PIC18F87J90 [MICROCHIP]

64/80-Pin, High-Performance Microcontrollers with LCD Driver and nanoWatt Technology; 八十〇分之六十四引脚,高性能微控制器与LCD驱动器和纳瓦技术
PIC18F87J90
型号: PIC18F87J90
厂家: MICROCHIP    MICROCHIP
描述:

64/80-Pin, High-Performance Microcontrollers with LCD Driver and nanoWatt Technology
八十〇分之六十四引脚,高性能微控制器与LCD驱动器和纳瓦技术

驱动器 微控制器 CD
文件: 总450页 (文件大小:3787K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18F87J90 Family  
Data Sheet  
64/80-Pin, High-Performance  
Microcontrollers with LCD Driver  
and nanoWatt Technology  
2010 Microchip Technology Inc.  
DS39933D  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
32  
PICtail, PIC logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS39933D-page 2  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
64/80-Pin, High-Performance Microcontrollers with  
LCD Driver and nanoWatt Technology  
LCD Driver and Keypad Interface  
Features:  
• Direct LCD Panel Drive Capability:  
- Can drive LCD panel while in Sleep mode  
• Up to 48 Segments and 192 Pixels,  
Software Selectable  
• Programmable LCD Timing module:  
- Multiple LCD timing sources available  
- Up to four commons: static, 1/2, 1/3 or  
1/4 multiplex  
Peripheral Highlights:  
• High-Current Sink/Source 25 mA/25 mA  
(PORTB and PORTC)  
• Up to Four External Interrupts  
• Four 8-Bit/16-Bit Timer/Counter modules  
• Two Capture/Compare/PWM (CCP) modules  
• Master Synchronous Serial Port (MSSP) module  
with Two Modes of Operation:  
- 3-Wire/4-Wire SPI (supports all four SPI modes)  
- I2C™ Master and Slave mode  
- Static, 1/2 or 1/3 bias configuration  
• On-Chip LCD Boost Voltage Regulator for  
Contrast Control  
• One Addressable USART module  
• One Enhanced Addressable USART module:  
- LIN/J2602 support  
• Charge Time Measurement Unit (CTMU) for  
Capacitive Touch Sensing  
- Auto-wake-up on Start bit and Break character  
- Auto-Baud Detect (ABD)  
• ADC for Resistive Touch Sensing  
• 10-Bit, up to 12-Channel A/D Converter:  
- Auto-acquisition  
Low-Power Features:  
• Power-Managed modes:  
- Run: CPU On, Peripherals On  
- Idle: CPU Off, Peripherals On  
- Sleep: CPU Off, Peripherals Off  
• Two-Speed Oscillator Start-up  
- Conversion available during Sleep  
• Two Analog Comparators  
• Programmable Reference Voltage for Comparators  
• Hardware Real-Time Clock and Calendar (RTCC)  
with Clock, Calendar and Alarm Functions  
• Charge Time Measurement Unit (CTMU):  
- Capacitance measurement  
Flexible Oscillator Structure:  
- Time measurement with 1 ns typical resolution  
• Two Crystal modes, 4-25 MHz  
• Two External Clock modes, up to 48 MHz  
• 4x Phase Lock Loop (PLL)  
• Internal Oscillator Block with PLL:  
- Eight user-selectable frequencies from  
31.25 kHz to 8 MHz  
• Secondary Oscillator using Timer1 at 32 kHz  
• Fail-Safe Clock Monitor:  
- Allows for safe shutdown if peripheral clock fails  
Special Microcontroller Features:  
• 10,000 Erase/Write Cycle Flash Program  
Memory, Typical  
• Flash Retention 20 Years, Minimum  
• Self-Programmable under Software Control  
• Word Write Capability for Flash Program Memory  
for Data EEPROM Emulators  
MSSP  
Flash  
Program  
Memory Memory  
(Bytes)  
SRAM  
Data  
LCD  
(Pixels)  
Device  
I/O  
CCP  
Master  
SPI  
2
I C™  
(Bytes)  
PIC18F66J90  
PIC18F67J90  
PIC18F86J90  
PIC18F87J90  
64K  
128K  
64K  
3,923  
3,923  
3,923  
3,923  
51  
51  
67  
67  
132  
132  
192  
192  
1/3  
1/3  
1/3  
1/3  
2
2
2
2
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1/1  
1/1  
1/1  
1/1  
12  
12  
12  
12  
2
2
2
2
Yes Yes Yes  
Yes Yes Yes  
Yes Yes Yes  
Yes Yes Yes  
128K  
2010 Microchip Technology Inc.  
DS39933D-page 3  
PIC18F87J90 FAMILY  
• In-Circuit Serial Programming™ (ICSP™) via  
Two Pins  
Special Microcontroller Features  
(Continued):  
• In-Circuit Debug via Two Pins  
• Priority Levels for Interrupts  
• Operating Voltage Range: 2.0V to 3.6V  
• 5.5V Tolerant Input (digital pins only)  
• 8 x 8 Single-Cycle Hardware Multiplier  
• Extended Watchdog Timer (WDT):  
- Programmable period from 4 ms to 131s  
• Selectable Open-Drain Configuration for Serial  
Communication and CCP Pins for Driving Outputs  
up to 5V  
• On-Chip 2.5V Regulator  
DS39933D-page 4  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Pin Diagrams – PIC18F6XJ90  
Pins are up to 5.5V tolerant.  
64-Pin TQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51  
50 49  
RB0/INT0/SEG30  
RB1/INT1/SEG8  
RB2/INT2/SEG9/CTED1  
RB3/INT3/SEG10/CTED2  
RB4/KBI0/SEG11  
RB5/KBI1/SEG29  
RB6/KBI2/PGC  
RE1/LCDBIAS2  
1
RE0/LCDBIAS1  
2
RG0/LCDBIAS0  
3
RG1/TX2/CK2  
4
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RG2/RX2/DT2/VLCAP1  
5
RG3/VLCAP2  
6
MCLR  
7
PIC18F66J90  
PIC18F67J90  
RG4/SEG26/RTCC  
VSS  
VSS  
8
OSC2/CLKO/RA6  
OSC1/CLKI/RA7  
VDD  
9
VDDCORE/VCAP  
10  
11  
12  
13  
14  
15  
16  
RF7/AN5/SS/SEG25  
RF6/AN11/SEG24/C1INA  
RF5/AN10/CVREF/SEG23/C1INB  
RF4/AN9/SEG22/C2INA  
RF3/AN8/SEG21/C2INB  
RF2/AN7/C1OUT/SEG20  
RB7/KBI3/PGD  
RC5/SDO/SEG12  
RC4/SDI/SDA/SEG16  
RC3/SCK/SCL/SEG17  
RC2/CCP1/SEG13  
17 18 19 20 21 22 23 24 25 26 27 28  
29 30 31 32  
Note 1: The CCP2 pin placement depends on the CCP2MX bit setting.  
2010 Microchip Technology Inc.  
DS39933D-page 5  
PIC18F87J90 FAMILY  
Pin Diagrams – PIC18F8XJ90  
80-Pin TQFP  
Pins are up to 5.5V tolerant.  
80 79 78  
77 76 75 74 73 72 71 70 69 68 67 66 65  
64 63 62 61  
RH2/SEG45  
RH3/SEG44  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
RJ2/SEG34  
2
RJ3/SEG35  
3
RE1/LCDBIAS2  
RE0/LCDBIAS1  
RG0/LCDBIAS0  
RG1/TX2/CK2  
RG2/RX2/DT2/VLCAP1  
RG3/VLCAP2  
RB0/INT0/SEG30  
RB1/INT1/SEG8  
RB2/INT2/SEG9/CTED1  
RB3/INT3/SEG10/CTED2  
RB4/KBI0/SEG11  
RB5/KBI1/SEG29  
RB6/KBI2/PGC  
VSS  
4
5
6
7
8
MCLR  
9
PIC18F86J90  
PIC18F87J90  
RG4/SEG26/RTCC  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
OSC2/CLKO/RA6  
OSC1/CLKI/RA7  
VDD  
VDDCORE/VCAP  
RF7/AN5/SS/SEG25  
RF6/AN11/SEG24/C1INA  
RF5/AN10/CVREF/SEG23/C1INB  
RF4/AN9/SEG22/C2INA  
RF3/AN8/SEG21/C2INB  
RF2/AN7/C1OUT/SEG20  
RH7/SEG43  
RB7/KBI3/PGD  
RC5/SDO/SEG12  
RC4/SDI/SDA/SEG16  
RC3/SCK/SCL/SEG17  
RC2/CCP1/SEG13  
RJ7/SEG36  
RJ6/SEG37  
RH6/SEG42  
41  
40  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  
Note 1: The CCP2 pin placement depends on the CCP2MX bit setting.  
DS39933D-page 6  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 9  
2.0 Guidelines for Getting Started with PIC18FJ Microcontrollers ................................................................................................... 31  
3.0 Oscillator Configurations ............................................................................................................................................................ 35  
4.0 Power-Managed Modes ............................................................................................................................................................. 45  
5.0 Reset.......................................................................................................................................................................................... 53  
6.0 Memory Organization................................................................................................................................................................. 65  
7.0 Flash Program Memory.............................................................................................................................................................. 89  
8.0 8 x 8 Hardware Multiplier............................................................................................................................................................ 99  
9.0 Interrupts .................................................................................................................................................................................. 101  
10.0 I/O Ports ................................................................................................................................................................................... 117  
11.0 Timer0 Module ......................................................................................................................................................................... 139  
12.0 Timer1 Module ......................................................................................................................................................................... 143  
13.0 Timer2 Module ......................................................................................................................................................................... 149  
14.0 Timer3 Module ......................................................................................................................................................................... 151  
15.0 Real-Time Clock and Calendar (RTCC)................................................................................................................................... 155  
16.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 173  
17.0 Liquid Crystal Display (LCD) Driver Module............................................................................................................................. 183  
18.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 211  
19.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)............................................................... 255  
20.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) ........................................................... 275  
21.0 10-Bit Analog-to-Digital Converter (A/D) Module ..................................................................................................................... 289  
22.0 Comparator Module.................................................................................................................................................................. 299  
23.0 Comparator Voltage Reference Module................................................................................................................................... 305  
24.0 Charge Time Measurement Unit (CTMU) ................................................................................................................................ 309  
25.0 Special Features of the CPU.................................................................................................................................................... 325  
26.0 Instruction Set Summary.......................................................................................................................................................... 339  
27.0 Development Support............................................................................................................................................................... 389  
28.0 Electrical Characteristics.......................................................................................................................................................... 393  
29.0 Packaging Information.............................................................................................................................................................. 427  
Appendix A: Revision History............................................................................................................................................................. 433  
Appendix B: Migration From PIC18F85J90 to PIC18F87J90 ............................................................................................................ 433  
The Microchip Web Site..................................................................................................................................................................... 447  
Customer Change Notification Service .............................................................................................................................................. 447  
Customer Support.............................................................................................................................................................................. 447  
Reader Response.............................................................................................................................................................................. 448  
Product Identification System ............................................................................................................................................................ 449  
2010 Microchip Technology Inc.  
DS39933D-page 7  
PIC18F87J90 FAMILY  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS39933D-page 8  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The internal oscillator block provides a stable reference  
source that gives the family additional features for  
robust operation:  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information for  
the following devices:  
Fail-Safe Clock Monitor: This option constantly  
monitors the main clock source against a reference  
signal provided by the internal oscillator. If a clock  
failure occurs, the controller is switched to the  
internal oscillator, allowing for continued low-speed  
operation or a safe application shutdown.  
• PIC18F66J90  
• PIC18F67J90  
• PIC18F86J90  
• PIC18F87J90  
This family combines the traditional advantages of all  
PIC18 microcontrollers – namely, high computational  
performance and a rich feature set – with a versatile,  
on-chip LCD driver, while maintaining an extremely  
competitive price point. These features make the  
PIC18F87J90 family  
high-performance applications where price is a primary  
consideration.  
Two-Speed Start-up: This option allows the  
internal oscillator to serve as the clock source  
from Power-on Reset, or wake-up from Sleep  
mode, until the primary clock source is available.  
a logical choice for many  
1.1.3  
MEMORY OPTIONS  
The PIC18F87J90 family provides ample room for  
application code, from 64 Kbytes to 128 Kbytes of code  
space. The Flash cells for program memory are rated  
to last up to 10,000 erase/write cycles. Data retention  
without refresh is conservatively estimated to be  
greater than 20 years.  
1.1  
Core Features  
1.1.1  
nanoWatt TECHNOLOGY  
All of the devices in the PIC18F87J90 family incorporate  
a range of features that can significantly reduce power  
consumption during operation. Key items include:  
The Flash program memory is readable and writable.  
During normal operation, the PIC18F87J90 family also  
provides plenty of room for dynamic application data  
with up to 3,923 bytes of data RAM.  
Alternate Run Modes: By clocking the controller  
from the Timer1 source or the Internal RC  
oscillator, power consumption during code  
execution can be reduced by as much as 90%.  
Multiple Idle Modes: The controller can also run  
with its CPU core disabled but the peripherals still  
active. In these states, power consumption can be  
reduced even further, to as little as 4% of normal  
operation requirements.  
1.1.4  
EXTENDED INSTRUCTION SET  
The PIC18F87J90 family implements the optional  
extension to the PIC18 instruction set, adding 8 new  
instructions and an Indexed Addressing mode.  
Enabled as a device configuration option, the extension  
has been specifically designed to optimize re-entrant  
application code originally developed in high-level  
languages, such as ‘C’.  
On-the-Fly Mode Switching: The power-managed  
modes are invoked by user code during operation,  
allowing the user to incorporate power-saving ideas  
into their application’s software design.  
1.1.5  
EASY MIGRATION  
1.1.2  
OSCILLATOR OPTIONS AND  
FEATURES  
Regardless of the memory size, all devices share the  
same rich set of peripherals, allowing for a smooth  
migration path as applications grow and evolve.  
All of the devices in the PIC18F87J90 family offer six  
different oscillator options, allowing users a range of  
choices in developing application hardware. These  
include:  
The consistent pinout scheme used throughout the  
entire family also aids in migrating to the next larger  
device. This is true when moving between the 64-pin  
members, between the 80-pin members, or even  
jumping from 64-pin to 80-pin devices.  
• Two Crystal modes, using crystals or ceramic  
resonators.  
• Two External Clock modes, offering the option of  
a divide-by-4 clock output.  
The PIC18F87J90 family is also largely pin-compatible  
with other PIC18 families, such as the PIC18F8720 and  
PIC18F8722, the PIC18F85J11, and the PIC18F8490  
and PIC18F85J90 families of microcontrollers with  
LCD drivers. This allows a new dimension to the  
evolution of applications, allowing developers to select  
different price points within Microchip’s PIC18 portfolio,  
while maintaining a similar feature set.  
• A Phase Lock Loop (PLL) frequency multiplier,  
available to the External Oscillator modes which  
allows clock speeds of up to 40 MHz. PLL can  
also be used with the internal oscillator.  
• An internal oscillator block which provides an  
8 MHz clock (±2% accuracy) and an INTRC source  
(approximately 31 kHz, stable over temperature  
and VDD), as well as a range of six user-selectable  
clock frequencies, between 125 kHz to 4 MHz, for a  
total of eight clock frequencies. This option frees the  
two oscillator pins for use as additional general  
purpose I/O.  
2010 Microchip Technology Inc.  
DS39933D-page 9  
PIC18F87J90 FAMILY  
1.2  
LCD Driver  
1.4  
Details on Individual Family  
Members  
The on-chip LCD driver includes many features that  
make the integration of displays in low-power  
applications easier. These include an integrated  
voltage regulator with charge pump that allows contrast  
control in software and display operation above device  
VDD.  
Devices in the PIC18F87J90 family are available in  
64-pin and 80-pin packages. Block diagrams for the  
two groups are shown in Figure 1-1 and Figure 1-2.  
The devices are differentiated from each other in four  
ways:  
1. Flash program memory (two sizes, 64 Kbytes  
for PIC18FX6J90 devices and 128 Kbytes for  
PIC18FX7J90 devices).  
1.3  
Other Special Features  
Communications: The PIC18F87J90 family  
incorporates a range of serial communication  
peripherals, including an Addressable USART, a  
separate Enhanced USART that supports  
LIN/J2602 specification 1.2, and one Master SSP  
module capable of both SPI and I2C™ (Master and  
Slave) modes of operation.  
2. Data RAM (3,923 bytes RAM for both  
PIC18FX6J90 and PIC18FX7J90 devices).  
3. I/O ports (7 bidirectional ports on PIC18F6XJ90  
devices, 9 bidirectional ports on PIC18F8XJ90  
devices).  
4. LCD Pixels: 132 pixels (33 SEGs x 4 COMs) can  
be driven by 64-pin devices; 192 pixels  
(48 SEGs x 4 COMs) can be driven by 80-pin  
devices.  
CCP Modules: All devices in the family incorporate  
two Capture/Compare/PWM (CCP) modules. Up to  
four different time bases may be used to perform  
several different operations at once.  
All other features for devices in this family are identical.  
These are summarized in Table 1-1 and Table 1-2.  
10-Bit A/D Converter: This module incorporates  
programmable acquisition time, allowing for a  
channel to be selected and a conversion to be  
initiated without waiting for a sampling period and  
thus, reducing code overhead.  
The pinouts for all devices are listed in Table 1-3 and  
Table 1-4.  
Charge Time Measurement Unit (CTMU): The  
CTMU is a flexible analog module that provides  
accurate differential time measurement between  
pulse sources, as well as asynchronous pulse  
generation.  
Together with other on-chip analog modules, the  
CTMU can precisely measure time, measure  
capacitance or relative changes in capacitance, or  
generate output pulses that are independent of the  
system clock.  
Extended Watchdog Timer (WDT): This  
enhanced version incorporates a 16-bit prescaler,  
allowing an extended time-out range that is stable  
across operating voltage and temperature. See  
Section 28.0 “Electrical Characteristics” for  
time-out periods.  
Real-Time Clock and Calendar Module  
(RTCC): The RTCC module is intended for appli-  
cations requiring that accurate time be maintained  
for extended periods of time with minimum to no  
intervention from the CPU.  
The module is a 100-year clock and calendar  
with automatic leap year detection. The range of  
the clock is from 00:00:00 (midnight) on  
January 1, 2000 to 23:59:59 on  
December 31, 2099.  
DS39933D-page 10  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 1-1:  
DEVICE FEATURES FOR THE PIC18F6XJ90 (64-PIN DEVICES)  
Features  
PIC18F66J90  
PIC18F67J90  
Operating Frequency  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Interrupt Sources  
DC – 48 MHz  
64K  
32,768  
3,923  
128K  
65,536  
3,923  
29  
I/O Ports  
Ports A, B, C, D, E, F, G  
LCD Driver (available pixels to drive)  
Timers  
132 (33 SEGs x 4 COMs)  
4
Comparators  
2
CTMU  
Yes  
RTCC  
Yes  
Capture/Compare/PWM Modules  
Serial Communications  
10-Bit Analog-to-Digital Module  
Resets (and Delays)  
2
MSSP, Addressable USART, Enhanced USART  
12 Input Channels  
POR, BOR, RESETInstruction, Stack Full, Stack Underflow, MCLR, WDT  
(PWRT, OST)  
Instruction Set  
Packages  
75 Instructions, 83 with Extended Instruction Set Enabled  
64-Pin TQFP  
TABLE 1-2:  
DEVICE FEATURES FOR THE PIC18F8XJ90 (80-PIN DEVICES)  
Features  
PIC18F86J90  
PIC18F87J90  
Operating Frequency  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Interrupt Sources  
DC – 48 MHz  
64K  
32,768  
3,923  
128K  
65,536  
3,923  
29  
I/O Ports  
Ports A, B, C, D, E, F, G, H, J  
LCD Driver (available pixels to drive)  
Timers  
192 (48 SEGs x 4 COMs)  
4
Comparators  
2
CTMU  
Yes  
RTCC  
Yes  
Capture/Compare/PWM Modules  
Serial Communications  
10-Bit Analog-to-Digital Module  
Resets (and Delays)  
2
MSSP, Addressable USART, Enhanced USART  
12 Input Channels  
POR, BOR, RESETInstruction, Stack Full, Stack Underflow, MCLR, WDT  
(PWRT, OST)  
Instruction Set  
Packages  
75 Instructions, 83 with Extended Instruction Set Enabled  
80-Pin TQFP  
2010 Microchip Technology Inc.  
DS39933D-page 11  
PIC18F87J90 FAMILY  
FIGURE 1-1:  
PIC18F6XJ90 (64-PIN) BLOCK DIAGRAM  
Data Bus<8>  
Table Pointer<21>  
inc/dec logic  
21  
PORTA  
Data Latch  
8
RA0:RA7(1,2)  
8
Data Memory  
(2.0, 3.9  
PCLATU PCLATH  
Kbytes)  
Address Latch  
20  
PCU PCH PCL  
Program Counter  
12  
PORTB  
Data Address<12>  
RB0:RB7(1)  
31-Level Stack  
STKPTR  
4
BSR  
12  
FSR0  
FSR1  
FSR2  
4
Address Latch  
Access  
Bank  
Program Memory  
(96 Kbytes)  
12  
Data Latch  
PORTC  
RC0:RC7(1)  
inc/dec  
logic  
8
Table Latch  
Address  
Decode  
ROM Latch  
IR  
Instruction Bus <16>  
PORTD  
RD0:RD7(1)  
8
State Machine  
Control Signals  
Instruction  
Decode and  
Control  
PORTE  
RE0:RE1,  
RE3:RE7(1)  
PRODH PRODL  
8 x 8 Multiply  
3
Timing  
Generation  
8
Power-up  
Timer  
OSC2/CLKO  
OSC1/CLKI  
BITOP  
8
W
INTRC  
Oscillator  
8
Oscillator  
Start-up Timer  
8
8 MHz  
Oscillator  
PORTF  
8
Power-on  
Reset  
8
RF1:RF7(1)  
Precision  
Band Gap  
Reference  
ALU<8>  
8
Watchdog  
Timer  
ENVREG  
BOR and  
LVD(3)  
Voltage  
Regulator  
PORTG  
RG0:RG4(1)  
VDDCORE/VCAP  
VDD,VSS  
MCLR  
ADC  
10-Bit  
Timer0  
CCP1  
Timer1  
Timer2  
Timer3  
CTMU  
RTCC  
Comparators  
LCD  
Driver  
CCP2  
MSSP  
AUSART  
EUSART  
Note 1: See Table 1-3 for I/O port pin descriptions.  
2: RA6 and RA7 are only available as digital I/O in select oscillator modes. See Section 3.0 “Oscillator Configurations” for more  
information  
3: Brown-out Reset and Low-Voltage Detect functions are provided when the on-board voltage regulator is enabled.  
DS39933D-page 12  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 1-2:  
PIC18F8XJ90 (80-PIN) BLOCK DIAGRAM  
Data Bus<8>  
Table Pointer<21>  
inc/dec logic  
21  
PORTA  
Data Latch  
8
8
RA0:RA7(1,2)  
Data Memory  
(2.0, 3.9  
PCLATU PCLATH  
Kbytes)  
Address Latch  
20  
PORTB  
PCU PCH PCL  
Program Counter  
RB0:RB7(1)  
12  
Data Address<12>  
31-Level Stack  
STKPTR  
4
BSR  
12  
FSR0  
FSR1  
FSR2  
4
Address Latch  
PORTC  
Access  
Bank  
Program Memory  
(96 Kbytes)  
RC0:RC7(1)  
12  
Data Latch  
inc/dec  
logic  
8
PORTD  
Table Latch  
RD0:RD7(1)  
Address  
Decode  
ROM Latch  
IR  
Instruction Bus <16>  
PORTE  
RE0:RE1,  
RE3:RE7(1)  
8
State Machine  
Control Signals  
Instruction  
Decode and  
Control  
PORTF  
PRODH PRODL  
8 x 8 Multiply  
RF1:RF7(1)  
3
Timing  
Generation  
8
Power-up  
Timer  
OSC2/CLKO  
OSC1/CLKI  
BITOP  
8
W
PORTG  
INTRC  
Oscillator  
8
Oscillator  
Start-up Timer  
8
RG0:RG4(1)  
8 MHz  
Oscillator  
8
Power-on  
Reset  
8
Precision  
Band Gap  
Reference  
ALU<8>  
8
PORTH  
Watchdog  
Timer  
RH0:RH7(1)  
ENVREG  
BOR and  
LVD(3)  
Voltage  
Regulator  
PORTJ  
RJ0:RJ7(1)  
VDDCORE/VCAP  
VDD,VSS  
MCLR  
ADC  
10-Bit  
Timer0  
CCP1  
Timer1  
Timer2  
Timer3  
CTMU  
RTCC  
Comparators  
LCD  
Driver  
CCP2  
MSSP  
AUSART  
EUSART  
Note 1: See Table 1-3 for I/O port pin descriptions.  
2: RA6 and RA7 are only available as digital I/O in select oscillator modes. See Section 3.0 “Oscillator Configurations” for  
more information.  
3: Brown-out Reset and Low-Voltage Detect functions are provided when the on-board voltage regulator is enabled.  
2010 Microchip Technology Inc.  
DS39933D-page 13  
PIC18F87J90 FAMILY  
TABLE 1-3:  
PIC18F6XJ90 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin Buffer  
Pin Name  
Description  
Type Type  
TQFP  
MCLR  
7
I
ST  
Master Clear (input) or programming voltage (input). This  
pin is an active-low Reset to the device.  
OSC1/CLKI/RA7  
OSC1  
39  
40  
Oscillator crystal or external clock input.  
Oscillator crystal input.  
I
I
CMOS  
CMOS  
CLKI  
External clock source input. Always associated  
with pin function, OSC1. (See related OSC1/CLKI,  
OSC2/CLKO pins.)  
RA7  
I/O  
TTL  
General purpose I/O pin.  
OSC2/CLKO/RA6  
OSC2  
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode.  
In EC modes, OSC2 pin outputs CLKO, which has  
1/4 the frequency of OSC1 and denotes the  
instruction cycle rate.  
CLKO  
RA6  
I/O  
TTL  
General purpose I/O pin.  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
24  
23  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog Input 0.  
AN0  
RA1/AN1/SEG18  
RA1  
I/O  
I
O
TTL  
Analog  
Analog  
Digital I/O.  
Analog Input 1.  
SEG18 output for LCD.  
AN1  
SEG18  
RA2/AN2/VREF-  
RA2  
22  
21  
28  
27  
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
Analog Input 2.  
A/D reference voltage (low) input.  
AN2  
VREF-  
RA3/AN3/VREF+  
RA3  
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
Analog Input 3.  
A/D reference voltage (high) input.  
AN3  
VREF+  
RA4/T0CKI/SEG14  
RA4  
I/O  
I
O
ST  
ST  
Analog  
Digital I/O.  
Timer0 external clock input.  
SEG14 output for LCD.  
T0CKI  
SEG14  
RA5/AN4/SEG15  
RA5  
I/O  
I
O
TTL  
Analog  
Analog  
Digital I/O.  
Analog Input 4.  
SEG15 output for LCD.  
AN4  
SEG15  
RA6  
RA7  
See the OSC2/CLKO/RA6 pin.  
See the OSC1/CLKI/RA7 pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
DS39933D-page 14  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 1-3:  
PIC18F6XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/INT0/SEG30  
RB0  
48  
47  
46  
I/O  
I
O
TTL  
ST  
Analog  
Digital I/O.  
External Interrupt 0.  
SEG30 output for LCD.  
INT0  
SEG30  
RB1/INT1/SEG8  
RB1  
I/O  
I
O
TTL  
ST  
Analog  
Digital I/O.  
External Interrupt 1.  
SEG8 output for LCD.  
INT1  
SEG8  
RB2/INT2/SEG9/CTED1  
RB2  
INT2  
CTED1  
SEG9  
I/O  
I
I
TTL  
ST  
ST  
Digital I/O.  
External Interrupt 2.  
CTMU Edge 1 input.  
SEG9 output for LCD.  
O
Analog  
RB3/INT3/SEG10/CTED2  
45  
RB3  
INT3  
SEG10  
CTED2  
I/O  
TTL  
ST  
Analog  
ST  
Digital I/O.  
I
O
I
External Interrupt 3.  
SEG10 output for LCD.  
CTMU Edge 2 input.  
RB4/KBI0/SEG11  
RB4  
44  
43  
42  
37  
I/O  
I
O
TTL  
TTL  
Analog  
Digital I/O.  
Interrupt-on-change pin.  
SEG11 output for LCD.  
KBI0  
SEG11  
RB5/KBI1/SEG29  
RB5  
I/O  
I
O
TTL  
TTL  
Analog  
Digital I/O.  
Interrupt-on-change pin.  
SEG29 output for LCD.  
KBI1  
SEG29  
RB6/KBI2/PGC  
RB6  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP™ programming clock pin.  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming data pin.  
KBI3  
PGD  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
2010 Microchip Technology Inc.  
DS39933D-page 15  
PIC18F87J90 FAMILY  
TABLE 1-3:  
PIC18F6XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T13CKI  
RC0  
30  
29  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T13CKI  
RC1/T1OSI/CCP2/SEG32  
RC1  
I/O  
I
I/O  
O
ST  
CMOS  
ST  
Digital I/O.  
Timer1 oscillator input.  
Capture 2 input/Compare 2 output/PWM2 output.  
SEG32 output for LCD.  
T1OSI  
CCP2(1)  
SEG32  
Analog  
RC2/CCP1/SEG13  
RC2  
33  
34  
I/O  
I/O  
O
ST  
ST  
Analog  
Digital I/O.  
CCP1  
SEG13  
Capture 1 input/Compare 1 output/PWM1 output.  
SEG13 output for LCD.  
RC3/SCK/SCL/SEG17  
RC3  
SCK  
SCL  
SEG17  
I/O  
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I2C™ mode.  
SEG17 output for LCD.  
I2C  
Analog  
RC4/SDI/SDA/SEG16  
35  
RC4  
SDI  
SDA  
SEG16  
I/O  
I
I/O  
O
ST  
ST  
Digital I/O.  
SPI data in.  
I2C  
I2C data I/O.  
Analog  
SEG16 output for LCD.  
RC5/SDO/SEG12  
RC5  
36  
31  
I/O  
O
O
ST  
Analog  
Digital I/O.  
SPI data out.  
SEG12 output for LCD.  
SDO  
SEG12  
RC6/TX1/CK1/SEG27  
RC6  
TX1  
CK1  
SEG27  
I/O  
O
I/O  
O
ST  
ST  
Digital I/O.  
EUSART asynchronous transmit.  
EUSART synchronous clock (see related RX1/DT1).  
SEG27 output for LCD.  
Analog  
RC7/RX1/DT1/SEG28  
32  
RC7  
RX1  
DT1  
SEG28  
I/O  
I
I/O  
O
ST  
ST  
ST  
Digital I/O.  
EUSART asynchronous receive.  
EUSART synchronous data (see related TX1/CK1).  
SEG28 output for LCD.  
Analog  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
DS39933D-page 16  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 1-3:  
PIC18F6XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTD is a bidirectional I/O port.  
RD0/SEG0/CTPLS  
RD0  
58  
I/O  
O
O
ST  
Analog  
Digital I/O.  
SEG0 output for LCD.  
CTMU pulse generator output.  
SEG0  
CTPLS  
RD1/SEG1  
RD1  
55  
54  
53  
52  
51  
50  
49  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG1 output for LCD.  
SEG1  
RD2/SEG2  
RD2  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG2 output for LCD.  
SEG2  
RD3/SEG3  
RD3  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG3 output for LCD.  
SEG3  
RD4/SEG4  
RD4  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG4 output for LCD.  
SEG4  
RD5/SEG5  
RD5  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG5 output for LCD.  
SEG5  
RD6/SEG6  
RD6  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG6 output for LCD.  
SEG6  
RD7/SEG7  
RD7  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG7 output for LCD.  
SEG7  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
2010 Microchip Technology Inc.  
DS39933D-page 17  
PIC18F87J90 FAMILY  
TABLE 1-3:  
PIC18F6XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTE is a bidirectional I/O port.  
RE0/LCDBIAS1  
RE0  
2
1
I/O  
I
ST  
Analog  
Digital I/O.  
BIAS1 input for LCD.  
LCDBIAS1  
RE1/LCDBIAS2  
RE1  
I/O  
I
ST  
Analog  
Digital I/O.  
BIAS2 input for LCD.  
LCDBIAS2  
LCDBIAS3  
64  
63  
I
Analog  
BIAS3 input for LCD.  
RE3/COM0  
RE3  
I/O  
O
ST  
Analog  
Digital I/O.  
COM0 output for LCD.  
COM0  
RE4/COM1  
RE4  
62  
61  
60  
59  
I/O  
O
ST  
Analog  
Digital I/O.  
COM1 output for LCD.  
COM1  
RE5/COM2  
RE5  
I/O  
O
ST  
Analog  
Digital I/O.  
COM2 output for LCD.  
COM2  
RE6/COM3  
RE6  
I/O  
O
ST  
Analog  
Digital I/O.  
COM3 output for LCD.  
COM3  
RE7/CCP2/SEG31  
RE7  
I/O  
I/O  
O
ST  
ST  
Analog  
Digital I/O.  
CCP2(2)  
Capture 2 input/Compare 2 output/PWM2 output.  
SEG31 output for LCD.  
SEG31  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
DS39933D-page 18  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 1-3:  
PIC18F6XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTF is a bidirectional I/O port.  
RF1/AN6/C2OUT/SEG19  
17  
16  
15  
14  
13  
RF1  
AN6  
C2OUT  
SEG19  
I/O  
I
O
O
ST  
Analog  
Digital I/O.  
Analog Input 6.  
Comparator 2 output.  
SEG19 output for LCD.  
Analog  
RF2/AN7/C1OUT/SEG20  
RF2  
AN7  
C1OUT  
SEG20  
I/O  
I
O
O
ST  
Analog  
Digital I/O.  
Analog Input 7.  
Comparator 1 output.  
SEG20 output for LCD.  
Analog  
RF3/AN8/SEG21/C2INB  
RF3  
AN8  
SEG21  
C2INB  
I/O  
ST  
Digital I/O.  
I
O
I
Analog  
Analog  
Analog  
Analog Input 8.  
SEG21 output for LCD.  
Comparator 2 Input B.  
RF4/AN9/SEG22/C2INA  
RF4  
AN9  
SEG22  
C2INA  
I/O  
ST  
Digital I/O.  
I
O
I
Analog  
Analog  
Analog  
Analog Input 9.  
SEG22 output for LCD  
Comparator 2 Input A.  
RF5/AN10/CVREF/  
SEG23/C1INB  
RF5  
I/O  
I
O
O
I
ST  
Digital I/O.  
Analog Input 10.  
Comparator reference voltage output.  
SEG23 output for LCD.  
Comparator 1 Input B.  
AN10  
CVREF  
SEG23  
C1INB  
Analog  
Analog  
Analog  
Analog  
RF6/AN11/SEG24/C1INA  
12  
11  
RF6  
I/O  
ST  
Digital I/O.  
AN11  
SEG24  
C1INA  
I
O
I
Analog  
Analog  
Analog  
Analog Input 11.  
SEG24 output for LCD  
Comparator 1 Input A.  
RF7/AN5/SS/SEG25  
RF7  
AN5  
SS  
I/O  
O
I
ST  
Analog  
TTL  
Digital I/O.  
Analog Input 5.  
SPI slave select input.  
SEG25 output for LCD.  
SEG25  
O
Analog  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
2010 Microchip Technology Inc.  
DS39933D-page 19  
PIC18F87J90 FAMILY  
TABLE 1-3:  
PIC18F6XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTG is a bidirectional I/O port.  
RG0/LCDBIAS0  
RG0  
3
4
I/O  
I
ST  
Analog  
Digital I/O.  
BIAS0 input for LCD.  
LCDBIAS0  
RG1/TX2/CK2  
RG1  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX2  
CK2  
AUSART asynchronous transmit.  
AUSART synchronous clock (see related RX2/DT2).  
RG2/RX2/DT2/VLCAP1  
5
RG2  
RX2  
DT2  
VLCAP1  
I/O  
ST  
ST  
ST  
Digital I/O.  
I
I/O  
I
AUSART asynchronous receive.  
AUSART synchronous data (see related TX2/CK2).  
LCD charge pump capacitor input.  
Analog  
RG3/VLCAP2  
RG3  
6
8
I/O  
I
ST  
Analog  
Digital I/O.  
LCD charge pump capacitor input.  
VLCAP2  
RG4/SEG26/RTCC  
RG4  
I/O  
O
O
ST  
Analog  
Digital I/O.  
SEG26 output for LCD.  
RTCC output  
SEG26  
RTCC  
VSS  
9, 25, 41, 56  
P
P
P
P
I
ST  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
Ground reference for analog modules.  
Positive supply for analog modules.  
Enable for on-chip voltage regulator.  
VDD  
26, 38, 57  
AVSS  
AVDD  
ENVREG  
20  
19  
18  
10  
VDDCORE/VCAP  
VDDCORE  
Core logic power or external filter capacitor connection.  
Positive supply for microcontroller core logic  
(regulator disabled).  
P
P
VCAP  
External filter capacitor connection (regulator enabled).  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
DS39933D-page 20  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 1-4:  
PIC18F8XJ90 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
MCLR  
9
I
ST  
Master Clear (input) or programming voltage (input). This  
pin is an active-low Reset to the device.  
OSC1/CLKI/RA7  
OSC1  
49  
50  
Oscillator crystal or external clock input.  
Oscillator crystal input.  
I
I
CMOS  
CMOS  
CLKI  
External clock source input. Always associated  
with pin function, OSC1. (See related OSC1/CLKI,  
OSC2/CLKO pins.)  
RA7  
I/O  
TTL  
General purpose I/O pin.  
OSC2/CLKO/RA6  
OSC2  
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode.  
In EC modes, OSC2 pin outputs CLKO, which has  
1/4 the frequency of OSC1 and denotes the  
instruction cycle rate.  
CLKO  
RA6  
I/O  
TTL  
General purpose I/O pin.  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
30  
29  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog Input 0.  
AN0  
RA1/AN1/SEG18  
RA1  
I/O  
I
O
TTL  
Analog  
Analog  
Digital I/O.  
Analog Input 1.  
SEG18 output for LCD.  
AN1  
SEG18  
RA2/AN2/VREF-  
RA2  
28  
27  
34  
33  
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
Analog Input 2.  
A/D reference voltage (low) input.  
AN2  
VREF-  
RA3/AN3/VREF+  
RA3  
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
Analog Input 3.  
A/D reference voltage (high) input.  
AN3  
VREF+  
RA4/T0CKI/SEG14  
RA4  
I/O  
I
O
ST  
ST  
Analog  
Digital I/O.  
Timer0 external clock input.  
SEG14 output for LCD.  
T0CKI  
SEG14  
RA5/AN4/SEG15  
RA5  
I/O  
I
O
TTL  
Analog  
Analog  
Digital I/O.  
Analog Input 4.  
SEG15 output for LCD.  
AN4  
SEG15  
RA6  
RA7  
See the OSC2/CLKO/RA6 pin.  
See the OSC1/CLKI/RA7 pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
2010 Microchip Technology Inc.  
DS39933D-page 21  
PIC18F87J90 FAMILY  
TABLE 1-4:  
PIC18F8XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/INT0/SEG30  
RB0  
58  
57  
56  
I/O  
I
O
TTL  
ST  
Analog  
Digital I/O.  
External Interrupt 0.  
SEG30 output for LCD.  
INT0  
SEG30  
RB1/INT1/SEG8  
RB1  
I/O  
I
O
TTL  
ST  
Analog  
Digital I/O.  
External Interrupt 1.  
SEG8 output for LCD.  
INT1  
SEG8  
RB2/INT2/SEG9/CTED1  
RB2  
INT2  
SEG9  
CTED1  
I/O  
TTL  
ST  
Analog  
ST  
Digital I/O.  
I
O
I
External Interrupt 2.  
SEG9 output for LCD.  
CTMU Edge 1 input.  
RB3/INT3/SEG10/  
CTED2  
55  
RB3  
INT3  
SEG10  
CTED2  
I/O  
TTL  
ST  
Analog  
ST  
Digital I/O.  
I
O
I
External Interrupt 3.  
SEG10 output for LCD.  
CTMU Edge 2 input.  
RB4/KBI0/SEG11  
RB4  
54  
53  
52  
47  
I/O  
I
O
TTL  
TTL  
Analog  
Digital I/O.  
Interrupt-on-change pin.  
SEG11 output for LCD.  
KBI0  
SEG11  
RB5/KBI1/SEG29  
RB5  
I/O  
I
O
TTL  
TTL  
Analog  
Digital I/O.  
Interrupt-on-change pin.  
SEG29 output for LCD.  
KBI1  
SEG29  
RB6/KBI2/PGC  
RB6  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP™ programming clock pin.  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming data pin.  
KBI3  
PGD  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
DS39933D-page 22  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 1-4:  
PIC18F8XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T13CKI  
RC0  
36  
35  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T13CKI  
RC1/T1OSI/CCP2/SEG32  
RC1  
I/O  
I
I/O  
O
ST  
CMOS  
ST  
Digital I/O.  
Timer1 oscillator input.  
Capture 2 input/Compare 2 output/PWM2 output.  
SEG32 output for LCD.  
T1OSI  
CCP2(1)  
SEG32  
Analog  
RC2/CCP1/SEG13  
RC2  
43  
44  
I/O  
I/O  
O
ST  
ST  
Analog  
Digital I/O.  
CCP1  
SEG13  
Capture 1 input/Compare 1 output/PWM1 output.  
SEG13 output for LCD.  
RC3/SCK/SCL/SEG17  
RC3  
SCK  
SCL  
SEG17  
I/O  
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I2C™ mode.  
SEG17 output for LCD.  
I2C  
Analog  
RC4/SDI/SDA/SEG16  
45  
RC4  
SDI  
SDA  
SEG16  
I/O  
I
I/O  
O
ST  
ST  
Digital I/O.  
SPI data in.  
I2C  
I2C data I/O.  
Analog  
SEG16 output for LCD.  
RC5/SDO/SEG12  
RC5  
46  
37  
I/O  
O
O
ST  
Analog  
Digital I/O.  
SPI data out.  
SEG12 output for LCD.  
SDO  
SEG12  
RC6/TX1/CK1/SEG27  
RC6  
TX1  
CK1  
SEG27  
I/O  
O
I/O  
O
ST  
ST  
Digital I/O.  
EUSART asynchronous transmit.  
EUSART synchronous clock (see related RX1/DT1).  
SEG27 output for LCD.  
Analog  
RC7/RX1/DT1/SEG28  
38  
RC7  
RX1  
DT1  
SEG28  
I/O  
I
I/O  
O
ST  
ST  
ST  
Digital I/O.  
EUSART asynchronous receive.  
EUSART synchronous data (see related TX1/CK1).  
SEG28 output for LCD.  
Analog  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
2010 Microchip Technology Inc.  
DS39933D-page 23  
PIC18F87J90 FAMILY  
TABLE 1-4:  
PIC18F8XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTD is a bidirectional I/O port.  
RD0/SEG0/CTPLS  
RD0  
72  
I/O  
O
O
ST  
Analog  
ST  
Digital I/O.  
SEG0 output for LCD.  
CTMU pulse generator output.  
SEG0  
CTPLS  
RD1/SEG1  
RD1  
69  
68  
67  
66  
65  
64  
63  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG1 output for LCD.  
SEG1  
RD2/SEG2  
RD2  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG2 output for LCD.  
SEG2  
RD3/SEG3  
RD3  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG3 output for LCD.  
SEG3  
RD4/SEG4  
RD4  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG4 output for LCD.  
SEG4  
RD5/SEG5  
RD5  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG5 output for LCD.  
SEG5  
RD6/SEG6  
RD6  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG6 output for LCD.  
SEG6  
RD7/SEG7  
RD7  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG7 output for LCD.  
SEG7  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
DS39933D-page 24  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 1-4:  
PIC18F8XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTE is a bidirectional I/O port.  
RE0/LCDBIAS1  
RE0  
4
3
I/O  
I
ST  
Analog  
Digital I/O.  
BIAS1 input for LCD.  
LCDBIAS1  
RE1/LCDBIAS2  
RE1  
I/O  
I
ST  
Analog  
Digital I/O.  
BIAS2 input for LCD.  
LCDBIAS2  
LCDBIAS3  
78  
77  
I
Analog  
BIAS3 input for LCD.  
RE3/COM0  
RE3  
I/O  
O
ST  
Analog  
Digital I/O.  
COM0 output for LCD.  
COM0  
RE4/COM1  
RE4  
76  
75  
74  
73  
I/O  
O
ST  
Analog  
Digital I/O.  
COM1 output for LCD.  
COM1  
RE5/COM2  
RE5  
I/O  
O
ST  
Analog  
Digital I/O.  
COM2 output for LCD.  
COM2  
RE6/COM3  
RE6  
I/O  
O
ST  
Analog  
Digital I/O.  
COM3 output for LCD.  
COM3  
RE7/CCP2/SEG31  
RE7  
I/O  
I/O  
O
ST  
ST  
Analog  
Digital I/O.  
CCP2(2)  
Capture 2 input/Compare 2 output/PWM2 output.  
SEG31 output for LCD.  
SEG31  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
2010 Microchip Technology Inc.  
DS39933D-page 25  
PIC18F87J90 FAMILY  
TABLE 1-4:  
PIC18F8XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTF is a bidirectional I/O port.  
RF1/AN6/C2OUT/SEG19  
23  
18  
17  
16  
15  
RF1  
AN6  
C2OUT  
SEG19  
I/O  
I
O
O
ST  
Analog  
Digital I/O.  
Analog Input 6.  
Comparator 2 output.  
SEG19 output for LCD.  
Analog  
RF2/AN7/C1OUT/SEG20  
RF2  
AN7  
C1OUT  
SEG20  
I/O  
I
O
O
ST  
Analog  
Digital I/O.  
Analog Input 7.  
Comparator 1 output.  
SEG20 output for LCD.  
Analog  
RF3/AN8/SEG21/C2INB  
RF3  
AN8  
SEG21  
C2INB  
I/O  
ST  
Digital I/O.  
I
O
I
Analog  
Analog  
Analog  
Analog Input 8.  
SEG21 output for LCD.  
Comparator 2 Input B.  
RF4/AN9/SEG22/C2INA  
RF4  
AN9  
SEG22  
C2INA  
I/O  
ST  
Digital I/O.  
I
O
I
Analog  
Analog  
Analog  
Analog Input 9.  
SEG22 output for LCD.  
Comparator 2 Input A.  
RF5/AN10/CVREF/  
SEG23/C1INB  
RF5  
I/O  
I
O
O
I
ST  
Digital I/O.  
Analog Input 10.  
Comparator reference voltage output.  
SEG23 output for LCD.  
Comparator 1 Input B.  
AN10  
CVREF  
SEG23  
C1INB  
Analog  
Analog  
Analog  
Analog  
RF6/AN11/SEG24/C1INA  
14  
13  
RF6  
I/O  
ST  
Digital I/O.  
AN11  
SEG24  
C1INA  
I
O
I
Analog  
Analog  
Analog  
Analog Input 11.  
SEG24 output for LCD.  
Comparator 1 Input A.  
RF7/AN5/SS/SEG25  
RF7  
AN5  
SS  
I/O  
O
I
ST  
Analog  
TTL  
Digital I/O.  
Analog Input 5.  
SPI slave select input.  
SEG25 output for LCD.  
SEG25  
O
Analog  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
DS39933D-page 26  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 1-4:  
PIC18F8XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTG is a bidirectional I/O port.  
RG0/LCDBIAS0  
RG0  
5
6
I/O  
I
ST  
Analog  
Digital I/O.  
BIAS0 input for LCD.  
LCDBIAS0  
RG1/TX2/CK2  
RG1  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX2  
CK2  
AUSART asynchronous transmit.  
AUSART synchronous clock (see related RX2/DT2).  
RG2/RX2/DT2/VLCAP1  
7
RG2  
RX2  
DT2  
VLCAP1  
I/O  
ST  
ST  
ST  
Digital I/O.  
I
I/O  
I
AUSART asynchronous receive.  
AUSART synchronous data (see related TX2/CK2).  
LCD charge pump capacitor input.  
Analog  
RG3/VLCAP2  
RG3  
8
I/O  
I
ST  
Analog  
Digital I/O.  
LCD charge pump capacitor input.  
VLCAP2  
RG4/SEG26/RTCC  
RG4  
10  
I/O  
O
O
ST  
Analog  
Digital I/O.  
SEG26 output for LCD.  
RTCC output.  
SEG26  
RTCC  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
2010 Microchip Technology Inc.  
DS39933D-page 27  
PIC18F87J90 FAMILY  
TABLE 1-4:  
PIC18F8XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTH is a bidirectional I/O port.  
RH0/SEG47  
RH0  
79  
80  
1
I/O  
O
ST  
Analog  
Digital I/O.  
SEG47 output for LCD.  
SEG47  
RH1/SEG46  
RH1  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG46 output for LCD.  
SEG46  
RH2/SEG45  
RH2  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG45 output for LCD.  
SEG45  
RH3/SEG44  
RH3  
2
I/O  
O
ST  
Analog  
Digital I/O.  
SEG44 output for LCD.  
SEG44  
RH4/SEG40  
RH4  
22  
21  
20  
19  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG40 output for LCD.  
SEG40  
RH5/SEG41  
RH5  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG41 output for LCD.  
SEG41  
RH6/SEG42  
RH6  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG42 output for LCD.  
SEG42  
RH7/SEG43  
RH7  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG43 output for LCD.  
SEG43  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
DS39933D-page 28  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 1-4:  
PIC18F8XJ90 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTJ is a bidirectional I/O port.  
Digital I/O.  
RJ0  
62  
61  
I/O  
ST  
RJ1/SEG33  
RJ1  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG33 output for LCD.  
SEG33  
RJ2/SEG34  
RJ2  
60  
59  
39  
40  
41  
42  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG34 output for LCD.  
SEG34  
RJ3/SEG35  
RJ3  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG35 output for LCD.  
SEG35  
RJ4/SEG39  
RJ4  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG39 output for LCD.  
SEG39  
RJ5/SEG38  
RJ5  
I/O  
O
ST  
Analog  
Digital I/O  
SEG38 output for LCD.  
SEG38  
RJ6/SEG37  
RJ6  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG37 output for LCD.  
SEG37  
RJ7/SEG36  
RJ7  
I/O  
O
ST  
Analog  
Digital I/O.  
SEG36 output for LCD.  
SEG36  
VSS  
11, 31, 51, 70  
P
P
P
P
I
ST  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
Ground reference for analog modules.  
Positive supply for analog modules.  
Enable for on-chip voltage regulator.  
VDD  
32, 48, 71  
AVSS  
AVDD  
ENVREG  
26  
25  
24  
12  
VDDCORE/VCAP  
VDDCORE  
Core logic power or external filter capacitor connection.  
Positive supply for microcontroller core logic  
(regulator disabled).  
P
P
VCAP  
External filter capacitor connection (regulator enabled).  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C™ = I2C/SMBus  
Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.  
2010 Microchip Technology Inc.  
DS39933D-page 29  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 30  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTIONS  
2.0  
2.1  
GUIDELINES FOR GETTING  
STARTED WITH PIC18FJ  
MICROCONTROLLERS  
(2)  
C2  
VDD  
Basic Connection Requirements  
Getting started with the PIC18F87J90 family family of  
8-bit microcontrollers requires attention to a minimal  
set of device pin connections before proceeding with  
development.  
(1)  
(1)  
R1  
R2  
ENVREG  
MCLR  
VCAP/VDDCORE  
C1  
The following pins must always be connected:  
C7  
PIC18FXXJXX  
• All VDD and VSS pins  
(see Section 2.2 “Power Supply Pins”)  
VDD  
VSS  
VSS  
VDD  
(2)  
(2)  
C3  
C6  
• All AVDD and AVSS pins, regardless of whether or  
not the analog device features are used  
(see Section 2.2 “Power Supply Pins”)  
• MCLR pin  
(see Section 2.3 “Master Clear (MCLR) Pin”)  
(2)  
(2)  
C4  
C5  
• ENVREG (if implemented) and VCAP/VDDCORE pins  
(see Section 2.4 “Voltage Regulator Pins  
(ENVREG and VCAP/VDDCORE)”)  
Key (all values are recommendations):  
These pins must also be connected if they are being  
used in the end application:  
C1 through C6: 0.1 F, 20V ceramic  
C7: 10 F, 6.3V or greater, tantalum or ceramic  
R1: 10 k  
• PGC/PGD pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
R2: 100to 470Ω  
Note 1: See Section 2.4 “Voltage Regulator Pins  
(ENVREG and VCAP/VDDCORE)” for  
• OSCI and OSCO pins when an external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
explanation of ENVREG pin connections.  
2: The example shown is for a PIC18F device  
with five VDD/VSS and AVDD/AVSS pairs.  
Other devices may have more or less pairs;  
adjust the number of decoupling capacitors  
appropriately.  
Additionally, the following pins may be required:  
• VREF+/VREF- pins are used when external voltage  
reference for analog modules is implemented  
Note:  
The AVDD and AVSS pins must always be  
connected, regardless of whether any of  
the analog modules are being used.  
The minimum mandatory connections are shown in  
Figure 2-1.  
2010 Microchip Technology Inc.  
DS39933D-page 31  
PIC18F87J90 FAMILY  
2.2  
Power Supply Pins  
2.3  
Master Clear (MCLR) Pin  
The MCLR pin provides two specific device  
functions: Device Reset, and Device Programming  
and Debugging. If programming and debugging are  
2.2.1  
DECOUPLING CAPACITORS  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS, is required.  
not required in the end application,  
a
direct  
connection to VDD may be all that is required. The  
addition of other components, to help increase the  
application’s resistance to spurious Resets from  
Consider the following criteria when using decoupling  
capacitors:  
voltage sags, may be beneficial.  
A
typical  
Value and type of capacitor: A 0.1 F (100 nF),  
10-20V capacitor is recommended. The capacitor  
should be a low-ESR device, with a resonance  
frequency in the range of 200 MHz and higher.  
Ceramic capacitors are recommended.  
configuration is shown in Figure 2-1. Other circuit  
designs may be implemented, depending on the  
application’s requirements.  
During programming and debugging, the resistance  
and capacitance that can be added to the pin must  
be considered. Device programmers and debuggers  
drive the MCLR pin. Consequently, specific voltage  
levels (VIH and VIL) and fast signal transitions must  
not be adversely affected. Therefore, specific values  
of R1 and C1 will need to be adjusted based on the  
application and PCB requirements. For example, it is  
recommended that the capacitor, C1, be isolated  
from the MCLR pin during programming and  
debugging operations by using a jumper (Figure 2-2).  
The jumper is replaced for normal run-time  
operations.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is no greater  
than 0.25 inch (6 mm).  
Handling high-frequency noise: If the board is  
experiencing high-frequency noise (upward of  
tens of MHz), add a second ceramic type capaci-  
tor in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 F to 0.001 F. Place this  
second capacitor next to each primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible  
(e.g., 0.1 F in parallel with 0.001 F).  
Any components associated with the MCLR pin  
should be placed within 0.25 inch (6 mm) of the pin.  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
VDD  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum, thereby reducing PCB trace  
R1  
R2  
MCLR  
PIC18FXXJXX  
JP  
C1  
inductance.  
Note 1: R1  10 kis recommended. A suggested  
starting value is 10 k. Ensure that the  
MCLR pin VIH and VIL specifications are met.  
2.2.2  
TANK CAPACITORS  
On boards with power traces running longer than  
six inches in length, it is suggested to use a tank capac-  
itor for integrated circuits, including microcontrollers, to  
supply a local power source. The value of the tank  
capacitor should be determined based on the trace  
resistance that connects the power supply source to  
the device, and the maximum current drawn by the  
device in the application. In other words, select the tank  
capacitor so that it meets the acceptable voltage sag at  
the device. Typical values range from 4.7 F to 47 F.  
2: R2  470will limit any current flowing into  
MCLR from the external capacitor, C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
DS39933D-page 32  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
2.4  
Voltage Regulator Pins (ENVREG  
and VCAP/VDDCORE)  
2.5  
ICSP Pins  
The PGC and PGD pins are used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes. It  
is recommended to keep the trace length between the  
ICSP connector and the ICSP pins on the device as  
short as possible. If the ICSP connector is expected to  
experience an ESD event, a series resistor is recom-  
mended, with the value in the range of a few tens of  
ohms, not to exceed 100.  
The on-chip voltage regulator enable pin, ENVREG,  
must always be connected directly to either a supply  
voltage or to ground. Tying ENVREG to VDD enables  
the regulator, while tying it to ground disables the  
regulator. Refer to Section 25.3 “On-Chip Voltage  
Regulator” for details on connecting and using the  
on-chip regulator.  
Pull-up resistors, series diodes, and capacitors on the  
PGC and PGD pins are not recommended as they will  
interfere with the programmer/debugger communica-  
tions to the device. If such discrete components are an  
application requirement, they should be removed from  
the circuit during programming and debugging. Alter-  
natively, refer to the AC/DC characteristics and timing  
requirements information in the respective device  
Flash programming specification for information on  
capacitive loading limits, and pin input voltage high  
(VIH) and input low (VIL) requirements.  
When the regulator is enabled, a low-ESR (< 5)  
capacitor is required on the VCAP/VDDCORE pin to  
stabilize the voltage regulator output voltage. The  
VCAP/VDDCORE pin must not be connected to VDD and  
must use a capacitor of 10 F connected to ground. The  
type can be ceramic or tantalum. A suitable example is  
the Murata GRM21BF50J106ZE01 (10 F, 6.3V) or  
equivalent. Designers may use Figure 2-3 to evaluate  
ESR equivalence of candidate devices.  
It is recommended that the trace length not exceed  
0.25 inch (6 mm). Refer to Section 28.0 “Electrical  
Characteristics” for additional information.  
For device emulation, ensure that the “Communication  
Channel Select” (i.e., PGCx/PGDx pins) programmed  
into the device matches the physical connections for  
the ICSP to the Microchip debugger/emulator tool.  
When the regulator is disabled, the VCAP/VDDCORE pin  
must be tied to a voltage supply at the VDDCORE level.  
Refer to Section 28.0 “Electrical Characteristics” for  
information on VDD and VDDCORE.  
For more information on available Microchip  
development tools connection requirements, refer  
toSection 27.0 “Development Support”.  
Note that the “LF” versions of some low pin count  
PIC18FJ parts (e.g., the PIC18LF45J10) do not have  
the ENVREG pin. These devices are provided with the  
voltage regulator permanently disabled; they must  
always be provided with a supply voltage on the  
VDDCORE pin.  
FIGURE 2-3:  
FREQUENCY vs. ESR  
PERFORMANCE FOR  
SUGGESTED VCAP  
10  
1
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
1000 10,000  
Frequency (MHz)  
Note:  
Data for Murata GRM21BF50J106ZE01 shown.  
Measurements at 25°C, 0V DC bias.  
2010 Microchip Technology Inc.  
DS39933D-page 33  
PIC18F87J90 FAMILY  
FIGURE 2-4:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
2.6  
External Oscillator Pins  
Many microcontrollers have options for at least two  
oscillators: a high-frequency primary oscillator and a  
low-frequency  
secondary  
oscillator  
(refer to  
Single-Sided and In-Line Layouts:  
Section 3.0 “Oscillator Configurations” for details).  
Copper Pour  
(tied to ground)  
Primary Oscillator  
Crystal  
The oscillator circuit should be placed on the same  
side of the board as the device. Place the oscillator  
circuit close to the respective oscillator pins with no  
more than 0.5 inch (12 mm) between the circuit  
components and the pins. The load capacitors should  
be placed next to the oscillator itself, on the same side  
of the board.  
DEVICE PINS  
Primary  
OSC1  
OSC2  
GND  
Oscillator  
C1  
C2  
`
`
Use a grounded copper pour around the oscillator cir-  
cuit to isolate it from surrounding circuits. The  
grounded copper pour should be routed directly to the  
MCU ground. Do not run any signal traces or power  
traces inside the ground pour. Also, if using a two-sided  
board, avoid any traces on the other side of the board  
where the crystal is placed.  
T1OSO  
T1OS I  
Timer1 Oscillator  
Crystal  
`
Layout suggestions are shown in Figure 2-4. In-line  
packages may be handled with a single-sided layout  
that completely encompasses the oscillator pins. With  
fine-pitch packages, it is not always possible to com-  
pletely surround the pins and components. A suitable  
solution is to tie the broken guard sections to a mirrored  
ground layer. In all cases, the guard trace(s) must be  
returned to ground.  
T1 Oscillator: C2  
T1 Oscillator: C1  
Fine-Pitch (Dual-Sided) Layouts:  
Top Layer Copper Pour  
(tied to ground)  
In planning the application’s routing and I/O assign-  
ments, ensure that adjacent port pins and other signals  
in close proximity to the oscillator are benign (i.e., free  
of high frequencies, short rise and fall times, and other  
similar noise).  
Bottom Layer  
Copper Pour  
(tied to ground)  
OSCO  
For additional information and design guidance on  
oscillator circuits, please refer to these Microchip  
Application Notes, available at the corporate web site  
(www.microchip.com):  
C2  
Oscillator  
Crystal  
GND  
AN826, Crystal Oscillator Basics and Crystal  
C1  
Selection for rfPIC™ and PICmicro® Devices”  
• AN849, “Basic PICmicro® Oscillator Design”  
OSCI  
• AN943, “Practical PICmicro® Oscillator Analysis  
and Design”  
AN949, “Making Your Oscillator Work”  
DEVICE PINS  
2.7  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic low state. Alternatively, connect a 1 kΩ  
to 10 kresistor to VSS on unused pins and drive the  
output to logic low.  
DS39933D-page 34  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
All of these modes are selected by the user by  
programming the FOSC<2:0> Configuration bits.  
3.0  
3.1  
OSCILLATOR  
CONFIGURATIONS  
In addition, PIC18F87J90 family devices can switch  
between different clock sources, either under software  
control or automatically under certain conditions. This  
allows for additional power savings by managing  
device clock speed in real time without resetting the  
application.  
Oscillator Types  
The PIC18F87J90 family of devices can be operated in  
eight different oscillator modes:  
1. ECPLL  
OSC1/OSC2 as primary; ECPLL  
oscillator with PLL enabled, CLKO on  
RA6  
The clock sources for the PIC18F87J90 family of  
devices are shown in Figure 3-1.  
2. EC  
OSC1/OSC2 as primary; external  
clock with FOSC/4 output  
3. HSPLL  
OSC1/OSC2 as primary; high-speed  
crystal/resonator with software PLL  
control  
4. HS  
OSC1/OSC2 as primary; high-speed  
crystal/resonator  
5. INTPLL1 Internal oscillator block with software  
PLL control, FOSC/4 output on RA6  
and I/O on RA7  
6. INTIO1  
Internal oscillator block with FOSC/4  
output on RA6 and I/O on RA7  
7. INTPLL2 Internal oscillator block with software  
PLL control and I/O on RA6 and RA7  
8. INTIO2  
Internal oscillator block with I/O on  
RA6 and RA7  
FIGURE 3-1:  
PIC18F87J90 FAMILY CLOCK DIAGRAM  
Primary Oscillator  
HS, EC  
HSPLL, ECPLL, INTPLL  
T1OSC  
OSC2  
OSCTUNE<6>  
Sleep  
4 x PLL  
OSC1  
Secondary Oscillator  
Peripherals  
T1OSO  
T1OSCEN  
Enable  
Oscillator  
T1OSI  
OSCCON<6:4>  
Internal Oscillator  
CPU  
OSCCON<6:4>  
8 MHz  
111  
110  
101  
100  
011  
010  
001  
4 MHz  
2 MHz  
Internal  
Oscillator  
Block  
IDLEN  
Clock  
1 MHz  
Control  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
8 MHz  
Source  
8 MHz  
(INTOSC)  
FOSC<2:0>  
OSCCON<1:0>  
Clock Source Option  
for Other Modules  
1
0
000  
INTRC  
Source  
OSCTUNE<7>  
31 kHz (INTRC)  
WDT, PWRT, FSCM  
and Two-Speed Start-up  
2010 Microchip Technology Inc.  
DS39933D-page 35  
PIC18F87J90 FAMILY  
The OSCTUNE register (Register 3-2) controls the  
tuning and operation of the internal oscillator block. It  
also implements the PLLEN bits which control the  
operation of the Phase Locked Loop (PLL) (see  
Section 3.4.3 “PLL Frequency Multiplier”).  
3.2  
Control Registers  
The OSCCON register (Register 3-1) controls the main  
aspects of the device clock’s operation. It selects the  
oscillator type to be used, which of the power-managed  
modes to invoke and the output frequency of the  
INTOSC source. It also provides status on the oscillators.  
REGISTER 3-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
R/W-0  
IDLEN  
bit 7  
R/W-1  
IRCF2(2)  
R/W-1  
IRCF1(2)  
R/W-0  
IRCF0(2)  
R(1)  
R-0  
R/W-0  
SCS1(4)  
R/W-0  
SCS0(4)  
OSTS  
IOFS  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
IDLEN: Idle Enable bit  
1= Device enters an Idle mode when a SLEEPinstruction is executed  
0= Device enters Sleep mode when a SLEEPinstruction is executed  
bit 6-4  
IRCF<2:0>: INTOSC Source Frequency Select bits(2)  
111= 8 MHz (INTOSC drives clock directly)  
110= 4 MHz (default)  
101= 2 MHz  
100= 1 MHz  
011= 500 kHz  
010= 250 kHz  
001= 125 kHz  
000= 31 kHz (from either INTOSC/256 or INTRC)(3)  
bit 3  
OSTS: Oscillator Start-up Timer Time-out Status bit(1)  
1= Oscillator Start-up Timer (OST) time-out has expired; primary oscillator is running  
0= Oscillator Start-up Timer (OST) time-out is running; primary oscillator is not ready  
bit 2  
IOFS: INTOSC Frequency Stable bit  
1= Fast RC oscillator frequency is stable  
0= Fast RC oscillator frequency is not stable  
bit 1-0  
SCS<1:0>: System Clock Select bits(4)  
11= Internal oscillator block  
10= Primary oscillator  
01= Timer1 oscillator  
00= Default primary oscillator (as defined by the FOSC<2:0> Configuration bits)  
Note 1: Reset state depends on the state of the IESO Configuration bit.  
2: Modifying these bits will cause an immediate clock frequency switch if the internal oscillator is providing  
the device clocks.  
3: Source selected by the INTSRC bit (OSCTUNE<7>), see text.  
4: Modifying these bits will cause an immediate clock source switch.  
DS39933D-page 36  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 3-2:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
R/W-0  
INTSRC  
bit 7  
R/W-0  
R/W-0  
TUN5  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
PLLEN  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
INTSRC: Internal Oscillator Low-Frequency Source Select bit  
1= 31.25 kHz device clock derived from 8 MHz INTOSC source (divide-by-256 enabled)  
0= 31 kHz device clock derived from the INTRC 31 kHz oscillator  
PLLEN: Frequency Multiplier PLL Enable bit  
1= PLL enabled  
0= PLL disabled  
bit 5-0  
TUN<5:0>: Fast RC Oscillator (INTOSC) Frequency Tuning bits  
011111= Maximum frequency  
000001  
000000= Center frequency. Fast RC oscillator is running at the calibrated frequency.  
111111  
100000= Minimum frequency  
controller is placed in a power-managed mode.  
PIC18F87J90 family devices offer the Timer1 oscillator  
as a secondary oscillator source. This oscillator, in all  
power-managed modes, is often the time base for  
functions such as a Real-Time Clock (RTC). The  
Timer1 oscillator is discussed in greater detail in  
Section 12.0 “Timer1 Module”.  
3.3  
Clock Sources and  
Oscillator Switching  
Essentially, PIC18F87J90 family devices have three  
independent clock sources:  
• Primary oscillators  
• Secondary oscillators  
• Internal oscillator  
In addition to being a primary clock source in some  
circumstances, the internal oscillator is available as a  
power-managed mode clock source. The INTRC  
source is also used as the clock source for several  
special features, such as the WDT and Fail-Safe Clock  
Monitor. The internal oscillator block is discussed in  
more detail in Section 3.5 “Internal Oscillator  
Block”.  
The primary oscillators can be thought of as the main  
device oscillators. These are any external oscillators  
connected to the OSC1 and OSC2 pins, and include  
the External Crystal and Resonator modes and the  
External Clock modes. If selected by the FOSC<2:0>  
Configuration bits, the internal oscillator block (either  
the 31 kHz INTRC or the 8 MHz INTOSC source) may  
be considered a primary oscillator. The particular mode  
is defined by the FOSC Configuration bits. The details  
of these modes are covered in Section 3.4 “External  
Oscillator Modes”.  
The PIC18F87J90 family includes features that allow  
the device clock source to be switched from the main  
oscillator, chosen by device configuration, to one of the  
alternate clock sources. When an alternate clock  
source is enabled, various power-managed operating  
modes are available.  
The secondary oscillators are external clock sources  
that are not connected to the OSC1 or OSC2 pins.  
These sources may continue to operate even after the  
2010 Microchip Technology Inc.  
DS39933D-page 37  
PIC18F87J90 FAMILY  
3.3.1  
CLOCK SOURCE SELECTION  
3.3.1.1  
System Clock Selection and Device  
Resets  
The System Clock Select bits, SCS<1:0>  
(OSCCON<1:0>), select the clock source. The avail-  
able clock sources are the primary clock defined by the  
FOSC<2:0> Configuration bits, the secondary clock  
(Timer1 oscillator) and the internal oscillator. The clock  
source changes after one or more of the bits is written  
to, following a brief clock transition interval.  
Since the SCS bits are cleared on all forms of Reset,  
this means the primary oscillator defined by the  
FOSC<2:0> Configuration bits is used as the primary  
clock source on device Resets. This could either be the  
internal oscillator block by itself or one of the other  
primary clock source (HS, EC, HSPLL, ECPLL1/2 or  
INTPLL1/2).  
The OSTS (OSCCON<3>) and T1RUN (T1CON<6>)  
bits indicate which clock source is currently providing  
the device clock. The OSTS bit indicates that the  
Oscillator Start-up Timer (OST) has timed out and the  
primary clock is providing the device clock in Primary  
Clock modes. The T1RUN bit indicates when the  
Timer1 oscillator is providing the device clock in  
Secondary Clock modes. In power-managed modes,  
only one of these bits will be set at any time. If neither  
of these bits is set, the INTRC is providing the clock, or  
the internal oscillator has just started and is not yet  
stable.  
In those cases when the internal oscillator block, with-  
out PLL, is the default clock on Reset, the Fast RC  
oscillator (INTOSC) will be used as the device clock  
source. It will initially start at 1 MHz; the postscaler  
selection that corresponds to the Reset value of the  
IRCF<2:0> bits (‘100’).  
Regardless of which primary oscillator is selected,  
INTRC will always be enabled on device power-up. It  
serves as the clock source until the device has loaded  
its configuration values from memory. It is at this point  
that the FOSC Configuration bits are read and the  
oscillator selection of the operational mode is made.  
The IDLEN bit determines if the device goes into Sleep  
mode or one of the Idle modes when the SLEEP  
instruction is executed.  
Note that either the primary clock source, or the internal  
oscillator, will have two bit setting options for the possible  
values of the SCS<1:0> bits at any given time.  
The use of the flag and control bits in the OSCCON  
register is discussed in more detail in Section 4.0  
“Power-Managed Modes”.  
3.3.2  
OSCILLATOR TRANSITIONS  
PIC18F87J90 family devices contain circuitry to  
prevent clock “glitches” when switching between clock  
sources. A short pause in the device clock occurs dur-  
ing the clock switch. The length of this pause is the sum  
of two cycles of the old clock source and three to four  
cycles of the new clock source. This formula assumes  
that the new clock source is stable.  
Note 1: The Timer1 oscillator must be enabled to  
select the secondary clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit in the Timer1 Control regis-  
ter (T1CON<3>). If the Timer1 oscillator is  
not enabled, then any attempt to select a  
secondary clock source when executing a  
SLEEPinstruction will be ignored.  
Clock transitions are discussed in greater detail in  
Section 4.1.2 “Entering Power-Managed Modes”.  
2: It is recommended that the Timer1  
oscillator be operating and stable before  
executing the SLEEPinstruction or a very  
long delay may occur while the Timer1  
oscillator starts.  
DS39933D-page 38  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 3-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
3.4  
External Oscillator Modes  
3.4.1  
CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS (HS MODES)  
Typical Capacitor Values  
Crystal  
Freq.  
Tested:  
Osc Type  
In HS or HSPLL Oscillator modes, a crystal or ceramic  
resonator is connected to the OSC1 and OSC2 pins to  
establish oscillation. Figure 3-2 shows the pin  
connections.  
C1  
C2  
HS  
4 MHz  
8 MHz  
20 MHz  
27 pF  
22 pF  
15 pF  
27 pF  
22 pF  
15 pF  
The oscillator design requires the use of a crystal rated  
for parallel resonant operation.  
Capacitor values are for design guidance only.  
Note:  
Use of a crystal rated for series resonant  
operation may give a frequency out of the  
crystal manufacturer’s specifications.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
TABLE 3-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
Refer to the Microchip application notes cited in  
Table 3-1 for oscillator specific information. Also see  
the notes following this table for additional  
information.  
Typical Capacitor Values Used:  
Mode  
Freq.  
OSC1  
OSC2  
HS  
8.0 MHz  
16.0 MHz  
27 pF  
22 pF  
27 pF  
22 pF  
Note 1: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
Capacitor values are for design guidance only.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application. Refer  
to the following application notes for oscillator specific  
information:  
2: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate  
values  
of  
external  
components.  
3: Rs may be required to avoid overdriving  
• AN588, “PIC® Microcontroller Oscillator Design  
Guide”  
crystals with low drive level specification.  
4: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
• AN826, “Crystal Oscillator Basics and Crystal  
Selection for rfPIC® and PIC® Devices”  
• AN849, “Basic PIC® Oscillator Design”  
• AN943, “Practical PIC® Oscillator Analysis and  
Design”  
FIGURE 3-2:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS OR HSPLL  
• AN949, “Making Your Oscillator Work”  
CONFIGURATION)  
See the notes following Table 3-2 for additional  
information.  
(1)  
C1  
OSC1  
To  
Internal  
Logic  
XTAL  
(3)  
RF  
Sleep  
OSC2  
(2)  
RS  
(1)  
PIC18F87J90  
C2  
Note 1: See Table 3-1 and Table 3-2 for initial values of  
C1 and C2.  
2: A series resistor (RS) may be required for AT  
strip cut crystals.  
3: RF varies with the oscillator mode chosen.  
2010 Microchip Technology Inc.  
DS39933D-page 39  
PIC18F87J90 FAMILY  
3.4.2  
EXTERNAL CLOCK INPUT  
(EC MODES)  
3.4.3.1  
HSPLL and ECPLL Modes  
The HSPLL and ECPLL modes provide the ability to  
selectively run the device at 4 times the external  
oscillating source to produce frequencies of up to  
40 MHz.  
The EC and ECPLL Oscillator modes require an  
external clock source to be connected to the OSC1 pin.  
There is no oscillator start-up time required after a  
Power-on Reset or after an exit from Sleep mode.  
The PLL is enabled by programming the FOSC<2:0>  
Configuration bits to either ‘111’ (for ECPLL) or ‘101’  
(for HSPLL). In addition, the PLLEN bit  
(OSCTUNE<6>) must also be set. Clearing PLLEN  
disables the PLL, regardless of the chosen oscillator  
configuration. It also allows additional flexibility for  
controlling the application’s clock speed in software.  
In the EC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 3-3 shows the pin connections for the EC  
Oscillator mode.  
FIGURE 3-3:  
EXTERNAL CLOCK  
INPUT OPERATION  
(EC CONFIGURATION)  
FIGURE 3-5:  
PLL BLOCK DIAGRAM  
HSPLL or ECPLL (CONFIG2L)  
PLL Enable (OSCTUNE)  
OSC1/CLKI  
Clock from  
Ext. System  
PIC18F87J90  
OSC2/CLKO  
OSC2  
OSC1  
FOSC/4  
Phase  
Comparator  
FIN  
HS or EC  
Mode  
FOUT  
An external clock source may also be connected to the  
OSC1 pin in the HS mode, as shown in Figure 3-4. In  
this configuration, the divide-by-4 output on OSC2 is  
not available. Current consumption in this configuration  
will be somewhat higher than EC mode, as the internal  
oscillator’s feedback circuitry will be enabled (in EC  
mode, the feedback circuit is disabled).  
Loop  
Filter  
VCO  
4  
SYSCLK  
FIGURE 3-4:  
EXTERNAL CLOCK INPUT  
OPERATION (HS OSC  
CONFIGURATION)  
3.4.3.2  
PLL and INTOSC  
The PLL is also available to the internal oscillator block  
when the internal oscillator block is configured as the  
primary clock source. In this configuration, the PLL is  
enabled in software and generates a clock output of up  
to 32 MHz. The operation of INTOSC with the PLL is  
described in Section 3.5.2 “INTPLL Modes”.  
OSC1  
Clock from  
Ext. System  
PIC18F87J90  
(HS Mode)  
OSC2  
Open  
3.4.3  
PLL FREQUENCY MULTIPLIER  
A Phase Locked Loop (PLL) circuit is provided as an  
option for users who want to use a lower frequency  
oscillator circuit, or to clock the device up to its highest  
rated frequency from a crystal oscillator. This may be  
useful for customers who are concerned with EMI due  
to high-frequency crystals, or users who require higher  
clock speeds from an internal oscillator.  
DS39933D-page 40  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 3-6: INTIO1 OSCILLATOR MODE  
3.5  
Internal Oscillator Block  
The PIC18F87J90 family of devices includes an  
internal oscillator block which generates two different  
clock signals; either can be used as the micro-  
controller’s clock source. This may eliminate the need  
for an external oscillator circuit on the OSC1 and/or  
OSC2 pins.  
I/O (OSC1)  
RA7  
PIC18F87J90  
OSC2  
FOSC/4  
The main output is the Fast RC oscillator or INTOSC,  
an 8 MHz clock source which can be used to directly  
drive the device clock. It also drives a postscaler, which  
can provide a range of clock frequencies from 31 kHz  
to 4 MHz. INTOSC is enabled when a clock frequency  
from 125 kHz to 8 MHz is selected. The INTOSC out-  
put can also be enabled when 31 kHz is selected,  
depending on the INTSRC bit (OSCTUNE<7>).  
FIGURE 3-7: INTIO2 OSCILLATOR MODE  
RA7  
RA6  
I/O (OSC1)  
PIC18F87J90  
I/O (OSC2)  
The other clock source is the Internal RC oscillator  
(INTRC), which provides a nominal 31 kHz output.  
INTRC is enabled if it is selected as the device clock  
source; it is also enabled automatically when any of the  
following are enabled:  
3.5.2  
INTPLL MODES  
The 4x Phase Locked Loop (PLL) can be used with the  
internal oscillator block to produce faster device clock  
speeds than are normally possible with the internal  
oscillator sources. When enabled, the PLL produces a  
clock speed of 16 MHz or 32 MHz.  
• Power-up Timer  
• Fail-Safe Clock Monitor  
• Watchdog Timer  
PLL operation is controlled through software. The con-  
trol bit, PLLEN (OSCTUNE<6>), is used to enable or  
disable its operation. The PLL is available only to  
INTOSC when the device is configured to use one of  
the INTPLL modes as the primary clock source  
(FOSC<2:0> = 011or 001). Additionally, the PLL will  
only function when the selected output frequency is  
either 4 MHz or 8 MHz (OSCCON<6:4> = 111or 110).  
• Two-Speed Start-up  
These features are discussed in greater detail in  
Section 25.0 “Special Features of the CPU”.  
The clock source frequency (INTOSC direct, INTOSC  
with postscaler or INTRC direct) is selected by config-  
uring the IRCF bits of the OSCCON register. The  
default frequency on device Resets is 4 MHz.  
Like the INTIO modes, there are two distinct INTPLL  
modes available:  
3.5.1  
INTIO MODES  
• In INTPLL1 mode, the OSC2 pin outputs FOSC/4,  
while OSC1 functions as RA7 for digital input and  
output. Externally, this is identical in appearance  
to INTIO1 (Figure 3-6).  
Using the internal oscillator as the clock source elimi-  
nates the need for up to two external oscillator pins,  
which can then be used for digital I/O. Two distinct  
oscillator configurations, which are determined by the  
FOSC Configuration bits, are available:  
• In INTPLL2 mode, OSC1 functions as RA7 and  
OSC2 functions as RA6, both for digital input and  
output. Externally, this is identical to INTIO2  
(Figure 3-7).  
• In INTIO1 mode, the OSC2 pin outputs FOSC/4,  
while OSC1 functions as RA7 (see Figure 3-6) for  
digital input and output.  
• In INTIO2 mode, OSC1 functions as RA7 and  
OSC2 functions as RA6 (see Figure 3-7), both for  
digital input and output.  
2010 Microchip Technology Inc.  
DS39933D-page 41  
PIC18F87J90 FAMILY  
3.5.3  
INTERNAL OSCILLATOR OUTPUT  
FREQUENCY AND TUNING  
3.5.4.2  
Compensating with the Timers  
This technique compares device clock speed to some  
reference clock. Two timers may be used; one timer is  
clocked by the peripheral clock, while the other is  
clocked by a fixed reference source, such as the  
Timer1 oscillator.  
The internal oscillator block is calibrated at the factory  
to produce an INTOSC output frequency of 8 MHz. It  
can be adjusted in the user’s application by writing to  
TUN<5:0> (OSCTUNE<5:0>) in the OSCTUNE  
register (Register 3-2).  
Both timers are cleared, but the timer clocked by the  
reference generates interrupts. When an interrupt  
occurs, the internally clocked timer is read and both  
timers are cleared. If the internally clocked timer value  
is much greater than expected, then the internal  
oscillator block is running too fast. To adjust for this,  
decrement the OSCTUNE register.  
When the OSCTUNE register is modified, the INTOSC  
frequency will begin shifting to the new frequency. The  
oscillator will stabilize within 1 ms. Code execution  
continues during this shift and there is no indication that  
the shift has occurred.  
The INTRC oscillator operates independently of the  
INTOSC source. Any changes in INTOSC across  
voltage and temperature are not necessarily reflected  
by changes in INTRC or vice versa. The frequency of  
INTRC is not affected by OSCTUNE.  
3.5.4.3  
Compensating with the CCP Module  
in Capture Mode  
A CCP module can use free-running Timer1 (or  
Timer3), clocked by the internal oscillator block and an  
external event with a known period (i.e., AC power  
frequency). The time of the first event is captured in the  
CCPRxH:CCPRxL registers and is recorded for use  
later. When the second event causes a capture, the  
time of the first event is subtracted from the time of the  
second event. Since the period of the external event is  
known, the time difference between events can be  
calculated.  
3.5.4  
INTOSC FREQUENCY DRIFT  
The INTOSC frequency may drift as VDD or tempera-  
ture changes, and can affect the controller operation in  
a variety of ways. It is possible to adjust the INTOSC  
frequency by modifying the value in the OSCTUNE  
register. Depending on the device, this may have no  
effect on the INTRC clock source frequency.  
Tuning INTOSC requires knowing when to make the  
adjustment, in which direction it should be made, and in  
some cases, how large a change is needed. Three  
compensation techniques are shown here.  
If the measured time is much greater than the  
calculated time, the internal oscillator block is running  
too fast. To compensate, decrement the OSCTUNE  
register. If the measured time is much less than the  
calculated time, the internal oscillator block is running  
too slow. To compensate, increment the OSCTUNE  
register.  
3.5.4.1  
Compensating with the EUSART  
An adjustment may be required when the EUSART  
begins to generate framing errors or receives data with  
errors while in Asynchronous mode. Framing errors  
indicate that the device clock frequency is too high. To  
adjust for this, decrement the value in OSCTUNE to  
reduce the clock frequency. On the other hand, errors  
in data may suggest that the clock speed is too low. To  
compensate, increment OSCTUNE to increase the  
clock frequency.  
DS39933D-page 42  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Timer1 oscillator may be operating to support a Real-  
Time Clock (RTC). Other features may be operating  
that do not require a device clock source (i.e., MSSP  
slave, INTx pins and others). Peripherals that may add  
significant current consumption are listed in  
Section 28.2 “DC Characteristics: Power-Down and  
Supply Current PIC18F87J90 Family (Industrial)”.  
3.6  
Effects of Power-Managed Modes  
on the Various Clock Sources  
When PRI_IDLE mode is selected, the designated pri-  
mary oscillator continues to run without interruption.  
For all other power-managed modes, the oscillator  
using the OSC1 pin is disabled. The OSC1 pin (and  
OSC2 pin if used by the oscillator) will stop oscillating.  
3.7  
Power-up Delays  
In Secondary Clock modes (SEC_RUN and  
SEC_IDLE), the Timer1 oscillator is operating and  
providing the device clock. The Timer1 oscillator may  
also run in all power-managed modes if required to  
clock Timer1 or Timer3.  
Power-up delays are controlled by two timers, so that  
no external Reset circuitry is required for most applica-  
tions. The delays ensure that the device is kept in  
Reset until the device power supply is stable under nor-  
mal circumstances and the primary clock is operating  
and stable. For additional information on power-up  
delays, see Section 5.6 “Power-up Timer (PWRT)”.  
In RC_RUN and RC_IDLE modes, the internal  
oscillator provides the device clock source. The 31 kHz  
INTRC output can be used directly to provide the clock  
and may be enabled to support various special  
features, regardless of the power-managed mode (see  
Section 25.2 “Watchdog Timer (WDT)” through  
Section 25.5 “Fail-Safe Clock Monitor” for more  
information on WDT, Fail-Safe Clock Monitor and  
Two-Speed Start-up).  
