
Temperature (I  
Output Voltage (5V) vs.  
= 10 mA).  
LOAD  
OUT  
IN  
LOAD  
© 2007 Microchip Technology Inc.  
DS21350D-page 5  
TC1054/TC1055/TC1186  
Note: Unless otherwise indicated, VIN = VOUT + 1V, IL = 100 µA, CL = 3.3 µF, SHDN > VIH, TA = +25°C.  
10.0  
R
C
C
= 50 Ω  
LOAD  
= 1 μF  
IN  
4.994  
OUT  
I
= 150 mA  
4.992  
4.990  
4.988  
4.986  
4.984  
4.982  
4.980  
4.978  
4.976  
4.974  
LOAD  
= 1 μF  
1.0  
V
C
C
= 6V  
0.1  
0.0  
IN  
IN  
OUT  
= 1 μF  
= 1 μF  
-40  
-20  
-10  
0
20  
40  
85  
125  
TEMPERATURE (°C)  
0.01K 0.1K  
1K  
10K 100K 1000K  
FREQUENCY (Hz)  
FIGURE 2-13:  
Temperature (I  
Output Voltage (5V) vs.  
= 10 mA).  
FIGURE 2-16:  
Output Noise vs. Frequency.  
LOAD  
1000  
C
= 1 μF  
OUT  
to 10 μF  
70  
I
= 10 mA  
LOAD  
60  
50  
40  
30  
20  
10  
0
100  
10  
1
Stable Region  
V
C
C
= 6V  
IN  
IN  
OUT  
0.1  
= 1 μF  
= 1 μF  
0.01  
-40  
-20  
-10  
0
20  
40  
85  
125  
10  
0
20 30 40  
50 60 70 80 90 100  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
FIGURE 2-17:  
Stability Region vs. Load  
FIGURE 2-14:  
GND Current vs.  
Current.  
Temperature (I  
= 10 mA).  
LOAD  
80  
I
= 150 mA  
LOAD  
70  
60  
50  
40  
30  
20  
10  
0
VSHDN  
VOUT  
V
C
C
= 6V  
IN  
IN  
OUT  
= 1 μF  
= 1 μF  
-40  
-20  
-10  
0
20  
40  
85  
125  
TEMPERATURE (°C)  
Conditions: CIN = 1 µF, COUT = 1 µF,  
LOAD = 100 mA, VIN = 4.3V, Temp = +25°C,  
Fall Time = 184 µs  
I
FIGURE 2-15:  
Temperature (I  
GND Current vs.  
= 150 mA).  
LOAD  
FIGURE 2-18:  
Measure Rise Time of 3.3V  
LDO.  
DS21350D-page 6  
© 2007 Microchip Technology Inc.  
TC1054/TC1055/TC1186  
Note: Unless otherwise indicated, VIN = VOUT + 1V, IL = 100 µA, CL = 3.3 µF, SHDN > VIH, TA = +25°C.  
VSHDN  
VSHDN  
VOUT  
VOUT  
Conditions: CIN = 1 µF, COUT = 1 µF,  
ILOAD = 100 mA, VIN = 6V, Temp = +25°C,  
Fall Time = 192 µs  
Conditions: CIN = 1 µF, COUT = 1 µF,  
ILOAD = 100 mA, VIN = 4.3V, Temp = +25°C,  
Fall Time = 52 µs  
FIGURE 2-19:  
Measure Rise Time of 5.0V  
FIGURE 2-21:  
Measure Fall Time of 3.3V  
LDO.  
LDO.  
VSHDN  
VOUT  
VOUT  
Conditions: VIN = 6V, CIN = 0 µF, COUT = 1 µF  
Conditions: CIN = 1 µF, COUT = 1 µF,  
ILOAD = 100 mA, VIN = 6V, Temp = +25°C,  
Fall Time = 88 µs  
ILOAD was increased until temperature of die  
reached about 160°C, at which time integrated ther-  
mal protection circuitry shuts the regulator off when  
die temperature exceeds approximately 160°C. The  
regulator remains off until die temperature drops to  
approximately 150°C.  
FIGURE 2-22:  
Measure Fall Time of 5.0V  
LDO.  
FIGURE 2-20:  
Thermal Shutdown  
Response of 5.0V LDO.  
© 2007 Microchip Technology Inc.  
DS21350D-page 7  
TC1054/TC1055/TC1186  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Pin No.  
PIN FUNCTION TABLE  
Symbol  
Description  
1
2
3
4
VIN  
Unregulated supply input  
GND  
Ground terminal  
SHDN  
ERROR  
Shutdown control input  
Out-of-Regulation Flag  
(Open-drain output)  
5
VOUT  
Regulated voltage output  
3.1  
Unregulated Supply Input (VIN)  
3.3  
Shutdown Control Input (SHDN)  
Connect unregulated input supply to the VIN pin. If  
there is a large distance between the input supply and  
the LDO regulator, some input capacitance is  
necessary for proper operation. A 1 µF capacitor  
connected from VIN to ground is recommended for  
most applications.  
The regulator is fully enabled when a logic-high is  
applied to SHDN. The regulator enters shutdown when  
a logic-low is applied to SHDN. During shutdown,  