The first timer is the Power-up Timer (PWRT), which  
provides a fixed delay on power-up (parameter 33,  
Table 28-11); it is always enabled.  
The second timer is the Oscillator Start-up Timer  
(OST), intended to keep the chip in Reset until the  
crystal oscillator is stable (HS modes). The OST does  
this by counting 1024 oscillator cycles before allowing  
the oscillator to clock the device.  
If Sleep mode is selected, all clock sources are  
stopped. Since all the transistor switching currents  
have been stopped, Sleep mode achieves the lowest  
current consumption of the device (only leakage  
currents).  
There is a delay of interval, TCSD (parameter 38,  
Table 28-11), following POR, while the controller  
becomes ready to execute instructions.  
Enabling any on-chip feature that will operate during  
Sleep will increase the current consumed during Sleep.  
The INTRC is required to support WDT operation. The  
TABLE 3-3:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
Oscillator Mode  
OSC1 Pin  
OSC2 Pin  
EC, ECPLL  
HS, HSPLL  
Floating, pulled by external clock  
At logic low (clock/4 output)  
Feedback inverter disabled at quiescent  
voltage level  
Feedback inverter disabled at quiescent  
voltage level  
INTOSC, INTPLL1/2  
I/O pin RA6, direction controlled by  
TRISA<6>  
I/O pin RA6, direction controlled by  
TRISA<7>  
Note:  
See Section 5.0 “Reset” for time-outs due to Sleep and MCLR Reset.  
2010 Microchip Technology Inc.  
DS39933D-page 43  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 44  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
4.1.1  
CLOCK SOURCES  
4.0  
POWER-MANAGED MODES  
The SCS<1:0> bits allow the selection of one of three  
clock sources for power-managed modes. They are:  
The PIC18F87J90 family devices provide the ability to  
manage power consumption by simply managing clock-  
ing to the CPU and the peripherals. In general, a lower  
clock frequency and a reduction in the number of circuits  
being clocked constitutes lower consumed power. For  
the sake of managing power in an application, there are  
three primary modes of operation:  
• the primary clock, as defined by the FOSC<2:0>  
Configuration bits  
• the secondary clock (Timer1 oscillator)  
• the internal oscillator  
4.1.2  
ENTERING POWER-MANAGED  
MODES  
• Run mode  
• Idle mode  
• Sleep mode  
Switching from one power-managed mode to another  
begins by loading the OSCCON register. The  
SCS<1:0> bits select the clock source and determine  
which Run or Idle mode is to be used. Changing these  
bits causes an immediate switch to the new clock  
source, assuming that it is running. The switch may  
also be subject to clock transition delays. These are  
discussed in Section 4.1.3 “Clock Transitions and  
Status Indicators” and subsequent sections.  
These modes define which portions of the device are  
clocked and at what speed. The Run and Idle modes  
may use any of the three available clock sources  
(primary, secondary or internal oscillator block); the  
Sleep mode does not use a clock source.  
The power-managed modes include several  
power-saving features offered on previous PIC®  
devices. One is the clock switching feature, offered in  
other PIC18 devices, allowing the controller to use the  
Timer1 oscillator in place of the primary oscillator. Also  
included is the Sleep mode, offered by all PIC devices,  
where all device clocks are stopped.  
Entry to the power-managed Idle or Sleep modes is  
triggered by the execution of a SLEEPinstruction. The  
actual mode that results depends on the status of the  
IDLEN bit.  
Depending on the current mode and the mode being  
switched to, a change to a power-managed mode does  
not always require setting all of these bits. Many  
transitions may be done by changing the oscillator  
select bits, or changing the IDLEN bit, prior to issuing a  
SLEEP instruction. If the IDLEN bit is already  
configured correctly, it may only be necessary to  
perform a SLEEP instruction to switch to the desired  
mode.  
4.1  
Selecting Power-Managed Modes  
Selecting  
a power-managed mode requires two  
decisions: if the CPU is to be clocked or not and which  
clock source is to be used. The IDLEN bit  
(OSCCON<7>) controls CPU clocking, while the  
SCS<1:0> bits (OSCCON<1:0>) select the clock  
source. The individual modes, bit settings, clock  
sources and affected modules are summarized in  
Table 4-1.  
TABLE 4-1:  
Mode  
POWER-MANAGED MODES  
OSCCON Bits Module Clocking  
CPU Peripherals  
Off Off  
Available Clock and Oscillator Source  
IDLEN<7>(1)  
SCS<1:0>  
Sleep  
0
N/A  
None – All clocks are disabled  
PRI_RUN  
N/A  
10  
Clocked Clocked Primary – HS, EC, HSPLL, ECPLL;  
this is the normal full-power execution mode  
SEC_RUN  
RC_RUN  
PRI_IDLE  
SEC_IDLE  
RC_IDLE  
N/A  
N/A  
1
01  
11  
10  
01  
11  
Clocked Clocked Secondary – Timer1 Oscillator  
Clocked Clocked Internal Oscillator  
Off  
Off  
Off  
Clocked Primary – HS, EC, HSPLL, ECPLL  
Clocked Secondary – Timer1 Oscillator  
Clocked Internal Oscillator  
1
1
Note 1: IDLEN reflects its value when the SLEEPinstruction is executed.  
2010 Microchip Technology Inc.  
DS39933D-page 45  
PIC18F87J90 FAMILY  
4.1.3  
CLOCK TRANSITIONS AND STATUS  
INDICATORS  
4.2  
Run Modes  
In the Run modes, clocks to both the core and  
peripherals are active. The difference between these  
modes is the clock source.  
The length of the transition between clock sources is  
the sum of two cycles of the old clock source and three  
to four cycles of the new clock source. This formula  
assumes that the new clock source is stable.  
4.2.1  
PRI_RUN MODE  
Two bits indicate the current clock source and its  
The PRI_RUN mode is the normal, full-power execu-  
tion mode of the microcontroller. This is also the default  
mode upon a device Reset unless Two-Speed Start-up  
is enabled (see Section 25.4 “Two-Speed Start-up”  
for details). In this mode, the OSTS bit is set (see  
Section 3.2 “Control Registers”).  
status:  
OSTS  
(OSCCON<3>)  
and  
T1RUN  
(T1CON<6>). In general, only one of these bits will be  
set while in a given power-managed mode. When the  
OSTS bit is set, the primary clock is providing the  
device clock. When the T1RUN bit is set, the Timer1  
oscillator is providing the clock. If neither of these bits  
is set, INTRC is clocking the device.  
4.2.2  
SEC_RUN MODE  
The SEC_RUN mode is the compatible mode to the  
“clock switching” feature offered in other PIC18  
devices. In this mode, the CPU and peripherals are  
clocked from the Timer1 oscillator. This gives users the  
option of lower power consumption while still using a  
high-accuracy clock source.  
Note:  
Executing a SLEEP instruction does not  
necessarily place the device into Sleep  
mode. It acts as the trigger to place the  
controller into either the Sleep mode, or  
one of the Idle modes, depending on the  
setting of the IDLEN bit.  
SEC_RUN mode is entered by setting the SCS<1:0>  
bits to ‘01’. The device clock source is switched to the  
Timer1 oscillator (see Figure 4-1), the primary oscilla-  
tor is shut down, the T1RUN bit (T1CON<6>) is set and  
the OSTS bit is cleared.  
4.1.4  
MULTIPLE SLEEP COMMANDS  
The power-managed mode that is invoked with the  
SLEEP instruction is determined by the setting of the  
IDLEN bit at the time the instruction is executed. If  
another SLEEPinstruction is executed, the device will  
enter the power-managed mode specified by IDLEN at  
that time. If IDLEN has changed, the device will enter  
the new power-managed mode specified by the new  
setting.  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_RUN mode.  
If the T1OSCEN bit is not set when the  
SCS<1:0> bits are set to ‘01’, entry to  
SEC_RUN mode will not occur. If the  
Timer1 oscillator is enabled, but not yet  
running, device clocks will be delayed until  
the oscillator has started. In such situa-  
tions, initial oscillator operation is far from  
stable and unpredictable operation may  
result.  
DS39933D-page 46  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
On transitions from SEC_RUN mode to PRI_RUN  
mode, the peripherals and CPU continue to be clocked  
from the Timer1 oscillator while the primary clock is  
started. When the primary clock becomes ready, a  
clock switch back to the primary clock occurs (see  
Figure 4-2). When the clock switch is complete, the  
T1RUN bit is cleared, the OSTS bit is set and the  
primary clock is providing the clock. The IDLEN and  
SCS bits are not affected by the wake-up; the Timer1  
oscillator continues to run.  
FIGURE 4-1:  
TRANSITION TIMING FOR ENTRY TO SEC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
n-1  
n
T1OSI  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
FIGURE 4-2:  
TRANSITION TIMING FROM SEC_RUN MODE TO PRI_RUN MODE (HSPLL)  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
T1OSI  
OSC1  
(1)  
TOST  
(1)  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 2  
PC + 4  
PC  
OSTS bit Set  
SCS<1:0> bits Changed  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
2010 Microchip Technology Inc.  
DS39933D-page 47  
PIC18F87J90 FAMILY  
On transitions from RC_RUN mode to PRI_RUN mode,  
the device continues to be clocked from the INTRC  
while the primary clock is started. When the primary  
clock becomes ready, a clock switch to the primary  
clock occurs (see Figure 4-4). When the clock switch is  
complete, the OSTS bit is set and the primary clock is  
providing the device clock. The IDLEN and SCS bits  
are not affected by the switch. The INTRC source will  
continue to run if either the WDT or the Fail-Safe Clock  
Monitor is enabled.  
4.2.3  
RC_RUN MODE  
In RC_RUN mode, the CPU and peripherals are  
clocked from the internal oscillator; the primary clock is  
shut down. This mode provides the best power conser-  
vation of all the Run modes while still executing code.  
It works well for user applications which are not highly  
timing-sensitive or do not require high-speed clocks at  
all times.  
This mode is entered by setting the SCS bits to ‘11’.  
When the clock source is switched to the INTRC (see  
Figure 4-3), the primary oscillator is shut down and the  
OSTS bit is cleared.  
FIGURE 4-3:  
TRANSITION TIMING TO RC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
n-1  
n
INTRC  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
FIGURE 4-4:  
TRANSITION TIMING FROM RC_RUN MODE TO PRI_RUN MODE  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q1  
Q2  
INTRC  
OSC1  
(1)  
TOST  
(1)  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 2  
PC + 4  
PC  
SCS<1:0> bits Changed  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
DS39933D-page 48  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
4.3  
Sleep Mode  
4.4  
Idle Modes  
The power-managed Sleep mode is identical to the  
legacy Sleep mode offered in all other PIC devices. It is  
entered by clearing the IDLEN bit (the default state on  
device Reset) and executing the SLEEP instruction.  
This shuts down the selected oscillator (Figure 4-5). All  
clock source status bits are cleared.  
The Idle modes allow the controller’s CPU to be  
selectively shut down while the peripherals continue to  
operate. Selecting a particular Idle mode allows users  
to further manage power consumption.  
If the IDLEN bit is set to a ‘1’ when a SLEEPinstruction is  
executed, the peripherals will be clocked from the clock  
source selected using the SCS<1:0> bits; however, the  
CPU will not be clocked. The clock source status bits are  
not affected. Setting IDLEN and executing a SLEEP  
instruction provides a quick method of switching from a  
given Run mode to its corresponding Idle mode.  
Entering the Sleep mode from any other mode does not  
require a clock switch. This is because no clocks are  
needed once the controller has entered Sleep. If the  
WDT is selected, the INTRC source will continue to  
operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
If the WDT is selected, the INTRC source will continue  
to operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
When a wake event occurs in Sleep mode (by interrupt,  
Reset or WDT time-out), the device will not be clocked  
until the clock source, selected by the SCS<1:0> bits,  
becomes ready (see Figure 4-6), or it will be clocked  
from the internal oscillator if either the Two-Speed  
Start-up or the Fail-Safe Clock Monitor is enabled (see  
Section 25.0 “Special Features of the CPU”). In  
either case, the OSTS bit is set when the primary clock  
is providing the device clocks. The IDLEN and SCS bits  
are not affected by the wake-up.  
Since the CPU is not executing instructions, the only  
exits from any of the Idle modes are by interrupt, WDT  
time-out or a Reset. When a wake event occurs, CPU  
execution is delayed by an interval of TCSD  
(parameter 38, Table 28-11) while it becomes ready to  
execute code. When the CPU begins executing code,  
it resumes with the same clock source for the current  
Idle mode. For example, when waking from RC_IDLE  
mode, the internal oscillator block will clock the CPU  
and peripherals (in other words, RC_RUN mode). The  
IDLEN and SCS bits are not affected by the wake-up.  
While in any Idle mode or Sleep mode, a WDT time-out  
will result in a WDT wake-up to the Run mode currently  
specified by the SCS<1:0> bits.  
FIGURE 4-5:  
TRANSITION TIMING FOR ENTRY TO SLEEP MODE  
Q1 Q2 Q3 Q4 Q1  
OSC1  
CPU  
Clock  
Peripheral  
Clock  
Sleep  
Program  
Counter  
PC  
PC + 2  
FIGURE 4-6:  
TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL)  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q2 Q3 Q4 Q1 Q2  
Q1  
OSC1  
(1)  
(1)  
TOST  
TPLL  
PLL Clock  
Output  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
PC + 6  
Wake Event  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
2010 Microchip Technology Inc.  
DS39933D-page 49  
PIC18F87J90 FAMILY  
4.4.1  
PRI_IDLE MODE  
4.4.2  
SEC_IDLE MODE  
This mode is unique among the three low-power Idle  
modes, in that it does not disable the primary device  
clock. For timing-sensitive applications, this allows for  
the fastest resumption of device operation with its more  
accurate primary clock source, since the clock source  
does not have to “warm up” or transition from another  
oscillator.  
In SEC_IDLE mode, the CPU is disabled but the  
peripherals continue to be clocked from the Timer1  
oscillator. This mode is entered from SEC_RUN by set-  
ting the IDLEN bit and executing a SLEEPinstruction. If  
the device is in another Run mode, set IDLEN first, then  
set SCS<1:0> to ‘01’ and execute SLEEP. When the  
clock source is switched to the Timer1 oscillator, the  
primary oscillator is shut down, the OSTS bit is cleared  
and the T1RUN bit is set.  
PRI_IDLE mode is entered from PRI_RUN mode by  
setting the IDLEN bit and executing a SLEEP instruc-  
tion. If the device is in another Run mode, set IDLEN  
first, then set the SCS bits to ‘10’ and execute SLEEP.  
Although the CPU is disabled, the peripherals continue  
to be clocked from the primary clock source specified  
by the FOSC<1:0> Configuration bits. The OSTS bit  
remains set (see Figure 4-7).  
When a wake event occurs, the peripherals continue to  
be clocked from the Timer1 oscillator. After an interval  
of TCSD, following the wake event, the CPU begins exe-  
cuting code being clocked by the Timer1 oscillator. The  
IDLEN and SCS bits are not affected by the wake-up;  
the Timer1 oscillator continues to run (see Figure 4-8).  
When a wake event occurs, the CPU is clocked from the  
primary clock source. A delay of interval, TCSD, is  
required between the wake event and when code  
execution starts. This is required to allow the CPU to  
become ready to execute instructions. After the  
wake-up, the OSTS bit remains set. The IDLEN and  
SCS bits are not affected by the wake-up (see  
Figure 4-8).  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_IDLE mode.  
If the T1OSCEN bit is not set when the  
SLEEPinstruction is executed, the SLEEP  
instruction will be ignored and entry to  
SEC_IDLE mode will not occur. If the  
Timer1 oscillator is enabled, but not yet  
running, peripheral clocks will be delayed  
until the oscillator has started. In such  
situations, initial oscillator operation is far  
from stable and unpredictable operation  
may result.  
FIGURE 4-7:  
TRANSITION TIMING FOR ENTRY TO IDLE MODE  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 4-8:  
TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE  
Q1  
Q3  
Q4  
Q2  
OSC1  
TCSD  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
Wake Event  
DS39933D-page 50  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
4.4.3  
RC_IDLE MODE  
4.5.2  
EXIT BY WDT TIME-OUT  
In RC_IDLE mode, the CPU is disabled but the periph-  
erals continue to be clocked from the internal oscillator.  
This mode allows for controllable power conservation  
during Idle periods.  
A WDT time-out will cause different actions depending  
on which power-managed mode the device is in when  
the time-out occurs.  
If the device is not executing code (all Idle modes and  
Sleep mode), the time-out will result in an exit from the  
power-managed mode (see Section 4.2 “Run  
Modes” and Section 4.3 “Sleep Mode”). If the device  
is executing code (all Run modes), the time-out will  
result in a WDT Reset (see Section 25.2 “Watchdog  
Timer (WDT)”).  
From RC_RUN, this mode is entered by setting the  
IDLEN bit and executing a SLEEP instruction. If the  
device is in another Run mode, first set IDLEN, then  
clear the SCS bits and execute SLEEP. When the clock  
source is switched to the INTRC, the primary oscillator  
is shut down and the OSTS bit is cleared.  
When a wake event occurs, the peripherals continue to  
be clocked from the INTOSC. After a delay of TCSD,  
following the wake event, the CPU begins executing  
code being clocked by the INTOSC. The IDLEN and  
SCS bits are not affected by the wake-up. The INTOSC  
source will continue to run if either the WDT or the  
Fail-Safe Clock Monitor is enabled.  
The Watchdog Timer and postscaler are cleared by one  
of the following events:  
• executing a SLEEPor CLRWDTinstruction  
• the loss of a currently selected clock source (if the  
Fail-Safe Clock Monitor is enabled)  
4.5.3  
EXIT BY RESET  
Exiting an Idle or Sleep mode by Reset automatically  
forces the device to run from the INTRC.  
4.5  
Exiting Idle and Sleep Modes  
An exit from Sleep mode, or any of the Idle modes, is  
triggered by an interrupt, a Reset or a WDT time-out.  
This section discusses the triggers that cause exits  
from power-managed modes. The clocking subsystem  
actions are discussed in each of the power-managed  
mode sections (see Section 4.2 “Run Modes”,  
Section 4.3 “Sleep Mode” and Section 4.4 “Idle  
Modes”).  
4.5.4  
EXIT WITHOUT AN OSCILLATOR  
START-UP DELAY  
Certain exits from power-managed modes do not  
invoke the OST at all. There are two cases:  
• PRI_IDLE mode, where the primary clock source  
is not stopped; and  
• the primary clock source is either the EC or  
ECPLL mode.  
4.5.1  
EXIT BY INTERRUPT  
Any of the available interrupt sources can cause the  
device to exit from an Idle mode, or the Sleep mode, to  
a Run mode. To enable this functionality, an interrupt  
source must be enabled by setting its enable bit in one  
of the INTCON or PIE registers. The exit sequence is  
initiated when the corresponding interrupt flag bit is set.  
In these instances, the primary clock source either  
does not require an oscillator start-up delay, since it is  
already running (PRI_IDLE), or normally does not  
require an oscillator start-up delay (EC). However, a  
fixed delay of interval, TCSD, following the wake event  
is still required when leaving Sleep and Idle modes to  
allow the CPU to prepare for execution. Instruction  
execution resumes on the first clock cycle following this  
delay.  
On all exits from Idle or Sleep modes by interrupt, code  
execution branches to the interrupt vector if the  
GIE/GIEH bit (INTCON<7>) is set. Otherwise, code  
execution continues or resumes without branching  
(see Section 9.0 “Interrupts”).  
A fixed delay of interval, TCSD, following the wake event,  
is required when leaving Sleep and Idle modes. This  
delay is required for the CPU to prepare for execution.  
Instruction execution resumes on the first clock cycle  
following this delay.  
2010 Microchip Technology Inc.  
DS39933D-page 51  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 52  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
A simplified block diagram of the on-chip Reset circuit  
is shown in Figure 5-1.  
5.0  
RESET  
The PIC18F87J90 family of devices differentiates  
between various kinds of Reset:  
5.1  
RCON Register  
• Power-on Reset (POR)  
Device Reset events are tracked through the RCON  
register (Register 5-1). The lower five bits of the  
register indicate that a specific Reset event has  
occurred. In most cases, these bits can only be set by  
the event and must be cleared by the application after  
the event. The state of these flag bits, taken together,  
can be read to indicate the type of Reset that just  
occurred. This is described in more detail in  
Section 5.7 “Reset State of Registers”.  
• MCLR Reset during normal operation  
• MCLR Reset during power-managed modes  
• Watchdog Timer (WDT) Reset (during  
execution)  
• Brown-out Reset (BOR)  
• Configuration Mismatch (CM) Reset  
RESETInstruction  
• Stack Full Reset  
The RCON register also has a control bit for setting  
interrupt priority (IPEN). Interrupt priority is discussed  
in Section 9.0 “Interrupts”.  
• Stack Underflow Reset  
This section discusses Resets generated by MCLR,  
POR and BOR, and covers the operation of the various  
start-up timers. Stack Reset events are covered in  
Section 6.1.4.4 “Stack Full and Underflow Resets”.  
WDT Resets are covered in Section 25.2 “Watchdog  
Timer (WDT)”.  
FIGURE 5-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Configuration Word  
Mismatch  
Stack Full/Underflow Reset  
Stack  
Pointer  
External Reset  
MCLR  
IDLE  
Sleep  
WDT  
Time-out  
VDD Rise  
Detect  
POR Pulse  
VDD  
Brown-out  
Reset  
(1)  
S
PWRT  
Chip_Reset  
32 s (typical)  
65.5 ms (typical)  
PWRT  
11-Bit Ripple Counter  
Q
R
INTRC  
Note 1: The ENVREG pin must be tied high to enable Brown-out Reset. The Brown-out Reset is provided by the on-chip  
voltage regulator when there is insufficient source voltage to maintain regulation.  
2010 Microchip Technology Inc.  
DS39933D-page 53  
PIC18F87J90 FAMILY  
REGISTER 5-1:  
RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
U-0  
R/W-1  
CM  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16XXXX Compatibility mode)  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
CM: Configuration Mismatch Flag bit  
1= A configuration mismatch has not occurred  
0= A configuration mismatch has occurred (must be set in software after a Configuration Mismatch  
Reset occurs)  
bit 4  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed (set by firmware only)  
0= The RESET instruction was executed causing a device Reset (must be set in software after a  
Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
1= Set by power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-Down Detection Flag bit  
1= Set by power-up or by the CLRWDTinstruction  
0= Set by execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= A Power-on Reset has not occurred (set by firmware only)  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred (set by firmware only)  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: It is recommended that the POR bit be set after a Power-on Reset has been detected, so that subsequent  
Power-on Resets may be detected.  
2: If the on-chip voltage regulator is disabled, BOR remains ‘0’ at all times. See Section 5.4.1 “Detecting  
BOR” for more information.  
3: Brown-out Reset is said to have occurred when BOR is ‘0’ and POR is ‘1’ (assuming that POR was set to  
1’ by software immediately after a Power-on Reset).  
DS39933D-page 54  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 5-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
5.2  
Master Clear (MCLR)  
The MCLR pin provides a method for triggering a hard  
external Reset of the device. A Reset is generated by  
holding the pin low. PIC18 extended microcontroller  
devices have a noise filter in the MCLR Reset path  
which detects and ignores small pulses.  
VDD  
VDD  
D
R
The MCLR pin is not driven low by any internal Resets,  
including the WDT.  
R1  
MCLR  
PIC18F87J90  
C
5.3  
Power-on Reset (POR)  
A Power-on Reset condition is generated on-chip  
whenever VDD rises above a certain threshold. This  
allows the device to start in the initialized state when  
VDD is adequate for operation.  
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode, D, helps discharge the capacitor  
quickly when VDD powers down.  
To take advantage of the POR circuitry, tie the MCLR  
pin through a resistor (1 kto 10 k) to VDD. This will  
eliminate external RC components usually needed to  
create a Power-on Reset delay. A minimum rise rate for  
VDD is specified (parameter D004). For a slow rise  
time, see Figure 5-2.  
2: R < 40 kis recommended to make sure that  
the voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 1 kwill limit any current flowing into  
MCLR from external capacitor, C, in the event  
of MCLR/VPP pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
When the device starts normal operation (i.e., exits the  
Reset condition), device operating parameters  
(voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
5.4.1  
DETECTING BOR  
The BOR bit always resets to ‘0’ on any Brown-out  
Reset or Power-on Reset event. This makes it difficult  
to determine if a Brown-out Reset event has occurred  
just by reading the state of BOR alone. A more reliable  
method is to simultaneously check the state of both  
POR and BOR. This assumes that the POR bit is reset  
to ‘1’ in software immediately after any Power-on Reset  
event. If BOR is ‘0’ while POR is ‘1’, it can be reliably  
assumed that a Brown-out Reset event has occurred.  
Power-on Reset events are captured by the POR bit  
(RCON<1>). The state of the bit is set to ‘0’ whenever  
a Power-on Reset occurs; it does not change for any  
other Reset event. POR is not reset to ‘1’ by any  
hardware event. To capture multiple events, the user  
manually resets the bit to ‘1’ in software following any  
Power-on Reset.  
If the voltage regulator is disabled, Brown-out Reset  
functionality is disabled. In this case, the BOR bit  
cannot be used to determine a Brown-out Reset event.  
The BOR bit is still cleared by a Power-on Reset event.  
5.4  
Brown-out Reset (BOR)  
The PIC18F87J90 family of devices incorporates a  
simple BOR function when the internal regulator is  
enabled (ENVREG pin is tied to VDD). The voltage reg-  
ulator will trigger a Brown-out Reset when output of the  
regulator to the device core approaches the voltage at  
which the device is unable to run at full speed. The  
BOR circuit also keeps the device in Reset as VDD  
rises, until the regulator’s output level is sufficient for  
full-speed operation.  
5.5  
Configuration Mismatch (CM)  
The Configuration Mismatch (CM) Reset is designed to  
detect, and attempt to recover from, random, memory  
corrupting events. These include Electrostatic  
Discharge (ESD) events that can cause widespread,  
single bit changes throughout the device and result in  
catastrophic failure.  
Once a BOR has occurred, the Power-up Timer will  
keep the chip in Reset for TPWRT (parameter 33). If  
VDD drops below the threshold for full-speed operation  
while the Power-up Timer is running, the chip will go  
back into a Brown-out Reset and the Power-up Timer  
will be initialized. Once VDD rises to the point where the  
regulator output is sufficient, the Power-up Timer will  
execute the additional time delay.  
In PIC18FXXJ Flash devices, the device Configuration  
registers (located in the configuration memory space)  
are continuously monitored during operation by com-  
paring their values to complimentary shadow registers.  
If a mismatch is detected between the two sets of  
registers, a CM Reset automatically occurs. These  
events are captured by the CM bit (RCON<5>). The  
state of the bit is set to ‘0’ whenever a CM event occurs.  
The bit does not change for any other Reset event.  
2010 Microchip Technology Inc.  
DS39933D-page 55  
PIC18F87J90 FAMILY  
5.6.1  
TIME-OUT SEQUENCE  
5.6  
Power-up Timer (PWRT)  
If enabled, the PWRT time-out is invoked after the POR  
pulse has cleared. The total time-out will vary based on  
the status of the PWRT. Figure 5-3, Figure 5-4,  
Figure 5-5 and Figure 5-6 all depict time-out  
sequences on power-up with the Power-up Timer  
enabled.  
PIC18F87J90 family devices incorporate an on-chip  
Power-up Timer (PWRT) to help regulate the Power-on  
Reset process. The PWRT is always enabled. The  
main function is to ensure that the device voltage is  
stable before code is executed.  
The Power-up Timer (PWRT) of the PIC18F87J90 fam-  
ily devices is an 11-bit counter which uses the INTRC  
source as the clock input. This yields an approximate  
time interval of 2048 x 32 s = 65.6 ms. While the  
PWRT is counting, the device is held in Reset.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the PWRT will expire. Bringing  
MCLR high will begin execution immediately  
(Figure 5-5). This is useful for testing purposes or to  
synchronize more than one PIC18FXXXX device  
operating in parallel.  
The power-up time delay depends on the INTRC clock  
and will vary from chip to chip due to temperature and  
process variation. See DC parameter 33 for details.  
FIGURE 5-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
INTERNAL RESET  
FIGURE 5-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
INTERNAL RESET  
DS39933D-page 56  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 5-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
INTERNAL RESET  
FIGURE 5-6:  
SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)  
3.3V  
0V  
1V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
INTERNAL RESET  
2010 Microchip Technology Inc.  
DS39933D-page 57  
PIC18F87J90 FAMILY  
Table 5-2 describes the Reset states for all of the  
Special Function Registers. These are categorized by  
Power-on and Brown-out Resets, Master Clear and  
WDT Resets, and WDT wake-ups.  
5.7  
Reset State of Registers  
Most registers are unaffected by a Reset. Their status  
is unknown on POR and unchanged by all other  
Resets. The other registers are forced to a “Reset  
state” depending on the type of Reset that occurred.  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal  
operation. Status bits from the RCON register, RI, TO,  
PD, POR and BOR, are set or cleared differently in  
different Reset situations, as indicated in Table 5-1.  
These bits are used in software to determine the nature  
of the Reset.  
TABLE 5-1:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
RCON Register  
STKPTR Register  
Program  
Condition  
Counter(1)  
RI  
TO  
PD  
POR  
BOR  
STKFUL STKUNF  
Power-on Reset  
RESETInstruction  
Brown-out Reset  
0000h  
0000h  
0000h  
0000h  
1
0
1
u
1
u
1
1
1
u
1
u
0
u
u
u
0
u
0
u
0
u
u
u
0
u
u
u
MCLR during power-managed  
Run modes  
MCLR during power-managed  
Idle modes and Sleep mode  
0000h  
0000h  
0000h  
u
u
u
1
0
u
0
u
u
u
u
u
u
u
u
u
u
u
u
u
u
WDT time-out during full power  
or power-managed Run modes  
MCLR during full-power  
execution  
Stack Full Reset (STVREN = 1)  
0000h  
0000h  
u
u
u
u
u
u
u
u
u
u
1
u
u
1
Stack Underflow Reset  
(STVREN = 1)  
Stack Underflow Error (not an  
actual Reset, STVREN = 0)  
0000h  
u
u
u
0
u
0
u
u
u
u
u
u
1
u
WDT time-out during  
power-managed Idle or Sleep  
modes  
PC + 2  
Interrupt exit from  
PC + 2  
u
u
0
u
u
u
u
power-managed modes  
Legend: u= unchanged  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
DS39933D-page 58  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 5-2:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESETInstruction  
Stack Resets  
TOSU  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
---0 0000  
0000 0000  
0000 0000  
uu-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 1111  
1100 0000  
N/A  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 1111  
1100 0000  
N/A  
---0 uuuu(1)  
uuuu uuuu(1)  
uuuu uuuu(1)  
uu-u uuuu(1)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
N/A  
TOSH  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
FSR0L  
WREG  
INDF1  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 5-1 for Reset value for specific conditions.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read as ‘0’.  
2010 Microchip Technology Inc.  
DS39933D-page 59  
PIC18F87J90 FAMILY  
TABLE 5-2:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
RESETInstruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
FSR1H  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
---- xxxx  
xxxx xxxx  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- uuuu  
N/A  
FSR1L  
BSR  
INDF2  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
0110 q000  
-011 1100  
0--- ---0  
0-11 11q0  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
0000 0000  
uuuu uuuu  
1111 1111  
0110 q000  
-011 1000  
0--- ---0  
0-0q qquu  
uuuu uuuu  
uuuu uuuu  
u0uu uuuu  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu quuu  
-uuu uuuu  
u--- ---u  
u-uu qquu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LCDREG  
WDTCON  
RCON(4)  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 5-1 for Reset value for specific conditions.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read as ‘0’.  
DS39933D-page 60  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 5-2:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESETInstruction  
Stack Resets  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
LCDDATA4  
LCDDATA4  
LCDDATA3  
LCDDATA2  
LCDDATA1  
LCDDATA0  
LCDSE5  
LCDSE4  
LCDSE4  
LCDSE3  
LCDSE2  
LCDSE1  
CVRCON  
CMCON  
TMR3H  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
0-00 0000  
0-00 0000  
---- ---x  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 0000  
---- ---0  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0111  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
0000 0000  
0000 0000  
000- 0000  
---- ----  
---0 x00-  
uuuu uuuu  
uuuu uuuu  
0-00 0000  
0-00 0000  
0-00 0000  
---- ---u  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- ---u  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0111  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
0000 0000  
uuuu uuuu  
000- 0000  
---- ----  
---0 u00-  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
u-uu uuuu  
u-uu uuuu  
---- ---u  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- ---u  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- uuuu  
---- ----  
---0 u00-  
TMR3L  
T3CON  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
LCDPS  
LCDSE0  
LCDCON  
EECON2  
EECON1  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 5-1 for Reset value for specific conditions.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read as ‘0’.  
2010 Microchip Technology Inc.  
DS39933D-page 61  
PIC18F87J90 FAMILY  
TABLE 5-2:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
RESETInstruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
IPR3  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
-111 1111  
-000 0000  
-000 0000  
11-- 111-  
00-- 000-  
00-- 000-  
-111 1-11  
-000 0-00  
-000 0-00  
0000 0000  
1111 1111  
1111 1111  
0001 1111  
1111 111-  
1111 1-11  
1111 1111  
1111 1111  
1111 1111  
1111 1111(5)  
xxxx xxxx  
xxxx xxxx  
00-x xxxx  
xxxx xxx-  
xxxx x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx(5)  
xxxx xxxx  
xxxx xxxx  
000x xxxx  
xxxx xxx-  
-111 1111  
-000 0000  
-000 0000  
11-- 111-  
00-- 000-  
00-- 000-  
-111 1-11  
-000 0-00  
-000 0-00  
0000 0000  
1111 1111  
1111 1111  
0001 1111  
1111 111-  
1111 1-11  
1111 1111  
1111 1111  
1111 1111  
1111 1111(5)  
uuuu uuuu  
uuuu uuuu  
00-u uuuu  
uuuu uuu-  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
000u uuuu  
uuuu uuu-  
-uuu 1111  
-uuu 0000(3)  
-uuu 0000  
uu-- uuu-  
uu-- uuu-(3)  
uu-- uuu-  
-uuu u-uu  
-uuu u-uu(3)  
-uuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuu-  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
uu-u uuuu  
uuuu uuu-  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
000u uuuu  
uuuu uuu-  
PIR3  
PIE3  
IPR2  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
OSCTUNE  
TRISJ  
TRISH  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA(5)  
LATJ  
LATH  
LATG  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA(5)  
PORTJ  
PORTH  
PORTG  
PORTF  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 5-1 for Reset value for specific conditions.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read as ‘0’.  
DS39933D-page 62  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 5-2:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESETInstruction  
Stack Resets  
PORTE  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
xxxx x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xx0x 0000(5)  
0000 0000  
0100 0-00  
xxxx xxxx  
---- ---x  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- ---x  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- ---x  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu0u 0000(5)  
0000 0000  
0100 0-00  
uuuu uuuu  
---- ---u  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- ---u  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- ---u  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
---- ---u  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- ---u  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- ---u  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
PORTD  
PORTC  
PORTB  
PORTA(5)  
SPBRGH1  
BAUDCON1  
LCDDATA23  
LCDDATA22  
LCDDATA22  
LCDDATA21  
LCDDATA20  
LCDDATA19  
LCDDATA18  
LCDDATA17  
LCDDATA16  
LCDDATA16  
LCDDATA15  
LCDDATA14  
LCDDATA13  
LCDDATA12  
LCDDATA11  
LCDDATA10  
LCDDATA10  
LCDDATA9  
LCDDATA8  
LCDDATA7  
LCDDATA6  
LCDDATA5  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 5-1 for Reset value for specific conditions.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read as ‘0’.  
2010 Microchip Technology Inc.  
DS39933D-page 63  
PIC18F87J90 FAMILY  
TABLE 5-2:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
RESETInstruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
CCPR2L  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
PIC18F6XJ90 PIC18F8XJ90  
xxxx xxxx  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
0-00 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
0000 0000  
0000 0000  
---- -00-  
uuuu uuuu  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
0-00 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0-00 0000  
0000 0000  
0000 0000  
---- -00-  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uu-  
CCP2CON  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
RCSTA2  
RTCCFG  
RTCCAL  
RTCVALH  
RTCVALL  
ALRMCFG  
ALRMRPT  
ALRMVALH  
ALRMVALL  
CTMUCONH  
CTMUCONL  
CTMUICON  
PADCFG1  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 5-1 for Reset value for specific conditions.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read as ‘0’.  
DS39933D-page 64  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
6.1  
Program Memory Organization  
6.0  
MEMORY ORGANIZATION  
PIC18 microcontrollers implement a 21-bit program  
counter which is capable of addressing a 2-Mbyte  
program memory space. Accessing a location between  
the upper boundary of the physically implemented  
memory and the 2-Mbyte address will return all ‘0’s (a  
NOPinstruction).  
There are two types of memory in PIC18 Flash  
microcontroller devices:  
• Program Memory  
• Data RAM  
As Harvard architecture devices, the data and program  
memories use separate busses; this allows for  
concurrent access of the two memory spaces.  
The entire PIC18F87J90 family offers a range of  
on-chip Flash program memory sizes, from 64 Kbytes  
(up to 16,384 single-word instructions) to 128 Kbytes  
(65,536 single-word instructions). The program  
memory maps for individual family members are shown  
in Figure 6-1.  
Additional detailed information on the operation of the  
Flash program memory is provided in Section 7.0  
“Flash Program Memory”.  
FIGURE 6-1:  
MEMORY MAPS FOR PIC18F87J90 FAMILY DEVICES  
PC<20:0>  
21  
CALL, CALLW, RCALL,  
RETURN, RETFIE, RETLW,  
ADDULNK, SUBULNK  
Stack Level 1  
Stack Level 31  
PIC18FX7J90  
PIC18FX6J90  
On-Chip  
000000h  
00FFFFh  
01FFFFh  
On-Chip  
Memory  
Memory  
Config. Words  
Config. Words  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
1FFFFFh  
Note:  
Sizes of memory areas are not to scale. Sizes of program memory areas are enhanced to show detail.  
2010 Microchip Technology Inc.  
DS39933D-page 65  
PIC18F87J90 FAMILY  
6.1.1  
HARD MEMORY VECTORS  
6.1.2  
FLASH CONFIGURATION WORDS  
All PIC18 devices have a total of three hard-coded  
return vectors in their program memory space. The  
Reset vector address is the default value to which the  
program counter returns on all device Resets; it is  
located at 0000h.  
Because PIC18F87J90 family devices do not have per-  
sistent configuration memory, the top four words of  
on-chip program memory are reserved for configuration  
information. On Reset, the configuration information is  
copied into the Configuration registers.  
PIC18 devices also have two interrupt vector  
addresses for the handling of high-priority and  
low-priority interrupts. The high-priority interrupt vector  
is located at 0008h and the low-priority interrupt vector  
is at 0018h. Their locations in relation to the program  
memory map are shown in Figure 6-2.  
The Configuration Words are stored in their program  
memory location in numerical order, starting with the  
lower byte of CONFIG1 at the lowest address and end-  
ing with the upper byte of CONFIG4. For these devices,  
only Configuration Words, CONFIG1 through  
CONFIG3, are used; CONFIG4 is reserved. The actual  
addresses of the Flash Configuration Word for devices  
in the PIC18F87J90 family are shown in Table 6-1.  
Their location in the memory map is shown with the  
other memory vectors in Figure 6-2.  
FIGURE 6-2:  
HARD VECTOR AND  
CONFIGURATION WORD  
LOCATIONS FOR  
Additional details on the device Configuration Words  
are provided in Section 25.1 “Configuration Bits”.  
PIC18F87J90 FAMILY  
FAMILY DEVICES  
TABLE 6-1:  
FLASH CONFIGURATION  
WORD FOR PIC18F87J90  
FAMILY DEVICES  
0000h  
0008h  
Reset Vector  
High-Priority Interrupt Vector  
Low-Priority Interrupt Vector 0018h  
Program  
Configuration Word  
Memory  
Device  
Addresses  
(Kbytes)  
PIC18F66J90  
PIC18F86J90  
PIC18F67J90  
PIC18F87J90  
64  
FFF8h to FFFFh  
On-Chip  
Program Memory  
128  
1FFF8h to 1FFFFh  
(Top of Memory-7)  
(Top of Memory)  
Flash Configuration Words  
Read ‘0’  
1FFFFFh  
Legend:  
(Top of Memory) represents upper boundary  
of on-chip program memory space (see  
Figure 6-1 for device-specific values).  
Shaded area represents unimplemented  
memory. Areas are not shown to scale.  
DS39933D-page 66  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The stack operates as a 31-word by 21-bit RAM and a  
5-bit Stack Pointer, STKPTR. The stack space is not  
part of either program or data space. The Stack Pointer  
is readable and writable, and the address on the top of  
the stack is readable and writable through the  
Top-of-Stack Special Function Registers. Data can also  
be pushed to, or popped from, the stack, using these  
registers.  
6.1.3  
PROGRAM COUNTER  
The Program Counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21 bits wide  
and is contained in three separate 8-bit registers. The  
low byte, known as the PCL register, is both readable  
and writable. The high byte, or PCH register, contains  
the PC<15:8> bits; it is not directly readable or writable.  
Updates to the PCH register are performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits; it is also not  
directly readable or writable. Updates to the PCU  
register are performed through the PCLATU register.  
A CALLtype instruction causes a push onto the stack.  
The Stack Pointer is first incremented and the location  
pointed to by the Stack Pointer is written with the  
contents of the PC (already pointing to the instruction  
following the CALL). A RETURNtype instruction causes  
a pop from the stack. The contents of the location  
pointed to by the STKPTR are transferred to the PC  
and then the Stack Pointer is decremented.  
The contents of PCLATH and PCLATU are transferred  
to the program counter by any operation that writes  
PCL. Similarly, the upper two bytes of the program  
counter are transferred to PCLATH and PCLATU by an  
operation that reads PCL. This is useful for computed  
offsets to the PC (see Section 6.1.6.1 “Computed  
GOTO).  
The Stack Pointer is initialized to ‘00000’ after all  
Resets. There is no RAM associated with the location  
corresponding to a Stack Pointer value of ‘00000’; this  
is only a Reset value. Status bits indicate if the stack is  
full, has overflowed or has underflowed.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the Least Significant bit of PCL is fixed to  
a value of ‘0’. The PC increments by 2 to address  
sequential instructions in the program memory.  
6.1.4.1  
Top-of-Stack Access  
Only the top of the return address stack (TOS) is  
readable and writable. A set of three registers,  
TOSU:TOSH:TOSL, holds the contents of the stack  
location pointed to by the STKPTR register (Figure 6-3).  
This allows users to implement a software stack, if nec-  
essary. After a CALL, RCALLor interrupt (and ADDULNK  
and SUBULNKinstructions if the extended instruction set  
is enabled), the software can read the pushed value by  
reading the TOSU:TOSH:TOSL registers. These values  
can be placed on a user-defined software stack. At  
return time, the software can return these values to  
TOSU:TOSH:TOSL and do a return.  
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
6.1.4  
RETURN ADDRESS STACK  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC is  
pushed onto the stack when a CALLor RCALLinstruc-  
tion is executed, or an interrupt is Acknowledged. The  
PC value is pulled off the stack on a RETURN, RETLWor  
a RETFIEinstruction (and on ADDULNKand SUBULNK  
instructions if the extended instruction set is enabled).  
PCLATU and PCLATH are not affected by any of the  
RETURNor CALLinstructions.  
The user must disable the global interrupt enable bits  
while accessing the stack to prevent inadvertent stack  
corruption.  
FIGURE 6-3:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack <20:0>  
Stack Pointer  
Top-of-Stack Registers  
11111  
11110  
11101  
STKPTR<4:0>  
TOSU TOSH TOSL  
00010  
00h  
1Ah  
34h  
00011  
00010  
00001  
00000  
001A34h  
000D58h  
Top-of-Stack  
2010 Microchip Technology Inc.  
DS39933D-page 67  
PIC18F87J90 FAMILY  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and set the STKUNF bit, while the Stack  
Pointer remains at zero. The STKUNF bit will remain  
set until cleared by software or until a POR occurs.  
6.1.4.2  
Return Stack Pointer (STKPTR)  
The STKPTR register (Register 6-1) contains the Stack  
Pointer value, the STKFUL (Stack Full) status bit and the  
STKUNF (Stack Underflow) status bit. The value of the  
Stack Pointer can be 0 through 31. The Stack Pointer  
increments before values are pushed onto the stack and  
decrements after values are popped off of the stack. On  
Reset, the Stack Pointer value will be zero. The user  
may read and write the Stack Pointer value. This feature  
can be used by a Real-Time Operating System (RTOS)  
for return stack maintenance.  
Note:  
Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the Reset vector, where the  
stack conditions can be verified and  
appropriate actions can be taken. This is  
not the same as a Reset as the contents of  
the SFRs are not affected.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit is cleared by software or by a  
POR.  
6.1.4.3  
PUSHand POPInstructions  
Since the Top-of-Stack is readable and writable, the  
ability to push values onto the stack and pull values off  
the stack, without disturbing normal program execu-  
tion, is a desirable feature. The PIC18 instruction set  
includes two instructions, PUSH and POP, that permit  
the TOS to be manipulated under software control.  
TOSU, TOSH and TOSL can be modified to place data  
or a return address on the stack.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (Stack Over-  
flow Reset Enable) Configuration bit. (Refer to  
Section 25.1 “Configuration Bits” for a description of  
the device Configuration bits.) If STVREN is set  
(default), the 31st push will push the (PC + 2) value  
onto the stack, set the STKFUL bit and reset the  
device. The STKFUL bit will remain set and the Stack  
Pointer will be set to zero.  
The PUSHinstruction places the current PC value onto  
the stack. This increments the Stack Pointer and loads  
the current PC value onto the stack.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the Stack Pointer will increment to 31.  
Any additional pushes will not overwrite the 31st push  
and the STKPTR will remain at 31.  
The POP instruction discards the current TOS by  
decrementing the Stack Pointer. The previous value  
pushed onto the stack then becomes the TOS value.  
REGISTER 6-1:  
STKPTR: STACK POINTER REGISTER  
R/C-0  
STKFUL(1)  
R/C-0  
STKUNF(1)  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
STKFUL: Stack Full Flag bit(1)  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit(1)  
1= Stack underflow occurred  
0= Stack underflow did not occur  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
SP<4:0>: Stack Pointer Location bits  
Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.  
DS39933D-page 68  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
6.1.4.4  
Stack Full and Underflow Resets  
6.1.6  
LOOK-UP TABLES IN PROGRAM  
MEMORY  
Device Resets on stack overflow and stack underflow  
conditions are enabled by setting the STVREN bit in  
Configuration Register 1L. When STVREN is set, a full  
or underflow condition will set the appropriate STKFUL  
or STKUNF bit and then cause a device Reset. When  
STVREN is cleared, a full or underflow condition will set  
the appropriate STKFUL or STKUNF bit, but not cause  
a device Reset. The STKFUL or STKUNF bits are  
cleared by the user software or a Power-on Reset.  
There may be programming situations that require the  
creation of data structures, or look-up tables, in  
program memory. For PIC18 devices, look-up tables  
can be implemented in two ways:  
• Computed GOTO  
Table Reads  
6.1.6.1  
Computed GOTO  
6.1.5  
FAST REGISTER STACK  
A computed GOTOis accomplished by adding an offset  
to the program counter. An example is shown in  
Example 6-2.  
A Fast Register Stack is provided for the STATUS,  
WREG and BSR registers to provide a “fast return”  
option for interrupts. This stack is only one level deep  
and is neither readable nor writable. It is loaded with the  
current value of the corresponding register when the  
processor vectors for an interrupt. All interrupt sources  
will push values into the Stack registers. The values in  
the registers are then loaded back into the working  
registers if the RETFIE, FAST instruction is used to  
return from the interrupt.  
A look-up table can be formed with an ADDWF PCL  
instruction and a group of RETLW nninstructions. The  
W register is loaded with an offset into the table before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCLinstruction. The next  
instruction executed will be one of the RETLW nn  
instructions that returns the value ‘nn’ to the calling  
function.  
If both low and high-priority interrupts are enabled, the  
Stack registers cannot be used reliably to return from  
low-priority interrupts. If a high-priority interrupt occurs  
while servicing a low-priority interrupt, the Stack  
register values stored by the low-priority interrupt will  
be overwritten. In these cases, users must save the key  
registers in software during a low-priority interrupt.  
The offset value (in WREG) specifies the number of  
bytes that the program counter should advance and  
should be multiples of 2 (LSb = 0).  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
If interrupt priority is not used, all interrupts may use the  
Fast Register Stack for returns from interrupt. If no  
interrupts are used, the Fast Register Stack can be  
used to restore the STATUS, WREG and BSR registers  
at the end of a subroutine call. To use the Fast Register  
Stack for a subroutine call, a CALL label, FAST  
instruction must be executed to save the STATUS,  
WREG and BSR registers to the Fast Register Stack. A  
RETURN, FAST instruction is then executed to restore  
these registers from the Fast Register Stack.  
EXAMPLE 6-2:  
COMPUTED GOTOUSING  
AN OFFSET VALUE  
OFFSET, W  
TABLE  
MOVF  
CALL  
ORG  
TABLE  
nn00h  
ADDWF  
RETLW  
RETLW  
RETLW  
.
PCL  
nnh  
nnh  
nnh  
.
Example 6-1 shows a source code example that uses  
the Fast Register Stack during a subroutine call and  
return.  
.
6.1.6.2  
Table Reads  
A better method of storing data in program memory  
allows two bytes of data to be stored in each instruction  
location.  
EXAMPLE 6-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
CALL  
SUB1, FAST ;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
Look-up table data may be stored two bytes per  
program word while programming. The Table Pointer  
(TBLPTR) specifies the byte address and the Table  
Latch (TABLAT) contains the data that is read from the  
program memory. Data is transferred from program  
memory, one byte at a time.  
SUB1  
RETURN FAST ;RESTORE VALUES SAVED  
Table read operation is discussed further in  
;IN FAST REGISTER STACK  
Section 7.1 “Table Reads and Table Writes”.  
2010 Microchip Technology Inc.  
DS39933D-page 69  
PIC18F87J90 FAMILY  
6.2.2  
INSTRUCTION FLOW/PIPELINING  
6.2  
PIC18 Instruction Cycle  
An “Instruction Cycle” consists of four Q cycles, Q1  
through Q4. The instruction fetch and execute are pipe-  
lined in such a manner that a fetch takes one instruction  
cycle, while the decode and execute take another  
instruction cycle. However, due to the pipelining, each  
instruction effectively executes in one cycle. If an  
instruction causes the program counter to change (e.g.,  
GOTO), then two cycles are required to complete the  
instruction (Example 6-3).  
6.2.1  
CLOCKING SCHEME  
The microcontroller clock input, whether from an  
internal or external source, is internally divided by four  
to generate four non-overlapping quadrature clocks  
(Q1, Q2, Q3 and Q4). Internally, the program counter is  
incremented on every Q1; the instruction is fetched  
from the program memory and latched into the  
Instruction Register (IR) during Q4. The instruction is  
decoded and executed during the following Q1 through  
Q4. The clocks and instruction execution flow are  
shown in Figure 6-4.  
A fetch cycle begins with the Program Counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the Instruction Register (IR) in cycle, Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 6-4:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Q4  
Internal  
Phase  
Clock  
PC  
PC + 2  
PC + 4  
PC  
OSC2/CLKO  
(RC mode)  
Execute INST (PC – 2)  
Fetch INST (PC)  
Execute INST (PC)  
Fetch INST (PC + 2)  
Execute INST (PC + 2)  
Fetch INST (PC + 4)  
EXAMPLE 6-3:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush (NOP)  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction  
is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
DS39933D-page 70  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The CALL and GOTO instructions have the absolute  
program memory address embedded into the instruc-  
tion. Since instructions are always stored on word  
boundaries, the data contained in the instruction is a  
word address. The word address is written to PC<20:1>  
which accesses the desired byte address in program  
memory. Instruction #2 in Figure 6-5 shows how the  
instruction, GOTO 0006h, is encoded in the program  
memory. Program branch instructions, which encode a  
relative address offset, operate in the same manner. The  
offset value stored in a branch instruction represents the  
number of single-word instructions that the PC will be  
offset by. Section 26.0 “Instruction Set Summary”  
provides further details of the instruction set.  
6.2.3  
INSTRUCTIONS IN PROGRAM  
MEMORY  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte (LSB) of an  
instruction word is always stored in a program memory  
location with an even address (LSB = 0). To maintain  
alignment with instruction boundaries, the PC  
increments in steps of 2 and the LSB will always read  
0’ (see Section 6.1.3 “Program Counter”).  
Figure 6-5 shows an example of how instruction words  
are stored in the program memory.  
FIGURE 6-5:  
INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
Byte Locations   
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Instruction 1:  
Instruction 2:  
MOVLW  
GOTO  
055h  
0006h  
0Fh  
EFh  
F0h  
C1h  
F4h  
55h  
03h  
00h  
23h  
56h  
Instruction 3:  
MOVFF  
123h, 456h  
used by the instruction sequence. If the first word is  
skipped for some reason and the second word is  
executed by itself, a NOP is executed instead. This is  
necessary for cases when the two-word instruction is  
preceded by a conditional instruction that changes the  
PC. Example 6-4 shows how this works.  
6.2.4  
TWO-WORD INSTRUCTIONS  
The standard PIC18 instruction set has four, two-word  
instructions: CALL, MOVFF, GOTO and LSFR. In all  
cases, the second word of the instructions always has  
1111’ as its four Most Significant bits (MSb); the other  
12 bits are literal data, usually a data memory address.  
Note:  
See Section 6.5 “Program Memory and  
the Extended Instruction Set” for  
information on two-word instructions in the  
extended instruction set.  
The use of ‘1111’ in the 4 MSbs of an instruction  
specifies a special form of NOP. If the instruction is  
executed in proper sequence, immediately after the  
first word, the data in the second word is accessed and  
EXAMPLE 6-4:  
CASE 1:  
TWO-WORD INSTRUCTIONS  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
REG1  
REG1, REG2 ; No, skip this word  
; Execute this word as a NOP  
; continue code  
; is RAM location 0?  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
CASE 2:  
MOVFF  
ADDWF  
REG3  
Object Code  
Source Code  
TSTFSZ  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
REG1  
; is RAM location 0?  
MOVFF  
REG1, REG2 ; Yes, execute this word  
; 2nd word of instruction  
ADDWF  
REG3  
; continue code  
2010 Microchip Technology Inc.  
DS39933D-page 71  
PIC18F87J90 FAMILY  
6.3.1  
BANK SELECT REGISTER  
6.3  
Data Memory Organization  
Large areas of data memory require an efficient  
addressing scheme to make rapid access to any  
address possible. Ideally, this means that an entire  
address does not need to be provided for each read or  
write operation. For PIC18 devices, this is accom-  
plished with a RAM banking scheme. This divides the  
memory space into 16 contiguous banks of 256 bytes.  
Depending on the instruction, each location can be  
addressed directly by its full 12-bit address, or an 8-bit  
low-order address and a 4-bit Bank Pointer.  
Note:  
The operation of some aspects of data  
memory are changed when the PIC18  
extended instruction set is enabled. See  
Section 6.6 “Data Memory and the  
Extended Instruction Set” for more  
information.  
The data memory in PIC18 devices is implemented as  
static RAM. Each register in the data memory has a  
12-bit address, allowing up to 4,096 bytes of data  
memory. The memory space is divided into as many as  
16 banks that contain 256 bytes each. PIC18FX6J90  
and PIC18FX7J90 devices implement all 16 complete  
banks, for a total of 4 Kbytes. Figure 6-6 and Figure 6-7  
show the data memory organization for the devices.  
Most instructions in the PIC18 instruction set make use  
of the Bank Pointer, known as the Bank Select Register  
(BSR). This SFR holds the 4 Most Significant bits of a  
location’s address; the instruction itself includes the  
8 Least Significant bits. Only the four lower bits of the  
BSR are implemented (BSR<3:0>). The upper four bits  
are unused; they will always read ‘0’ and cannot be  
written to. The BSR can be loaded directly by using the  
MOVLBinstruction.  
The data memory contains Special Function Registers  
(SFRs) and General Purpose Registers (GPRs). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratchpad operations in the user’s  
application. Any read of an unimplemented location will  
read as ‘0’s.  
The value of the BSR indicates the bank in data  
memory. The 8 bits in the instruction show the location  
in the bank and can be thought of as an offset from the  
bank’s lower boundary. The relationship between the  
BSR’s value and the bank division in data memory is  
shown in Figure 6-7.  
The instruction set and architecture allow operations  
across all banks. The entire data memory may be  
accessed by Direct, Indirect or Indexed Addressing  
modes. Addressing modes are discussed later in this  
section.  
Since up to 16 registers may share the same low-order  
address, the user must always be careful to ensure that  
the proper bank is selected before performing a data  
read or write. For example, writing what should be  
program data to an 8-bit address of F9h, while the BSR  
is 0Fh, will end up resetting the program counter.  
To ensure that commonly used registers (select SFRs  
and select GPRs) can be accessed in a single cycle,  
PIC18 devices implement an Access Bank. This is a  
256-byte memory space that provides fast access to  
select SFRs, and the lower portion of GPR Bank 0,  
without using the BSR. Section 6.3.2 “Access Bank”  
provides a detailed description of the Access RAM.  
While any bank can be selected, only those banks that  
are actually implemented can be read or written to.  
Writes to unimplemented banks are ignored, while  
reads from unimplemented banks will return ‘0’s. Even  
so, the STATUS register will still be affected as if the  
operation was successful. The data memory map in  
Figure 6-6 indicates which banks are implemented.  
In the core PIC18 instruction set, only the MOVFF  
instruction fully specifies the 12-bit address of the  
source and target registers. This instruction ignores the  
BSR completely when it executes. All other instructions  
include only the low-order address as an operand and  
must use either the BSR or the Access Bank to locate  
their target registers.  
DS39933D-page 72  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 6-6:  
BSR<3:0>  
= 0000  
DATA MEMORY MAP FOR PIC18FX6J90 AND PIC18FX7J90 DEVICES  
When a = 0:  
Data Memory Map  
The BSR is ignored and the  
Access Bank is used.  
00h  
000h  
05Fh  
060h  
0FFh  
100h  
Access RAM  
GPR  
The first 96 bytes are general  
purpose RAM (from Bank 0).  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Bank 4  
Bank 5  
Bank 6  
Bank 7  
FFh  
00h  
The second 160 bytes are  
Special Function Registers  
(from Bank 15).  
= 0001  
= 0010  
= 0011  
= 0100  
= 0101  
= 0110  
= 0111  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
1FFh  
200h  
FFh  
00h  
When a = 1:  
The BSR specifies the bank  
used by the instruction.  
FFh  
00h  
2FFh  
300h  
3FFh  
400h  
FFh  
00h  
FFh  
00h  
4FFh  
500h  
FFh  
00h  
5FFh  
600h  
FFh  
00h  
6FFh  
700h  
Access Bank  
00h  
FFh  
00h  
7FFh  
800h  
Access RAM Low  
5Fh  
60h  
= 1000  
= 1001  
Access RAM High  
(SFRs)  
GPR  
Bank 8  
FFh  
FFh  
00h  
8FFh  
900h  
Bank 9  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
9FFh  
A00h  
FFh  
00h  
= 1010  
= 1011  
Bank 10  
Bank 11  
AFFh  
B00h  
FFh  
00h  
BFFh  
C00h  
FFh  
00h  
= 1100  
= 1101  
Bank 12  
Bank 13  
Bank 14  
Bank 15  
CFFh  
D00h  
FFh  
00h  
DFFh  
E00h  
FFh  
00h  
= 1110  
= 1111  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
FFh  
00h  
GPR(1)  
SFR  
FFh  
Note 1: Addresses, F54h through F5Fh, are also used by SFRs, but are not part of the Access RAM.  
Users must always use the complete address, or load the proper BSR value, to access these  
registers.  
2010 Microchip Technology Inc.  
DS39933D-page 73  
PIC18F87J90 FAMILY  
FIGURE 6-7:  
USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)  
Data Memory  
(2)  
(1)  
From Opcode  
1 1  
BSR  
000h  
100h  
7
0
7
0
00h  
Bank 0  
0
0
0
0
0
0
1
0
1
1
1
1
1 1  
FFh  
00h  
Bank 1  
Bank 2  
(2)  
Bank Select  
FFh  
00h  
200h  
300h  
FFh  
00h  
Bank 3  
through  
Bank 13  
FFh  
00h  
E00h  
Bank 14  
Bank 15  
FFh  
00h  
F00h  
FFFh  
FFh  
Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR<3:0>)  
to the registers of the Access Bank.  
2: The MOVFF instruction embeds the entire 12-bit address in the instruction.  
however, the instruction is forced to use the Access  
Bank address map; the current value of the BSR is  
ignored entirely.  
6.3.2  
ACCESS BANK  
While the use of the BSR with an embedded 8-bit  
address allows users to address the entire range of data  
memory, it also means that the user must always ensure  
that the correct bank is selected. Otherwise, data may  
be read from, or written to, the wrong location. This can  
be disastrous if a GPR is the intended target of an oper-  
ation, but an SFR is written to instead. Verifying and/or  
changing the BSR for each read or write to data memory  
can become very inefficient.  
Using this “forced” addressing allows the instruction to  
operate on a data address in a single cycle without  
updating the BSR first. For 8-bit addresses of 60h and  
above, this means that users can evaluate and operate  
on SFRs more efficiently. The Access RAM below 60h  
is a good place for data values that the user might need  
to access rapidly, such as immediate computational  
results or common program variables. Access RAM  
also allows for faster and more code efficient context  
saving and switching of variables.  
To streamline access for the most commonly used data  
memory locations, the data memory is configured with  
an Access Bank, which allows users to access a  
mapped block of memory without specifying a BSR.  
The Access Bank consists of the first 96 bytes of  
memory (00h-5Fh) in Bank 0 and the last 160 bytes of  
memory (60h-FFh) in Bank 15. The lower half is known  
as the “Access RAM” and is composed of GPRs. The  
upper half is where the device’s SFRs are mapped.  
These two areas are mapped contiguously in the  
Access Bank and can be addressed in a linear fashion  
by an 8-bit address (Figure 6-6).  
The mapping of the Access Bank is slightly different  
when the extended instruction set is enabled (XINST  
Configuration bit = 1). This is discussed in more detail  
in Section 6.6.3 “Mapping the Access Bank in  
Indexed Literal Offset Mode”.  
6.3.3  
GENERAL PURPOSE  
REGISTER FILE  
PIC18 devices may have banked memory in the GPR  
area. This is data RAM which is available for use by all  
instructions. GPRs start at the bottom of Bank 0  
(address 000h) and grow upwards towards the bottom of  
the SFR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other Resets.  
The Access Bank is used by core PIC18 instructions  
that include the Access RAM bit (the ‘a’ parameter in  
the instruction). When ‘a’ is equal to ‘1’, the instruction  
uses the BSR and the 8-bit address included in the  
opcode for the data memory address. When ‘a’ is ‘0’,  
DS39933D-page 74  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The SFRs can be classified into two sets: those  
associated with the “core” device functionality (ALU,  
Resets and interrupts) and those related to the  
peripheral functions. The Reset and Interrupt registers  
are described in their respective chapters, while the  
ALU’s STATUS register is described later in this section.  
Registers related to the operation of the peripheral  
features are described in the chapter for that peripheral.  
6.3.4  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral modules for controlling  
the desired operation of the device. These registers are  
implemented as static RAM. SFRs start at the top of  
data memory (FFFh) and extend downward to occupy  
more than the top half of Bank 15 (F60h to FFFh). A list  
of these registers is given in Table 6-2 and Table 6-3.  
The SFRs are typically distributed among the  
peripherals whose functions they control. Unused SFR  
locations are unimplemented and read as ‘0’s.  
TABLE 6-2:  
SPECIAL FUNCTION REGISTER MAP FOR PIC18F87J90 FAMILY DEVICES  
Addr.  
Name  
Addr.  
FDFh INDF2  
FDEh POSTINC2  
Name  
Addr.  
Name  
Addr.  
Name  
Addr.  
Name  
Addr.  
Name  
(1)  
(3)  
FFFh  
FFEh  
FFDh  
FFCh  
FFBh  
FFAh  
FF9h  
TOSU  
TOSH  
FBFh LCDDATA4  
F9Fh  
IPR1  
PIR1  
PIE1  
F7Fh SPBRGH1  
F5Fh  
RTCCFG  
RTCCAL  
RTCVALH  
RTCVALL  
(1)  
(1)  
FBEh LCDDATA3 F9Eh  
FBDh LCDDATA2 F9Dh  
FBCh LCDDATA1 F9Ch  
F7Eh BAUDCON1 F5Eh  
(3)  
TOSL  
FDDh POSTDEC2  
F7Dh LCDDATA23  
F7Ch LCDDATA22  
F5Dh  
F5Ch  
(1)  
(2)  
(3)  
STKPTR  
PCLATU  
PCLATH  
PCL  
FDCh PREINC2  
(1)  
FDBh PLUSW2  
FBBh LCDDATA0 F9Bh OSCTUNE F7Bh LCDDATA21  
F5Bh ALRMCFG  
F5Ah ALRMRPT  
F59h ALRMVALH  
F58h ALRMVALL  
F57h CTMUCONH  
F56h CTMUCONL  
F55h CTMUICON  
F54h PADCFG1  
(3)  
(3)  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FD5h  
FD4h  
FSR2H  
FSR2L  
FBAh LCDSE5  
FB9h LCDSE4  
F9Ah TRISJ  
F7Ah LCDDATA20  
F79h LCDDATA19  
F78h LCDDATA18  
(3)  
(3)  
F99h TRISH  
F98h TRISG  
FF8h TBLPTRU  
FF7h TBLPTRH  
FF6h TBLPTRL  
STATUS  
TMR0H  
TMR0L  
T0CON  
FB8h LCDSE3  
FB7h LCDSE2  
FB6h LCDSE1  
FB5h CVRCON  
FB4h CMCON  
(3)  
F97h  
F96h  
F95h  
F94h  
F93h  
F92h  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
F77h LCDDATA17  
F76h LCDDATA16  
(3)  
FF5h  
FF4h  
FF3h  
FF2h  
TABLAT  
PRODH  
PRODL  
INTCON  
F75h LCDDATA15  
F74h LCDDATA14  
F73h LCDDATA13  
F72h LCDDATA12  
F71h LCDDATA11(3)  
F70h LCDDATA10(3)  
F6Fh LCDDATA9  
F6Eh LCDDATA8  
F6Dh LCDDATA7  
F6Ch LCDDATA6  
(2)  
FD3h OSCCON  
FD2h LCDREG  
FD1h WDTCON  
FB3h  
FB2h  
FB1h  
FB0h  
TMR3H  
TMR3L  
T3CON  
TRISA  
(3)  
FF1h INTCON2  
F91h LATJ  
F90h LATH  
(2)  
(3)  
FF0h INTCON3  
FD0h  
FCFh  
FCEh  
RCON  
TMR1H  
TMR1L  
T1CON  
TMR2  
(1)  
FEFh  
INDF0  
FAFh SPBRG1  
FAEh RCREG1  
FADh TXREG1  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
LATG  
(1)  
(1)  
FEEh POSTINC0  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA  
FEDh POSTDEC0 FCDh  
(1)  
FECh PREINC0  
FCCh  
FCBh  
FCAh  
FACh  
FABh RCSTA1  
FAAh LCDPS  
TXSTA1  
(1)  
(3)  
FEBh PLUSW0  
PR2  
F6Bh LCDDATA5  
FEAh  
FE9h  
FE8h  
FE7h  
FSR0H  
FSR0L  
WREG  
T2CON  
F6Ah  
F69h  
CCPR1H  
CCPR1L  
FC9h SSPBUF  
FC8h SSPADD  
FC7h SSPSTAT  
FC6h SSPCON1  
FC5h SSPCON2  
FC4h ADRESH  
FC3h ADRESL  
FC2h ADCON0  
FC1h ADCON1  
FC0h ADCON2  
FA9h LCDSE0  
FA8h LCDCON  
FA7h EECON2  
FA6h EECON1  
(3)  
F88h PORTJ  
F68h CCP1CON  
(1)  
(3)  
INDF1  
F87h PORTH  
F86h PORTG  
F85h PORTF  
F84h PORTE  
F83h PORTD  
F82h PORTC  
F81h PORTB  
F80h PORTA  
F67h  
F66h  
CCPR2H  
CCPR2L  
(1)  
(1)  
FE6h POSTINC1  
FE5h POSTDEC1  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
IPR3  
PIR3  
PIE3  
IPR2  
PIR2  
PIE2  
F65h CCP2CON  
(1)  
FE4h PREINC1  
F64h  
F63h  
F62h  
F61h  
F60h  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
RCSTA2  
(1)  
FE3h PLUSW1  
FE2h  
FE1h  
FE0h  
FSR1H  
FSR1L  
BSR  
Note 1: This is not a physical register.  
2: Unimplemented registers are read as ‘0’.  
3: This register is not available on PIC18F6XJ90 devices.  
2010 Microchip Technology Inc.  
DS39933D-page 75  
PIC18F87J90 FAMILY  
TABLE 6-3:  
PIC18F87J90 FAMILY REGISTER FILE SUMMARY  
Value on Detailson  
POR, BOR page  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TOSU  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000 59, 67  
0000 0000 59, 67  
0000 0000 59, 67  
uu-0 0000 59, 68  
---0 0000 59, 67  
0000 0000 59, 67  
0000 0000 59, 67  
--00 0000 59, 92  
0000 0000 59, 92  
0000 0000 59, 92  
0000 0000 59, 92  
xxxx xxxx 59, 99  
xxxx xxxx 59, 99  
0000 000x 59, 103  
1111 1111 59, 104  
1100 0000 59, 105  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
Return Stack Pointer  
bit 21(1) Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
bit 21  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
Product Register Low Byte  
INTCON  
INTCON2  
INTCON3  
INDF0  
GIE/GIEH PEIE/GIEL  
TMR0IE  
INTEDG1  
INT3IE  
INT0IE  
INTEDG2  
INT2IE  
RBIE  
INTEDG3  
INT1IE  
TMR0IF  
TMR0IP  
INT3IF  
INT0IF  
INT3IP  
INT2IF  
RBIF  
RBIP  
RBPU  
INTEDG0  
INT1IP  
INT2IP  
INT1IF  
Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)  
N/A  
N/A  
N/A  
N/A  
N/A  
59, 83  
59, 84  
59, 84  
59, 84  
59, 84  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) –  
value of FSR0 offset by W  
FSR0H  
Indirect Data Memory Address Pointer 0 High Byte  
---- xxxx 59, 83  
xxxx xxxx 59, 83  
FSR0L  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
WREG  
xxxx xxxx  
N/A  
59  
INDF1  
Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)  
59, 83  
59, 84  
59, 84  
59, 84  
59, 84  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
N/A  
N/A  
N/A  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) –  
value of FSR1 offset by W  
N/A  
FSR1H  
Indirect Data Memory Address Pointer 1 High Byte  
---- xxxx 60, 83  
xxxx xxxx 60, 83  
---- 0000 60, 72  
FSR1L  
Indirect Data Memory Address Pointer 1 Low Byte  
BSR  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)  
N/A  
N/A  
N/A  
N/A  
N/A  
60, 83  
60, 84  
60, 84  
60, 84  
60, 84  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) –  
value of FSR2 offset by W  
FSR2H  
FSR2L  
STATUS  
Indirect Data Memory Address Pointer 2 High Byte  
---- xxxx 60, 83  
xxxx xxxx 60, 83  
---x xxxx 60, 81  
Indirect Data Memory Address Pointer 2 Low Byte  
N
OV DC  
Z
C
Legend:  
Note 1:  
2:  
x
= unknown,  
u
= unchanged,  
-
= unimplemented,  
q
= value depends on condition, r= reserved, do not modify  
Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
These registers and/or bits are available only on 80-pin devices; otherwise, they are unimplemented and read as ‘  
0’. Reset states shown are  
for 80-pin devices.  
3:  
4:  
5:  
Alternate names and definitions for these bits when the MSSP module is operating in I2C™ Slave mode. See Section 18.4.3.2 “Address  
Masking” for details.  
The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as ‘0’. See Section 3.4.3 “PLL  
Frequency Multiplier” for details.  
RA<7:6> and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default  
clock source (FOSC2 Configuration bit = ); otherwise, they are disabled and these bits read as ‘ ’.  
0
0
DS39933D-page 76  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 6-3:  
PIC18F87J90 FAMILY REGISTER FILE SUMMARY (CONTINUED)  
Value on Detailson  
POR, BOR page  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LCDREG  
WDTCON  
RCON  
Timer0 Register High Byte  
Timer0 Register Low Byte  
0000 0000 60, 141  
xxxx xxxx 60, 141  
1111 1111 60, 141  
0110 q000 36, 60  
TMR0ON  
IDLEN  
T08BIT  
IRCF2  
CPEN  
T0CS  
IRCF1  
BIAS2  
T0SE  
IRCF0  
BIAS1  
PSA  
OSTS  
BIAS0  
T0PS2  
IOFS  
MODE13  
T0PS1  
SCS1  
CKSEL1  
T0PS0  
SCS0  
CKSEL0 -011 1100 60, 189  
SWDTEN 0--- ---0 60, 332  
REGSLP  
IPEN  
CM  
RI  
TO  
PD  
POR  
BOR  
0-11 11q0 54, 60  
xxxx xxxx 60, 147  
xxxx xxxx 60, 147  
TMR1H  
TMR1L  
T1CON  
TMR2  
Timer1 Register High Byte  
Timer1 Register Low Byte  
RD16  
T1RUN  
T1CKPS1  
T1CKPS0 T1OSCEN  
T1SYNC  
TMR1CS  
T2CKPS1  
TMR1ON 0000 0000 60, 143  
0000 0000 60, 150  
Timer2 Register  
PR2  
Timer2 Period Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON  
MSSP Receive Buffer/Transmit Register  
1111 1111 60, 150  
T2CON  
SSPBUF  
T2CKPS0 -000 0000 60, 149  
xxxx xxxx 60, 219,  
254  
SSPADD  
SSPSTAT  
MSSP Address Register in I2C™ Slave mode. MSSP1 Baud Rate Reload Register in I2C Master mode.  
0000 0000 60, 254  
SMP  
CKE  
D/A  
P
S
R/W  
SSPM2  
PEN  
UA  
BF  
0000 0000 60, 212,  
221  
SSPCON1  
SSPCON2  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM1  
SSPM0  
0000 0000 60, 213,  
222  
GCEN  
GCEN  
ACKSTAT  
ACKDT  
ACKEN  
RCEN  
RSEN  
SEN  
SEN  
0000 0000 60, 223,  
224  
ACKSTAT ADMSK5(3) ADMSK4(3) ADMSK3(3) ADMSK2(3) ADMSK1(3)  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
LCDDATA4  
LCDDATA3  
LCDDATA2  
LCDDATA1  
LCDDATA0  
LCDSE5(2)  
LCDSE4  
LCDSE3  
LCDSE2  
LCDSE1  
CVRCON  
CMCON  
A/D Result Register High Byte  
A/D Result Register Low Byte  
xxxx xxxx 61, 297  
xxxx xxxx 61, 297  
0-00 0000 61, 289  
0-00 0000 61, 290  
0-00 0000 61, 291  
xxxx xxxx 61, 187  
xxxx xxxx 61, 187  
xxxx xxxx 61, 187  
xxxx xxxx 61, 187  
xxxx xxxx 61, 187  
0000 0000 61, 187  
0000 0000 61, 187  
0000 0000 61, 187  
0000 0000 61, 187  
0000 0000 61, 187  
0000 0000 61, 305  
0000 0111 61, 299  
xxxx xxxx 61, 153  
xxxx xxxx 61, 153  
ADCAL  
TRIGSEL  
ADFM  
S39C0(2)  
S31C0  
S23C0  
S15C0  
S07C0  
SE47  
CHS3  
VCFG1  
ACQT2  
S37C0(2)  
S29C0  
S21C0  
S13C0  
S05C0  
SE45  
CHS2  
VCFG0  
ACQT1  
S36C0(2)  
S28C0  
S20C0  
S12C0  
S04C0  
SE44  
CHS1  
PCFG3  
ACQT0  
S35C0(2)  
S27C0  
S19C0  
S11C0  
S03C0  
SE43  
CHS0  
PCFG2  
ADCS2  
S34C0(2)  
S26C0  
S18C0  
S10C0  
S02C0  
SE42  
GO/DONE  
PCFG1  
ADCS1  
S33C0(2)  
S25C0  
S17C0  
S09C0  
S01C0  
SE41  
ADON  
PCFG0  
ADCS0  
S32C0  
S24C0  
S16C0  
S08C0  
S00C0  
SE40  
S38C0(2)  
S30C0  
S22C0  
S14C0  
S06C0  
SE46  
SE39(2)  
SE38(2)  
S37(2)  
SE36(2)  
SE35(2)  
SE34(2)  
SE33(2)  
SE32  
SE31  
SE30  
SE29  
SE28  
SE27  
SE26  
SE25  
SE24  
SE23  
SE22  
SE21  
SE20  
SE19  
SE18  
SE17  
SE16  
SE15  
SE14  
SE13  
SE12  
SE11  
SE10  
SE09  
SE08  
CVREN  
C2OUT  
CVROE  
C1OUT  
CVRR  
C2INV  
CVRSS  
C1INV  
CVR3  
CIS  
CVR2  
CVR1  
CVR0  
CM0  
CM2  
CM1  
TMR3H  
Timer3 Register High Byte  
Timer3 Register Low Byte  
TMR3L  
T3CON  
RD16  
= unknown,  
T3CCP2  
T3CKPS1  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON 0000 0000 61, 151  
Legend:  
Note 1:  
2:  
x
u
= unchanged, -= unimplemented, q= value depends on condition, r= reserved, do not modify  
Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
These registers and/or bits are available only on 80-pin devices; otherwise, they are unimplemented and read as ‘  
0’. Reset states shown are  
for 80-pin devices.  
3:  
4:  
5:  
Alternate names and definitions for these bits when the MSSP module is operating in I2C™ Slave mode. See Section 18.4.3.2 “Address  
Masking” for details.  
The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as ‘0’. See Section 3.4.3 “PLL  
Frequency Multiplier” for details.  
RA<7:6> and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default  
clock source (FOSC2 Configuration bit = ); otherwise, they are disabled and these bits read as ‘ ’.  
0
0
2010 Microchip Technology Inc.  
DS39933D-page 77  
PIC18F87J90 FAMILY  
TABLE 6-3:  
PIC18F87J90 FAMILY REGISTER FILE SUMMARY (CONTINUED)  
Value on Detailson  
POR, BOR page  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
LCDPS  
LCDSE0  
LCDCON  
EECON2  
EECON1  
IPR3  
EUSART Baud Rate Generator Low Byte  
EUSART Receive Register  
0000 0000 61, 259  
0000 0000 61, 267  
0000 0000 61, 265  
0000 0010 61, 256  
0000 000x 61, 257  
0000 0000 61, 185  
0000 0000 61, 186  
000- 0000 61, 184  
---- ---- 61, 90  
--00 x00- 61, 90  
-111 1111 62, 114  
-000 0000 62, 108  
-000 0000 62, 111  
11-- 111- 62, 113  
00-- 000- 62, 107  
00-- 000- 62, 110  
-111 1-11 62, 112  
-000 0-00 62, 106  
-000 0-00 62, 109  
0000 0000 37, 62  
1111 1111 62, 138  
1111 1111 62, 136  
0001 1111 62, 134  
1111 111- 62, 132  
1111 1-11 62, 129  
1111 1111 62, 127  
1111 1111 62, 125  
1111 1111 62, 122  
1111 1111 62, 119  
xxxx xxxx 62, 138  
xxxx xxxx 62, 136  
00-x xxxx 62, 134  
xxxx xxx- 62, 132  
xxxx x-xx 62, 129  
xxxx xxxx 62, 127  
xxxx xxxx 62, 125  
xxxx xxxx 62, 122  
xxxx xxxx 62, 119  
EUSART Transmit Register  
CSRC  
SPEN  
WFT  
TX9  
RX9  
TXEN  
SREN  
LCDA  
SE05  
SYNC  
CREN  
WA  
SENDB  
ADDEN  
LP3  
BRGH  
FERR  
LP2  
TRMT  
OERR  
LP1  
TX9D  
RX9D  
LP0  
BIASMD  
SE06  
SE07  
SE04  
SE03  
CS1  
SE02  
CS0  
SE01  
SE00  
LMUX0  
LCDEN  
SLPEN  
WERR  
LMUX1  
EEPROM Control Register 2 (not a physical register)  
WPROG  
RC2IP  
RC2IF  
RC2IE  
FREE  
TX2IP  
TX2IF  
TX2IE  
WRERR  
CTMUIP  
CTMUIF  
CTMUIE  
BCLIP  
WREN  
CCP2IP  
CCP2IF  
CCP2IE  
LVDIP  
LVDIF  
LVDIE  
WR  
LCDIP  
LCDIF  
LCDIE  
CMIP  
CCP1IP  
CCP1IF  
CCP1IE  
TMR3IP  
TMR3IF  
TMR3IE  
TMR2IP  
TMR2IF  
TMR2IE  
TUN1  
RTCCIP  
RTCCIF  
RTCCIE  
PIR3  
PIE3  
IPR2  
OSCFIP  
OSCFIF  
OSCFIE  
PIR2  
CMIF  
BCLIF  
PIE2  
CMIE  
BCLIE  
IPR1  
ADIP  
RC1IP  
RC1IF  
RC1IE  
TUN5  
TX1IP  
TX1IF  
TX1IE  
TUN4  
SSPIP  
SSPIF  
TMR1IP  
TMR1IF  
TMR1IE  
TUN0  
PIR1  
ADIF  
PIE1  
ADIE  
SSPIE  
TUN3  
OSCTUNE  
TRISJ(2)  
TRISH(2)  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
LATJ(2)  
LATH(2)  
LATG  
INTSRC  
TRISJ7  
TRISH7  
SPIOD  
TRISF7  
TRISE7  
TRISD7  
TRISC7  
TRISB7  
TRISA7(5)  
LATJ7  
LATH7  
U2OD  
LATF7  
LATE7  
LATD7  
LATC7  
LATB7  
LATA7(5)  
PLLEN(4)  
TRISJ6  
TRISH6  
CCP2OD  
TRISF6  
TRISE6  
TRISD6  
TRISC6  
TRISB6  
TRISA6(5)  
LATJ6  
TUN2  
TRISJ2  
TRISH2  
TRISG2  
TRISF2  
TRISJ5  
TRISH5  
CCP1OD  
TRISF5  
TRISE5  
TRISD5  
TRISC5  
TRISB5  
TRISA5  
LATJ5  
TRISJ4  
TRISH4  
TRISG4  
TRISF4  
TRISE4  
TRISD4  
TRISC4  
TRISB4  
TRISA4  
LATJ4  
LATH4  
LATG4  
LATF4  
LATE4  
LATD4  
LATC4  
LATB4  
LATA4  
TRISJ3  
TRISH3  
TRISG3  
TRISF3  
TRISE3  
TRISD3  
TRISC3  
TRISB3  
TRISA3  
LATJ3  
TRISJ1  
TRISH1  
TRISG1  
TRISF1  
TRISE1  
TRISD1  
TRISC1  
TRISB1  
TRISA1  
LATJ1  
TRISJ0  
TRISH0  
TRISG0  
TRISE0  
TRISD0  
TRISC0  
TRISB0  
TRISA0  
LATJ0  
LATH0  
LATG0  
TRISD2  
TRISC2  
TRISB2  
TRISA2  
LATJ2  
LATH2  
LATG2  
LATF2  
LATH6  
U1OD  
LATH5  
LATH3  
LATG3  
LATF3  
LATH1  
LATG1  
LATF1  
LATF  
LATF6  
LATE6  
LATD6  
LATC6  
LATB6  
LATA6(5)  
LATF5  
LATE5  
LATD5  
LATC5  
LATB5  
LATA5  
= unimplemented,  
LATE  
LATE3  
LATD3  
LATC3  
LATB3  
LATA3  
LATE1  
LATE0  
LATD0  
LATC0  
LATB0  
LATA0  
LATD  
LATD2  
LATC2  
LATB2  
LATA2  
LATD1  
LATC1  
LATB1  
LATC  
LATB  
LATA  
LATA1  
Legend:  
Note 1:  
2:  
x
= unknown,  
u
= unchanged,  
-
q= value depends on condition, r= reserved, do not modify  
Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
These registers and/or bits are available only on 80-pin devices; otherwise, they are unimplemented and read as ‘  
0
’. Reset states shown are  
for 80-pin devices.  
3:  
4:  
5:  
Alternate names and definitions for these bits when the MSSP module is operating in I2C™ Slave mode. See Section 18.4.3.2 “Address  
Masking” for details.  
The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as ‘0’. See Section 3.4.3 “PLL  
Frequency Multiplier” for details.  
RA<7:6> and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default  
clock source (FOSC2 Configuration bit = ); otherwise, they are disabled and these bits read as ‘ ’.  
0
0
DS39933D-page 78  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 6-3:  
PIC18F87J90 FAMILY REGISTER FILE SUMMARY (CONTINUED)  
Value on Detailson  
POR, BOR page  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTJ(2)  
PORTH(2)  
RJ7  
RH7  
RJ6  
RH6  
RJ5  
RH5  
RJPU(2)  
RJ4  
RH4  
RG4  
RF4  
RE4  
RD4  
RC4  
RB4  
RA4  
RJ3  
RH3  
RG3  
RF3  
RE3  
RD3  
RC3  
RB3  
RA3  
RJ2  
RH2  
RG2  
RF2  
RJ1  
RH1  
RG1  
RF1  
RE1  
RD1  
RC1  
RB1  
RA1  
RJ0  
RH0  
RG0  
xxxx xxxx 62, 138  
xxxx xxxx 62, 136  
000x xxxx 62, 134  
xxxx xxx- 62, 132  
xxxx x-xx 63, 129  
xxxx xxxx 63, 127  
xxxx xxxx 63, 125  
xxxx xxxx 63, 122  
xx0x 0000 63, 119  
0000 0000 63, 259  
0100 0-00 63, 258  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 187  
xxxx xxxx 63, 174  
xxxx xxxx 63, 174  
PORTG  
RDPU  
RF7  
REPU  
RF6  
PORTF  
RF5  
PORTE  
RE7  
RE6  
RE5  
RE0  
RD0  
RC0  
RB0  
RA0  
PORTD  
RD7  
RD6  
RD5  
RD2  
RC2  
RB2  
RA2  
PORTC  
RC7  
RC6  
RC5  
PORTB  
RB7  
RA7(5)  
RB6  
RA6(5)  
RB5  
PORTA  
RA5  
SPBRGH1  
BAUDCON1  
LCDDATA23(2)  
LCDDATA22  
LCDDATA21  
LCDDATA20  
LCDDATA19  
LCDDATA18  
LCDDATA17(2)  
LCDDATA16  
LCDDATA15  
LCDDATA14  
LCDDATA13  
LCDDATA12  
LCDDATA11(2)  
LCDDATA10  
LCDDATA9  
LCDDATA8  
LCDDATA7  
LCDDATA6  
LCDDATA5(2)  
CCPR1H  
EUSART Baud Rate Generator High Byte  
ABDOVF  
S47C3  
S39C3(2)  
S31C3  
S23C3  
S15C3  
S07C3  
S47C2  
S39C2(2)  
S31C2  
S23C2  
S15C2  
S07C2  
S47C1  
S39C1(2)  
S31C1  
S23C1  
S15C1  
S07C1  
S47C0  
RCIDL  
S46C3  
S38C3(2)  
S30C3  
S22C3  
S14C3  
S06C3  
S46C2  
S38C2(2)  
S30C2  
S22C2  
S14C2  
S06C2  
S46C1  
S38C1(2)  
S30C1  
S22C1  
S14C1  
S06C1  
S46C0  
RXDTP  
S45C3  
S37C3(2)  
S29C3  
S21C3  
S13C3  
S05C3  
S45C2  
S37C2(2)  
S29C2  
S21C2  
S13C2  
S05C2  
S45C1  
S37C1(2)  
S29C1  
S21C1  
S13C1  
S05C1  
S45C0  
TXCKP  
S44C3  
S36C3(2)  
S28C3  
S20C3  
S12C3  
S04C3  
S44C2  
S36C2(2)  
S28C2  
S20C2  
S12C2  
S04C2  
S44C1  
S36C1(2)  
S28C1  
S20C1  
S12C1  
S04C1  
S44C0  
BRG16  
S43C3  
S35C3(2)  
S27C3  
S19C3  
S11C3  
S03C3  
S43C2  
S35C2(2)  
S27C2  
S19C2  
S11C2  
S03C2  
S43C1  
S35C1(2)  
S27C1  
S19C1  
S11C1  
S03C1  
S43C0  
WUE  
S41C3  
S33C3(2)  
S25C3  
S17C3  
S09C3  
S01C3  
S41C2  
S33C2(2)  
S25C2  
S17C2  
S09C2  
S01C2  
S41C1  
S33C1(2)  
S25C1  
S17C1  
S09C1  
S01C1  
S41C0  
ABDEN  
S40C3  
S32C3  
S24C3  
S16C3  
S08C3  
S00C3  
S40C2  
S32C2  
S24C2  
S16C2  
S08C2  
S00C2  
S40C1  
S32C1  
S24C1  
S16C1  
S08C1  
S00C1  
S40C0  
S42C3  
S34C3(2)  
S26C3  
S18C3  
S10C3  
S02C3  
S42C2  
S34C2(2)  
S26C2  
S18C2  
S10C2  
S02C2  
S42C1  
S34C1(2)  
S26C1  
S18C1  
S10C1  
S02C1  
S42C0  
Capture/Compare/PWM Register 1 High Byte  
Capture/Compare/PWM Register 1 Low Byte  
CCPR1L  
CCP1CON  
CCPR2H  
DC1B1  
DC1B0  
CCP1M3  
CCP2M3  
CCP1M2  
CCP2M2  
CCP1M1  
CCP2M1  
CCP1M0 --00 0000 63, 173  
xxxx xxxx 63, 174  
Capture/Compare/PWM Register 2 High Byte  
Capture/Compare/PWM Register 2 Low Byte  
CCPR2L  
xxxx xxxx 64, 174  
CCP2CON  
SPBRG2  
DC2B1  
DC2B0  
CCP2M0 --00 0000 64, 173  
0000 0000 64, 278  
AUSART Baud Rate Generator Register  
AUSART Receive Register  
RCREG2  
0000 0000 64, 283  
TXREG2  
AUSART Transmit Register  
0000 0000 64, 281  
TXSTA2  
CSRC  
SPEN  
RTCEN  
CAL7  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
BRGH  
FERR  
RTCOE  
CAL2  
TRMT  
OERR  
TX9D  
RX9D  
0000 -010 64, 276  
0000 000x 64, 277  
RCSTA2  
ADDEN  
RTCCFG  
RTCWREN RTCSYNC HALFSEC  
CAL5 CAL4 CAL3  
RTCPTR1 RTCPTR0 0-00 0000 64, 157  
RTCCAL  
CAL6  
CAL1  
CAL0  
0000 0000 64, 158  
xxxx xxxx 64, 160  
RTCVALH  
RTCC Value High Register Window based on RTCPTR<1:0>  
= unknown, = unchanged, = unimplemented, = value depends on condition,  
Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
Legend:  
Note 1:  
2:  
x
u
-
q
r= reserved, do not modify  
These registers and/or bits are available only on 80-pin devices; otherwise, they are unimplemented and read as ‘  
0
’. Reset states shown are  
for 80-pin devices.  
3:  
4:  
5:  
Alternate names and definitions for these bits when the MSSP module is operating in I2C™ Slave mode. See Section 18.4.3.2 “Address  
Masking” for details.  
The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as ‘0’. See Section 3.4.3 “PLL  
Frequency Multiplier” for details.  
RA<7:6> and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default  
clock source (FOSC2 Configuration bit = ); otherwise, they are disabled and these bits read as ‘ ’.  
0
0
2010 Microchip Technology Inc.  
DS39933D-page 79  
PIC18F87J90 FAMILY  
TABLE 6-3:  
PIC18F87J90 FAMILY REGISTER FILE SUMMARY (CONTINUED)  
Value on Detailson  
POR, BOR page  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RTCVALL  
RTCC Value Low Register Window based on RTCPTR<1:0>  
xxxx xxxx 64, 160  
AMASK0 ALRMPTR1 ALRMPTR0 0000 0000 64, 159  
ALRMCFG  
ALRMRPT  
ALRMVALH  
ALRMVALL  
CTMUCONH  
CTMUCONL  
CTMUICON  
PADCFG1  
ALRMEN  
ARPT7  
CHIME  
ARPT6  
AMASK3  
ARPT5  
AMASK2  
ARPT4  
AMASK1  
ARPT3  
ARPT2  
ARPT1  
ARPT0  
0000 0000 64, 160  
xxxx xxxx 64, 163  
xxxx xxxx 64, 163  
0-00 0000 64, 321  
Alarm Value High Register Window based on ALRMPTR<1:0>  
Alarm Value Low Register Window based on ALRMPTR<1:0>  
CTMUEN  
CTMUSIDL  
TGEN  
EDGEN EDGSEQEN IDISSEN  
CTTRIG  
EDG2POL EDG2SEL1 EDG2SEL0 EDG1POL EDG1SEL1 EDG1SEL0 EDG2STAT EDG1STAT 0000 0000 64, 322  
ITRIM5  
ITRIM4  
ITRIM3  
ITRIM2  
ITRIM1  
ITRIM0  
IRNG1  
IRNG0  
0000 0000 64, 323  
---- -00- 64, 158  
RTSECSEL1 RTSECSEL0  
Legend:  
Note 1:  
2:  
x
= unknown,  
u
= unchanged,  
-
= unimplemented,  
q
= value depends on condition,  
r
= reserved, do not modify  
Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
These registers and/or bits are available only on 80-pin devices; otherwise, they are unimplemented and read as ‘  
0’. Reset states shown are  
for 80-pin devices.  
3:  
4:  
5:  
Alternate names and definitions for these bits when the MSSP module is operating in I2C™ Slave mode. See Section 18.4.3.2 “Address  
Masking” for details.  
The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as ‘0’. See Section 3.4.3 “PLL  
Frequency Multiplier” for details.  
RA<7:6> and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default  
clock source (FOSC2 Configuration bit = ); otherwise, they are disabled and these bits read as ‘ ’.  
0
0
DS39933D-page 80  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
register then reads back as ‘000u u1uu’. It is recom-  
mended, therefore, that only BCF, BSF, SWAPF,  
MOVFF and MOVWF instructions are used to alter the  
STATUS register because these instructions do not  
affect the Z, C, DC, OV or N bits in the STATUS  
register.  
6.3.5  
STATUS REGISTER  
The STATUS register, shown in Register 6-2, contains  
the arithmetic status of the ALU. The STATUS register  
can be the operand for any instruction, as with any  
other register. If the STATUS register is the destination  
for an instruction that affects the Z, DC, C, OV or N bits,  
then the write to these five bits is disabled.  
For other instructions not affecting any Status bits, see  
the instruction set summaries in Table 26-2 and  
Table 26-3.  
These bits are set or cleared according to the device  
logic. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended. For example, CLRF STATUSwill set the Z bit  
but leave the other bits unchanged. The STATUS  
Note: The C and DC bits operate as a borrow and  
digit borrow bit, respectively, in subtraction.  
REGISTER 6-2:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
N
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
N: Negative bit  
This bit is used for signed arithmetic (2’s complement). It indicates whether the result was  
negative (ALU MSB = 1).  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the  
7-bit magnitude which causes the sign bit (bit 7) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit(1)  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
bit 0  
C: Carry/Borrow bit(2)  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For borrow, the polarity is reversed. A subtraction is executed by adding the 2’s complement of the second  
operand. For rotate (RRF, RLF) instructions, this bit is loaded with either bit 4 or bit 3 of the source register.  
2: For borrow, the polarity is reversed. A subtraction is executed by adding the 2’s complement of the second  
operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the  
source register.  
2010 Microchip Technology Inc.  
DS39933D-page 81  
PIC18F87J90 FAMILY  
The Access RAM bit, ‘a’, determines how the address  
is interpreted. When ‘a’ is ‘1’, the contents of the BSR  
(Section 6.3.1 “Bank Select Register”) are used with  
the address to determine the complete 12-bit address  
of the register. When ‘a’ is ‘0’, the address is interpreted  
as being a register in the Access Bank. Addressing that  
uses the Access RAM is sometimes also known as  
Direct Forced Addressing mode.  
6.4  
Data Addressing Modes  
Note:  
The execution of some instructions in the  
core PIC18 instruction set are changed  
when the PIC18 extended instruction set is  
enabled. See Section 6.6 “Data Memory  
and the Extended Instruction Set” for  
more information.  
A few instructions, such as MOVFF, include the entire  
12-bit address (either source or destination) in their  
opcodes. In these cases, the BSR is ignored entirely.  
While the program memory can be addressed in only  
one way, through the program counter, information in  
the data memory space can be addressed in several  
ways. For most instructions, the addressing mode is  
fixed. Other instructions may use up to three modes,  
depending on which operands are used and whether or  
not the extended instruction set is enabled.  
The destination of the operation’s results is determined  
by the destination bit, ‘d’. When ‘d’ is ‘1’, the results are  
stored back in the source register, overwriting its origi-  
nal contents. When ‘d’ is ‘0’, the results are stored in  
the W register. Instructions without the ‘d’ argument  
have a destination that is implicit in the instruction; their  
destination is either the target register being operated  
on or the W register.  
The addressing modes are:  
• Inherent  
• Literal  
• Direct  
6.4.3  
INDIRECT ADDRESSING  
• Indirect  
Indirect Addressing allows the user to access a location  
in data memory without giving a fixed address in the  
instruction. This is done by using File Select Registers  
(FSRs) as pointers to the locations to be read or written  
to. Since the FSRs are themselves located in RAM as  
Special Function Registers, they can also be directly  
manipulated under program control. This makes FSRs  
very useful in implementing data structures, such as  
tables and arrays in data memory.  
An additional addressing mode, Indexed Literal Offset,  
is available when the extended instruction set is  
enabled (XINST Configuration bit = 1). Its operation is  
discussed in greater detail in Section 6.6.1 “Indexed  
Addressing with Literal Offset”.  
6.4.1  
INHERENT AND LITERAL  
ADDRESSING  
Many PIC18 control instructions do not need any  
argument at all; they either perform an operation that  
globally affects the device or they operate implicitly on  
one register. This addressing mode is known as Inherent  
Addressing. Examples include: SLEEP, RESETand DAW.  
The registers for Indirect Addressing are also  
implemented with Indirect File Operands (INDFs) that  
permit automatic manipulation of the pointer value with  
auto-incrementing, auto-decrementing or offsetting  
with another value. This allows for efficient code using  
loops, such as the example of clearing an entire RAM  
bank in Example 6-5. It also enables users to perform  
Indexed Addressing and other Stack Pointer  
operations for program memory in data memory.  
Other instructions work in a similar way, but require an  
additional explicit argument in the opcode. This is  
known as Literal Addressing mode, because they  
require some literal value as an argument. Examples  
include: ADDLWand MOVLW, which respectively, add or  
move a literal value to the W register. Other examples  
include CALL and GOTO, which include a 20-bit  
program memory address.  
EXAMPLE 6-5:  
HOW TO CLEAR RAM  
(BANK 1) USING  
INDIRECT ADDRESSING  
6.4.2  
DIRECT ADDRESSING  
LFSR  
FSR0, 100h  
;
NEXT  
CLRF  
POSTINC0  
; Clear INDF  
; register then  
; inc pointer  
; All done with  
; Bank1?  
Direct Addressing specifies all or part of the source  
and/or destination address of the operation within the  
opcode itself. The options are specified by the  
arguments accompanying the instruction.  
BTFSS  
BRA  
FSR0H, 1  
NEXT  
; NO, clear next  
; YES, continue  
In the core PIC18 instruction set, bit-oriented and  
byte-oriented instructions use some version of Direct  
Addressing by default. All of these instructions include  
some 8-bit literal address as their Least Significant  
Byte. This address specifies either a register address in  
one of the banks of data RAM (Section 6.3.3 “General  
Purpose Register File”) or a location in the Access  
Bank (Section 6.3.2 “Access Bank”) as the data  
source for the instruction.  
CONTINUE  
DS39933D-page 82  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
the SFR space but are not physically implemented.  
Reading or writing to a particular INDF register actually  
accesses its corresponding FSR register pair. A read  
from INDF1, for example, reads the data at the address  
indicated by FSR1H:FSR1L. Instructions that use the  
INDF registers as operands actually use the contents  
of their corresponding FSR as a pointer to the instruc-  
tion’s target. The INDF operand is just a convenient  
way of using the pointer.  
6.4.3.1  
FSR Registers and the  
INDF Operand  
At the core of Indirect Addressing are three sets of  
registers: FSR0, FSR1 and FSR2. Each represents a  
pair of 8-bit registers, FSRnH and FSRnL. The four  
upper bits of the FSRnH register are not used, so each  
FSR pair holds a 12-bit value. This represents a value  
that can address the entire range of the data memory  
in a linear fashion. The FSR register pairs, then, serve  
as pointers to data memory locations.  
Because Indirect Addressing uses a full, 12-bit address,  
data RAM banking is not necessary. Thus, the current  
contents of the BSR and the Access RAM bit have no  
effect on determining the target address.  
Indirect Addressing is accomplished with a set of Indi-  
rect File Operands, INDF0 through INDF2. These can  
be thought of as “virtual” registers: they are mapped in  
FIGURE 6-8:  
INDIRECT ADDRESSING  
000h  
Using an instruction with one of the  
Indirect Addressing registers as the  
operand....  
Bank 0  
Bank 1  
ADDWF, INDF1, 1  
100h  
200h  
300h  
Bank 2  
FSR1H:FSR1L  
...uses the 12-bit address stored in  
the FSR pair associated with that  
register....  
7
0
7
0
x x x x 1 1 1 1  
1 1 0 0 1 1 0 0  
Bank 3  
through  
Bank 13  
...to determine the data memory  
location to be used in that operation.  
E00h  
In this case, the FSR1 pair contains  
FCCh. This means the contents of  
location, FCCh, will be added to that  
of the W register and stored back in  
FCCh.  
Bank 14  
Bank 15  
F00h  
FFFh  
Data Memory  
2010 Microchip Technology Inc.  
DS39933D-page 83  
PIC18F87J90 FAMILY  
6.4.3.2  
FSR Registers and POSTINC,  
6.4.3.3  
Operations by FSRs on FSRs  
POSTDEC, PREINC and PLUSW  
Indirect Addressing operations that target other FSRs  
or virtual registers represent special cases. For  
example, using an FSR to point to one of the virtual  
registers will not result in successful operations. As a  
specific case, assume that the FSR0H:FSR0L regis-  
ters contain FE7h, the address of INDF1. Attempts to  
read the value of INDF1, using INDF0 as an operand,  
will return 00h. Attempts to write to INDF1, using INDF0  
as the operand, will result in a NOP.  
In addition to the INDF operand, each FSR register pair  
also has four additional indirect operands. Like INDF,  
these are “virtual” registers that cannot be indirectly  
read or written to. Accessing these registers actually  
accesses the associated FSR register pair, but also  
performs a specific action on its stored value. They are:  
• POSTDEC: accesses the FSR value, then  
automatically decrements it by ‘1’ afterwards  
On the other hand, using the virtual registers to write to  
an FSR pair may not occur as planned. In these cases,  
the value will be written to the FSR pair but without any  
incrementing or decrementing. Thus, writing to INDF2  
or POSTDEC2 will write the same value to the  
FSR2H:FSR2L registers.  
• POSTINC: accesses the FSR value, then  
automatically increments it by ‘1’ afterwards  
• PREINC: increments the FSR value by ‘1’, then  
uses it in the operation  
• PLUSW: adds the signed value of the W register  
(range of -127 to 128) to that of the FSR and uses  
the new value in the operation  
Since the FSRs are physical registers mapped in the  
SFR space, they can be manipulated through all direct  
operations. Users should proceed cautiously when  
working on these registers, particularly if their code  
uses Indirect Addressing.  
In this context, accessing an INDF register uses the  
value in the FSR registers without changing them.  
Similarly, accessing a PLUSW register gives the FSR  
value offset by the value in the W register; neither value  
is actually changed in the operation. Accessing the  
other virtual registers changes the value of the FSR  
registers.  
Similarly, operations by Indirect Addressing are gener-  
ally permitted on all other SFRs. Users should exercise  
the appropriate caution that they do not inadvertently  
change settings that might affect the operation of the  
device.  
Operations on the FSRs with POSTDEC, POSTINC  
and PREINC affect the entire register pair; that is, roll-  
overs of the FSRnL register from FFh to 00h carry over  
to the FSRnH register. On the other hand, results of  
these operations do not change the value of any flags  
in the STATUS register (e.g., Z, N, OV, etc.).  
6.5  
Program Memory and the  
Extended Instruction Set  
The operation of program memory is unaffected by the  
use of the extended instruction set.  
The PLUSW register can be used to implement a form  
of Indexed Addressing in the data memory space. By  
manipulating the value in the W register, users can  
reach addresses that are fixed offsets from pointer  
addresses. In some applications, this can be used to  
implement some powerful program control structure,  
such as software stacks, inside of data memory.  
Enabling the extended instruction set adds five  
additional two-word commands to the existing PIC18  
instruction set: ADDFSR, CALLW, MOVSF, MOVSS and  
SUBFSR. These instructions are executed as described  
in Section 6.2.4 “Two-Word Instructions”.  
DS39933D-page 84  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Under these conditions, the file address of the  
instruction is not interpreted as the lower byte of an  
address (used with the BSR in Direct Addressing) or as  
an 8-bit address in the Access Bank. Instead, the value  
is interpreted as an offset value to an Address Pointer  
specified by FSR2. The offset and the contents of FSR2  
are added to obtain the target address of the operation.  
6.6  
Data Memory and the Extended  
Instruction Set  
Enabling the PIC18 extended instruction set (XINST  
Configuration bit = 1) significantly changes certain  
aspects of data memory and its addressing. Specifically,  
the use of the Access Bank for many of the core PIC18  
instructions is different; this is due to the introduction of  
a new addressing mode for the data memory space.  
This mode also alters the behavior of Indirect  
Addressing using FSR2 and its associated operands.  
6.6.2  
INSTRUCTIONS AFFECTED BY  
INDEXED LITERAL OFFSET MODE  
Any of the core PIC18 instructions that can use Direct  
Addressing are potentially affected by the Indexed  
Literal Offset Addressing mode. This includes all  
byte-oriented and bit-oriented instructions or almost  
one-half of the standard PIC18 instruction set. Instruc-  
tions that only use Inherent or Literal Addressing  
modes are unaffected.  
What does not change is just as important. The size of  
the data memory space is unchanged, as well as its  
linear addressing. The SFR map remains the same.  
Core PIC18 instructions can still operate in both Direct  
and Indirect Addressing modes. Inherent and literal  
instructions do not change at all. Indirect Addressing  
with FSR0 and FSR1 also remains unchanged.  
Additionally, byte-oriented and bit-oriented instructions  
are not affected if they do not use the Access Bank  
(Access RAM bit is ‘1’) or include a file address of 60h  
or above. Instructions meeting these criteria will  
continue to execute as before. A comparison of the dif-  
ferent possible addressing modes when the extended  
instruction set is enabled is shown in Figure 6-9.  
6.6.1  
INDEXED ADDRESSING WITH  
LITERAL OFFSET  
Enabling the PIC18 extended instruction set changes  
the behavior of Indirect Addressing using the FSR2  
register pair and its associated file operands. Under the  
proper conditions, instructions that use the Access  
Bank – that is, most bit-oriented and byte-oriented  
instructions – can invoke a form of Indexed Addressing  
using an offset specified in the instruction. This special  
addressing mode is known as Indexed Addressing with  
Literal Offset, or Indexed Literal Offset mode.  
Those who desire to use byte-oriented or bit-oriented  
instructions in the Indexed Literal Offset mode should  
note the changes to assembler syntax for this mode.  
This is described in more detail in Section 26.2.1  
“Extended Instruction Syntax”.  
When using the extended instruction set, this  
addressing mode requires the following:  
• The use of the Access Bank is forced (‘a’ = 0);  
and  
• The file address argument is less than or equal to  
5Fh.  
2010 Microchip Technology Inc.  
DS39933D-page 85  
PIC18F87J90 FAMILY  
FIGURE 6-9:  
COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND  
BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)  
EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)  
000h  
When a = 0and f 60h:  
The instruction executes in  
Direct Forced mode. ‘f’ is  
interpreted as a location in the  
Access RAM between 060h  
and FFFh. This is the same as  
locations, F60h to FFFh  
(Bank 15), of data memory.  
060h  
100h  
Bank 0  
00h  
60h  
Bank 1  
through  
Bank 14  
Valid range  
for ‘f’  
Locations below 060h are not  
available in this addressing  
mode.  
FFh  
F00h  
Access RAM  
Bank 15  
F40h  
FFFh  
SFRs  
Data Memory  
When a = 0and f5Fh:  
000h  
060h  
100h  
Bank 0  
The instruction executes in  
Indexed Literal Offset mode. ‘f’  
is interpreted as an offset to the  
address value in FSR2. The  
two are added together to  
obtain the address of the target  
register for the instruction. The  
address can be anywhere in  
the data memory space.  
001001da ffffffff  
Bank 1  
through  
Bank 14  
FSR2H  
FSR2L  
F00h  
F40h  
Note that in this mode, the  
correct syntax is now:  
Bank 15  
ADDWF [k], d  
SFRs  
where ‘k’ is the same as ‘f’.  
FFFh  
Data Memory  
BSR  
000h  
060h  
100h  
00000000  
When a = 1(all values of f):  
Bank 0  
The instruction executes in  
Direct mode (also known as  
Direct Long mode). ‘f’ is  
interpreted as a location in  
one of the 16 banks of the data  
memory space. The bank is  
designated by the Bank Select  
Register (BSR). The address  
can be in any implemented  
bank in the data memory  
space.  
001001da ffffffff  
Bank 1  
through  
Bank 14  
F00h  
F40h  
Bank 15  
SFRs  
FFFh  
Data Memory  
DS39933D-page 86  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Remapping of the Access Bank applies only to opera-  
tions using the Indexed Literal Offset mode. Operations  
that use the BSR (Access RAM bit is ‘1’) will continue  
to use Direct Addressing as before. Any Indirect or  
Indexed Addressing operation that explicitly uses any  
of the indirect file operands (including FSR2) will con-  
tinue to operate as standard Indirect Addressing. Any  
instruction that uses the Access Bank, but includes a  
register address of greater than 05Fh, will use Direct  
Addressing and the normal Access Bank map.  
6.6.3  
MAPPING THE ACCESS BANK IN  
INDEXED LITERAL OFFSET MODE  
The use of Indexed Literal Offset Addressing mode  
effectively changes how the lower part of Access RAM  
(00h to 5Fh) is mapped. Rather than containing just the  
contents of the bottom part of Bank 0, this mode maps  
the contents from Bank 0 and a user-defined “window”  
that can be located anywhere in the data memory  
space. The value of FSR2 establishes the lower bound-  
ary of the addresses mapped into the window, while the  
upper boundary is defined by FSR2 plus 95 (5Fh).  
Addresses in the Access RAM above 5Fh are mapped  
as previously described (see Section 6.3.2 “Access  
Bank”). An example of Access Bank remapping in this  
addressing mode is shown in Figure 6-10.  
6.6.4  
BSR IN INDEXED LITERAL  
OFFSET MODE  
Although the Access Bank is remapped when the  
extended instruction set is enabled, the operation of the  
BSR remains unchanged. Direct Addressing, using the  
BSR to select the data memory bank, operates in the  
same manner as previously described.  
FIGURE 6-10:  
REMAPPING THE ACCESS BANK WITH INDEXED LITERAL  
OFFSET ADDRESSING  
Example Situation:  
000h  
ADDWF f, d, a  
Not Accessible  
05Fh  
FSR2H:FSR2L = 120h  
Bank 0  
Locations in the region  
from the FSR2 Pointer  
(120h) to the pointer plus  
05Fh (17Fh) are mapped  
to the bottom of the  
Access RAM (000h-05Fh).  
100h  
120h  
17Fh  
Window  
Bank 1  
00h  
Bank 1 “Window”  
200h  
5Fh  
60h  
Special Function Registers  
at F60h through FFFh are  
mapped to 60h through  
FFh, as usual.  
Bank 2  
through  
Bank 14  
SFRs  
Bank 0 addresses below  
5Fh are not available in  
this mode. They can still  
be addressed by using the  
BSR.  
FFh  
Access Bank  
F00h  
Bank 15  
SFRs  
F60h  
FFFh  
Data Memory  
2010 Microchip Technology Inc.  
DS39933D-page 87  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 88  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
7.1  
Table Reads and Table Writes  
7.0  
FLASH PROGRAM MEMORY  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data RAM:  
The Flash program memory is readable, writable and  
erasable during normal operation over the entire VDD  
range.  
Table Read (TBLRD)  
Table Write (TBLWT)  
A read from program memory is executed on one byte  
at a time. A write to program memory is executed on  
blocks of 64 bytes at a time or two bytes at a time. Pro-  
gram memory is erased in blocks of 1024 bytes at a  
time. A bulk erase operation may not be issued from  
user code.  
The program memory space is 16 bits wide, while the  
data RAM space is 8 bits wide. Table reads and table  
writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
Writing or erasing program memory will cease  
instruction fetches until the operation is complete. The  
program memory cannot be accessed during the write  
or erase, therefore, code cannot execute. An internal  
programming timer terminates program memory writes  
and erases.  
Table read operations retrieve data from program  
memory and place it into the data RAM space.  
Figure 7-1 shows the operation of a table read with  
program memory and data RAM.  
Table write operations store data from the data memory  
space into holding registers in program memory. The  
procedure to write the contents of the holding registers  
into program memory is detailed in Section 7.5 “Writing  
to Flash Program Memory”. Figure 7-2 shows the  
operation of a table write with program memory and data  
RAM.  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
Table operations work with byte entities. A table block  
containing data, rather than program instructions, is not  
required to be word-aligned. Therefore, a table block can  
start and end at any byte address. If a table write is being  
used to write executable code into program memory,  
program instructions will need to be word-aligned.  
FIGURE 7-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: The Table Pointer register points to a byte in program memory.  
2010 Microchip Technology Inc.  
DS39933D-page 89  
PIC18F87J90 FAMILY  
FIGURE 7-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: The Table Pointer actually points to one of 64 holding registers, the address of which is determined by  
TBLPTRL<5:0>. The process for physically writing data to the program memory array is discussed in  
Section 7.5 “Writing to Flash Program Memory”.  
The FREE bit, when set, will allow a program memory  
erase operation. When FREE is set, the erase  
operation is initiated on the next WR command. When  
FREE is clear, only writes are enabled.  
7.2  
Control Registers  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• EECON1 register  
• EECON2 register  
• TABLAT register  
• TBLPTR registers  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set in hardware when the WR bit is set, and cleared  
when the internal programming timer expires and the  
write operation is complete.  
7.2.1  
EECON1 AND EECON2 REGISTERS  
Note:  
During normal operation, the WRERR is  
read as ‘1’. This can indicate that a write  
operation was prematurely terminated by  
The EECON1 register (Register 7-1) is the control  
register for memory accesses. The EECON2 register is  
not a physical register; it is used exclusively in the  
memory write and erase sequences. Reading  
EECON2 will read all ‘0’s.  
a
Reset or  
a write operation was  
attempted improperly.  
The WR control bit initiates write operations. The bit  
cannot be cleared, only set, in software. It is cleared in  
hardware at the completion of the write operation.  
The WPROG bit, when set, allows the user to program  
a single word (two bytes) upon the execution of the WR  
command. If this bit is cleared, the WR command  
programs a block of 64 bytes.  
DS39933D-page 90  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 7-1:  
EECON1: EEPROM CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
FREE  
R/W-x  
WRERR(1)  
R/W-0  
WREN  
R/S-0  
WR  
U-0  
WPROG  
bit 7  
bit 0  
Legend:  
S = Settable bit (cannot be cleared in software)  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
WPROG: One Word-Wide Program bit  
1= Program 2 bytes on the next WR command  
0= Program 64 bytes on the next WR command  
bit 4  
bit 3  
FREE: Flash Erase Enable bit  
1= Performs an erase operation on the next WR command (cleared by completion of erase operation)  
0= Perform write-only  
WRERR: Flash Program Error Flag bit(1)  
1= A write operation is prematurely terminated (any Reset during self-timed programming in normal  
operation, or an improper write attempt)  
0= The write operation completed  
bit 2  
bit 1  
WREN: Flash Program Write Enable bit  
1= Allows write cycles to Flash program memory  
0= Inhibits write cycles to Flash program memory  
WR: Write Control bit  
1= Initiates a program memory erase cycle or write cycle  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit  
can only be set (not cleared) in software.)  
0= Write cycle is complete  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When a WRERR error occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error  
condition.  
2010 Microchip Technology Inc.  
DS39933D-page 91  
PIC18F87J90 FAMILY  
7.2.2  
TABLE LATCH REGISTER (TABLAT)  
7.2.4  
TABLE POINTER BOUNDARIES  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch register is used to  
hold 8-bit data during data transfers between program  
memory and data RAM.  
TBLPTR is used in reads, writes and erases of the  
Flash program memory.  
When a TBLRDis executed, all 22 bits of the TBLPTR  
determine which byte is read from program memory  
into TABLAT.  
7.2.3  
TABLE POINTER REGISTER  
(TBLPTR)  
When a TBLWT is executed, the seven LSbs of the  
Table Pointer register (TBLPTR<6:0>) determine which  
of the 64 program memory holding registers is written  
to. When the timed write to program memory begins  
(via the WR bit), the 12 MSbs of the TBLPTR  
(TBLPTR<21:10>) determine which program memory  
block of 1024 bytes is written to. For more detail, see  
Section 7.5 “Writing to Flash Program Memory”.  
The Table Pointer (TBLPTR) register addresses a byte  
within the program memory. The TBLPTR is comprised  
of three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-  
ters join to form a 22-bit wide pointer. The low-order  
21 bits allow the device to address up to 2 Mbytes of  
program memory space. The 22nd bit allows access to  
the Device ID, the user ID and the Configuration bits.  
When an erase of program memory is executed, the  
12 MSbs of the Table Pointer register point to the  
1024-byte block that will be erased. The Least  
Significant bits are ignored.  
The Table Pointer register, TBLPTR, is used by the  
TBLRDand TBLWTinstructions. These instructions can  
update the TBLPTR in one of four ways based on the  
table operation. These operations are shown in  
Table 7-1. These operations on the TBLPTR only affect  
the low-order 21 bits.  
Figure 7-3 describes the relevant boundaries of  
TBLPTR based on Flash program memory operations.  
TABLE 7-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRDAND TBLWTINSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 7-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
ERASE: TBLPTR<20:10>  
TABLE WRITE: TBLPTR<20:6>  
TABLE READ: TBLPTR<21:0>  
DS39933D-page 92  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TBLPTR points to a byte address in program space.  
Executing TBLRD places the byte pointed to into  
TABLAT. In addition, TBLPTR can be modified  
automatically for the next table read operation.  
7.3  
Reading the Flash Program  
Memory  
The TBLRD instruction is used to retrieve data from  
program memory and places it into data RAM. Table  
reads from program memory are performed one byte at  
a time.  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 7-4  
shows the interface between the internal program  
memory and the TABLAT.  
FIGURE 7-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
(Even Byte Address)  
(Odd Byte Address)  
TBLPTR = xxxxx1  
TBLPTR = xxxxx0  
Instruction Register  
TABLAT  
Read Register  
FETCH  
TBLRD  
(IR)  
EXAMPLE 7-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base  
; address of the word  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
READ_WORD  
TBLRD*+  
MOVF  
MOVWF  
TBLRD*+  
MOVF  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_EVEN  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_ODD  
MOVWF  
2010 Microchip Technology Inc.  
DS39933D-page 93  
PIC18F87J90 FAMILY  
7.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
7.4  
Erasing Flash Program Memory  
The minimum erase block is 512 words or 1024 bytes.  
Only through the use of an external programmer, or  
through ICSP control, can larger blocks of program  
memory be bulk erased. Word erase in the Flash array  
is not supported.  
The sequence of events for erasing a block of internal  
program memory location is:  
1. Load Table Pointer register with address being  
erased.  
When initiating an erase sequence from the micro-  
controller itself, a block of 1024 bytes of program  
memory is erased. The Most Significant 12 bits of the  
TBLPTR<21:10> point to the block being erased. The  
TBLPTR<9:0> bits are ignored.  
2. Set the WREN and FREE bits (EECON1<2,4>)  
to enable the erase operation.  
3. Disable interrupts.  
4. Write 55h to EECON2.  
5. Write 0AAh to EECON2.  
The EECON1 register commands the erase operation.  
The WREN bit must be set to enable write operations.  
The FREE bit is set to select an erase operation. For  
protection, the write initiate sequence for EECON2  
must be used.  
6. Set the WR bit. This will begin the erase cycle.  
7. The CPU will stall for the duration of the erase  
for TIW (see parameter D133B).  
8. Re-enable interrupts.  
A long write is necessary for erasing the internal Flash.  
Instruction execution is halted while in a long write  
cycle. The long write will be terminated by the internal  
programming timer.  
EXAMPLE 7-2:  
ERASING FLASH PROGRAM MEMORY  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
; enable Erase operation  
; disable interrupts  
Required  
Sequence  
; write 55h  
; write 0AAh  
; start erase (CPU stall)  
; re-enable interrupts  
BSF  
DS39933D-page 94  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The on-chip timer controls the write time. The  
write/erase voltages are generated by an on-chip  
charge pump, rated to operate over the voltage range  
of the device.  
7.5  
Writing to Flash Program Memory  
The programming block is 32 words or 64 bytes.  
Programming one word or two bytes at a time is also  
supported.  
Note 1: Unlike previous PIC18 Flash devices,  
members of the PIC18F87J90 family do  
not reset the holding registers after a  
write occurs. The holding registers must  
Table writes are used internally to load the holding  
registers needed to program the Flash memory. There  
are 64 holding registers used by the table writes for  
programming.  
be cleared or overwritten before  
programming sequence.  
a
Since the Table Latch (TABLAT) is only a single byte, the  
TBLWTinstruction may need to be executed 64 times for  
each programming operation (if WPROG = 0). All of the  
table write operations will essentially be short writes  
because only the holding registers are written. At the  
end of updating the 64 holding registers, the EECON1  
register must be written to in order to start the  
programming operation with a long write.  
2: To maintain the endurance of the program  
memory cells, each Flash byte should not  
be programmed more than one time  
between erase operations. Before  
attempting to modify the contents of the  
target cell a second time, an erase of the  
target, or a bulk erase of the entire  
memory, must be performed.  
The long write is necessary for programming the inter-  
nal Flash. Instruction execution is halted while in a long  
write cycle. The long write will be terminated by the  
internal programming timer.  
FIGURE 7-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
TBLPTR = xxxxx0  
TBLPTR = xxxxx1  
TBLPTR = xxxxx2  
TBLPTR = xxxx3F  
Holding Register  
Holding Register  
Holding Register  
Holding Register  
Program Memory  
8. Disable interrupts.  
7.5.1  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE  
9. Write 55h to EECON2.  
10. Write 0AAh to EECON2.  
The sequence of events for programming an internal  
program memory location should be:  
11. Set the WR bit. This will begin the write cycle.  
12. The CPU will stall for the duration of the write for  
TIW (parameter D133A).  
1. Read 1024 bytes into RAM.  
2. Update data values in RAM as necessary.  
13. Re-enable interrupts.  
3. Load Table Pointer register with the address  
being erased.  
14. Repeat steps 6 through 13 until all 1024 bytes  
are written to program memory.  
4. Execute the erase procedure.  
15. Verify the memory (table read).  
5. Load the Table Pointer register with the address  
of the first byte being written, minus 1.  
An example of the required code is shown in  
Example 7-3 on the following page.  
6. Write the 64 bytes into the holding registers with  
auto-increment.  
Note:  
Before setting the WR bit, the Table  
Pointer address needs to be within the  
intended address range of the 64 bytes in  
the holding register.  
7. Set the WREN bit (EECON1<2>) to enable byte  
writes.  
2010 Microchip Technology Inc.  
DS39933D-page 95  
PIC18F87J90 FAMILY  
EXAMPLE 7-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base address  
; of the memory block, minus 1  
ERASE_BLOCK  
BSF  
BSF  
BCF  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
0AAh  
; enable write to memory  
; enable Erase operation  
; disable interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BSF  
MOVLW  
MOVWF  
; write 55h  
EECON2  
; write 0AAh  
; start erase (CPU stall)  
; re-enable interrupts  
EECON1, WR  
INTCON, GIE  
D'16'  
WRITE_COUNTER  
; Need to write 16 blocks of 64 to write  
; one erase block of 1024  
RESTART_BUFFER  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
D'64'  
COUNTER  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
; point to buffer  
FILL_BUFFER  
...  
; read the new data from I2C, SPI,  
; USART, etc.  
WRITE_BUFFER  
MOVLW  
MOVWF  
D’64  
COUNTER  
; number of bytes in holding register  
WRITE_BYTE_TO_HREGS  
MOVFF  
MOVWF  
TBLWT+*  
POSTINC0, WREG  
TABLAT  
; get low byte of buffer data  
; present data to table latch  
; write data, perform a short write  
; to internal TBLWT holding register.  
; loop until buffers are full  
DECFSZ COUNTER  
BRA WRITE_BYTE_TO_HREGS  
PROGRAM_MEMORY  
BSF  
BCF  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
0AAh  
; enable write to memory  
; disable interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
Required  
Sequence  
; write 55h  
EECON2  
; write 0AAh  
EECON1, WR  
INTCON, GIE  
EECON1, WREN  
; start program (CPU stall)  
; re-enable interrupts  
; disable write to memory  
BSF  
BCF  
DECFSZ WRITE_COUNTER  
BRA RESTART_BUFFER  
; done with one write cycle  
; if not done replacing the erase block  
DS39933D-page 96  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
3. Set WPROG to enable single-word write.  
4. Set WREN to enable write to memory.  
5. Disable interrupts.  
7.5.2  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE (WORD  
PROGRAMMING).  
6. Write 55h to EECON2.  
The PIC18F87J90 family of devices has a feature that  
allows programming a single word (two bytes). This  
feature is enabled when the WPROG bit is set. If the  
memory location is already erased, the following  
sequence is required to enable this feature:  
7. Write 0AAh to EECON2.  
8. Set the WR bit. This will begin the write cycle.  
9. The CPU will stall for the duration of the write for  
TIW (see parameter D133A).  
1. Load the Table Pointer register with the address  
of the data to be written  
10. Re-enable interrupts.  
2. Write the 2 bytes into the holding registers and  
perform a table write  
EXAMPLE 7-4:  
SINGLE-WORD WRITE TO FLASH PROGRAM MEMORY  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base address  
MOVLW  
DATA0  
MOVWF  
TABLAT  
TBLWT*+  
MOVLW  
DATA1  
MOVWF  
TABLAT  
TBLWT*  
PROGRAM_MEMORY  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1, WPROG  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
0AAh  
; enable single word write  
; enable write to memory  
; disable interrupts  
Required  
Sequence  
; write 55h  
EECON2  
; write 0AAh  
EECON1, WR  
INTCON, GIE  
EECON1, WPROG  
EECON1, WREN  
; start program (CPU stall)  
; re-enable interrupts  
; disable single word write  
; disable write to memory  
BSF  
BCF  
BCF  
2010 Microchip Technology Inc.  
DS39933D-page 97  
PIC18F87J90 FAMILY  
7.5.3  
WRITE VERIFY  
7.6  
Flash Program Operation During  
Code Protection  
Depending on the application, good programming  
practice may dictate that the value written to the  
memory should be verified against the original value.  
This should be used in applications where excessive  
writes can stress bits near the specification limit.  
See Section 25.6 “Program Verification and Code  
Protection” for details on code protection of Flash  
program memory.  
7.5.4  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected Reset, the memory  
location just programmed should be verified and repro-  
grammed if needed. If the write operation is interrupted  
by a MCLR Reset or a WDT time-out Reset during  
normal operation, the user can check the WRERR bit  
and rewrite the location(s) as needed.  
TABLE 7-2:  
Name  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Reset  
Values on  
Page:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TBLPTRU  
bit 21  
Program Memory Table Pointer Upper Byte  
(TBLPTR<20:16>)  
59  
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
59  
59  
59  
59  
61  
61  
TABLAT  
INTCON  
Program Memory Table Latch  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
TMR0IF  
WREN  
INT0IF  
WR  
RBIF  
EECON2 EEPROM Control Register 2 (not a physical register)  
EECON1 WPROG FREE WRERR  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during Flash program memory access.  
DS39933D-page 98  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
EXAMPLE 8-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
8.0  
8.1  
8 x 8 HARDWARE MULTIPLIER  
Introduction  
MOVF  
MULWF  
ARG1, W  
ARG2  
;
; ARG1 * ARG2 ->  
; PRODH:PRODL  
All PIC18 devices include an 8 x 8 hardware multiplier  
as part of the ALU. The multiplier performs an unsigned  
operation and yields a 16-bit result that is stored in the  
product register pair, PRODH:PRODL. The multiplier’s  
operation does not affect any flags in the STATUS  
register.  
EXAMPLE 8-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
Making multiplication a hardware operation allows it to  
be completed in a single instruction cycle. This has the  
advantages of higher computational throughput and  
reduced code size for multiplication algorithms and  
allows the PIC18 devices to be used in many applica-  
tions previously reserved for digital signal processors.  
A comparison of various hardware and software  
multiply operations, along with the savings in memory  
and execution time, is shown in Table 8-1.  
MOVF  
MULWF  
ARG1, W  
ARG2  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
; Test Sign Bit  
; PRODH = PRODH  
BTFSC  
SUBWF  
ARG2, SB  
PRODH, F  
;
- ARG1  
MOVF  
BTFSC  
SUBWF  
ARG2, W  
ARG1, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
8.2  
Operation  
Example 8-1 shows the instruction sequence for an 8 x 8  
unsigned multiplication. Only one instruction is required  
when one of the arguments is already loaded in the  
WREG register.  
Example 8-2 shows the sequence to do an 8 x 8 signed  
multiplication. To account for the sign bits of the argu-  
ments, each argument’s Most Significant bit (MSb) is  
tested and the appropriate subtractions are done.  
TABLE 8-1:  
Routine  
PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS  
Program  
Memory  
(Words)  
Time  
Cycles  
(Max)  
Multiply Method  
@ 48 MHz @ 10 MHz @ 4 MHz  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
5.7 s  
83.3 ns  
7.5 s  
27.6 s  
400 ns  
36.4 s  
2.4 s  
69 s  
1 s  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
91 s  
6 s  
500 ns  
20.1 s  
2.3 s  
Without hardware multiply  
Hardware multiply  
21  
28  
52  
35  
242  
28  
254  
40  
96.8 s  
11.2 s  
102.6 s  
16.0 s  
242 s  
28 s  
254 s  
40 s  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
21.6 s  
3.3 s  
2010 Microchip Technology Inc.  
DS39933D-page 99  
PIC18F87J90 FAMILY  
Example 8-3 shows the sequence to do a 16 x 16  
unsigned multiplication. Equation 8-1 shows the  
algorithm that is used. The 32-bit result is stored in four  
registers (RES3:RES0).  
EQUATION 8-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0= ARG1H:ARG1L ARG2H:ARG2L  
16  
=
(ARG1H ARG2H 2 ) +  
8
EQUATION 8-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
(ARG1H ARG2L 2 ) +  
(ARG1L ARG2H 2 ) +  
(ARG1L ARG2L) +  
(-1 ARG2H<7> ARG1H:ARG1L 2 ) +  
8
16  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
(-1 ARG1H<7> ARG2H:ARG2L 2  
)
16  
(ARG1H ARG2H 2 ) +  
8
(ARG1H ARG2L 2 ) +  
8
(ARG1L ARG2H 2 ) +  
EXAMPLE 8-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
(ARG1L ARG2L)  
MOVF  
ARG1L, W  
MULWF  
ARG2L  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
EXAMPLE 8-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
; ARG1L * ARG2L->  
; PRODH:PRODL  
;
;
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
;
;
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVF  
MULWF  
ARG1H, W  
ARG2H  
; ARG1H * ARG2H->  
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1L, W  
ARG2H  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1L, W  
ARG2H  
; ARG1L * ARG2H->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
;
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
;
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
ARG2H, 7  
SIGN_ARG1  
ARG1L, W  
RES2  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
ARG1H, W  
SUBWFB RES3  
Example 8-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 8-2 shows the algorithm  
used. The 32-bit result is stored in four registers  
(RES3:RES0). To account for the sign bits of the  
arguments, the MSb for each argument pair is tested  
and the appropriate subtractions are done.  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H, 7  
CONT_CODE  
ARG2L, W  
RES2  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
MOVF  
SUBWF  
MOVF  
ARG2H, W  
SUBWFB RES3  
;
CONT_CODE  
:
DS39933D-page 100  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
When the IPEN bit is cleared (default state), the  
interrupt priority feature is disabled and interrupts are  
compatible with PIC® mid-range devices. In  
Compatibility mode, the interrupt priority bits for each  
source have no effect. INTCON<6> is the PEIE bit  
which enables/disables all peripheral interrupt sources.  
INTCON<7> is the GIE bit which enables/disables all  
interrupt sources. All interrupts branch to address,  
0008h, in Compatibility mode.  
9.0  
INTERRUPTS  
Members of the PIC18F87J90 family of devices have  
multiple interrupt sources and an interrupt priority  
feature that allows most interrupt sources to be  
assigned a high-priority level or a low-priority level. The  
high-priority interrupt vector is at 0008h and the  
low-priority interrupt vector is at 0018h. High-priority  
interrupt events will interrupt any low-priority interrupts  
that may be in progress.  
When an interrupt is responded to, the global interrupt  
enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt priority  
levels are used, this will be either the GIEH or GIEL bit.  
There are thirteen registers which are used to control  
interrupt operation. These registers are:  
• RCON  
High-priority interrupt sources can interrupt  
a
• INTCON  
low-priority interrupt. Low-priority interrupts are not  
processed while high-priority interrupts are in progress.  
• INTCON2  
• INTCON3  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address (0008h  
or 0018h). Once in the Interrupt Service Routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bits must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
• PIR1, PIR2, PIR3  
• PIE1, PIE2, PIE3  
• IPR1, IPR2, IPR3  
It is recommended that the Microchip header files,  
supplied with MPLAB® IDE, be used for the symbolic bit  
names in these registers. This allows the  
assembler/compiler to automatically take care of the  
placement of these bits within the specified register.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used) which re-enables interrupts.  
In general, interrupt sources have three bits to control  
their operation. They are:  
For external interrupt events, such as the INTx pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two-cycle instructions.  
Individual interrupt flag bits are set regardless of the  
status of their corresponding enable bit or the GIE bit.  
Flag bit to indicate that an interrupt event  
occurred  
Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
Note:  
Do not use the MOVFFinstruction to modify  
any of the Interrupt Control registers while  
any interrupt is enabled. Doing so may  
cause erratic microcontroller behavior.  
Priority bit to select high priority or low priority  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON<7>). When interrupt priority is  
enabled, there are two bits which enable interrupts  
globally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts that have the priority bit set (high priority).  
Setting the GIEL bit (INTCON<6>) enables all  
interrupts that have the priority bit cleared (low priority).  
When the interrupt flag, enable bit and appropriate  
global interrupt enable bit are set, the interrupt will  
vector immediately to address, 0008h or 0018h,  
depending on the priority bit setting. Individual  
interrupts can be disabled through their corresponding  
enable bits.  
2010 Microchip Technology Inc.  
DS39933D-page 101  
PIC18F87J90 FAMILY  
FIGURE 9-1:  
PIC18F87J90 FAMILY INTERRUPT LOGIC  
Wake-up if in  
Idle or Sleep modes  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
INT3IF  
INT3IE  
INT3IP  
Interrupt to CPU  
Vector to Location  
0008h  
PIR1<6:3,1:0>  
PIE1<6:3,1:0>  
IPR1<6:3,1:0>  
GIE/GIEH  
PIR2<7:6,3:1>  
PIE2<7:6 3:1>  
IPR2<7:6,3:1>  
IPEN  
PIR3<6:0>  
PIE3<6:0>  
IPR3<6:0>  
IPEN  
PEIE/GIEL  
IPEN  
High-Priority Interrupt Generation  
Low-Priority Interrupt Generation  
PIR1<6:3,1:0>  
PIE1<6:3,1:0>  
IPR1<6:3,1:0>  
PIR2<7:6,3:1>  
PIE2<7:6,3:1>  
IPR2<7:6,3:1>  
Interrupt to CPU  
Vector to Location  
0018h  
TMR0IF  
TMR0IE  
TMR0IP  
IPEN  
PIR3<6:0>  
PIE3<6:0>  
IPR3<6:0>  
RBIF  
RBIE  
RBIP  
GIE/GIEH  
PEIE/GIEL  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
INT3IF  
INT3IE  
INT3IP  
DS39933D-page 102  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
9.1  
INTCON Registers  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
interrupt enable bit. User software should  
ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt.  
This feature allows for software polling.  
The INTCON registers are readable and writable  
registers which contain various enable, priority and flag  
bits.  
REGISTER 9-1:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
R/W-0  
PEIE/GIEL  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF(1)  
GIE/GIEH  
bit 7  
TMR0IE  
INT0IE  
TMR0IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN = 1:  
1= Enables all high-priority interrupts  
0= Disables all interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN = 1:  
1= Enables all low-priority peripheral interrupts  
0= Disables all low-priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit(1)  
1= At least one of the RB<7:4> pins changed state (must be cleared in software)  
0= None of the RB<7:4> pins have changed state  
Note 1: A mismatch condition will continue to set this bit. Reading PORTB, and then waiting one additional instruction  
cycle, will end the mismatch condition and allow the bit to be cleared.  
2010 Microchip Technology Inc.  
DS39933D-page 103  
PIC18F87J90 FAMILY  
REGISTER 9-2:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-1  
R/W-1  
INTEDG0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
RBIP  
RBPU  
bit 7  
INTEDG1  
INTEDG2  
INTEDG3  
TMR0IP  
INT3IP  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt 2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG3: External Interrupt 3 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IP: INT3 External Interrupt Priority bit  
1= High priority  
0= Low priority  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Note:  
Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding  
enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt. This feature allows for software polling.  
DS39933D-page 104  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 9-3:  
INTCON3: INTERRUPT CONTROL REGISTER 3  
R/W-1  
INT2IP  
bit 7  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT3IF  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT1IP  
INT3IE  
INT2IE  
INT1IE  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IE: INT3 External Interrupt Enable bit  
1= Enables the INT3 external interrupt  
0= Disables the INT3 external interrupt  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
INT3IF: INT3 External Interrupt Flag bit  
1= The INT3 external interrupt occurred (must be cleared in software)  
0= The INT3 external interrupt did not occur  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Note:  
Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding  
enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt. This feature allows for software polling.  
2010 Microchip Technology Inc.  
DS39933D-page 105  
PIC18F87J90 FAMILY  
9.2  
PIR Registers  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE (INTCON<7>).  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are three Peripheral Interrupt  
Request (Flag) registers (PIR1, PIR2, PIR3).  
2: User software should ensure the  
appropriate interrupt flag bits are cleared  
prior to enabling an interrupt and after  
servicing that interrupt.  
REGISTER 9-4:  
PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1  
U-0  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
U-0  
R/W-0  
R/W-0  
RC1IF  
TX1IF  
TMR2IF  
TMR1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
bit 5  
bit 4  
bit 3  
RC1IF: EUSART Receive Interrupt Flag bit  
1= The EUSART receive buffer, RCREG1, is full (cleared when RCREG1 is read)  
0= The EUSART receive buffer is empty  
TX1IF: EUSART Transmit Interrupt Flag bit  
1= The EUSART transmit buffer, TXREG1, is empty (cleared when TXREG1 is written)  
0= The EUSART transmit buffer is full  
SSPIF: Master Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
bit 0  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
DS39933D-page 106  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 9-5:  
PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2  
R/W-0  
OSCFIF  
bit 7  
R/W-0  
CMIF  
U-0  
U-0  
R/W-0  
BCLIF  
R/W-0  
LVDIF  
R/W-0  
U-0  
TMR3IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
OSCFIF: Oscillator Fail Interrupt Flag bit  
1= Device oscillator failed, clock input has changed to INTOSC (must be cleared in software)  
0= Device clock operating  
CMIF: Comparator Interrupt Flag bit  
1= Comparator input has changed (must be cleared in software)  
0= Comparator input has not changed  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision occurred (must be cleared in software)  
0= No bus collision occurred  
bit 2  
bit 1  
bit 0  
LVDIF: Low-Voltage Detect Interrupt Flag bit  
1= A low-voltage condition occurred (must be cleared in software)  
0= The device voltage is above the regulator’s low-voltage trip point  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed (must be cleared in software)  
0= TMR3 register did not overflow  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39933D-page 107  
PIC18F87J90 FAMILY  
REGISTER 9-6:  
PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3  
U-0  
R/W-0  
LCDIF  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RC2IF  
TX2IF  
CTMUIF  
CCP2IF  
CCP1IF  
RTCCIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
LCDIF: LCD Interrupt Flag bit (valid when Type-B waveform with Non-Static mode is selected)  
1= LCD data of all COMs is output (must be cleared in software)  
0= LCD data of all COMs is not yet output  
bit 5  
bit 4  
bit 3  
bit 2  
RC2IF: AUSART Receive Interrupt Flag bit  
1= The AUSART receive buffer, RCREG2, is full (cleared when RCREG2 is read)  
0= The AUSART receive buffer is empty  
TX2IF: AUSART Transmit Interrupt Flag bit  
1= The AUSART transmit buffer, TXREG2, is empty (cleared when TXREG2 is written)  
0= The AUSART transmit buffer is full  
CTMUIF: CTMU Interrupt Flag bit  
1= CTMU interrupt occured (must be cleared in software)  
0= No CTMU interrupt occured  
CCP2IF: CCP2 Interrupt Flag bit  
Capture mode:  
1= A TMR1/TMR3 register capture occurred (must be cleared in software)  
0= No TMR1/TMR3 register capture occurred  
Compare mode:  
1= A TMR1/TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1/TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 1  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1/TMR3 register capture occurred (must be cleared in software)  
0= No TMR1/TMR3 register capture occurred  
Compare mode:  
1= A TMR1/TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1/TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 0  
RTCCIF: RTCC Interrupt Flag bit  
1= RTCC interrupt occured (must be cleared in software)  
0= No RTCC interrupt occured  
DS39933D-page 108  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
9.3  
PIE Registers  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three Peripheral  
Interrupt Enable registers (PIE1, PIE2, PIE3). When  
IPEN = 0, the PEIE bit must be set to enable any of  
these peripheral interrupts.  
REGISTER 9-7:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
U-0  
R/W-0  
ADIE  
R/W-0  
RC1IE  
R/W-0  
TX1IE  
R/W-0  
SSPIE  
U-0  
R/W-0  
R/W-0  
TMR2IE  
TMR1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
bit 5  
bit 4  
bit 3  
RC1IE: EUSART Receive Interrupt Enable bit  
1= Enables the EUSART receive interrupt  
0= Disables the EUSART receive interrupt  
TX1IE: EUSART Transmit Interrupt Enable bit  
1= Enables the EUSART transmit interrupt  
0= Disables the EUSART transmit interrupt  
SSPIE: Master Synchronous Serial Port Interrupt Enable bit  
1= Enables the MSSP interrupt  
0= Disables the MSSP interrupt  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
bit 0  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
2010 Microchip Technology Inc.  
DS39933D-page 109  
PIC18F87J90 FAMILY  
REGISTER 9-8:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0  
OSCFIE  
bit 7  
R/W-0  
CMIE  
U-0  
U-0  
R/W-0  
BCLIE  
R/W-0  
LVDIE  
R/W-0  
U-0  
TMR3IE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
OSCFIE: Oscillator Fail Interrupt Enable bit  
1= Enabled  
0= Disabled  
CMIE: Comparator Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 2  
bit 1  
bit 0  
LVDIE: Low-Voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enabled  
0= Disabled  
Unimplemented: Read as ‘0’  
DS39933D-page 110  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 9-9:  
PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3  
U-0  
R/W-0  
LCDIE  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RC2IE  
TX2IE  
CTMUIE  
CCP2IE  
CCP1IE  
RTCCIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
LCDIE: LCD Interrupt Enable bit (valid when Type-B waveform with Non-Static mode is selected)  
1= Enabled  
0= Disabled  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RC2IE: AUSART Receive Interrupt Enable bit  
1= Enabled  
0= Disabled  
TX2IE: AUSART Transmit Interrupt Enable bit  
1= Enabled  
0= Disabled  
CTMUIE: CTMU Interrupt Enable bit  
1= Enabled  
0= Disabled  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enabled  
0= Disabled  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
RTCCIE: RTCC Interrupt Enable bit  
1= Enabled  
0= Disabled  
2010 Microchip Technology Inc.  
DS39933D-page 111  
PIC18F87J90 FAMILY  
9.4  
IPR Registers  
The IPR registers contain the individual priority bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three Peripheral  
Interrupt Priority registers (IPR1, IPR2, IPR3). Using  
the priority bits requires that the Interrupt Priority  
Enable (IPEN) bit be set.  
REGISTER 9-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1  
U-0  
R/W-1  
ADIP  
R/W-1  
RC1IP  
R/W-1  
TX1IP  
R/W-1  
SSPIP  
U-0  
R/W-1  
R/W-1  
TMR2IP  
TMR1IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
RC1IP: EUSART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TX1IP: EUSART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
SSPIP: Master Synchronous Serial Port Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 0  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
DS39933D-page 112  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 9-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2  
R/W-1  
R/W-1  
CMIP  
U-0  
U-0  
R/W-1  
BCLIP  
R/W-1  
LVDIP  
R/W-1  
U-0  
OSCFIP  
TMR3IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
OSCFIP: Oscillator Fail Interrupt Priority bit  
1= High priority  
0= Low priority  
CMIP: Comparator Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
BCLIP: Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 2  
bit 1  
bit 0  
LVDIP: Low-Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39933D-page 113  
PIC18F87J90 FAMILY  
REGISTER 9-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3  
U-0  
R/W-1  
LCDIP  
R-1  
R-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
RC2IP  
TX2IP  
CTMUIP  
CCP2IP  
CCP1IP  
RTCCIP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
LCDIP: LCD Interrupt Priority bit (valid when Type-B waveform with Non-Static mode is selected)  
1= High priority  
0= Low priority  
bit 5  
bit 4  
bit 3  
bit  
RC2IP: AUSART Receive Priority Flag bit  
1= High priority  
0= Low priority  
TX2IP: AUSART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
CTMUIP: CTMU Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP2IP: CCP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
bit  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 0  
RTCCIP: RTCC Interrupt Priority bit  
1= High priority  
0= Low priority  
DS39933D-page 114  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
9.5  
RCON Register  
The RCON register contains bits used to determine the  
cause of the last Reset or wake-up from Idle or Sleep  
modes. RCON also contains the bit that enables  
interrupt priorities (IPEN).  
REGISTER 9-13: RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
U-0  
R/W-1  
CM  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
CM: Configuration Mismatch Flag bit  
1= A Configuration Mismatch Reset has not occurred  
0= A Configuration Mismatch Reset has occurred (must be subsequently set in software)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RI: RESETInstruction Flag bit  
For details of bit operation, see Register 5-1.  
TO: Watchdog Timer Time-out Flag bit  
For details of bit operation, see Register 5-1.  
PD: Power-Down Detection Flag bit  
For details of bit operation, see Register 5-1.  
POR: Power-on Reset Status bit  
For details of bit operation, see Register 5-1.  
BOR: Brown-out Reset Status bit  
For details of bit operation, see Register 5-1.  
2010 Microchip Technology Inc.  
DS39933D-page 115  
PIC18F87J90 FAMILY  
9.6  
INTx Pin Interrupts  
9.7  
TMR0 Interrupt  
External interrupts on the RB0/INT0, RB1/INT1,  
RB2/INT2 and RB3/INT3 pins are edge-triggered. If the  
corresponding INTEDGx bit in the INTCON2 register is  
set (= 1), the interrupt is triggered by a rising edge; if  
the bit is clear, the trigger is on the falling edge. When  
a valid edge appears on the RBx/INTx pin, the  
corresponding flag bit, INTxIF, is set. This interrupt can  
be disabled by clearing the corresponding enable bit,  
INTxIE. Flag bit, INTxIF, must be cleared in software in  
the Interrupt Service Routine before re-enabling the  
interrupt.  
In 8-bit mode (which is the default), an overflow in the  
TMR0 register (FFh 00h) will set flag bit, TMR0IF. In  
16-bit mode, an overflow in the TMR0H:TMR0L register  
pair (FFFFh 0000h) will set TMR0IF. The interrupt can  
be enabled/disabled by setting/clearing enable bit,  
TMR0IE (INTCON<5>). Interrupt priority for Timer0 is  
determined by the value contained in the interrupt priority  
bit, TMR0IP (INTCON2<2>). See Section 11.0 “Timer0  
Module” for further details on the Timer0 module.  
9.8  
PORTB Interrupt-on-Change  
All external interrupts (INT0, INT1, INT2 and INT3) can  
wake-up the processor from the power-managed  
modes if bit, INTxIE, was set prior to going into the  
power-managed modes. If the Global Interrupt Enable  
bit, GIE, is set, the processor will branch to the interrupt  
vector following wake-up.  
An input change on PORTB<7:4> sets flag bit, RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<3>).  
Interrupt priority for PORTB interrupt-on-change is  
determined by the value contained in the interrupt  
priority bit, RBIP (INTCON2<0>).  
Interrupt priority for INT1, INT2 and INT3 is determined  
by the value contained in the Interrupt Priority bits,  
INT1IP (INTCON3<6>), INT2IP (INTCON3<7>) and  
INT3IP (INTCON2<1>). There is no priority bit  
associated with INT0. It is always a high-priority  
interrupt source.  
9.9  
Context Saving During Interrupts  
During interrupts, the return PC address is saved on  
the stack. Additionally, the WREG, STATUS and BSR  
registers are saved on the Fast Return Stack. If a fast  
return from interrupt is not used (see Section 6.3  
“Data Memory Organization”), the user may need to  
save the WREG, STATUS and BSR registers on entry  
to the Interrupt Service Routine (ISR). Depending on  
the user’s application, other registers may also need to  
be saved. Example 9-1 saves and restores the WREG,  
STATUS and BSR registers during an Interrupt Service  
Routine.  
EXAMPLE 9-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR_TMEP located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
DS39933D-page 116  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
10.1 I/O Port Pin Capabilities  
10.0 I/O PORTS  
When developing an application, the capabilities of the  
port pins must be considered. Outputs on some pins  
have higher output drive strength than others. Similarly,  
some pins can tolerate higher than VDD input levels.  
Depending on the device selected and features  
enabled, there are up to nine ports available. Some  
pins of the I/O ports are multiplexed with an alternate  
function from the peripheral features on the device. In  
general, when a peripheral is enabled, that pin may not  
be used as a general purpose I/O pin.  
10.1.1  
INPUT PINS AND VOLTAGE  
CONSIDERATIONS  
Each port has three memory mapped registers for its  
operation:  
The voltage tolerance of pins used as device inputs is  
dependent on the pin’s input function. Pins that are used  
as digital only inputs are able to handle DC voltages up  
to 5.5V, a level typical for digital logic circuits. In contrast,  
pins that also have analog input functions of any kind  
can only tolerate voltages up to VDD. Voltage excursions  
beyond VDD on these pins should be avoided.  
• TRIS register (Data Direction register)  
• PORT register (reads the levels on the pins of the  
device)  
• LAT register (Output Latch register)  
Reading the PORT register reads the current status of  
the pins, whereas writing to the PORT register writes to  
the Output Latch (LAT) register.  
Table 10-1 summarizes the input voltage capabilities.  
Refer to Section 28.0 “Electrical Characteristics” for  
more details.  
Setting a TRIS bit (= 1) makes the corresponding port  
pin an input (i.e., puts the corresponding output driver  
in a high-impedance mode). Clearing a TRIS bit (= 0)  
makes the corresponding port pin an output (i.e., puts  
the contents of the corresponding LAT bit on the  
selected pin).  
TABLE 10-1: INPUT VOLTAGE TOLERANCE  
Tolerated  
PORT or Pin  
Description  
Input  
PORTA<7:0>  
PORTC<1:0>  
PORTF<7:1>  
PORTG<3:2>  
PORTB<7:0>  
PORTC<7:2>  
PORTD<7:0>  
PORTE<7:3>  
PORTG<4,1>  
PORTH<7:0>(1)  
PORTJ<7:0>(1)  
Only VDD input levels  
tolerated.  
The Output Latch (LAT register) is useful for  
read-modify-write operations on the value that the I/O  
pins are driving. Read-modify-write operations on the  
LAT register read and write the latched output value for  
the PORT register.  
VDD  
Tolerates input  
levels above VDD,  
useful for most  
standard logic.  
A simplified model of a generic I/O port, without the  
interfaces to other peripherals, is shown in Figure 10-1.  
5.5V  
FIGURE 10-1:  
GENERIC I/O PORT  
OPERATION  
RD LAT  
Note 1: Not available on PIC18F6XJ90 devices.  
Data  
Bus  
D
Q
10.1.2 PIN OUTPUT DRIVE  
I/O pin  
WR LAT  
or PORT  
CKx  
When used as digital I/O, the output pin drive strengths  
vary for groups of pins intended to meet the needs for  
a variety of applications. In general, there are three  
classes of output pins in terms of drive capability.  
Data Latch  
D
Q
PORTB and PORTC, as well as PORTA<7:6>, are  
designed to drive higher current loads, such as LEDs.  
PORTD, PORTE and PORTJ can also drive LEDs but  
only those with smaller current requirements. PORTF,  
PORTG and PORTH, along with PORTA<5:0>, have  
the lowest drive level but are capable of driving normal  
digital circuit loads with a high input impedance.  
Regardless of which port it is located on, all output pins  
in LCD Segment or Common mode have sufficient  
output to directly drive a display.  
WR TRIS  
RD TRIS  
CKx  
TRIS Latch  
Input  
Buffer  
Q
D
EN  
RD PORT  
Table 10-2 summarizes the output capabilities of the  
ports. Refer to the “Absolute Maximum Ratings” in  
Section 28.0 “Electrical Characteristics” for more  
details.  
2010 Microchip Technology Inc.  
DS39933D-page 117  
PIC18F87J90 FAMILY  
TABLE 10-2: OUTPUT DRIVE LEVELS FOR  
VARIOUS PORTS  
10.2 PORTA, TRISA and  
LATA Registers  
Low  
Medium  
PORTD  
High  
PORTA is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction and Output Latch registers are  
TRISA and LATA.  
PORTA<5:0>  
PORTF  
PORTA<7:6>  
PORTB  
PORTE  
RA4/T0CKI is a Schmitt Trigger input. All other PORTA  
pins have TTL input levels and full CMOS output  
drivers.  
PORTG  
PORTH(1)  
PORTJ(1)  
PORTC  
Note 1: Not available on PIC18F6XJ90 devices.  
The RA4 pin is multiplexed with the Timer0 clock input  
and one of the LCD segment drives. RA5 and RA<3:0>  
are multiplexed with analog inputs for the A/D  
Converter.  
10.1.3 PULL-UP CONFIGURATION  
Four of the I/O ports (PORTB, PORTD, PORTE and  
PORTJ) implement configurable weak pull-ups on all  
pins. These are internal pull-ups that allow floating  
digital input signals to be pulled to a consistent level  
without the use of external resistors.  
The operation of the analog inputs as A/D Converter  
inputs is selected by clearing or setting the PCFG<3:0>  
control bits in the ADCON1 register. The corresponding  
TRISA bits control the direction of these pins, even  
when they are being used as analog inputs. The user  
must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
The pull-ups are enabled with a single bit for each of the  
ports: RBPU (INTCON2<7>) for PORTB, and RDPU,  
REPU and PJPU (PORTG<7:5>) for the other ports.  
Note:  
RA5 and RA<3:0> are configured as  
analog inputs on any Reset and are read  
as ‘0’. RA4 is configured as a digital input.  
10.1.4  
OPEN-DRAIN OUTPUTS  
The output pins for several peripherals are also  
equipped with a configurable, open-drain output option.  
This allows the peripherals to communicate with  
external digital logic, operating at a higher voltage  
level, without the use of level translators.  
OSC2/CLKO/RA6 and OSC1/CLKI/RA7 normally  
serve as the external circuit connections for the exter-  
nal (primary) oscillator circuit (HS Oscillator modes), or  
the external clock input and output (EC Oscillator  
modes). In these cases, RA6 and RA7 are not available  
as digital I/O and their corresponding TRIS and LAT  
bits are read as ‘0’. When the device is configured to  
use INTOSC or INTRC as the default oscillator mode  
(FOSC2 Configuration bit is ‘0’), RA6 and RA7 are  
automatically configured as digital I/O. The oscillator  
and clock in/clock out functions are disabled.  
The open-drain option is implemented on port pins  
specifically associated with the data and clock outputs  
of the USARTs, the MSSP module (in SPI mode) and  
the CCP modules. This option is selectively enabled by  
setting the open-drain control bit for the corresponding  
module in TRISG and LATG. Their configuration is dis-  
cussed in more detail in Section 10.4 “PORTC, TRISC  
and LATC Registers”, Section 10.6 “PORTE, TRISE  
and LATE Registers” and Section 10.8 “PORTG,  
TRISG and LATG Registers”.  
RA1, RA4 and RA5 are multiplexed with LCD segment  
drives, controlled by bits in the LCDSE1 and LCDSE2  
registers. I/O port functionality is only available when  
the LCD segments are disabled.  
When the open-drain option is required, the output pin  
must also be tied through an external pull-up resistor,  
provided by the user to a higher voltage level, up to 5V  
(Figure 10-2). When a digital logic high signal is output,  
it is pulled up to the higher voltage level.  
EXAMPLE 10-1:  
INITIALIZING PORTA  
CLRF  
PORTA  
LATA  
07h  
; Initialize PORTA by  
; clearing output latches  
; Alternate method to  
; clear output data latches  
; Configure A/D  
CLRF  
FIGURE 10-2:  
USING THE OPEN-DRAIN  
OUTPUT (USART SHOWN  
AS EXAMPLE)  
MOVLW  
MOVWF  
MOVLW  
ADCON1 ; for digital inputs  
0BFh  
; Value used to initialize  
; data direction  
3.3V  
+5V  
MOVWF  
TRISA  
; Set RA<7, 5:0> as inputs,  
; RA<6> as output  
PIC18F87J90  
3.3V  
VDD  
TXX  
5V  
(at logic ‘1’)  
DS39933D-page 118  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 10-3:  
Pin Name  
PORTA FUNCTIONS  
TRIS  
I/O  
Type  
Function  
I/O  
Description  
Setting  
RA0/AN0  
RA0  
0
1
1
O
I
DIG  
TTL  
ANA  
LATA<0> data output; not affected by analog input.  
PORTA<0> data input; disabled when analog input enabled.  
AN0  
RA1  
I
A/D Input Channel 0. Default input configuration on POR; does not  
affect digital output.  
RA1/AN1/SEG18  
0
1
1
O
I
DIG  
TTL  
ANA  
LATA<1> data output; not affected by analog input.  
PORTA<1> data input; disabled when analog input enabled.  
AN1  
I
A/D Input Channel 1. Default input configuration on POR; does not  
affect digital output.  
SEG18  
RA2  
x
0
1
1
1
0
1
1
1
0
1
x
x
0
1
1
x
x
x
0
1
x
x
0
1
O
O
I
ANA  
DIG  
TTL  
ANA  
ANA  
DIG  
TTL  
ANA  
ANA  
DIG  
ST  
LCD Segment 18 output; disables all other pin functions.  
LATA<2> data output; not affected by analog input.  
PORTA<2> data input; disabled when analog functions enabled.  
A/D Input Channel 2. Default input configuration on POR.  
A/D and comparator low reference voltage input.  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
AN2  
VREF-  
RA3  
I
I
O
I
LATA<3> data output; not affected by analog input.  
PORTA<3> data input; disabled when analog input enabled.  
A/D Input Channel 3. Default input configuration on POR.  
A/D and comparator high reference voltage input.  
AN3  
VREF+  
RA4  
I
I
RA4/T0CKI/  
SEG14  
O
I
LATA<4> data output.  
PORTA<4> data input. Default configuration on POR.  
Timer0 clock input.  
T0CKI  
SEG14  
RA5  
I
ST  
O
O
I
ANA  
DIG  
TTL  
ANA  
ANA  
ANA  
DIG  
DIG  
TTL  
ANA  
ANA  
DIG  
TTL  
LCD Segment 14 output; disables all other pin functions.  
LATA<5> data output; not affected by analog input.  
PORTA<5> data input; disabled when analog input enabled.  
A/D Input Channel 4. Default configuration on POR.  
LCD Segment 15 output; disables all other pin functions.  
Main oscillator feedback output connection (HS and HSPLL modes).  
System cycle clock output (FOSC/4) (EC and ECPLL modes).  
LATA<6> data output; disabled when FOSC2 Configuration bit is set.  
PORTA<6> data input; disabled when FOSC2 Configuration bit is set.  
Main oscillator input connection (HS and HSPLL modes).  
Main external clock source input (EC and ECPLL modes).  
LATA<7> data output; disabled when FOSC2 Configuration bit is set.  
PORTA<7> data input; disabled when FOSC2 Configuration bit is set.  
RA5/AN4/SEG15  
OSC2/CLKO/RA6  
OSC1/CLKI/RA7  
AN4  
SEG15  
OSC2  
CLKO  
RA6  
I
O
O
O
O
I
OSC1  
CLKI  
RA7  
I
I
O
I
Legend:  
O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Reset Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
(1)  
PORTA  
LATA  
RA7  
RA6  
RA5  
LATA5  
TRISA5  
VCFG1  
SE13  
RA4  
LATA4  
TRISA4  
VCFG0  
SE12  
RA3  
LATA3  
TRISA3  
PCFG3  
SE11  
RA2  
LATA2  
TRISA2  
PCFG2  
SE10  
RA1  
LATA1  
TRISA1  
PCFG1  
SE09  
RA0  
LATA0  
TRISA0  
PCFG0  
SE08  
63  
62  
62  
61  
61  
61  
(1)  
(1)  
LATA7  
LATA6  
(1)  
(1)  
TRISA  
TRISA7  
TRISA6  
ADCON1  
LCDSE1  
LCDSE2  
Legend:  
TRIGSEL  
SE15  
SE14  
SE22  
SE23  
SE21  
SE20  
SE19  
SE18  
SE17  
SE16  
— = unimplemented, read as ‘0’. Shaded cells are not used by PORTA.  
Note 1: These bits are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are  
disabled and read as ‘x’.  
2010 Microchip Technology Inc.  
DS39933D-page 119  
PIC18F87J90 FAMILY  
Four of the PORTB pins (RB<7:4>) have an  
interrupt-on-change feature. Only pins configured as  
inputs can cause this interrupt to occur (i.e., any  
RB<7:4> pin configured as an output is excluded from  
the interrupt-on-change comparison). The input pins (of  
RB<7:4>) are compared with the old value latched on  
the last read of PORTB. The “mismatch” outputs of  
RB<7:4> are ORed together to generate the RB Port  
Change Interrupt with Flag bit, RBIF (INTCON<0>).  
10.3 PORTB, TRISB and  
LATB Registers  
PORTB is an 8-bit wide, bidirectional port. The  
corresponding Data Direction and Output Latch registers  
are TRISB and LATB. All pins on PORTB are digital only  
and tolerate voltages up to 5.5V.  
EXAMPLE 10-2:  
INITIALIZING PORTB  
This interrupt can wake the device from  
power-managed modes. The user, in the Interrupt  
Service Routine, can clear the interrupt in the following  
manner:  
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
CLRF  
LATB  
a) Any read or write of PORTB (except with the  
MOVFF (ANY), PORTBinstruction). This will end  
the mismatch condition.  
MOVLW  
MOVWF  
0CFh  
b) Wait one instruction cycle (such as executing a  
TRISB  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
NOPinstruction).  
c) Clear flag bit, RBIF.  
A mismatch condition will continue to set flag bit, RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit, RBIF, to be cleared after one TCY delay.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
performed by clearing bit, RBPU (INTCON2<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
RB<3:2> are multiplexed as CTMU edge inputs.  
RB<5:0> are also multiplexed with LCD segment  
drives, controlled by bits in the LCDSE1 and LCDSE3  
registers. I/O port functionality is only available when  
the LCD segments are disabled.  
DS39933D-page 120  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 10-5: PORTB FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RB0/INT0/SEG30  
RB0  
0
1
1
x
0
1
1
x
0
1
1
x
x
0
1
1
x
x
0
1
1
x
0
1
1
x
0
1
1
x
0
1
1
x
x
O
I
DIG  
TTL  
ST  
LATB<0> data output.  
PORTB<0> data input; weak pull-up when RBPU bit is cleared.  
External Interrupt 0 input.  
INT0  
SEG30  
RB1  
I
O
O
I
ANA  
DIG  
TTL  
ST  
LCD Segment 30 output; disables all other pin functions.  
LATB<1> data output.  
RB1/INT1/SEG8  
PORTB<1> data input; weak pull-up when RBPU bit is cleared.  
External Interrupt 1 input.  
INT1  
SEG8  
RB2  
I
O
O
I
ANA  
DIG  
TTL  
ST  
LCD Segment 8 output; disables all other pin functions.  
LATB<2> data output.  
RB2/INT2/SEG9/  
CTED1  
PORTB<2> data input; weak pull-up when RBPU bit is cleared.  
External Interrupt 2 input.  
INT2  
SEG9  
CTED1  
RB3  
I
O
I
ANA  
ST  
LCD Segment 9 output; disables all other pin functions.  
CTMU Edge 1 input.  
RB3/INT3/SEG10/  
CTED2  
O
I
DIG  
TTL  
ST  
LATB<3> data output.  
PORTB<3> data input; weak pull-up when RBPU bit is cleared.  
External Interrupt 3 input.  
INT3  
SEG10  
CTED2  
RB4  
I
O
I
ANA  
ST  
LCD Segment 10 output; disables all other pin functions.  
CTMU Edge 2 input.  
RB4/KBI0/SEG11  
RB5/KBI1/SEG29  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
O
I
DIG  
TTL  
TTL  
ANA  
DIG  
TTL  
TTL  
ANA  
DIG  
TTL  
TTL  
ST  
LATB<4> data output.  
PORTB<4> data input; weak pull-up when RBPU bit is cleared.  
Interrupt-on-pin change.  
KBI0  
SEG11  
RB5  
I
O
O
I
LCD Segment 11 output; disables all other pin functions.  
LATB<5> data output.  
PORTB<5> data input; weak pull-up when RBPU bit is cleared.  
Interrupt-on-pin change.  
KBI1  
SEG29  
RB6  
I
O
O
I
LCD Segment 29 output; disables all other pin functions.  
LATB<6> data output.  
PORTB<6> data input; weak pull-up when RBPU bit is cleared.  
Interrupt-on-pin change.  
KBI2  
PGC  
RB7  
I
I
Serial execution (ICSP™) clock input for ICSP and ICD operation.  
LATB<7> data output.  
O
I
DIG  
TTL  
TTL  
DIG  
ST  
PORTB<7> data input; weak pull-up when RBPU bit is cleared.  
Interrupt-on-pin change.  
KBI3  
PGD  
I
O
I
Serial execution data output for ICSP and ICD operation.  
Serial execution data input for ICSP and ICD operation.  
Legend:  
O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
2010 Microchip Technology Inc.  
DS39933D-page 121  
PIC18F87J90 FAMILY  
TABLE 10-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Reset  
Valueson  
page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTB  
LATB  
RB7  
RB6  
RB5  
RB4  
RB3  
LATB3  
TRISB3  
RBIE  
RB2  
RB1  
LATB1  
TRISB1  
INT0IF  
INT3IP  
INT2IF  
SE09  
RB0  
LATB0  
TRISB0  
RBIF  
63  
62  
62  
59  
59  
59  
61  
61  
LATB7  
TRISB7  
LATB6  
TRISB6  
LATB5  
TRISB5  
LATB4  
TRISB4  
INT0IE  
LATB2  
TRISB2  
TMR0IF  
TRISB  
INTCON  
INTCON2  
INTCON3  
LCDSE1  
LCDSE3  
GIE/GIEH PEIE/GIEL TMR0IE  
RBPU  
INT2IP  
SE15  
INTEDG0 INTEDG1 INTEDG2 INTEDG3 TMR0IP  
RBIP  
INT1IP  
SE14  
SE30  
INT3IE  
SE13  
SE29  
INT2IE  
SE12  
SE28  
INT1IE  
SE11  
INT3IF  
SE10  
SE26  
INT1IF  
SE08  
SE31  
SE27  
SE25  
SE24  
Legend: Shaded cells are not used by PORTB.  
DS39933D-page 122  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The contents of the TRISC register are affected by  
peripheral overrides. Reading TRISC always returns  
the current contents, even though a peripheral device  
may be overriding one or more of the pins.  
10.4 PORTC, TRISC and  
LATC Registers  
PORTC is an 8-bit wide, bidirectional port. The  
corresponding Data Direction and Output Latch registers  
are TRISC and LATC. Only PORTC pins, RC2 through  
RC7, are digital only pins and can tolerate input voltages  
up to 5.5V.  
RC<7:1> pins are multiplexed with LCD segment  
drives, controlled by bits in the LCDSE1, LCDSE2,  
LCDSE3 and LCDSE4 registers. I/O port functionality  
is only available when the LCD segments are disabled.  
PORTC is multiplexed with CCP, MSSP and EUSART  
peripheral functions (Table 10-7). The pins have  
Schmitt Trigger input buffers. The pins for CCP, SPI  
and EUSART are also configurable for open-drain out-  
put whenever these functions are active. Open-drain  
configuration is selected by setting the SPIOD,  
CCPxOD and U1OD control bits (TRISG<7:5> and  
LATG<6>, respectively).  
EXAMPLE 10-3:  
INITIALIZING PORTC  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
CLRF  
LATC  
MOVLW  
MOVWF  
0CFh  
; Value used to  
; initialize data  
; direction  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
RC1 is normally configured as the default peripheral  
pin for the CCP2 module. Assignment of CCP2 is  
controlled by Configuration bit, CCP2MX (default state,  
CCP2MX = 1).  
TRISC  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an output,  
while other peripherals override the TRIS bit to make a  
pin an input. The user should refer to the corresponding  
peripheral section for the correct TRIS bit settings.  
Note:  
These pins are configured as digital inputs  
on any device Reset.  
2010 Microchip Technology Inc.  
DS39933D-page 123  
PIC18F87J90 FAMILY  
TABLE 10-7: PORTC FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RC0/T1OSO/  
T13CKI  
RC0  
0
1
x
O
I
DIG LATC<0> data output.  
ST  
PORTC<0> data input.  