output voltage falls to zero, ERROR is open-circuited  
and supply current is reduced to 0.5 µA (max).  
3.4  
Out Of Regulation Flag (ERROR)  
3.2  
Ground Terminal (GND)  
ERROR goes low when VOUT is out-of-tolerance by  
approximately -5%.  
Connect the unregulated input supply ground return to  
GND. Also connect the negative side of the 1 µF typical  
input decoupling capacitor close to GND and the  
negative side of the output capacitor COUT to GND.  
3.5  
Regulated Voltage Output (VOUT)  
Connect the output load to VOUT of the LDO. Also  
connect the positive side of the LDO output capacitor  
as close as possible to the VOUT pin.  
DS21350D-page 8  
© 2007 Microchip Technology Inc.  
TC1054/TC1055/TC1186  
4.1  
ERROR Open-Drain Output  
4.0  
DETAILED DESCRIPTION  
ERROR is driven low whenever VOUT falls out of  
regulation by more than -5% (typical). This condition  
may be caused by low input voltage, output current  
limiting or thermal limiting. The ERROR threshold is 5%  
below rated VOUT, regardless of the programmed  
output voltage value (e.g. ERROR = VOL at 4.75V (typ.)  
for a 5.0V regulator and 2.85V (typ.) for a 3.0V  
regulator). ERROR output operation is shown in  
Figure 4-2.  
The TC1054, TC1055 and TC1186 are precision fixed  
output voltage regulators (If an adjustable version is  
desired, please see the TC1070/TC1071/TC1187 data  
sheet (DS21353)). Unlike bipolar regulators, the  
TC1054, TC1055 and TC1186 supply current does not  
increase with load current.  
Figure 4-1 shows a typical application circuit, where the  
regulator is enabled any time the shutdown input  
(SHDN) is at or above VIH, and shutdown (disabled)  
when SHDN is at or below VIL. SHDN may be  
controlled by a CMOS logic gate or I/O port of a  
microcontroller. If the SHDN input is not required, it  
should be connected directly to the input supply. While  
in shutdown, supply current decreases to 0.05 µA  
(typical), VOUT falls to zero volts, and ERROR is open-  
circuited.  
Note that ERROR is active when VOUT falls to VTH and  
inactive when VOUT rises above VTH by VHYS  
.
As shown in Figure 4-1, ERROR can be used either as  
a battery low flag or as a processor RESET signal (with  
the addition of timing capacitor C2). R1 x C2 should be  
chosen to maintain ERROR below VIH of the processor  
RESET input for at least 200 ms to allow time for the  
system to stabilize. Pull-up resistor R1 can be tied to  
VOUT, VIN or any other voltage less than (VIN + 0.3V).  
V
V
V
OUT  
IN  
OUT  
+
1 µF  
+
1 µF  
TC1054  
TC1055  
TC1186  
+
C
1
Battery  
V
OUT  
GND  
HYSTERESIS (V )  
H
V
TH  
V+  
SHDN ERROR  
R
1MW  
1
t
DELAY  
ERROR  
Shutdown Control  
(to CMOS Logic or Tie  
BATTLOW  
or RESET  
to V if unused)  
IN  
V
IH  
C
Required Only  
0.2 µF  
2
C
if ERROR is used as a  
2
V
OL  
Processor RESET Signal  
(See Text)  
FIGURE 4-2:  
Error Output Operation.  
FIGURE 4-1:  
Typical Application Circuit.  
4.2  
Output Capacitor  
A 1 µF (minimum) capacitor from VOUT to ground is  
recommended. The output capacitor should have an  
effective series resistance greater than 0.1Ω and less  
than 5.0Ω, with a resonant frequency above 1 MHz. A  
1 µF capacitor should be connected from VIN to GND if  
there is more than 10 inches of wire between the  
regulator and the AC filter capacitor or if a battery is  
used as the power source. Aluminum electrolytic or  
tantalum capacitor types can be used (Since many  
aluminum electrolytic capacitors freeze at approxi-  
mately -30°C, solid tantalums are recommended for  