T1OSO  
O
ANA Timer1 oscillator output; enabled when Timer1 oscillator enabled. Disables  
digital I/O and LCD segment driver.  
T13CKI  
RC1  
1
0
1
x
0
1
x
0
1
0
1
x
0
1
0
1
0
1
x
0
1
I
O
I
ST  
DIG LATC<1> data output.  
ST PORTC<1> data input.  
Timer1/Timer3 counter input.  
RC1/T1OSI/  
CCP2/SEG32  
T1OSI  
I
ANA Timer1 oscillator input.  
(1)  
CCP2  
O
I
DIG CCP2 compare/PWM output.  
ST  
CCP2 capture input.  
SEG32  
RC2  
O
O
I
ANA LCD Segment 32 output; disables all other pin functions.  
DIG LATC<2> data output.  
RC2/CCP1/  
SEG13  
ST  
DIG CCP1 compare/PWM output; takes priority over port data.  
ST CCP1 capture input.  
PORTC<2> data input.  
CCP1  
O
I
SEG13  
RC3  
O
O
I
ANA LCD Segment 13 output; disables all other pin functions.  
DIG LATC<3> data output.  
RC3/SCK/SCL/  
SEG17  
ST  
PORTC<3> data input.  
SCK  
SCL  
O
I
DIG SPI clock output (MSSP module); takes priority over port data.  
ST  
SPI clock input (MSSP module).  
2
O
I
DIG I C™ clock output (MSSP module); takes priority over port data.  
2
I2C I C clock input (MSSP module); input type depends on module setting.  
SEG17  
RC4  
O
O
I
ANA LCD Segment 17 output; disables all other pin functions.  
DIG LATC<4> data output.  
RC4/SDI/SDA/  
SEG16  
ST  
ST  
PORTC<4> data input.  
SDI  
I
SPI data input (MSSP module).  
2
SDA  
1
1
x
0
1
0
x
0
1
1
1
1
x
0
1
1
1
1
x
O
I
DIG I C data output (MSSP module); takes priority over port data.  
2
I2C I C data input (MSSP module); input type depends on module setting.  
SEG16  
RC5  
O
O
I
ANA LCD Segment 16 output; disables all other pin functions.  
DIG LATC<5> data output.  
RC5/SDO/  
SEG12  
ST  
PORTC<5> data input.  
SDO  
SEG12  
RC6  
O
O
O
I
DIG SPI data output (MSSP module).  
ANA LCD Segment 12 output; disables all other pin functions.  
DIG LATC<6> data output.  
RC6/TX1/CK1/  
SEG27  
ST  
PORTC<6> data input.  
TX1  
CK1  
O
O
I
DIG Synchronous serial data output (EUSART module); takes priority over port data.  
DIG Synchronous serial data input (EUSART module); user must configure as an input.  
ST  
Synchronous serial clock input (EUSART module).  
SEG27  
RC7  
O
O
I
ANA LCD Segment 27 output; disables all other pin functions.  
DIG LATC<7> data output.  
RC7/RX1/DT1/  
SEG28  
ST  
ST  
PORTC<7> data input.  
RX1  
DT1  
I
Asynchronous serial receive data input (EUSART module).  
O
I
DIG Synchronous serial data output (EUSART module); takes priority over port data.  
ST Synchronous serial data input (EUSART module); user must configure as an input.  
ANA LCD Segment 28 output; disables all other pin functions.  
SEG28  
O
Legend:  
O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input, TTL = TTL Buffer Input,  
I2C = I C/SMBus Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
2
Note 1: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
DS39933D-page 124  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
63  
62  
62  
62  
62  
61  
61  
61  
61  
LATC  
LATC7  
LATBC6  
LATC5  
LATCB4  
LATC3  
LATC2  
LATC1  
LATC0  
TRISC  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
U2OD U1OD LATG4 LATG3 LATG2 LATG1 LATG0  
SPIOD CCP2OD CCP1OD TRISG4 TRISG3 TRISG2 TRISG1 TRISG0  
LATG  
TRISG  
LCDSE1  
LCDSE2  
LCDSE3  
LCDSE4  
SE15  
SE23  
SE14  
SE22  
SE13  
SE21  
SE12  
SE20  
SE11  
SE19  
SE10  
SE18  
SE09  
SE17  
SE08  
SE16  
SE24  
SE32  
SE31  
SE39(1)  
SE30  
SE38(1)  
SE29  
SE37(1)  
SE28  
SE36(1)  
SE27  
SE35(1)  
SE26  
SE34(1)  
SE25  
SE33(1)  
Legend: Shaded cells are not used by PORTC.  
Note 1: Unimplemented on PIC18F6XJ90 devices, read as ‘0’.  
2010 Microchip Technology Inc.  
DS39933D-page 125  
PIC18F87J90 FAMILY  
All of the PORTD pins are multiplexed with LCD  
segment drives, controlled by bits in the LCDSE0  
register. RD0 is multiplexed with the CTMU pulse  
generator output.  
10.5 PORTD, TRISD and  
LATD Registers  
PORTD is an 8-bit wide, bidirectional port. The  
corresponding Data Direction and Output Latch registers  
are TRISD and LATD. All pins on PORTD are digital only  
and tolerate voltages up to 5.5V.  
I/O port functionality is only available when the LCD  
segments are disabled.  
All pins on PORTD are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
EXAMPLE 10-4:  
INITIALIZING PORTD  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
Note:  
These pins are configured as digital inputs  
on any device Reset.  
CLRF  
LATD  
Each of the PORTD pins has a weak internal pull-up. A  
single control bit can turn off all the pull-ups. This is  
performed by clearing bit, RDPU (PORTG<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on all device Resets.  
MOVLW  
MOVWF  
0CFh  
TRISD  
; Set RD<3:0> as inputs  
; RD<5:4> as outputs  
; RD<7:6> as inputs  
DS39933D-page 126  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 10-9: PORTD FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RD0/SEG0/  
CTPLS  
RD0  
0
1
x
x
0
1
x
0
1
x
0
1
x
0
1
x
0
1
x
0
1
x
0
1
x
O
I
DIG  
ST  
LATD<0> data output.  
PORTD<0> data input.  
SEG0  
CTPLS  
RD1  
O
O
O
I
ANA  
DIG  
DIG  
ST  
LCD Segment 0 output; disables all other pin functions.  
CTMU pulse generator output  
RD1/SEG1  
RD2/SEG2  
RD3/SEG3  
RD4/SEG4  
RD5/SEG5  
RD6/SEG6  
RD7/SEG7  
LATD<1> data output.  
PORTD<1> data input.  
SEG1  
RD2  
O
O
I
ANA  
DIG  
ST  
LCD Segment 1 output; disables all other pin functions.  
LATD<2> data output.  
PORTD<2> data input.  
SEG2  
RD3  
O
O
I
ANA  
DIG  
ST  
LCD Segment 2 output; disables all other pin functions.  
LATD<3> data output.  
PORTD<3> data input.  
SEG3  
RD4  
O
O
I
ANA  
DIG  
ST  
LCD Segment 3 output; disables all other pin functions.  
LATD<4> data output.  
PORTD<4> data input.  
SEG4  
RD5  
O
O
I
ANA  
DIG  
ST  
LCD Segment 4 output; disables all other pin functions.  
LATD<5> data output.  
PORTD<5> data input.  
SEG5  
RD6  
O
O
I
ANA  
DIG  
ST  
LCD Segment 5 output; disables all other pin functions.  
LATD<6> data output.  
PORTD<6> data input.  
SEG6  
RD7  
O
O
I
ANA  
DIG  
ST  
LCD Segment 6 output; disables all other pin functions.  
LATD<7> data output.  
PORTD<7> data input.  
SEG7  
I
ANA  
LCD Segment 7 output; disables all other pin functions.  
Legend:  
O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 10-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
RD7  
LATD7  
TRISD7  
RDPU  
SE07  
RD6  
LATD6  
TRISD6  
REPU  
SE06  
RD5  
RD4  
LATD4  
TRISD4  
RG4  
RD3  
LATD3  
TRISD3  
RG3  
RD2  
LATD2  
TRISD2  
RG2  
RD1  
LATD1  
TRISD1  
RG1  
RD0  
LATD0  
TRISD0  
RG0  
63  
62  
62  
62  
61  
LATD5  
TRISD5  
RJPU(1)  
SE05  
TRISD  
PORTG  
LCDSE0  
SE04  
SE03  
SE02  
SE01  
SE00  
Legend: Shaded cells are not used by PORTD.  
Note 1: Unimplemented on PIC18F6XJ90 devices, read as ‘0’.  
2010 Microchip Technology Inc.  
DS39933D-page 127  
PIC18F87J90 FAMILY  
Pins, RE1 and RE0, are multiplexed with the functions  
of LCDBIAS2 and LCDBIAS1. When LCD bias genera-  
tion is required (i.e., any application where the device  
is connected to an external LCD), these pins cannot be  
used as digital I/O.  
10.6 PORTE, TRISE and  
LATE Registers  
PORTE is  
a 7-bit wide, bidirectional port. The  
corresponding Data Direction and Output Latch registers  
are TRISE and LATE. All pins on PORTE are digital only  
and tolerate voltages up to 5.5V.  
Note: The pin corresponding to RE2 of other  
PIC18F parts has the function of  
LCDBIAS3 in this device. It cannot be used  
as digital I/O.  
All pins on PORTE are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output. The RE7 pin is also  
configurable for open-drain output when CCP2 is active  
on this pin. Open-drain configuration is selected by  
setting the CCP2OD control bit (TRISG<6>)  
RE7 is multiplexed with the LCD segment drive  
(SEG31) controlled by the LCDSE3<7> bit. I/O port  
function is only available when the segment is disabled.  
RE7 can also be configured as the alternate peripheral  
pin for the CCP2 module. This is done by clearing the  
CCP2MX Configuration bit.  
Note:  
These pins are configured as digital inputs  
on any device Reset.  
Each of the PORTE pins has a weak internal pull-up. A  
single control bit can turn off all the pull-ups. This is  
performed by clearing bit, REPU (PORTG<6>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on any device Reset.  
EXAMPLE 10-5:  
INITIALIZING PORTE  
CLRF  
PORTE  
LATE  
03h  
; Initialize PORTE by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
CLRF  
Pins, RE<6:3>, are multiplexed with the LCD common  
drives. I/O port functions are only available on those  
PORTE pins depending on which commons are active.  
The configuration is determined by the LMUX<1:0>  
control bits (LCDCON<1:0>). The availability is  
summarized in Table 10-11.  
MOVLW  
MOVWF  
TRISE  
; Set RE<1:0> as inputs  
; RE<7:2> as outputs  
TABLE 10-11: PORTE PINS AVAILABLE IN  
DIFFERENT LCD DRIVE  
CONFIGURATIONS  
LCDCON  
<1:0>  
Active LCD  
Commons  
PORTE Available  
for I/O  
00  
01  
10  
COM0  
RE6, RE5, RE4  
RE6, RE5  
RE6  
COM0, COM1  
COM0, COM1  
and COM2  
11  
All (COM0  
None  
through COM3)  
DS39933D-page 128  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 10-12: PORTE FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RE0/LCDBIAS1  
RE0  
0
1
0
1
0
1
x
0
1
x
0
1
x
0
1
x
0
1
0
1
x
O
I
DIG  
ST  
LATE<0> data output.  
PORTE<0> data input.  
LCDBIAS1  
RE1  
I
ANA  
DIG  
ST  
LCD module bias voltage input.  
LATE<1> data output.  
RE1/LCDBIAS2  
RE3/COM0  
RE4/COM1  
RE5/COM2  
RE6/COM3  
O
I
PORTE<1> data input.  
LCDBIAS2  
RE3  
I
ANA  
DIG  
ST  
LCD module bias voltage input.  
LATE<3> data output.  
O
I
PORTE<3> data input.  
COM0  
RE4  
O
O
I
ANA  
DIG  
ST  
LCD Common 0 output; disables all other outputs.  
LATE<4> data output.  
PORTE<4> data input.  
COM1  
RE5  
O
O
I
ANA  
DIG  
ST  
LCD Common 1 output; disables all other outputs.  
LATE<5> data output.  
PORTE<5> data input.  
COM2  
RE6  
O
O
I
ANA  
DIG  
ST  
LCD Common 2 output; disables all other outputs.  
LATE<6> data output.  
PORTE<6> data input.  
COM3  
RE7  
O
O
I
ANA  
DIG  
ST  
LCD Common 3 output; disables all other outputs.  
LATE<7> data output.  
RE7/CCP2/  
SEG31  
PORTE<7> data input.  
(1)  
CCP2  
O
I
DIG  
ST  
CCP2 compare/PWM output; takes priority over port data.  
CCP2 capture input.  
SEG31  
O
ANA  
Segment 31 analog output for LCD; disables digital output.  
Legend:  
O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
TABLE 10-13: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTE  
LATE  
RE7  
RE6  
RE5  
RE4  
LATE4  
TRISE4  
RG4  
RE3  
LATE3  
TRISE3  
RG3  
RE1  
LATE1  
TRISE1  
RG1  
RE0  
LATE0  
TRISE0  
RG0  
63  
62  
62  
62  
62  
61  
61  
LATE7  
TRISE7  
RDPU  
SPIOD  
LCDEN  
SE31  
LATE6  
TRISE6  
REPU  
LATE5  
TRISE5  
RJPU(1)  
TRISE  
PORTG  
TRISG  
LCDCON  
LCDSE3  
RG2  
TRISG2  
CS0  
SE26  
CCP2OD CCP1OD TRISG4  
TRISG3  
CS1  
TRISG1  
LMUX1  
SE25  
TRISG0  
LMUX0  
SE24  
SLPEN  
SE30  
WERR  
SE29  
SE28  
SE27  
Legend: Shaded cells are not used by PORTE.  
Note 1: Unimplemented on PIC18F6XJ90 devices, read as ‘0’.  
2010 Microchip Technology Inc.  
DS39933D-page 129  
PIC18F87J90 FAMILY  
PORTF is also multiplexed with LCD segment drives  
controlled by bits in the LCDSE2 and LCDSE3  
registers. I/O port functions are only available when the  
segments are disabled.  
10.7 PORTF, LATF and TRISF Registers  
PORTF is  
a 7-bit wide, bidirectional port. The  
corresponding Data Direction and Output Latch registers  
are TRISF and LATF. All pins on PORTF are  
implemented with Schmitt Trigger input buffers. Each pin  
is individually configurable as an input or output.  
EXAMPLE 10-6:  
INITIALIZING PORTF  
CLRF  
PORTF  
; Initialize PORTF by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
;
PORTF is multiplexed with analog peripheral functions,  
as well as LCD segments. Pins, RF1 through RF6, may  
be used as comparator inputs or outputs by setting the  
appropriate bits in the CMCON register. To use  
RF<6:3> as digital inputs, it is also necessary to turn off  
the comparators.  
CLRF  
LATF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
07h  
CMCON  
0Fh  
; Turn off comparators  
;
Note 1: On device Resets, pins, RF<6:1>, are  
configured as analog inputs and are read  
as ‘0’.  
ADCON1 ; Set PORTF as digital I/O  
0CEh  
; Value used to  
; initialize data  
; direction  
2: To configure PORTF as digital I/O, turn off  
the comparators and set the ADCON1  
value.  
MOVWF  
TRISF  
; Set RF3:RF1 as inputs  
; RF5:RF4 as outputs  
; RF7:RF6 as inputs  
DS39933D-page 130  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 10-14: PORTF FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RF1/AN6/C2OUT/  
SEG19  
RF1  
0
1
1
0
x
0
1
1
0
x
0
1
1
O
I
DIG  
ST  
LATF<1> data output; not affected by analog input.  
PORTF<1> data input; disabled when analog input is enabled.  
A/D Input Channel 6. Default configuration on POR.  
Comparator 2 output; takes priority over port data.  
LCD Segment 19 output; disables all other pin functions.  
LATF<2> data output; not affected by analog input.  
PORTF<2> data input; disabled when analog input is enabled.  
A/D Input Channel 7. Default configuration on POR.  
Comparator 1 output; takes priority over port data.  
LCD Segment 20 output; disables all other pin functions.  
LATF<3> data output; not affected by analog input.  
PORTF<3> data input; disabled when analog input is enabled.  
AN6  
C2OUT  
SEG19  
RF2  
I
ANA  
DIG  
ANA  
DIG  
ST  
O
O
O
I
RF2/AN7/C1OUT/  
SEG20  
AN7  
C1OUT  
SEG20  
RF3  
I
ANA  
DIG  
ANA  
DIG  
ST  
O
O
O
I
RF3/AN8/SEG21/  
C2INB  
AN8  
I
ANA  
A/D Input Channel 8 and Comparator C2+ input. Default input  
configuration on POR; not affected by analog output.  
SEG21  
C2INB  
RF4  
x
1
0
1
1
O
I
ANA  
ANA  
DIG  
ST  
LCD Segment 21 output; disables all other pin functions.  
Comparator 2 Input B.  
RF4/AN9/SEG22/  
C2INA  
O
I
LATF<4> data output; not affected by analog input.  
PORTF<4> data input; disabled when analog input is enabled.  
AN9  
I
ANA  
A/D Input Channel 9 and Comparator C2- input. Default input  
configuration on POR; does not affect digital output.  
SEG22  
C2INA  
RF5  
x
1
0
O
I
ANA  
ANA  
DIG  
LCD Segment 22 output; disables all other pin functions.  
Comparator 2 Input A.  
RF5/AN10/CVREF/  
SEG23/C1INB  
O
LATF<5> data output; not affected by analog input. Disabled when  
CVREF output is enabled.  
1
1
x
I
I
ST  
PORTF<5> data input; disabled when analog input is enabled.  
Disabled when CVREF output is enabled.  
AN10  
ANA  
ANA  
A/D Input Channel 10 and Comparator C1+ input. Default input  
configuration on POR.  
CVREF  
O
Comparator voltage reference output. Enabling this feature disables  
digital I/O.  
SEG23  
C1INB  
RF6  
x
1
0
1
1
O
I
ANA  
ANA  
DIG  
ST  
LCD Segment 23 output; disables all other pin functions.  
Comparator 1 Input B.  
RF6/AN11/SEG24/  
C1INA  
O
I
LATF<6> data output; not affected by analog input.  
PORTF<6> data input; disabled when analog input is enabled.  
AN11  
I
ANA  
A/D Input Channel 11 and Comparator C1- input. Default input  
configuration on POR; does not affect digital output.  
SEG24  
C1INA  
RF7  
x
1
0
1
1
1
x
O
I
ANA  
ANA  
DIG  
ST  
LCD Segment 24 output; disables all other pin functions.  
Comparator 1 Input A.  
RF7/AN5/SS/  
SEG25  
O
I
LATF<7> data output; not affected by analog input.  
PORTF<7> data input; disabled when analog input is enabled.  
A/D Input Channel 5. Default configuration on POR.  
Slave select input for MSSP module.  
AN5  
SS  
I
ANA  
TTL  
ANA  
I
SEG25  
O
LCD Segment 25 output; disables all other pin functions.  
Legend:  
O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
2010 Microchip Technology Inc.  
DS39933D-page 131  
PIC18F87J90 FAMILY  
TABLE 10-15: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTF  
LATF  
RF7  
LATF7  
TRISF7  
TRIGSEL  
C2OUT  
CVREN  
SE23  
RF6  
LATF6  
TRISF6  
RF5  
LATF5  
TRISF5  
VCFG1  
C2INV  
CVRR  
SE21  
RF4  
RF3  
LATF3  
TRISF3  
PCFG3  
CIS  
RF2  
LATF2  
TRISF2  
PCFG2  
CM2  
RF1  
LATF1  
TRISF1  
PCFG1  
CM1  
62  
62  
62  
61  
61  
61  
61  
61  
LATF4  
TRISF4  
VCFG0  
C1INV  
CVRSS  
SE20  
TRISF  
ADCON1  
CMCON  
CVRCON  
LCDSE2  
LCDSE3  
PCFG0  
CM0  
CVR0  
SE16  
SE24  
C1OUT  
CVROE  
SE22  
CVR3  
SE19  
CVR2  
SE18  
CVR1  
SE17  
SE31  
SE30  
SE29  
SE28  
SE27  
SE26  
SE25  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTF.  
DS39933D-page 132  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Although the port itself is only five bits wide, the  
PORTG<7:5> bits are still implemented to control the  
weak pull-ups on the I/O ports associated with PORTD,  
PORTE and PORTJ. Clearing these bits enables the  
respective port pull-ups. All pull-ups are disabled by  
default on all device Resets.  
10.8 PORTG, TRISG and  
LATG Registers  
PORTG is  
a 5-bit wide, bidirectional port. The  
corresponding Data Direction and Output Latch registers  
are TRISG and LATG. All pins on PORTG are digital only  
and tolerate voltages up to 5.5V.  
Most of the corresponding TRISG and LATG bits are  
implemented as open-drain control bits for CCP1,  
CCP2 and SPI (TRISG<7:5>), and the USARTs  
(LATG<7:6>). Setting these bits configures the output  
pin for the corresponding peripheral for open-drain  
operation. LATG<5> is not implemented.  
PORTG is multiplexed with both AUSART and LCD  
functions (Table 10-16). When operating as I/O, all  
PORTG pins have Schmitt Trigger input buffers. The  
RG1 pin is also configurable for open-drain output  
when the AUSART is active. Open-drain configuration  
is selected by setting the U2OD control bit (LATG<7>).  
EXAMPLE 10-7:  
INITIALIZING PORTG  
RG4 is multiplexed with LCD segment drives controlled  
by bits in the LCDSE2 register and as the RTCC pin.  
The I/O port function is only available when the  
segments are disabled.  
CLRF  
PORTG  
LATG  
04h  
; Initialize PORTG by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
CLRF  
RG3 and RG2 are multiplexed with the VLCAP pins for  
the LCD charge pump and RG0 is multiplexed with the  
LCDBIAS0 bias voltage input. When these pins are  
used for LCD bias generation, the I/O and other  
functions are unavailable.  
MOVLW  
MOVWF  
TRISG  
; Set RG1:RG0 as outputs  
; RG2 as input  
; RG4:RG3 as inputs  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTG pin. Some  
peripherals override the TRIS bit to make a pin an  
output, while other peripherals override the TRIS bit to  
make a pin an input. The user should refer to the  
corresponding peripheral section for the correct TRIS bit  
settings. The pin override value is not loaded into the  
TRIS register. This allows read-modify-write of the TRIS  
register without concern due to peripheral overrides.  
2010 Microchip Technology Inc.  
DS39933D-page 133  
PIC18F87J90 FAMILY  
TABLE 10-16: PORTG FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RG0/LCDBIAS0  
RG0  
0
1
x
0
1
1
O
I
DIG  
ST  
LATG<0> data output.  
PORTG<0> data input.  
LCDBIAS0  
RG1  
I
ANA  
DIG  
ST  
LCD module bias voltage input.  
LATG<1> data output.  
RG1/TX2/CK2  
O
I
PORTG<1> data input.  
TX2  
CK2  
O
DIG  
Synchronous serial data output (AUSART module); takes priority over  
port data.  
1
O
DIG  
Synchronous serial data input (AUSART module); user must configure  
as an input.  
1
0
1
1
1
I
O
I
ST  
DIG  
ST  
Synchronous serial clock input (AUSART module).  
LATG<2> data output.  
RG2/RX2/DT2/  
VLCAP1  
RG2  
PORTG<2> data input.  
RX2  
DT2  
I
ST  
Asynchronous serial receive data input (AUSART module).  
O
DIG  
Synchronous serial data output (AUSART module); takes priority over  
port data.  
1
I
ST  
Synchronous serial data input (AUSART module); user must configure  
as an input.  
VLCAP1  
RG3  
x
0
1
x
0
1
x
x
I
O
I
ANA  
DIG  
ST  
LCD charge pump capacitor input.  
LATG<3> data output.  
RG3/VLCAP2  
PORTG<3> data input.  
VLCAP2  
RG4  
I
ANA  
DIG  
ST  
LCD charge pump capacitor input.  
LATG<4> data output.  
RG4/SEG26/  
RTCC  
O
I
PORTG<4> data input.  
SEG26  
RTCC  
O
O
ANA  
DIG  
LCD Segment 26 output; disables all other pin functions.  
RTCC output.  
Legend:  
O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 10-17: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG  
Reset  
Values on  
page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTG  
RDPU  
U2OD  
REPU  
U1OD  
RJPU(1)  
RG4  
RG3  
RG2  
RG1  
RG0  
62  
62  
62  
61  
LATG  
LATG4  
LATG3  
LATG2  
LATG1  
LATG0  
TRISG  
LCDSE3  
SPIOD CCP2OD CCP1OD TRISG4 TRISG3 TRISG2 TRISG1 TRISG0  
SE31 SE30 SE29 SE28 SE27 SE26 SE25 SE24  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTG.  
Note 1: Unimplemented on PIC18F6XJ90 devices, read as ‘0’.  
DS39933D-page 134  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
EXAMPLE 10-8:  
INITIALIZING PORTH  
10.9 PORTH, LATH and  
TRISH Registers  
CLRF  
PORTH  
; Initialize PORTH by  
; clearing output  
; data latches  
Note: PORTH is available only on PIC18F8XJ90  
CLRF  
LATH  
; Alternate method  
; to clear output  
; data latches  
; Configure PORTH as  
; digital I/O  
devices.  
PORTH is an 8-bit wide, bidirectional I/O port. The  
corresponding Data Direction and Output Latch registers  
are TRISH and LATH. All pins are digital only and  
tolerate voltages up to 5.5V.  
MOVLW  
MOVWF  
MOVLW  
0Fh  
ADCON1  
0CFh  
; Value used to  
; initialize data  
; direction  
; Set RH3:RH0 as inputs  
; RH5:RH4 as outputs  
; RH7:RH6 as inputs  
All pins on PORTH are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
MOVWF  
TRISH  
All PORTH pins are multiplexed with LCD segment  
drives controlled by the LCDSE5 register. I/O port  
functions are only available when the segments are  
disabled.  
2010 Microchip Technology Inc.  
DS39933D-page 135  
PIC18F87J90 FAMILY  
TABLE 10-18: PORTH FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RH0/SEG47  
RH0  
0
1
x
0
1
x
0
1
x
0
1
x
0
1
x
0
1
x
0
1
x
0
1
x
O
I
DIG  
ST  
LATH<0> data output.  
PORTH<0> data input.  
SEG47  
RH1  
O
O
I
ANA  
DIG  
ST  
LCD Segment 47 output; disables all other pin functions.  
LATH<1> data output.  
RH1/SEG46  
RH2/SEG45  
RH3/SEG44  
RH4/SEG40  
RH5/SEG41  
RH6/SEG42  
RH7/SEG43  
PORTH<1> data input.  
SEG46  
RH2  
O
O
I
ANA  
DIG  
ST  
LCD Segment 46 output; disables all other pin functions.  
LATH<2> data output.  
PORTH<2> data input.  
SEG45  
RH3  
O
O
I
ANA  
DIG  
ST  
LCD Segment 45 output; disables all other pin functions.  
LATH<3> data output.  
PORTH<3> data input.  
SEG44  
RH4  
O
O
I
ANA  
DIG  
ST  
LCD Segment 44 output; disables all other pin functions.  
LATH<4> data output.  
PORTH<4> data input.  
SEG40  
RH5  
O
O
I
ANA  
DIG  
ST  
LCD Segment 40 output; disables all other pin functions.  
LATH<5> data output.  
PORTH<5> data input.  
SEG41  
RH6  
O
O
I
ANA  
DIG  
ST  
LCD Segment 41 output; disables all other pin functions.  
LATH<6> data output.  
PORTH<6> data input.  
SEG42  
RH7  
O
O
I
ANA  
DIG  
ST  
LCD Segment 42 output; disables all other pin functions.  
LATH<7> data output.  
PORTH<7> data input.  
SEG43  
O
ANA  
LCD Segment 43 output; disables all other pin functions.  
Legend:  
O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 10-19: SUMMARY OF REGISTERS ASSOCIATED WITH PORTH  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTH  
LATH  
RH7  
LATH7  
TRISH7  
SE47  
RH6  
LATH6  
TRISH6  
SE46  
RH5  
LATH5  
TRISH5  
SE45  
RH4  
LATH4  
TRISH4  
SE44  
RH3  
LATH3  
TRISH3  
SE43  
RH2  
RH1  
RH0  
62  
62  
62  
61  
LATH2  
LATH1  
LATH0  
TRISH  
LCDSE5  
TRISH2 TRISH1 TRISH0  
SE42 SE41 SE40  
DS39933D-page 136  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Each of the PORTJ pins has a weak internal pull-up.  
The pull-ups are provided to keep the inputs at a known  
state for the external memory interface while powering  
up. A single control bit can turn off all the pull-ups. This  
is performed by clearing bit, RJPU (PORTG<5>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on any device Reset.  
10.10 PORTJ, TRISJ and  
LATJ Registers  
Note: PORTJ is available only on PIC18F8XJ90  
devices.  
PORTJ is an 8-bit wide, bidirectional port. The  
corresponding Data Direction and Output Latch registers  
are TRISJ and LATJ. All pins on PORTJ are digital only  
and tolerate voltages up to 5.5V.  
EXAMPLE 10-9:  
INITIALIZING PORTJ  
All pins on PORTJ are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
CLRF  
CLRF  
MOVLW  
PORTJ  
LATJ  
0CFh  
; Initialize PORTJ by  
; clearing output latches  
; Alternate method  
; to clear output latches  
; Value used to  
Note:  
These pins are configured as digital inputs  
on any device Reset.  
; initialize data  
; direction  
All PORTJ pins, except RJ0, are multiplexed with LCD  
segment drives controlled by the LCDSE4 register. I/O  
port functions are only available on these pins when the  
segments are disabled.  
MOVWF  
TRISJ  
; Set RJ3:RJ0 as inputs  
; RJ5:RJ4 as output  
; RJ7:RJ6 as inputs  
2010 Microchip Technology Inc.  
DS39933D-page 137  
PIC18F87J90 FAMILY  
TABLE 10-20: PORTJ FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
RJ0  
Function  
I/O  
Description  
RJ0  
0
1
0
1
x
0
1
x
0
1
x
0
1
x
0
1
x
0
1
x
0
1
x
O
I
DIG  
ST  
LATJ<0> data output.  
PORTJ<0> data input.  
LATJ<1> data output.  
PORTJ<1> data input.  
RJ1/SEG33  
RJ2/SEG34  
RJ3/SEG35  
RJ4/SEG39  
RJ5/SEG38  
RJ6/SEG37  
RJ7/SEG36  
Legend:  
RJ1  
O
I
DIG  
ST  
SEG33  
RJ2  
O
O
I
ANA  
DIG  
ST  
LCD Segment 33 output; disables all other pin functions.  
LATJ<2> data output.  
PORTJ<2> data input.  
SEG34  
RJ3  
O
O
I
ANA  
DIG  
ST  
LCD Segment 34 output; disables all other pin functions.  
LATJ<3> data output.  
PORTJ<3> data input.  
SEG35  
RJ4  
O
O
I
ANA  
DIG  
ST  
LCD Segment 35 output; disables all other pin functions.  
LATJ<4> data output.  
PORTJ<4> data input.  
SEG39  
RJ5  
O
O
I
ANA  
DIG  
ST  
LCD Segment 39 output; disables all other pin functions.  
LATJ<5> data output.  
PORTJ<5> data input.  
SEG38  
RJ6  
O
O
I
ANA  
DIG  
ST  
LCD Segment 38 output; disables all other pin functions.  
LATJ<6> data output.  
PORTJ<6> data input.  
SEG37  
RJ7  
O
O
I
ANA  
DIG  
ST  
LCD Segment 37 output; disables all other pin functions.  
LATJ<7> data output.  
PORTJ<7> data input.  
SEG36  
O
ANA  
LCD Segment 36 output; disables all other pin functions.  
O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Trigger Buffer Input,  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 10-21: SUMMARY OF REGISTERS ASSOCIATED WITH PORTJ  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTJ  
RJ7  
LATJ7  
TRISJ7  
RDPU  
SE39  
RJ6  
LATJ6  
TRISJ6  
REPU  
SE38  
RJ5  
RJ4  
LATJ4  
TRISJ4  
RG4  
RJ3  
LATJ3  
TRISJ3  
RG3  
RJ2  
LATJ2  
TRISJ2  
RG2  
RJ1  
LATJ1  
TRISJ1  
RG1  
RJ0  
LATJ0  
TRISJ0  
RG0  
62  
62  
62  
62  
61  
LATJ  
LATJ5  
TRISJ5  
RJPU(1)  
SE37  
TRISJ  
PORTG  
LCDSE4  
SE36  
SE35  
SE34  
SE33  
SE32  
Legend: Shaded cells are not used by PORTJ.  
Note 1: Unimplemented on PIC18F6XJ90 devices, read as ‘0’.  
DS39933D-page 138  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The T0CON register (Register 11-1) controls all  
aspects of the module’s operation, including the  
prescale selection; it is both readable and writable.  
11.0 TIMER0 MODULE  
The Timer0 module incorporates the following features:  
• Software selectable operation as a timer or  
counter in both 8-bit or 16-bit modes  
A simplified block diagram of the Timer0 module in 8-bit  
mode is shown in Figure 11-1. Figure 11-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
• Readable and writable registers  
• Dedicated 8-bit, software programmable  
prescaler  
• Selectable clock source (internal or external)  
• Edge select for external clock  
• Interrupt-on-overflow  
REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
TMR0ON  
T08BIT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-Bit/16-Bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is not assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
T0PS<2:0>: Timer0 Prescaler Select bits  
111= 1:256 Prescale value  
110= 1:128 Prescale value  
101= 1:64 Prescale value  
100= 1:32 Prescale value  
011= 1:16 Prescale value  
010= 1:8 Prescale value  
001= 1:4 Prescale value  
000= 1:2 Prescale value  
2010 Microchip Technology Inc.  
DS39933D-page 139  
PIC18F87J90 FAMILY  
internal phase clock (TOSC). There is a delay between  
synchronization and the onset of incrementing the  
timer/counter.  
11.1 Timer0 Operation  
Timer0 can operate as either a timer or a counter. The  
mode is selected with the T0CS bit (T0CON<5>). In  
Timer mode (T0CS = 0), the module increments on  
every clock by default unless a different prescaler value  
is selected (see Section 11.3 “Prescaler”). If the  
TMR0 register is written to, the increment is inhibited  
for the following two instruction cycles. The user can  
work around this by writing an adjusted value to the  
TMR0 register.  
11.2 Timer0 Reads and Writes in  
16-Bit Mode  
TMR0H is not the actual high byte of Timer0 in 16-bit  
mode. It is actually a buffered version of the real high  
byte of Timer0, which is not directly readable nor writ-  
able (refer to Figure 11-2). TMR0H is updated with the  
contents of the high byte of Timer0 during a read of  
TMR0L. This provides the ability to read all 16 bits of  
Timer0 without having to verify that the read of the high  
and low byte were valid, due to a rollover between  
successive reads of the high and low byte.  
The Counter mode is selected by setting the T0CS bit  
(= 1). In this mode, Timer0 increments either on every  
rising or falling edge of pin, RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit, T0SE (T0CON<4>); clearing this bit selects  
the rising edge. Restrictions on the external clock input  
are discussed below.  
Similarly, a write to the high byte of Timer0 must also  
take place through the TMR0H Buffer register. The high  
byte is updated with the contents of TMR0H when a  
write occurs to TMR0L. This allows all 16 bits of Timer0  
to be updated at once.  
An external clock source can be used to drive Timer0,  
however, it must meet certain requirements to ensure  
that the external clock can be synchronized with the  
FIGURE 11-1:  
TIMER0 BLOCK DIAGRAM (8-BIT MODE)  
FOSC/4  
0
1
1
0
Set  
TMR0IF  
on Overflow  
Sync with  
Internal  
Clocks  
TMR0L  
8
Programmable  
Prescaler  
T0CKI pin  
(2 TCY Delay)  
T0SE  
T0CS  
3
T0PS<2:0>  
PSA  
8
Internal Data Bus  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
FIGURE 11-2:  
TIMER0 BLOCK DIAGRAM (16-BIT MODE)  
0
FOSC/4  
1
Sync with  
Internal  
Clocks  
Set  
TMR0  
High Byte  
1
TMR0L  
TMR0IF  
Programmable  
Prescaler  
on Overflow  
0
T0CKI pin  
8
(2 TCY Delay)  
T0SE  
T0CS  
3
Read TMR0L  
Write TMR0L  
T0PS<2:0>  
PSA  
8
8
TMR0H  
8
8
Internal Data Bus  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
DS39933D-page 140  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
11.3.1  
SWITCHING PRESCALER  
ASSIGNMENT  
11.3 Prescaler  
An 8-bit counter is available as a prescaler for the Timer0  
module. The prescaler is not directly readable or writable.  
Its value is set by the PSA and T0PS<2:0> bits  
(T0CON<3:0>) which determine the prescaler  
assignment and prescale ratio.  
The prescaler assignment is fully under software  
control and can be changed “on-the-fly” during program  
execution.  
11.4 Timer0 Interrupt  
Clearing the PSA bit assigns the prescaler to the  
Timer0 module. When it is assigned, prescale values  
from 1:2 through 1:256, in power-of-2 increments, are  
selectable.  
The TMR0 interrupt is generated when the TMR0  
register overflows from FFh to 00h in 8-bit mode, or  
from FFFFh to 0000h in 16-bit mode. This overflow sets  
the TMR0IF flag bit. The interrupt can be masked by  
clearing the TMR0IE bit (INTCON<5>). Before  
re-enabling the interrupt, the TMR0IF bit must be  
cleared in software by the Interrupt Service Routine.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF  
TMR0, BSF TMR0, etc.) clear the prescaler count.  
Note:  
Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count but will not change the prescaler  
assignment.  
Since Timer0 is shut down in Sleep mode, the TMR0  
interrupt cannot awaken the processor from Sleep.  
TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0L  
Timer0 Register Low Byte  
Timer0 Register High Byte  
60  
60  
59  
60  
62  
TMR0H  
INTCON  
T0CON  
TRISA  
GIE/GIEH PEIE/GIEL TMR0IE  
TMR0ON T08BIT T0CS  
TRISA7(1) TRISA6(1) TRISA5  
INT0IE  
T0SE  
RBIE  
PSA  
TMR0IF  
T0PS2  
INT0IF  
T0PS1  
TRISA1  
RBIF  
T0PS0  
TRISA0  
TRISA4  
TRISA3  
TRISA2  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by Timer0.  
Note 1: RA<7:6> and their associated latch and direction bits are configured as port pins only when the internal  
oscillator is selected as the default clock source (FOSC2 Configuration bit = 0); otherwise, they are  
disabled and these bits read as ‘0’.  
2010 Microchip Technology Inc.  
DS39933D-page 141  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 142  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
A simplified block diagram of the Timer1 module is  
shown in Figure 12-1. A block diagram of the module’s  
operation in Read/Write mode is shown in Figure 12-2.  
12.0 TIMER1 MODULE  
The Timer1 timer/counter module incorporates these  
features:  
The module incorporates its own low-power oscillator  
to provide an additional clocking option. The Timer1  
oscillator can also be used as a low-power clock source  
for the microcontroller in power-managed operation.  
• Software selectable operation as a 16-bit timer or  
counter  
• Readable and writable 8-bit registers (TMR1H  
and TMR1L)  
Timer1 can also be used to provide Real-Time Clock  
(RTC) functionality to applications with only a minimal  
addition of external components and code overhead.  
• Selectable clock source (internal or external) with  
device clock or Timer1 oscillator internal options  
• Interrupt-on-overflow  
Timer1 is controlled through the T1CON Control  
register (Register 12-1). It also contains the Timer1  
Oscillator Enable bit (T1OSCEN). Timer1 can be  
enabled or disabled by setting or clearing control bit,  
TMR1ON (T1CON<0>).  
• Reset on CCP Special Event Trigger  
• Device clock status flag (T1RUN)  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1RUN  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
RD16: 16-Bit Read/Write Mode Enable bit  
1= Enables register read/write of TImer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
bit 6  
T1RUN: Timer1 System Clock Status bit  
1= Device clock is derived from Timer1 oscillator  
0= Device clock is derived from another source  
bit 5-4  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T13CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
2010 Microchip Technology Inc.  
DS39933D-page 143  
PIC18F87J90 FAMILY  
cycle (FOSC/4). When the bit is set, Timer1 increments  
on every rising edge of the Timer1 external clock input  
or the Timer1 oscillator, if enabled.  
12.1 Timer1 Operation  
Timer1 can operate in one of these modes:  
• Timer  
When Timer1 is enabled, the RC1/T1OSI and  
RC0/T1OSO/T13CKI pins become inputs. This means  
the values of TRISC<1:0> are ignored and the pins are  
read as ‘0’.  
• Synchronous Counter  
• Asynchronous Counter  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>). When TMR1CS is cleared  
(= 0), Timer1 increments on every internal instruction  
FIGURE 12-1:  
TIMER1 BLOCK DIAGRAM (8-BIT MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
On/Off  
1
T1OSO/T13CKI  
T1OSI  
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
0
2
Sleep Input  
T1OSCEN(1)  
Timer1  
On/Off  
TMR1CS  
T1CKPS<1:0>  
T1SYNC  
TMR1ON  
Set  
TMR1  
High Byte  
Clear TMR1  
(CCP Special Event Trigger)  
TMR1L  
TMR1IF  
on Overflow  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
FIGURE 12-2:  
TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
T1OSO/T13CKI  
T1OSI  
1
0
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
T1CKPS<1:0>  
T1SYNC  
Timer1  
On/Off  
TMR1CS  
TMR1ON  
Set  
TMR1IF  
on Overflow  
TMR1  
High Byte  
Clear TMR1  
(CCP Special Event Trigger)  
TMR1L  
8
Read TMR1L  
Write TMR1L  
8
8
TMR1H  
8
8
Internal Data Bus  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
DS39933D-page 144  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 12-1: CAPACITOR SELECTION FOR  
THE TIMER1  
12.2 Timer1 16-Bit Read/Write Mode  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 12-2). When the RD16 control bit  
(T1CON<7>) is set, the address for TMR1H is mapped  
to a buffer register for the high byte of Timer1. A read  
from TMR1L will load the contents of the high byte of  
Timer1 into the Timer1 High Byte Buffer register. This  
provides the user with the ability to accurately read all  
16 bits of Timer1 without having to determine whether  
a read of the high byte, followed by a read of the low  
byte, has become invalid due to a rollover between  
reads.  
OSCILLATOR(2,3,4)  
Oscillator  
Freq.  
C1  
C2  
Type  
LP  
32.768 kHz  
27 pF(1)  
27 pF(1)  
Note 1: Microchip suggests these values as a  
starting point in validating the oscillator  
circuit.  
2: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time.  
A write to the high byte of Timer1 must also take place  
through the TMR1H Buffer register. The Timer1 high  
byte is updated with the contents of TMR1H when a  
write occurs to TMR1L. This allows a user to write all  
16 bits to both the high and low bytes of Timer1 at once.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate  
values  
of  
external  
The high byte of Timer1 is not directly readable or  
writable in this mode. All reads and writes must take  
place through the Timer1 High Byte Buffer register.  
Writes to TMR1H do not clear the Timer1 prescaler.  
The prescaler is only cleared on writes to TMR1L.  
components.  
4: Capacitor values are for design guidance  
only.  
12.3.1  
USING TIMER1 AS A  
CLOCK SOURCE  
12.3 Timer1 Oscillator  
The Timer1 oscillator is also available as a clock source  
in power-managed modes. By setting the System  
Clock Select bits, SCS<1:0> (OSCCON<1:0>), to ‘01’,  
the device switches to SEC_RUN mode; both the CPU  
and peripherals are clocked from the Timer1 oscillator.  
If the IDLEN bit (OSCCON<7>) is cleared and a SLEEP  
instruction is executed, the device enters SEC_IDLE  
mode. Additional details are available in Section 4.0  
“Power-Managed Modes”.  
An on-chip crystal oscillator circuit is incorporated  
between pins, T1OSI (input) and T1OSO (amplifier  
output). It is enabled by setting the Timer1 Oscillator  
Enable bit, T1OSCEN (T1CON<3>). The oscillator is a  
low-power circuit rated for 32 kHz crystals. It will  
continue to run during all power-managed modes. The  
circuit for a typical LP oscillator is shown in Figure 12-3.  
Table 12-1 shows the capacitor selection for the Timer1  
oscillator.  
Whenever the Timer1 oscillator is providing the clock  
source, the Timer1 System Clock Status Flag, T1RUN  
(T1CON<6>), is set. This can be used to determine the  
controller’s current clocking mode. It can also indicate  
the clock source being currently used by the Fail-Safe  
Clock Monitor. If the Clock Monitor is enabled and the  
Timer1 oscillator fails while providing the clock, polling  
the T1RUN bit will indicate whether the clock is being  
provided by the Timer1 oscillator or another source.  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
FIGURE 12-3:  
EXTERNAL  
COMPONENTS FOR THE  
TIMER1 LP OSCILLATOR  
C1  
27 pF  
PIC18F87J90  
T1OSI  
XTAL  
32.768 kHz  
T1OSO  
C2  
27 pF  
Note:  
See the Notes with Table 12-1 for additional  
information about capacitor selection.  
2010 Microchip Technology Inc.  
DS39933D-page 145  
PIC18F87J90 FAMILY  
12.3.2  
TIMER1 OSCILLATOR LAYOUT  
CONSIDERATIONS  
12.5 Resetting Timer1 Using the CCP  
Special Event Trigger  
The Timer1 oscillator circuit draws very little power  
during operation. Due to the low-power nature of the  
oscillator, it may also be sensitive to rapidly changing  
signals in close proximity.  
If CCP1 or CCP2 is configured to use Timer1 and to  
generate a Special Event Trigger in Compare mode  
(CCPxM<3:0> = 1011), this signal will reset Timer3.  
The trigger from CCP2 will also start an A/D conversion  
if the A/D module is enabled (see Section 16.3.4  
“Special Event Trigger” for more information).  
The oscillator circuit, shown in Figure 12-3, should be  
located as close as possible to the microcontroller.  
There should be no circuits passing within the oscillator  
circuit boundaries other than VSS or VDD.  
The module must be configured as either a timer or a  
synchronous counter to take advantage of this feature.  
When used this way, the CCPRxH:CCPRxL register  
pair effectively becomes a period register for Timer1.  
If a high-speed circuit must be located near the oscilla-  
tor (such as the CCP1 pin in Output Compare or PWM  
mode, or the primary oscillator using the OSC2 pin), a  
grounded guard ring around the oscillator circuit, as  
shown in Figure 12-4, may be helpful when used on a  
single-sided PCB or in addition to a ground plane.  
If Timer1 is running in Asynchronous Counter mode,  
this Reset operation may not work.  
In the event that a write to Timer1 coincides with a  
Special Event Trigger, the write operation will take  
precedence.  
FIGURE 12-4:  
OSCILLATOR CIRCUIT  
WITH GROUNDED  
GUARD RING  
Note:  
The Special Event Triggers from the CCPx  
module will not set the TMR1IF interrupt  
flag bit (PIR1<0>).  
VDD  
VSS  
12.6 Using Timer1 as a Real-Time Clock  
Adding an external LP oscillator to Timer1 (such as the  
one described in Section 12.3 “Timer1 Oscillator”)  
gives users the option to include RTC functionality to  
their applications. This is accomplished with an  
inexpensive watch crystal to provide an accurate time  
base and several lines of application code to calculate  
the time. When operating in Sleep mode and using a  
battery or supercapacitor as a power source, it can  
completely eliminate the need for a separate RTC  
device and battery backup.  
OSC1  
OSC2  
RC0  
RC1  
RC2  
The application code routine, RTCisr, shown in  
Example 12-1, demonstrates a simple method to  
increment a counter, at one-second intervals, using an  
Interrupt Service Routine. Incrementing the TMR1  
register pair to overflow, triggers the interrupt and calls  
the routine which increments the seconds counter by  
one. Additional counters for minutes and hours are  
incremented as the previous counter overflows.  
Note: Not drawn to scale.  
12.4 Timer1 Interrupt  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
Timer1 interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit, TMR1IF  
(PIR1<0>). This interrupt can be enabled or disabled  
by setting or clearing the Timer1 Interrupt Enable bit,  
TMR1IE (PIE1<0>).  
Since the register pair is 16 bits wide, counting up to  
overflow the register directly from a 32.768 kHz clock  
would take 2 seconds. To force the overflow at the  
required one-second intervals, it is necessary to pre-  
load it. The simplest method is to set the MSb of  
TMR1H with a BSF instruction. Note that the TMR1L  
register is never preloaded or altered; doing so may  
introduce cumulative error over many cycles.  
For this method to be accurate, Timer1 must operate in  
Asynchronous mode and the Timer1 overflow interrupt  
must be enabled (PIE1<0> = 1) as shown in the  
routine, RTCinit. The Timer1 oscillator must also be  
enabled and running at all times.  
DS39933D-page 146  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
EXAMPLE 12-1:  
IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE  
RTCinit  
MOVLW  
MOVWF  
CLRF  
80h  
TMR1H  
TMR1L  
; Preload TMR1 register pair  
; for 1 second overflow  
MOVLW  
MOVWF  
CLRF  
b’00001111’  
T1CON  
secs  
; Configure for external clock,  
; Asynchronous operation, external oscillator  
; Initialize timekeeping registers  
;
CLRF  
mins  
MOVLW  
MOVWF  
BSF  
.12  
hours  
PIE1, TMR1IE  
; Enable Timer1 interrupt  
RETURN  
RTCisr  
BSF  
BCF  
INCF  
MOVLW  
TMR1H, 7  
PIR1, TMR1IF  
secs, F  
.59  
; Preload for 1 sec overflow  
; Clear interrupt flag  
; Increment seconds  
; 60 seconds elapsed?  
CPFSGT secs  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
secs  
mins, F  
.59  
; Clear seconds  
; Increment minutes  
; 60 minutes elapsed?  
CPFSGT mins  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
mins  
hours, F  
.23  
; clear minutes  
; Increment hours  
; 24 hours elapsed?  
CPFSGT hours  
RETURN  
; No, done  
; Reset hours  
; Done  
CLRF  
hours  
RETURN  
TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
59  
62  
62  
62  
60  
60  
60  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
IPR1  
TMR1L  
TMR1H  
T1CON  
Timer1 Register Low Byte  
Timer1 Register High Byte  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Legend: Shaded cells are not used by the Timer1 module.  
2010 Microchip Technology Inc.  
DS39933D-page 147  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 148  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
13.1 Timer2 Operation  
13.0 TIMER2 MODULE  
In normal operation, TMR2 is incremented from 00h on  
each clock (FOSC/4). A 4-bit counter/prescaler on the  
clock input gives direct input, divide-by-4 and  
divide-by-16 prescale options. These are selected by the  
prescaler control bits, T2CKPS<1:0> (T2CON<1:0>).  
The value of TMR2 is compared to that of the Period  
register, PR2, on each clock cycle. When the two  
values match, the comparator generates a match  
signal as the timer output. This signal also resets the  
value of TMR2 to 00h on the next cycle and drives the  
output counter/postscaler (see Section 13.2 “Timer2  
Interrupt”).  
The Timer2 module incorporates the following features:  
• 8-bit Timer and Period registers (TMR2 and PR2,  
respectively)  
• Readable and writable (both registers)  
• Software programmable prescaler  
(1:1, 1:4 and 1:16)  
• Software programmable postscaler  
(1:1 through 1:16)  
• Interrupt on TMR2 to PR2 match  
• Optional use as the shift clock for the  
MSSP module  
The TMR2 and PR2 registers are both directly readable  
and writable. The TMR2 register is cleared on any  
device Reset, while the PR2 register initializes at FFh.  
Both the prescaler and postscaler counters are cleared  
on the following events:  
The module is controlled through the T2CON register  
(Register 13-1) which enables or disables the timer,  
and configures the prescaler and postscaler. Timer2  
can be shut off by clearing control bit, TMR2ON  
(T2CON<2>), to minimize power consumption.  
• a write to the TMR2 register  
• a write to the T2CON register  
A simplified block diagram of the module is shown in  
Figure 13-1.  
• any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
T2OUTPS<3:0>: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
2010 Microchip Technology Inc.  
DS39933D-page 149  
PIC18F87J90 FAMILY  
13.2 Timer2 Interrupt  
13.3 Timer2 Output  
Timer2 can also generate an optional device interrupt.  
The Timer2 output signal (TMR2 to PR2 match) pro-  
vides the input for the 4-bit output counter/postscaler.  
This counter generates the TMR2 match interrupt flag  
which is latched in TMR2IF (PIR1<1>). The interrupt is  
enabled by setting the TMR2 Match Interrupt Enable  
bit, TMR2IE (PIE1<1>).  
The unscaled output of TMR2 is available primarily to  
the CCP modules, where it is used as a time base for  
operations in PWM mode.  
Timer2 can be optionally used as the shift clock source  
for the MSSP module operating in SPI mode.  
Additional information is provided in Section 18.0  
“Master Synchronous Serial Port (MSSP) Module”.  
A range of 16 postscale options (from 1:1 through 1:16  
inclusive) can be selected with the postscaler control  
bits, T2OUTPS<3:0> (T2CON<6:3>).  
FIGURE 13-1:  
TIMER2 BLOCK DIAGRAM  
4
1:1 to 1:16  
Set TMR2IF  
Postscaler  
T2OUTPS<3:0>  
T2CKPS<1:0>  
2
TMR2 Output  
(to PWM or MSSP)  
TMR2/PR2  
Match  
Reset  
1:1, 1:4, 1:16  
Prescaler  
FOSC/4  
TMR2  
Comparator  
PR2  
8
8
8
Internal Data Bus  
TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
59  
62  
62  
62  
60  
60  
60  
PIR1  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
IPR1  
TMR2  
T2CON  
PR2  
Timer2 Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
DS39933D-page 150  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
A simplified block diagram of the Timer3 module is  
shown in Figure 14-1. A block diagram of the module’s  
operation in Read/Write mode is shown in Figure 14-2.  
14.0 TIMER3 MODULE  
The Timer3 timer/counter module incorporates these  
features:  
The Timer3 module is controlled through the T3CON  
register (Register 14-1). It also selects the clock source  
options for the CCP modules. See Section 16.2.2  
“Timer1/Timer3 Mode Selection” for more  
information.  
• Software selectable operation as a 16-bit timer or  
counter  
• Readable and writable 8-bit registers (TMR3H  
and TMR3L)  
• Selectable clock source (internal or external) with  
device clock or Timer1 oscillator internal options  
• Interrupt on overflow  
• Module Reset on CCP Special Event Trigger  
REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CCP2  
T3CKPS1  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
RD16: 16-Bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer3 in one 16-bit operation  
0= Enables register read/write of Timer3 in two 8-bit operations  
bit 6,3  
T3CCP<2:1>: Timer3 and Timer1 to CCPx Enable bits  
1x= Timer3 is the capture/compare clock source for the CCP modules  
01= Timer3 is the capture/compare clock source for CCP2;  
Timer1 is the capture/compare clock source for CCP1  
00= Timer1 is the capture/compare clock source for the CCP modules  
bit 5-4  
bit 2  
T3CKPS<1:0>: Timer3 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the device clock comes from Timer1/Timer3.)  
When TMR3CS = 1:  
1= Does not synchronize the external clock input  
0= Synchronizes the external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
bit 1  
bit 0  
TMR3CS: Timer3 Clock Source Select bit  
1= External clock input from Timer1 oscillator or T13CKI (on the rising edge after the first  
falling edge)  
0= Internal clock (FOSC/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
2010 Microchip Technology Inc.  
DS39933D-page 151  
PIC18F87J90 FAMILY  
The operating mode is determined by the clock select  
bit, TMR3CS (T3CON<1>). When TMR3CS is cleared  
(= 0), Timer3 increments on every internal instruction  
cycle (FOSC/4). When the bit is set, Timer3 increments  
on every rising edge of the Timer1 external clock input  
or the Timer1 oscillator, if enabled.  
14.1 Timer3 Operation  
Timer3 can operate in one of three modes:  
• Timer  
• Synchronous Counter  
• Asynchronous Counter  
As  
with  
Timer1,  
the  
RC1/T1OSI  
and  
RC0/T1OSO/T13CKI pins become inputs when the  
Timer1 oscillator is enabled. This means the values of  
TRISC<1:0> are ignored and the pins are read as ‘0’.  
FIGURE 14-1:  
TIMER3 BLOCK DIAGRAM (8-BIT MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
1
0
T1OSO/T13CKI  
T1OSI  
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
T3CKPS<1:0>  
T3SYNC  
Timer3  
On/Off  
TMR3CS  
TMR3ON  
CCPx Special Event Trigger  
Clear TMR3  
Set  
TMR3  
High Byte  
TMR3L  
TMR3IF  
CCPx Select from T3CON<6,3>  
on Overflow  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
FIGURE 14-2:  
TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
1
0
T13CKI/T1OSO  
T1OSI  
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
T3CKPS<1:0>  
T3SYNC  
Timer3  
On/Off  
TMR3CS  
TMR3ON  
CCPx Special Event Trigger  
Clear TMR3  
Set  
TMR3IF  
on Overflow  
TMR3  
High Byte  
TMR3L  
CCPx Select from T3CON<6,3>  
8
Read TMR1L  
Write TMR1L  
8
8
TMR3H  
8
8
Internal Data Bus  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
DS39933D-page 152  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
14.2 Timer3 16-Bit Read/Write Mode  
14.4 Timer3 Interrupt  
Timer3 can be configured for 16-bit reads and writes  
(see Figure 14-2). When the RD16 control bit  
(T3CON<7>) is set, the address for TMR3H is mapped  
to a buffer register for the high byte of Timer3. A read  
from TMR3L will load the contents of the high byte of  
Timer3 into the Timer3 High Byte Buffer register. This  
provides the user with the ability to accurately read all  
16 bits of Timer1 without having to determine whether  
a read of the high byte, followed by a read of the low  
byte, has become invalid due to a rollover between  
reads.  
The TMR3 register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and overflows to 0000h. The  
Timer3 interrupt, if enabled, is generated on overflow  
and is latched in interrupt flag bit, TMR3IF (PIR2<1>).  
This interrupt can be enabled or disabled by setting or  
clearing the Timer3 Interrupt Enable bit, TMR3IE  
(PIE2<1>).  
14.5 Resetting Timer3 Using the CCP  
Special Event Trigger  
If CCP1 or CCP2 is configured to use Timer3 and to  
generate a Special Event Trigger in Compare mode  
(CCPxM<3:0> = 1011), this signal will reset Timer3.  
The trigger from CCP2 will also start an A/D conversion  
if the A/D module is enabled (see Section 16.3.4  
“Special Event Trigger” for more information).  
A write to the high byte of Timer3 must also take place  
through the TMR3H Buffer register. The Timer3 high  
byte is updated with the contents of TMR3H when a  
write occurs to TMR3L. This allows a user to write all  
16 bits to both the high and low bytes of Timer3 at once.  
The high byte of Timer3 is not directly readable or  
writable in this mode. All reads and writes must take  
place through the Timer3 High Byte Buffer register.  
The module must be configured as either a timer or  
synchronous counter to take advantage of this feature.  
When used this way, the CCPRxH:CCPRxL register  
pair effectively becomes a period register for Timer3.  
Writes to TMR3H do not clear the Timer3 prescaler.  
The prescaler is only cleared on writes to TMR3L.  
If Timer3 is running in Asynchronous Counter mode,  
the Reset operation may not work.  
14.3 Using the Timer1 Oscillator as the  
Timer3 Clock Source  
In the event that a write to Timer3 coincides with a  
Special Event Trigger from a CCP module, the write will  
take precedence.  
The Timer1 internal oscillator may be used as the clock  
source for Timer3. The Timer1 oscillator is enabled by  
setting the T1OSCEN (T1CON<3>) bit. To use it as the  
Timer3 clock source, the TMR3CS bit must also be set.  
As previously noted, this also configures Timer3 to  
increment on every rising edge of the oscillator source.  
Note:  
The Special Event Triggers from the CCPx  
module will not set the TMR3IF interrupt  
flag bit (PIR2<1>).  
The Timer1 oscillator is described in Section 12.0  
“Timer1 Module”.  
TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
BCLIF  
BCLIE  
BCLIP  
TMR0IF  
LVDIF  
LVDIE  
LVDIP  
INT0IF  
TMR3IF  
TMR3IE  
TMR3IP  
RBIF  
59  
62  
62  
62  
61  
61  
60  
61  
OSCFIF  
OSCFIE  
OSCFIP  
CMIF  
CMIE  
CMIP  
PIE2  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
Timer3 Register Low Byte  
Timer3 Register High Byte  
RD16  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer3 module.  
2010 Microchip Technology Inc.  
DS39933D-page 153  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 154  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The RTCC module is intended for applications where  
accurate time must be maintained for an extended  
period, with minimum to no intervention from the CPU.  
The module is optimized for low-power usage in order  
to provide extended battery life while keeping track of  
time.  
15.0 REAL-TIME CLOCK AND  
CALENDAR (RTCC)  
The key features of the Real-Time Clock and Calendar  
(RTCC) module are:  
• Time: hours, minutes and seconds  
• 24-hour format (military time)  
The module is a 100-year clock and calendar with auto-  
matic leap year detection. The range of the clock is  
from 00:00:00 (midnight) on January 1, 2000 to  
23:59:59 on December 31, 2099. Hours are measured  
in 24-hour (military time) format. The clock provides a  
granularity of one second with half-second visibility to  
the user.  
• Calendar: weekday, date, month and year  
• Alarm configurable  
Year range: 2000 to 2099  
• Leap year correction  
• BCD format for compact firmware  
• Optimized for low-power operation  
• User calibration with auto-adjust  
• Calibration range: 2.64 seconds error per month  
• Requirements: external 32.768 kHz clock crystal  
• Alarm pulse or seconds clock output on RTCC pin  
FIGURE 15-1:  
RTCC BLOCK DIAGRAM  
CPU Clock Domain  
RTCC Clock Domain  
32.768 kHz Input  
from Timer1 Oscillator  
RTCCFG  
RTCC Prescalers  
0.5s  
ALRMRPT  
YEAR  
Internal RC  
MTHDY  
RTCVALx  
WKDYHR  
RTCC Timer  
Alarm  
MINSEC  
Event  
Comparator  
ALMTHDY  
Compare Registers  
with Masks  
ALRMVALx  
ALWDHR  
ALMINSEC  
Repeat Counter  
RTCC Interrupt  
RTCC Interrupt Logic  
Alarm Pulse  
RTCC Pin  
RTCOE  
2010 Microchip Technology Inc.  
DS39933D-page 155  
PIC18F87J90 FAMILY  
Alarm Value Registers  
15.1 RTCC MODULE REGISTERS  
• ALRMVALH and ALRMVALL – Can access the  
following registers:  
The RTCC module registers are divided into following  
categories:  
- ALRMMNTH  
- ALRMDAY  
- ALRMWD  
- ALRMHR  
RTCC Control Registers  
• RTCCFG  
• RTCCAL  
- ALRMMIN  
- ALRMSEC  
• PADCFG1  
• ALRMCFG  
• ALRMRPT  
Note:  
The RTCVALH and RTCVALL registers  
can be accessed through RTCRPT<1:0>.  
ALRMVALH and ALRMVALL can be  
accessed through ALRMPTR<1:0>.  
RTCC Value Registers  
• RTCVALH and RTCVALL – Can access the fol-  
lowing registers  
- YEAR  
- MONTH  
- DAY  
- WEEKDAY  
- HOUR  
- MINUTE  
- SECOND  
DS39933D-page 156  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
15.1.1  
RTCC CONTROL REGISTERS  
REGISTER 15-1:  
RTCCFG: RTCC CONFIGURATION REGISTER(1)  
R/W-0  
RTCEN(2)  
bit 7  
U-0  
R/W-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
RTCWREN RTCSYNC HALFSEC(3)  
RTCOE  
RTCPTR1  
RTCPTR0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
(2)  
bit 7  
RTCEN: RTCC Enable bit  
1= RTCC module is enabled  
0= RTCC module is disabled  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
RTCWREN: RTCC Value Registers Write Enable bit  
1= RTCVALH and RTCVALL registers can be written to by the user  
0= RTCVALH and RTCVALL registers are locked out from being written to by the user  
bit 4  
RTCSYNC: RTCC Value Registers Read Synchronization bit  
1= RTCVALH, RTCVALL and ALRMRPT registers can change while reading due to a rollover ripple  
resulting in an invalid data read. If the register is read twice and results in the same data, the data  
can be assumed to be valid.  
0= RTCVALH, RTCVALL and ALCFGRPT registers can be read without concern over a rollover  
ripple  
bit 3  
HALFSEC: Half-Second Status bit(3)  
1= Second half period of a second  
0= First half period of a second  
bit 2  
RTCOE: RTCC Output Enable bit  
1= RTCC clock output enabled  
0= RTCC clock output disabled  
bit 1-0  
RTCPTR<1:0>: RTCC Value Register Window Pointer bits  
Points to the corresponding RTCC Value registers when reading the RTCVALH and RTCVALL registers.  
The RTCPTR<1:0> value decrements on every read or write of RTCVALH<7:0> until it reaches ‘00’.  
RTCVALH:  
00= Minutes  
01= Weekday  
10= Month  
11= Reserved  
RTCVALL:  
00= Seconds  
01= Hours  
10= Day  
11= Year  
Note 1: The RTCCFG register is only affected by a POR. For resets other than POR, RTCC will continue to run  
even if the device is in Reset.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only; it is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
2010 Microchip Technology Inc.  
DS39933D-page 157  
PIC18F87J90 FAMILY  
REGISTER 15-2:  
RTCCAL: RTCC CALIBRATION REGISTER  
R/W-0  
CAL7  
R/W-0  
CAL6  
R/W-0  
CAL5  
R/W-0  
CAL4  
R/W-0  
CAL3  
R/W-0  
CAL2  
R/W-0  
CAL1  
R/W-0  
CAL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
CAL<7:0>: RTC Drift Calibration bits  
01111111= Maximum positive adjustment; adds 508 RTC clock pulses every minute  
.
.
.
00000001= Minimum positive adjustment; adds four RTC clock pulses every minute  
00000000= No adjustment  
11111111= Minimum negative adjustment; subtracts four RTC clock pulses every minute  
.
.
.
10000000= Maximum negative adjustment; subtracts 512 RTC clock pulses every minute  
REGISTER 15-3: PADCFG1: PAD CONFIGURATION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
RTSECSEL1(1) RTSECSEL0(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-3  
bit 2-1  
Unimplemented: Read as ‘0’  
RTSECSEL<1:0>: RTCC Seconds Clock Output Select bit(1)  
11= Reserved; do not use  
10= RTCC source clock is selected for the RTCC pin (pin can be INTOSC or Timer1 oscillator, depending  
on the RTCOSC (CONFIG3L<1>) bit setting)(2)  
01= RTCC seconds clock is selected for the RTCC pin  
00= RTCC alarm pulse is selected for the RTCC pin  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: To enable the actual RTCC output, the RTCOE (RTCCFG<2>) bit must be set.  
2: If the Timer1 oscillator is the clock source for RTCC, the T1OSCEN bit should be set (T1CON<3> = 1).  
DS39933D-page 158  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 15-4: ALRMCFG: ALARM CONFIGURATION REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ALRMEN  
CHIME  
AMASK3  
AMASK2  
AMASK1  
AMASK0  
ALRMPTR1 ALRMPTR0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ALRMEN: Alarm Enable bit  
1= Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 00  
and CHIME = 0)  
0= Alarm is disabled  
bit 6  
CHIME: Chime Enable bit  
1= Chime is enabled; ALRMPTR<1:0> bits are allowed to roll over from 00h to FFh  
0= Chime is disabled; ALRMPTR<1:0> bits stop once they reach 00h  
bit 5-2  
AMASK<3:0>: Alarm Mask Configuration bits  
0000= Every half second  
0001= Every second  
0010= Every 10 seconds  
0011= Every minute  
0100= Every 10 minutes  
0101= Every hour  
0110= Once a day  
0111= Once a week  
1000= Once a month  
1001= Once a year (except when configured for February 29th, once every four years)  
101x= Reserved – do not use  
11xx= Reserved – do not use  
bit 1-0  
ALRMPTR<1:0>: Alarm Value Register Window Pointer bits  
Points to the corresponding Alarm Value registers when reading the ALRMVALH and ALRMVALL  
registers. The ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches  
00’.  
ALRMVALH:  
00= ALRMMIN  
01= ALRMWD  
10= ALRMMNTH  
11= Unimplemented  
ALRMVALL:  
00= ALRMSEC  
01= ALRMHR  
10= ALRMDAY  
11= Unimplemented  
2010 Microchip Technology Inc.  
DS39933D-page 159  
PIC18F87J90 FAMILY  
REGISTER 15-5: ALRMRPT: ALARM REPEAT REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ARPT7  
ARPT6  
ARPT5  
ARPT4  
ARPT3  
ARPT2  
ARPT1  
ARPT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ARPT<7:0>: Alarm Repeat Counter Value bits  
11111111= Alarm will repeat 255 more times  
.
.
.
00000000= Alarm will not repeat  
The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to  
FFh unless CHIME = 1.  
15.1.2  
RTCVALH AND RTCVALL  
REGISTER MAPPINGS  
REGISTER 15-6: RESERVED REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
Unimplemented: Read as ‘0’  
REGISTER 15-7: YEAR: YEAR VALUE REGISTER(1)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
YRTEN3  
YRTEN2  
YRTEN1  
YRTEN0  
YRONE3  
YRONE2  
YRONE1  
YRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
YRTEN<3:0>: Binary Coded Decimal Value of Year’s Tens Digit bits  
Contains a value from 0 to 9.  
YRONE<3:0>: Binary Coded Decimal Value of Year’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.  
DS39933D-page 160  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 15-8: MONTH: MONTH VALUE REGISTER(1)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MTHONE0  
bit 0  
MTHTEN0 MTHONE3  
MTHONE2  
MTHONE1  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit bit  
Contains a value of 0 or 1.  
bit 3-0  
MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 15-9: DAY: DAY VALUE REGISTER(1)  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYONE0  
bit 0  
DAYTEN1  
DAYTEN0  
DAYONE3  
DAYONE2  
DAYONE1  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DAYTEN<1:0>: Binary Coded Decimal value of Day’s Tens Digit bits  
Contains a value from 0 to 3.  
bit 3-0  
DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 15-10: WEEKDAY: WEEKDAY VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY0  
bit 0  
WDAY2  
WDAY1  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits  
Contains a value from 0 to 6.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
2010 Microchip Technology Inc.  
DS39933D-page 161  
PIC18F87J90 FAMILY  
REGISTER 15-11: HOUR: HOUR VALUE REGISTER(1)  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN1  
HRTEN0  
HRONE3  
HRONE2  
HRONE1  
HRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit bits  
Contains a value from 0 to 2.  
bit 3-0  
HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 15-12: MINUTE: MINUTE VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MINTEN2  
MINTEN1  
MINTEN0  
MINONE3  
MINONE2  
MINONE1  
MINONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 3-0  
MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit bits  
Contains a value from 0 to 9.  
REGISTER 15-13: SECOND: SECOND VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SECTEN2  
SECTEN1  
SECTEN0 SECONE3  
SECONE2  
SECONE1  
SECONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 3-0  
SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit bits  
Contains a value from 0 to 9.  
DS39933D-page 162  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
15.1.3  
ALRMVALH AND ALRMVALL  
REGISTER MAPPINGS  
REGISTER 15-14: ALRMMNTH: ALARM MONTH VALUE REGISTER(1)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MTHONE0  
bit 0  
MTHTEN0 MTHONE3  
MTHONE2  
MTHONE1  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit bit  
Contains a value of 0 or 1.  
bit 3-0  
MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 15-15: ALRMDAY: ALARM DAY VALUE REGISTER(1)  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYONE0  
bit 0  
DAYTEN1  
DAYTEN0  
DAYONE3  
DAYONE2  
DAYONE1  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit bits  
Contains a value from 0 to 3.  
bit 3-0  
DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 15-16: ALRMWD: ALARM WEEKDAY VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY0  
bit 0  
WDAY2  
WDAY1  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits  
Contains a value from 0 to 6.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
2010 Microchip Technology Inc.  
DS39933D-page 163  
PIC18F87J90 FAMILY  
REGISTER 15-17: ALRMHR: ALARM HOURS VALUE REGISTER(1)  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN1  
HRTEN0  
HRONE3  
HRONE2  
HRONE1  
HRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit bits  
Contains a value from 0 to 2.  
bit 3-0  
HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 15-18: ALRMMIN: ALARM MINUTES VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MINTEN2  
MINTEN1  
MINTEN0  
MINONE3  
MINONE2  
MINONE1  
MINONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 3-0  
MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit bits  
Contains a value from 0 to 9.  
REGISTER 15-19: ALRMSEC: ALARM SECONDS VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SECTEN2  
SECTEN1  
SECTEN0 SECONE3  
SECONE2  
SECONE1  
SECONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 3-0  
SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit bits  
Contains a value from 0 to 9.  
DS39933D-page 164  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
15.1.4  
RTCEN BIT WRITE  
15.2 Operation  
An attempt to write to the RTCEN bit while  
RTCWREN = 0 will be ignored. RTCWREN must be  
set before a write to RTCEN can take place.  
15.2.1  
REGISTER INTERFACE  
The register interface for the RTCC and alarm values is  
implemented using the Binary Coded Decimal (BCD)  
format. This simplifies the firmware when using the  
module as each of the digits is contained within its own  
4-bit value (see Figure 15-2 and Figure 15-3).  
Like the RTCEN bit, the RTCVALH and RTCVALL  
registers can only be written to when RTCWREN = 1.  
A write to these registers, while RTCWREN = 0, will be  
ignored.  
FIGURE 15-2:  
TIMER DIGIT FORMAT  
Year  
Day  
Day Of Week  
0-6  
Month  
0-9  
0-9  
0-3  
0-9  
0-1  
0-9  
Hours  
1/2 Second Bit  
Minutes  
Seconds  
(24-hour format)  
(binary format)  
0/1  
0-2  
0-9  
0-5  
0-9  
0-5  
0-9  
FIGURE 15-3:  
ALARM DIGIT FORMAT  
Day  
Day Of Week  
0-6  
Month  
0-3  
0-9  
0-1  
0-9  
Hours  
(24-hour format)  
Minutes  
Seconds  
0-2  
0-9  
0-5  
0-9  
0-5  
0-9  
2010 Microchip Technology Inc.  
DS39933D-page 165  
PIC18F87J90 FAMILY  
Calibration of the crystal can be done through this  
module to yield an error of 3 seconds or less per month.  
(For further details, see Section 15.2.9 “Calibration”.)  
15.2.2  
CLOCK SOURCE  
As mentioned earlier, the RTCC module is intended to  
be clocked by an external Real-Time Clock crystal,  
oscillating at 32.768 kHz, but can also be an internal  
oscillator. The RTCC clock selection is decided by the  
RTCOSC bit (CONFIG3L<1>).  
FIGURE 15-4:  
CLOCK SOURCE MULTIPLEXING  
32.768 kHz XTAL  
from SOSC  
Half Second  
1:16384  
Clock Prescaler(1)  
Clock  
One Second Clock  
Half second(1)  
Internal RC  
CONFIG 3L<1>  
Day  
Second  
Hour:Minute  
Month  
Year  
Day of Week  
Note 1: Writing to the lower half of the MINSEC register resets all counters, allowing fraction of a second  
synchronization; clock prescaler is held in Reset when RTCEN = 0.  
15.2.2.1  
Real-Time Clock Enable  
TABLE 15-1: DAY OF WEEK SCHEDULE  
Day of Week  
The RTCC module can be clocked by an external,  
32.768 kHz crystal (Timer1 oscillator) or the Internal RC  
oscillator, which can be selected in CONFIG3L<1>.  
Sunday  
Monday  
0
1
2
3
4
5
6
If the external clock is used, the Timer1 oscillator  
should be enabled by setting the T1OSCEN bit  
(T1CON<3> = 1). If INTRC is providing the clock, the  
INTRC clock can be brought out to the RTCC pin by the  
RTSECSEL<1:0> bits in the PADCFG register.  
Tuesday  
Wednesday  
Thursday  
Friday  
15.2.3  
DIGIT CARRY RULES  
Saturday  
This section explains which timer values are affected  
when there is a rollover.  
TABLE 15-2: DAY TO MONTH ROLLOVER  
SCHEDULE  
• Time of Day: from 23:59:59 to 00:00:00 with a  
carry to the Day field  
Month  
Maximum Day Field  
• Month: from 12/31 to 01/01 with a carry to the  
Year field  
01 (January)  
02 (February)  
03 (March)  
31  
28 or 29(1)  
• Day of Week: from 6 to 0 with no carry (see  
Table 15-1)  
31  
30  
31  
30  
31  
31  
30  
31  
30  
31  
04 (April)  
Year Carry: from 99 to 00; this also surpasses the  
use of the RTCC  
05 (May)  
For the day to month rollover schedule, see Table 15-2.  
06 (June)  
Considering that the following values are in BCD for-  
mat, the carry to the upper BCD digit will occur at a  
count of 10 and not at 16 (SECONDS, MINUTES,  
HOURS, WEEKDAY, DAYS and MONTHS).  
07 (July)  
08 (August)  
09 (September)  
10 (October)  
11 (November)  
12 (December)  
Note 1: See Section 15.2.4 “Leap Year”.  
DS39933D-page 166  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
15.2.4  
LEAP YEAR  
15.2.7  
WRITE LOCK  
Since the year range on the RTCC module is 2000 to  
2099, the leap year calculation is determined by any year  
divisible by 4 in the above range. Only February is  
effected in a leap year.  
In order to perform a write to any of the RTCC Timer  
registers, the RTCWREN bit (RTCCFG<5>) must be set.  
To avoid accidental writes to the RTCC Timer register,  
it is recommended that the RTCWREN bit  
(RTCCFG<5>) be kept clear at any time other than  
while writing to it. For the RTCWREN bit to be set, there  
is only one instruction cycle time window allowed  
between the 55h/AA sequence and the setting of  
RTCWREN. For that reason, it is recommended that  
users follow the code example in Example 15-1.  
February will have 29 days in a leap year and 28 days in  
any other year.  
15.2.5  
GENERAL FUNCTIONALITY  
All Timer registers containing a time value of seconds or  
greater are writable. The user configures the time by  
writing the required year, month, day, hour, minutes and  
seconds to the Timer registers, via register pointers (see  
Section 15.2.8 “Register Mapping”).  
EXAMPLE 15-1:  
SETTING THE RTCWREN  
BIT  
movlw  
movwf  
movlw  
movwf  
bsf  
0x55  
EECON2  
0xAA  
EECON2  
The timer uses the newly written values and proceeds  
with the count from the required starting point.  
The RTCC is enabled by setting the RTCEN bit  
(RTCCFG<7>). If enabled while adjusting these regis-  
ters, the timer still continues to increment. However, any  
time the MINSEC register is written to, both of the timer  
prescalers are reset to ‘0’. This allows fraction of a  
second synchronization.  
RTCCFG,RTCWREN  
15.2.8  
REGISTER MAPPING  
To limit the register interface, the RTCC Timer and  
Alarm Timer registers are accessed through  
corresponding register pointers. The RTCC Value  
register window (RTCVALH and RTCVALL) uses the  
RTCPTR bits (RTCCFG<1:0>) to select the required  
Timer register pair.  
The Timer registers are updated in the same cycle as  
the write instruction’s execution by the CPU. The user  
must ensure that when RTCEN = 1, the updated  
registers will not be incremented at the same time. This  
can be accomplished in several ways:  
By reading or writing to the RTCVALH register, the  
RTCC Pointer value (RTCPTR<1:0>) decrements by ‘1’  
until it reaches ‘00’. Once it reaches ‘00’, the MINUTES  
and SECONDS value will be accessible through  
RTCVALH and RTCVALL until the pointer value is  
manually changed.  
• By checking the RTCSYNC bit (RTCCFG<4>)  
• By checking the preceding digits from which a  
carry can occur  
• By updating the registers immediately following  
the seconds pulse (or alarm interrupt)  
The user has visibility to the half-second field of the  
counter. This value is read-only and can be reset only  
by writing to the lower half of the SECONDS register.  
TABLE 15-3: RTCVALH AND RTCVALL  
REGISTER MAPPING  
RTCC Value Register Window  
RTCPTR<1:0>  
15.2.6  
SAFETY WINDOW FOR REGISTER  
READS AND WRITES  
RTCVALH  
RTCVALL  
00  
01  
10  
11  
MINUTES  
WEEKDAY  
MONTH  
SECONDS  
HOURS  
DAY  
The RTCSYNC bit indicates a time window during  
which the RTCC clock domain registers can be safely  
read and written without concern about a rollover.  
When RTCSYNC = 0, the registers can be safely  
accessed by the CPU.  
YEAR  
Whether RTCSYNC = 1or 0, the user should employ a  
firmware solution to ensure that the data read did not  
fall on a rollover boundary, resulting in an invalid or  
partial read. This firmware solution would consist of  
reading each register twice and then comparing the two  
values. If the two values matched, then a rollover did  
not occur.  
The Alarm Value register window (ALRMVALH and  
ALRMVALL) uses the ALRMPTR bits (ALRMCFG<1:0>)  
to select the desired Alarm register pair.  
By reading or writing to the ALRMVALH register, the  
Alarm Pointer value, ALRMPTR<1:0>, decrements by ‘1’  
until it reaches ‘00’. Once it reaches ‘00’, the ALRMMIN  
and ALRMSEC value will be accessible through  
ALRMVALH and ALRMVALL until the pointer value is  
manually changed.  
2010 Microchip Technology Inc.  
DS39933D-page 167  
PIC18F87J90 FAMILY  
Writes to the RTCCAL register should occur only when  
the timer is turned off or immediately after the rising  
edge of the seconds pulse.  
TABLE 15-4: ALRMVAL REGISTER  
MAPPING  
Alarm Value Register Window  
ALRMPTR<1:0>  
Note:  
In determining the crystal’s error value, it  
is the user’s responsibility to include the  
crystal’s initial error from drift due to  
temperature or crystal aging.  
ALRMVALH  
ALRMVALL  
00  
01  
10  
11  
ALRMMIN  
ALRMWD  
ALRMMNTH  
ALRMSEC  
ALRMHR  
ALRMDAY  
15.3 Alarm  
The alarm features and characteristics are:  
• Configurable from half a second to one year  
15.2.9  
CALIBRATION  
The real-time crystal input can be calibrated using the  
periodic auto-adjust feature. When properly calibrated,  
the RTCC can provide an error of less than three  
seconds per month.  
• Enabled using the ALRMEN bit (ALRMCFG<7>,  
Register 15-4)  
• Offers one-time and repeat alarm options  
To perform this calibration, find the number of error  
clock pulses and store the value into the lower half of  
the RTCCAL register. The 8-bit, signed value, loaded  
into RTCCAL, is multiplied by 4 and will either be added  
or subtracted from the RTCC timer, once every minute.  
15.3.1  
CONFIGURING THE ALARM  
The alarm feature is enabled using the ALRMEN bit.  
This bit is cleared when an alarm is issued. The bit will  
not be cleared if the CHIME bit = 1or if ALRMRPT 0.  
The interval selection of the alarm is configured  
through the ALRMCFG (AMASK<3:0>) bits (see  
Figure 15-5). These bits determine which and how  
many digits of the alarm must match the clock value for  
the alarm to occur.  
To calibrate the RTCC module:  
1. Use another timer resource on the device to find  
the error of the 32.768 kHz crystal.  
2. Convert the number of error clock pulses per  
minute (see Equation 15-1).  
The alarm can also be configured to repeat based on a  
preconfigured interval. The number of times this  
occurs, after the alarm is enabled, is stored in the  
ALRMRPT register.  
EQUATION 15-1: CONVERTING ERROR,  
CLOCK PULSES  
(Ideal Frequency (32,758) – Measured Frequency) * 60 =  
Error Clocks per Minute  
Note:  
While the alarm is enabled (ALRMEN = 1),  
changing any of the registers, other than  
the RTCCAL, ALRMCFG and ALRMRPT  
registers and the CHIME bit, can result in  
a false alarm event leading to a false  
alarm interrupt. To avoid this, only change  
the timer and alarm values while the alarm  
is disabled (ALRMEN = 0). It is recom-  
mended that the ALRMCFG and  
ALRMRPT registers and CHIME bit be  
changed when RTCSYNC = 0.  
• If the oscillator is faster than ideal (negative result  
from step 2), the RCFGCALL register value  
needs to be negative. This causes the specified  
number of clock pulses to be subtracted from the  
timer counter once every minute.  
• If the oscillator is slower than ideal (positive  
result from step 2), the RCFGCALL register  
value needs to be positive. This causes the  
specified number of clock pulses to be added to  
the timer counter once every minute.  
3. Load the RTCCAL register with the correct value.  
DS39933D-page 168  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 15-5:  
ALARM MASK SETTINGS  
Alarm Mask Setting  
Day of the  
Week  
AMASK<3:0>  
Month  
Day  
Hours  
Minutes  
Seconds  
0000– Every half second  
0001– Every second  
0010– Every 10 seconds  
0011– Every minute  
0100– Every 10 minutes  
0101– Every hour  
s
s
s
s
s
s
s
s
s
s
s
m
m
m
m
m
m
m
m
m
m
m
0110– Every day  
h
h
h
h
h
h
h
h
0111– Every week  
1000– Every month  
1001– Every year(1)  
d
d
d
d
s
s
s
s
m
m
d
Note 1: Annually, except when configured for February 29.  
When ALRMCFG = 00 and the CHIME bit = 0  
(ALRMCFG<6>), the repeat function is disabled and  
only a single alarm will occur. The alarm can be  
repeated up to 255 times by loading the ALRMRPT  
register with FFh.  
15.3.2  
ALARM INTERRUPT  
At every alarm event, an interrupt is generated. Addi-  
tionally, an alarm pulse output is provided that operates  
at half the frequency of the alarm.  
The alarm pulse output is completely synchronous with  
the RTCC clock and can be used as a trigger clock to  
other peripherals. This output is available on the RTCC  
pin. The output pulse is a clock with a 50% duty cycle  
and a frequency, half that of the alarm event (see  
Figure 15-6).  
After each alarm is issued, the ALRMRPT register is  
decremented by one. Once the register has reached  
00’, the alarm will be issued one last time.  
After the alarm is issued a last time, the ALRMEN bit is  
cleared automatically and the alarm turned off. Indefinite  
repetition of the alarm can occur if the CHIME bit = 1.  
The RTCC pin also can output the seconds clock. The  
user can select between the alarm pulse, generated by  
the RTCC module, or the seconds clock output.  
When CHIME = 1, the alarm is not disabled when the  
ALRMRPT register reaches ‘00’, but it rolls over to FF  
and continues counting indefinitely.  
The RTSECSEL<1:0> (PADCFG1<2:1>) bits select  
between these two outputs:  
• Alarm Pulse – RTSECSEL<1:0> = 00  
• Seconds Clock – RTSECSEL<1:0> = 01  
2010 Microchip Technology Inc.  
DS39933D-page 169  
PIC18F87J90 FAMILY  
FIGURE 15-6:  
TIMER PULSE GENERATION  
RTCEN bit  
ALRMEN bit  
RTCC Alarm Event  
RTCC Pin  
15.4 Sleep Mode  
15.5 Reset  
The timer and alarm continue to operate while in Sleep  
mode. The operation of the alarm is not affected by  
Sleep, as an alarm event can always wake-up the  
CPU.  
15.5.1  
DEVICE RESET  
When a device Reset occurs, the ALCFGRPT register  
is forced to its Reset state causing the alarm to be  
disabled (if enabled prior to the Reset). If the RTCC  
was enabled, it will continue to operate when a basic  
device Reset occurs.  
The Idle mode does not affect the operation of the timer  
or alarm.  
15.5.2  
POWER-ON RESET (POR)  
The RTCCFG and ALRMRPT registers are reset only  
on a POR. Once the device exits the POR state, the  
clock registers should be reloaded with the desired  
values.  
The timer prescaler values can be reset only by writing  
to the SECONDS register. No device Reset can affect  
the prescalers.  
DS39933D-page 170  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
15.6 Register Maps  
Table 15-5, Table 15-6 and Table 15-7 summarize the  
registers associated with the RTCC module.  
TABLE 15-5: RTCC CONTROL REGISTERS  
All  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Resets  
on Page  
RTCCFG  
RTCCAL  
RTCEN  
CAL7  
RTCWREN RTCSYNC HALFSEC  
RTCOE  
CAL2  
RTCPTR1 RTCPTR0  
64  
64  
64  
64  
64  
CAL6  
CAL5  
CAL4  
CAL3  
CAL1  
CAL0  
PADCFG1  
ALRMCFG  
ALRMRPT  
Legend:  
RTSECSEL1 RTSECSEL0  
ALRMEN  
ARPT7  
CHIME  
ARPT6  
AMASK3  
ARPT5  
AMASK2  
ARPT4  
AMASK1  
ARPT3  
AMASK0  
ARPT2  
ALRMPTR1 ALRMPTR0  
ARPT1 ARPT0  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 80-pin devices.  
TABLE 15-6: RTCC VALUE REGISTERS  
All Resets  
on Page  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RTCVALH RTCC Value High Register Window Based on RTCPTR<1:0>  
RTCVALL RTCC Value Low Register Window Based on RTCPTR<1:0>  
64  
64  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 80-pin devices.  
TABLE 15-7: ALARM VALUE REGISTERS  
All  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Resets  
on Page  
ALRMVALH Alarm Value High Register Window Based on ALRMPTR<1:0>  
ALRMVALL Alarm Value Low Register Window Based on ALRMPTR<1:0>  
64  
64  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 80-pin devices.  
2010 Microchip Technology Inc.  
DS39933D-page 171  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 172  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Each CCP module contains two 8-bit registers that can  
operate as two 8-bit Capture registers, two 8-bit  
Compare registers or two PWM Master/Slave Duty  
Cycle registers. For the sake of clarity, all CCP module  
operation in the following sections is described with  
respect to CCP2, but is equally applicable to CCP1.  
16.0 CAPTURE/COMPARE/PWM  
(CCP) MODULES  
PIC18F87J90 family devices have two CCP  
(Capture/Compare/PWM) modules, designated CCP1  
and CCP2. Both modules implement standard capture,  
compare and Pulse-Width Modulation (PWM) modes.  
REGISTER 16-1: CCPxCON: CCPx CONTROL REGISTER (CCP1, CCP2 MODULES)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
DCxB0  
CCPxM3  
CCPxM2  
CCPxM1  
CCPxM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DCxB<1:0>: PWM Duty Cycle bit 1 and bit 0 for CCPx Module  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two Least Significant bits (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight  
Most Significant bits (DCx<9:2>) of the duty cycle are found in CCPRxL.  
bit 3-0  
CCPxM<3:0>: CCPx Module Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCPx module)  
0001= Reserved  
0010= Compare mode, toggle output on match (CCPxIF bit is set)  
0011= Reserved  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode: initialize CCPx pin low; on compare match, force CCPx pin high (CCPxIF bit  
is set)  
1001= Compare mode: initialize CCPx pin high; on compare match, force CCPx pin low (CCPxIF bit  
is set)  
1010= Compare mode: generate software interrupt on compare match (CCPxIF bit is set, CCPx pin  
reflects I/O state)  
1011= Compare mode: Special Event Trigger; reset timer; start A/D conversion on CCPx match  
(CCPxIF bit is set)(1)  
11xx= PWM mode  
Note 1: CCPxM<3:0> = 1011will only reset the timer and not start an A/D conversion on a CCP1 match.  
2010 Microchip Technology Inc.  
DS39933D-page 173  
PIC18F87J90 FAMILY  
Depending on the configuration selected, up to four  
timers may be active at once, with modules in the same  
configuration (Capture/Compare or PWM) sharing  
timer resources. The possible configurations are  
shown in Figure 16-1.  
16.1 CCP Module Configuration  
Each Capture/Compare/PWM module is associated  
with a control register (generically, CCPxCON) and a  
data register (CCPRx). The data register, in turn, is  
comprised of two 8-bit registers: CCPRxL (low byte)  
and CCPRxH (high byte). All registers are both  
readable and writable.  
16.1.2  
OPEN-DRAIN OUTPUT OPTION  
When operating in Output mode (i.e., in Compare or  
PWM modes), the drivers for the CCPx pins can be  
optionally configured as open-drain outputs. This  
feature allows the voltage level on the pin to be pulled  
to a higher level through an external pull-up resistor  
and allows the output to communicate with external  
circuits without the need for additional level shifters.  
16.1.1  
CCP MODULES AND TIMER  
RESOURCES  
The CCP modules utilize timers 1, 2 or 3, depending on  
the mode selected. Timer1 and Timer3 are available to  
modules in Capture or Compare modes, while Timer2  
is available for modules in PWM mode.  
The open-drain output option is controlled by the  
CCP2OD and CCP1OD bits (TRISG<6:5>). Setting the  
appropriate bit configures the pin for the corresponding  
module for open-drain operation.  
TABLE 16-1: CCP MODE – TIMER  
RESOURCE  
CCP Mode  
Timer Resource  
16.1.3  
CCP2 PIN ASSIGNMENT  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
The pin assignment for CCP2 (capture input, compare  
and PWM output) can change, based on device config-  
uration. The CCP2MX Configuration bit determines  
which pin CCP2 is multiplexed to. By default, it is  
assigned to RC1 (CCP2MX = 1). If the Configuration bit  
is cleared, CCP2 is multiplexed with RE7.  
The assignment of a particular timer to a module is  
determined by the Timer to CCP enable bits in the  
T3CON register (Register 14-1). Both modules may be  
active at any given time and may share the same timer  
resource if they are configured to operate in the same  
mode (Capture/Compare or PWM) at the same time.  
The interactions between the two modules are  
summarized in Table 16-2.  
Changing the pin assignment of CCP2 does not  
automatically change any requirements for configuring  
the port pin. Users must always verify that the appropri-  
ate TRIS register is configured correctly for CCP2  
operation, regardless of where it is located.  
FIGURE 16-1:  
CCP AND TIMER INTERCONNECT CONFIGURATIONS  
T3CCP<2:1> = 00  
T3CCP<2:1> = 01  
T3CCP<2:1> = 1x  
TMR1  
TMR3  
TMR1  
TMR3  
TMR1  
TMR3  
CCP1  
CCP2  
CCP1  
CCP1  
CCP2  
CCP2  
TMR2  
TMR2  
TMR2  
Timer1 is used for all capture  
and compare operations for  
all CCP modules. Timer2 is  
used for PWM operations for  
all CCP modules. Modules  
may share either timer  
resource as a common time  
base.  
Timer1 is used for capture  
and compare operations for  
CCP1 and Timer 3 is used for  
CCP2.  
Timer3 is used for all capture  
and compare operations for  
all CCP modules. Timer2 is  
used for PWM operations for  
all CCP modules. Modules  
may share either timer  
resource as a common time  
base.  
Both the modules use Timer2  
as a common time base if they  
are in PWM modes.  
DS39933D-page 174  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 16-2: INTERACTIONS BETWEEN CCP1 AND CCP2 FOR TIMER RESOURCES  
CCP1 Mode CCP2 Mode  
Interaction  
Capture  
Capture  
Each module can use TMR1 or TMR3 as the time base. The time base can be different  
for each CCP.  
Capture  
Compare CCP2 can be configured for the Special Event Trigger to reset TMR1 or TMR3  
(depending upon which time base is used). Automatic A/D conversions on a trigger event  
can also be done. Operation of CCP1 could be affected if it is using the same timer as a  
time base.  
Compare  
Compare  
Capture  
CCP1 can be configured for the Special Event Trigger to reset TMR1 or TMR3  
(depending upon which time base is used). Operation of CCP2 could be affected if it is  
using the same timer as a time base.  
Compare Either module can be configured for the Special Event Trigger to reset the time base.  
Automatic A/D conversions on a CCP2 trigger event can be done. Conflicts may occur if  
both modules are using the same time base.  
Capture  
Compare  
PWM  
PWM  
PWM  
None  
None  
None  
Capture  
PWM  
Compare None  
PWM Both PWMs will have the same frequency and update rate (TMR2 interrupt).  
PWM  
2010 Microchip Technology Inc.  
DS39933D-page 175  
PIC18F87J90 FAMILY  
16.2.3  
SOFTWARE INTERRUPT  
16.2 Capture Mode  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCP2IE bit (PIE3<2>) clear to avoid false interrupts  
and should clear the flag bit, CCP2IF, following any  
such change in operating mode.  
In Capture mode, the CCPR2H:CCPR2L register pair  
captures the 16-bit value of the TMR1 or TMR3 register  
when an event occurs on the CCP2 pin (RC1 or RE7,  
depending on device configuration). An event is  
defined as one of the following:  
• Every falling edge  
• Every rising edge  
16.2.4  
CCP PRESCALER  
There are four prescaler settings in Capture mode.  
They are specified as part of the operating mode  
selected by the mode select bits (CCP2M<3:0>).  
Whenever the CCP module is turned off, or the CCP  
module is not in Capture mode, the prescaler counter  
is cleared. This means that any Reset will clear the  
prescaler counter.  
• Every 4th rising edge  
• Every 16th rising edge  
The event is selected by the mode select bits,  
CCP2M<3:0> (CCP2CON<3:0>). When a capture is  
made, the interrupt request flag bit, CCP2IF (PIR3<2>), is  
set; it must be cleared in software. If another capture  
occurs before the value in register, CCPR2, is read, the old  
captured value is overwritten by the new captured value.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared; therefore, the first capture may be from  
16.2.1  
CCP PIN CONFIGURATION  
a
non-zero prescaler. Example 16-1 shows the  
recommended method for switching between capture  
prescalers. This example also clears the prescaler  
counter and will not generate the “false” interrupt.  
In Capture mode, the appropriate CCPx pin should be  
configured as an input by setting the corresponding  
TRIS direction bit.  
Note:  
If RC1/CCP2 or RE7/CCP2 is configured  
as an output, a write to the port can cause  
a capture condition.  
EXAMPLE 16-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
CLRF CCP2CON  
; Turn CCP module off  
MOVLW NEW_CAPT_PS ; Load WREG with the  
; new prescaler mode  
16.2.2  
TIMER1/TIMER3 MODE SELECTION  
The timers that are to be used with the capture feature  
(Timer1 and/or Timer3) must be running in Timer mode or  
Synchronized Counter mode. In Asynchronous Counter  
mode, the capture operation may not work. The timer to  
be used with each CCP module is selected in the T3CON  
register (see Section 16.1.1 “CCP Modules and Timer  
Resources”).  
; value and CCP ON  
MOVWF CCP2CON  
; Load CCP2CON with  
; this value  
FIGURE 16-2:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3L  
Set CCP1IF  
T3CCP2  
TMR3  
Enable  
CCP1 Pin  
Prescaler  
1, 4, 16  
and  
Edge Detect  
CCPR1H  
CCPR1L  
TMR1  
Enable  
T3CCP2  
TMR1H  
TMR1L  
TMR3L  
4
4
CCP1CON<3:0>  
Q1:Q4  
Set CCP2IF  
4
CCP2CON<3:0>  
TMR3H  
T3CCP1  
T3CCP2  
TMR3  
Enable  
CCP2 Pin  
Prescaler  
1, 4, 16  
and  
Edge Detect  
CCPR2H  
CCPR2L  
TMR1L  
TMR1  
Enable  
T3CCP2  
T3CCP1  
TMR1H  
DS39933D-page 176  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
16.3.3  
SOFTWARE INTERRUPT MODE  
16.3 Compare Mode  
When the Generate Software Interrupt mode is chosen  
(CCP2M<3:0> = 1010), the CCP2 pin is not affected.  
Only a CCP interrupt is generated, if enabled, and the  
CCP2IE bit is set.  
In Compare mode, the 16-bit CCPR2 register value is  
constantly compared against either the TMR1 or TMR3  
register pair value. When a match occurs, the CCP2  
pin can be:  
• driven high  
16.3.4  
SPECIAL EVENT TRIGGER  
• driven low  
Both CCP modules are equipped with a Special Event  
Trigger. This is an internal hardware signal generated  
in Compare mode to trigger actions by other modules.  
The Special Event Trigger is enabled by selecting  
the Compare Special Event Trigger mode  
(CCP2M<3:0> = 1011).  
• toggled (high-to-low or low-to-high)  
• remain unchanged (that is, reflects the state of the  
I/O latch)  
The action on the pin is based on the value of the mode  
select bits (CCP2M<3:0>). At the same time, the  
interrupt flag bit, CCP2IF, is set.  
For either CCP module, the Special Event Trigger resets  
the Timer register pair for whichever timer resource is  
currently assigned as the module’s time base. This  
allows the CCPRx registers to serve as a programmable  
period register for either timer.  
16.3.1  
CCP PIN CONFIGURATION  
The user must configure the CCPx pin as an output by  
clearing the appropriate TRIS bit.  
The Special Event Trigger for CCP2 can also start an  
A/D conversion. In order to do this, the A/D Converter  
must already be enabled.  
Note:  
Clearing the CCP2CON register will force  
the RC1 or RE7 compare output latch  
(depending on device configuration) to the  
default low level. This is not the PORTC or  
PORTE I/O data latch.  
Note:  
The Special Event Trigger of CCP1 only  
resets Timer1/Timer3 and cannot start an  
A/D conversion, even when the A/D  
Converter is enabled.  
16.3.2  
TIMER1/TIMER3 MODE SELECTION  
Timer1 and/or Timer3 must be running in Timer mode,  
or Synchronized Counter mode, if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
FIGURE 16-3:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger  
(Timer1 Reset)  
Set CCP1IF  
CCPR1H  
CCPR1L  
CCP1 Pin  
S
R
Q
Output  
Logic  
Compare  
Match  
Comparator  
TRIS  
Output Enable  
4
CCP1CON<3:0>  
TMR1H  
TMR3H  
TMR1L  
TMR3L  
0
0
1
1
Special Event Trigger  
(Timer1/Timer3 Reset, A/D Trigger)  
T3CCP1  
T3CCP2  
Set CCP2IF  
CCP2 Pin  
S
R
Q
Compare  
Match  
Output  
Logic  
Comparator  
TRIS  
Output Enable  
4
CCPR2H  
CCPR2L  
CCP2CON<3:0>  
2010 Microchip Technology Inc.  
DS39933D-page 177  
PIC18F87J90 FAMILY  
TABLE 16-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on Page  
INTCON  
RCON  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
59  
60  
62  
62  
62  
62  
62  
62  
62  
62  
62  
60  
60  
60  
61  
61  
61  
63  
63  
63  
64  
63  
64  
IPEN  
CM  
RC2IF  
RC2IE  
RC2IP  
PIR3  
LCDIF  
LCDIE  
LCDIP  
CMIF  
TX2IF  
TX2IE  
TX2IP  
CTMUIF CCP2IF  
CCP1IF RTCCIF  
PIE3  
CTMUIE CCP2IE CCP1IE RTCCIE  
CTMUIP CCP2IP CCP1IP RTCCIP  
IPR3  
PIR2  
OSCFIF  
OSCFIE  
OSCFIP  
TRISC7  
TRISE7  
SPIOD  
BCLIF  
BCLIE  
LVDIF  
LVDIE  
LVDIP  
TRISC2  
TMR3IF  
TMR3IE  
TMR3IP  
TRISC1  
TRISE1  
PIE2  
CMIE  
IPR2  
CMIP  
BCLIP  
TRISC  
TRISE  
TRISC6  
TRISE6  
TRISC5  
TRISE5  
TRISC4  
TRISE4  
TRISC3  
TRISE3  
TRISG3  
TRISC0  
TRISE0  
TRISG  
TMR1L  
TMR1H  
T1CON  
TMR3H  
TMR3L  
T3CON  
CCPR1L  
CCPR1H  
CCP1CON  
CCPR2L  
CCPR2H  
CCP2CON  
CCP2OD CCP1OD TRISG4  
TRISG2 TRISG1 TRISG0  
Timer1 Register Low Byte  
Timer1 Register High Byte  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Timer3 Register High Byte  
Timer3 Register Low Byte  
RD16  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
Capture/Compare/PWM Register 1 Low Byte  
Capture/Compare/PWM Register 1 High Byte  
DC1B1  
DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0  
Capture/Compare/PWM Register 2 Low Byte  
Capture/Compare/PWM Register 2 High Byte  
DC2B1  
DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by Capture/Compare, Timer1 or Timer3.  
DS39933D-page 178  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
A PWM output (Figure 16-5) has a time base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
16.4 PWM Mode  
In Pulse-Width Modulation (PWM) mode, the CCP2 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP2 pin is multiplexed with a PORTC or PORTE  
data latch, the appropriate TRIS bit must be cleared to  
make the CCP2 pin an output.  
FIGURE 16-5:  
PWM OUTPUT  
Period  
Note:  
Clearing the CCP2CON register will force  
the RC1 or RE7 output latch (depending  
on the device configuration) to the default  
low level. This is not the PORTC or  
PORTE I/O data latch.  
Duty Cycle  
TMR2 = PR2  
Figure 16-4 shows a simplified block diagram of the  
CCP1 module in PWM mode.  
TMR2 = Duty Cycle  
TMR2 = PR2  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 16.4.3  
“Setup for PWM Operation”.  
16.4.1  
PWM PERIOD  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
following formula:  
FIGURE 16-4:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCP1CON<5:4>  
Duty Cycle Registers  
EQUATION 16-1:  
CCPR1L  
PWM Period = (PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
PWM frequency is defined as 1/[PWM period].  
CCPR1H (Slave)  
Comparator  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
Q
R
RC2/CCP1  
• TMR2 is cleared  
(Note 1)  
TMR2  
• The CCP2 pin is set (exception: if PWM duty  
cycle = 0%, the CCP2 pin will not be set)  
S
• The PWM duty cycle is latched from CCPR2L into  
CCPR2H  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
Note:  
The Timer2 postscalers (see Section 13.0  
“Timer2 Module”) are not used in the  
determination of the PWM frequency. The  
postscaler could be used to have a servo  
update rate at a different frequency than  
the PWM output.  
Note 1: The 8-bit TMR2 value is concatenated with the 2-bit  
internal Q clock, or 2 bits of the prescaler, to create  
the 10-bit time base.  
2010 Microchip Technology Inc.  
DS39933D-page 179  
PIC18F87J90 FAMILY  
The CCPR2H register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitchless PWM  
operation.  
16.4.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR2L register and to the CCP2CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR2L contains  
the eight MSbs and the CCP2CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR2L:CCP2CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
When the CCPR2H and 2-bit latch match TMR2,  
concatenated with an internal 2-bit Q clock or 2 bits of  
the TMR2 prescaler, the CCP2 pin is cleared.  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the equation:  
EQUATION 16-2:  
PWM Duty Cycle = (CCPR2L:CCP2CON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
EQUATION 16-3:  
FOSC   
log ---------------  
FPWM  
= ----------------------------- b i t s  
log2  
PWM Resolution (max)  
CCPR2L and CCP2CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR2H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR2H is a read-only register.  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the CCP2 pin will not be  
cleared.  
TABLE 16-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
14  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
12  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
DS39933D-page 180  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
3. Make the CCP2 pin an output by clearing the  
appropriate TRIS bit.  
16.4.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
4. Set the TMR2 prescale value, then enable  
Timer2 by writing to T2CON.  
1. Set the PWM period by writing to the PR2  
register.  
5. Configure the CCP2 module for PWM operation.  
2. Set the PWM duty cycle by writing to the  
CCPR2L register and CCP2CON<5:4> bits.  
TABLE 16-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
59  
60  
62  
62  
62  
62  
62  
62  
60  
60  
60  
63  
63  
63  
64  
63  
64  
IPEN  
CM  
ADIF  
RC1IF  
RC1IE  
RC1IP  
TRISC5  
TRISE5  
TX1IF  
TX1IE  
TX1IP  
TRISC4  
TRISE4  
TRISG4  
SSPIF  
SSPIE  
SSPIP  
TRISC3  
TRISE3  
TRISG3  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
PIE1  
ADIE  
IPR1  
ADIP  
TRISC  
TRISE  
TRISG  
TMR2  
PR2  
TRISC7  
TRISE7  
SPIOD  
TRISC6  
TRISE6  
TRISC2 TRISC1 TRISC0  
TRISE1 TRISE0  
TRISG2 TRISG1 TRISG0  
CCP2OD CCP1OD  
Timer2 Register  
Timer2 Period Register  
T2CON  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
CCPR1L Capture/Compare/PWM Register 1 Low Byte  
CCPR1H Capture/Compare/PWM Register 1 High Byte  
CCP1CON  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
CCPR2L Capture/Compare/PWM Register 2 Low Byte  
CCPR2H Capture/Compare/PWM Register 2 High Byte  
CCP2CON  
DC2B1  
DC2B0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PWM or Timer2.  
2010 Microchip Technology Inc.  
DS39933D-page 181  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 182  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The LCD driver module supports these features:  
• Direct driving of LCD panel  
17.0 LIQUID CRYSTAL DISPLAY  
(LCD) DRIVER MODULE  
• On-chip bias generator with dedicated charge  
pump to support a range of fixed and variable bias  
options  
The Liquid Crystal Display (LCD) driver module  
generates the timing control to drive a static or  
multiplexed LCD panel. It also provides control of the  
LCD pixel data. The module can drive panels of up to  
• Up to four commons, with four Multiplexing modes  
• Up to 48 (PIC18F8XJ90 devices) or 33  
(PIC18F6XJ90 devices) segments  
192 pixels (48 segments by  
PIC18F8XJ90 devices and 132 pixels (33 segments by  
4 commons) in PIC18F6XJ90 devices.  
4
commons) in  
• Three LCD clock sources with selectable prescaler,  
with a fourth source available for use with the LCD  
charge pump  
A simplified block diagram of the module is shown in  
Figure 17-1.  
FIGURE 17-1:  
LCD DRIVER MODULE BLOCK DIAGRAM  
Data Bus  
LCD DATA  
24 x 8 (= 4 x 48)  
LCDDATA23  
LCDDATA22  
192  
to  
48  
.
.
.
48  
SEG<47:0>  
MUX  
LCDDATA1  
LCDDATA0  
8
Bias  
Voltage  
To I/O Pins  
Timing Control  
4
LCDCON  
LCDPS  
LCDSEx  
COM<3:0>  
LCD Bias Generation  
FOSC/4  
T13CKI  
INTRC Oscillator  
INTOSC Oscillator  
LCD Clock  
LCD  
Charge Pump  
Source Select  
2010 Microchip Technology Inc.  
DS39933D-page 183  
PIC18F87J90 FAMILY  
The LCDPS register, shown in Register 17-2,  
configures the LCD clock source prescaler and the type  
of waveform: Type-A or Type-B. Details on these  
features are provided in Section 17.2 “LCD Clock  
Source”, Section 17.3 “LCD Bias Generation” and  
Section 17.8 “LCD Waveform Generation”.  
17.1 LCD Registers  
The LCD driver module has 33 registers:  
• LCD Control Register (LCDCON)  
• LCD Phase Register (LCDPS)  
• LCDREG Register (LCD Regulator Control)  
The LCDREG register is described in Section 17.3  
“LCD Bias Generation”.  
• Six LCD Segment Enable Registers  
(LCDSE5:LCDSE0)  
The LCD Segment Enable registers (LCDSEx)  
configure the functions of the port pins. Setting the  
segment enable bit for a particular segment configures  
that pin as an LCD driver. The prototype LCDSE register  
is shown in Register 17-3. There are six LCDSE  
registers (LCDSE5:LCDSE0) listed in Table 17-1.  
• 24 LCD Data Registers  
(LCDDATA23:LCDDATA0)  
17.1.1  
LCD CONTROL REGISTERS  
The LCDCON register, shown in Register 17-1,  
controls the overall operation of the module. Once the  
module is configured, the LCDEN (LCDCON<7>) bit is  
used to enable or disable the LCD module. The LCD  
panel can also operate during Sleep by clearing the  
SLPEN (LCDCON<6>) bit.  
REGISTER 17-1: LCDCON: LCD CONTROL REGISTER  
R/W-0  
R/W-0  
R/C-0  
U-0  
R/W-0  
CS1  
R/W-0  
CS0  
R/W-0  
R/W-0  
LCDEN  
SLPEN  
WERR  
LMUX1  
LMUX0  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
LCDEN: LCD Driver Enable bit  
1= LCD driver module is enabled  
0= LCD driver module is disabled  
SLPEN: LCD Driver Enable in Sleep mode bit  
1= LCD driver module is disabled in Sleep mode  
0= LCD driver module is enabled in Sleep mode  
WERR: LCD Write Failed Error bit  
1= LCDDATAx register written while LCDPS<4> = 0(must be cleared in software)  
0= No LCD write error  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-2  
CS<1:0>: Clock Source Select bits  
1x= INTRC (31 kHz)  
01= T13CKI (Timer1)  
00= System clock (FOSC/4)  
bit 1-0  
LMUX<1:0>: Commons Select bits  
Maximum Number of Pixels:  
LMUX<1:0>  
Multiplex Type  
Bias Type  
PIC18F6XJ90  
PIC18F8XJ90  
00  
01  
10  
11  
Static (COM0)  
33  
66  
48  
96  
Static  
1/2 or 1/3  
1/2 or 1/3  
1/3  
1/2 (COM1:COM0)  
1/3 (COM2:COM0)  
1/4 (COM3:COM0)  
99  
144  
192  
132  
DS39933D-page 184  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 17-2: LCDPS: LCD PHASE REGISTER  
R/W-0  
WFT  
R/W-0  
R-0  
R-0  
WA  
R/W-0  
LP3  
R/W-0  
LP2  
R/W-0  
LP1  
R/W-0  
LP0  
BIASMD  
LCDA  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
WFT: Waveform Type Select bit  
1= Type-B waveform (phase changes on each frame boundary)  
0= Type-A waveform (phase changes within each common type)  
BIASMD: Bias Mode Select bit  
When LMUX<1:0> = 00:  
0= Static Bias mode (do not set this bit to ‘1’)  
When LMUX<1:0> = 01 or 10:  
1= 1/2 Bias mode  
0= 1/3 Bias mode  
When LMUX<1:0> = 11:  
0= 1/3 Bias mode (do not set this bit to ‘1’)  
bit 5  
LCDA: LCD Active Status bit  
1= LCD driver module is active  
0= LCD driver module is inactive  
bit 4  
WA: LCD Write Allow Status bit  
1= Write into the LCDDATAx registers is allowed  
0= Write into the LCDDATAx registers is not allowed  
bit 3-0  
LP<3:0>: LCD Prescaler Select bits  
1111= 1:16  
1110= 1:15  
1101= 1:14  
1100= 1:13  
1011= 1:12  
1010= 1:11  
1001= 1:10  
1000= 1:9  
0111= 1:8  
0110= 1:7  
0101= 1:6  
0100= 1:5  
0011= 1:4  
0010= 1:3  
0001= 1:2  
0000= 1:1  
2010 Microchip Technology Inc.  
DS39933D-page 185  
PIC18F87J90 FAMILY  
REGISTER 17-3: LCDSEx: LCD SEGMENT ENABLE REGISTERS  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SE(n)  
SE(n + 7)  
SE(n + 6)  
SE(n + 5)  
SE(n + 4)  
SE(n + 3)  
SE(n + 2)  
SE(n + 1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-0  
SEG(n + 7):SEG(n): Segment Enable bits  
For LCDSE0: n = 0  
For LCDSE1: n = 8  
For LCDSE2: n = 16  
For LCDSE3: n = 24  
For LCDSE4: n = 32  
For LCDSE5: n = 40  
1= Segment function of the pin is enabled, digital I/O disabled  
0= I/O function of the pin is enabled  
TABLE 17-1: LCDSE REGISTERS AND ASSOCIATED SEGMENTS  
Register  
Segments  
LCDSE0  
LCDSE1  
7:0  
15:8  
LCDSE2  
23:16  
31:24  
39:32  
47:40  
LCDSE3  
LCDSE4(1)  
LCDSE5(2)  
Note 1: LCDSE4<7:1> (SEG<39:33>) registers are not implemented in PIC18F6XJ90 devices.  
2: LCDSE5 is not implemented in PIC18F6XJ90 devices.  
DS39933D-page 186  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Individual LCDDATA bits are named by the convention  
“SxxCy”, with “xx” as the segment number and “y” as  
the common number. The relationship is summarized  
in Table 17-2. The prototype LCDDATA register is  
shown in Register 17-4.  
17.1.2  
LCD DATA REGISTERS  
Once the module is initialized for the LCD panel, the  
individual bits of the LCDDATA23:LCDDATA0 registers  
are cleared or set to represent a clear or dark pixel,  
respectively. Specific sets of LCDDATA registers are  
used with specific segments and common signals.  
Each bit represents a unique combination of a specific  
segment connected to a specific common.  
Note:  
In 64-pin devices, writing into the registers  
LCDDATA5, LCDDATA11, LCDDATA17  
and LCDDATA23, will not affect the status  
of any pixels.  
REGISTER 17-4: LCDDATAx: LCD DATA REGISTERS  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
S(n + 3)Cy  
R/W-0  
R/W-0  
R/W-0  
S(n + 7)Cy  
S(n + 6)Cy  
S(n + 5)Cy  
S(n + 4)Cy  
S(n + 2)Cy  
S(n + 1)Cy  
S(n)Cy  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
S(n + 7)Cy:S(n)Cy: Pixel On bits  
For LCDDATA0 through LCDDATA5: n = (8x), y = 0  
For LCDDATA6 through LCDDATA11: n = (8(x – 6)), y = 1  
For LCDDATA12 through LCDDATA17: n = (8(x – 12)), y = 2  
For LCDDATA18 through LCDDATA23: n = (8(x – 18)), y = 3  
1= Pixel on (dark)  
0= Pixel off (clear)  
TABLE 17-2: LCDDATA REGISTERS AND BITS FOR SEGMENT AND COM COMBINATIONS  
COM Lines  
Segments  
0
1
2
3
LCDDATA0  
S00C0:S07C0  
LCDDATA1  
LCDDATA6  
S00C1:S07C1  
LCDDATA7  
LCDDATA12  
S00C2:S07C2  
LCDDATA13  
LCDDATA18  
S00C3:S07C3  
LCDDATA19  
0 through 7  
8 through 15  
16 through 23  
24 through 31  
32 through 39  
40 through 47  
S08C0:S15C0  
LCDDATA2  
S08C1:S15C1  
LCDDATA8  
S08C2:S15C2  
LCDDATA14  
S08C0:S15C3  
LCDDATA20  
S16C0:S23C0  
LCDDATA3  
S16C1:S23C1  
LCDDATA9  
S16C2:S23C2  
LCDDATA15  
S16C3:S23C3  
LCDDATA21  
S24C0:S31C0  
LCDDATA4(1)  
S32C0:S39C0  
LCDDATA5(2)  
S40C0:S47C0  
S24C1:S31C1  
LCDDATA10(1)  
S32C1:S39C1  
LCDDATA11(2)  
S40C1:S47C1  
S24C2:S31C2  
LCDDATA16(1)  
S32C2:S39C2  
LCDDATA17(2)  
S40C2:S47C2  
S24C3:S31C3  
LCDDATA22(1)  
S32C3:S39C3  
LCDDATA23(2)  
S40C3:S47C3  
Note 1: Bits<7:1> of these registers are not implemented in PIC18F6XJ90 devices. Bit 0 of these registers  
(SEG32Cy) is always implemented.  
2: These registers are not implemented on PIC18F6XJ90 devices.  
2010 Microchip Technology Inc.  
DS39933D-page 187  
PIC18F87J90 FAMILY  
The charge pump clock can use either the Timer1  
oscillator or the INTRC source, as well as the 8 MHz  
INTOSC source (after being divided by 256 by a  
prescaler). The charge pump clock source is configured  
using the CKSEL<1:0> bits (LCDREG<1:0>).  
17.2  
LCD Clock Source  
The LCD driver module generates its internal clock  
from 3 possible sources:  
• System clock (FOSC/4)  
• Timer1 oscillator  
• INTRC source  
17.2.2  
CLOCK SOURCE  
CONSIDERATIONS  
The LCD clock generator uses  
a configurable  
When using the system clock as the LCD clock source,  
it is assumed that the system clock frequency is a nom-  
inal 32 MHz (for a FOSC/4 frequency of 8 MHz).  
Because the prescaler option for the FOSC/4 clock  
selection is fixed at divide-by-8192, system clock  
speeds that differ from 32 MHz will produce frame  
frequencies and refresh rates different than discussed  
in this chapter. The user will need to keep this in mind  
when designing the display application.  
divide-by-32/divide-by-8192 postscaler to produce a  
baseline frequency of about 1 kHz nominal, regardless  
of the source selected. The clock source selection and  
the postscaler configuration are determined by the  
Clock Source Select bits, CS<1:0> (LCDCON<3:2>).  
An additional programmable prescaler is used to derive  
the LCD frame frequency from the 1 kHz baseline. The  
prescaler is configured using the LP<3:0> bits  
(LCDPS<3:0>) for any one of 16 options, ranging from  
1:1 to 1:16.  
The Timer1 and INTRC sources can be used as LCD  
clock sources when the device is in Sleep mode. To  
use the Timer1 oscillator, it is necessary to set the  
T1OSCEN bit (T1CON<3>). Selecting either Timer1 or  
INTRC as the LCD clock source will not automatically  
activate these sources.  
Proper timing for waveform generation is set by the  
LMUX<1:0> bits (LCDCON<1:0>). These bits  
determine which Commons Multiplexing mode is to be  
used and divide down the LCD clock source as  
required. They also determine the configuration of the  
ring counter that is used to switch the LCD commons  
on or off.  
Similarly, selecting the INTOSC as the charge pump  
clock source will not turn the oscillator on. To use  
INTOSC, it must be selected as the system clock  
source by using the FOSC2 Configuration bit.  
17.2.1  
LCD VOLTAGE REGULATOR  
CLOCK SOURCE  
If Timer1 is used as a clock source for the device, either  
as an LCD clock source or for any other purpose, LCD  
segment 32 become unavailable.  
In addition to the clock source for LCD timing, a  
separate 31 kHz nominal clock is required for the LCD  
charge pump. This is provided from a distinct branch of  
the LCD clock source.  
FIGURE 17-2:  
LCD CLOCK GENERATION  
2
LCDCON<3:2>  
LCDPS<3:0>  
4
÷4  
÷2  
00  
01  
10  
11  
00  
01  
System Clock (FOSC/4)  
Timer1 Oscillator  
COM0  
1:1 to 1:16  
Programmable  
Prescaler  
÷32  
or  
÷1, 2, 3, 4  
COM1  
COM2  
COM3  
Ring Counter  
÷8192  
Internal 31 kHz Source  
1x  
2
LCDCON<1:0>  
LCDREG<1:0>  
2
11  
10  
01  
31 kHz Clock  
to LCD Charge Pump  
INTOSC 8 MHz Source  
÷256  
DS39933D-page 188  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
17.3.2  
LCD VOLTAGE REGULATOR  
17.3 LCD Bias Generation  
The purpose of the LCD regulator is to provide proper  
bias voltage and good contrast for the LCD, regardless  
of VDD levels. This module contains a charge pump and  
internal voltage reference. The regulator can be config-  
ured by using external components to boost bias  
voltage above VDD. It can also operate a display at a  
constant voltage below VDD. The regulator can also be  
selectively disabled to allow bias voltages to be  
generated by an external resistor network.  
The LCD driver module is capable of generating the  
required bias voltages for LCD operation with a mini-  
mum of external components. This includes the ability  
to generate the different voltage levels required by the  
different bias types that are required by the LCD. The  
driver module can also provide bias voltages, both  
above and below microcontroller VDD, through the use  
of an on-chip LCD voltage regulator.  
17.3.1  
LCD BIAS TYPES  
The LCD regulator is controlled through the LCDREG  
register (Register 17-5). It is enabled or disabled using  
the CKSEL<1:0> bits, while the charge pump can be  
selectively enabled using the CPEN bit. When the reg-  
ulator is enabled, the MODE13 bit is used to select the  
bias type. The peak LCD bias voltage, measured as a  
difference between the potentials of LCDBIAS3 and  
LCDBIAS0, is configured with the BIAS bits.  
PIC18F87J90 family devices support three bias types  
based on the waveforms generated to control  
segments and commons:  
• Static (two discrete levels)  
• 1/2 Bias (three discrete levels  
• 1/3 Bias (four discrete levels)  
The use of different waveforms in driving the LCD is dis-  
cussed in more detail in Section 17.8 “LCD Waveform  
Generation”.  
REGISTER 17-5: LCDREG: VOLTAGE REGULATOR CONTROL REGISTER  
U-0  
RW-0  
RW-1  
RW-1  
RW-1  
RW-1  
RW-0  
RW-0  
CPEN  
BIAS2  
BIAS1  
BIAS0  
MODE13  
CKSEL1  
CKSEL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CPEN: LCD Charge Pump Enable bit  
1= Charge pump enabled; highest LCD bias voltage is 3.6V  
0= Charge pump disabled; highest LCD bias voltage is AVDD  
bit 5-3  
BIAS<2:0>: Regulator Voltage Output Control bits  
111= 3.60V peak (offset on LCDBIAS0 of 0V)  
110= 3.47V peak (offset on LCDBIAS0 of 0.13V)  
101= 3.34V peak (offset on LCDBIAS0 of 0.26V)  
100= 3.21V peak (offset on LCDBIAS0 of 0.39V)  
011= 3.08V peak (offset on LCDBIAS0 of 0.52V)  
010= 2.95V peak (offset on LCDBIAS0 of 0.65V)  
001= 2.82V peak (offset on LCDBIAS0 of 0.78V)  
000= 2.69V peak (offset on LCDBIAS0 of 0.91V)  
bit 2  
MODE13: 1/3 LCD Bias Enable bit  
1= Regulator output supports 1/3 LCD Bias mode  
0= Regulator output supports static LCD Bias mode  
bit 1-0  
CKSEL<1:0>: Regulator Clock Source Select bits  
11= INTRC  
10= INTOSC 8 MHz source  
01= Timer1 oscillator  
00= LCD regulator disabled  
2010 Microchip Technology Inc.  
DS39933D-page 189  
PIC18F87J90 FAMILY  
M0 is enabled by selecting a valid regulator clock  
source (CKSEL<1:0> set to any value except ‘00’) and  
setting the CPEN bit. If Static Bias type is required, the  
MODE13 bit must be cleared.  
17.3.3  
BIAS CONFIGURATIONS  
PIC18F87J90 family devices have four distinct circuit  
configurations for LCD bias generation:  
• M0: Regulator with Boost  
17.3.3.2  
M1 (Regulator without Boost)  
• M1: Regulator without Boost  
• M2: Resistor Ladder with Software Contrast  
• M3: Resistor Ladder with Hardware Contrast  
M1 operation is similar to M0, but does not use the LCD  
charge pump. It can provide VBIAS up to the voltage  
level supplied directly to LCDBIAS3. It can be used in  
cases where VDD for the application is expected to  
never drop below a level that can provide adequate  
contrast for the LCD. The connection of external com-  
ponents is very similar to M0, except that LCDBIAS3  
must be tied directly to VDD (Figure 17-3).  
17.3.3.1  
M0 (Regulator with Boost)  
In M0 operation, the LCD charge pump feature is  
enabled. This allows the regulator to generate voltages  
up to +3.6V to the LCD (as measured at LCDBIAS3).  
M0 uses a flyback capacitor connected between  
VLCAP1 and VLCAP2, as well as filter capacitors on  
LCDBIAS0 through LCDBIAS3, to obtain the required  
voltage boost (Figure 17-3). The output voltage (VBIAS)  
is the difference of potential between LCDBIAS3 and  
LCDBIAS0. It is set by the BIAS<2:0> bits which adjust  
the offset between LCDBIAS0 and VSS. The flyback  
capacitor (CFLY) acts as a charge storage element for  
large LCD loads. This mode is useful in those cases  
where the voltage requirements of the LCD are higher  
than the microcontroller’s VDD. It also permits software  
control of the display’s contrast, by adjustment of bias  
voltage, by changing the value of the BIAS bits.  
Note:  
When the device is put to Sleep while oper-  
ating in mode M0 or M1, make sure that the  
bias capacitors are fully discharged to get  
the lowest Sleep current.  
The BIAS<2:0> bits can still be used to adjust contrast  
in software by changing VBIAS. As with M0, changing  
these bits changes the offset between LCDBIAS0 and  
VSS. In M1, this is reflected in the change between the  
LCDBIAS0 and the voltage tied to LCDBIAS3. Thus, if  
VDD should change, VBIAS will also change; where in  
M0, the level of VBIAS is constant.  
Like M0, M1 supports Static and 1/3 Bias types.  
Generation of the voltage levels for 1/3 Bias is handled  
automatically but must be configured in software.  
M0 supports Static and 1/3 Bias types. Generation of  
the voltage levels for 1/3 Bias is handled automatically,  
but must be configured in software.  
M1 is enabled by selecting a valid regulator clock  
source (CKSEL<1:0> set to any value except ‘00’) and  
clearing the CPEN bit. If 1/3 Bias type is required, the  
MODE13 bit should also be set.  
FIGURE 17-3:  
LCD REGULATOR CONNECTIONS FOR M0 AND M1 CONFIGURATIONS  
VDD  
VDD  
PIC18F87J90  
AVDD  
VLCAP1  
CFLY  
0.47 F  
CFLY  
0.47 F  
(1)  
(1)  
(1)  
VLCAP2  
VDD  
LCDBIAS3  
C3  
0.47 F  
LCDBIAS2  
LCDBIAS1  
LCDBIAS0  
C2  
0.47 F  
C2  
0.47 F  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
C1  
0.47 F  
C1  
0.47 F  
C0  
0.47 F  
C0  
0.47 F  
Mode 0 (VBIAS up to 3.6V)  
Mode 1 (VBIAS VDD)  
Note 1: These values are provided for design guidance only; they should be optimized for the application by the designer  
based on the actual LCD specifications.  
DS39933D-page 190  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
configuration of the resistor ladder. Most applications  
using M2 will use a 1/3 or 1/2 Bias type. While Static  
Bias can also be used, it offers extremely limited  
contrast range and additional current consumption  
over other bias generation modes.  
17.3.3.3  
M2 (Resistor Ladder with  
Software Contrast)  
M2 operation also uses the LCD regulator but disables  
the charge pump. The regulator’s internal voltage refer-  
ence remains active as a way to regulate contrast. It is  
used in cases where the current requirements of the  
LCD exceed the capacity of the regulator’s charge  
pump.  
Like M1, the LCDBIAS bits can be used to control con-  
trast, limited by the level of VDD supplied to the device.  
Also, since there is no capacitor required across  
VLCAP1 and VLCAP2, these pins are available as digital  
I/O ports, RG2 and RG3.  
In this configuration, the LCD bias voltage levels are  
created by an external resistor voltage divider,  
connected across LCDBIAS0 through LCDBIAS3, with  
the top of the divider tied to VDD (Figure 17-4). The  
potential at the bottom of the ladder is determined by  
the LCD regulator’s voltage reference, tied internally to  
LCDBIAS0. The bias type is determined by the volt-  
ages on the LCDBIAS pins, which are controlled by the  
M2 is selected by clearing the CKSEL<1:0> bits and  
setting the CPEN bit.  
FIGURE 17-4:  
RESISTOR LADDER CONNECTIONS FOR M2 CONFIGURATION  
PIC18F87J90  
VDD  
AVDD  
LCDBIAS3  
(1)  
(1)  
(1)  
(1)  
10 k  
10 k  
10 k  
10 k  
10 k  
LCDBIAS2  
LCDBIAS1  
(1)  
LCDBIAS0  
1/2 Bias  
1/3 Bias  
Bias Type  
Bias Level at Pin  
1/2 Bias  
1/3 Bias  
LCDBIAS0  
LCDBIAS1  
LCDBIAS2  
LCDBIAS3  
(Internal Low Reference Voltage)  
1/2 VBIAS  
(Internal Low Reference Voltage)  
1/3 VBIAS  
1/2 VBIAS  
2/3 VBIAS  
VBIAS (up to AVDD)  
VBIAS (up to AVDD)  
Note 1: These values are provided for design guidance only; they should be optimized for the application by the designer  
based on the actual LCD specifications.  
2010 Microchip Technology Inc.  
DS39933D-page 191  
PIC18F87J90 FAMILY  
Depending on the bias type required, resistors are  
connected between some or all of the pins. A potentio-  
meter can also be connected between LCDBIAS3 and  
VDD to allow for hardware controlled contrast  
adjustment.  
17.3.3.4  
M3 (Hardware Contrast)  
In M3, the LCD regulator is completely disabled. Like  
M2, LCD bias levels are tied to AVDD and are generated  
using an external divider. The difference is that the inter-  
nal voltage reference is also disabled and the bottom of  
the ladder is tied to ground (VSS); see Figure 17-5. The  
value of the resistors, and the difference between VSS  
and VDD, determine the contrast range; no software  
adjustment is possible. This configuration is also used  
where the LCD’s current requirements exceed the  
capacity of the charge pump and software contrast  
control is not needed.  
M3 is selected by clearing the CKSEL<1:0> and CPEN  
bits.  
FIGURE 17-5:  
RESISTOR LADDER CONNECTIONS FOR M3 CONFIGURATION  
PIC18F87J90  
VDD  
AVDD  
(2)  
LCDBIAS3  
(1)  
(1)  
(1)  
(1)  
10 k  
10 k  
10 k  
10 k  
10 k  
LCDBIAS2  
LCDBIAS1  
(1)  
LCDBIAS0  
Static Bias  
Static  
1/2 Bias  
1/3 Bias  
Bias Type  
1/2 Bias  
Bias Level at Pin  
1/3 Bias  
LCDBIAS0  
LCDBIAS1  
LCDBIAS2  
LCDBIAS3  
AVSS  
AVSS  
AVDD  
AVDD  
AVSS  
1/2 AVDD  
1/2 AVDD  
AVDD  
AVSS  
1/3 AVDD  
2/3 AVDD  
AVDD  
Note 1: These values are provided for design guidance only; they should be optimized for the application by the  
designer based on the actual LCD specifications.  
2: A potentiometer for manual contrast adjustment is optional; it may be omitted entirely.  
DS39933D-page 192  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
17.3.4  
DESIGN CONSIDERATIONS FOR  
THE LCD CHARGE PUMP  
17.4 LCD Multiplex Types  
The LCD driver module can be configured into four  
multiplex types:  
When designing applications that use the LCD regula-  
tor with the charge pump enabled, users must always  
consider both the dynamic current and RMS (static)  
current requirements of the display, and what the  
charge pump can deliver. Both dynamic and static  
current can be determined by Equation 17-1:  
• Static (only COM0 used)  
• 1/2 Multiplex (COM0 and COM1 are used)  
• 1/3 Multiplex (COM0, COM1 and COM2 are used)  
• 1/4 Multiplex (all COM0, COM1, COM2 and COM3  
are used)  
EQUATION 17-1:  
The number of active commons used is configured by  
the LMUX<1:0> bits (LCDCON<1:0>), which deter-  
mines the function of the PORTE<6:4> pins (see  
Table 17-3 for details). If the pin is configured as a COM  
drive, the port I/O function is disabled and the TRIS  
setting of that pin is overridden.  
dV  
I = C x  
dT  
For dynamic current, C is the value of the capacitors  
attached to LCDBIAS3 and LCDBIAS2. The variable,  
dV, is the voltage drop allowed on C2 and C3 during a  
voltage switch on the LCD display, and dT is the dura-  
tion of the transient current after a clock pulse occurs.  
For practical design purposes, these will be assumed  
to be 0.047 F for C, 0.1V for dV and 1 s for dT. This  
yields a dynamic current of 4.7 mA for 1 s.  
Note:  
On a Power-on Reset, the LMUX<1:0>  
bits are ‘00’.  
TABLE 17-3: PORTE<6:4> FUNCTION  
LMUX<1:0> PORTE<6> PORTE<5> PORTE<4>  
00  
01  
10  
11  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
RMS current is determined by the value of CFLY for C,  
the voltage across VLCAP1 and VLCAP2 for dV and the  
regulator clock period (TPER) for dT. Assuming a CFLY  
value of 0.047 F, a value of 1.02V across CFLY and  
TPER of 30 s, the maximum theoretical static current  
will be 1.8 mA. Since the charge pump must charge  
five capacitors, the maximum current becomes 360 A.  
For a real-world assumption of 50% efficiency, this  
yields a practical current of 180 A.  
Digital I/O COM1 Driver  
Digital I/O COM2 Driver COM1 Driver  
COM3 Driver COM2 Driver COM1 Driver  
17.5 Segment Enables  
The LCDSEx registers are used to select the pin  
function for each segment pin. Setting a bit configures  
the corresponding pin to function as a segment driver.  
LCDSEx registers do not override the TRIS bit settings,  
so the TRIS bits must be configured as inputs for that  
pin.  
Users should compare the calculated current capacity  
against the requirements of the LCD. While dV and dT  
are relatively fixed by device design, the values of CFLY  
and the capacitors on the LCDBIAS pins can be  
changed to increase or decrease current. As always,  
any changes should be evaluated in the actual circuit  
for their impact on the application.  
Note:  
On a Power-on Reset, these pins are  
configured as digital I/O.  
17.6 Pixel Control  
The LCDDATAx registers contain bits which define the  
state of each pixel. Each bit defines one unique pixel.  
Table 17-2 shows the correlation of each bit in the  
LCDDATAx registers to the respective common and  
segment signals. Any LCD pixel location not being  
used for display can be used as general purpose RAM.  
2010 Microchip Technology Inc.  
DS39933D-page 193  
PIC18F87J90 FAMILY  
17.7 LCD Frame Frequency  
17.8 LCD Waveform Generation  
The rate at which the COM and SEG outputs change is  
called the LCD frame frequency. Frame frequency is  
set by the LP<3:0> bits (LCDPS<3:0>) and is also  
affected by the Multiplex mode being used. The rela-  
tionship between the Multiplex mode, LP bits setting  
and frame rate is shown in Table 17-4 and Table 17-5.  
LCD waveform generation is based on the principle  
that the net AC voltage across the dark pixel should be  
maximized and the net AC voltage across the clear  
pixel should be minimized. The net DC voltage across  
any pixel should be zero.  
The COM signal represents the time slice for each  
common, while the SEG contains the pixel data. The  
pixel signal (COM-SEG) will have no DC component  
and it can take only one of the two rms values. The  
higher rms value will create a dark pixel and a lower  
rms value will create a clear pixel.  
TABLE 17-4: FRAME FREQUENCY  
FORMULAS  
Multiplex  
Frame Frequency (Hz)  
Mode  
As the number of commons increases, the delta  
between the two rms values decreases. The delta  
represents the maximum contrast that the display can  
have.  
Static  
1/2  
Clock Source/(4 x 1 x (LP<3:0> + 1))  
Clock Source/(2 x 2 x (LP<3:0> + 1))  
Clock Source/(1 x 3 x (LP<3:0> + 1))  
Clock Source/(1 x 4 x (LP<3:0> + 1))  
1/3  
1/4  
The LCDs can be driven by two types of waveform:  
Type-A and Type-B. In the Type-A waveform, the  
phase changes within each common type, whereas in  
the Type-B waveform, the phase changes on each  
frame boundary. Thus, the Type-A waveform maintains  
0 VDC over a single frame, whereas the Type-B  
waveform takes two frames.  
TABLE 17-5: APPROXIMATE FRAME  
FREQUENCY (IN Hz) FOR LP  
PRESCALER SETTINGS  
Multiplex Mode  
LP<3:0>  
Static  
1/2  
1/3  
1/4  
Note 1: If the power-managed Sleep mode is  
invoked while the LCD Sleep bit (SLPEN)  
is set (LCDCON<6> is ‘1’), take care to  
execute Sleep only when the VDC on all  
the pixels is ‘0’.  
1
2
3
4
5
6
7
125  
83  
62  
50  
42  
36  
31  
125  
83  
62  
50  
42  
36  
31  
167  
111  
83  
125  
83  
62  
50  
42  
36  
31  
67  
2: When the LCD clock source is the system  
clock, the LCD module will go to Sleep if  
the microcontroller goes into Sleep mode,  
regardless of the setting of the SLPEN bit.  
Thus, always take care to see that the VDC  
on all pixels is ‘0’ whenever Sleep mode is  
invoked.  
56  
48  
42  
Figure 17-6 through Figure 17-16 provide waveforms  
for static, half multiplex, one-third multiplex and quarter  
multiplex drives for Type-A and Type-B waveforms.  
DS39933D-page 194  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 17-6:  
TYPE-A/TYPE-B WAVEFORMS IN STATIC DRIVE  
V
V
1
COM0  
0
COM0  
V
1
SEG0  
V
0
V
1
SEG1  
V
0
V
V
1
COM0-SEG0  
0
-V  
1
COM0-SEG1  
V
0
1 Frame  
2010 Microchip Technology Inc.  
DS39933D-page 195  
PIC18F87J90 FAMILY  
FIGURE 17-7:  
TYPE-A WAVEFORMS IN 1/2 MUX, 1/2 BIAS DRIVE  
V
V
V
2
1
0
COM0  
COM1  
COM1  
COM0  
V
V
V
2
1
0
V
V
V
2
1
0
SEG0  
V
V
V
2
1
0
SEG1  
V
V
V
2
1
0
COM0-SEG0  
-V  
-V  
1
2
V
V
V
2
1
0
COM0-SEG1  
-V  
-V  
1
2
1 Frame  
DS39933D-page 196  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 17-8:  
TYPE-B WAVEFORMS IN 1/2 MUX, 1/2 BIAS DRIVE  
V
V
V
2
1
0
COM0  
COM1  
COM0  
V
V
V
2
1
0
COM1  
SEG0  
V
V
V
2
1
0
V
V
V
2
1
0
SEG1  
V
V
V
2
1
0
COM0-SEG0  
-V  
-V  
1
2
V
V
V
2
1
0
COM0-SEG1  
-V  
-V  
1
2
2 Frames  
2010 Microchip Technology Inc.  
DS39933D-page 197  
PIC18F87J90 FAMILY  
FIGURE 17-9:  
TYPE-A WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE  
V
V
V
V
V
V
V
V
V
V
V
V
3
2
1
0
3
2
1
0
3
2
1
0
COM0  
COM1  
COM0  
COM1  
SEG0  
SEG1  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
COM0-SEG0  
-V  
-V  
-V  
1
2
3
V
V
V
V
3
2
1
0
COM0-SEG1  
-V  
-V  
-V  
1
2
3
1 Frame  
DS39933D-page 198  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 17-10:  
TYPE-B WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
3
2
1
0
3
2
1
0
3
2
1
0
COM0  
COM1  
COM0  
COM1  
SEG0  
3
2
1
0
SEG1  
V
V
V
V
3
2
1
0
COM0-SEG0  
-V  
-V  
-V  
1
2
3
V
V
V
V
3
2
1
0
COM0-SEG1  
-V  
-V  
-V  
1
2
3
2 Frames  
2010 Microchip Technology Inc.  
DS39933D-page 199  
PIC18F87J90 FAMILY  
FIGURE 17-11:  
TYPE-A WAVEFORMS IN 1/3 MUX, 1/2 BIAS DRIVE  
V
V
V
2
1
0
COM0  
COM2  
V
V
V
2
1
0
COM1  
COM2  
COM1  
COM0  
V
V
V
2
1
0
V
V
V
2
1
0
SEG0  
SEG2  
V
V
V
2
1
0
SEG1  
V
V
V
2
1
0
COM0-SEG0  
-V  
-V  
1
2
V
V
V
2
1
0
COM0-SEG1  
-V  
-V  
1
2
1 Frame  
DS39933D-page 200  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 17-12:  
TYPE-B WAVEFORMS IN 1/3 MUX, 1/2 BIAS DRIVE  
V
V
V
2
1
0
COM0  
COM1  
COM2  
SEG0  
SEG1  
COM2  
V
V
V
2
1
0
COM1  
COM0  
V
V
V
2
1
0
V
V
V
2
1
0
V
V
V
2
1
0
V
V
V
2
1
0
COM0-SEG0  
-V  
-V  
1
2
V
V
V
2
1
0
COM0-SEG1  
-V  
-V  
1
2
2 Frames  
2010 Microchip Technology Inc.  
DS39933D-page 201  
PIC18F87J90 FAMILY  
FIGURE 17-13:  
TYPE-A WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE  
V
V
V
V
V
V
V
V
3
2
1
0
3
2
1
0
COM0  
COM1  
COM2  
COM2  
COM1  
COM0  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
SEG0  
SEG2  
SEG1  
COM0-SEG0  
-V  
-V  
-V  
1
2
3
V
V
V
V
3
2
1
0
COM0-SEG1  
-V  
-V  
-V  
1
2
3
1 Frame  
DS39933D-page 202  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 17-14:  
TYPE-B WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE  
V
V
V
V
V
V
V
V
3
2
1
0
3
2
1
0
COM0  
COM1  
COM2  
SEG0  
SEG1  
COM2  
COM1  
COM0  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
COM0-SEG0  
-V  
-V  
-V  
1
2
3
V
V
V
V
3
2
1
0
COM0-SEG1  
-V  
-V  
-V  
1
2
3
2 Frames  
2010 Microchip Technology Inc.  
DS39933D-page 203  
PIC18F87J90 FAMILY  
FIGURE 17-15:  
TYPE-A WAVEFORMS IN 1/4 MUX, 1/3 BIAS DRIVE  
COM3  
COM2  
V
V
V
V
3
2
1
0
COM0  
COM1  
V
V
V
V
3
2
1
0
COM1  
COM0  
V
V
V
V
3
2
1
0
COM2  
COM3  
SEG0  
SEG1  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG0  
COM0-SEG1  
1
2
3
V
V
V
V
-V  
-V  
-V  
3
2
1
0
1
2
3
1 Frame  
DS39933D-page 204  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 17-16:  
TYPE-B WAVEFORMS IN 1/4 MUX, 1/3 BIAS DRIVE  
COM3  
COM2  
V
V
V
V
3
2
1
0
COM0  
COM1  
V
V
V
V
3
2
1
0
COM1  
COM0  
V
V
V
V
3
2
1
0
COM2  
COM3  
SEG0  
SEG1  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG0  
COM0-SEG1  
1
2
3
V
V
V
V
-V  
-V  
-V  
3
2
1
0
1
2
3
2 Frames  
2010 Microchip Technology Inc.  
DS39933D-page 205  
PIC18F87J90 FAMILY  
When the LCD driver is running with Type-B wave-  
forms, and the LMUX<1:0> bits are not equal to ‘00’,  
there are some additional issues that must be  
addressed. Since the DC voltage on the pixel takes two  
frames to maintain zero volts, the pixel data must not  
change between subsequent frames. If the pixel data  
was allowed to change, the waveform for the odd  
frames would not necessarily be the complement of the  
waveform generated in the even frames and a DC  
component would be introduced into the panel. There-  
fore, when using Type-B waveforms, the user must  
synchronize the LCD pixel updates to occur within a  
subframe after the frame interrupt.  
17.9 LCD Interrupts  
The LCD timing generation provides an interrupt that  
defines the LCD frame timing. This interrupt can be  
used to coordinate the writing of the pixel data with the  
start of a new frame. Writing pixel data at the frame  
boundary allows a visually crisp transition of the image.  
This interrupt can also be used to synchronize external  
events to the LCD. For example, the interface to an  
external segment driver can be synchronized for a  
segment data update to the LCD frame.  
A new frame is defined to begin at the leading edge of  
the COM0 common signal. The interrupt will be set  
immediately after the LCD controller completes  
accessing all pixel data required for a frame. This will  
occur at a fixed interval before the frame boundary  
(TFINT), as shown in Figure 17-17. The LCD controller  
will begin to access data for the next frame within the  
interval from the interrupt to when the controller begins  
to access data after the interrupt (TFWR). New data  
must be written within TFWR, as this is when the LCD  
controller will begin to access the data for the next  
frame.  
To correctly sequence writing while in Type-B, the  
interrupt will only occur on complete phase intervals. If  
the user attempts to write when the write is disabled,  
the WERR (LCDCON<5>) bit is set.  
Note: The interrupt is not generated when the  
Type-A waveform is selected and when the  
Type-B with no multiplex (static) is  
selected.  
FIGURE 17-17:  
EXAMPLE WAVEFORMS AND INTERRUPT TIMING  
IN QUARTER DUTY CYCLE DRIVE  
LCD  
Interrupt  
Occurs  
Controller Accesses  
Next Frame Data  
V
V
V
V
3
2
1
0
COM0  
COM1  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
COM2  
COM3  
V
V
V
V
3
2
1
0
2 Frames  
TFINT  
TFWR  
Frame  
Frame  
Frame  
Boundary  
Boundary  
Boundary  
TFWR = TFRAME/2 * (LMUX<1:0> + 1) + TCY/2  
TFINT = (TFWR/2 – (2 TCY + 40 ns)) Minimum = 1.5(TFRAME/4) – (2 TCY + 40 ns)  
(TFWR/2 – (1 TCY + 40 ns)) Maximum = 1.5(TFRAME/4) – (1 TCY + 40 ns)  
DS39933D-page 206  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
internal oscillators (either INTRC or INTOSC as the  
default system clock). While in Sleep, the LCD data  
cannot be changed. The LCD module current  
consumption will not decrease in this mode; however,  
the overall consumption of the device will be lower due  
to shut down of the core and other peripheral functions.  
17.10 Operation During Sleep  
The LCD module can operate during Sleep. The selec-  
tion is controlled by the SLPEN bit (LCDCON<6>).  
Setting the SLPEN bit allows the LCD module to go to  
Sleep. Clearing the SLPEN bit allows the module to  
continue to operate during Sleep.  
If the system clock is selected, and the module is not  
configured for Sleep operation, the module will ignore  
the SLPEN bit and stop operation immediately. The  
minimum LCD voltage will then be driven onto the  
segments and commons  
If a SLEEPinstruction is executed and SLPEN = 1, the  
LCD module will cease all functions and go into a very  
low-current consumption mode. The module will stop  
operation immediately and drive the minimum LCD  
voltage on both segment and common lines.  
Figure 17-18 shows this operation.  
17.10.1 USING THE LCD REGULATOR  
DURING SLEEP  
To ensure that no DC component is introduced on the  
panel, the SLEEPinstruction should be executed imme-  
diately after a LCD frame boundary. The LCD interrupt  
can be used to determine the frame boundary. See  
Section 17.9 “LCD Interrupts” for the formulas to  
calculate the delay.  
Applications that use the LCD regulator for bias  
generation may not achieve the same degree of power  
reductions in Sleep mode when compared to applica-  
tions using Mode 3 (resistor ladder) biasing. This is  
particularly true with Mode 0 operation, where the  
charge pump is active.  
If a SLEEPinstruction is executed and SLPEN = 0, the  
module will continue to display the current contents of  
the LCDDATA registers. To allow the module to  
continue operation while in Sleep, the clock source  
must be either the Timer1 oscillator or one of the  
If Modes 0, 1 or 2 are used for bias generation,  
software contrast control will not be available.  
FIGURE 17-18:  
SLEEP ENTRY/EXIT WHEN SLPEN = 1OR CS<1:0> = 00  
V
V
V
V
3
2
1
0
COM0  
V
V
V
V
3
2
1
0
COM1  
V
V
V
V
3
2
1
0
COM2  
SEG0  
V
V
V
V
3
2
1
0
2 Frames  
Wake-up  
SLEEPInstruction Execution  
2010 Microchip Technology Inc.  
DS39933D-page 207  
PIC18F87J90 FAMILY  
6. Configure the LCD regulator:  
17.11 Configuring the LCD Module  
a) If M2 or M3 bias configuration is to be used,  
turn off the regulator by setting  
CKSEL<1:0> (LCDREG<1:0>) to ‘00’. Set  
or clear the CPEN bit (LCDREG<6>) to  
select Mode 2 or Mode 3, as appropriate.  
The following is the sequence of steps to configure the  
LCD module.  
1. Select the frame clock prescale using bits,  
LP<3:0> (LCDPS<3:0>).  
2. Configure the appropriate pins to function as  
segment drivers using the LCDSEx registers.  
b) If M0 or M1 bias generation is to be used:  
• Set the VBIAS level using the BIAS<2:0>  
bits (LCDREG<5:3>).  
3. Configure the appropriate pins as inputs using  
the TRISx registers.  
• Set or clear the CPEN bit to enable or  
disable the charge pump.  
4. Configure the LCD module for the following  
using the LCDCON register:  
• Set or clear the MODE13 bit  
(LCDREG<2>) to select the Bias mode.  
Multiplex and Bias mode (LMUX<1:0>)  
Timing source (CS<1:0>)  
• Select a regulator clock source using the  
CKSEL<1:0> bits.  
Sleep mode (SLPEN)  
7. Clear LCD Interrupt Flag, LCDIF (PIR3<6>),  
and if desired, enable the interrupt by setting the  
LCDIE bit (PIE3<6>).  
5. Write initial values to pixel data registers,  
LCDDATA0 through LCDDATA23.  
8. Enable the LCD module by setting the LCDEN  
bit (LCDCON<7>).  
DS39933D-page 208  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 17-6: REGISTERS ASSOCIATED WITH LCD OPERATION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IF  
TX2IE  
TX2IP  
RI  
RBIE  
TMR0IF  
INT0IF  
RBIF  
59  
62  
62  
62  
60  
63  
63  
63  
63  
63  
63  
63  
63  
63  
63  
63  
63  
63  
63  
63  
63  
63  
63  
63  
61  
61  
61  
61  
61  
61  
61  
61  
61  
61  
61  
61  
61  
60  
PIR3  
PIE3  
LCDIF  
LCDIE  
LCDIP  
RC2IF  
RC2IE  
RC2IP  
CM  
CTMUIF CCP2IF  
CTMUIE CCP2IE  
CTMUIP CCP2IP  
CCP1IF  
RTCCIF  
CCP1IE RTCCIE  
CCP1IP RTCCIP  
IPR3  
RCON  
LCDDATA23(1) S47C3  
IPEN  
TO  
PD  
POR  
BOR  
S40C3  
S32C3  
S24C3  
S16C3  
S08C3  
S00C3  
S40C2  
S32C2  
S24C2  
S16C2  
S08C2  
S00C2  
S40C1  
S32C1  
S24C1  
S16C1  
S08C1  
S00C1  
S40C0  
S32C0  
S24C0  
S16C0  
S08C0  
S00C0  
SE40  
S46C3  
S45C3  
S44C3  
S43C3  
S42C3  
S41C3  
LCDDATA22  
LCDDATA21  
LCDDATA20  
LCDDATA19  
LCDDATA18  
S39C3(1) S38C3(1) S37C3(1) S36C3(1) S35C3(1) S34C3(1) S33C3(1)  
S31C3  
S23C3  
S15C3  
S07C3  
S30C3  
S22C3  
S14C3  
S06C3  
S46C2  
S29C3  
S21C3  
S13C3  
S05C3  
S45C2  
S28C3  
S20C3  
S12C3  
S04C3  
S44C2  
S27C3  
S19C3  
S11C3  
S03C3  
S43C2  
S26C3  
S18C3  
S10C3  
S02C3  
S42C2  
S25C3  
S17C3  
S09C3  
S01C3  
S41C2  
LCDDATA17(1) S47C2  
LCDDATA16  
LCDDATA15  
LCDDATA14  
LCDDATA13  
LCDDATA12  
S39C2(1) S38C2(1) S37C2(1) S36C2(1) S35C2(1) S34C2(1) S33C2(1)  
S31C2  
S23C2  
S15C2  
S07C2  
S30C2  
S22C2  
S14C2  
S06C2  
S46C1  
S29C2  
S21C2  
S13C2  
S05C2  
S45C1  
S28C2  
S20C2  
S12C2  
S04C2  
S44C1  
S27C2  
S19C2  
S11C2  
S03C2  
S43C1  
S26C2  
S18C2  
S10C2  
S02C2  
S42C1  
S25C2  
S17C2  
S09C2  
S01C2  
S41C1  
LCDDATA11(1) S47C1  
LCDDATA10  
LCDDATA9  
LCDDATA8  
LCDDATA7  
LCDDATA6  
LCDDATA5(1)  
LCDDATA4  
LCDDATA3  
LCDDATA2  
LCDDATA1  
LCDDATA0  
LCDSE5(1)  
LCDSE4  
S39C1(1) S38C1(1) S37C1(1) S36C1(1) S35C1(1) S34C1(1) S33C1(1)  
S31C1  
S23C1  
S15C1  
S07C1  
S47C0  
S30C1  
S22C1  
S14C1  
S06C1  
S46C0  
S29C1  
S21C1  
S13C1  
S05C1  
S45C0  
S28C1  
S20C1  
S12C1  
S04C1  
S44C0  
S27C1  
S19C1  
S11C1  
S03C1  
S43C0  
S26C1  
S18C1  
S10C1  
S02C1  
S42C0  
S25C1  
S17C1  
S09C1  
S01C1  
S41C0  
S39C0(1) S38C0(1) S37C0(1) S36C0(1) S35C0(1) S34C0(1) S33C0(1)  
S31C0  
S23C0  
S15C0  
S07C0  
SE47  
SE39(1)  
SE31  
SE23  
SE15  
SE07  
LCDEN  
WFT  
S30C0  
S22C0  
S14C0  
S06C0  
SE46  
S29C0  
S21C0  
S13C0  
S05C0  
SE45  
S28C0  
S20C0  
S12C0  
S04C0  
SE44  
SE36(1)  
SE28  
SE20  
SE12  
SE04  
S27C0  
S19C0  
S11C0  
S03C0  
SE43  
SE35(1)  
SE27  
SE19  
SE11  
S26C0  
S18C0  
S10C0  
S02C0  
SE42  
SE34(1)  
SE26  
SE18  
SE10  
SE02  
CS0  
S25C0  
S17C0  
S09C0  
S01C0  
SE41  
SE38(1)  
SE37(1)  
SE33(1)  
SE32  
LCDSE3  
SE30  
SE29  
SE25  
SE24  
LCDSE2  
SE22  
SE21  
SE17  
SE16  
LCDSE1  
SE14  
SE13  
SE09  
SE08  
LCDSE0  
SE06  
SE05  
SE03  
CS1  
SE01  
SE00  
LCDCON  
LCDPS  
SLPEN  
BIASMD  
CPEN  
WERR  
LCDA  
BIAS2  
LMUX1  
LP1  
LMUX0  
LP0  
WA  
LP3  
LP2  
LCDREG  
BIAS1  
BIAS0  
MODE13 CKSEL1 CKSEL0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for LCD operation.  
Note 1: These registers or individual bits are unimplemented on PIC18F6XJ90 devices.  
2010 Microchip Technology Inc.  
DS39933D-page 209  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 210  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
18.3 SPI Mode  
18.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four  
modes of SPI are supported. To accomplish  
communication, typically three pins are used:  
18.1 Master SSP (MSSP) Module  
Overview  
• Serial Data Out (SDO) – RC5/SDO/SEG12  
• Serial Data In (SDI) – RC4/SDI/SDA/SEG16  
• Serial Clock (SCK) – RC3/SCK/SCL/SEG17  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface, useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers,  
display drivers, A/D Converters, etc. The MSSP  
module can operate in one of two modes:  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
• Slave Select (SS) – RF7/AN5/SS/SEG25  
Figure 18-1 shows the block diagram of the MSSP  
module when operating in SPI mode.  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C™)  
- Full Master mode  
FIGURE 18-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
Internal  
Data Bus  
• Master mode  
• Multi-Master mode  
• Slave mode  
Read  
Write  
SSPBUF reg  
18.2 Control Registers  
SDI  
Each MSSP module has three associated control  
registers. These include a status register (SSPSTAT)  
and two control registers (SSPCON1 and SSPCON2).  
The use of these registers and their individual bits differ  
significantly depending on whether the MSSP module  
is operated in SPI or I2C mode.  
SSPSR reg  
Shift  
Clock  
bit 0  
SDO  
Additional details are provided under the individual  
sections.  
SS  
Control  
Enable  
SS  
Edge  
Select  
2
Clock Select  
SSPM<3:0>  
SMP:CKE  
4
TMR2 Output  
(
)
2
2
SCK  
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Data to TXx/RXx in SSPSR  
TRIS bit  
2010 Microchip Technology Inc.  
DS39933D-page 211  
PIC18F87J90 FAMILY  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
18.3.1  
REGISTERS  
Each MSSP module has four registers for SPI mode  
operation. These are:  
In receive operations, SSPSR and SSPBUF together,  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer Register (SSPBUF)  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
During  
transmission,  
the  
SSPBUF  
is  
not  
double-buffered. A write to SSPBUF will write to both,  
SSPBUF and SSPSR.  
SSPCON1 and SSPSTAT are the control and status  
registers in SPI mode operation. The SSPCON1  
register is readable and writable. The lower 6 bits of  
the SSPSTAT are read-only. The upper two bits of the  
SSPSTAT are read/write.  
REGISTER 18-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)  
R/W-0  
SMP  
R/W-0  
CKE(1)  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at the end of data output time  
0= Input data sampled at the middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode.  
bit 6  
CKE: SPI Clock Select bit(1)  
1= Transmit occurs on transition from active to Idle clock state  
0= Transmit occurs on transition from Idle to active clock state  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D/A: Data/Address bit  
Used in I2C™ mode only.  
P: Stop bit  
Used in I2C mode only. This bit is cleared when the MSSP module is disabled; SSPEN is cleared.  
S: Start bit  
Used in I2C mode only.  
R/W: Read/Write Information bit  
Used in I2C mode only.  
UA: Update Address bit  
Used in I2C mode only.  
BF: Buffer Full Status bit (Receive mode only)  
1= Receive complete; SSPBUF is full  
0= Receive not complete; SSPBUF is empty  
Note 1: Polarity of the clock state is set by the CKP bit (SSPCON1<4>).  
DS39933D-page 212  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 18-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)  
R/W-0  
WCOL  
R/W-0  
SSPOV(1)  
R/W-0  
SSPEN(2)  
R/W-0  
CKP  
R/W-0  
SSPM3(3)  
R/W-0  
SSPM2(3)  
R/W-0  
SSPM1(3)  
R/W-0  
SSPM0(3)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WCOL: Write Collision Detect bit (Transmit mode only)  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in  
software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit(1)  
SPI Slave mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case of over-  
flow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the  
SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software).  
0= No overflow  
bit 5  
SSPEN: Master Synchronous Serial Port Enable bit(2)  
1= Enables serial port and configures SCK, SDO, SDI and SS as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
bit 3-0  
SSPM<3:0>: Master Synchronous Serial Port Mode Select bits(3)  
0101= SPI Slave mode; clock = SCK pin, SS pin control disabled, SS can be used as I/O pin  
0100= SPI Slave mode; clock = SCK pin, SS pin control enabled  
0011= SPI Master mode; clock = TMR2 output/2  
0010= SPI Master mode; clock = FOSC/64  
0001= SPI Master mode; clock = FOSC/16  
0000= SPI Master mode; clock = FOSC/4  
Note 1: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by  
writing to the SSPBUF register.  
2: When enabled, these pins must be properly configured as inputs or outputs.  
3: Bit combinations not specifically listed here are either reserved or implemented in I2C™ mode only.  
2010 Microchip Technology Inc.  
DS39933D-page 213  
PIC18F87J90 FAMILY  
reading the data that was just received. Any write to the  
SSPBUF register during transmission/reception of data  
will be ignored and the Write Collision detect bit, WCOL  
(SSPCON1<7>), will be set. User software must clear  
the WCOL bit so that it can be determined if the following  
write(s) to the SSPBUF register completed successfully.  
18.3.2  
OPERATION  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON1<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. The  
Buffer Full bit, BF (SSPSTAT<0>), indicates when  
SSPBUF has been loaded with the received data (trans-  
mission is complete). When the SSPBUF is read, the BF  
bit is cleared. This data may be irrelevant if the SPI is  
only a transmitter. Generally, the MSSP interrupt is used  
to determine when the transmission/reception has com-  
pleted. The SSPBUF must be read and/or written. If the  
interrupt method is not going to be used, then software  
polling can be done to ensure that a write collision does  
not occur. Example 18-1 shows the loading of the  
SSPBUF (SSPSR) for data transmission.  
• Data Input Sample Phase (middle or end of data  
output time)  
• Clock Edge (output data on rising/falling edge of  
SCK)  
• Clock Rate (Master mode only)  
• Slave Select mode (Slave mode only)  
Each MSSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR  
until the received data is ready. Once the 8 bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then, the Buffer Full detect bit, BF  
(SSPSTAT<0>), and the interrupt flag bit, SSPIF, are  
set. This double-buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
The SSPSR is not directly readable or writable and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the SSPSTAT register indicates the  
various status conditions.  
EXAMPLE 18-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP  
BTFSS  
BRA  
SSPSTAT, BF  
LOOP  
;Has data been received (transmit complete)?  
;No  
MOVF  
MOVWF  
MOVF  
MOVWF  
SSPBUF, W  
RXDATA  
TXDATA, W  
SSPBUF  
;WREG reg = contents of SSPBUF  
;Save in user RAM, if data is meaningful  
;W reg = contents of TXDATA  
;New data to xmit  
DS39933D-page 214  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
to a higher level through an external pull-up resistor,  
and allows the output to communicate with external  
circuits without the need for additional level shifters.  
18.3.3  
ENABLING SPI I/O  
To enable the serial port, the MSSP Enable bit, SSPEN  
(SSPCON1<5>), must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, reinitialize the  
SSPCON registers and then set the SSPEN bit. This  
configures the SDI, SDO, SCK and SS pins as serial  
port pins. For the pins to behave as the serial port func-  
tion, some must have their data direction bits (in the  
TRIS register) appropriately programmed as follows:  
The open-drain output option is controlled by the  
SPIOD bit (TRISG<7>). Setting this bit configures both  
pins for open-drain operation.  
18.3.5  
TYPICAL CONNECTION  
Figure 18-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge and latched on the opposite edge  
of the clock. Both processors should be programmed to  
the same Clock Polarity (CKP), then both controllers  
would send and receive data at the same time.  
Whether the data is meaningful (or dummy data)  
depends on the application software. This leads to  
three scenarios for data transmission:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<5> bit cleared  
• SCK (Master mode) must have TRISC<3> bit  
cleared  
• SCK (Slave mode) must have TRISC<3> bit set  
• SS must have TRISF<7> bit set  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
• Master sends dataSlave sends dummy data  
• Master sends dataSlave sends data  
• Master sends dummy dataSlave sends data  
18.3.4  
OPEN-DRAIN OUTPUT OPTION  
The drivers for the SDO output and SCK clock pins can  
be optionally configured as open-drain outputs. This  
feature allows the voltage level on the pin to be pulled  
FIGURE 18-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM<3:0> = 00xx  
SPI Slave SSPM<3:0> = 010x  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
2010 Microchip Technology Inc.  
DS39933D-page 215  
PIC18F87J90 FAMILY  
The clock polarity is selected by appropriately  
programming the CKP bit (SSPCON1<4>). This, then,  
would give waveforms for SPI communication, as  
shown in Figure 18-3, Figure 18-5 and Figure 18-6,  
where the MSB is transmitted first. In Master mode, the  
SPI clock rate (bit rate) is user-programmable to be one  
of the following:  
18.3.6  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 18-2) will  
broadcast data by the software protocol.  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be dis-  
abled (programmed as an input). The SSPSR register  
will continue to shift in the signal present on the SDI pin  
at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if it was a normal received byte (interrupts and status  
bits appropriately set). This could be useful in receiver  
applications as a “Line Activity Monitor” mode.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
This allows a maximum data rate (at 40 MHz) of  
10.00 Mbps.  
Figure 18-3 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
FIGURE 18-3:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
SDO  
(CKE = 0)  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 Cycle  
after Q2  
SSPSR to  
SSPBUF  
DS39933D-page 216  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
pin is driven. When the SS pin goes high, the SDO pin  
is no longer driven, even if in the middle of a transmitted  
18.3.7  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
byte, and becomes  
a floating output. External  
pull-up/pull-down resistors may be desirable  
depending on the application.  
Before enabling the module in SPI Slave mode, the  
clock line must match the proper Idle state. The clock  
line can be observed by reading the SCK pin. The Idle  
state is determined by the CKP bit (SSPCON1<4>).  
Note 1: When the SPI is in Slave mode with  
the SS  
(SSPCON1<3:0> = 0100),  
pin  
control  
enabled  
the SPI  
module will reset if the SS pin is set to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
2: If the SPI is used in Slave mode with CKE  
set, then the SS pin control must be  
enabled.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SS pin to  
a high level or clearing the SSPEN bit.  
While in Sleep mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from Sleep.  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
18.3.8  
SLAVE SELECT  
SYNCHRONIZATION  
The SS pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SS pin control enabled  
(SSPCON1<3:0> = 04h). When the SS pin is low,  
transmission and reception are enabled and the SDO  
FIGURE 18-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 7  
bit 7  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2  
SSPSR to  
SSPBUF  
2010 Microchip Technology Inc.  
DS39933D-page 217  
PIC18F87J90 FAMILY  
FIGURE 18-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 3  
bit 1  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2  
SSPSR to  
SSPBUF  
FIGURE 18-6:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 6  
bit 3  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 7  
SDI  
(SMP = 0)  
bit 0  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2  
SSPSR to  
SSPBUF  
DS39933D-page 218  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
mode and data to be shifted into the SPI  
Transmit/Receive Shift register. When all 8 bits have  
been received, the MSSP interrupt flag bit will be set,  
and if enabled, will wake the device.  
18.3.9  
OPERATION IN POWER-MANAGED  
MODES  
In SPI Master mode, module clocks may be operating  
at a different speed than when in Full-Power mode; in  
the case of Sleep mode, all clocks are halted.  
18.3.10 EFFECTS OF A RESET  
In Idle modes, a clock is provided to the peripherals.  
That clock should be from the primary clock source, the  
secondary clock (Timer1 oscillator at 32.768 kHz) or  
the INTRC source. See Section 3.3 “Clock Sources  
and Oscillator Switching” for additional information.  
A Reset disables the MSSP module and terminates the  
current transfer.  
18.3.11 BUS MODE COMPATIBILITY  
Table 18-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
In most cases, the speed that the master clocks SPI  
data is not important; however, this should be  
evaluated for each system.  
TABLE 18-1: SPI BUS MODES  
If MSSP interrupts are enabled, they can wake the con-  
troller from Sleep mode, or one of the Idle modes, when  
the master completes sending data. If an exit from  
Sleep or Idle mode is not desired, MSSP interrupts  
should be disabled.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
If the Sleep mode is selected, all module clocks are  
halted and the transmission/reception will remain in  
that state until the device wakes. After the device  
returns to Run mode, the module will resume  
transmitting and receiving data.  
There is also an SMP bit which controls when the data  
is sampled.  
In SPI Slave mode, the SPI Transmit/Receive Shift  
register operates asynchronously to the device. This  
allows the device to be placed in any power-managed  
TABLE 18-2: REGISTERS ASSOCIATED WITH SPI OPERATION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
RBIE  
SSPIF  
TMR0IF  
INT0IF  
RBIF  
59  
62  
62  
62  
62  
62  
62  
60  
60  
60  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
TRISC5  
TRISF5  
TMR2IF  
TMR1IF  
PIE1  
TX1IE  
SSPIE  
SSPIP  
TRISC3  
TRISF3  
TRISG3  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
IPR1  
ADIP  
TX1IP  
TRISC  
TRISF  
TRISC7  
TRISF7  
SPIOD  
TRISC6  
TRISF6  
TRISC4  
TRISF4  
TRISC2  
TRISF2  
TRISG2  
TRISC1  
TRISF1  
TRISG1  
TRISC0  
TRISG  
SSPBUF  
SSPCON1  
SSPSTAT  
CCP2OD CCP1OD TRISG4  
TRISG0  
MSSP Receive Buffer/Transmit Register  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
SSPM0  
BF  
Legend: Shaded cells are not used by the MSSP module in SPI mode.  