applications operating below -25°C.). When operating  
from sources other than batteries, supply-noise  
rejection and transient response can be improved by  
increasing the value of the input and output capacitors  
and employing passive filtering techniques.  
© 2007 Microchip Technology Inc.  
DS21350D-page 9  
TC1054/TC1055/TC1186  
Equation 5-1 can be used in conjunction with  
Equation 5-2 to ensure regulator thermal operation is  
within limits.  
5.0  
5.1  
THERMAL CONSIDERATIONS  
Thermal Shutdown  
For example:  
Given:  
Integrated thermal protection circuitry shuts the  
regulator off when die temperature exceeds 160°C.  
The regulator remains off until the die temperature  
drops to approximately 150°C.  
VINMAX  
VOUTMIN  
ILOADMAX  
TJMAX  
= 3.0V +5%  
= 2.7V – 2.5%  
= 40 mA  
5.2  
Power Dissipation  
= +125°C  
The amount of power the regulator dissipates is  
primarily a function of input voltage, output voltage and  
output current. The following equation is used to  
calculate worst case actual power dissipation:  
TAMAX  
= +55°C  
Find:  
1. Actual power dissipation  
2. Maximum allowable dissipation  
Actual power dissipation:  
PD ≈ (VINMAX VOUTMIN)ILOADMAX  
EQUATION 5-1:  
PD ≈ (VINMAX VOUTMIN)ILOADMAX  
= [(3.0 × 1.05) (2.7 × 0.975)]40 × 10-3  
Where:  
= 20.7mW  
PD = Worst case actual power dissipation  
= Maximum voltage on VIN  
VINMAX  
VOUTMIN = Minimum regulator output voltage  
ILOADMAX = Maximum output (load) current  
Maximum allowable power dissipation:  
(TJMAX TAMAX  
)
PDMAX = -------------------------------------------  
θJA  
The  
maximum  
allowable  
power  
dissipation  
(125 – 55)  
220  
= 318mW  
(Equation 5-2) is a function of the maximum ambient  
temperature (TAMAX), the maximum allowable die  
temperature (TJMAX) and the thermal resistance from  
junction-to-air (θJA). The 5-Pin SOT-23 package has a  
= -------------------------  
θ
JA of approximately 220°C/Watt.  
In this example, the TC1054 dissipates a maximum of  
20.7 mW; below the allowable limit of 318 mW. In a  
similar manner, Equation 5-1 and Equation 5-2 can be  
used to calculate maximum current and/or input  
voltage limits.  
EQUATION 5-2:  
(TJMAX TAMAX  
)
PDMAX = -------------------------------------------  
θJA  
5.3  
Layout Considerations  
Where all terms are previously defined.  
The primary path of heat conduction out of the package  
is via the package leads. Therefore, layouts having a  
ground plane, wide traces at the pads and wide power  
supply bus lines combine to lower θJA and, therefore,  
increase the maximum allowable power dissipation  
limit.  
DS21350D-page 10  
© 2007 Microchip Technology Inc.  
TC1054/TC1055/TC1186  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Pin SOT-23  
5
4
1
2
3 4  
1
3
2
1
2
represents part number code +  
temperature range and voltage  
&
TC1054  
Code  
TC1055  
Code  
TC1186  
Code  
(V)  
1.8  
2.5  
2.6  
2.7  
2.8  
2.85  
3.0  
3.3  
3.6  
4.0  
5.0  
CY  
C1  
CT  
C2  
CZ  
C8  
C3  
C4  
C9  
C0  
C6  
DY  
D1  
DT  
D2  
DZ  
D8  
D3  
D4  
D9  
D0  
D6  
PY  
P1  
PV  
P2  
PZ  
P8  
P3  
P5  
P9  
P0  
P7  
3
represents year and quarter code  
represents lot ID number  
4
© 2007 Microchip Technology Inc.  
DS21350D-page 11  
TC1054/TC1055/TC1186  
5-Lead Plastic Small Outline Transistor () [SOT-23]  
CT  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Lead Pitch  
N
e
5
0.95 BSC  
Outside Lead Pitch  
Overall Height  
e1  
A
1.90 BSC  
0.90  
0.89  
0.00  
2.20  
1.30  
2.70  
0.10  
0.35  
0°  
1.45  
1.30  