2010 Microchip Technology Inc.  
DS39933D-page 219  
PIC18F87J90 FAMILY  
2
18.4.1  
REGISTERS  
18.4 I C Mode  
The MSSP module has six registers for I2C operation.  
These are:  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call  
support), and provides interrupts on Start and Stop bits  
in hardware to determine a free bus (multi-master  
function). The MSSP module implements the standard  
mode specifications as well as 7-bit and 10-bit  
addressing.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Control Register 2 (SSPCON2)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer Register  
(SSPBUF)  
Two pins are used for data transfer:  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
• Serial clock (SCL) – RC3/SCK/SCL  
• Serial data (SDA) – RC4/SDI/SDA  
• MSSP Address Register (SSPADD)  
The user must configure these pins as inputs by setting  
the TRISC<4:3> bits.  
SSPCON1, SSPCON2 and SSPSTAT are the control  
and status registers in I2C mode operation. The  
SSPCON1 and SSPCON2 registers are readable and  
writable. The lower 6 bits of the SSPSTAT are  
read-only. The upper two bits of the SSPSTAT are  
read/write.  
FIGURE 18-7:  
MSSP BLOCK DIAGRAM  
(I2C™ MODE)  
Internal  
Many of the bits in SSPCON2 assume different  
functions, depending on whether the module is operat-  
ing in Master or Slave mode. The SSPCON2<5:2> bits  
also assume different names in Slave mode. The differ-  
ent aspects of SSPCON2 are shown in Register 18-5  
(for Master mode) and Register 18-6 (Slave mode).  
Data Bus  
Read  
Write  
SSPBUF reg  
SCL  
SDA  
Shift  
Clock  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
SSPSR reg  
LSb  
MSb  
The SSPADD register holds the slave device address  
when the MSSP is configured in I2C Slave mode. When  
the MSSP is configured in Master mode, the lower  
seven bits of SSPADD act as the Baud Rate Generator  
reload value.  
Match Detect  
Addr Match  
Address Mask  
In receive operations, SSPSR and SSPBUF together,  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
SSPADD reg  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
Start and  
Stop bit Detect  
During  
transmission,  
the  
SSPBUF  
is  
not  
double-buffered. A write to SSPBUF will write to both  
SSPBUF and SSPSR.  
DS39933D-page 220  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 18-3: SSPSTAT: MSSP STATUS REGISTER (I2C™ MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P(1)  
R-0  
S(1)  
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
SMP: Slew Rate Control bit  
In Master or Slave mode:  
1= Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz)  
0= Slew rate control enabled for High-Speed mode (400 kHz)  
bit 6  
bit 5  
CKE: SMBus Select bit  
In Master or Slave mode:  
1= Enable SMBus specific inputs  
0= Disable SMBus specific inputs  
D/A: Data/Address bit  
In Master mode:  
Reserved.  
In Slave mode:  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
bit 2  
P: Stop bit(1)  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
S: Start bit(1)  
1= Indicates that a Start bit has been detected last  
0= Start bit was not detected last  
R/W: Read/Write Information bit (I2C™ mode only)  
In Slave mode:(2)  
1= Read  
0= Write  
In Master mode:(3)  
1= Transmit is in progress  
0= Transmit is not in progress  
bit 1  
bit 0  
UA: Update Address bit (10-Bit Slave mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
In Transmit mode:  
1= SSPBUF is full  
0= SSPBUF is empty  
In Receive mode:  
1= SSPBUF is full (does not include the ACK and Stop bits)  
0= SSPBUF is empty (does not include the ACK and Stop bits)  
Note 1: This bit is cleared on Reset and when SSPEN is cleared.  
2: This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next Start bit, Stop bit or not ACK bit.  
3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Active mode.  
2010 Microchip Technology Inc.  
DS39933D-page 221  
PIC18F87J90 FAMILY  
REGISTER 18-4: SSPCON1: MSSP CONTROL REGISTER 1 (I2C™ MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
SSPEN(1)  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
WCOL: Write Collision Detect bit  
In Master Transmit mode:  
1= A write to the SSPBUF register was attempted while the I2C™ conditions were not valid for a  
transmission to be started (must be cleared in software)  
0= No collision  
In Slave Transmit mode:  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in  
software)  
0= No collision  
In Receive mode (Master or Slave modes):  
This is a “don’t care” bit.  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In Receive mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte (must be cleared in  
software)  
0= No overflow  
In Transmit mode:  
This is a “don’t care” bit in Transmit mode.  
bit 5  
bit 4  
SSPEN: Master Synchronous Serial Port Enable bit(1)  
1= Enables the serial port and configures the SDA and SCL pins as the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
CKP: SCK Release Control bit  
In Slave mode:  
1= Release clock  
0= Holds clock low (clock stretch), used to ensure data setup time  
In Master mode:  
Unused in this mode.  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1011= I2C Firmware Controlled Master mode (slave Idle)  
1000= I2C Master mode, clock = FOSC/(4 * (SSPADD + 1))  
0111= I2C Slave mode, 10-bit address  
0110= I2C Slave mode, 7-bit address  
Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.  
Note 1: When enabled, the SDA and SCL pins must be configured as inputs.  
DS39933D-page 222  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 18-5: SSPCON2: MSSP CONTROL REGISTER 2 (I2C™ MASTER MODE)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
ACKDT(1)  
R/W-0  
ACKEN(2)  
R/W-0  
RCEN(2)  
R/W-0  
PEN(2)  
R/W-0  
RSEN(2)  
R/W-0  
SEN(2)  
ACKSTAT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
GCEN: General Call Enable bit  
Unused in Master mode.  
ACKSTAT: Acknowledge Status bit (Master Transmit mode only)  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (Master Receive mode only)(1)  
1= Not Acknowledge  
0= Acknowledge  
ACKEN: Acknowledge Sequence Enable bit(2)  
1= Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit; automatically  
cleared by hardware  
0= Acknowledge sequence Idle  
bit 3  
bit 2  
bit 1  
bit 0  
RCEN: Receive Enable bit (Master Receive mode only)(2)  
1= Enables Receive mode for I2C™  
0= Receive Idle  
PEN: Stop Condition Enable bit(2)  
1= Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Stop condition Idle  
RSEN: Repeated Start Condition Enable bit(2)  
1= Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Repeated Start condition Idle  
SEN: Start Condition Enable bit(2)  
1= Initiate Start condition on SDA and SCL pins; automatically cleared by hardware  
0= Start condition Idle  
Note 1: Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.  
2: If the I2C module is active, these bits may not be set (no spooling) and the SSPBUF may not be written to  
(or writes to the SSPBUF are disabled).  
2010 Microchip Technology Inc.  
DS39933D-page 223  
PIC18F87J90 FAMILY  
REGISTER 18-6: SSPCON2: MSSP CONTROL REGISTER 2 (I2C™ SLAVE MODE)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SEN(1)  
ACKSTAT  
ADMSK5  
ADMSK4  
ADMSK3  
ADMSK2  
ADMSK1  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
GCEN: General Call Enable bit  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
bit 6  
ACKSTAT: Acknowledge Status bit  
Unused in Slave mode.  
bit 5-2  
ADMSK<5:2>: Slave Address Mask Select bits  
1= Masking of corresponding bits of SSPADD is enabled  
0= Masking of corresponding bits of SSPADD is disabled  
bit 1  
ADMSK1: Slave Address Least Significant bit(s) Mask Select bit  
In 7-Bit Addressing mode:  
1= Masking of SSPADD<1> only is enabled  
0= Masking of SSPADD<1> only is disabled  
In 10-Bit Addressing mode:  
1= Masking of SSPADD<1:0> is enabled  
0= Masking of SSPADD<1:0> is disabled  
bit 0  
SEN: Stretch Enable bit(1)  
1= Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)  
0= Clock stretching is disabled  
Note 1: If the I2C™ module is active, this bit may not be set (no spooling) and the SSPBUF may not be written (or  
writes to the SSPBUF are disabled).  
DS39933D-page 224  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, are shown in timing parameter 100 and  
parameter 101.  
18.4.2  
OPERATION  
The MSSP module functions are enabled by setting the  
MSSP Enable bit, SSPEN (SSPCON1<5>).  
The SSPCON1 register allows control of the I2C  
operation. Four mode selection bits (SSPCON1<3:0>)  
allow one of the following I2C modes to be selected:  
18.4.3.1  
Addressing  
• I2C Master mode,  
clock = (FOSC/4) x (SSPADD + 1)  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
• I2C Slave mode (7-bit address) with Start and  
Stop bit interrupts enabled  
• I2C Slave mode (10-bit address) with Start and  
Stop bit interrupts enabled  
• I2C Firmware Controlled Master mode,  
slave is Idle  
Selection of any I2C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open-drain,  
provided these pins are programmed to inputs by  
setting the appropriate TRISC or TRISD bits. To ensure  
proper operation of the module, pull-up resistors must  
be provided externally to the SCL and SDA pins.  
Once the MSSP module has been enabled, it waits for a  
Start condition to occur. Following the Start condition, the  
8 bits are shifted into the SSPSR register. All incoming  
bits are sampled with the rising edge of the clock (SCL)  
line. The value of register, SSPSR<7:1>, is compared to  
the value of the SSPADD register. The address is com-  
pared on the falling edge of the eighth clock (SCL) pulse.  
If the addresses match, and the BF and SSPOV bits are  
clear, the following events occur:  
1. The SSPSR register value is loaded into the  
SSPBUF register.  
2. The Buffer Full bit, BF, is set.  
3. An ACK pulse is generated.  
4. The MSSP Interrupt Flag bit, SSPIF, is set (and  
an interrupt is generated, if enabled) on the  
falling edge of the ninth SCL pulse.  
In 10-Bit Addressing mode, two address bytes need to  
be received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. The R/W (SSPSTAT<2>) bit must specify a  
write so the slave device will receive the second  
address byte. For a 10-bit address, the first byte would  
equal ‘11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the  
two MSbs of the address. The sequence of events for  
10-bit addressing is as follows, with steps 7 through 9  
for the slave-transmitter:  
18.4.3  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be  
configured as inputs (TRISC<4:3> set). The MSSP  
module will override the input state with the output data  
when required (slave-transmitter).  
The I2C Slave mode hardware will always generate an  
interrupt on an exact address match. In addition,  
address masking will also allow the hardware to gener-  
ate an interrupt for more than one address (up to 31 in  
7-bit addressing and up to 63 in 10-bit addressing).  
Through the mode select bits, the user can also choose  
to interrupt on Start and Stop bits.  
1. Receive first (high) byte of address (bits, SSPIF,  
BF and UA (SSPSTAT<1>), are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit, UA, and releases the  
SCL line).  
When an address is matched, or the data transfer after  
an address match is received, the hardware auto-  
matically will generate the Acknowledge (ACK) pulse  
and load the SSPBUF register with the received value  
currently in the SSPSR register.  
3. Read the SSPBUF register (clears bit, BF) and  
clear flag bit, SSPIF.  
4. Receive second (low) byte of address (SSPIF,  
BF and UA bits are set).  
Any combination of the following conditions will cause  
the MSSP module not to give this ACK pulse:  
5. Update the SSPADD register with the first (high)  
byte of address. If match releases SCL line, this  
will clear the UA bit.  
• The Buffer Full bit, BF (SSPSTAT<0>), was set  
before the transfer was received.  
6. Read the SSPBUF register (clears bit, BF) and  
clear flag bit, SSPIF.  
• The overflow bit, SSPOV (SSPCON1<6>), was  
set before the transfer was received.  
7. Receive Repeated Start condition.  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit, SSPIF, is set. The BF bit is  
cleared by reading the SSPBUF register, while bit,  
SSPOV, is cleared through software.  
8. Receive first (high) byte of address (SSPIF and  
BF bits are set).  
9. Read the SSPBUF register (clears BF bit) and  
clear flag bit, SSPIF.  
2010 Microchip Technology Inc.  
DS39933D-page 225  
PIC18F87J90 FAMILY  
In 10-Bit Addressing mode, the ADMSK<5:2> bits  
mask the corresponding address bits in the SSPADD  
register. In addition, ADMSK1 simultaneously masks  
the two LSbs of the address (SSPADD<1:0>). For any  
ADMSK bits that are active (ADMSK<n> = 1), the cor-  
responding address bit is ignored (SSPADD<n> = x).  
Also note, that although in 10-Bit Addressing mode, the  
upper address bits reuse part of the SSPADD register  
bits. The address mask bits do not interact with those  
bits. They only affect the lower address bits.  
18.4.3.2  
Address Masking  
Masking an address bit causes that bit to become a  
“don’t care”. When one address bit is masked, two  
addresses will be Acknowledged and cause an  
interrupt. It is possible to mask more than one address  
bit at a time, which makes it possible to Acknowledge  
up to 31 addresses in 7-bit mode and up to  
63 addresses in 10-bit mode (see Example 18-2).  
The I2C slave behaves the same way, whether address  
masking is used or not. However, when address  
masking is used, the I2C slave can Acknowledge  
multiple addresses and cause interrupts. When this  
occurs, it is necessary to determine which address  
caused the interrupt by checking SSPBUF.  
Note 1: ADMSK1 masks the two Least Significant  
bits of the address.  
2: The two Most Significant bits of the  
address are not affected by address  
masking.  
In 7-Bit Addressing mode, address mask bits,  
ADMSK<5:1> (SSPCON<5:1>), mask the correspond-  
ing address bits in the SSPADD register. For any ADMSK  
bits that are set (ADMSK<n> = 1), the corresponding  
address bit is ignored (SSPADD<n> = x). For the module  
to issue an address Acknowledge, it is sufficient to match  
only on addresses that do not have an active address  
mask.  
EXAMPLE 18-2:  
7-Bit Addressing:  
ADDRESS MASKING EXAMPLES  
SSPADD<7:1> = A0h (1010000) (SSPADD<0> is assumed to be ‘0’)  
ADMSK<5:1> = 00111  
Addresses Acknowledged: A0h, A2h, A4h, A6h, A8h, AAh, ACh, AEh  
10-Bit Addressing:  
SSPADD<7:0> = A0h (10100000) (the two MSbs of the address are ignored in this example, since they are  
not affected by masking)  
ADMSK<5:1> = 00111  
Addresses Acknowledged: A0h, A1h, A2h, A3h, A4h, A5h, A6h, A7h, A8h, A9h, AAh, ABh, ACh, ADh, AEh, AFh  
DS39933D-page 226  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
18.4.3.3  
Reception  
18.4.3.4  
Transmission  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register and the SDA line is held low  
(ACK).  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin, RC3, is held low,  
regardless of SEN (see Section 18.4.4 “Clock  
Stretching” for more details). By stretching the clock,  
the master will be unable to assert another clock pulse  
until the slave is done preparing the transmit data. The  
transmit data must be loaded into the SSPBUF register  
which also loads the SSPSR register. Then, pin, RC3,  
should be enabled by setting bit, CKP (SSPCON1<4>).  
The eight data bits are shifted out on the falling edge of  
the SCL input. This ensures that the SDA signal is valid  
during the SCL high time (Figure 18-10).  
When the address byte overflow condition exists, then  
the no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit, BF (SSPSTAT<0>), is  
set or bit, SSPOV (SSPCON1<6>), is set.  
An MSSP interrupt is generated for each data transfer  
byte. The interrupt flag bit, SSPIF, must be cleared in  
software. The SSPSTAT register is used to determine  
the status of the byte.  
If SEN is enabled (SSPCON2<0> = 1), SCK/SCL will  
be held low (clock stretch) following each data  
transfer. The clock must be released by setting bit,  
CKP (SSPCON1<4>). See Section 18.4.4 “Clock  
Stretching” for more details.  
The ACK pulse from the master-receiver is latched on  
the rising edge of the ninth SCL input pulse. If the SDA  
line is high (not ACK), then the data transfer is  
complete. In this case, when the ACK is latched by the  
slave, the slave logic is reset and the slave monitors for  
another occurrence of the Start bit. If the SDA line was  
low (ACK), the next transmit data must be loaded into  
the SSPBUF register. Again, pin, RC3, must be  
enabled by setting bit, CKP.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
2010 Microchip Technology Inc.  
DS39933D-page 227  
PIC18F87J90 FAMILY  
2
FIGURE 18-8:  
I C™ SLAVE MODE TIMING WITH SEN = 0(RECEPTION, 7-BIT ADDRESSING)  
DS39933D-page 228  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
2
FIGURE 18-9:  
I C™ SLAVE MODE TIMING WITH SEN = 0AND ADMSK<5:1> = 01011  
(RECEPTION, 7-BIT ADDRESSING)  
2010 Microchip Technology Inc.  
DS39933D-page 229  
PIC18F87J90 FAMILY  
2
FIGURE 18-10:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 7-BIT ADDRESSING)  
DS39933D-page 230  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 18-11:  
I2C™ SLAVE MODE TIMING WITH SEN = 0(RECEPTION, 10-BIT ADDRESSING)  
2010 Microchip Technology Inc.  
DS39933D-page 231  
PIC18F87J90 FAMILY  
FIGURE 18-12:  
I2C™ SLAVE MODE TIMING WITH SEN = 0AND ADMSK<5:1> = 01001  
(RECEPTION, 10-BIT ADDRESSING)  
DS39933D-page 232  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
2
FIGURE 18-13:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESSING)  
2010 Microchip Technology Inc.  
DS39933D-page 233  
PIC18F87J90 FAMILY  
18.4.4  
CLOCK STRETCHING  
18.4.4.3  
Clock Stretching for 7-Bit Slave  
Transmit Mode  
Both 7-Bit and 10-Bit Slave modes implement  
automatic clock stretching during a transmit sequence.  
The 7-Bit Slave Transmit mode implements clock  
stretching by clearing the CKP bit after the falling edge  
of the ninth clock if the BF bit is clear. This occurs  
regardless of the state of the SEN bit.  
The SEN bit (SSPCON2<0>) allows clock stretching to  
be enabled during receives. Setting SEN will cause  
the SCL pin to be held low at the end of each data  
receive sequence.  
The user’s ISR must set the CKP bit before transmis-  
sion is allowed to continue. By holding the SCL line  
low, the user has time to service the ISR and load the  
contents of the SSPBUF before the master device can  
initiate another transmit sequence (see Figure 18-10).  
18.4.4.1  
Clock Stretching for 7-Bit Slave  
Receive Mode (SEN = 1)  
In 7-Bit Slave Receive mode, on the falling edge of the  
ninth clock at the end of the ACK sequence, if the BF  
bit is set, the CKP bit in the SSPCON1 register is  
automatically cleared, forcing the SCL output to be  
held low. The CKP being cleared to ‘0’ will assert the  
SCL line low. The CKP bit must be set in the user’s  
ISR before reception is allowed to continue. By holding  
the SCL line low, the user has time to service the ISR  
and read the contents of the SSPBUF before the  
master device can initiate another receive sequence.  
This will prevent buffer overruns from occurring (see  
Figure 18-15).  
Note 1: If the user loads the contents of SSPBUF,  
setting the BF bit before the falling edge of  
the ninth clock, the CKP bit will not be  
cleared and clock stretching will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit.  
18.4.4.4  
Clock Stretching for 10-Bit Slave  
Transmit Mode  
In 10-Bit Slave Transmit mode, clock stretching is con-  
trolled during the first two address sequences by the  
state of the UA bit, just as it is in 10-Bit Slave Receive  
mode. The first two addresses are followed by a third  
address sequence which contains the high-order bits  
of the 10-bit address and the R/W bit set to ‘1’. After  
the third address sequence is performed, the UA bit is  
not set. The module is now configured in Transmit  
mode and clock stretching is controlled by the BF flag  
as in 7-Bit Slave Transmit mode (see Figure 18-13).  
Note 1: If the user reads the contents of the  
SSPBUF before the falling edge of the  
ninth clock, thus clearing the BF bit, the  
CKP bit will not be cleared and clock  
stretching will not occur.  
2: The CKP bit can be set in software regard-  
less of the state of the BF bit. The user  
should be careful to clear the BF bit in the  
ISR before the next receive sequence in  
order to prevent an overflow condition.  
18.4.4.2  
Clock Stretching for 10-Bit Slave  
Receive Mode (SEN = 1)  
In 10-Bit Slave Receive mode, during the address  
sequence, clock stretching automatically takes place  
but CKP is not cleared. During this time, if the UA bit is  
set after the ninth clock, clock stretching is initiated.  
The UA bit is set after receiving the upper byte of the  
10-bit address, and following the receive of the second  
byte of the 10-bit address, with the R/W bit cleared to  
0’. The release of the clock line occurs upon updating  
SSPADD. Clock stretching will occur on each data  
receive sequence as described in 7-bit mode.  
Note:  
If the user polls the UA bit and clears it by  
updating the SSPADD register before the  
falling edge of the ninth clock occurs, and if  
the user hasn’t cleared the BF bit by read-  
ing the SSPBUF register before that time,  
then the CKP bit will still NOT be asserted  
low. Clock stretching on the basis of the  
state of the BF bit only occurs during a data  
sequence, not an address sequence.  
DS39933D-page 234  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
already asserted the SCL line. The SCL output will  
remain low until the CKP bit is set and all other  
devices on the I2C bus have deasserted SCL. This  
ensures that a write to the CKP bit will not violate the  
minimum high time requirement for SCL (see  
Figure 18-14).  
18.4.4.5  
Clock Synchronization and  
the CKP bit  
When the CKP bit is cleared, the SCL output is forced  
to ‘0’. However, clearing the CKP bit will not assert the  
SCL output low until the SCL output is already  
sampled low. Therefore, the CKP bit will not assert the  
SCL line until an external I2C master device has  
FIGURE 18-14:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX – 1  
Master device  
asserts clock  
CKP  
Master device  
deasserts clock  
WR  
SSPCON  
2010 Microchip Technology Inc.  
DS39933D-page 235  
PIC18F87J90 FAMILY  
2
FIGURE 18-15:  
I C™ SLAVE MODE TIMING WITH SEN = 1(RECEPTION, 7-BIT ADDRESSING)  
DS39933D-page 236  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 18-16:  
I2C™ SLAVE MODE TIMING WITH SEN = 1(RECEPTION, 10-BIT ADDRESSING)  
2010 Microchip Technology Inc.  
DS39933D-page 237  
PIC18F87J90 FAMILY  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag bit is set (eighth  
bit), and on the falling edge of the ninth bit (ACK bit),  
the SSPIF interrupt flag bit is set.  
18.4.5  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the Start condition usually  
determines which device will be the slave addressed by  
the master. The exception is the general call address  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
Acknowledge.  
When the interrupt is serviced, the source for the  
interrupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device-specific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when the GCEN bit is set, while the slave is  
configured in 10-Bit Addressing mode, then the second  
half of the address is not necessary, the UA bit will not  
be set and the slave will begin receiving data after the  
Acknowledge (Figure 18-17).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R/W = 0.  
The general call address is recognized when the  
General Call Enable bit, GCEN, is enabled  
(SSPCON2<7> set). Following a Start bit detect, 8 bits  
are shifted into the SSPSR and the address is  
compared against the SSPADD. It is also compared to  
the general call address and fixed in hardware.  
FIGURE 18-17:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
(7 OR 10-BIT ADDRESSING MODE)  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving Data  
ACK  
R/W = 0  
General Call Address  
SDA  
SCL  
ACK D7 D6  
D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
S
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV (SSPCON1<6>)  
GCEN (SSPCON2<7>)  
0’  
1’  
DS39933D-page 238  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
18.4.6  
MASTER MODE  
Note:  
The MSSP module, when configured in  
I2C Master mode, does not allow queueing  
of events. For instance, the user is not  
allowed to initiate a Start condition and  
immediately write the SSPBUF register to  
initiate transmission before the Start con-  
dition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON1 and by setting the  
SSPEN bit. In Master mode, the SCL and SDA lines  
are manipulated by the MSSP hardware.  
Master mode of operation is supported by interrupt  
generation on the detection of the Start and Stop con-  
ditions. The Stop (P) and Start (S) bits are cleared from  
a Reset or when the MSSP module is disabled. Control  
of the I2C bus may be taken when the P bit is set, or the  
bus is Idle, with both the S and P bits clear.  
The following events will cause the MSSP Interrupt  
Flag bit, SSPIF, to be set (and an MSSP interrupt, if  
enabled):  
In Firmware Controlled Master mode, user code  
conducts all I2C bus operations based on Start and  
Stop bit conditions.  
• Start condition  
Once Master mode is enabled, the user has six  
options.  
• Stop condition  
• Data transfer byte transmitted/received  
• Acknowledge transmit  
• Repeated Start  
1. Assert a Start condition on SDA and SCL.  
2. Assert a Repeated Start condition on SDA and  
SCL.  
3. Write to the SSPBUF register initiating  
transmission of data/address.  
4. Configure the I2C port to receive data.  
5. Generate an Acknowledge condition at the end  
of a received byte of data.  
6. Generate a Stop condition on SDA and SCL.  
2
FIGURE 18-18:  
MSSP BLOCK DIAGRAM (I C™ MASTER MODE)  
Internal  
Data Bus  
SSPM<3:0>  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA In  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCL  
Start bit Detect  
Stop bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
End of XMIT/RCV  
SCL In  
Bus Collision  
Set/Reset S, P, WCOL (SSPSTAT, SSPCON1)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
2010 Microchip Technology Inc.  
DS39933D-page 239  
PIC18F87J90 FAMILY  
I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
18.4.6.1  
1. The user generates a Start condition by setting  
the Start Enable bit, SEN (SSPCON2<0>).  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
2. SSPIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
3. The user loads the SSPBUF with the slave  
address to transmit.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ‘0’. Serial data is  
transmitted, 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
4. The address is shifted out on the SDA pin until  
all 8 bits are transmitted.  
5. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
6. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master Receive mode, the first byte transmitted  
contains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave  
address followed by a ‘1’ to indicate the receive bit.  
Serial data is received via SDA, while SCL outputs the  
serial clock. Serial data is received, 8 bits at a time.  
After each byte is received, an Acknowledge bit is  
transmitted. Start and Stop conditions indicate the  
beginning and end of transmission.  
7. The user loads the SSPBUF with eight bits of  
data.  
8. Data is shifted out on the SDA pin until all 8 bits  
are transmitted.  
9. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
10. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The Baud Rate Generator used for the SPI mode  
operation is used to set the SCL clock frequency for  
either 100 kHz, 400 kHz or 1 MHz I2C operation. See  
Section 18.4.7 “Baud Rate” for more detail.  
11. The user generates a Stop condition by setting  
the Stop Enable bit, PEN (SSPCON2<2>).  
12. An interrupt is generated once the Stop condition  
is complete.  
DS39933D-page 240  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Table 18-3 demonstrates clock rates based on  
instruction cycles and the BRG value loaded into  
SSPADD.  
18.4.7  
BAUD RATE  
In I2C Master mode, the Baud Rate Generator (BRG)  
reload value is placed in the lower 7 bits of the  
SSPADD register (Figure 18-19). When a write occurs  
to SSPBUF, the Baud Rate Generator will automatically  
begin counting. The BRG counts down to 0 and stops  
until another reload has taken place. The BRG count is  
decremented twice per instruction cycle (TCY) on the  
Q2 and Q4 clocks. In I2C Master mode, the BRG is  
reloaded automatically.  
18.4.7.1  
Baud Rate Generation in  
Power-Managed Modes  
When the device is operating in one of the  
power-managed modes, the clock source to the BRG  
may change frequency, or even stop, depending on the  
mode and clock source selected. Switching to a Run or  
Idle mode from either the secondary clock or internal  
oscillator is likely to change the clock rate to the BRG.  
In Sleep mode, the BRG will not be clocked at all.  
Once the given operation is complete (i.e., transmis-  
sion of the last data bit is followed by ACK), the internal  
clock will automatically stop counting and the SCL pin  
will remain in its last state.  
FIGURE 18-19:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM<3:0>  
SSPADD<6:0>  
SSPM<3:0>  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
CLKO  
FOSC/4  
TABLE 18-3: I2C™ CLOCK RATE w/BRG  
FSCL  
FCY  
FCY * 2  
BRG Value  
(2 Rollovers of BRG)  
10 MHz  
10 MHz  
10 MHz  
4 MHz  
4 MHz  
4 MHz  
1 MHz  
1 MHz  
1 MHz  
20 MHz  
20 MHz  
20 MHz  
8 MHz  
8 MHz  
8 MHz  
2 MHz  
2 MHz  
2 MHz  
18h  
1Fh  
63h  
09h  
0Ch  
27h  
02h  
09h  
00h  
400 kHz  
312.5 kHz  
100 kHz  
400 kHz  
308 kHz  
100 kHz  
333 kHz  
100 kHz  
1 MHz  
2010 Microchip Technology Inc.  
DS39933D-page 241  
PIC18F87J90 FAMILY  
SCL pin is sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPADD<6:0> and  
begins counting. This ensures that the SCL high time  
will always be at least one BRG rollover count in the  
event that the clock is held low by an external device  
(Figure 18-20).  
18.4.7.2  
Clock Arbitration  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated Start/Stop condition,  
deasserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the Baud  
Rate Generator (BRG) is suspended from counting  
until the SCL pin is actually sampled high. When the  
FIGURE 18-20:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX – 1  
SCL allowed to transition high  
SCL deasserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count  
BRG  
Reload  
DS39933D-page 242  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
18.4.8  
I2C MASTER MODE START  
CONDITION TIMING  
Note:  
If, at the beginning of the Start condition,  
the SDA and SCL pins are already  
sampled low, or if during the Start condi-  
tion, the SCL line is sampled low before  
the SDA line is driven low, a bus collision  
occurs. The Bus Collision Interrupt Flag,  
BCLIF, is set, the Start condition is aborted  
and the I2C module is reset into its Idle  
state.  
To initiate a Start condition, the user sets the Start  
Enable bit, SEN (SSPCON2<0>). If the SDA and SCL  
pins are sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPADD<6:0> and starts  
its count. If SCL and SDA are both sampled high when  
the Baud Rate Generator times out (TBRG), the SDA  
pin is driven low. The action of the SDA pin being driven  
low while SCL is high is the Start condition and causes  
the S bit (SSPSTAT<3>) to be set. Following this, the  
Baud Rate Generator is reloaded with the contents of  
SSPADD<6:0> and resumes its count. When the Baud  
Rate Generator times out (TBRG), the SEN bit  
(SSPCON2<0>) will be automatically cleared by  
hardware. The Baud Rate Generator is suspended,  
leaving the SDA line held low and the Start condition is  
complete.  
18.4.8.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Start sequence  
is in progress, the WCOL bit is set and the contents of  
the buffer are unchanged (the write doesn’t occur).  
Note:  
Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the Start  
condition is complete.  
FIGURE 18-21:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
At completion of Start bit,  
Write to SEN bit occurs here  
SDA = 1,  
SCL = 1  
hardware clears SEN bit  
and sets SSPIF bit  
TBRG  
TBRG  
Write to SSPBUF occurs here  
1st bit 2nd bit  
SDA  
TBRG  
SCL  
TBRG  
S
2010 Microchip Technology Inc.  
DS39933D-page 243  
PIC18F87J90 FAMILY  
18.4.9  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
A Repeated Start condition occurs when the RSEN bit  
(SSPCON2<1>) is programmed high and the I2C logic  
module is in the Idle state. When the RSEN bit is set,  
the SCL pin is asserted low. When the SCL pin is  
sampled low, the Baud Rate Generator is loaded with  
the contents of SSPADD<6:0> and begins counting.  
The SDA pin is released (brought high) for one Baud  
Rate Generator count (TBRG). When the Baud Rate  
Generator times out, if SDA is sampled high, the SCL  
pin will be deasserted (brought high). When SCL is  
sampled high, the Baud Rate Generator is reloaded  
with the contents of SSPADD<6:0> and begins  
counting. SDA and SCL must be sampled high for one  
TBRG. This action is then followed by assertion of the  
SDA pin (SDA = 0) for one TBRG while SCL is high.  
Following this, the RSEN bit (SSPCON2<1>) will be  
automatically cleared and the Baud Rate Generator will  
not be reloaded, leaving the SDA pin held low. As soon  
as a Start condition is detected on the SDA and SCL  
pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit  
will not be set until the Baud Rate Generator has timed  
out.  
2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL goes  
from low-to-high.  
• SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data ‘1’.  
Immediately following the SSPIF bit getting set, the user  
may write the SSPBUF with the 7-bit address in 7-bit  
mode or the default first address in 10-bit mode. After the  
first eight bits are transmitted and an ACK is received,  
the user may then transmit an additional eight bits of  
address (10-bit mode) or eight bits of data (7-bit mode).  
18.4.9.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Repeated Start  
sequence is in progress, the WCOL flag is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
Note:  
Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
Start condition is complete.  
FIGURE 18-22:  
REPEATED START CONDITION WAVEFORM  
S bit set by hardware  
SDA = 1,  
SCL = 1  
At completion of Start bit,  
hardware clears RSEN bit  
and sets SSPIF  
Write to SSPCON2 occurs here:  
SDA = 1,  
SCL (no change)  
TBRG  
TBRG  
TBRG  
1st bit  
SDA  
RSEN bit set by hardware  
on falling edge of ninth clock,  
end of XMIT  
Write to SSPBUF occurs here  
TBRG  
SCL  
TBRG  
Sr = Repeated Start  
DS39933D-page 244  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
18.4.10 I2C MASTER MODE  
TRANSMISSION  
The user should verify that the WCOL is clear after  
each write to SSPBUF to ensure the transfer is correct.  
In all cases, WCOL must be cleared in software.  
Transmission of a data byte, a 7-bit address or the  
other half of a 10-bit address is accomplished by simply  
writing a value to the SSPBUF register. This action will  
set the Buffer Full bit, BF, and allow the Baud Rate  
Generator to begin counting and start the next trans-  
mission. Each bit of address/data will be shifted out  
onto the SDA pin after the falling edge of SCL is  
asserted (see data hold time specification,  
parameter 106). SCL is held low for one Baud Rate  
Generator rollover count (TBRG). Data should be valid  
before SCL is released high (see data setup time  
specification, parameter 107). When the SCL pin is  
released high, it is held that way for TBRG. The data on  
the SDA pin must remain stable for that duration and  
some hold time after the next falling edge of SCL. After  
the eighth bit is shifted out (the falling edge of the eighth  
clock), the BF flag is cleared and the master releases  
SDA. This allows the slave device being addressed to  
respond with an ACK bit during the ninth bit time if an  
address match occurred, or if data was received prop-  
erly. The status of ACK is written into the ACKDT bit on  
the falling edge of the ninth clock. If the master receives  
an Acknowledge, the Acknowledge Status bit,  
ACKSTAT, is cleared; if not, the bit is set. After the ninth  
clock, the SSPIF bit is set and the master clock (Baud  
Rate Generator) is suspended until the next data byte  
is loaded into the SSPBUF, leaving SCL low and SDA  
unchanged (Figure 18-23).  
18.4.10.3 ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an Acknowledge  
(ACK = 0) and is set when the slave does not Acknowl-  
edge (ACK = 1). A slave sends an Acknowledge when  
it has recognized its address (including a general call)  
or when the slave has properly received its data.  
18.4.11 I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (SSPCON2<3>).  
Note:  
The MSSP module must be in an Idle state  
before the RCEN bit is set or the RCEN bit  
will be disregarded.  
The Baud Rate Generator begins counting, and on  
each rollover, the state of the SCL pin changes  
(high-to-low/low-to-high) and data is shifted into the  
SSPSR. After the falling edge of the eighth clock, the  
receive enable flag is automatically cleared, the con-  
tents of the SSPSR are loaded into the SSPBUF, the  
BF flag bit is set, the SSPIF flag bit is set and the Baud  
Rate Generator is suspended from counting, holding  
SCL low. The MSSP is now in Idle state awaiting the  
next command. When the buffer is read by the CPU,  
the BF flag bit is automatically cleared. The user can  
then send an Acknowledge bit at the end of reception  
by setting the Acknowledge Sequence Enable bit,  
ACKEN (SSPCON2<4>).  
After the write to the SSPBUF, each bit of the address  
will be shifted out on the falling edge of SCL until all  
seven address bits and the R/W bit are completed. On  
the falling edge of the eighth clock, the master will  
deassert the SDA pin, allowing the slave to respond  
with an Acknowledge. On the falling edge of the ninth  
clock, the master will sample the SDA pin to see if the  
address was recognized by a slave. The status of the  
ACK bit is loaded into the ACKSTAT status bit  
(SSPCON2<6>). Following the falling edge of the ninth  
clock transmission of the address, the SSPIF is set, the  
BF flag is cleared and the Baud Rate Generator is  
turned off until another write to the SSPBUF takes  
place, holding SCL low and allowing SDA to float.  
18.4.11.1 BF Status Flag  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
18.4.11.2 SSPOV Status Flag  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPSR and the BF flag bit is  
already set from a previous reception.  
18.4.11.3 WCOL Status Flag  
18.4.10.1 BF Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
In Transmit mode, the BF bit (SSPSTAT<0>) is set  
when the CPU writes to SSPBUF and is cleared when  
all 8 bits are shifted out.  
18.4.10.2 WCOL Status Flag  
If the user writes to the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), the WCOL bit is set and the contents of the  
buffer are unchanged (the write doesn’t occur) for  
2 TCY after the SSPBUF write. If SSPBUF is rewritten  
within 2 TCY, the WCOL bit is set and SSPBUF is  
updated. This may result in a corrupted transfer.  
2010 Microchip Technology Inc.  
DS39933D-page 245  
PIC18F87J90 FAMILY  
2
FIGURE 18-23:  
I C™ MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESSING)  
DS39933D-page 246  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
2
FIGURE 18-24:  
I C™ MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESSING)  
2010 Microchip Technology Inc.  
DS39933D-page 247  
PIC18F87J90 FAMILY  
18.4.12 ACKNOWLEDGE SEQUENCE  
TIMING  
18.4.13 STOP CONDITION TIMING  
A Stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN (SSPCON2<2>). At the end of  
An Acknowledge sequence is enabled by setting the  
Acknowledge Sequence Enable bit, ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The Baud Rate  
Generator then counts for one rollover period (TBRG)  
and the SCL pin is deasserted (pulled high). When the  
SCL pin is sampled high (clock arbitration), the Baud  
Rate Generator counts for TBRG. The SCL pin is then  
pulled low. Following this, the ACKEN bit is automatically  
cleared, the Baud Rate Generator is turned off and the  
MSSP module then goes into Idle mode (Figure 18-25).  
a
receive/transmit, the SCL line is held low after the fall-  
ing edge of the ninth clock. When the PEN bit is set, the  
master will assert the SDA line low. When the SDA line  
is sampled low, the Baud Rate Generator is reloaded  
and counts down to 0. When the Baud Rate Generator  
times out, the SCL pin will be brought high and one  
TBRG (Baud Rate Generator rollover count) later, the  
SDA pin will be deasserted. When the SDA pin is  
sampled high while SCL is high, the  
(SSPSTAT<4>) is set. A TBRG later, the PEN bit is  
cleared and the SSPIF bit is set (Figure 18-26).  
P
bit  
18.4.13.1 WCOL Status Flag  
If the user writes the SSPBUF when a Stop sequence  
is in progress, then the WCOL bit is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
18.4.12.1 WCOL Status Flag  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 18-25:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
write to SSPCON2,  
ACKEN automatically cleared  
TBRG  
ACKEN = 1, ACKDT = 0  
TBRG  
SDA  
SCL  
D0  
8
ACK  
9
SSPIF  
Cleared in  
software  
SSPIF set at  
the end of receive  
Cleared in  
software  
SSPIF set at the end  
of Acknowledge sequence  
Note: TBRG = one Baud Rate Generator period.  
FIGURE 18-26:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
Write to SSPCON2,  
SCL = 1for TBRG, followed by SDA = 1for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set.  
set PEN  
Falling edge of  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
9th clock  
ACK  
TBRG  
SCL  
SDA  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup Stop condition  
Note: TBRG = one Baud Rate Generator period.  
DS39933D-page 248  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
18.4.14 SLEEP OPERATION  
18.4.17 MULTI -MASTER COMMUNICATION,  
BUS COLLISION AND BUS  
While in Sleep mode, the I2C module can receive  
addresses or data, and when an address match or  
complete byte transfer occurs, wake the processor  
from Sleep (if the MSSP interrupt is enabled).  
ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a ‘1’ on SDA by letting SDA float high, and  
another master asserts a ‘0’. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a ‘1’ and the data sampled on the SDA pin = 0,  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag, BCLIF, and reset the  
I2C port to its Idle state (Figure 18-27).  
18.4.15 EFFECTS OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
18.4.16 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the  
MSSP module is disabled. Control of the I2C bus may  
be taken when the P bit (SSPSTAT<4>) is set, or the  
bus is Idle, with both the S and P bits clear. When the  
bus is busy, enabling the MSSP interrupt will generate  
the interrupt when the Stop condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are deasserted and the  
SSPBUF can be written to. When the user services the  
bus collision Interrupt Service Routine, and if the I2C bus  
is free, the user can resume communication by asserting  
a Start condition.  
In multi-master operation, the SDA line must be  
monitored for arbitration to see if the signal level is the  
expected output level. This check is performed in  
hardware with the result placed in the BCLIF bit.  
If a Start, Repeated Start, Stop or Acknowledge condition  
was in progress when the bus collision occurred, the  
condition is aborted, the SDA and SCL lines are  
deasserted and the respective control bits in the  
SSPCON2 register are cleared. When the user services  
the bus collision Interrupt Service Routine, and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A Start Condition  
The master will continue to monitor the SDA and SCL  
pins. If a Stop condition occurs, the SSPIF bit will be set.  
• A Repeated Start Condition  
• An Acknowledge Condition  
A write to the SSPBUF will start the transmission of  
data at the first data bit regardless of where the  
transmitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of Start and Stop conditions allows the deter-  
mination of when the bus is free. Control of the I2C bus  
can be taken when the P bit is set in the SSPSTAT  
register or the bus is Idle and the S and P bits are  
cleared.  
FIGURE 18-27:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high,  
data doesn’t match what is driven  
by the master.  
Data changes  
while SCL = 0  
SDA line pulled low  
by another source  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt (BCLIF)  
BCLIF  
2010 Microchip Technology Inc.  
DS39933D-page 249  
PIC18F87J90 FAMILY  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 18-30). If, however, a ‘1’ is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The Baud Rate Generator is then reloaded and  
counts down to 0. If the SCL pin is sampled as ‘0’  
during this time, a bus collision does not occur. At the  
end of the BRG count, the SCL pin is asserted low.  
18.4.17.1 Bus Collision During a Start  
Condition  
During a Start condition, a bus collision occurs if:  
a) SDA or SCL are sampled low at the beginning of  
the Start condition (Figure 18-28).  
b) SCL is sampled low before SDA is asserted low  
(Figure 18-29).  
During a Start condition, both the SDA and the SCL  
pins are monitored.  
Note:  
The reason that bus collision is not a factor  
during a Start condition is that no two bus  
masters can assert a Start condition at the  
exact same time. Therefore, one master  
will always assert SDA before the other.  
This condition does not cause a bus  
collision because the two masters must be  
allowed to arbitrate the first address  
following the Start condition. If the address  
is the same, arbitration must be allowed to  
continue into the data portion, Repeated  
Start or Stop conditions.  
If the SDA pin is already low, or the SCL pin is already  
low, then all of the following occur:  
• the Start condition is aborted;  
• the BCLIF flag is set; and  
• the MSSP module is reset to its Idle state  
(Figure 18-28).  
The Start condition begins with the SDA and SCL pins  
deasserted. When the SDA pin is sampled high, the  
Baud Rate Generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data ‘1’ during the Start condition.  
FIGURE 18-28:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable Start  
condition if SDA = 1, SCL = 1  
SEN cleared automatically because of bus collision.  
MSSP module reset into Idle state.  
SDA sampled low before  
Start condition. Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software  
DS39933D-page 250  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 18-29:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
SCL  
SEN  
SCL = 0before SDA = 0,  
bus collision occurs. Set BCLIF.  
SCL = 0before BRG time-out,  
bus collision occurs. Set BCLIF.  
BCLIF  
Interrupt cleared  
in software  
S
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 18-30:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA.  
SDA  
SCL  
S
SCL pulled low after BRG  
time-out  
SEN  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
0’  
BCLIF  
S
SSPIF  
Interrupts cleared  
in software  
SDA = 0, SCL = 1,  
set SSPIF  
2010 Microchip Technology Inc.  
DS39933D-page 251  
PIC18F87J90 FAMILY  
If SDA is low, a bus collision has occurred (i.e., another  
master is attempting to transmit a data ‘0’; see  
Figure 18-31). If SDA is sampled high, the BRG is  
reloaded and begins counting. If SDA goes from  
high-to-low before the BRG times out, no bus collision  
occurs because no two masters can assert SDA at  
exactly the same time.  
18.4.17.2 Bus Collision During a Repeated  
Start Condition  
During a Repeated Start condition, a bus collision  
occurs if:  
a) A low level is sampled on SDA when SCL goes  
from a low level to a high level.  
b) SCL goes low before SDA is asserted low,  
indicating that another master is attempting to  
transmit a data ‘1’.  
If SCL goes from high-to-low before the BRG times out,  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data ‘1’ during the Repeated Start condition  
(see Figure 18-32).  
When the user deasserts SDA, and the pin is allowed  
to float high, the BRG is loaded with SSPADD<6:0>  
and counts down to 0. The SCL pin is then deasserted,  
and when sampled high, the SDA pin is sampled.  
If, at the end of the BRG time-out, both SCL and SDA  
are still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated Start condition is complete.  
FIGURE 18-31:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared in software  
0’  
S
0’  
SSPIF  
FIGURE 18-32:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
set BCLIF. Release SDA and SCL.  
BCLIF  
RSEN  
Interrupt cleared  
in software  
0’  
S
SSPIF  
DS39933D-page 252  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The Stop condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the Baud Rate Generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ‘0’ (Figure 18-33). If the SCL pin is  
sampled low before SDA is allowed to float high, a bus  
collision occurs. This is another case of another master  
attempting to drive a data ‘0’ (Figure 18-34).  
18.4.17.3 Bus Collision During a Stop  
Condition  
Bus collision occurs during a Stop condition if:  
a) After the SDA pin has been deasserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is deasserted, SCL is sampled  
low before SDA goes high.  
FIGURE 18-33:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
FIGURE 18-34:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high,  
set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
2010 Microchip Technology Inc.  
DS39933D-page 253  
PIC18F87J90 FAMILY  
TABLE 18-4: REGISTERS ASSOCIATED WITH I2C™ OPERATION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
SSPIF  
SSPIE  
SSPIP  
BCLIF  
BCLIE  
BCLIP  
TRISC3  
TMR0IF  
INT0IF  
RBIF  
59  
62  
62  
62  
62  
62  
62  
62  
60  
60  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
PIE1  
IPR1  
ADIP  
PIR2  
OSCFIF  
OSCFIE  
OSCFIP  
TRISC7  
CMIF  
CMIE  
CMIP  
TRISC6  
LVDIF  
LVDIE  
LVDIP  
TRISC2  
TMR3IF  
TMR3IE  
TMR3IP  
PIE2  
IPR2  
TRISC  
TRISC5  
TRISC4  
TRISC1 TRISC0  
SSPBUF MSSP Receive Buffer/Transmit Register  
SSPADD MSSP Address Register (I2C™ Slave mode),  
MSSP Baud Rate Reload Register (I2C Master mode)  
SSPCON1  
SSPCON2  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
PEN  
SSPM1  
RSEN  
SSPM0  
SEN  
SEN  
BF  
60  
60  
60  
GCEN ACKSTAT ACKDT  
GCEN ACKSTAT ADMSK5(1) ADMSK4(1) ADMSK3(1) ADMSK2(1) ADMSK1(1)  
ACKEN  
RCEN  
SSPSTAT  
SMP CKE D/A R/W UA  
P
S
Legend: = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP module in I2C™ mode.  
Note 1: Alternate bit definitions for use in I2C Slave mode operations only.  
DS39933D-page 254  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The pins of the EUSART are multiplexed with the  
functions of PORTC (RC6/TX1/CK1/SEG27 and  
RC7/RX1/DT1/SEG28). In order to configure these  
pins as an EUSART:  
19.0 ENHANCED UNIVERSAL  
SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
• bit, SPEN (RCSTA1<7>), must be set (= 1)  
• bit, TRISC<7>, must be set (= 1)  
• bit, TRISC<6>, must be set (= 1)  
PIC18F87J90 family devices have three serial I/O  
modules: the MSSP module, discussed in the previous  
chapter and two Universal Synchronous Asynchronous  
Receiver Transmitter (USART) modules. (Generically,  
the USART is also known as a Serial Communications  
Interface or SCI.) The USART can be configured as a  
full-duplex, asynchronous system that can communi-  
cate with peripheral devices, such as CRT terminals  
and personal computers. It can also be configured as a  
half-duplex synchronous system that can communicate  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs, etc.  
Note:  
The EUSART control will automatically  
reconfigure the pin from input to output as  
needed.  
The driver for the TX1 output pin can also be optionally  
configured as an open-drain output. This feature allows  
the voltage level on the pin to be pulled to a higher level  
through an external pull-up resistor, and allows the out-  
put to communicate with external circuits without the  
need for additional level shifters.  
The open-drain output option is controlled by the U1OD  
bit (LATG<6>). Setting the bit configures the pin for  
open-drain operation.  
There are two distinct implementations of the USART  
module in these devices: the Enhanced USART  
(EUSART) discussed here and the Addressable  
USART discussed in the next chapter. For this device  
family, USART1 always refers to the EUSART, while  
USART2 is always the AUSART.  
19.1 Control Registers  
The operation of the Enhanced USART module is  
controlled through three registers:  
The EUSART and AUSART modules implement the  
same core features for serial communications; their  
basic operation is essentially the same. The EUSART  
module provides additional features, including Auto-  
matic Baud Rate Detection and calibration, automatic  
wake-up on Sync Break reception, and 12-bit Break  
character transmit. These features make it ideally  
suited for use in Local Interconnect Network bus  
(LIN/J2602 bus) systems.  
• Transmit Status and Control Register 1 (TXSTA1)  
• Receive Status and Control Register 1 (RCSTA1)  
• Baud Rate Control Register 1 (BAUDCON1)  
The registers are described in Register 19-1,  
Register 19-2 and Register 19-3.  
The EUSART can be configured in the following  
modes:  
• Asynchronous (full-duplex) with:  
- Auto-wake-up on character reception  
- Auto-baud calibration  
- 12-bit Break character transmission  
• Synchronous – Master (half-duplex) with  
selectable clock polarity  
• Synchronous – Slave (half-duplex) with selectable  
clock polarity  
2010 Microchip Technology Inc.  
DS39933D-page 255  
PIC18F87J90 FAMILY  
REGISTER 19-1: TXSTA1: EUSART TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN(1)  
R/W-0  
SYNC  
R/W-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
SENDB  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
bit 3  
TX9: 9-Bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit(1)  
1= Transmit enabled  
0= Transmit disabled  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care.  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
DS39933D-page 256  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 19-2: RCSTA1: EUSART RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX1/DT1 and TX1/CK1 pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-Bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and the ninth bit can be used as a parity bit  
Asynchronous mode 9-bit (RX9 = 0):  
Don’t care.  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG1 register and receiving next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit, CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
2010 Microchip Technology Inc.  
DS39933D-page 257  
PIC18F87J90 FAMILY  
REGISTER 19-3: BAUDCON1: BAUD RATE CONTROL REGISTER 1  
R/W-0  
R-1  
R/W - 0  
RXDTP  
R/W-0  
R/W-0  
U-0  
R/W-0  
WUE  
R/W-0  
ABDOVF  
RCIDL  
TXCKP  
BRG16  
ABDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
ABDOVF: Auto-Baud Acquisition Rollover Status bit  
1= A BRG rollover has occurred during Auto-Baud Rate Detect mode (must be cleared in software)  
0= No BRG rollover has occurred  
RCIDL: Receive Operation Idle Status bit  
1= Receive operation is Idle  
0= Receive operation is active  
RXDTP: Received Data Polarity Select bit  
Asynchronous mode:  
1= RXx data is inverted  
0= RXx data is not inverted  
Synchronous mode:  
1= CKx clocks are inverted  
0= CKx clocks are not inverted  
bit 4  
TXCKP: Clock and Data Polarity Select bit  
Asynchronous mode:  
1= TXx data is inverted  
0= TXx data is not inverted  
Synchronous mode:  
1= CKx clocks are inverted  
0= CKx clocks are not inverted  
bit 3  
BRG16: 16-Bit Baud Rate Register Enable bit  
1= 16-bit Baud Rate Generator – SPBRGH1 and SPBRG1  
0= 8-bit Baud Rate Generator – SPBRG1 only (Compatible mode), SPBRGH1 value ignored  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= EUSART will continue to sample the RX1 pin – interrupt generated on falling edge; bit cleared in  
hardware on following rising edge  
0= RX1 pin not monitored or rising edge detected  
Synchronous mode:  
Unused in this mode.  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Enable baud rate measurement on the next character. Requires reception of a Sync field (55h);  
cleared in hardware upon completion.  
0= Baud rate measurement disabled or completed  
Synchronous mode:  
Unused in this mode.  
DS39933D-page 258  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
are shown in Table 19-2. It may be advantageous to use  
the high baud rate (BRGH = 1) or the 16-bit BRG to  
reduce the baud rate error, or achieve a slow baud rate  
for a fast oscillator frequency.  
19.2 EUSART Baud Rate Generator  
(BRG)  
The BRG is a dedicated, 8-bit or 16-bit generator that  
supports both the Asynchronous and Synchronous  
modes of the EUSART. By default, the BRG operates  
in 8-bit mode; setting the BRG16 bit (BAUDCON1<3>)  
selects 16-bit mode.  
Writing a new value to the SPBRGH1:SPBRG1 regis-  
ters causes the BRG timer to be reset (or cleared). This  
ensures the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
The SPBRGH1:SPBRG1 register pair controls the  
period of a free-running timer. In Asynchronous mode,  
the BRGH (TXSTA1<2>) and BRG16 (BAUDCON1<3>)  
bits also control the baud rate. In Synchronous mode,  
BRGH is ignored. Table 19-1 shows the formula for com-  
putation of the baud rate for different EUSART modes  
that only apply in Master mode (internally generated  
clock).  
19.2.1  
OPERATION IN POWER-MANAGED  
MODES  
The device clock is used to generate the desired baud  
rate. When one of the power-managed modes is  
entered, the new clock source may be operating at a  
different frequency. This may require an adjustment to  
the value in the SPBRG1 register pair.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRGH1:SPBRG1 registers can  
be calculated using the formulas in Table 19-1. From this,  
the error in baud rate can be determined. An example  
calculation is shown in Example 19-1. Typical baud rates  
and error values for the various Asynchronous modes  
19.2.2  
SAMPLING  
The data on the RX1 pin is sampled three times by a  
majority detect circuit to determine if a high or a low  
level is present at the RX1 pin.  
TABLE 19-1: BAUD RATE FORMULAS  
Configuration Bits  
BRG/EUSART Mode  
Baud Rate Formula  
FOSC/[64 (n + 1)]  
FOSC/[16 (n + 1)]  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-bit/Asynchronous  
8-bit/Asynchronous  
16-bit/Asynchronous  
16-bit/Asynchronous  
8-bit/Synchronous  
16-bit/Synchronous  
FOSC/[4 (n + 1)]  
Legend: x= Don’t care, n = Value of SPBRGH1:SPBRG1 register pair  
EXAMPLE 19-1: CALCULATING BAUD RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:  
Desired Baud Rate = FOSC/(64 ([SPBRGH1:SPBRG1] + 1))  
Solving for SPBRGH1:SPBRG1:  
X = ((FOSC/Desired Baud Rate)/64) – 1  
= ((16000000/9600)/64) – 1  
= [25.042] = 25  
Calculated Baud Rate = 16000000/(64 (25 + 1))  
= 9615  
Error  
= (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate  
= (9615 – 9600)/9600 = 0.16%  
TABLE 19-2: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR  
Reset Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTA1  
RCSTA1  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SENDB  
ADDEN  
BRGH  
FERR  
TRMT  
OERR  
WUE  
TX9D  
RX9D  
61  
61  
63  
63  
61  
BAUDCON1 ABDOVF RCIDL RXDTP TXCKP BRG16  
ABDEN  
SPBRGH1  
SPBRG1  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
2010 Microchip Technology Inc.  
DS39933D-page 259  
PIC18F87J90 FAMILY  
TABLE 19-3: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
255  
129  
31  
15  
4
129  
64  
15  
7
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
1.221  
1.73  
0.16  
1.73  
1.73  
8.51  
-9.58  
1.202  
2.404  
9.766  
19.531  
52.083  
78.125  
0.16  
0.16  
1.73  
1.73  
-9.58  
-32.18  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.404  
9.6  
9.766  
19.2  
57.6  
115.2  
19.531  
62.500  
104.167  
2
2
1
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.16  
0.16  
207  
51  
25  
6
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
103  
25  
12  
0.300  
1.201  
-0.16  
-0.16  
51  
12  
2.4  
2.404  
0.16  
9.6  
8.929  
-6.99  
8.51  
19.2  
57.6  
115.2  
20.833  
62.500  
62.500  
2
8.51  
0
-45.75  
0
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
%
Error  
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
(decimal)  
0.3  
1.2  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.403  
9.615  
19.230  
55.555  
-0.16  
-0.16  
-0.16  
3.55  
207  
51  
25  
8
9.6  
9.766  
19.231  
58.140  
113.636  
1.73  
0.16  
0.94  
-1.36  
255  
129  
42  
9.615  
19.231  
56.818  
113.636  
0.16  
0.16  
-1.36  
-1.36  
129  
64  
21  
10  
19.2  
57.6  
115.2  
21  
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
207  
103  
25  
12  
3
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
1.202  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
DS39933D-page 260  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 19-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
value  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
0.02  
-0.03  
-0.03  
0.16  
4165  
1041  
520  
129  
64  
0.300  
1.200  
0.02  
-0.03  
0.16  
0.16  
1.73  
-1.36  
8.51  
2082  
520  
259  
64  
0.300  
1.201  
2.403  
9.615  
19.230  
55.555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
2.4  
2.402  
2.399  
2.404  
9.6  
9.615  
9.615  
9.615  
19.2  
57.6  
115.2  
19.231  
58.140  
113.636  
19.231  
56.818  
113.636  
0.16  
19.531  
56.818  
125.000  
31  
25  
-1.36  
-1.36  
21  
10  
8
21  
10  
4
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.04  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
832  
207  
103  
25  
12  
3
0.300  
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
-0.16  
415  
103  
51  
12  
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
SYNC = 0, BRGH = 1, BRG16 = 1or SYNC = 1, BRG16 = 1  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
value  
SPBRG  
value  
(decimal)  
%
Error  
%
%
%
Error  
value  
(decimal)  
Rate  
(K)  
value  
Rate  
(K)  
Rate  
(K)  
Error  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.00  
0.02  
0.06  
-0.03  
0.35  
-0.22  
33332  
8332  
4165  
1040  
520  
0.300  
1.200  
0.00  
0.02  
0.02  
-0.03  
0.16  
-0.22  
0.94  
16665  
4165  
2082  
520  
259  
86  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
-0.01  
-0.04  
-0.04  
-0.16  
-0.16  
0.79  
6665  
1665  
832  
207  
103  
34  
2.4  
2.400  
2.400  
2.402  
2.400  
9.6  
9.606  
9.596  
9.615  
9.615  
19.2  
57.6  
115.2  
19.193  
57.803  
114.943  
19.231  
57.471  
116.279  
19.231  
58.140  
113.636  
19.230  
57.142  
117.647  
172  
86  
42  
21  
-2.12  
16  
SYNC = 0, BRGH = 1, BRG16 = 1or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 2.000 MHz FOSC = 1.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.01  
0.04  
0.16  
0.16  
0.16  
2.12  
-3.55  
3332  
832  
415  
103  
51  
0.300  
1.201  
2.403  
9.615  
19.230  
55.555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
0.300  
1.201  
2.403  
9.615  
19.230  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
832  
207  
103  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
58.824  
111.111  
25  
12  
16  
8
8
2010 Microchip Technology Inc.  
DS39933D-page 261  
PIC18F87J90 FAMILY  
While the ABD sequence takes place, the EUSART  
state machine is held in Idle. The RC1IF interrupt is set  
once the fifth rising edge on RX1 is detected. The value  
in the RCREG1 needs to be read to clear the RC1IF  
interrupt. The contents of RCREG1 should be  
discarded.  
19.2.3  
AUTO-BAUD RATE DETECT  
The Enhanced USART module supports the automatic  
detection and calibration of baud rate. This feature is  
active only in Asynchronous mode and while the WUE  
bit is clear.  
The automatic baud rate measurement sequence  
(Figure 19-1) begins whenever a Start bit is received  
and the ABDEN bit is set. The calculation is  
self-averaging.  
Note 1: If the WUE bit is set with the ABDEN bit,  
Auto-Baud Rate Detection will occur on  
the byte following the Break character.  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator frequency  
and EUSART baud rates are not possible  
due to bit error rates. Overall system  
timing and communication baud rates  
must be taken into consideration when  
using the Auto-Baud Rate Detection  
feature.  
In the Auto-Baud Rate Detect (ABD) mode, the clock to  
the BRG is reversed. Rather than the BRG clocking the  
incoming RX1 signal, the RX1 signal is timing the BRG.  
In ABD mode, the internal Baud Rate Generator is  
used as a counter to time the bit period of the incoming  
serial byte stream.  
Once the ABDEN bit is set, the state machine will clear  
the BRG and look for a Start bit. The Auto-Baud Rate  
Detect must receive a byte with the value, 55h (ASCII  
“U”, which is also the LIN/J2602 bus Sync character),  
in order to calculate the proper bit rate. The measure-  
ment is taken over both a low and a high bit time in  
order to minimize any effects caused by asymmetry of  
the incoming signal. After a Start bit, the SPBRG1  
begins counting up, using the preselected clock source  
on the first rising edge of RX1. After eight bits on the  
RX1 pin, or the fifth rising edge, an accumulated value  
totalling the proper BRG period is left in the  
SPBRGH1:SPBRG1 register pair. Once the 5th edge is  
seen (this should correspond to the Stop bit), the  
ABDEN bit is automatically cleared.  
TABLE 19-4: BRG COUNTER CLOCK  
RATES  
BRG16 BRGH  
BRG Counter Clock  
0
0
1
0
1
FOSC/512  
FOSC/128  
FOSC/128  
FOSC/32  
0
1
1
Note:  
During the ABD sequence, SPBRG1 and  
SPBRGH1 are both used as a 16-bit  
counter, independent of the BRG16 setting.  
If a rollover of the BRG occurs (an overflow from FFFFh  
to 0000h), the event is trapped by the ABDOVF status bit  
(BAUDCON1<7>). It is set in hardware by BRG rollovers  
and can be set or cleared by the user in software. ABD  
mode remains active after rollover events and the  
ABDEN bit remains set (Figure 19-2).  
19.2.3.1  
ABD and EUSART Transmission  
Since the BRG clock is reversed during ABD acquisi-  
tion, the EUSART transmitter cannot be used during  
ABD. This means that whenever the ABDEN bit is set,  
TXREG1 cannot be written to. Users should also  
ensure that ABDEN does not become set during a  
transmit sequence. Failing to do this may result in  
unpredictable EUSART operation.  
While calibrating the baud rate period, the BRG  
registers are clocked at 1/8th the preconfigured clock  
rate. Note that the BRG clock can be configured by the  
BRG16 and BRGH bits. The BRG16 bit must be set to  
use both SPBRG1 and SPBRGH1 as a 16-bit counter.  
This allows the user to verify that no carry occurred for  
8-bit modes by checking for 00h in the SPBRGH1  
register. Refer to Table 19-4 for counter clock rates to  
the BRG.  
DS39933D-page 262  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 19-1:  
AUTOMATIC BAUD RATE CALCULATION  
BRG Value  
XXXXh  
0000h  
001Ch  
Edge #5  
Stop bit  
Edge #1  
Edge #2  
bit 3  
Edge #3  
bit 5  
Edge #4  
Start  
bit 7  
RX1 pin  
bit 1  
bit 0  
bit 2  
bit 4  
bit 6  
BRG Clock  
Auto-Cleared  
Set by User  
ABDEN bit  
RC1IF bit  
(Interrupt)  
Read  
RCREG1  
XXXXh  
XXXXh  
1Ch  
00h  
SPBRG1  
SPBRGH1  
Note: The ABD sequence requires the EUSART module to be configured in Asynchronous mode and WUE = 0.  
FIGURE 19-2:  
BRG OVERFLOW SEQUENCE  
BRG Clock  
ABDEN bit  
RX1 pin  
Start  
bit 0  
ABDOVF bit  
BRG Value  
FFFFh  
XXXXh  
0000h  
0000h  
2010 Microchip Technology Inc.  
DS39933D-page 263  
PIC18F87J90 FAMILY  
Once the TXREG1 register transfers the data to the  
TSR register (occurs in one TCY), the TXREG1 register  
is empty and the TX1IF flag bit (PIR1<4>) is set. This  
interrupt can be enabled or disabled by setting or clear-  
ing the interrupt enable bit, TX1IE (PIE1<4>). TX1IF  
will be set regardless of the state of TX1IE; it cannot be  
cleared in software. TX1IF is also not cleared immedi-  
ately upon loading TXREG1, but becomes valid in the  
second instruction cycle following the load instruction.  
Polling TX1IF immediately following a load of TXREG1  
will return invalid results.  
19.3 EUSART Asynchronous Mode  
The Asynchronous mode of operation is selected by  
clearing the SYNC bit (TXSTA1<4>). In this mode, the  
EUSART uses standard Non-Return-to-Zero (NRZ) for-  
mat (one Start bit, eight or nine data bits and one Stop  
bit). The most common data format is 8 bits. An on-chip  
dedicated 8-bit/16-bit Baud Rate Generator can be  
used to derive standard baud rate frequencies from the  
oscillator.  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent, but use the same data format and baud  
rate. The Baud Rate Generator produces a clock, either  
x16 or x64 of the bit shift rate, depending on the BRGH  
and BRG16 bits (TXSTA1<2> and BAUDCON1<3>).  
Parity is not supported by the hardware but can be  
implemented in software and stored as the 9th data bit.  
While TX1IF indicates the status of the TXREG1  
register, another bit, TRMT (TXSTA1<1>), shows the  
status of the TSR register. TRMT is a read-only bit  
which is set when the TSR register is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
Note 1: The TSR register is not mapped in data  
When operating in Asynchronous mode, the EUSART  
module consists of the following important elements:  
memory, so it is not available to the user.  
2: Flag bit, TX1IF, is set when enable bit,  
• Baud Rate Generator  
TXEN, is set.  
• Sampling Circuit  
To set up an Asynchronous Transmission:  
• Asynchronous Transmitter  
• Asynchronous Receiver  
1. Initialize the SPBRGH1:SPBRG1 registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
• Auto-Wake-up on Sync Break Character  
• 12-Bit Break Character Transmit  
• Auto-Baud Rate Detection  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
19.3.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
3. If interrupts are desired, set enable bit, TX1IE.  
4. If 9-bit transmission is desired, set transmit bit,  
TX9; can be used as address/data bit.  
The EUSART transmitter block diagram is shown in  
Figure 19-3. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer Register,  
TXREG1. The TXREG1 register is loaded with data in  
software. The TSR register is not loaded until the Stop  
bit has been transmitted from the previous load. As  
soon as the Stop bit is transmitted, the TSR is loaded  
with new data from the TXREG1 register (if available).  
5. Enable the transmission by setting bit, TXEN,  
which will also set bit, TX1IF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
7. Load data to the TXREG1 register (starts  
transmission).  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 19-3:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TX1IF  
TXREG1 Register  
8
TX1IE  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
  
TSR Register  
TX1 pin  
Interrupt  
Baud Rate CLK  
TXEN  
TRMT  
SPEN  
BRG16  
SPBRGH1 SPBRG1  
Baud Rate Generator  
TX9  
TX9D  
DS39933D-page 264  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 19-4:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG1  
Word 1  
BRG Output  
(Shift Clock)  
TX1 (pin)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TX1IF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 19-5:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG1  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TX1 (pin)  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
1 TCY  
Word 1  
TX1IF bit  
(Interrupt Reg. Flag)  
1 TCY  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 19-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
CREN  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
INT0IF  
RBIF  
59  
62  
62  
62  
61  
61  
61  
63  
63  
61  
62  
ADIF  
ADIE  
ADIP  
RX9  
RC1IF  
RC1IE  
RC1IP  
SREN  
TMR2IF  
TMR1IF  
PIE1  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
IPR1  
RCSTA1  
TXREG1  
TXSTA1  
SPEN  
FERR  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON1 ABDOVF  
RCIDL  
RXDTP  
TXCKP  
ABDEN  
SPBRGH1  
SPBRG1  
LATG  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
U2OD  
U1OD  
LATG4  
LATG3  
LATG2  
LATG1  
LATG0  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
2010 Microchip Technology Inc.  
DS39933D-page 265  
PIC18F87J90 FAMILY  
19.3.2  
EUSART ASYNCHRONOUS  
RECEIVER  
19.3.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 19-6.  
The data is received on the RX1 pin and drives the data  
recovery block. The data recovery block is actually a  
high-speed shifter, operating at x16 times the baud  
rate, whereas the main receive serial shifter operates  
at the bit rate or at FOSC. This mode would typically be  
used in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGH1:SPBRG1 registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
To set up an Asynchronous Reception:  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
1. Initialize the SPBRGH1:SPBRG1 registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RC1IP  
bit.  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
3. If interrupts are desired, set enable bit, RC1IE.  
4. If 9-bit reception is desired, set bit, RX9.  
5. Enable the reception by setting bit, CREN.  
7. The RC1IF bit will be set when reception is  
complete. The interrupt will be Acknowledged if  
the RC1IE and GIE bits are set.  
6. Flag bit, RC1IF, will be set when reception is  
complete and an interrupt will be generated if  
enable bit, RC1IE, was set.  
8. Read the RCSTA1 register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
7. Read the RCSTA1 register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read RCREG1 to determine if the device is  
being addressed.  
8. Read the 8-bit received data by reading the  
RCREG1 register.  
10. If any error occurred, clear the CREN bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
9. If any error occurred, clear the error by clearing  
enable bit, CREN.  
10. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 19-6:  
EUSART RECEIVE BLOCK DIAGRAM  
CREN  
OERR  
FERR  
x64 Baud Rate CLK  
64  
RSR Register  
  
MSb  
Stop  
LSb  
Start  
BRG16  
SPBRGH1 SPBRG1  
or  
16  
(8)  
7
1
0
or  
Baud Rate Generator  
4  
RX9  
Pin Buffer  
and Control  
Data  
Recovery  
RX1  
RX9D  
RCREG1 Register  
FIFO  
SPEN  
8
Interrupt  
RC1IF  
RC1IE  
Data Bus  
DS39933D-page 266  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 19-7:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX1 (pin)  
bit 0 bit 1  
bit 7/8  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
bit 7/8  
Rcv Shift Reg  
Rcv Buffer Reg  
Word 2  
RCREG1  
Word 1  
RCREG1  
RCREG1  
Read Rcv  
Buffer Reg  
RC1IF  
(Interrupt Flag)  
OERR bit  
CREN bit  
Note: This timing diagram shows three words appearing on the RX1 input. The RCREG1 (Receive Buffer register) is read after the third word  
causing the OERR (Overrun) bit to be set.  
TABLE 19-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on Page  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
CREN  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
INT0IF  
RBIF  
59  
62  
62  
62  
61  
61  
61  
63  
61  
61  
ADIF  
ADIE  
ADIP  
RX9  
RC1IF  
RC1IE  
RC1IP  
SREN  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA1  
RCREG1  
TXSTA1  
SPEN  
FERR  
OERR  
RX9D  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON1 ABDOVF  
RCIDL  
RXDTP  
TXCKP  
ABDEN  
SPBRGH1  
SPBRG1  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
2010 Microchip Technology Inc.  
DS39933D-page 267  
PIC18F87J90 FAMILY  
End-Of-Character (EOF) and cause data or framing  
errors. Therefore, to work properly, the initial character  
in the transmission must be all ‘0’s. This can be 00h  
(8 bytes) for standard RS-232 devices or 000h (12 bits)  
for LIN/J2602 bus.  
19.3.4  
AUTO-WAKE-UP ON SYNC BREAK  
CHARACTER  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper byte reception cannot be per-  
formed. The auto-wake-up feature allows the controller  
to wake-up, due to activity on the RX1/DT1 line, while  
the EUSART is operating in Asynchronous mode.  
Oscillator start-up time must also be considered,  
especially in applications using oscillators with longer  
start-up intervals (i.e., XT or HS mode). The Sync  
Break (or Wake-up Signal) character must be of  
sufficient length and be followed by a sufficient interval  
to allow enough time for the selected oscillator to start  
and provide proper initialization of the EUSART.  
The auto-wake-up feature is enabled by setting the  
WUE bit (BAUDCON<1>). Once set, the typical receive  
sequence on RX1/DT1 is disabled and the EUSART  
remains in an Idle state, monitoring for a wake-up event  
independent of the CPU mode. A wake-up event  
consists of a high-to-low transition on the RX1/DT1  
line. (This coincides with the start of a Sync Break or a  
Wake-up Signal character for the LIN/J2602 protocol.)  
19.3.4.2  
Special Considerations Using  
the WUE Bit  
The timing of WUE and RC1IF events may cause some  
confusion when it comes to determining the validity of  
received data. As noted, setting the WUE bit places the  
EUSART in an Idle mode. The wake-up event causes  
a receive interrupt by setting the RC1IF bit. The WUE  
bit is cleared after this when a rising edge is seen on  
RX1/DT1. The interrupt condition is then cleared by  
reading the RCREG1 register. Ordinarily, the data in  
RCREG1 will be dummy data and should be discarded.  
Following a wake-up event, the module generates an  
RC1IF interrupt. The interrupt is generated synchro-  
nously to the Q clocks in normal operating modes  
(Figure 19-8), and asynchronously, if the device is in  
Sleep mode (Figure 19-9). The interrupt condition is  
cleared by reading the RCREG1 register.  
The WUE bit is automatically cleared once a low-to-high  
transition is observed on the RX1 line following the  
wake-up event. At this point, the EUSART module is in  
Idle mode and returns to normal operation. This signals  
to the user that the Sync Break event is over.  
The fact that the WUE bit has been cleared (or is still  
set), and the RC1IF flag is set, should not be used as  
an indicator of the integrity of the data in RCREG1.  
Users should consider implementing a parallel method  
in firmware to verify received data integrity.  
19.3.4.1  
Special Considerations Using  
Auto-Wake-up  
To assure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process. If  
a receive operation is not occurring, the WUE bit may  
then be set just prior to entering the Sleep mode.  
Since auto-wake-up functions by sensing rising edge  
transitions on RX1/DT1, information with any state  
changes before the Stop bit may signal a false  
FIGURE 19-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
WUE bit(1)  
RX1/DT1 Line  
RC1IF  
Bit set by user  
Auto-Cleared  
Cleared due to user read of RCREG1  
Note 1: The EUSART remains in Idle while the WUE bit is set.  
FIGURE 19-9:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
WUE bit(2)  
RX1/DT1 Line  
RC1IF  
Bit set by user  
Auto-Cleared  
Note 1  
Cleared due to user read of RCREG1  
Sleep Ends  
SLEEPCommand Executed  
Note 1: If the wake-up event requires long oscillator warm-up time, the auto-clear of the WUE bit can occur while the stposc signal is still active.  
This sequence should not depend on the presence of Q clocks.  
2: The EUSART remains in Idle while the WUE bit is set.  
DS39933D-page 268  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
3. Load the TXREG1 with a dummy character to  
initiate transmission (the value is ignored).  
19.3.5  
BREAK CHARACTER SEQUENCE  
The Enhanced USART module has the capability of  
sending the special Break character sequences that are  
required by the LIN/J2602 bus standard. The Break  
character transmit consists of a Start bit, followed by  
twelve ‘0’ bits and a Stop bit. The Frame Break character  
is sent whenever the SENDB and TXEN bits  
(TXSTA<3> and TXSTA<5>) are set while the Transmit  
Shift register is loaded with data. Note that the value of  
data written to TXREG1 will be ignored and all ‘0’s will be  
transmitted.  
4. Write ‘55h’ to TXREG1 to load the Sync  
character into the transmit FIFO buffer.  
5. After the Break has been sent, the SENDB bit is  
reset by hardware. The Sync character now  
transmits in the preconfigured mode.  
When the TXREG1 becomes empty, as indicated by the  
TX1IF, the next data byte can be written to TXREG1.  
19.3.6  
RECEIVING A BREAK CHARACTER  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN/J2602 specification).  
The Enhanced USART module can receive a Break  
character in two ways.  
The first method forces configuration of the baud rate  
at a frequency of 9/13 the typical speed. This allows for  
the Stop bit transition to be at the correct sampling  
location (13 bits for Break versus Start bit and 8 data  
bits for typical data).  
Note that the data value written to the TXREG1 for the  
Break character is ignored. The write simply serves the  
purpose of initiating the proper sequence.  
The second method uses the auto-wake-up feature  
described in Section 19.3.4 “Auto-Wake-up On Sync  
Break Character”. By enabling this feature, the  
EUSART will sample the next two transitions on  
RX1/DT1, cause an RC1IF interrupt and receive the  
next data byte followed by another interrupt.  
The TRMT bit indicates when the transmit operation is  
active or Idle, just as it does during normal transmis-  
sion. See Figure 19-10 for the timing of the Break  
character sequence.  
19.3.5.1  
Break and Sync Transmit Sequence  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Rate Detect  
feature. For both methods, the user can set the ABD bit  
once the TX1IF interrupt is observed.  
The following sequence will send a message frame  
header made up of a Break, followed by an Auto-Baud  
Sync byte. This sequence is typical of a LIN/J2602 bus  
master.  
1. Configure the EUSART for the desired mode.  
2. Set the TXEN and SENDB bits to set up the  
Break character.  
FIGURE 19-10:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREG1  
Dummy Write  
BRG Output  
(Shift Clock)  
TX1 (pin)  
Start bit  
bit 0  
bit 1  
Break  
bit 11  
Stop bit  
TX1IF bit  
(Transmit Buffer  
Reg. Empty Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB sampled here  
Auto-Cleared  
SENDB  
(Transmit Shift  
Reg. Empty Flag)  
2010 Microchip Technology Inc.  
DS39933D-page 269  
PIC18F87J90 FAMILY  
Once the TXREG1 register transfers the data to the  
TSR register (occurs in one TCYCLE), the TXREG1 is  
empty and the TX1IF flag bit (PIR1<4>) is set. The  
interrupt can be enabled or disabled by setting or clear-  
ing the interrupt enable bit, TX1IE (PIE1<4>). TX1IF is  
set regardless of the state of enable bit TX1IE; it cannot  
be cleared in software. It will reset only when new data  
is loaded into the TXREG1 register.  
19.4 EUSART Synchronous  
Master Mode  
The Synchronous Master mode is entered by setting  
the CSRC bit (TXSTA<7>). In this mode, the data is  
transmitted in a half-duplex manner (i.e., transmission  
and reception do not occur at the same time). When  
transmitting data, the reception is inhibited and vice  
versa. Synchronous mode is entered by setting bit,  
SYNC (TXSTA<4>). In addition, enable bit, SPEN  
(RCSTA1<7>), is set in order to configure the TX1 and  
RX1 pins to CK1 (clock) and DT1 (data) lines,  
respectively.  
While flag bit, TX1IF, indicates the status of the TXREG1  
register, another bit, TRMT (TXSTA<1>), shows the  
status of the TSR register. TRMT is a read-only bit which  
is set when the TSR is empty. No interrupt logic is tied to  
this bit so the user has to poll this bit in order to deter-  
mine if the TSR register is empty. The TSR is not  
mapped in data memory so it is not available to the user.  
The Master mode indicates that the processor trans-  
mits the master clock on the CK1 line. Clock polarity is  
selected with the SCKP bit (BAUDCON<4>). Setting  
SCKP sets the Idle state on CK1 as high, while clearing  
the bit, sets the Idle state as low. This option is provided  
to support Microwire devices with this module.  
To set up a Synchronous Master Transmission:  
1. Initialize the SPBRGH1:SPBRG1 registers for  
the appropriate baud rate. Set or clear the  
BRG16 bit, as required, to achieve the desired  
baud rate.  
19.4.1  
EUSART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
The EUSART transmitter block diagram is shown in  
Figure 19-3. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer Register,  
TXREG1. The TXREG1 register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG1 (if available).  
3. If interrupts are desired, set enable bit, TX1IE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting bit, TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
7. Start transmission by loading data to the  
TXREG1 register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 19-11:  
SYNCHRONOUS TRANSMISSION  
Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4  
Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4 Q1Q2Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX1/DT1/SEG28  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
bit 7  
Word 2  
Word 1  
RC6/TX1/CK1/SEG27 pin  
(SCKP = 0)  
RC6/TX1/CK1/SEG27 pin  
(SCKP = 1)  
Write to  
TXREG1 Reg  
Write Word 1  
Write Word 2  
TX1IF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note: Sync Master mode, SPBRG1 = 0; continuous transmission of two 8-bit words.  
DS39933D-page 270  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 19-12:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX1/DT1/SEG28 pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
RC6/TX1/CK1/SEG27 pin  
Write to  
TXREG1 Reg  
TX1IF bit  
TRMT bit  
TXEN bit  
TABLE 19-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
CREN  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
INT0IF  
RBIF  
59  
62  
62  
62  
61  
61  
61  
63  
63  
61  
62  
ADIF  
ADIE  
ADIP  
RX9  
RC1IF  
RC1IE  
RC1IP  
SREN  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA1  
TXREG1  
TXSTA1  
SPEN  
FERR  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON1 ABDOVF  
RCIDL  
RXDTP  
TXCKP  
ABDEN  
SPBRGH1 EUSART Baud Rate Generator Register High Byte  
SPBRG1  
LATG  
EUSART Baud Rate Generator Register Low Byte  
U2OD U1OD LATG4 LATG3  
LATG2  
LATG1  
LATG0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
2010 Microchip Technology Inc.  
DS39933D-page 271  
PIC18F87J90 FAMILY  
3. Ensure bits, CREN and SREN, are clear.  
4. If interrupts are desired, set enable bit, RC1IE.  
5. If 9-bit reception is desired, set bit, RX9.  
19.4.2  
EUSART SYNCHRONOUS  
MASTER RECEPTION  
Once Synchronous mode is selected, reception is  
enabled by setting either the Single Receive Enable bit,  
SREN (RCSTA1<5>), or the Continuous Receive  
Enable bit, CREN (RCSTA1<4>). Data is sampled on  
the RX1 pin on the falling edge of the clock.  
6. If a single reception is required, set bit, SREN.  
For continuous reception, set bit, CREN.  
7. Interrupt flag bit, RC1IF, will be set when recep-  
tion is complete and an interrupt will be generated  
if the enable bit, RC1IE, was set.  
If enable bit, SREN, is set, only a single word is  
received. If enable bit, CREN, is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
then CREN takes precedence.  
8. Read the RCSTA1 register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG1 register.  
To set up a Synchronous Master Reception:  
1. Initialize the SPBRGH1:SPBRG1 registers for the  
appropriate baud rate. Set or clear the BRG16 bit,  
as required, to achieve the desired baud rate.  
10. If any error occurred, clear the error by clearing  
bit, CREN.  
11. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
2. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
FIGURE 19-13:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX1/DT1/  
SEG28 Pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
RC6/TX1/CK1/SEG27  
Pin (SCKP = 0)  
RC6/TX1/CK1/SEG27  
Pin (SCKP = 1)  
Write to  
SREN bit  
SREN bit  
CREN bit  
0’  
0’  
RC1IF bit  
(Interrupt)  
Read  
RCREG1  
Note: Timing diagram demonstrates Sync Master mode with bit, SREN = 1, and bit, BRGH = 0.  
TABLE 19-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
CREN  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
INT0IF  
RBIF  
59  
62  
62  
62  
61  
61  
61  
63  
63  
61  
ADIF  
ADIE  
ADIP  
RX9  
RC1IF  
RC1IE  
RC1IP  
SREN  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA1  
RCREG1  
TXSTA1  
SPEN  
FERR  
OERR  
RX9D  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON1 ABDOVF  
RCIDL  
RXDTP  
TXCKP  
ABDEN  
SPBRGH1 EUSART Baud Rate Generator Register High Byte  
SPBRG1 EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
DS39933D-page 272  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
To set up a Synchronous Slave Transmission:  
19.5 EUSART Synchronous Slave Mode  
1. Enable the synchronous slave serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
Synchronous Slave mode is entered by clearing bit,  
CSRC (TXSTA<7>). This mode differs from the  
Synchronous Master mode in that the shift clock is  
supplied externally at the CK1 pin (instead of being  
supplied internally in Master mode). This allows the  
device to transfer or receive data while in any  
Low-Power mode.  
2. Clear bits, CREN and SREN.  
3. If interrupts are desired, set enable bit, TX1IE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting enable bit,  
TXEN.  
19.5.1  
EUSART SYNCHRONOUS SLAVE  
TRANSMIT  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
The operation of the Synchronous Master and Slave  
modes is identical except in the case of Sleep mode.  
7. Start transmission by loading data to the  
TXREG1 register.  
If two words are written to the TXREG1 and then the  
SLEEPinstruction is executed, the following will occur:  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in the TXREG1  
register.  
c) Flag bit, TX1IF, will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG1 register will transfer the second  
word to the TSR and flag bit, TX1IF, will now be  
set.  
e) If enable bit, TX1IE, is set, the interrupt will wake  
the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
TABLE 19-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
CREN  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
INT0IF  
RBIF  
59  
62  
62  
62  
61  
61  
61  
63  
63  
61  
62  
ADIF  
ADIE  
ADIP  
RX9  
RC1IF  
RC1IE  
RC1IP  
SREN  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA1  
TXREG1  
TXSTA1  
SPEN  
FERR  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON1 ABDOVF  
RCIDL  
RXDTP  
TXCKP  
ABDEN  
SPBRGH1 EUSART Baud Rate Generator Register High Byte  
SPBRG1  
LATG  
EUSART Baud Rate Generator Register Low Byte  
U2OD U1OD LATG4 LATG3  
LATG2  
LATG1  
LATG0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
2010 Microchip Technology Inc.  
DS39933D-page 273  
PIC18F87J90 FAMILY  
To set up a Synchronous Slave Reception:  
19.5.2  
EUSART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical except in the case of Sleep or any  
Idle mode, and bit, SREN, which is a “don’t care” in  
Slave mode.  
2. If interrupts are desired, set enable bit, RC1IE.  
3. If 9-bit reception is desired, set bit, RX9.  
4. To enable reception, set enable bit, CREN.  
If receive is enabled by setting the CREN bit prior to  
entering Sleep or any Idle mode, then a word may be  
received while in this Low-Power mode. Once the word  
is received, the RSR register will transfer the data to the  
RCREG1 register. If the RC1IE enable bit is set, the  
interrupt generated will wake the chip from the  
Low-Power mode. If the global interrupt is enabled, the  
program will branch to the interrupt vector.  
5. Flag bit, RC1IF, will be set when reception is  
complete. An interrupt will be generated if  
enable bit, RC1IE, was set.  
6. Read the RCSTA1 register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG1 register.  
8. If any error occurred, clear the error by clearing  
bit, CREN.  
9. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
TABLE 19-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
CREN  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
INT0IF  
RBIF  
59  
62  
62  
62  
61  
61  
61  
63  
63  
61  
ADIF  
ADIE  
ADIP  
RX9  
RC1IF  
RC1IE  
RC1IP  
SREN  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA1  
RCREG1  
TXSTA1  
SPEN  
FERR  
OERR  
RX9D  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON1 ABDOVF  
RCIDL  
RXDTP  
TXCKP  
ABDEN  
SPBRGH1 EUSART Baud Rate Generator Register High Byte  
SPBRG1 EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
DS39933D-page 274  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
20.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
Note:  
The AUSART control will automatically  
reconfigure the pin from input to output as  
needed.  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (AUSART)  
The driver for the TX2 output pin can also be optionally  
configured as an open-drain output. This feature allows  
the voltage level on the pin to be pulled to a higher level  
through an external pull-up resistor, and allows the  
output to communicate with external circuits without the  
need for additional level shifters.  
The Addressable Universal Synchronous Asynchro-  
nous Receiver Transmitter (AUSART) module is very  
similar in function to the Enhanced USART module,  
discussed in the previous chapter. It is provided as an  
additional channel for serial communication with  
external devices, for those situations that do not require  
auto-baud detection or LIN/J2602 bus support.  
The open-drain output option is controlled by the U2OD  
bit (LATG<7>). Setting the bit configures the pin for  
open-drain operation.  
The AUSART can be configured in the following modes:  
• Asynchronous (full-duplex)  
20.1 Control Registers  
• Synchronous – Master (half-duplex)  
• Synchronous – Slave (half-duplex)  
The operation of the Addressable USART module is  
controlled through two registers, TXSTA2 and  
RXSTA2. These are detailed in Register 20-1 and  
Register 20-2, respectively.  
The pins of the AUSART module are multiplexed with  
the functions of PORTG (RG1/TX2/CK2 and  
RG2/RX2/DT2/VLCAP1, respectively). In order to  
configure these pins as an AUSART:  
• bit, SPEN (RCSTA2<7>), must be set (= 1)  
• bit, TRISG<2>, must be set (= 1)  
• bit, TRISG<1>, must be cleared (= 0) for  
Asynchronous and Synchronous Master modes  
• bit, TRISG<1>, must be set (= 1) for Synchronous  
Slave mode  
2010 Microchip Technology Inc.  
DS39933D-page 275  
PIC18F87J90 FAMILY  
REGISTER 20-1: TXSTA2: AUSART TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN(1)  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-Bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit(1)  
1= Transmit enabled  
0= Transmit disabled  
bit 4  
SYNC: AUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
DS39933D-page 276  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 20-2: RCSTA2: AUSART RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX2/DT2 and TX2/CK2 (TXEN = 1) pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-Bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 9-bit (RX9 = 0):  
Don’t care.  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be cleared by reading the RCREGx register and receiving the next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
2010 Microchip Technology Inc.  
DS39933D-page 277  
PIC18F87J90 FAMILY  
Writing a new value to the SPBRG2 register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before outputting  
the new baud rate.  
20.2 AUSART Baud Rate Generator  
(BRG)  
The BRG is a dedicated, 8-bit generator that supports  
both the Asynchronous and Synchronous modes of the  
AUSART.  
20.2.1  
OPERATION IN POWER-MANAGED  
MODES  
The SPBRG2 register controls the period of a  
free-running timer. In Asynchronous mode, the BRGH  
bit (TXSTA<2>) also controls the baud rate. In  
Synchronous mode, BRGH is ignored. Table 20-1  
shows the formula for computation of the baud rate for  
different AUSART modes, which only apply in Master  
mode (internally generated clock).  
The device clock is used to generate the desired baud  
rate. When one of the power-managed modes is  
entered, the new clock source may be operating at a  
different frequency. This may require an adjustment to  
the value in the SPBRG2 register.  
20.2.2  
SAMPLING  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRG2 register can be calculated  
using the formulas in Table 20-1. From this, the error in  
baud rate can be determined. An example calculation is  
shown in Example 20-1. Typical baud rates and error  
values for the various Asynchronous modes are shown  
in Table 20-2. It may be advantageous to use the high  
baud rate (BRGH = 1) to reduce the baud rate error, or  
achieve a slow baud rate for a fast oscillator frequency.  
The data on the RX2 pin is sampled three times by a  
majority detect circuit to determine if a high or a low  
level is present at the RX2 pin.  
TABLE 20-1: BAUD RATE FORMULAS  
Configuration Bits  
BRG/AUSART Mode  
Baud Rate Formula  
SYNC  
BRGH  
0
0
1
0
1
x
Asynchronous  
Asynchronous  
Synchronous  
FOSC/[64 (n + 1)]  
FOSC/[16 (n + 1)]  
FOSC/[4 (n + 1)]  
Legend: x= Don’t care, n = Value of SPBRG2 register  
EXAMPLE 20-1:  
CALCULATING BAUD RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, BRGH = 0:  
Desired Baud Rate  
Solving for SPBRG2:  
X
=
FOSC/(64 ([SPBRG2] + 1))  
=
=
=
((FOSC/Desired Baud Rate)/64) – 1  
((16000000/9600)/64) – 1  
[25.042] = 25  
Calculated Baud Rate = 16000000/(64 (25 + 1))  
=
=
=
9615  
Error  
(Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate  
(9615 – 9600)/9600 = 0.16%  
TABLE 20-2: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR  
Reset  
Values on  
Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTA2  
RCSTA2  
SPBRG2  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SENDB  
ADDEN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
64  
64  
64  
AUSART Baud Rate Generator Register  
Legend: Shaded cells are not used by the BRG.  
DS39933D-page 278  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES  
BRGH = 0  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
%
Error  
value  
Rate  
(K)  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
255  
129  
31  
15  
4
129  
64  
15  
7
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
1.221  
1.73  
0.16  
1.73  
1.73  
8.51  
-9.58  
1.202  
2.404  
9.766  
19.531  
52.083  
78.125  
0.16  
0.16  
1.73  
1.73  
-9.58  
-32.18  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.404  
9.6  
9.766  
19.2  
57.6  
115.2  
19.531  
62.500  
104.167  
2
2
1
BRGH = 0  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.16  
0.16  
207  
51  
25  
6
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
103  
25  
12  
0.300  
1.201  
-0.16  
-0.16  
51  
12  
2.4  
2.404  
0.16  
9.6  
8.929  
-6.99  
8.51  
19.2  
57.6  
115.2  
20.833  
62.500  
62.500  
2
8.51  
0
-45.75  
0
BRGH = 1  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.403  
9.615  
19.230  
55.555  
-0.16  
-0.16  
-0.16  
3.55  
207  
51  
25  
8
9.6  
9.766  
19.231  
58.140  
113.636  
1.73  
0.16  
0.94  
-1.36  
255  
129  
42  
9.615  
19.231  
56.818  
113.636  
0.16  
0.16  
-1.36  
-1.36  
129  
64  
21  
10  
19.2  
57.6  
115.2  
21  
BRGH = 1  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
207  
103  
25  
12  
3
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
1.202  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
2010 Microchip Technology Inc.  
DS39933D-page 279  
PIC18F87J90 FAMILY  
Once the TXREG2 register transfers the data to the  
TSR register (occurs in one TCY), the TXREG2 register  
is empty and the TX2IF flag bit (PIR3<4>) is set. This  
interrupt can be enabled or disabled by setting or  
clearing the interrupt enable bit, TX2IE (PIE3<4>).  
TX2IF will be set regardless of the state of TX2IE; it  
cannot be cleared in software. TX2IF is also not  
cleared immediately upon loading TXREG2, but  
becomes valid in the second instruction cycle following  
the load instruction. Polling TX2IF immediately  
following a load of TXREG2 will return invalid results.  
20.3 AUSART Asynchronous Mode  
The Asynchronous mode of operation is selected by  
clearing the SYNC bit (TXSTA2<4>). In this mode, the  
AUSART uses standard Non-Return-to-Zero (NRZ)  
format (one Start bit, eight or nine data bits and one  
Stop bit). The most common data format is 8 bits. An  
on-chip, dedicated, 8-bit Baud Rate Generator can be  
used to derive standard baud rate frequencies from the  
oscillator.  
The AUSART transmits and receives the LSb first. The  
AUSART’s transmitter and receiver are functionally  
independent but use the same data format and baud  
rate. The Baud Rate Generator produces a clock,  
either x16 or x64 of the bit shift rate, depending on the  
BRGH bit (TXSTA2<2>). Parity is not supported by the  
hardware but can be implemented in software and  
stored as the 9th data bit.  
While TX2IF indicates the status of the TXREG2  
register, another bit, TRMT (TXSTA2<1>), shows the  
status of the TSR register. TRMT is a read-only bit  
which is set when the TSR register is empty. No inter-  
rupt logic is tied to this bit so the user has to poll this bit  
in order to determine if the TSR register is empty.  
Note 1: The TSR register is not mapped in data  
When operating in Asynchronous mode, the AUSART  
module consists of the following important elements:  
memory so it is not available to the user.  
2: Flag bit, TX2IF, is set when enable bit,  
• Baud Rate Generator  
• Sampling Circuit  
TXEN, is set.  
To set up an Asynchronous Transmission:  
• Asynchronous Transmitter  
• Asynchronous Receiver  
1. Initialize the SPBRG2 register for the appropriate  
baud rate. Set or clear the BRGH bit, as required,  
to achieve the desired baud rate.  
20.3.1  
AUSART ASYNCHRONOUS  
TRANSMITTER  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
The AUSART transmitter block diagram is shown in  
Figure 20-1. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer Register,  
TXREG2. The TXREG2 register is loaded with data in  
software. The TSR register is not loaded until the Stop  
bit has been transmitted from the previous load. As  
soon as the Stop bit is transmitted, the TSR is loaded  
with new data from the TXREG2 register (if available).  
3. If interrupts are desired, set enable bit, TX2IE.  
4. If 9-bit transmission is desired, set transmit bit,  
TX9. Can be used as address/data bit.  
5. Enable the transmission by setting bit, TXEN,  
which will also set bit, TX2IF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
7. Load data to the TXREG2 register (starts  
transmission).  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 20-1:  
AUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TX2IF  
TXREG2 Register  
8
TX2IE  
MSb  
(8)  
LSb  
Pin Buffer  
and Control  
TX2 pin  
0
  
TSR Register  
Interrupt  
Baud Rate CLK  
TXEN  
TRMT  
SPEN  
SPBRG2  
Baud Rate Generator  
TX9  
TX9D  
DS39933D-page 280  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 20-2:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG2  
Word 1  
BRG Output  
(Shift Clock)  
TX2 (pin)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TX2IF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 20-3:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG2  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TX2 (pin)  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
1 TCY  
Word 1  
TX2IF bit  
(Interrupt Reg. Flag)  
1 TCY  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 20-4: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR3  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
INT0IF  
RBIF  
59  
62  
62  
62  
64  
64  
64  
64  
62  
LCDIF  
LCDIE  
LCDIP  
RX9  
RC2IF  
RC2IE  
RC2IP  
SREN  
CTMUIF CCP2IF  
CTMUIE CCP2IE  
CTMUIP CCP2IP  
CCP1IF  
RTCCIF  
PIE3  
CCP1IE RTCCIE  
CCP1IP RTCCIP  
IPR3  
RCSTA2  
TXREG2  
TXSTA2  
SPBRG2  
LATG  
SPEN  
ADDEN  
FERR  
BRGH  
LATG2  
OERR  
TRMT  
LATG1  
RX9D  
AUSART Transmit Register  
CSRC TX9 TXEN  
SYNC  
TX9D  
AUSART Baud Rate Generator Register  
U2OD U1OD LATG4  
LATG3  
LATG0  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
2010 Microchip Technology Inc.  
DS39933D-page 281  
PIC18F87J90 FAMILY  
20.3.2  
AUSART ASYNCHRONOUS  
RECEIVER  
20.3.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 20-4.  
The data is received on the RX2 pin and drives the data  
recovery block. The data recovery block is actually a  
high-speed shifter operating at x16 times the baud rate,  
whereas the main receive serial shifter operates at the  
bit rate or at FOSC. This mode would typically be used  
in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRG2 register for the appropriate  
baud rate. Set or clear the BRGH and BRG16  
bits, as required, to achieve the desired baud  
rate.  
To set up an Asynchronous Reception:  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
1. Initialize the SPBRG2 register for the appropriate  
baud rate. Set or clear the BRGH bit, as required,  
to achieve the desired baud rate.  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RC2IP  
bit.  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
3. If interrupts are desired, set enable bit, RC2IE.  
4. If 9-bit reception is desired, set bit, RX9.  
5. Enable the reception by setting bit, CREN.  
7. The RC2IF bit will be set when reception is  
complete. The interrupt will be Acknowledged if  
the RC2IE and GIE bits are set.  
6. Flag bit, RC2IF, will be set when reception is  
complete and an interrupt will be generated if  
enable bit, RC2IE, was set.  
8. Read the RCSTA2 register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
7. Read the RCSTA2 register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read RCREG2 to determine if the device is  
being addressed.  
8. Read the 8-bit received data by reading the  
RCREG2 register.  
10. If any error occurred, clear the CREN bit.  
9. If any error occurred, clear the error by clearing  
enable bit, CREN.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
10. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 20-4:  
AUSART RECEIVE BLOCK DIAGRAM  
CREN  
OERR  
FERR  
x64 Baud Rate CLK  
SPBRG2  
64  
or  
MSb  
Stop  
RSR Register  
  
LSb  
Start  
16  
(8)  
7
1
0
or  
4  
Baud Rate Generator  
RX9  
Pin Buffer  
and Control  
Data  
Recovery  
RX2  
RX9D  
RCREG2 Register  
FIFO  
SPEN  
8
Interrupt  
RC2IF  
RC2IE  
Data Bus  
DS39933D-page 282  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 20-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX2 (pin)  
bit 0 bit 1  
bit 7/8  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
bit 7/8  
Rcv Shift Reg  
Rcv Buffer Reg  
Word 2  
RCREG2  
Word 1  
RCREG2  
Read Rcv  
Buffer Reg  
RCREG2  
RC2IF  
(Interrupt Flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX2 input. The RCREG2 (Receive Buffer Register 2) is read after the third  
word causing the OERR (Overrun) bit to be set.  
TABLE 20-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on Page  
INTCON  
PIR3  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
INT0IF  
RBIF  
59  
62  
62  
62  
64  
64  
64  
64  
LCDIF  
LCDIE  
LCDIP  
RX9  
RC2IF  
RC2IE  
RC2IP  
SREN  
CTMUIF CCP2IF  
CCP1IF RTCCIF  
PIE3  
CTMUIE CCP2IE CCP1IE RTCCIE  
CTMUIP CCP2IP CCP1IP RTCCIP  
IPR3  
RCSTA2  
RCREG2  
TXSTA2  
SPBRG2  
SPEN  
ADDEN  
FERR  
OERR  
RX9D  
AUSART Receive Register  
CSRC TX9 TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
AUSART Baud Rate Generator Register  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
2010 Microchip Technology Inc.  
DS39933D-page 283  
PIC18F87J90 FAMILY  
Once the TXREG2 register transfers the data to the  
TSR register (occurs in one TCYCLE), the TXREG2 is  
empty and the TX2IF flag bit (PIR3<4>) is set. The  
interrupt can be enabled or disabled by setting or clear-  
ing the interrupt enable bit, TX2IE (PIE3<4>). TX2IF is  
set regardless of the state of enable bit, TX2IE; it  
cannot be cleared in software. It will reset only when  
new data is loaded into the TXREG2 register.  
20.4 AUSART Synchronous  
Master Mode  
The Synchronous Master mode is entered by setting  
the CSRC bit (TXSTA2<7>). In this mode, the data is  
transmitted in a half-duplex manner (i.e., transmission  
and reception do not occur at the same time). When  
transmitting data, the reception is inhibited and vice  
versa. Synchronous mode is entered by setting bit,  
SYNC (TXSTA2<4>). In addition, enable bit, SPEN  
(RCSTA2<7>), is set in order to configure the TX2 and  
RX2 pins to CK2 (clock) and DT2 (data) lines,  
respectively.  
While flag bit, TX2IF, indicates the status of the TXREG2  
register, another bit, TRMT (TXSTA2<1>), shows the  
status of the TSR register. TRMT is a read-only bit which  
is set when the TSR is empty. No interrupt logic is tied to  
this bit so the user has to poll this bit in order to deter-  
mine if the TSR register is empty. The TSR is not  
mapped in data memory so it is not available to the user.  
The Master mode indicates that the processor transmits  
the master clock on the CK2 line.  
To set up a Synchronous Master Transmission:  
20.4.1  
AUSART SYNCHRONOUS MASTER  
TRANSMISSION  
1. Initialize the SPBRG2 register for the appropriate  
baud rate.  
The AUSART transmitter block diagram is shown in  
Figure 20-1. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer Register,  
TXREG2. The TXREG2 register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG2 (if available).  
2. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
3. If interrupts are desired, set enable bit, TX2IE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting bit, TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
7. Start transmission by loading data to the  
TXREG2 register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 20-6:  
SYNCHRONOUS TRANSMISSION  
Q1 Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3Q4 Q1 Q2Q3Q4 Q1 Q2Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RX2/DT2 pin  
TX2/CK2 pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
bit 7  
Word 2  
Word 1  
Write to  
TXREG2 Reg  
Write Word 1  
Write Word 2  
TX2IF bit  
(Interrupt Flag)  
TRMT bit  
TXEN bit  
1’  
1’  
Note: Sync Master mode, SPBRG2 = 0; continuous transmission of two 8-bit words.  
DS39933D-page 284  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 20-7:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RX2/DT2 pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
TX2/CK2 pin  
Write to  
TXREG2 Reg  
TX2IF bit  
TRMT bit  
TXEN bit  
TABLE 20-6: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR3  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
INT0IF  
RBIF  
59  
62  
62  
62  
64  
64  
64  
64  
62  
LCDIF  
LCDIE  
LCDIP  
RX9  
RC2IF  
RC2IE  
RC2IP  
SREN  
CTMUIF CCP2IF  
CCP1IF RTCCIF  
PIE3  
CTMUIE CCP2IE CCP1IE RTCCIE  
CTMUIP CCP2IP CCP1IP RTCCIP  
IPR3  
RCSTA2  
TXREG2  
TXSTA2  
SPBRG2  
LATG  
SPEN  
ADDEN  
FERR  
BRGH  
LATG2  
OERR  
TRMT  
LATG1  
RX9D  
AUSART Transmit Register  
CSRC TX9 TXEN  
SYNC  
TX9D  
AUSART Baud Rate Generator Register  
U2OD U1OD LATG4  
LATG3  
LATG0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
2010 Microchip Technology Inc.  
DS39933D-page 285  
PIC18F87J90 FAMILY  
4. If interrupts are desired, set enable bit, RC2IE.  
5. If 9-bit reception is desired, set bit, RX9.  
20.4.2  
AUSART SYNCHRONOUS  
MASTER RECEPTION  
6. If a single reception is required, set bit, SREN.  
For continuous reception, set bit, CREN.  
Once Synchronous mode is selected, reception is  
enabled by setting either the Single Receive Enable bit,  
SREN (RCSTA2<5>), or the Continuous Receive  
Enable bit, CREN (RCSTA2<4>). Data is sampled on  
the RX2 pin on the falling edge of the clock.  
7. Interrupt flag bit, RC2IF, will be set when recep-  
tion is complete and an interrupt will be generated  
if the enable bit, RC2IE, was set.  
8. Read the RCSTA2 register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
If enable bit, SREN, is set, only a single word is  
received. If enable bit, CREN, is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
then CREN takes precedence.  
9. Read the 8-bit received data by reading the  
RCREG2 register.  
To set up a Synchronous Master Reception:  
10. If any error occurred, clear the error by clearing  
bit, CREN.  
1. Initialize the SPBRG2 register for the appropriate  
baud rate.  
11. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
2. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
3. Ensure bits, CREN and SREN, are clear.  
FIGURE 20-8:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RX2/DT2 pin  
TX2/CK2 pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
Write to  
bit SREN  
SREN bit  
CREN bit  
0’  
0’  
RC2IF bit  
(Interrupt)  
Read  
RCREG2  
Note: Timing diagram demonstrates Sync Master mode with bit, SREN = 1, and bit, BRGH = 0.  
TABLE 20-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR3  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
CCP2IF  
CCP2IE  
CCP2IP  
FERR  
INT0IF  
CCP1IF  
CCP1IE  
CCP1IP  
OERR  
RBIF  
59  
62  
62  
62  
64  
64  
64  
64  
LCDIF  
LCDIE  
LCDIP  
RX9  
RC2IF  
RC2IE  
RC2IP  
SREN  
CTMUIF  
CTMUIE  
CTMUIP  
ADDEN  
RTCCIF  
RTCCIE  
RTCCIP  
RX9D  
PIE3  
IPR3  
RCSTA2  
SPEN  
RCREG2 AUSART Receive Register  
TXSTA2 CSRC TX9 TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
SPBRG2 AUSART Baud Rate Generator Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
DS39933D-page 286  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
To set up a Synchronous Slave Transmission:  
20.5 AUSART Synchronous Slave Mode  
1. Enable the synchronous slave serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
Synchronous Slave mode is entered by clearing bit,  
CSRC (TXSTA2<7>). This mode differs from the  
Synchronous Master mode in that the shift clock is  
supplied externally at the CK2 pin (instead of being  
supplied internally in Master mode). This allows the  
device to transfer or receive data while in any  
Low-Power mode.  
2. Clear bits, CREN and SREN.  
3. If interrupts are desired, set enable bit, TX2IE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting enable bit,  
TXEN.  
20.5.1  
AUSART SYNCHRONOUS  
SLAVE TRANSMIT  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
The operation of the Synchronous Master and Slave  
modes are identical except in the case of the Sleep  
mode.  
7. Start transmission by loading data to the  
TXREG2 register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
If two words are written to the TXREG2 and then the  
SLEEPinstruction is executed, the following will occur:  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in the TXREG2  
register.  
c) Flag bit, TX2IF, will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG2 register will transfer the second  
word to the TSR and flag bit, TX2IF, will now be  
set.  
e) If enable bit, TX2IE, is set, the interrupt will wake  
the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
TABLE 20-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR3  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
INT0IF  
RBIF  
59  
62  
62  
62  
64  
64  
64  
64  
62  
LCDIF  
LCDIE  
LCDIP  
RX9  
RC2IF  
RC2IE  
RC2IP  
SREN  
CTMUIF CCP2IF  
CTMUIE CCP2IE  
CTMUIP CCP2IP  
CCP1IF RTCCIF  
CCP1IE RTCCIE  
CCP1IP RTCCIP  
PIE3  
IPR3  
RCSTA2  
TXREG2  
TXSTA2  
SPBRG2  
LATG  
SPEN  
ADDEN  
FERR  
BRGH  
LATG2  
OERR  
TRMT  
LATG1  
RX9D  
AUSART Transmit Register  
CSRC TX9 TXEN  
SYNC  
TX9D  
AUSART Baud Rate Generator Register  
U2OD U1OD LATG4  
LATG3  
LATG0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
2010 Microchip Technology Inc.  
DS39933D-page 287  
PIC18F87J90 FAMILY  
To set up a Synchronous Slave Reception:  
20.5.2  
AUSART SYNCHRONOUS  
SLAVE RECEPTION  
1. Enable the synchronous master serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of Sleep or any  
Idle mode, and bit, SREN, which is a “don’t care” in  
Slave mode.  
2. If interrupts are desired, set enable bit, RC2IE.  
3. If 9-bit reception is desired, set bit, RX9.  
4. To enable reception, set enable bit, CREN.  
If receive is enabled by setting the CREN bit prior to  
entering Sleep, or any Idle mode, then a word may be  
received while in this Low-Power mode. Once the word  
is received, the RSR register will transfer the data to the  
RCREG2 register; if the RC2IE enable bit is set, the  
interrupt generated will wake the chip from Low-Power  
mode. If the global interrupt is enabled, the program will  
branch to the interrupt vector.  
5. Flag bit, RC2IF, will be set when reception is  
complete. An interrupt will be generated if  
enable bit, RC2IE, was set.  
6. Read the RCSTA2 register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG2 register.  
8. If any error occurred, clear the error by clearing  
bit, CREN.  
9. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
TABLE 20-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR3  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
INT0IF  
RBIF  
59  
62  
62  
62  
64  
64  
64  
64  
LCDIF  
LCDIE  
LCDIP  
RX9  
RC2IF  
RC2IE  
RC2IP  
SREN  
CTMUIF CCP2IF  
CCP1IF  
RTCCIF  
PIE3  
CTMUIE CCP2IE CCP1IE RTCCIE  
CTMUIP CCP2IP CCP1IP RTCCIP  
IPR3  
RCSTA2  
RCREG2  
TXSTA2  
SPBRG2  
SPEN  
ADDEN  
FERR  
OERR  
RX9D  
AUSART Receive Register  
CSRC TX9 TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
AUSART Baud Rate Generator Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
DS39933D-page 288  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The ADCON0 register, shown in Register 21-1,  
controls the operation of the A/D module. The  
ADCON1 register, shown in Register 21-2, configures  
the functions of the port pins. The ADCON2 register,  
shown in Register 21-3, configures the A/D clock  
source, programmed acquisition time and justification.  
21.0 10-BIT ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The Analog-to-Digital (A/D) Converter module has  
12 inputs for all PIC18F87J90 family devices. This  
module allows conversion of an analog input signal to  
a corresponding 10-bit digital number.  
The module has five registers:  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
REGISTER 21-1: ADCON0: A/D CONTROL REGISTER 0  
R/W-0  
U-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
ADCAL  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ADCAL: A/D Calibration bit  
1= Calibration is performed on next A/D conversion  
0= Normal A/D Converter operation (no calibration is performed)  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
CHS<3:0>: Analog Channel Select bits  
0000= Channel 00 (AN0)  
0001= Channel 01 (AN1)  
0010= Channel 02 (AN2)  
0011= Channel 03 (AN3)  
0100= Channel 04 (AN4)  
0101= Channel 05 (AN5)  
0110= Channel 06 (AN6)  
0111= Channel 07 (AN7)  
1000= Channel 08 (AN8)  
1001= Channel 09 (AN9)  
1010= Channel 10 (AN10)  
1011= Channel 11 (AN11)  
11xx= Unused  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress  
0= A/D Idle  
ADON: A/D On bit  
1= A/D Converter module is enabled  
0= A/D Converter module is disabled  
2010 Microchip Technology Inc.  
DS39933D-page 289  
PIC18F87J90 FAMILY  
REGISTER 21-2: ADCON1: A/D CONTROL REGISTER 1  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TRIGSEL  
VCFG1  
VCFG0  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
TRIGSEL: Special Trigger Select bit  
1= Selects the special trigger from the CTMU  
0= Selects the special trigger from the CCP2  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
VCFG1: Voltage Reference Configuration bit (VREF- source)  
1= VREF- (AN2)  
0= AVSS  
bit 4  
VCFG0: Voltage Reference Configuration bit (VREF+ source)  
1= VREF+ (AN3)  
0= AVDD  
bit 3-0  
PCFG<3:0>: A/D Port Configuration Control bits:  
PCFG<3:0> AN11 AN10 AN9 AN8 AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
A = Analog input  
D = Digital I/O  
DS39933D-page 290  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 21-3: ADCON2: A/D CONTROL REGISTER 2  
R/W-0  
ADFM  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ACQT2  
ACQT1  
ACQT0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-3  
ACQT<2:0>: A/D Acquisition Time Select bits  
111= 20 TAD  
110= 16 TAD  
101= 12 TAD  
100= 8 TAD  
011= 6 TAD  
010= 4 TAD  
001= 2 TAD  
(1)  
000= 0 TAD  
bit 2-0  
ADCS<2:0>: A/D Conversion Clock Select bits  
111= FRC (clock derived from A/D RC oscillator)(1)  
110= FOSC/64  
101= FOSC/16  
100= FOSC/4  
011= FRC (clock derived from A/D RC oscillator)(1)  
010= FOSC/32  
001= FOSC/8  
000= FOSC/2  
Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D  
clock starts. This allows the SLEEPinstruction to be executed before starting a conversion.  
2010 Microchip Technology Inc.  
DS39933D-page 291  
PIC18F87J90 FAMILY  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(AVDD and AVSS), or the voltage level on the  
RA3/AN3/VREF+ and RA2/AN2/VREF- pins.  
the A/D conversion. When the A/D conversion is com-  
plete, the result is loaded into the ADRESH:ADRESL  
register pair, the GO/DONE bit (ADCON0<1>) is  
cleared and the A/D Interrupt Flag bit, ADIF, is set.  
The A/D Converter has a unique feature of being able  
to operate while the device is in Sleep mode. To  
operate in Sleep, the A/D conversion clock must be  
derived from the A/D’s Internal RC oscillator.  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off and any  
conversion in progress is aborted. The value in the  
ADRESH:ADRESL register pair is not modified for a  
Power-on Reset. These registers will contain unknown  
data after a Power-on Reset.  
The output of the sample and hold is the input into the  
converter, which generates the result via successive  
approximation.  
The block diagram of the A/D module is shown in  
Figure 21-1.  
Each port pin associated with the A/D Converter can be  
configured as an analog input or as a digital I/O. The  
ADRESH and ADRESL registers contain the result of  
FIGURE 21-1:  
A/D BLOCK DIAGRAM(1,2)  
CHS<3:0>  
1011  
AN11  
1010  
AN10  
1001  
AN9  
1000  
AN8  
0111  
AN7  
0110  
AN6  
0101  
AN5  
0100  
AN4  
VAIN  
0011  
(Input Voltage)  
10-Bit  
A/D  
Converter  
AN3  
0010  
AN2  
0001  
VCFG<1:0>  
AN1  
0000  
AN0  
AVDD  
VREF+  
VREF-  
Reference  
Voltage  
AVSS  
Note 1: Channels, AN15 through AN12, are not available on PIC18F6XJ90 devices.  
2: I/O pins have diode protection to VDD and VSS.  
DS39933D-page 292  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the  
conversion is started. The analog input channels must  
have their corresponding TRIS bits selected as inputs.  
To determine acquisition time, see Section 21.1 “A/D  
Acquisition Requirements”. After this acquisition  
time has elapsed, the A/D conversion can be started.  
An acquisition time can be programmed to occur  
between setting the GO/DONE bit and the actual start  
of the conversion.  
3. Wait the required acquisition time (if required).  
4. Start conversion:  
• Set GO/DONE bit (ADCON0<1>)  
5. Wait for the A/D conversion to complete, by  
either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result registers (ADRESH:ADRESL);  
clear the ADIF bit, if required.  
The following steps should be followed to do an A/D  
conversion:  
7. For the next conversion, go to step 1 or step 2,  
as required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before next acquisition starts.  
1. Configure the A/D module:  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D acquisition time (ADCON2)  
• Select A/D conversion clock (ADCON2)  
• Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear the ADIF bit  
• Set the ADIE bit  
• Set the GIE bit  
FIGURE 21-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
RS  
CPIN  
VAIN  
ILEAKAGE  
±100 nA  
CHOLD = 25 pF  
VT = 0.6V  
5 pF  
VSS  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
VT  
ILEAKAGE = Leakage Current at the pin due to  
various junctions  
VDD  
RIC  
= Interconnect Resistance  
SS  
= Sampling Switch  
CHOLD  
RSS  
= Sample/Hold Capacitance (from DAC)  
= Sampling Switch Resistance  
1
2
3
4
Sampling Switch (k)  
2010 Microchip Technology Inc.  
DS39933D-page 293  
PIC18F87J90 FAMILY  
To calculate the minimum acquisition time,  
Equation 21-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
21.1 A/D Acquisition Requirements  
For the A/D Converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 21-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor, CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5 k. After the analog input channel is  
selected (changed), the channel must be sampled for  
at least the minimum acquisition time before starting a  
conversion.  
Equation 21-3 shows the calculation of the minimum  
required acquisition time, TACQ. This calculation is  
based on the following application system  
assumptions:  
CHOLD  
Rs  
Conversion Error  
VDD  
Temperature  
=
=
=
=
25 pF  
2.5 k  
1/2 LSb  
3V Rss = 2 k  
85C (system max.)  
Note: When the conversion is started, the  
holding capacitor is disconnected from the  
input pin.  
EQUATION 21-1: A/D ACQUISITION TIME  
TACQ  
=
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
TAMP + TC + TCOFF  
EQUATION 21-2: A/D MINIMUM CHARGING TIME  
VHOLD  
or  
TC  
=
=
(VREF – (VREF/2048)) • (1 – e(-TC/CHOLD(RIC + RSS + RS))  
)
-(CHOLD)(RIC + RSS + RS) ln(1/2048)  
EQUATION 21-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
TAMP  
TCOFF  
=
=
=
TAMP + TC + TCOFF  
0.2 s  
(Temp – 25C)(0.02 s/C)  
(85C – 25C)(0.02 s/C)  
1.2 s  
Temperature coefficient is only required for temperatures > 25C. Below 25C, TCOFF = 0 ms.  
TC  
=
-(CHOLD)(RIC + RSS + RS) ln(1/2048) s  
-(25 pF) (1 k+ 2 k+ 2.5 k) ln(0.0004883) s  
1.05 s  
TACQ  
=
0.2 s + 1 s + 1.2 s  
2.4 s  
DS39933D-page 294  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 21-1: TAD vs. DEVICE OPERATING  
FREQUENCIES  
21.2 Selecting and Configuring  
Automatic Acquisition Time  
AD Clock Source (TAD)  
Maximum  
Device  
Frequency  
The ADCON2 register allows the user to select an  
acquisition time that occurs each time the GO/DONE  
bit is set.  
Operation  
ADCS<2:0>  
2 TOSC  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC(2)  
000  
100  
001  
101  
010  
110  
x11  
2.86 MHz  
5.71 MHz  
11.43 MHz  
22.86 MHz  
40.0 MHz  
40.0 MHz  
1.00 MHz(1)  
When the GO/DONE bit is set, sampling is stopped and  
a conversion begins. The user is responsible for ensur-  
ing the required acquisition time has passed between  
selecting the desired input channel and setting the  
GO/DONE bit. This occurs when the ACQT<2:0> bits  
(ADCON2<5:3>) remain in their Reset state (‘000’) and  
is compatible with devices that do not offer  
programmable acquisition times.  
If desired, the ACQT bits can be set to select a pro-  
grammable acquisition time for the A/D module. When  
the GO/DONE bit is set, the A/D module continues to  
sample the input for the selected acquisition time, then  
automatically begins a conversion. Since the acquisi-  
tion time is programmed, there may be no need to wait  
for an acquisition time between selecting a channel and  
setting the GO/DONE bit.  
Note 1: The RC source has a typical TAD time of  
4 s.  
2: For device frequencies above 1 MHz, the  
device must be in Sleep mode for the entire  
conversion or the A/D accuracy may be out  
of specification.  
21.4 Configuring Analog Port Pins  
In either case, when the conversion is completed, the  
GO/DONE bit is cleared, the ADIF flag is set and the  
A/D begins sampling the currently selected channel  
again. If an acquisition time is programmed, there is  
nothing to indicate if the acquisition time has ended or  
if the conversion has begun.  
The ADCON1, TRISA, TRISF and TRISH registers  
control the operation of the A/D port pins. The port pins  
needed as analog inputs must have their correspond-  
ing TRIS bits set (input). If the TRIS bit is cleared  
(output), the digital output level (VOH or VOL) will be  
converted.  
21.3 Selecting the A/D Conversion  
Clock  
The A/D operation is independent of the state of the  
CHS<3:0> bits and the TRIS bits.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 11 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable.  
Note 1: When reading the PORT register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an  
analog input. Analog levels on a digitally  
configured input will be accurately  
converted.  
There are seven possible options for TAD:  
• 2 TOSC  
• 4 TOSC  
• 8 TOSC  
2: Analog levels on any pin defined as a  
digital input may cause the digital input  
buffer to consume current out of the  
device’s specification limits.  
• 16 TOSC  
• 32 TOSC  
• 64 TOSC  
• Internal RC Oscillator  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be as short as possible, but greater than the  
minimum, TAD (see parameter 130 in Table 28-25 for  
more information).  
Table 21-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
2010 Microchip Technology Inc.  
DS39933D-page 295  
PIC18F87J90 FAMILY  
21.5 A/D Conversions  
21.6 Use of the CCP2 Trigger  
Figure 21-3 shows the operation of the A/D Converter  
after the GO/DONE bit has been set and the  
ACQT<2:0> bits are cleared. A conversion is started  
after the following instruction to allow entry into Sleep  
mode before the conversion begins.  
An A/D conversion can be started by the “Special Event  
Trigger” of the CCP2 module. This requires that the  
CCP2M<3:0> bits (CCP2CON<3:0>) be programmed  
as ‘1011’ and that the A/D module is enabled (ADON  
bit is set). When the trigger occurs, the GO/DONE bit  
will be set, starting the A/D acquisition and conversion,  
and the Timer1 (or Timer3) counter will be reset to zero.  
Timer1 (or Timer3) is reset to automatically repeat the  
A/D acquisition period with minimal software overhead  
(moving ADRESH:ADRESL to the desired location).  
The appropriate analog input channel must be selected  
and the minimum acquisition period is either timed by  
the user, or an appropriate TACQ time is selected before  
the Special Event Trigger sets the GO/DONE bit (starts  
a conversion).  
Figure 21-4 shows the operation of the A/D Converter  
after the GO/DONE bit has been set, the ACQT<2:0>  
bits are set to ‘010’ and selecting a 4 TAD acquisition  
time before the conversion starts.  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The A/D Result register  
pair will NOT be updated with the partially completed  
A/D  
conversion  
sample.  
This  
means  
the  
ADRESH:ADRESL registers will continue to contain  
the value of the last completed conversion (or the last  
value written to the ADRESH:ADRESL registers).  
If the A/D module is not enabled (ADON is cleared), the  
Special Event Trigger will be ignored by the A/D module  
but will still reset the Timer1 (or Timer3) counter.  
After the A/D conversion is completed or aborted, a  
2 TAD wait is required before the next acquisition can be  
started. After this wait, acquisition on the selected  
channel is automatically started.  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
FIGURE 21-3:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)  
TCY - TAD  
TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7  
b4  
b1  
b0  
b9  
b8  
b7  
b6  
b5  
b3  
b2  
Conversion starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO/DONE bit  
Next Q4: ADRESH:ADRESL is loaded, GO/DONE bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
FIGURE 21-4:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)  
TAD Cycles  
TACQT Cycles  
7
8
9
10  
b1  
11  
b0  
1
2
3
4
1
2
3
4
5
6
b7  
b6  
b3  
b2  
b8  
b5  
b4  
b9  
Automatic  
Acquisition  
Time  
Conversion starts  
(Holding capacitor is disconnected)  
Set GO/DONE bit  
(Holding capacitor continues  
acquiring input)  
Next Q4: ADRESH:ADRESL is loaded, GO/DONE bit is cleared,  
ADIF bit is set, holding capacitor is reconnected to analog input.  
DS39933D-page 296  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
If the A/D is expected to operate while the device is in  
21.7 A/D Converter Calibration  
a
power-managed mode, the ACQT<2:0> and  
The A/D Converter, in the PIC18F87J90 family of  
devices, includes a self-calibration feature which com-  
pensates for any offset generated within the module.  
The calibration process is automated and is initiated by  
setting the ADCAL bit (ADCON0<7>). The next time  
the GO/DONE bit is set, the module will perform a  
“dummy” conversion (that is, with reading none of the  
input channels) and store the resulting value internally  
to compensate for the offset. Thus, subsequent offsets  
will be compensated.  
ADCS<2:0> bits in ADCON2 should be updated in  
accordance with the power-managed mode clock that  
will be used. After the power-managed mode is entered  
(either of the power-managed Run modes), an A/D  
acquisition or conversion may be started. Once an  
acquisition or conversion is started, the device should  
continue to be clocked by the same power-managed  
mode clock source until the conversion has been com-  
pleted. If desired, the device may be placed into the  
corresponding power-managed Idle mode during the  
conversion.  
The calibration process assumes that the device is in a  
relatively steady-state operating condition. If A/D  
calibration is used, it should be performed after each  
device Reset or if there are other major changes in  
operating conditions.  
If the power-managed mode clock frequency is less  
than 1 MHz, the A/D RC clock source should be  
selected.  
Operation in Sleep mode requires the A/D RC clock to  
be selected. If bits, ACQT<2:0>, are set to ‘000’ and a  
conversion is started, the conversion will be delayed  
one instruction cycle to allow execution of the SLEEP  
instruction and entry to Sleep mode. The IDLEN and  
SCSx bits in the OSCCON register must have already  
been cleared prior to starting the conversion.  
21.8 Operation in Power-Managed  
Modes  
The selection of the automatic acquisition time and A/D  
conversion clock is determined, in part, by the clock  
source and frequency while in a power-managed  
mode.  
TABLE 21-2: SUMMARY OF A/D REGISTERS  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
TX2IF  
TX2IE  
TX2IP  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
CCP1IF  
CCP1IE  
CCP1IP  
RBIF  
59  
62  
62  
62  
62  
62  
62  
61  
61  
61  
61  
61  
64  
63  
62  
62  
62  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
TMR1IF  
TMR1IE  
TMR1IP  
RTCCIF  
RTCCIE  
RTCCIP  
PIE1  
IPR1  
ADIP  
PIR3  
LCDIF  
LCDIE  
LCDIP  
CTMUIF CCP2IF  
CTMUIE CCP2IE  
CTMUIP CCP2IP  
PIE3  
IPR3  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCP2CON  
PORTA  
TRISA  
A/D Result Register High Byte  
A/D Result Register Low Byte  
ADCAL  
TRIGSEL  
ADFM  
CHS3  
VCFG1  
ACQT2  
DC2B1  
RA5  
CHS2  
VCFG0  
ACQT1  
CHS1  
PCFG3  
ACQT0  
CHS0 GO/DONE ADON  
PCFG2  
ADCS2  
PCFG1  
ADCS1  
PCFG0  
ADCS0  
RA6(1)  
DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0  
RA7(1)  
RA4  
TRISA4  
RF4  
RA3  
TRISA3  
RF3  
RA2  
TRISA2  
RF2  
RA1  
TRISA1  
RF1  
RA0  
TRISA0  
TRISA7(1) TRISA6(1) TRISA5  
PORTF  
TRISF  
RF7  
RF6  
RF5  
TRISF5  
TRISF4  
TRISF5  
TRISF4  
TRISF3  
TRISF2  
TRISF1  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for A/D conversion.  
Note 1: RA<7:6> and their associated latch and direction bits are configured as port pins only when the internal  
oscillator is selected as the default clock source (FOSC2 Configuration bit = 0); otherwise, they are  
disabled and these bits read as ‘0’.  
2010 Microchip Technology Inc.  
DS39933D-page 297  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 298  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The CMCON register (Register 22-1) selects the  
comparator input and output configuration. Block  
diagrams of the various comparator configurations are  
shown in Figure 22-1.  
22.0 COMPARATOR MODULE  
The analog comparator module contains two  
comparators that can be configured in a variety of  
ways. The inputs can be selected from the analog  
inputs multiplexed with pins, RF1 through RF6, as well  
as the on-chip voltage reference (see Section 23.0  
“Comparator Voltage Reference Module”). The digi-  
tal outputs (normal or inverted) are available at the pin  
level and can also be read through the control register.  
REGISTER 22-1: CMCON: COMPARATOR MODULE CONTROL REGISTER  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-1  
CM2  
R/W-1  
CM1  
R/W-1  
CM0  
C2OUT  
C1OUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output inverted  
0= C1 output not inverted  
CIS: Comparator Input Switch bit  
When CM<2:0> = 110:  
1= C1 VIN- connects to RF5/AN10/CVREF/SEG23/C1INB  
C2 VIN- connects to RF3/AN8/SEG21/C2INB  
0= C1 VIN- connects to RF6/AN11/SEG24/C1INA  
C2 VIN- connects to RF4/AN9/SEG22/C2INA  
bit 2-0  
CM<2:0>: Comparator Mode bits  
Figure 22-1 shows the Comparator modes and the CM<2:0> bit settings.  
2010 Microchip Technology Inc.  
DS39933D-page 299  
PIC18F87J90 FAMILY  
mode is changed, the comparator output level may not  
be valid for the specified mode change delay shown in  
Section 28.0 “Electrical Characteristics”.  
22.1 Comparator Configuration  
There are eight modes of operation for the compara-  
tors, shown in Figure 22-1. Bits, CM<2:0>, of the  
CMCON register are used to select these modes. The  
TRISF register controls the data direction of the  
comparator pins for each mode. If the Comparator  
Note:  
Comparator interrupts should be disabled  
during Comparator mode change;  
otherwise, a false interrupt may occur.  
a
FIGURE 22-1:  
COMPARATOR I/O OPERATING MODES  
Comparator Outputs Disabled  
Comparators Off (POR Default Value)  
CM<2:0> = 000  
CM<2:0> = 111  
A
D
VIN-  
VIN-  
C1INA  
C1INA  
C1INB  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
D
C1INB  
A
A
D
VIN-  
VIN-  
C2INA  
C2INB  
C2INA  
VIN+  
VIN+  
D
C2INB  
Two Independent Comparators  
Two Independent Comparators with Outputs  
CM<2:0> = 010  
CM<2:0> = 011  
A
A
VIN-  
VIN-  
C1INA  
C1INB  
C1INA  
C1INB  
C1OUT  
C2OUT  
C1OUT  
C2OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
A
RF2/AN7/C1OUT*/SEG20  
A
A
VIN-  
C2INA  
C2INB  
A
A
VIN-  
C2INA  
C2INB  
VIN+  
VIN+  
RF1/AN6/C2OUT*/SEG19  
Two Common Reference Comparators  
Two Common Reference Comparators with Outputs  
CM<2:0> = 100  
CM<2:0> = 101  
A
A
VIN-  
VIN-  
C1INA  
C1INB  
C1INA  
C1INB  
C1OUT  
C2OUT  
C1OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
A
RF2/AN7/C1OUT*/  
SEG20  
A
D
VIN-  
C2INA  
C2INB  
A
VIN-  
C2INA  
VIN+  
C2OUT  
VIN+  
D
C2INB  
RF1/AN6/C2OUT*/SEG19  
Four Inputs Multiplexed to Two Comparators  
One Independent Comparator with Output  
CM<2:0> = 110  
CM<2:0> = 001  
A
C1INA  
A
A
VIN-  
C1INA  
C1INB  
CIS = 0  
CIS = 1  
VIN-  
A
C1OUT  
C1  
C1INB  
VIN+  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
A
RF2/AN7/C1OUT*/SEG20  
C2INA  
C2INB  
VIN-  
CIS = 0  
CIS = 1  
VIN+  
D
D
VIN-  
C2INA  
C2INB  
Off (Read as ‘0’)  
C2  
VIN+  
CVREF  
From VREF module  
A = Analog Input, port reads zeros always  
D = Digital Input  
CIS (CMCON<3>) is the Comparator Input Switch  
* Setting the TRISF<2:1> bits will disable the comparator outputs by configuring the pins as inputs.  
DS39933D-page 300  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
22.3.2  
INTERNAL REFERENCE SIGNAL  
22.2 Comparator Operation  
The comparator module also allows the selection of an  
internally generated voltage reference from the  
comparator voltage reference module. This module is  
described in more detail in Section 23.0 “Comparator  
Voltage Reference Module”.  
A single comparator is shown in Figure 22-2, along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input, VIN-, the output of the  
comparator is a digital low level. When the analog input  
at VIN+ is greater than the analog input, VIN-, the output  
of the comparator is a digital high level. The shaded  
areas of the output of the comparator in Figure 22-2  
represent the uncertainty due to input offsets and  
response time.  
The internal reference is only available in the mode  
where four inputs are multiplexed to two comparators  
(CM<2:0> = 110). In this mode, the internal voltage  
reference is applied to the VIN+ pin of both  
comparators.  
22.3 Comparator Reference  
22.4 Comparator Response Time  
Depending on the comparator operating mode, either  
an external or internal voltage reference may be used.  
The analog signal present at VIN- is compared to the  
signal at VIN+ and the digital output of the comparator  
is adjusted accordingly (Figure 22-2).  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output has a valid level. If the internal ref-  
erence is changed, the maximum delay of the internal  
voltage reference must be considered when using the  
comparator outputs. Otherwise, the maximum delay of  
the comparators should be used (see Section 28.0  
“Electrical Characteristics”).  
FIGURE 22-2:  
SINGLE COMPARATOR  
22.5 Comparator Outputs  
VIN+  
VIN-  
+
Output  
The comparator outputs are read through the CMCON  
register. These bits are read-only. The comparator  
outputs may also be directly output to the RF1 and RF2  
I/O pins. When enabled, multiplexors in the output path  
of the RF1 and RF2 pins will switch and the output of  
each pin will be the unsynchronized output of the  
comparator. The uncertainty of each of the  
comparators is related to the input offset voltage and  
the response time given in the specifications.  
Figure 22-3 shows the comparator output block  
diagram.  
VIN-  
VIN+  
The TRISF bits will still function as an output enable/  
disable for the RF1 and RF2 pins while in this mode.  
Output  
The polarity of the comparator outputs can be changed  
using the C2INV and C1INV bits (CMCON<5:4>).  
22.3.1  
EXTERNAL REFERENCE SIGNAL  
Note 1: When reading the PORT register, all pins  
configured as analog inputs will read as  
0’. Pins configured as digital inputs will  
convert an analog input according to the  
Schmitt Trigger input specification.  
When external voltage references are used, the  
comparator module can be configured to have the com-  
parators operate from the same or different reference  
sources. However, threshold detector applications may  
require the same reference. The reference signal must  
be between VSS and VDD and can be applied to either  
pin of the comparator(s).  
2: Analog levels on any pin defined as a  
digital input may cause the input buffer to  
consume more current than is specified.  
2010 Microchip Technology Inc.  
DS39933D-page 301  
PIC18F87J90 FAMILY  
FIGURE 22-3:  
COMPARATOR OUTPUT BLOCK DIAGRAM  
Port Pins  
To RF1 or  
RF2 pin  
D
Q
Bus  
Data  
CxINV  
EN  
Read CMCON  
D
Q
Set  
CMIF  
bit  
EN  
CL  
From  
Other  
Comparator  
Reset  
22.6 Comparator Interrupts  
22.7 Comparator Operation  
During Sleep  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that occurred. The CMIF  
bit (PIR2<6>) is the Comparator Interrupt Flag. The  
CMIF bit must be reset by clearing it. Since it is also  
possible to write a ‘1’ to this register, a simulated  
interrupt may be initiated.  
When a comparator is active and the device is placed  
in Sleep mode, the comparator remains active and the  
interrupt is functional, if enabled. This interrupt will  
wake-up the device from Sleep mode, when enabled.  
Each operational comparator will consume additional  
current, as shown in the comparator specifications. To  
minimize power consumption while in Sleep mode, turn  
off the comparators (CM<2:0> = 111) before entering  
Sleep. If the device wakes up from Sleep, the contents  
of the CMCON register are not affected.  
Both the CMIE bit (PIE2<6>) and the PEIE bit  
(INTCON<6>) must be set to enable the interrupt. In  
addition, the GIE bit (INTCON<7>) must also be set. If  
any of these bits are clear, the interrupt is not enabled,  
though the CMIF bit will still be set if an interrupt  
condition occurs.  
22.8 Effects of a Reset  
A device Reset forces the CMCON register to its Reset  
state, causing the comparator modules to be turned off  
(CM<2:0> = 111). However, the input pins (RF3  
through RF6) are configured as analog inputs by  
default on device Reset. The I/O configuration for these  
pins is determined by the setting of the PCFG<3:0> bits  
(ADCON1<3:0>). Therefore, device current is  
minimized when analog inputs are present at Reset  
time.  
Note:  
If a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR2<6>)  
interrupt flag may not get set.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON will end the  
mismatch condition.  
b) Clear flag bit, CMIF.  
A mismatch condition will continue to set flag bit, CMIF.  
Reading CMCON will end the mismatch condition and  
allow flag bit, CMIF, to be cleared.  
DS39933D-page 302  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latch-up condition may  
occur. A maximum source impedance of 10 kis  
recommended for the analog sources. Any external  
component connected to an analog input pin, such as  
a capacitor or a Zener diode, should have very little  
leakage current.  
22.9 Analog Input Connection  
Considerations  
A simplified circuit for an analog input is shown in  
Figure 22-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input, therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
FIGURE 22-4:  
COMPARATOR ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RIC  
RS < 10k  
AIN  
Comparator  
Input  
ILEAKAGE  
±100 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
VSS  
Legend: CPIN  
=
=
Input Capacitance  
Threshold Voltage  
VT  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
=
=
=
Interconnect Resistance  
Source Impedance  
Analog Voltage  
TABLE 22-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
INTCON  
PIR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
BCLIF  
BCLIE  
BCLIP  
CIS  
TMR0IF  
LVDIF  
LVDIE  
LVDIP  
CM2  
INT0IF  
TMR3IF  
TMR3IE  
TMR3IP  
CM1  
RBIF  
59  
62  
62  
62  
61  
61  
62  
62  
62  
OSCFIF  
OSCFIE  
OSCFIP  
C2OUT  
CVREN  
RF7  
CMIF  
CMIE  
PIE2  
IPR2  
CMIP  
CMCON  
CVRCON  
PORTF  
LATF  
C1OUT  
CVROE  
RF6  
C2INV  
CVRR  
RF5  
C1INV  
CVRSS  
RF4  
CM0  
CVR0  
CVR3  
RF3  
CVR2  
RF2  
CVR1  
RF1  
LATF7  
LATF6  
TRISF6  
LATF5  
TRISF5  
LATF4  
TRISF4  
LATF3  
TRISF3  
LATF2  
TRISF2  
LATF1  
TRISF1  
TRISF  
TRISF7  
Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the comparator module.  
2010 Microchip Technology Inc.  
DS39933D-page 303  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 304  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The range to be used is selected by the CVRR bit  
(CVRCON<5>). The primary difference between the  
ranges is the size of the steps selected by the CVREF  
Selection bits (CVR<3:0>), with one range offering finer  
resolution. The equations used to calculate the output  
of the comparator voltage reference are as follows:  
23.0 COMPARATOR VOLTAGE  
REFERENCE MODULE  
The comparator voltage reference is a 16-tap resistor  
ladder network that provides a selectable reference  
voltage. Although its primary purpose is to provide a  
reference for the analog comparators, it may also be  
used independently of them.  
If CVRR = 1:  
CVREF = ((CVR<3:0>)/24) x (CVRSRC)  
A block diagram of the module is shown in Figure 23-1.  
The resistor ladder is segmented to provide two ranges  
of CVREF values and has a power-down function to  
conserve power when the reference is not being used.  
The module’s supply reference can be provided from  
either the device VDD/VSS or an external voltage  
reference.  
If CVRR = 0:  
CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) x  
(CVRSRC)  
The comparator reference supply voltage can come  
from either VDD and VSS, or the external VREF+ and  
VREF- that are multiplexed with RA2 and RA3. The  
voltage source is selected by the CVRSS bit  
(CVRCON<4>).  
23.1 Configuring the Comparator  
Voltage Reference  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF  
output (see Table 28-3 in Section 28.0 “Electrical  
Characteristics”).  
The comparator voltage reference module is controlled  
through the CVRCON register (Register 23-1). The  
comparator voltage reference provides two ranges of  
output voltage, each with 16 distinct levels.  
REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
R/W-0  
CVROE(1)  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVRSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
CVROE: Comparator VREF Output Enable bit(1)  
1= CVREF voltage level is also output on the RF5/AN10/CVREF/SEG23/C1INB pin  
0= CVREF voltage is disconnected from the RF5/AN10/CVREF/SEG23/C1INB pin  
CVRR: Comparator VREF Range Selection bit  
1= 0 to 0.667 CVRSRC, with CVRSRC/24 step size (low range)  
0= 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size (high range)  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source, CVRSRC = (VREF+) – (VREF-)  
0= Comparator reference source, CVRSRC = VDD – VSS  
CVR<3:0>: Comparator VREF Value Selection bits (0 (CVR<3:0>) 15)  
When CVRR = 1:  
CVREF = ((CVR<3:0>)/24) (CVRSRC)  
When CVRR = 0:  
CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) (CVRSRC)  
Note 1: CVROE overrides the TRISF<5> bit setting.  
2010 Microchip Technology Inc.  
DS39933D-page 305  
PIC18F87J90 FAMILY  
FIGURE 23-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRSS = 1  
CVRSS = 0  
VREF+  
VDD  
8R  
CVR<3:0>  
R
CVREN  
R
R
R
16 Steps  
CVREF  
R
R
R
CVRR  
VREF-  
8R  
CVRSS = 1  
CVRSS = 0  
23.2 Voltage Reference Accuracy/Error  
23.4 Effects of a Reset  
The full range of voltage reference cannot be realized  
due to the construction of the module. The transistors  
on the top and bottom of the resistor ladder network  
(Figure 23-1) keep CVREF from approaching the refer-  
ence source rails. The voltage reference is derived  
from the reference source; therefore, the CVREF output  
changes with fluctuations in that source. The tested  
absolute accuracy of the voltage reference can be  
found in Section 28.0 “Electrical Characteristics”.  
A device Reset disables the voltage reference by  
clearing bit, CVREN (CVRCON<7>). This Reset also  
disconnects the reference from the RA2 pin by clearing  
bit, CVROE (CVRCON<6>), and selects the high-voltage  
range by clearing bit, CVRR (CVRCON<5>). The CVR  
value select bits are also cleared.  
23.5 Connection Considerations  
The voltage reference module operates independently  
of the comparator module. The output of the reference  
generator may be connected to the RF5 pin if the  
CVROE bit is set. Enabling the voltage reference out-  
put onto RA2 when it is configured as a digital input will  
increase current consumption. Connecting RF5 as a  
digital output with CVRSS enabled will also increase  
current consumption.  
23.3 Operation During Sleep  
When the device wakes up from Sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the CVRCON register are not affected. To minimize  
current consumption in Sleep mode, the voltage  
reference should be disabled.  
The RF5 pin can be used as a simple D/A output with  
limited drive capability. Due to the limited current drive  
capability, a buffer must be used on the voltage  
reference output for external connections to VREF.  
Figure 23-2 shows an example buffering technique.  
DS39933D-page 306  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 23-2:  
COMPARATOR VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
PIC18F87J90  
CVREF  
Module  
(1)  
R
+
CVREF Output  
RF5  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the Comparator Voltage Reference bits, CVRCON<5> and CVRCON<3:0>.  
TABLE 23-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CVRCON  
CMCON  
TRISF  
CVREN  
C2OUT  
TRISF7  
CVROE  
C1OUT  
TRISF6  
CVRR  
C2INV  
CVRSS  
C1INV  
CVR3  
CIS  
CVR2  
CM2  
CVR1  
CM1  
CVR0  
CM0  
61  
61  
62  
TRISF5 TRISF4  
TRISF3  
TRISF2  
TRISF1  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used with the comparator voltage reference.  
2010 Microchip Technology Inc.  
DS39933D-page 307  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 308  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
• Control of edge sequence  
24.0 CHARGE TIME  
MEASUREMENT UNIT (CTMU)  
• Control of response to edges  
• Time measurement resolution of 1 nanosecond  
• High-precision time measurement  
The Charge Time Measurement Unit (CTMU) is a  
flexible analog module that provides accurate differen-  
tial time measurement between pulse sources, as well  
as asynchronous pulse generation. By working with  
other on-chip analog modules, the CTMU can be used  
to precisely measure time, measure capacitance,  
measure relative changes in capacitance or generate  
output pulses with a specific time delay. The CTMU is  
ideal for interfacing with capacitive-based sensors.  
• Time delay of external or internal signal  
asynchronous to the system clock  
• Accurate current source suitable for capacitive  
measurement  
The CTMU works in conjunction with the A/D Converter  
to provide up to 13 channels for time or charge  
measurement, depending on the specific device and the  
number of A/D channels available. When configured for  
time delay, the CTMU is connected to one of the analog  
comparators. The level-sensitive input edge sources  
can be selected from four sources: two external inputs or  
the CCP1/CCP2 Special Event Triggers.  
The module includes the following key features:  
• Up to 13 channels available for capacitive or time  
measurement input  
• On-chip precision current source  
• Four-edge input trigger sources  
• Polarity control for each edge source  
Figure 24-1 provides a block diagram of the CTMU.  
FIGURE 24-1:  
CTMU BLOCK DIAGRAM  
CTMUCON  
CTMUICON  
ITRIM<5:0>  
EDGEN  
EDGSEQEN  
EDG1SELx  
EDG1POL  
EDG2SELx  
EDG2POL  
TGEN  
IDISSEN  
CTTRIG  
IRNG<1:0>  
EDG1STAT  
EDG2STAT  
Current Source  
Edge  
Control  
Logic  
CTEDG1  
CTEDG2  
CTMU  
Control  
Logic  
A/D Trigger  
CTPLS  
Current  
Control  
CCP2  
CCP1  
Pulse  
Generator  
A/D Converter  
Comparator 2  
Input  
Comparator 2 Output  
2010 Microchip Technology Inc.  
DS39933D-page 309  
PIC18F87J90 FAMILY  
Current trim is provided by the ITRIM<5:0> bits  
(CTMUICON<7:2>). These six bits allow trimming of  
the current source in steps of approximately 2% per  
step. Note that half of the range adjusts the current  
source positively and the other half reduces the current  
source. A value of ‘000000’ is the neutral position (no  
change). A value of ‘100000’ is the maximum negative  
adjustment (approximately -62%) and ‘011111’ is the  
maximum positive adjustment (approximately +62%).  
24.1 CTMU Operation  
The CTMU works by using a fixed current source to  
charge a circuit. The type of circuit depends on the type  
of measurement being made. In the case of charge  
measurement, the current is fixed and the amount of  
time the current is applied to the circuit is fixed. The  
amount of voltage read by the A/D is then a measure-  
ment of the capacitance of the circuit. In the case of  
time measurement, the current, as well as the capaci-  
tance of the circuit, are fixed. In this case, the voltage  
read by the A/D is then representative of the amount of  
time elapsed from the time the current source starts  
and stops charging the circuit.  
24.1.3  
EDGE SELECTION AND CONTROL  
CTMU measurements are controlled by edge events  
occurring on the module’s two input channels. Each  
channel, referred to as Edge 1 and Edge 2, can be con-  
figured to receive input pulses from one of the edge  
input pins (CTEDG1 and CTEDG2) or the CCPx  
Special Event Triggers. The input channels are level-  
sensitive, responding to the instantaneous level on the  
channel rather than a transition between levels. The  
inputs are selected using the EDG1SEL and EDG2SEL  
bit pairs (CTMUCONL<3:2, 6:5>).  
If the CTMU is being used as a time delay, both capaci-  
tance and current source are fixed, as well as the voltage  
supplied to the comparator circuit. The delay of a signal  
is determined by the amount of time it takes the voltage  
to charge to the comparator threshold voltage.  
24.1.1  
THEORY OF OPERATION  
The operation of the CTMU is based on the equation  
for charge:  
In addition to source, each channel can be configured for  
event polarity using the EDGE2POL and EDGE1POL  
bits (CTMUCONL<7,4>). The input channels can also  
be filtered for an edge event sequence (Edge 1 occur-  
ring before Edge 2) by setting the EDGSEQEN bit  
(CTMUCONH<2>).  
dV  
C = I •  
dT  
More simply, the amount of charge measured in  
coulombs in a circuit is defined as current in amperes  
(I) multiplied by the amount of time in seconds that the  
current flows (t). Charge is also defined as the capaci-  
tance in farads (C) multiplied by the voltage of the  
circuit (V). It follows that:  
24.1.4  
EDGE STATUS  
The CTMUCON register also contains two status bits,  
EDG2STAT and EDG1STAT (CTMUCONL<1:0>).  
Their primary function is to show if an edge response  
has occurred on the corresponding channel. The  
CTMU automatically sets a particular bit when an edge  
response is detected on its channel. The level-sensitive  
nature of the input channels also means that the status  
bits become set immediately if the channel’s configura-  
tion is changed and is the same as the channel’s  
current state.  
I • t = C • V  
The CTMU module provides a constant, known current  
source. The A/D Converter is used to measure (V) in  
the equation, leaving two unknowns: capacitance (C)  
and time (t). The above equation can be used to calcu-  
late capacitance or time, by either relationship using  
the known fixed capacitance of the circuit:  
The module uses the edge status bits to control the cur-  
rent source output to external analog modules (such as  
the A/D Converter). Current is only supplied to external  
modules when only one (but not both) of the status bits  
is set, and shuts current off when both bits are either  
set or cleared. This allows the CTMU to measure cur-  
rent only during the interval between edges. After both  
status bits are set, it is necessary to clear them before  
another measurement is taken. Both bits should be  
cleared simultaneously, if possible, to avoid re-enabling  
the CTMU current source.  
t = (C • V)/I  
or by:  
C = (I • t)/V  
using a fixed time that the current source is applied to  
the circuit.  
24.1.2  
CURRENT SOURCE  
At the heart of the CTMU is a precision current source,  
designed to provide a constant reference for measure-  
ments. The level of current is user-selectable across  
three ranges or a total of two orders of magnitude, with  
the ability to trim the output in ±2% increments  
(nominal). The current range is selected by the  
IRNG<1:0> bits (CTMUICON<1:0>), with a value of  
00’ representing the lowest range.  
In addition to being set by the CTMU hardware, the  
edge status bits can also be set by software. This is  
also the user’s application to manually enable or dis-  
able the current source. Setting either one (but not  
both) of the bits enables the current source. Setting or  
clearing both bits at once disables the source.  
DS39933D-page 310  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Depending on the type of measurement or pulse  
generation being performed, one or more additional  
modules may also need to be initialized and configured  
with the CTMU module:  
24.1.5  
INTERRUPTS  
The CTMU sets its interrupt flag (PIR3<2>) whenever  
the current source is enabled, then disabled. An inter-  
rupt is generated only if the corresponding interrupt  
enable bit (PIE3<2>) is also set. If edge sequencing is  
not enabled (i.e., Edge 1 must occur before Edge 2), it  
is necessary to monitor the edge status bits, and  
determine which edge occurred last and caused the  
interrupt.  
• Edge Source Generation: In addition to the  
external edge input pins, CCPx Special Event  
Triggers can be used as edge sources for the  
CTMU.  
• Capacitance or Time Measurement: The CTMU  
module uses the A/D Converter to measure the  
voltage across a capacitor that is connected to one  
of the analog input channels.  
24.2 CTMU Module Initialization  
The following sequence is a general guideline used to  
initialize the CTMU module:  
• Pulse Generation: When generating system clock  
independent output pulses, the CTMU module  
uses Comparator 2 and the associated  
comparator voltage reference.  
1. Select the current source range using the IRNG  
bits (CTMUICON<1:0>).  
2. Adjust the current source trim using the ITRIM  
bits (CTMUICON<7:2>).  
24.3 Calibrating the CTMU Module  
3. Configure the edge input sources for Edge 1 and  
Edge 2 by setting the EDG1SEL and EDG2SEL  
bits (CTMUCONL<3:2 and 6:5>).  
The CTMU requires calibration for precise measure-  
ments of capacitance and time, as well as for accurate  
time delay. If the application only requires measurement  
of a relative change in capacitance or time, calibration is  
usually not necessary. An example of this type of appli-  
cation would include a capacitive touch switch, in which  
the touch circuit has a baseline capacitance and the  
added capacitance of the human body changes the  
overall capacitance of a circuit.  
4. Configure the input polarities for the edge inputs  
using the EDG1POL and EDG2POL bits  
(CTMUCONL<4,7>). The default configuration  
is for negative edge polarity (high-to-low  
transitions).  
5. Enable edge sequencing using the EDGSEQEN  
bit (CTMUCONH<2>). By default, edge  
sequencing is disabled.  
If actual capacitance or time measurement is required,  
two hardware calibrations must take place: the current  
source needs calibration to set it to a precise current,  
and the circuit being measured needs calibration to  
measure and/or nullify all other capacitance other than  
that to be measured.  
6. Select the operating mode (Measurement or  
Time Delay) with the TGEN bit. The default  
mode is Time/Capacitance Measurement.  
7. Configure the module to automatically trigger  
an A/D conversion, when the second edge  
event has occurred, using the CTTRIG bit  
(CTMUCONH<0>). The conversion trigger is  
disabled by default.  
24.3.1  
CURRENT SOURCE CALIBRATION  
The current source on board the CTMU module has a  
range of ±60% nominal for each of three current  
ranges. Therefore, for precise measurements, it is  
possible to measure and adjust this current source by  
placing a high-precision resistor, RCAL, onto an unused  
analog channel. An example circuit is shown in  
Figure 24-2. The current source measurement is  
performed using the following steps:  
8. Discharge the connected circuit by setting the  
IDISSEN bit (CTMUCONH<1>); after waiting a  
sufficient time for the circuit to discharge, clear  
IDISSEN.  
9. Disable the module by clearing the CTMUEN bit  
(CTMUCONH<7>).  
10. Clear the Edge Status bits, EDG2STAT and  
EDG1STAT (CTMUCONL<1:0>).  
1. Initialize the A/D Converter.  
2. Initialize the CTMU.  
11. Enable both edge inputs by setting the EDGEN  
bit (CTMUCONH<3>).  
3. Enable the current source by setting EDG1STAT  
(CTMUCONL<0>).  
12. Enable the module by setting the CTMUEN bit.  
4. Issue settling time delay.  
5. Perform A/D conversion.  
6. Calculate the current source current using  
I = V/RCAL, where RCAL is a high-precision  
resistance and V is measured by performing an  
A/D conversion.  
2010 Microchip Technology Inc.  
DS39933D-page 311  
PIC18F87J90 FAMILY  
The CTMU current source may be trimmed with the  
trim bits in CTMUICON using an iterative process to get  
an exact desired current. Alternatively, the nominal  
value without adjustment may be used; it may be  
stored by the software for use in all subsequent  
capacitive or time measurements.  
A value of 70% of full-scale voltage is chosen to make  
sure that the A/D Converter is in a range that is well  
above the noise floor. Keep in mind that if an exact cur-  
rent is chosen to incorporate the trimming bits from  
CTMUICON, the resistor value of RCAL may need to be  
adjusted accordingly. RCAL may be also adjusted to  
allow for available resistor values. RCAL should be of  
the highest precision available, keeping in mind the  
amount of precision needed for the circuit that the  
CTMU will be used to measure. A recommended  
minimum would be 0.1% tolerance.  
To calculate the value for RCAL, the nominal current  
must be chosen and then the resistance can be  
calculated. For example, if the A/D Converter reference  
voltage is 3.3V, use 70% of full scale or 2.31V as the  
desired approximate voltage to be read by the A/D  
Converter. If the range of the CTMU current source is  
selected to be 0.55 A, the resistor value needed is cal-  
culated as RCAL = 2.31V/0.55 A for a value of 4.2 M.  
Similarly, if the current source is chosen to be 5.5 A,  
RCAL would be 420,000, and 42,000if the current  
source is set to 55 A.  
The following examples show one typical method for  
performing a CTMU current calibration. Example 24-1  
demonstrates how to initialize the A/D Converter and the  
CTMU; this routine is typical for applications using both  
modules. Example 24-2 demonstrates one method for  
the actual calibration routine. Note that this method  
manually triggers the A/D Converter. This is done to  
demonstrate the entire stepwise process. It is also  
possible to automatically trigger the conversion by  
setting the CTMU’s CTTRIG bit (CTMUCONH<0>).  
FIGURE 24-2:  
CTMU CURRENT SOURCE  
CALIBRATION CIRCUIT  
PIC18F87J90  
CTMU  
Current Source  
A/D  
Trigger  
A/D Converter  
ANx  
A/D  
RCAL  
MUX  
DS39933D-page 312  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
EXAMPLE 24-1:  
SETUP FOR CTMU CALIBRATION ROUTINES  
#include "p18cxxx.h"  
/**************************************************************************/  
/*Setup CTMU *****************************************************************/  
/**************************************************************************/  
void setup(void)  
{ //CTMUCON - CTMU Control register  
CTMUCONH = 0x00;  
CTMUCONL = 0X90;  
//make sure CTMU is disabled  
//CTMU continues to run when emulator is stopped,CTMU continues  
//to run in idle mode,Time Generation mode disabled, Edges are blocked  
//No edge sequence order, Analog current source not grounded, trigger  
//output disabled, Edge2 polarity = positive level, Edge2 source =  
//source 0, Edge1 polarity = positive level, Edge1 source = source 0,  
// Set Edge status bits to zero  
//CTMUICON - CTMU Current Control Register  
CTMUICON = 0x01;  
//0.55uA, Nominal - No Adjustment  
/**************************************************************************/  
//Setup AD converter;  
/**************************************************************************/  
TRISA=0x04;  
//set channel 2 as an input  
// ADCON2  
ADCON2bits.ADFM=1;  
ADCON2bits.ACQT=1;  
ADCON2bits.ADCS=2;  
// Resulst format 1= Right justified  
// Acquition time 7 = 20TAD 2 = 4TAD 1=2TAD  
// Clock conversion bits 6= FOSC/64 2=FOSC/32  
// ADCON1  
ADCON1bits.ADCAL=0;  
ADCON1bits.PCFG=0xC;  
// Normal A/D conversion operation  
// Configures AN0 to AN2 as analog  
// ADCON0  
ADCON0bits.VCFG0 =0;  
ADCON0bits.VCFG1 =0;  
ADCON0bits.CHS=2;  
// Vref+ = AVdd  
// Vref- = AVss  
// Select ADC channel  
ADCON0bits.ADON=1;  
// Turn on ADC  
}
2010 Microchip Technology Inc.  
DS39933D-page 313  
PIC18F87J90 FAMILY  
EXAMPLE 24-2:  
CURRENT CALIBRATION ROUTINE  
#include "p18cxxx.h"  
#define COUNT 500  
//@ 8MHz = 125uS.  
#define DELAY for(i=0;i<COUNT;i++)  
#define RCAL .027  
//R value is 4200000 (4.2M)  
//scaled so that result is in  
//1/100th of uA  
#define ADSCALE 1023  
#define ADREF 3.3  
//for unsigned conversion 10 sig bits  
//Vdd connected to A/D Vr+  
int main(void)  
{
int i;  
int j = 0; //index for loop  
unsigned int Vread = 0;  
double VTot = 0;  
float Vavg=0, Vcal=0, CTMUISrc = 0; //float values stored for calcs  
//assume CTMU and A/D have been setup correctly  
//see Example 25-1 for CTMU & A/D setup  
setup();  
CTMUCONHbits.CTMUEN = 1;  
//Enable the CTMU  
for(j=0;j<10;j++)  
{
CTMUCONHbits.IDISSEN = 1;  
DELAY;  
//drain charge on the circuit  
//wait 125us  
CTMUCONHbits.IDISSEN = 0;  
//end drain of circuit  
CTMUCONLbits.EDG1STAT = 1;  
//Begin charging the circuit  
//using CTMU current source  
//wait for 125us  
DELAY;  
CTMUCONLbits.EDG1STAT = 0;  
//Stop charging circuit  
PIR1bits.ADIF = 0;  
ADCON0bits.GO=1;  
//make sure A/D Int not set  
//and begin A/D conv.  
while(!PIR1bits.ADIF);  
//Wait for A/D convert complete  
Vread = ADRES;  
PIR1bits.ADIF = 0;  
VTot += Vread;  
//Get the value from the A/D  
//Clear A/D Interrupt Flag  
//Add the reading to the total  
}
Vavg = (float)(VTot/10.000);  
Vcal = (float)(Vavg/ADSCALE*ADREF);  
CTMUISrc = Vcal/RCAL;  
//Average of 10 readings  
//CTMUISrc is in 1/100ths of uA  
}
DS39933D-page 314  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
This measured value is then stored and used for  
calculations of time measurement or subtracted for  
capacitance measurement. For calibration, it is  
expected that the capacitance of CSTRAY + CAD is  
approximately known; CAD is approximately 4 pF.  
24.3.2  
CAPACITANCE CALIBRATION  
There is a small amount of capacitance from the inter-  
nal A/D Converter sample capacitor as well as stray  
capacitance from the circuit board traces and pads that  
affect the precision of capacitance measurements. A  
measurement of the stray capacitance can be taken by  
making sure the desired capacitance to be measured  
has been removed. The measurement is then  
performed using the following steps:  
An iterative process may need to be used to adjust the  
time, t, that the circuit is charged to obtain a reasonable  
voltage reading from the A/D Converter. The value of t  
may be determined by setting COFFSET to a theoretical  
value, then solving for t. For example, if CSTRAY is  
theoretically calculated to be 11 pF, and V is expected  
to be 70% of VDD, or 2.31V, then t would be:  
1. Initialize the A/D Converter and the CTMU.  
2. Set EDG1STAT (= 1).  
3. Wait for a fixed delay of time, t.  
4. Clear EDG1STAT.  
(4 pF + 11 pF) • 2.31V/0.55 A  
5. Perform an A/D conversion.  
or 63 s.  
6. Calculate the stray and A/D sample capacitances:  
See Example 24-3 for a typical routine for CTMU  
capacitance calibration.  
COFFSET = CSTRAY + CAD = (I • t)/V  
where I is known from the current source measurement  
step, t is a fixed delay and V is measured by performing  
an A/D conversion.  
2010 Microchip Technology Inc.  
DS39933D-page 315  
PIC18F87J90 FAMILY  
EXAMPLE 24-3:  
CAPACITANCE CALIBRATION ROUTINE  
#include "p18cxxx.h"  
#define COUNT 25  
//@ 8MHz INTFRC = 62.5 us.  
//time in uS  
#define ETIME COUNT*2.5  
#define DELAY for(i=0;i<COUNT;i++)  
#define ADSCALE 1023  
#define ADREF 3.3  
//for unsigned conversion 10 sig bits  
//Vdd connected to A/D Vr+  
//R value is 4200000 (4.2M)  
//scaled so that result is in  
//1/100th of uA  
#define RCAL .027  
int main(void)  
{
int i;  
int j = 0;  
//index for loop  
unsigned int Vread = 0;  
float CTMUISrc, CTMUCap, Vavg, VTot, Vcal;  
//assume CTMU and A/D have been setup correctly  
//see Example 25-1 for CTMU & A/D setup  
setup();  
CTMUCONHbits.CTMUEN = 1;  
//Enable the CTMU  
for(j=0;j<10;j++)  
{
CTMUCONHbits.IDISSEN = 1;  
DELAY;  
//drain charge on the circuit  
//wait 125us  
CTMUCONHbits.IDISSEN = 0;  
//end drain of circuit  
CTMUCONLbits.EDG1STAT = 1;  
//Begin charging the circuit  
//using CTMU current source  
//wait for 125us  
DELAY;  
CTMUCONLbits.EDG1STAT = 0;  
//Stop charging circuit  
PIR1bits.ADIF = 0;  
ADCON0bits.GO=1;  
//make sure A/D Int not set  
//and begin A/D conv.  
while(!PIR1bits.ADIF);  
//Wait for A/D convert complete  
Vread = ADRES;  
PIR1bits.ADIF = 0;  
VTot += Vread;  
//Get the value from the A/D  
//Clear A/D Interrupt Flag  
//Add the reading to the total  
}
Vavg = (float)(VTot/10.000);  
Vcal = (float)(Vavg/ADSCALE*ADREF);  
CTMUISrc = Vcal/RCAL;  
//Average of 10 readings  
//CTMUISrc is in 1/100ths of uA  
CTMUCap = (CTMUISrc*ETIME/Vcal)/100;  
}
DS39933D-page 316  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
24.4.2  
RELATIVE CHARGE  
MEASUREMENT  
24.4 Measuring Capacitance with the  
CTMU  
An application may not require precise capacitance  
measurements. For example, when detecting a valid  
press of a capacitance-based switch, detecting a relative  
change of capacitance is of interest. In this type of appli-  
cation, when the switch is open (or not touched), the total  
capacitance is the capacitance of the combination of the  
board traces, the A/D Converter, etc. A larger voltage will  
be measured by the A/D Converter. When the switch is  
closed (or is touched), the total capacitance is larger due  
to the addition of the capacitance of the human body to  
the above listed capacitances and a smaller voltage will  
be measured by the A/D Converter.  
There are two separate methods of measuring capaci-  
tance with the CTMU. The first is the absolute method,  
in which the actual capacitance value is desired. The  
second is the relative method, in which the actual  
capacitance is not needed, rather an indication of a  
change in capacitance is required.  
24.4.1  
ABSOLUTE CAPACITANCE  
MEASUREMENT  
For absolute capacitance measurements, both the  
current and capacitance calibration steps found in  
Section 24.3 “Calibrating the CTMU Module” should  
be followed. Capacitance measurements are then  
performed using the following steps:  
Detecting capacitance changes is easily accomplished  
with the CTMU using these steps:  
1. Initialize the A/D Converter and the CTMU.  
2. Set EDG1STAT.  
1. Initialize the A/D Converter.  
2. Initialize the CTMU.  
3. Set EDG1STAT.  
3. Wait for a fixed delay.  
4. Clear EDG1STAT.  
4. Wait for a fixed delay, T.  
5. Clear EDG1STAT.  
5. Perform an A/D conversion.  
The voltage measured by performing the A/D conver-  
sion is an indication of the relative capacitance. Note  
that in this case, no calibration of the current source or  
circuit capacitance measurement is needed. See  
Example 24-4 for a sample software routine for a  
capacitive touch switch.  
6. Perform an A/D conversion.  
7. Calculate the total capacitance, CTOTAL = (I * T)/V,  
where I is known from the current source  
measurement step (Section 24.3.1 “Current  
Source Calibration”), T is a fixed delay and V is  
measured by performing an A/D conversion.  
8. Subtract the stray and A/D capacitance  
(COFFSET from Section 24.3.2 “Capacitance  
Calibration”) from CTOTAL to determine the  
measured capacitance.  
2010 Microchip Technology Inc.  
DS39933D-page 317  
PIC18F87J90 FAMILY  
EXAMPLE 24-4:  
ROUTINE FOR CAPACITIVE TOUCH SWITCH  
#include "p18cxxx.h"  
#define COUNT 500  
//@ 8MHz = 125uS.  
#define DELAY for(i=0;i<COUNT;i++)  
#define OPENSW 1000  
#define TRIP 300  
//Un-pressed switch value  
//Difference between pressed  
//and un-pressed switch  
//amount to change  
#define HYST 65  
//from pressed to un-pressed  
#define PRESSED 1  
#define UNPRESSED 0  
int main(void)  
{
unsigned int Vread;  
unsigned int switchState;  
int i;  
//storage for reading  
//assume CTMU and A/D have been setup correctly  
//see Example 25-1 for CTMU & A/D setup  
setup();  
CTMUCONHbits.CTMUEN = 1;  
//Enable the CTMU  
CTMUCONHbits.IDISSEN = 1;  
DELAY;  
//drain charge on the circuit  
//wait 125us  
CTMUCONHbits.IDISSEN = 0;  
//end drain of circuit  
CTMUCONLbits.EDG1STAT = 1;  
//Begin charging the circuit  
//using CTMU current source  
//wait for 125us  
DELAY;  
CTMUCONLbits.EDG1STAT = 0;  
//Stop charging circuit  
PIR1bits.ADIF = 0;  
ADCON0bits.GO=1;  
//make sure A/D Int not set  
//and begin A/D conv.  
while(!PIR1bits.ADIF);  
//Wait for A/D convert complete  
Vread = ADRES;  
//Get the value from the A/D  
if(Vread < OPENSW - TRIP)  
{
switchState = PRESSED;  
}
else if(Vread > OPENSW - TRIP + HYST)  
{
switchState = UNPRESSED;  
}
}
DS39933D-page 318  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
It is assumed that the time measured is small enough  
that the capacitance, COFFSET, provides a valid voltage  
to the A/D Converter. For the smallest time measure-  
ment, always set the A/D Channel Select register  
(AD1CHS) to an unused A/D channel; the correspond-  
ing pin for which is not connected to any circuit board  
trace. This minimizes added stray capacitance,  
keeping the total circuit capacitance close to that of the  
A/D Converter itself (25 pF). To measure longer time  
intervals, an external capacitor may be connected to an  
A/D channel and this channel selected when making a  
time measurement.  