0.15  
3.20  
1.80  
3.10  
0.60  
0.80  
30°  
Molded Package Thickness  
Standoff  
A2  
A1  
E
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
L
Footprint  
L1  
φ
Foot Angle  
Lead Thickness  
Lead Width  
c
0.08  
0.20  
0.26  
0.51  
b
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-091B  
DS21350D-page 12  
© 2007 Microchip Technology Inc.  
TC1054/TC1055/TC1186  
APPENDIX A: REVISION HISTORY  
Revision D (February 2007)  
• Corrected standard output voltages on page 1  
and in “Product Identification System”.  
• Added TDELAY parameter in DC Characteristics  
table in “Electrical Characteristics”.  
• Changes to Figure 4-2.  
“Packaging Information”: Corrected SOT-23  
Packaging Informaton.  
Revision C (March 2003)  
• Undocumented changes.  
Revision B (May 2002)  
• Undocumented changes.  
Revision A (March 2002)  
• Original Release of this Document.  
© 2007 Microchip Technology Inc.  
DS21350D-page 13  
TC1054/TC1055/TC1186  
NOTES:  
DS21350D-page 14  
© 2007 Microchip Technology Inc.  
TC1054/TC1055/TC1186  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X.X  
XXXXX  
X
a)  
b)  
c)  
d)  
e)  
f)  
TC1054-1.8VCT713: 1.8V LDO Regulator  
TC1054-2.5VCT713: 2.5V LDO Regulator  
TC1054-2.6VCT713: 2.6V LDO Regulator  
TC1054-2.7VCT713: 2.7V LDO Regulator  
TC1054-2.8VCT713: 2.8V LDO Regulator  
TC1054-2.85VCT713: 2.85V LDO Regulator  
TC1054-3.0VCT713: 3.0V LDO Regulator  
TC1054-3.3VCT713: 3.3V LDO Regulator  
TC1054-3.6VCT713: 3.6V LDO Regulator  
TC1054-4.0VCT713: 4.0V LDO Regulator  
TC1054-5.0VCT713: 5.0V LDO Regulator  
Output  
Voltage  
Package  
Temperature  
Range  
Device:  
TC1054: 50 mA LDO with Shutdown & Error output  
TC1055: 100 mA LDO with Shutdown & Error output  
TC1186: 150 mA LDO with Shutdown & Error output  
g)  
h)  
i)  
Output Voltage *:  
1.8  
2.5  
2.6  
2.7  
2.8  
=
=
=
=
=
1.8V “Standard”  
2.5V “Standard”  
2.6V “Standard”  
2.7V “Standard”  
2.8V “Standard”  
2.85V “Standard”  
3.0V “Standard”  
3.3V “Standard”  
3.6V “Standard”  
4.0V “Standard”  
5.0V “Standard”  
j)  
k)  
a)  
b)  
c)  
d)  
e)  
f)  
TC1055-1.8VCT713: 1.8V LDO Regulator  
TC1055-2.5VCT713: 2.5V LDO Regulator  
TC1055-2.6VCT713: 2.6V LDO Regulator  
TC1055-2.7VCT713: 2.7V LDO Regulator  
TC1055-2.8VCT713: 2.8V LDO Regulator  
TC1055-2.85VCT713: 2.85V LDO Regulator  
TC1055-3.0VCT713: 3.0V LDO Regulator  
TC1055-3.3VCT713: 3.3V LDO Regulator  
TC1055-3.6VCT713: 3.6V LDO Regulator  
TC1055-4.0VCT713: 4.0V LDO Regulator  
TC1055-5.0VCT713: 5.0V LDO Regulator  
2.85 =  
3.0  
3.3  
3.6  
4.0  
5.0  
=
=
=
=
=
*Contact factory for other output voltage options.  
g)  
h)  
i)  
Temperature Range:  
Package:  
V
= -40°C to +125°C  
j)  
CT713 = 5L SOT-23, Tape and Reel  
k)  
a)  
b)  
c)  
d)  
e)  
f)  
TC1186-1.8VCT713: 1.8V LDO Regulator  
TC1186-2.5VCT713: 2.5V LDO Regulator  
TC1186-2.6VCT713: 2.6V LDO Regulator  
TC1186-2.7VCT713: 2.7V LDO Regulator  
TC1186-2.8VCT713: 2.8V LDO Regulator  
TC1186-2.85VCT713: 2.85V LDO Regulator  
TC1186-3.0VCT713: 3.0V LDO Regulator  
TC1186-3.3VCT713: 3.3V LDO Regulator  
TC1186-3.6VCT713: 3.6V LDO Regulator  
TC1186-4.0VCT713: 4.0V LDO Regulator  
TC1186-5.0VCT713: 5.0V LDO Regulator  
g)  
h)  
i)  
j)  
k)  
© 2007 Microchip Technology Inc.  
DS21350D-page 15  
TC1054/TC1055/TC1186  
NOTES:  
DS21350D-page 16  
© 2007 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2007 Microchip Technology Inc.  
DS21350D-page 17  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS21350D-page 18  
© 2007 Microchip Technology Inc.  

相关型号:

TC1055-5.0VCTRT

5 V FIXED POSITIVE LDO REGULATOR, 0.25 V DROPOUT, PDSO5, SOT-23A, 5 PIN
MICROCHIP

TC105503ECT

PFM/PWM Step-Down DC/DC Controller
MICROCHIP

TC105503ECTTR

暂无描述
MICROCHIP

TC105527ECT713

2.7 V FIXED POSITIVE LDO REGULATOR, 0.25 V DROPOUT, PDSO5, EIAJ, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC105530ECT

Fixed Positive LDO Regulator, 3V, 0.25V Dropout, CMOS, PDSO5, SOT-23A, 5 PIN
MICROCHIP

TC105530ECT713

3 V FIXED POSITIVE LDO REGULATOR, 0.25 V DROPOUT, PDSO5, EIAJ, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC105533ECT713

Fixed Positive LDO Regulator, 3.3V, 0.25V Dropout, CMOS, PDSO5, SOT-23A, 5 PIN
MICROCHIP

TC105533ECT723

3.3 V FIXED POSITIVE LDO REGULATOR, 0.25 V DROPOUT, PDSO5, EIAJ, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC105550ECT

Fixed Positive LDO Regulator, 5V, 0.25V Dropout, CMOS, PDSO5, SOT-23A, 5 PIN
MICROCHIP

TC105550ECT723

Fixed Positive LDO Regulator, 5V, 0.25V Dropout, CMOS, PDSO5, SOT-23A, 5 PIN
MICROCHIP

TC105K04A

Tantalum Capacitors with Solid Electrolyte
MERITEK

TC105K04B

Tantalum Capacitors with Solid Electrolyte
MERITEK