24.5 Measuring Time with the CTMU  
Module  
Time can be precisely measured after the ratio (C/I) is  
measured from the current and capacitance calibration  
step by following these steps:  
1. Initialize the A/D Converter and the CTMU.  
2. Set EDG1STAT.  
3. Set EDG2STAT.  
4. Perform an A/D conversion.  
5. Calculate the time between edges as T = (C/I) * V,  
where I is calculated in the current calibration step  
(Section 24.3.1 “Current Source Calibration”),  
C is calculated in the capacitance calibration step  
(Section 24.3.2 “Capacitance Calibration”) and  
V is measured by performing the A/D conversion.  
FIGURE 24-3:  
TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR  
TIME MEASUREMENT  
PIC18F87J90  
CTMU  
CTEDG1  
CTEDG2  
EDG1  
Current Source  
EDG2  
Output  
Pulse  
A/D Converter  
ANX  
RPR  
CAD  
2010 Microchip Technology Inc.  
DS39933D-page 319  
PIC18F87J90 FAMILY  
An example use of this feature is for interfacing with  
variable capacitive-based sensors, such as a humidity  
sensor. As the humidity varies, the pulse-width output  
on CTPLS will vary. The CTPLS output pin can be  
connected to an input capture pin and the varying pulse  
width is measured to determine the humidity in the  
application.  
24.6 Creating a Delay with the CTMU  
Module  
A unique feature on board the CTMU module is its ability  
to generate system clock independent output pulses  
based on an external capacitor value. This is accom-  
plished using the internal comparator voltage reference  
module, Comparator 2 input pin and an external capaci-  
tor. The pulse is output onto the CTPLS pin. To enable  
this mode, set the TGEN bit.  
Follow these steps to use this feature:  
1. Initialize Comparator 2.  
2. Initialize the comparator voltage reference.  
See Figure 24-4 for an example circuit. CPULSE is  
chosen by the user to determine the output pulse width  
on CTPLS. The pulse width is calculated by  
T = (CPULSE/I)*V, where I is known from the current  
source measurement step (Section 24.3.1 “Current  
Source Calibration”) and V is the internal reference  
voltage (CVREF).  
3. Initialize the CTMU and enable time delay  
generation by setting the TGEN bit.  
4. Set EDG1STAT.  
5. When CPULSE charges to the value of the voltage  
reference trip point, an output pulse is generated  
on CTPLS.  
FIGURE 24-4:  
TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE  
DELAY GENERATION  
PIC18F87J90  
CTMU  
CTEDG1  
EDG1  
CTPLS  
Current Source  
Comparator  
C2  
C2INB  
CDELAY  
CVREF  
24.7 Operation During Sleep/Idle Modes  
24.8 Effects of a Reset on CTMU  
Upon Reset, all registers of the CTMU are cleared. This  
leaves the CTMU module disabled, its current source is  
turned off and all configuration options return to their  
default settings. The module needs to be re-initialized  
following any Reset.  
24.7.1  
SLEEP MODE AND DEEP SLEEP  
MODES  
When the device enters any Sleep mode, the CTMU  
module current source is always disabled. If the CTMU  
is performing an operation that depends on the current  
source when Sleep mode is invoked, the operation may  
not terminate correctly. Capacitance and time  
measurements may return erroneous values.  
If the CTMU is in the process of taking a measurement  
at the time of Reset, the measurement will be lost. A  
partial charge may exist on the circuit that was being  
measured and should be properly discharged before  
the CTMU makes subsequent attempts to make a  
measurement. The circuit is discharged by setting and  
then clearing the IDISSEN bit (CTMUCONH<1>) while  
the A/D Converter is connected to the appropriate  
channel.  
24.7.2  
IDLE MODE  
The behavior of the CTMU in Idle mode is determined  
by the CTMUSIDL bit (CTMUCONH<5>). If CTMUSIDL  
is cleared, the module will continue to operate in Idle  
mode. If CTMUSIDL is set, the module’s current source  
is disabled when the device enters Idle mode. If the  
module is performing an operation when Idle mode is  
invoked, in this case, the results will be similar to those  
with Sleep mode.  
DS39933D-page 320  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The CTMUCONH and CTMUCONL registers  
(Register 24-1 and Register 24-2) contain control bits  
for configuring the CTMU module edge source selec-  
tion, edge source polarity selection, edge sequencing,  
A/D trigger, analog circuit capacitor discharge and  
enables. The CTMUICON register (Register 24-3) has  
bits for selecting the current source range and current  
source trim.  
24.9 Registers  
There are three control registers for the CTMU:  
• CTMUCONH  
• CTMUCONL  
• CTMUICON  
REGISTER 24-1: CTMUCONH: CTMU CONTROL HIGH REGISTER  
R/W-0  
U-0  
R/W-0  
R/W-0  
TGEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CTMUEN  
CTMUSIDL  
EDGEN  
EDGSEQEN  
IDISSEN  
CTTRIG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CTMUEN: CTMU Enable bit  
1= Module is enabled  
0= Module is disabled  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
CTMUSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TGEN: Time Generation Enable bit  
1= Enables edge delay generation  
0= Disables edge delay generation  
EDGEN: Edge Enable bit  
1= Edges are not blocked  
0= Edges are blocked  
EDGSEQEN: Edge Sequence Enable bit  
1= Edge 1 event must occur before Edge 2 event can occur  
0= No edge sequence is needed  
IDISSEN: Analog Current Source Control bit  
1= Analog current source output is grounded  
0= Analog current source output is not grounded  
CTTRIG: Trigger Control bit  
1= Trigger output is enabled  
0= Trigger output is disabled  
2010 Microchip Technology Inc.  
DS39933D-page 321  
PIC18F87J90 FAMILY  
REGISTER 24-2: CTMUCONL: CTMU CONTROL LOW REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EDG2POL  
EDG2SEL1 EDG2SEL0  
EDG1POL  
EDG1SEL1 EDG1SEL0 EDG2STAT EDG1STAT  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7  
EDG2POL: Edge 2 Polarity Select bit  
1= Edge 2 programmed for a positive edge response  
0= Edge 2 programmed for a negative edge response  
bit 6-5  
EDG2SEL<1:0>: Edge 2 Source Select bits  
11= CTEDG1 pin  
10= CTEDG2 pin  
01= CCP1 Special Event Trigger  
00= CCP2 Special Event Trigger  
bit 4  
EDG1POL: Edge 1 Polarity Select bit  
1= Edge 1 programmed for a positive edge response  
0= Edge 1 programmed for a negative edge response  
bit 3-2  
EDG1SEL<1:0>: Edge 1 Source Select bits  
11= CTEDG1 pin  
10= CTEDG2 pin  
01= CCP1 Special Event Trigger  
00= CCP2 Special Event Trigger  
bit 1  
bit 0  
EDG2STAT: Edge 2 Status bit  
1= Edge 2 event has occurred  
0= Edge 2 event has not occurred  
EDG1STAT: Edge 1 Status bit  
1= Edge 1 event has occurred  
0= Edge 1 event has not occurred  
DS39933D-page 322  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 24-3: CTMUICON: CTMU CURRENT CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRNG1  
R/W-0  
IRNG0  
ITRIM5  
ITRIM4  
ITRIM3  
ITRIM2  
ITRIM1  
ITRIM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-2  
ITRIM<5:0>: Current Source Trim bits  
011111= Maximum positive change from nominal current  
011110  
.
.
.
000001= Minimum positive change from nominal current  
000000= Nominal current output specified by IRNG<1:0>  
111111= Minimum negative change from nominal current  
.
.
.
100010  
100001= Maximum negative change from nominal current  
bit 1-0  
IRNG<1:0>: Current Source Range Select bits  
11= 100 x Base current  
10= 10 x Base current  
01= Base current level (0.55 A nominal)  
00= Current source disabled  
TABLE 24-1: REGISTERS ASSOCIATED WITH CTMU MODULE  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page:  
CTMUCONH CTMUEN  
CTMUSIDL  
TGEN  
EDGEN  
EDGSEQEN IDISSEN  
CTTRIG  
CTMUCONL EDG2POL EDG2SEL1 EDG2SEL0 EDG1POL EDG1SEL1 EDG1SEL0 EDG2STAT EDG1STAT  
CTMUICON  
ITRIM5  
ITRIM4  
ITRIM3  
ITRIM2  
ITRIM1  
ITRIM0  
IRNG1  
IRNG0  
Legend:  
— = unimplemented, read as ‘0’. Shaded cells are not used during ECCP operation.  
2010 Microchip Technology Inc.  
DS39933D-page 323  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 324  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
25.1.1  
CONSIDERATIONS FOR  
CONFIGURING PIC18F87J90  
FAMILY DEVICES  
25.0 SPECIAL FEATURES OF THE  
CPU  
PIC18F87J90 family devices include several features  
intended to maximize reliability and minimize cost  
through elimination of external components. These are:  
Devices of the PIC18F87J90 family do not use persis-  
tent memory registers to store configuration information.  
The configuration bytes are implemented as volatile  
memory which means that configuration data must be  
programmed each time the device is powered up.  
• Oscillator Selection  
• Resets:  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
Configuration data is stored in the four words at the top  
of the on-chip program memory space, known as the  
Flash Configuration Words. It is stored in program  
memory in the same order shown in Table 25-2, with  
CONFIG1L at the lowest address and CONFIG3H at  
the highest. The data is automatically loaded in the  
proper Configuration registers during device power-up.  
• Watchdog Timer (WDT)  
• Fail-Safe Clock Monitor  
• Two-Speed Start-up  
• Code Protection  
When creating applications for these devices, users  
should always specifically allocate the location of the  
Flash Configuration Word for configuration data. This is  
to make certain that program code is not stored in this  
address when the code is compiled.  
• In-Circuit Serial Programming  
The oscillator can be configured for the application  
depending on frequency, power, accuracy and cost. All  
of the options are discussed in detail in Section 3.0  
“Oscillator Configurations”.  
The volatile memory cells used for the Configuration  
bits always reset to ‘1’ on Power-on Resets. For all  
other types of Reset events, the previously  
programmed values are maintained and used without  
reloading from program memory.  
A complete discussion of device Resets and interrupts  
is available in previous sections of this data sheet.  
The four Most Significant bits of CONFIG1H,  
CONFIG2H and CONFIG3H in program memory  
should also be ‘1111’. This makes these Configuration  
Words appear to be NOP instructions in the remote  
event that their locations are ever executed by  
accident. Since Configuration bits are not implemented  
in the corresponding locations, writing ‘1’s to these  
locations has no effect on device operation.  
In addition to their Power-up and Oscillator Start-up  
Timers provided for Resets, the PIC18F87J90 family of  
devices have a configurable Watchdog Timer which is  
controlled in software.  
The inclusion of an Internal RC oscillator also provides  
the additional benefits of a Fail-Safe Clock Monitor  
(FSCM) and Two-Speed Start-up. FSCM provides for  
background monitoring of the peripheral clock and  
automatic switchover in the event of its failure.  
Two-Speed Start-up enables code to be executed  
almost immediately on start-up, while the primary clock  
source completes its start-up delays.  
To prevent inadvertent configuration changes during  
code execution, all programmable Configuration bits  
are write-once. After a bit is initially programmed during  
a power cycle, it cannot be written to again. Changing  
a device configuration requires that power to the device  
be cycled.  
All of these features are enabled and configured by  
setting the appropriate Configuration register bits.  
TABLE 25-1: MAPPING OF THE FLASH  
CONFIGURATION WORDS TO  
THE CONFIGURATION  
25.1 Configuration Bits  
The Configuration bits can be programmed (read as  
0’) or left unprogrammed (read as ‘1’) to select various  
device configurations. These bits are mapped, starting  
at program memory location, 300000h. A complete list  
is shown in Table 25-2. A detailed explanation of the  
various bit functions is provided in Register 25-1  
through Register 25-6.  
REGISTERS  
Configuration  
Configuration  
Byte  
Code Space  
Address  
Register  
Address  
CONFIG1L  
CONFIG1H  
CONFIG2L  
CONFIG2H  
CONFIG3L  
CONFIG3H  
XXXF8h  
XXXF9h  
XXXFAh  
XXXFBh  
XXXFCh  
XXXFDh  
300000h  
300001h  
300002h  
300003h  
300004h  
300005h  
2010 Microchip Technology Inc.  
DS39933D-page 325  
PIC18F87J90 FAMILY  
TABLE 25-2: CONFIGURATION BITS AND DEVICE IDs  
Default/  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Unprogrammed  
(1)  
Value  
300000h CONFIG1L DEBUG  
XINST  
STVREN  
WDTEN  
111- ---1  
---- 01--  
11-1 1111  
(2)  
(2)  
(2)  
(2)  
(3)  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
300004h CONFIG3L  
300005h CONFIG3H  
3FFFFEh DEVID1  
CP0  
IESO  
(2)  
FCMEN  
LPT1OSC T1DIG  
FOSC2  
FOSC1  
FOSC0  
(2)  
(2)  
(2)  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 ---- 1111  
(2)  
(2)  
(2)  
(2)  
(2)  
RTCOSC  
---- --1-  
(2)  
(2)  
(2)  
CCP2MX ---- ---1  
(4)  
(4)  
DEV2  
DEV1  
DEV9  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
REV0  
DEV3  
xxxx xxxx  
0000 10x1  
3FFFFFh DEVID2  
DEV10  
Legend:  
x= unknown, -= unimplemented. Shaded cells are unimplemented, read as ‘0’.  
Note 1: Values reflect the unprogrammed state as received from the factory and following Power-on Resets. In all other Reset  
states, the configuration bytes maintain their previously programmed states.  
2: The value of these bits in program memory should always be ‘1’. This ensures that the location is executed as a NOPif it  
is accidentally executed.  
3: This bit should always be maintained as ‘0’.  
4: See Register 25-7 and Register 25-8 for DEVID values. These registers are read-only and cannot be programmed by  
the user.  
DS39933D-page 326  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 25-1: CONFIG1L: CONFIGURATION REGISTER 1 LOW (BYTE ADDRESS 300000h)  
R/WO-1  
DEBUG  
R/WO-1  
XINST  
R/WO-1  
U-0  
U-0  
U-0  
U-0  
R/WO-1  
WDTEN  
STVREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
DEBUG: Background Debugger Enable bit  
1= Background debugger disabled; RB6 and RB7 configured as general purpose I/O pins  
0= Background debugger enabled; RB6 and RB7 are dedicated to In-Circuit Debug  
XINST: Extended Instruction Set Enable bit  
1= Instruction set extension and Indexed Addressing mode enabled  
0= Instruction set extension and Indexed Addressing mode disabled (Legacy mode)  
STVREN: Stack Overflow/Underflow Reset Enable bit  
1= Reset on stack overflow/underflow enabled  
0= Reset on stack overflow/underflow disabled  
bit 4-1  
bit 0  
Unimplemented: Read as ‘0’  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on SWDTEN bit)  
REGISTER 25-2: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/WO-1  
CP0  
U-0  
U-0  
(1)  
(1)  
(1)  
(1)  
(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7-3  
bit 2  
Unimplemented: Read as ‘0’  
CP0: Code Protection bit  
1= Program memory is not code-protected  
0= Program memory is code-protected  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: The value of these bits in program memory should always be ‘1’. This ensures that the location is  
executed as a NOPif it is accidentally executed.  
2: This bit should always be maintained as ‘0’.  
2010 Microchip Technology Inc.  
DS39933D-page 327  
PIC18F87J90 FAMILY  
REGISTER 25-3: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)  
R/WO-1  
IESO  
R/WO-1  
FCMEN  
U-0  
R/WO-1  
R/WO-1  
T1DIG  
R/WO-1  
FOSC2  
R/WO-1  
FOSC1  
R/WO-1  
FOSC0  
LPT1OSC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7  
bit 6  
IESO: Two-Speed Start-up (Internal/External Oscillator Switchover) Control bit  
1= Two-Speed Start-up enabled  
0= Two-Speed Start-up disabled  
FCMEN: Fail-Safe Clock Monitor Enable bit  
1= Fail-Safe Clock Monitor enabled  
0= Fail-Safe Clock Monitor disabled  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
LPT1OSC: T1OSC/SOSC Power Selection Configuration bit  
1= High-power T1OSC/SOSC circuit selected  
0= Low-power T1OSC/SOSC circuit selected  
bit 3  
T1DIG: T1CKI for Digital Input Clock Enable bit  
1= T1CKI is available as a digital input without enabling T1OSCEN  
0= T1CKI is not available as a digital input without enabling T1OSCEN  
bit 2-0  
FOSC<2:0>: Oscillator Selection bits  
111= ECPLL OSC1/OSC2 as primary; ECPLL oscillator with PLL enabled; CLKO on RA6  
110= EC OSC1/OSC2 as primary; external clock with FOSC/4 output  
101= HSPLL OSC1/OSC2 as primary; high-speed crystal/resonator with software PLL control  
100= HS OSC1/OSC2 as primary; high-speed crystal/resonator  
011= INTPLL1 internal oscillator block with software PLL control; FOSC/4 output  
010= INTIO1 internal oscillator block with FOSC/4 output on RA6 and I/O on RA7  
001= INTPLL2 internal oscillator block with software PLL control and I/O on RA6 and RA7  
000= INTIO2 internal oscillator block with I/O on RA6 and RA7  
DS39933D-page 328  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
REGISTER 25-4:  
CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)  
U-0  
U-0  
U-0  
U-0  
R/WO-1  
R/WO-1  
R/WO-1  
R/WO-1  
(1)  
(1)  
(1)  
(1)  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
WDTPS<3:0>: Watchdog Timer Postscale Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
Note 1: The value of these bits in program memory should always be ‘1’. This ensures that the location is  
executed as a NOPif it is accidentally executed.  
REGISTER 25-5:  
CONFIG3L: CONFIGURATION REGISTER 3 LOW (BYTE ADDRESS 300004h)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/WO-1  
U-0  
(1)  
(1)  
(1)  
(1)  
RTCOSC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
RTCOSC: RTCC Reference Clock Select bit  
1= RTCC uses T1OSC/T1CKI as the reference clock  
0= RTCC uses INTRC as the reference clock  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: The value of these bits in program memory should always be ‘1’. This ensures that the location is  
executed as a NOPif it is accidentally executed.  
2010 Microchip Technology Inc.  
DS39933D-page 329  
PIC18F87J90 FAMILY  
REGISTER 25-6: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/WO-1  
(1)  
(1)  
(1)  
(1)  
CCP2MX  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2MX: CCP2 MUX bit  
1= CCP2 is multiplexed with RC1  
0= CCP2 is multiplexed with RE7  
Note 1: The value of these bits in program memory should always be ‘1’. This ensures that the location is  
executed as a NOPif it is accidentally executed.  
REGISTER 25-7: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F87J90 FAMILY DEVICES  
R
R
R
R
R
R
R
R
DEV2  
DEV1  
DEV0  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 0  
bit 7  
Legend:  
R = Read-only bit  
bit 7-5  
DEV<2:0>: Device ID bits  
101= PIC18F87J90  
100= PIC18F86J90  
001= PIC18F67J90  
000= PIC18F66J90  
bit 4-0  
REV<4:0>: Revision ID bits  
These bits are used to indicate the device revision.  
REGISTER 25-8: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F87J90 FAMILY DEVICES  
R
R
R
R
R
R
R
R
DEV10(1)  
DEV9(1)  
DEV8(1)  
DEV7(1)  
DEV6(1)  
DEV5(1)  
DEV4(1)  
DEV3(1)  
bit 7  
bit 0  
Legend:  
R = Read-only bit  
bit 7-0  
DEV<10:3>: Device ID bits(1)  
These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number.  
0101 0000= PIC18F87J90 family devices  
Note 1: The values for DEV<10:3> may be shared with other device families. The specific device is always  
identified by using the entire DEV<10:0> bit sequence.  
DS39933D-page 330  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
25.2 Watchdog Timer (WDT)  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and postscaler counts  
when executed.  
For PIC18F87J90 family devices, the WDT is driven by  
the INTRC oscillator. When the WDT is enabled, the  
clock source is also enabled. The nominal WDT period is  
4 ms and has the same stability as the INTRC oscillator.  
2: When a CLRWDT instruction is executed,  
the postscaler count will be cleared.  
The 4 ms period of the WDT is multiplied by a 16-bit  
postscaler. Any output of the WDT postscaler is  
selected by a multiplexor, controlled by the WDTPS bits  
in Configuration Register 2H. Available periods range  
from 4 ms to 131.072 seconds (2.18 minutes). The  
WDT and postscaler are cleared whenever a SLEEPor  
CLRWDT instruction is executed, or a clock failure  
(primary or Timer1 oscillator) has occurred.  
25.2.1  
CONTROL REGISTER  
The WDTCON register (Register 25-9) is a readable  
and writable register. The SWDTEN bit enables or dis-  
ables WDT operation. This allows software to override  
the WDTEN Configuration bit and enable the WDT only  
if it has been disabled by the Configuration bit.  
FIGURE 25-1:  
WDT BLOCK DIAGRAM  
Enable WDT  
SWDTEN  
INTRC Control  
WDT Counter  
Wake-up from  
Power-Managed  
Modes  
128  
INTRC Oscillator  
WDT  
Reset  
Reset  
CLRWDT  
All Device Resets  
Programmable Postscaler  
1:1 to 1:32,768  
WDT  
4
WDTPS<3:0>  
Sleep  
2010 Microchip Technology Inc.  
DS39933D-page 331  
PIC18F87J90 FAMILY  
REGISTER 25-9: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
R/W-0  
REGSLP(1)  
bit 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN(2)  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
REGSLP: Voltage Regulator Low-Power Operation Enable bit(1)  
1= On-chip regulator enters low-power operation when device enters Sleep mode  
0= On-chip regulator continues to operate normally in Sleep mode  
bit 6-1  
bit 0  
Unimplemented: Read as ‘0’  
SWDTEN: Software Controlled Watchdog Timer Enable bit(2)  
1= Watchdog Timer is on  
0= Watchdog Timer is off  
Note 1: The REGSLP bit is automatically cleared when a Low-Voltage Detect condition occurs.  
2: This bit has no effect if the Configuration bit, WDTEN, is enabled.  
TABLE 25-3: SUMMARY OF WATCHDOG TIMER REGISTERS  
ResetValues  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCON  
WDTCON  
IPEN  
CM  
RI  
TO  
PD  
POR  
BOR  
60  
60  
REGSLP  
SWDTEN  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Watchdog Timer.  
DS39933D-page 332  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 25-2:  
CONNECTIONS FOR THE  
ON-CHIP REGULATOR  
25.3 On-Chip Voltage Regulator  
All of the PIC18F87J90 family devices power their core  
digital logic at a nominal 2.5V. For designs that are  
required to operate at a higher typical voltage, such as  
3.3V, all devices in the PIC18F87J90 family incorporate  
an on-chip regulator that allows the device to run its  
core logic from VDD.  
Regulator Enabled (ENVREG tied to VDD):  
3.3V  
PIC18F87J90  
VDD  
ENVREG  
VDDCORE/VCAP  
The regulator is controlled by the ENVREG pin. Tying  
VDD to the pin enables the regulator, which in turn, pro-  
vides power to the core from the other VDD pins. When  
the regulator is enabled, a low-ESR filter capacitor  
must be connected to the VDDCORE/VCAP pin  
(Figure 25-2). This helps to maintain the stability of the  
regulator. The recommended value for the filter capac-  
itor is provided in Section 28.3 “DC Characteristics:  
PIC18F87J90 Family (Industrial)”.  
CF  
VSS  
Regulator Disabled (ENVREG tied to ground):  
(1)  
(1)  
2.5V  
3.3V  
If ENVREG is tied to VSS, the regulator is disabled. In  
this case, separate power for the core logic at a nomi-  
nal 2.5V must be supplied to the device on the  
VDDCORE/VCAP pin to run the I/O pins at higher voltage  
levels, typically 3.3V. Alternatively, the VDDCORE/VCAP  
and VDD pins can be tied together to operate at a lower  
nominal voltage. Refer to Figure 25-2 for possible  
configurations.  
PIC18F87J90  
VDD  
ENVREG  
VDDCORE/VCAP  
VSS  
25.3.1  
VOLTAGE REGULATION AND  
LOW-VOLTAGE DETECTION  
Regulator Disabled (VDD tied to VDDCORE):  
When it is enabled, the on-chip regulator provides a  
constant voltage of 2.5V nominal to the digital core  
logic. The regulator can provide this level from a VDD of  
about 2.5V, all the way up to the device’s VDDMAX. It  
does not have the capability to boost VDD levels below  
2.5V.  
(1)  
2.5V  
PIC18F87J90  
VDD  
ENVREG  
VDDCORE/VCAP  
VSS  
In order to prevent “brown-out” conditions when the  
voltage drops too low for the regulator, the regulator  
enters Tracking mode. In Tracking mode, the regulator  
output follows VDD with a typical voltage drop of  
100 mV.  
The on-chip regulator includes a simple Low-Voltage  
Detect (LVD) circuit. If VDD drops too low to maintain  
approximately 2.45V on VDDCORE, the circuit sets the  
Low-Voltage Detect Interrupt Flag, LVDIF (PIR2<2>),  
and clears the REGSLP (WDTCON<7>) bit, if it was  
set.  
Note 1: These are typical operating voltages. For the  
full operating ranges of VDD and VDDCORE,  
refer to Section 28.1 “DC Characteristics:  
Supply Voltage PIC18F87J90 Family  
(Industrial)”.  
This can be used to generate an interrupt and put the  
application into a low-power operational mode, or trig-  
ger an orderly shutdown. Low-Voltage Detection is only  
available when the regulator is enabled.  
2010 Microchip Technology Inc.  
DS39933D-page 333  
PIC18F87J90 FAMILY  
The REGSLP bit is automatically cleared by hardware  
when a Low-Voltage Detect condition occurs. The  
REGSLP bit can be set again in software, which would  
continue to keep the voltage regulator in Low-Power  
mode. This, however, is not recommended if any write  
operations to the Flash will be performed.  
25.3.2  
ON-CHIP REGULATOR AND BOR  
When the on-chip regulator is enabled, PIC18F87J90  
family devices also have a simple Brown-out Reset  
capability. If the voltage supplied to the regulator falls to  
a level that is inadequate to maintain a regulated output  
for full-speed operation, the regulator Reset circuitry  
will generate a Brown-out Reset. This event is captured  
by the BOR flag bit (RCON<0>).  
25.4 Two-Speed Start-up  
The operation of the BOR is described in more detail in  
Section 5.4 “Brown-out Reset (BOR)” and  
Section 5.4.1 “Detecting BOR”.  
The Two-Speed Start-up feature helps to minimize the  
latency period, from oscillator start-up to code execu-  
tion, by allowing the microcontroller to use the INTRC  
oscillator as a clock source until the primary clock  
source is available. It is enabled by setting the IESO  
Configuration bit.  
25.3.3  
POWER-UP REQUIREMENTS  
The on-chip regulator is designed to meet the power-up  
requirements for the device. If the application does not  
use the regulator, then strict power-up conditions must  
be adhered to. While powering up, VDDCORE must  
never exceed VDD by 0.3 volts.  
Two-Speed Start-up should be enabled only if the  
Primary Oscillator mode is HS or HSPLL  
(Crystal-Based) modes. Since the EC and ECPLL  
modes do not require an OST start-up delay,  
Two-Speed Start-up should be disabled.  
25.3.4  
OPERATION IN SLEEP MODE  
When enabled, Resets and wake-ups from Sleep mode  
cause the device to configure itself to run from the inter-  
nal oscillator block as the clock source, following the  
time-out of the Power-up Timer after a Power-on Reset  
is enabled. This allows almost immediate code  
execution while the primary oscillator starts and the  
OST is running. Once the OST times out, the device  
automatically switches to PRI_RUN mode.  
When enabled, the on-chip regulator always consumes  
a small incremental amount of current over IDD. This  
includes when the device is in Sleep mode, even  
though the core digital logic does not require power. To  
provide additional savings in applications where power  
resources are critical, the regulator can be configured  
to automatically disable itself whenever the device  
goes into Sleep mode. This feature is controlled by the  
REGSLP bit (WDTCON<7>). Setting this bit disables  
the regulator in Sleep mode, and reduces its current  
consumption to a minimum.  
In all other power-managed modes, Two-Speed  
Start-up is not used. The device will be clocked by the  
currently selected clock source until the primary clock  
source becomes available. The setting of the IESO bit  
is ignored.  
Substantial Sleep mode power savings can be  
obtained by setting the REGSLP bit, but device  
wake-up time will increase in order to ensure the  
regulator has enough time to stabilize.  
FIGURE 25-3:  
TIMING TRANSITION FOR TWO-SPEED START-UP (INTRC TO HSPLL)  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q1  
Q2  
INTRC  
OSC1  
(1)  
(1)  
TOST  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC + 6  
PC  
PC + 2  
Wake from Interrupt Event  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
DS39933D-page 334  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Clock failure is tested for on the falling edge of the  
sample clock. If a sample clock falling edge occurs  
while CM is still set, a clock failure has been detected  
(Figure 25-5). This causes the following:  
25.4.1  
SPECIAL CONSIDERATIONS FOR  
USING TWO-SPEED START-UP  
While using the INTRC oscillator in Two-Speed  
Start-up, the device still obeys the normal command  
sequences for entering power-managed modes,  
including serial SLEEP instructions (refer to  
Section 4.1.4 “Multiple Sleep Commands”). In prac-  
tice, this means that user code can change the  
SCS<1:0> bits setting or issue SLEEP instructions  
before the OST times out. This would allow an applica-  
tion to briefly wake-up, perform routine “housekeeping”  
tasks and return to Sleep before the device starts to  
operate from the primary oscillator.  
• the FSCM generates an oscillator fail interrupt by  
setting bit, OSCFIF (PIR2<7>);  
• the device clock source is switched to the internal  
oscillator block (OSCCON is not updated to show  
the current clock source – this is the Fail-Safe  
condition); and  
• the WDT is reset.  
During switchover, the postscaler frequency from the  
internal oscillator block may not be sufficiently stable  
for timing-sensitive applications. In these cases, it may  
be desirable to select another clock configuration and  
enter an alternate power-managed mode. This can be  
done to attempt a partial recovery or execute a  
controlled shutdown. See Section 4.1.4 “Multiple  
Sleep Commands” and Section 25.4.1 “Special  
Considerations for Using Two-Speed Start-up” for  
more details.  
User code can also check if the primary clock source is  
currently providing the device clocking by checking the  
status of the OSTS bit (OSCCON<3>). If the bit is set,  
the primary oscillator is providing the clock. Otherwise,  
the internal oscillator block is providing the clock during  
wake-up from Reset or Sleep mode.  
25.5 Fail-Safe Clock Monitor  
The FSCM will detect failures of the primary or secondary  
clock sources only. If the internal oscillator block fails, no  
failure would be detected, nor would any action be  
possible.  
The Fail-Safe Clock Monitor (FSCM) allows the  
microcontroller to continue operation in the event of an  
external oscillator failure by automatically switching the  
device clock to the internal oscillator block. The FSCM  
function is enabled by setting the FCMEN Configuration  
bit.  
25.5.1  
FSCM AND THE WATCHDOG TIMER  
Both the FSCM and the WDT are clocked by the  
INTRC oscillator. Since the WDT operates with a  
separate divider and counter, disabling the WDT has  
no effect on the operation of the INTRC oscillator when  
the FSCM is enabled.  
When FSCM is enabled, the INTRC oscillator runs at  
all times to monitor clocks to peripherals and provides  
a backup clock in the event of a clock failure. Clock  
monitoring (shown in Figure 25-4) is accomplished by  
creating a sample clock signal which is the INTRC out-  
put divided by 64. This allows ample time between  
FSCM sample clocks for a peripheral clock edge to  
occur. The peripheral device clock and the sample  
clock are presented as inputs to the Clock Monitor  
(CM) latch. The CM is set on the falling edge of the  
device clock source but cleared on the rising edge of  
the sample clock.  
As already noted, the clock source is switched to the  
INTRC clock when a clock failure is detected; this may  
mean a substantial change in the speed of code execu-  
tion. If the WDT is enabled with a small prescale value,  
a decrease in clock speed allows a WDT time-out to  
occur and a subsequent device Reset. For this reason,  
Fail-Safe Clock Monitor events also reset the WDT and  
postscaler, allowing it to start timing from when execu-  
tion speed was changed and decreasing the likelihood  
of an erroneous time-out.  
FIGURE 25-4:  
FSCM BLOCK DIAGRAM  
Clock Monitor  
Latch (CM)  
(edge-triggered)  
If the interrupt is disabled, subsequent interrupts while  
in Idle mode will cause the CPU to begin executing  
instructions while being clocked by the INTRC source.  
Peripheral  
Clock  
S
C
Q
Q
INTRC  
Source  
÷ 64  
488 Hz  
(2.048 ms)  
(32 s)  
Clock  
Failure  
Detected  
2010 Microchip Technology Inc.  
DS39933D-page 335  
PIC18F87J90 FAMILY  
FIGURE 25-5:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
Device  
Clock  
Output  
CM Output  
(Q)  
Failure  
Detected  
OSCFIF  
CM Test  
CM Test  
CM Test  
Note:  
The device clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
25.5.2  
EXITING FAIL-SAFE OPERATION  
25.5.4  
POR OR WAKE-UP FROM SLEEP  
The Fail-Safe condition is terminated by either a device  
Reset or by entering a power-managed mode. On  
Reset, the controller starts the primary clock source  
specified in Configuration Register 2H (with any  
required start-up delays that are required for the oscil-  
lator mode, such as the OST or PLL timer). The INTRC  
oscillator provides the device clock until the primary  
clock source becomes ready (similar to a Two-Speed  
Start-up). The clock source is then switched to the  
primary clock (indicated by the OSTS bit in the  
OSCCON register becoming set). The Fail-Safe Clock  
Monitor then resumes monitoring the peripheral clock.  
The FSCM is designed to detect oscillator failure at any  
point after the device has exited Power-on Reset  
(POR) or low-power Sleep mode. When the primary  
device clock is either EC or INTRC mode, monitoring  
can begin immediately following these events.  
For HS or HSPLL modes, the situation is somewhat dif-  
ferent. Since the oscillator may require a start-up time  
considerably longer than the FSCM sample clock time,  
a false clock failure may be detected. To prevent this,  
the internal oscillator block is automatically configured  
as the device clock and functions until the primary clock  
is stable (the OST and PLL timers have timed out). This  
is identical to Two-Speed Start-up mode. Once the  
primary clock is stable, the INTRC returns to its role as  
the FSCM source.  
The primary clock source may never become ready  
during start-up. In this case, operation is clocked by the  
INTOSC multiplexor. The OSCCON register will remain  
in its Reset state until a power-managed mode is  
entered.  
Note:  
The same logic that prevents false  
oscillator failure interrupts on POR, or  
wake from Sleep, will also prevent the  
detection of the oscillator’s failure to start  
at all following these events. This can be  
avoided by monitoring the OSTS bit and  
using a timing routine to determine if the  
oscillator is taking too long to start. Even  
so, no oscillator failure interrupt will be  
flagged.  
25.5.3  
FSCM INTERRUPTS IN  
POWER-MANAGED MODES  
By entering a power-managed mode, the clock  
multiplexor selects the clock source selected by the  
OSCCON register. Fail-Safe Clock Monitoring of the  
power-managed clock source resumes in the  
power-managed mode.  
If an oscillator failure occurs during power-managed  
operation, the subsequent events depend on whether  
or not the oscillator failure interrupt is enabled. If  
enabled (OSCFIF = 1), code execution will be clocked  
by the INTRC multiplexor. An automatic transition back  
to the failed clock source will not occur.  
As noted in Section 25.4.1 “Special Considerations  
for Using Two-Speed Start-up”, it is also possible to  
select another clock configuration and enter an alternate  
power-managed mode while waiting for the primary  
clock to become stable. When the new power-managed  
mode is selected, the primary clock is disabled.  
DS39933D-page 336  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
25.6 Program Verification and  
Code Protection  
25.7  
In-Circuit Serial Programming  
PIC18F87J90 family microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
For all devices in the PIC18F87J90 family of devices,  
the on-chip program memory space is treated as a  
single block. Code protection for this block is controlled  
by one Configuration bit, CP0. This bit inhibits external  
reads and writes to the program memory space. It has  
no direct effect in normal execution mode.  
25.6.1  
CONFIGURATION REGISTER  
PROTECTION  
25.8 In-Circuit Debugger  
The Configuration registers are protected against  
untoward changes or reads in two ways. The primary  
protection is the write-once feature of the Configuration  
bits which prevents reconfiguration once the bit has  
been programmed during a power cycle. To safeguard  
against unpredictable events, Configuration bit  
changes resulting from individual cell-level disruptions  
(such as ESD events) will cause a parity error and  
trigger a device Reset.  
When the DEBUG Configuration bit is programmed to  
a ‘0’, the In-Circuit Debugger functionality is enabled.  
This function allows simple debugging functions when  
used with MPLAB® IDE. When the microcontroller has  
this feature enabled, some resources are not available  
for general use. Table 25-4 shows which resources are  
required by the background debugger.  
The data for the Configuration registers is derived from  
the Flash Configuration Words in program memory.  
When the CP0 bit set, the source data for device  
configuration is also protected as a consequence.  
TABLE 25-4: DEBUGGER RESOURCES  
I/O pins:  
RB6, RB7  
2 levels  
Stack:  
Program Memory:  
Data Memory:  
512 bytes  
10 bytes  
2010 Microchip Technology Inc.  
DS39933D-page 337  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 338  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
The literal instructions may use some of the following  
operands:  
26.0 INSTRUCTION SET SUMMARY  
The PIC18F87J90 family of devices incorporate the  
standard set of 75 PIC18 core instructions, as well as  
an extended set of 8 new instructions for the optimiza-  
tion of code that is recursive or that utilizes a software  
stack. The extended set is discussed later in this  
section.  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
• No operand required  
(specified by ‘—’)  
26.1 Standard Instruction Set  
The control instructions may use some of the following  
operands:  
The standard PIC18 MCU instruction set adds many  
enhancements to the previous PIC® MCU instruction  
sets, while maintaining an easy migration from these  
PIC MCU instruction sets. Most instructions are a  
single program memory word (16 bits), but there are  
four instructions that require two program memory  
locations.  
• A program memory address (specified by ‘n’)  
• The mode of the CALLor RETURNinstructions  
(specified by ‘s’)  
• The mode of the table read and table write  
instructions (specified by ‘m’)  
• No operand required  
(specified by ‘—’)  
Each single-word instruction is a 16-bit word divided  
into an opcode, which specifies the instruction type and  
one or more operands, which further specify the  
operation of the instruction.  
All instructions are a single word, except for four  
double-word instructions. These instructions were  
made double-word to contain the required information  
in 32 bits. In the second word, the 4 MSbs are ‘1’s. If  
this second word is executed as an instruction (by  
itself), it will execute as a NOP.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
All single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP.  
Control operations  
The PIC18 instruction set summary in Table 26-2 lists  
byte-oriented, bit-oriented, literal and control  
operations. Table 26-1 shows the opcode field  
descriptions.  
The double-word instructions execute in two instruction  
cycles.  
Most byte-oriented instructions have three operands:  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 s. If a conditional test is  
true, or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 s.  
Two-word branch instructions (if true) would take 3 s.  
1. The file register (specified by ‘f’)  
2. The destination of the result (specified by ‘d’)  
3. The accessed memory (specified by ‘a’)  
The file register designator, ‘f’, specifies which file reg-  
ister is to be used by the instruction. The destination  
designator, ‘d’, specifies where the result of the  
operation is to be placed. If ‘d’ is zero, the result is  
placed in the WREG register. If ‘d’ is one, the result is  
placed in the file register specified in the instruction.  
Figure 26-1 shows the general formats that the instruc-  
tions can have. All examples use the convention ‘nnh’  
to represent a hexadecimal number.  
The Instruction Set Summary, shown in Table 26-2,  
lists the standard instructions recognized by the  
Microchip MPASMTM Assembler.  
All bit-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
Section 26.1.1 “Standard Instruction Set” provides  
a description of each instruction.  
2. The bit in the file register (specified by ‘b’)  
3. The accessed memory (specified by ‘a’)  
The bit field designator, ‘b’, selects the number of the bit  
affected by the operation, while the file register desig-  
nator, ‘f’, represents the number of the file in which the  
bit is located.  
2010 Microchip Technology Inc.  
DS39933D-page 339  
PIC18F87J90 FAMILY  
TABLE 26-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit:  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
Bit address within an 8-bit file register (0 to 7).  
BSR  
Bank Select Register. Used to select the current RAM bank.  
ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.  
C, DC, Z, OV, N  
d
Destination select bit:  
d = 0: store result in WREG  
d = 1: store result in file register f  
dest  
f
Destination: either the WREG register or the specified register file location.  
8-bit Register file address (00h to FFh), or 2-bit FSR designator (0h to 3h).  
12-bit Register file address (000h to FFFh). This is the source address.  
12-bit Register file address (000h to FFFh). This is the destination address.  
Global Interrupt Enable bit.  
f
f
s
d
GIE  
k
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).  
Label name.  
label  
mm  
The mode of the TBLPTR register for the table read and table write instructions.  
Only used with table read and table write instructions:  
*
No Change to register (such as TBLPTR with table reads and writes)  
Post-Increment register (such as TBLPTR with table reads and writes)  
Post-Decrement register (such as TBLPTR with table reads and writes)  
Pre-Increment register (such as TBLPTR with table reads and writes)  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions or the direct address for  
Call/Branch and Return instructions.  
PC  
Program Counter.  
PCL  
Program Counter Low Byte.  
Program Counter High Byte.  
Program Counter High Byte Latch.  
Program Counter Upper Byte Latch.  
Power-Down bit.  
PCH  
PCLATH  
PCLATU  
PD  
PRODH  
PRODL  
s
Product of Multiply High Byte.  
Product of Multiply Low Byte.  
Fast Call/Return mode select bit:  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
TBLPTR  
TABLAT  
TO  
21-bit Table Pointer (points to a Program Memory location).  
8-bit Table Latch.  
Time-out bit.  
TOS  
u
Top-of-Stack.  
Unused or Unchanged.  
Watchdog Timer.  
WDT  
WREG  
x
Working register (accumulator).  
Don’t care (‘0’ or ‘1’). The assembler will generate code with x = 0. It is the recommended form of use for  
compatibility with all Microchip software tools.  
z
z
{
7-bit offset value for Indirect Addressing of register files (source).  
7-bit offset value for Indirect Addressing of register files (destination).  
Optional argument.  
s
d
}
[text]  
(text)  
[expr]<n>  
Indicates an Indexed Address.  
The contents of text.  
Specifies bit nof the register indicated by the pointer expr.  
Assigned to.  
< >  
Register bit field.  
In the set of.  
italics  
User-defined term (font is Courier New).  
DS39933D-page 340  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 26-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
15 10  
Example Instruction  
9
8
7
0
ADDWF MYREG, W, B  
OPCODE  
d
a
f (FILE #)  
d = 0for result destination to be WREG register  
d = 1for result destination to be file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
MOVFF MYREG1, MYREG2  
OPCODE  
f (Source FILE #)  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 7Fh  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTOand Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
S
n<7:0> (literal)  
0
1111  
S = Fast bit  
n<19:8> (literal)  
15  
15  
11 10  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
n<7:0> (literal)  
8 7  
OPCODE  
2010 Microchip Technology Inc.  
DS39933D-page 341  
PIC18F87J90 FAMILY  
TABLE 26-2: PIC18F87J90 FAMILY INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
BYTE-ORIENTED OPERATIONS  
ADDWF f, d, a Add WREG and f  
ADDWFC f, d, a Add WREG and Carry bit to f  
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
1
1
1
1
ANDWF  
CLRF  
COMF  
f, d, a AND WREG with f  
f, a Clear f  
f, d, a Complement f  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
1,2  
2
1, 2  
4
CPFSEQ  
CPFSGT  
CPFSLT  
DECF  
f, a  
f, a  
f, a  
Compare f with WREG, Skip =  
Compare f with WREG, Skip >  
Compare f with WREG, Skip <  
1 (2 or 3) 0110 001a ffff ffff None  
1 (2 or 3) 0110 010a ffff ffff None  
1 (2 or 3) 0110 000a ffff ffff None  
4
1, 2  
f, d, a Decrement f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
DECFSZ  
DCFSNZ  
INCF  
f, d, a Decrement f, Skip if 0  
f, d, a Decrement f, Skip if Not 0  
f, d, a Increment f  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1, 2, 3, 4  
1, 2  
1
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
fs, fd Move fs (source) to 1st word  
fd (destination) 2nd word  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4
1, 2  
1, 2  
1
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
MOVWF  
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
f, a  
f, a  
f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
0101 01da ffff ffff C, DC, Z, OV, N  
1, 2  
1, 2  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
RRNCF  
SETF  
f, a  
Set f  
1, 2  
SUBFWB f, d, a Subtract f from WREG with  
Borrow  
SUBWF  
f, d, a Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N 1, 2  
0101 10da ffff ffff C, DC, Z, OV, N  
SUBWFB f, d, a Subtract WREG from f with  
Borrow  
SWAPF  
TSTFSZ  
XORWF  
f, d, a Swap Nibbles in f  
f, a Test f, Skip if 0  
f, d, a Exclusive OR WREG with f  
1
0011 10da ffff ffff None  
4
1, 2  
1 (2 or 3) 0110 011a ffff ffff None  
0001 10da ffff ffff Z, N  
1
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be  
that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and  
is driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared  
if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
DS39933D-page 342  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 26-2: PIC18F87J90 FAMILY INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
BIT-ORIENTED OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, b, a Bit Toggle f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
1 (2)  
2
CALL  
Call Subroutine 1st word  
2nd word  
CLRWDT  
DAW  
GOTO  
n
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to Address 1st word  
2nd word  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111 C  
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
No Operation  
Pop Top of Return Stack (TOS)  
Push Top of Return Stack (TOS) 1  
Relative Call  
Software Device Reset  
Return from Interrupt Enable  
1
1
1
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
4
2
1
2
s
RETLW  
RETURN  
SLEEP  
k
s
Return with Literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be  
that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and  
is driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared  
if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
2010 Microchip Technology Inc.  
DS39933D-page 343  
PIC18F87J90 FAMILY  
TABLE 26-2: PIC18F87J90 FAMILY INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add Literal and WREG  
AND Literal with WREG  
Inclusive OR Literal with WREG 1  
Move literal (12-bit) 2nd word  
to FSR(f) 1st word  
Move Literal to BSR<3:0>  
Move Literal to WREG  
Multiply Literal with WREG  
Return with Literal in WREG  
Subtract WREG from Literal  
1
1
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
2
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
1
1
1
2
1
Exclusive OR Literal with WREG 1  
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with Post-Increment  
Table Read with Post-Decrement  
Table Read with Pre-Increment  
Table Write  
Table Write with Post-Increment  
Table Write with Post-Decrement  
Table Write with Pre-Increment  
2
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be  
that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and  
is driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared  
if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
DS39933D-page 344  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
26.1.1  
STANDARD INSTRUCTION SET  
ADDLW  
ADD Literal to W  
ADDWF  
ADD W to f  
Syntax:  
ADDLW  
k
Syntax:  
ADDWF  
f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) + k W  
N, OV, C, DC, Z  
Operation:  
(W) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
The contents of W are added to the  
8-bit literal ‘k’ and the result is placed in  
W.  
0010  
01da  
ffff  
ffff  
Description:  
Add W to register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
ADDLW  
15h  
Before Instruction  
10h  
After Instruction  
25h  
W
=
Words:  
Cycles:  
1
1
W
=
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
ADDWF  
REG, 0, 0  
Before Instruction  
W
REG  
=
=
17h  
0C2h  
After Instruction  
W
REG  
=
=
0D9h  
0C2h  
Note:  
All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in  
symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).  
2010 Microchip Technology Inc.  
DS39933D-page 345  
PIC18F87J90 FAMILY  
ADDWFC  
ADD W and Carry bit to f  
ANDLW  
AND Literal with W  
Syntax:  
ADDWFC  
f {,d {,a}}  
Syntax:  
ANDLW  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .AND. k W  
N, Z  
Operation:  
(W) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
The contents of W are ANDed with the  
8-bit literal ‘k’. The result is placed in W.  
0010  
00da  
ffff  
ffff  
Description:  
Add W, the Carry flag and data memory  
location ‘f’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed in data memory location ‘f’.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
ANDLW  
05Fh  
Before Instruction  
W
=
A3h  
03h  
After Instruction  
W
=
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
ADDWFC  
REG, 0, 1  
Before Instruction  
Carry bit =  
1
02h  
4Dh  
REG  
W
=
=
After Instruction  
Carry bit =  
0
02h  
50h  
REG  
W
=
=
DS39933D-page 346  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
ANDWF  
AND W with f  
BC  
Branch if Carry  
BC  
Syntax:  
ANDWF  
f {,d {,a}}  
Syntax:  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(W) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ’1’, then the program  
Description:  
The contents of W are ANDed with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Words:  
Cycles:  
1
1
No  
No  
No  
operation  
No  
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
ANDWF  
REG, 0, 0  
Example:  
HERE  
BC  
5
Before Instruction  
Before Instruction  
W
REG  
=
=
17h  
C2h  
PC  
=
address (HERE)  
1;  
After Instruction  
After Instruction  
If Carry  
PC  
If Carry  
PC  
=
=
=
=
W
REG  
=
=
02h  
C2h  
address (HERE + 12)  
0;  
address (HERE + 2)  
2010 Microchip Technology Inc.  
DS39933D-page 347  
PIC18F87J90 FAMILY  
BCF  
Bit Clear f  
BN  
Branch if Negative  
BN  
Syntax:  
BCF f, b {,a}  
Syntax:  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Negative bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ‘1’, then the  
Description:  
Bit ‘b’ in register ‘f’ is cleared.  
program will branch.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Words:  
Cycles:  
1
1
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
BCF  
FLAG_REG, 7, 0  
Before Instruction  
FLAG_REG = C7h  
After Instruction  
FLAG_REG = 47h  
Example:  
HERE  
BN Jump  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
PC  
If Negative  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
DS39933D-page 348  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
BNC  
Branch if Not Carry  
BNC  
BNN  
Branch if Not Negative  
BNN  
Syntax:  
n
Syntax:  
n
Operands:  
Operation:  
-128 n 127  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘0’,  
(PC) + 2 + 2n PC  
if Negative bit is ‘0’,  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ‘0’, then the program  
Description:  
If the Negative bit is ‘0’, then the  
will branch.  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNC Jump  
Example:  
HERE  
BNN Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
PC  
If Carry  
PC  
=
=
=
=
0;  
If Negative  
PC  
If Negative  
PC  
=
=
=
=
0;  
address (Jump)  
1;  
address (Jump)  
1;  
address (HERE + 2)  
address (HERE + 2)  
2010 Microchip Technology Inc.  
DS39933D-page 349  
PIC18F87J90 FAMILY  
BNOV  
Branch if Not Overflow  
BNOV  
BNZ  
Branch if Not Zero  
BNZ  
Syntax:  
n
Syntax:  
n
Operands:  
Operation:  
-128 n 127  
Operands:  
Operation:  
-128 n 127  
if Overflow bit is ‘0’,  
(PC) + 2 + 2n PC  
if Zero bit is ‘0’,  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ‘0’, then the  
Description:  
If the Zero bit is ‘0’, then the program  
program will branch.  
will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNOV Jump  
Example:  
HERE  
BNZ Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Overflow  
PC  
If Overflow  
PC  
=
=
=
=
0;  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
0;  
address (Jump)  
1;  
address (Jump)  
1;  
address (HERE + 2)  
address (HERE + 2)  
DS39933D-page 350  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
BRA  
Unconditional Branch  
BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
BSF f, b {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1f<b>  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
Add the 2’s complement number ‘2n’ to  
the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit ‘b’ in register ‘f’ is set.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Words:  
Cycles:  
1
2
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Example:  
HERE  
BRA Jump  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
PC  
=
=
address (HERE)  
address (Jump)  
After Instruction  
PC  
Example:  
BSF  
FLAG_REG, 7, 1  
0Ah  
8Ah  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
=
=
2010 Microchip Technology Inc.  
DS39933D-page 351  
PIC18F87J90 FAMILY  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
BTFSC f, b {,a}  
Syntax:  
BTFSS f, b {,a}  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, then the next  
instruction is skipped. If bit ‘b’ is ‘0’, then  
the next instruction fetched during the  
current instruction execution is discarded  
and a NOPis executed instead, making  
this a two-cycle instruction.  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, then the next  
instruction is skipped. If bit ‘b’ is ‘1’, then  
the next instruction fetched during the  
current instruction execution is discarded  
and a NOPis executed instead, making  
this a two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction set  
is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1, 0  
Example:  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1, 0  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
After Instruction  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
=
=
=
=
0;  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
=
=
=
=
0;  
address (TRUE)  
1;  
address (FALSE)  
1;  
address (FALSE)  
address (TRUE)  
DS39933D-page 352  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
BOV  
Syntax:  
BTG f, b {,a}  
Syntax:  
n
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Overflow bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ‘1’, then the  
Description:  
Bit ‘b’ in data memory location ‘f’ is  
inverted.  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Q Cycle Activity:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
BTG  
PORTC, 4, 0  
Before Instruction:  
PORTC  
After Instruction:  
PORTC  
=
0111 0101 [75h]  
0110 0101 [65h]  
Example:  
HERE  
BOV Jump  
Before Instruction  
=
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
If Overflow  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
2010 Microchip Technology Inc.  
DS39933D-page 353  
PIC18F87J90 FAMILY  
BZ  
Branch if Zero  
BZ  
CALL  
Subroutine Call  
Syntax:  
n
Syntax:  
CALL k {,s}  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0,1]  
if Zero bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>;  
if s = 1  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
Description:  
If the Zero bit is ‘1’, then the program  
will branch.  
Status Affected:  
None  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2-Mbyte  
memory range. First, return address  
Words:  
Cycles:  
1
(PC+ 4) is pushed onto the return stack.  
If ‘s’ = 1, the W, STATUS and BSR  
registers are also pushed into their  
respective shadow registers, WS,  
STATUSS and BSRS. If ‘s’ = 0, no  
update occurs. Then, the 20-bit value ‘k’  
is loaded into PC<20:1>. CALLis a  
two-cycle instruction.  
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal Push PC to Read literal  
‘k’<7:0>,  
stack  
’k’<19:8>,  
Write to PC  
Example:  
HERE  
BZ Jump  
No  
No  
No  
No  
Before Instruction  
operation  
operation  
operation  
operation  
PC  
=
address (HERE)  
After Instruction  
Example:  
HERE  
CALL THERE,1  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
Before Instruction  
PC  
After Instruction  
=
address (HERE)  
address (HERE + 2)  
PC  
=
address (THERE)  
TOS  
WS  
=
=
=
address (HERE + 4)  
W
BSR  
STATUS  
BSRS  
STATUSS =  
DS39933D-page 354  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
CLRF f {,a}  
Syntax:  
CLRWDT  
None  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
000h WDT,  
000h WDT postscaler,  
1TO,  
Operation:  
000h f,  
1Z  
1PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register.  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the post-  
scaler of the WDT. Status bits, TO and  
PD, are set.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
Process  
Data  
No  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
CLRWDT  
Before Instruction  
Q Cycle Activity:  
Q1  
WDT Counter  
After Instruction  
WDT Counter  
WDT Postscaler  
TO  
=
?
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
=
=
=
=
00h  
0
1
PD  
1
Example:  
CLRF  
FLAG_REG,1  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
=
=
5Ah  
00h  
2010 Microchip Technology Inc.  
DS39933D-page 355  
PIC18F87J90 FAMILY  
CPFSEQ  
Compare f with W, Skip if f = W  
COMF  
Complement f  
Syntax:  
CPFSEQ f {,a}  
Syntax:  
COMF f {,d {,a}}  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – (W),  
skip if (f) = (W)  
(unsigned comparison)  
Operation:  
f dest  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
complemented. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
If ‘f’ = W, then the fetched instruction is  
discarded and a NOPis executed  
instead, making this a two-cycle  
instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
Q2  
Q3  
Q4  
1(2)  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Example:  
COMF  
REG, 0, 0  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
No  
operation  
Before Instruction  
Decode  
REG  
=
13h  
After Instruction  
If skip:  
Q1  
REG  
W
=
=
13h  
ECh  
Q2  
No  
Q3  
No  
Q4  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
No  
Q2  
No  
Q3  
No  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
CPFSEQ REG, 0  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
=
=
=
HERE  
?
?
W
REG  
After Instruction  
If REG  
PC  
If REG  
PC  
=
=
=
W;  
Address (EQUAL)  
W;  
Address (NEQUAL)  
DS39933D-page 356  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
CPFSGT  
Compare f with W, Skip if f > W  
CPFSLT  
Compare f with W, Skip if f < W  
Syntax:  
CPFSGT f {,a}  
Syntax:  
CPFSLT f {,a}  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) –W),  
skip if (f) > (W)  
(unsigned comparison)  
Operation:  
(f) –W),  
skip if (f) < (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of the W by  
performing an unsigned subtraction.  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
If the contents of ‘f’ are greater than the  
contents of WREG, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction.  
If the contents of ‘f’ are less than the  
contents of W, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
Decode  
Read  
Process  
Data  
No  
operation  
1(2)  
register ‘f’  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
No  
operation  
Decode  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
If skip:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
No  
Q3  
No  
Q4  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
No  
operation  
No  
Q2  
No  
operation  
No  
Q3  
No  
operation  
No  
Q4  
No  
operation  
No  
Example:  
HERE  
NLESS  
LESS  
CPFSLT REG, 1  
:
:
operation  
operation  
operation  
operation  
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
Example:  
HERE  
CPFSGT REG, 0  
NGREATER  
GREATER  
:
:
After Instruction  
If REG  
PC  
If REG  
PC  
<
=
=
W;  
Address (LESS)  
W;  
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
Address (NLESS)  
After Instruction  
If REG  
PC  
If REG  
PC  
=
=
W;  
Address (GREATER)  
W;  
Address (NGREATER)  
2010 Microchip Technology Inc.  
DS39933D-page 357  
PIC18F87J90 FAMILY  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
DAW  
None  
Syntax:  
DECF f {,d {,a}}  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
If [W<3:0> > 9] or [DC = 1], then  
(W<3:0>) + 6 W<3:0>;  
else  
Operation:  
(f) – 1dest  
(W<3:0>) W<3:0>  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
0000  
01da  
ffff  
ffff  
If [W<7:4> > 9] or [C = 1], then  
(W<7:4>) + 6 W<7:4>;  
C =1;  
Description:  
Decrement register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
else  
(W<7:4>) W<7:4>  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Status Affected:  
Encoding:  
C
0000  
0000  
0000  
0111  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Description:  
DAW adjusts the eight-bit value in W,  
resulting from the earlier addition of two  
variables (each in packed BCD format)  
and produces a correct packed BCD  
result.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register W  
Process  
Data  
Write  
W
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
DAW  
Before Instruction  
Example:  
DECF  
CNT,  
1, 0  
W
=
=
=
A5h  
0
C
Before Instruction  
DC  
0
CNT  
Z
=
01h  
0
After Instruction  
=
W
=
=
=
05h  
1
0
After Instruction  
C
CNT  
Z
=
=
00h  
1
DC  
Example 2:  
Before Instruction  
W
=
=
=
CEh  
0
0
C
DC  
After Instruction  
W
=
=
=
34h  
1
0
C
DC  
DS39933D-page 358  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
DECFSZ  
Decrement f, Skip if 0  
DCFSNZ  
Decrement f, Skip if Not 0  
Syntax:  
DECFSZ f {,d {,a}}  
Syntax:  
DCFSNZ f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1dest,  
skip if result = 0  
Operation:  
(f) – 1dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
If the result is ‘0’, the next instruction  
which is already fetched is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction.  
If the result is not ‘0’, the next  
instruction which is already fetched is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
Process  
Data  
Write to  
destination  
register ‘f’  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
DECFSZ  
GOTO  
CNT, 1, 1  
LOOP  
Example:  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP, 1, 0  
:
:
CONTINUE  
Before Instruction  
PC  
After Instruction  
Before Instruction  
TEMP  
After Instruction  
=
Address (HERE)  
=
?
CNT  
=
CNT – 1  
0;  
If CNT  
=
=
=
TEMP  
If TEMP  
PC  
If TEMP  
PC  
=
=
=
=
TEMP – 1,  
0;  
PC  
Address (CONTINUE)  
0;  
If CNT  
PC  
Address (ZERO)  
0;  
Address (HERE + 2)  
Address (NZERO)  
2010 Microchip Technology Inc.  
DS39933D-page 359  
PIC18F87J90 FAMILY  
GOTO  
Unconditional Branch  
GOTO  
INCF  
Increment f  
Syntax:  
k
Syntax:  
INCF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
0 k 1048575  
k PC<20:1>  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
1110  
1111  
1111  
kkk  
k kkk  
kkkk  
kkkk  
kkkk  
7
0
8
k
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional branch  
Description:  
The contents of register ‘f’ are  
anywhere within entire 2-Mbyte memory  
range. The 20-bit value ‘k’ is loaded into  
PC<20:1>. GOTOis always a two-cycle  
instruction.  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Words:  
Cycles:  
2
2
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’<7:0>,  
No  
operation  
Read literal  
‘k’<19:8>,  
Write to PC  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
GOTO THERE  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
PC  
=
Address (THERE)  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
INCF  
CNT, 1, 0  
Before Instruction  
CNT  
Z
=
FFh  
0
=
=
=
C
?
DC  
?
After Instruction  
CNT  
Z
=
00h  
1
=
=
=
C
1
DC  
1
DS39933D-page 360  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
INFSNZ  
Increment f, Skip if Not 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
INFSNZ f {,d {,a}}  
Syntax:  
INCFSZ f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1dest,  
skip if result 0  
Operation:  
(f) + 1dest,  
skip if result = 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0100  
10da  
ffff  
ffff  
0011  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
If the result is not ‘0’, the next  
instruction which is already fetched is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction.  
If the result is ‘0’, the next instruction  
which is already fetched is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT, 1, 0  
Example:  
HERE  
ZERO  
NZERO  
INFSNZ REG, 1, 0  
Before Instruction  
PC  
After Instruction  
Before Instruction  
PC  
After Instruction  
=
Address (HERE)  
=
Address (HERE)  
REG  
If REG  
PC  
If REG  
PC  
=
REG + 1  
CNT  
If CNT  
PC  
If CNT  
PC  
=
CNT + 1  
=
=
=
0;  
=
=
=
0;  
Address (NZERO)  
0;  
Address (ZERO)  
Address (ZERO)  
0;  
Address (NZERO)  
2010 Microchip Technology Inc.  
DS39933D-page 361  
PIC18F87J90 FAMILY  
IORLW  
Inclusive OR Literal with W  
IORLW  
IORWF  
Inclusive OR W with f  
Syntax:  
k
Syntax:  
IORWF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .OR. k W  
N, Z  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, Z  
The contents of W are ORed with the  
eight-bit literal ‘k’. The result is placed  
in W.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register ‘f’. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is ‘1’,  
the result is placed back in register ‘f’.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
IORLW  
35h  
Before Instruction  
W
=
9Ah  
BFh  
After Instruction  
Words:  
Cycles:  
1
1
W
=
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
IORWF RESULT, 0, 1  
Before Instruction  
RESULT =  
13h  
91h  
W
=
After Instruction  
RESULT =  
13h  
93h  
W
=
DS39933D-page 362  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
LFSR f, k  
Syntax:  
MOVF f {,d {,a}}  
Operands:  
0 f 2  
0 k 4095  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
1111  
1110  
0000  
00ff  
k kkk  
k kkk  
11  
kkkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ‘k’ is loaded into the  
file select register pointed to by ‘f’.  
Description:  
The contents of register ‘f’ are moved to  
a destination dependent upon the  
status of ‘d’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’. Location, ‘f’,  
can be anywhere in the 256-byte bank.  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Decode  
Read literal  
‘k’ MSB  
Process  
Data  
Write  
literal ‘k’  
MSB to  
FSRfH  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Decode  
Read literal  
‘k’ LSB  
Process  
Data  
Write literal  
‘k’ to FSRfL  
Example:  
LFSR 2, 3ABh  
After Instruction  
Words:  
Cycles:  
1
1
FSR2H  
FSR2L  
=
=
03h  
ABh  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
W
Example:  
MOVF  
REG, 0, 0  
Before Instruction  
REG  
W
=
=
22h  
FFh  
After Instruction  
REG  
W
=
=
22h  
22h  
2010 Microchip Technology Inc.  
DS39933D-page 363  
PIC18F87J90 FAMILY  
MOVFF  
Move f to f  
MOVFF f ,f  
MOVLB  
Move Literal to Low Nibble in BSR  
MOVLW  
Syntax:  
Syntax:  
k
s
d
Operands:  
0 f 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
k BSR  
None  
s
0 f 4095  
d
Operation:  
(f ) f  
s
d
Status Affected:  
None  
0000  
0001  
kkkk  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
The eight-bit literal ‘k’ is loaded into the  
Bank Select Register (BSR). The value  
of BSR<7:4> always remains ‘0’  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
s
d
Description:  
The contents of source register ‘f ’ are  
regardless of the value of k :k .  
s
7 4  
moved to destination register ‘f ’.  
d
Words:  
Cycles:  
1
1
Location of source ‘f ’ can be anywhere  
s
in the 4096-byte data space (000h to  
FFFh) and location of destination ‘f ’  
can also be anywhere from 000h to  
FFFh.  
d
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write literal  
‘k’ to BSR  
Either source or destination can be W  
(a useful special situation).  
MOVFFis particularly useful for  
transferring a data memory location to a  
peripheral register (such as the transmit  
buffer or an I/O port).  
Example:  
MOVLB  
5
Before Instruction  
BSR Register =  
After Instruction  
BSR Register =  
02h  
05h  
The MOVFFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
No dummy  
read  
Example:  
MOVFF  
REG1, REG2  
Before Instruction  
REG1  
REG2  
=
=
33h  
11h  
After Instruction  
REG1  
REG2  
=
=
33h  
33h  
DS39933D-page 364  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
MOVLW  
Move Literal to W  
MOVLW  
MOVWF  
Move W to f  
Syntax:  
k
Syntax:  
MOVWF f {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
0 k 255  
k W  
None  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(W) f  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
The eight-bit literal ‘k’ is loaded into W.  
Description:  
Move data from W to register ‘f’.  
Location ‘f’ can be anywhere in the  
256-byte bank.  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
MOVLW  
5Ah  
After Instruction  
W
=
5Ah  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
MOVWF  
REG, 0  
Before Instruction  
W
REG  
=
=
4Fh  
FFh  
After Instruction  
W
REG  
=
=
4Fh  
4Fh  
2010 Microchip Technology Inc.  
DS39933D-page 365  
PIC18F87J90 FAMILY  
MULLW  
Multiply Literal with W  
MULWF  
Multiply W with f  
Syntax:  
MULLW  
k
Syntax:  
MULWF f {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
a [0,1]  
(W) x k PRODH:PRODL  
Operation:  
(W) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
An unsigned multiplication is carried  
out between the contents of W and the  
8-bit literal ‘k’. The 16-bit result is  
placed in the PRODH:PRODL register  
pair. PRODH contains the high byte.  
Description:  
An unsigned multiplication is carried out  
between the contents of W and the  
register file location ‘f’. The 16-bit result is  
stored in the PRODH:PRODL register  
pair. PRODH contains the high byte. Both  
W and ‘f’ are unchanged.  
W is unchanged.  
None of the Status flags are affected.  
None of the Status flags are affected.  
Note that neither Overflow nor Carry is  
possible in this operation. A Zero result  
is possible but not detected.  
Note that neither Overflow nor Carry is  
possible in this operation. A Zero result is  
possible but not detected.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’ and the extended instruction set  
is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
Example:  
MULLW  
0C4h  
E2h  
Words:  
Cycles:  
1
1
Before Instruction  
W
PRODH  
PRODL  
=
=
=
?
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
W
PRODH  
PRODL  
=
=
=
E2h  
ADh  
08h  
registers  
PRODH:  
PRODL  
Example:  
MULWF  
REG, 1  
Before Instruction  
W
=
=
=
=
C4h  
REG  
B5h  
?
PRODH  
PRODL  
?
After Instruction  
W
=
=
=
=
C4h  
B5h  
8Ah  
94h  
REG  
PRODH  
PRODL  
DS39933D-page 366  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
NEGF f {,a}  
Syntax:  
NOP  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
None  
No operation  
None  
Operation:  
(f) + 1f  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Location ‘f’ is negated using two’s  
complement. The result is placed in the  
data memory location ‘f’.  
Description:  
Words:  
No operation.  
1
1
Cycles:  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
No  
operation  
Q4  
Decode  
No  
operation  
No  
operation  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
None.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
NEGF  
REG, 1  
Before Instruction  
REG  
After Instruction  
REG  
=
0011 1010 [3Ah]  
1100 0110 [C6h]  
=
2010 Microchip Technology Inc.  
DS39933D-page 367  
PIC18F87J90 FAMILY  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
POP  
Syntax:  
PUSH  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
None  
(TOS) bit bucket  
(PC + 2) TOS  
None  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
The TOS value is pulled off the return  
stack and is discarded. The TOS value  
then becomes the previous value that  
was pushed onto the return stack.  
This instruction is provided to enable  
the user to properly manage the return  
stack to incorporate a software stack.  
The PC + 2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows implementing a  
software stack by modifying TOS and  
then pushing it onto the return stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
PUSH  
No  
No  
Decode  
No  
operation  
POP TOS  
value  
No  
operation  
PC + 2 onto  
return stack  
operation  
operation  
Example:  
POP  
Example:  
PUSH  
GOTO  
NEW  
Before Instruction  
Before Instruction  
TOS  
Stack (1 level down)  
TOS  
PC  
=
=
345Ah  
0124h  
=
=
0031A2h  
014332h  
After Instruction  
After Instruction  
PC  
=
=
=
0126h  
0126h  
345Ah  
TOS  
TOS  
PC  
=
=
014332h  
NEW  
Stack (1 level down)  
DS39933D-page 368  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
RCALL  
Relative Call  
RCALL  
RESET  
Reset  
Syntax:  
n
Syntax:  
RESET  
None  
Operands:  
Operation:  
-1024 n 1023  
Operands:  
Operation:  
(PC) + 2 TOS,  
(PC) + 2 + 2n PC  
Reset all registers and flags that are  
affected by a MCLR Reset.  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to 1K  
from the current location. First, return  
address (PC + 2) is pushed onto the  
stack. Then, add the 2’s complement  
number ‘2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
reset  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
2
Example:  
RESET  
Q Cycle Activity:  
Q1  
After Instruction  
Registers =  
Q2  
Q3  
Q4  
Reset Value  
Reset Value  
Flags*  
=
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
PUSH PC  
to stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
RCALL Jump  
Before Instruction  
PC  
After Instruction  
PC  
TOS =  
=
Address (HERE)  
=
Address (Jump)  
Address (HERE + 2)  
2010 Microchip Technology Inc.  
DS39933D-page 369  
PIC18F87J90 FAMILY  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to W  
RETLW  
Syntax:  
RETFIE {s}  
Syntax:  
k
Operands:  
Operation:  
s [0,1]  
Operands:  
Operation:  
0 k 255  
(TOS) PC,  
k W,  
1GIE/GIEH or PEIE/GIEL;  
if s = 1,  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged  
Description:  
W is loaded with the eight-bit literal ‘k’.  
The program counter is loaded from the  
top of the stack (the return address).  
The high address latch (PCLATH)  
remains unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from interrupt. Stack is popped  
and Top-of-Stack (TOS) is loaded into  
the PC. Interrupts are enabled by  
setting either the high or low-priority  
global interrupt enable bit. If ‘s’ = 1, the  
contents of the shadow registers WS,  
STATUSS and BSRS are loaded into  
their corresponding registers W,  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
POP PC  
from stack,  
write to W  
STATUS and BSR. If ‘s’ = 0, no update  
of these registers occurs.  
No  
operation  
No  
No  
No  
Words:  
Cycles:  
1
2
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
Example:  
Q2  
Q3  
Q4  
CALL TABLE ; W contains table  
; offset value  
Decode  
No  
operation  
No  
operation  
POP PC  
from stack  
; W now has  
; table value  
Set GIEH or  
GIEL  
:
No  
operation  
No  
operation  
No  
operation  
No  
operation  
TABLE  
ADDWF PCL ; W = offset  
RETLW k0  
RETLW k1  
:
; Begin table  
;
Example:  
RETFIE  
1
After Interrupt  
:
PC  
=
=
=
=
=
TOS  
WS  
RETLW kn  
; End of table  
W
BSR  
STATUS  
BSRS  
STATUSS  
1
Before Instruction  
GIE/GIEH, PEIE/GIEL  
W
=
07h  
After Instruction  
W
=
value of kn  
DS39933D-page 370  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
RETURN {s}  
Syntax:  
RLCF f {,d {,a}}  
Operands:  
Operation:  
s [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC;  
if s = 1,  
(WS) W,  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) C,  
(C) dest<0>  
(STATUSS) STATUS,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
Status Affected:  
Encoding:  
C, N, Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left through the Carry flag.  
If ‘d’ is ‘0’, the result is placed in W. If ‘d’  
is ‘1’, the result is stored back in register  
‘f’.  
Description:  
Return from subroutine. The stack is  
popped and the top of the stack (TOS)  
is loaded into the program counter. If  
‘s’= 1, the contents of the shadow  
registers WS, STATUSS and BSRS are  
loaded into their corresponding  
registers W, STATUS and BSR. If  
‘s’ = 0, no update of these registers  
occurs.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
POP PC  
register f  
C
from stack  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Example:  
RETURN  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction:  
PC = TOS  
Example:  
RLCF  
REG, 0, 0  
Before Instruction  
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
W
C
=
=
=
1110 0110  
1100 1100  
1
2010 Microchip Technology Inc.  
DS39933D-page 371  
PIC18F87J90 FAMILY  
RLNCF  
Rotate Left f (No Carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
RLNCF f {,d {,a}}  
Syntax:  
RRCF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in W.  
If ‘d’ is ‘1’, the result is placed back in  
register ‘f’.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
register f  
register f  
C
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
RLNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
Example:  
RRCF  
REG, 0, 0  
=
1010 1011  
0101 0111  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
W
C
=
=
=
1110 0110  
0111 0011  
0
DS39933D-page 372  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
RRNCF  
Rotate Right f (No Carry)  
SETF  
Set f  
Syntax:  
RRNCF f {,d {,a}}  
Syntax:  
SETF f {,a}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of the specified register  
are set to FFh.  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If ‘a’  
is ‘1’, then the bank will be selected as  
per the BSR value.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Words:  
Cycles:  
1
1
Example:  
SETF  
REG,1  
Q Cycle Activity:  
Q1  
Before Instruction  
REG  
After Instruction  
REG  
=
=
5Ah  
FFh  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
RRNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, 0, 0  
=
Example 2:  
Before Instruction  
W
REG  
=
=
?
1101 0111  
After Instruction  
W
REG  
=
=
1110 1011  
1101 0111  
2010 Microchip Technology Inc.  
DS39933D-page 373  
PIC18F87J90 FAMILY  
SLEEP  
Enter Sleep Mode  
SUBFWB  
Subtract f from W with Borrow  
Syntax:  
SLEEP  
None  
Syntax:  
SUBFWB f {,d {,a}}  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0WDT postscaler,  
1TO,  
Operation:  
(W) – (f) – (C) dest  
0PD  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register ‘f’ and Carry flag  
(borrow) from W (2’s complement  
method). If ‘d’ is ‘0’, the result is stored in  
W. If ‘d’ is ‘1’, the result is stored in  
register ‘f’.  
Description:  
The Power-Down status bit (PD) is  
cleared. The Time-out status bit (TO)  
is set. The Watchdog Timer and its  
postscaler are cleared.  
The processor is put into Sleep mode  
with the oscillator stopped.  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Decode  
No  
operation  
Process  
Data  
Go to  
Sleep  
Words:  
Cycles:  
1
1
Example:  
SLEEP  
Before Instruction  
TO  
PD  
=
=
?
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
TO  
PD  
=
=
1†  
0
Example 1:  
SUBFWB  
REG, 1, 0  
If WDT causes wake-up, this bit is cleared.  
Before Instruction  
REG  
W
C
=
=
=
3
2
1
After Instruction  
REG  
W
C
=
FF  
2
=
=
=
=
0
Z
0
1
N
; result is negative  
Example 2:  
Before Instruction  
SUBFWB  
REG, 0, 0  
REG  
W
C
=
=
=
2
5
1
After Instruction  
REG  
W
C
=
2
3
1
0
0
=
=
=
=
Z
N
; result is positive  
Example 3:  
Before Instruction  
SUBFWB  
REG, 1, 0  
REG  
W
C
=
=
=
1
2
0
After Instruction  
REG  
W
C
=
0
2
1
1
0
=
=
=
=
Z
; result is zero  
N
DS39933D-page 374  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
SUBLW  
Subtract W from Literal  
SUBLW  
SUBWF  
Subtract W from f  
Syntax:  
k
Syntax:  
SUBWF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
k – (W) W  
N, OV, C, DC, Z  
Operation:  
(f) – (W) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
W is subtracted from the eight-bit  
literal ‘k’. The result is placed in W.  
0101  
11da  
ffff  
ffff  
Description:  
Subtract W from register ‘f’ (2’s  
Words:  
Cycles:  
1
1
complement method). If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the result  
is stored back in register ‘f’.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example 1:  
SUBLW 02h  
Before Instruction  
W
C
=
=
01h  
?
After Instruction  
W
C
Z
=
01h  
=
=
=
1
0
0
; result is positive  
Words:  
Cycles:  
1
1
N
Example 2:  
SUBLW 02h  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
W
C
=
=
02h  
?
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
C
Z
=
00h  
Example 1:  
SUBWF  
REG, 1, 0  
=
=
=
1
1
0
; result is zero  
Before Instruction  
N
REG  
W
C
=
=
=
3
2
?
Example 3:  
SUBLW 02h  
Before Instruction  
After Instruction  
W
C
=
=
03h  
?
REG  
W
C
=
1
2
1
0
0
=
=
=
=
; result is positive  
After Instruction  
Z
W
C
Z
=
FFh ; (2’s complement)  
N
=
=
=
0
0
1
; result is negative  
Example 2:  
Before Instruction  
SUBWF  
REG, 0, 0  
N
REG  
W
C
=
=
=
2
2
?
After Instruction  
REG  
W
C
=
2
0
1
1
0
=
=
=
=
; result is zero  
Z
N
Example 3:  
Before Instruction  
SUBWF  
REG, 1, 0  
REG  
W
C
=
=
=
1
2
?
After Instruction  
REG  
W
C
=
FFh ;(2’s complement)  
2
0
0
1
=
=
=
=
; result is negative  
Z
N
2010 Microchip Technology Inc.  
DS39933D-page 375  
PIC18F87J90 FAMILY  
SUBWFB  
Subtract W from f with Borrow  
SWAPF  
Swap f  
Syntax:  
SUBWFB f {,d {,a}}  
Syntax:  
SWAPF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – (W) – (C) dest  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0101  
10da  
ffff  
ffff  
Status Affected:  
Encoding:  
None  
Description:  
Subtract W and the Carry flag (borrow)  
from register ‘f’ (2’s complement  
method). If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
0011  
10da  
ffff  
ffff  
Description:  
The upper and lower nibbles of register  
‘f’ are exchanged. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
Decode  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
SUBWFB REG, 1, 0  
Before Instruction  
REG  
W
C
=
=
=
19h  
0Dh  
1
(0001 1001)  
(0000 1101)  
Example:  
SWAPF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
=
53h  
35h  
After Instruction  
REG  
W
=
0Ch  
0Dh  
1
(0000 1011)  
(0000 1101)  
=
=
=
=
REG  
=
C
Z
0
N
0
; result is positive  
Example 2:  
Before Instruction  
SUBWFB REG, 0, 0  
REG  
W
C
=
=
=
1Bh  
1Ah  
0
(0001 1011)  
(0001 1010)  
After Instruction  
REG  
W
C
=
1Bh  
00h  
1
(0001 1011)  
=
=
=
=
Z
1
; result is zero  
N
0
Example 3:  
Before Instruction  
SUBWFB REG, 1, 0  
REG  
W
C
=
=
=
03h  
0Eh  
1
(0000 0011)  
(0000 1101)  
After Instruction  
REG  
=
F5h  
(1111 0100)  
; [2’s comp]  
W
=
=
=
=
0Eh  
0
0
1
(0000 1101)  
C
Z
N
; result is negative  
DS39933D-page 376  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TBLRD  
Table Read  
TBLRD  
Table Read (Continued)  
Syntax:  
TBLRD ( *; *+; *-; +*)  
None  
Example 1:  
TBLRD *+ ;  
Operands:  
Operation:  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(00A356h)  
=
=
=
55h  
00A356h  
34h  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR – No Change  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) + 1TBLPTR  
if TBLRD *-,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) – 1TBLPTR  
if TBLRD +*,  
(TBLPTR) + 1TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT  
After Instruction  
TABLAT  
TBLPTR  
=
=
34h  
00A357h  
Example 2:  
TBLRD +* ;  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(01A357h)  
MEMORY(01A358h)  
After Instruction  
=
=
=
=
AAh  
01A357h  
12h  
34h  
TABLAT  
TBLPTR  
=
=
34h  
01A358h  
Status Affected: None  
Encoding:  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Description:  
This instruction is used to read the contents  
of Program Memory (P.M.). To address the  
program memory, a pointer called Table  
Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory. TBLPTR  
has a 2-Mbyte address range.  
TBLPTR[0] = 0: Least Significant Byte of  
Program Memory Word  
TBLPTR[0] = 1: Most Significant Byte of  
Program Memory Word  
The TBLRDinstruction can modify the value  
of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
No  
No operation  
No  
No operation  
(Write  
TABLAT)  
operation (Read Program operation  
Memory)  
2010 Microchip Technology Inc.  
DS39933D-page 377  
PIC18F87J90 FAMILY  
TBLWT  
Table Write  
TBLWT  
Table Write (Continued)  
Syntax:  
TBLWT ( *; *+; *-; +*)  
None  
Example 1:  
TBLWT *+;  
Operands:  
Operation:  
Before Instruction  
if TBLWT*,  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(00A356h)  
=
=
55h  
00A356h  
(TABLAT) Holding Register;  
TBLPTR – No Change  
if TBLWT*+,  
(TABLAT) Holding Register;  
(TBLPTR) + 1TBLPTR  
if TBLWT*-,  
(TABLAT) Holding Register;  
(TBLPTR) – 1TBLPTR  
if TBLWT+*,  
(TBLPTR) + 1TBLPTR;  
(TABLAT) Holding Register  
=
FFh  
After Instructions (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(00A356h)  
=
=
55h  
00A357h  
=
55h  
Example 2:  
TBLWT +*;  
Before Instruction  
TABLAT  
TBLPTR  
=
=
34h  
01389Ah  
HOLDING REGISTER  
(01389Ah)  
Status Affected: None  
=
=
FFh  
FFh  
Encoding:  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
HOLDING REGISTER  
(01389Bh)  
After Instruction (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(01389Ah)  
HOLDING REGISTER  
(01389Bh)  
=
=
34h  
01389Bh  
Description:  
This instruction uses the 3 LSBs of  
TBLPTR to determine which of the  
8 holding registers the TABLAT is written  
to. The holding registers are used to  
program the contents of Program Memory  
(P.M.). (Refer to Section 6.0 “Memory  
Organization” for additional details on  
programming Flash memory.)  
=
=
FFh  
34h  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory.  
TBLPTR has a 2-Mbyte address range.  
The LSb of the TBLPTR selects which  
byte of the program memory location to  
access.  
TBLPTR[0] = 0: Least Significant Byte  
of Program Memory  
Word  
TBLPTR[0] = 1: Most Significant Byte  
of Program Memory  
Word  
The TBLWT instruction can modify the  
value of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
1
2
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
No  
Decode  
operation operation operation  
No  
No No No  
operation operation operation operation  
(Read  
TABLAT)  
(Write to  
Holding  
Register)  
DS39933D-page 378  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TSTFSZ  
Test f, Skip if 0  
XORLW  
Exclusive OR Literal with W  
XORLW  
Syntax:  
TSTFSZ f {,a}  
Syntax:  
k
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .XOR. k W  
N, Z  
Operation:  
skip if f = 0  
Status Affected:  
Encoding:  
None  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
The contents of W are XORed with  
the 8-bit literal ‘k’. The result is placed  
in W.  
Description:  
If ‘f’ = 0, the next instruction fetched  
during the current instruction execution  
is discarded and a NOPis executed,  
making this a two-cycle instruction.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
XORLW  
0AFh  
Before Instruction  
W
=
B5h  
1Ah  
After Instruction  
Words:  
Cycles:  
1
W
=
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
TSTFSZ CNT, 1  
:
:
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
If CNT  
PC  
If CNT  
PC  
=
=
=
00h,  
Address (ZERO)  
00h,  
Address (NZERO)  
2010 Microchip Technology Inc.  
DS39933D-page 379  
PIC18F87J90 FAMILY  
XORWF  
Exclusive OR W with f  
Syntax:  
XORWF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in the register ‘f’.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 26.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
XORWF  
REG, 1, 0  
Before Instruction  
REG  
W
=
=
AFh  
B5h  
After Instruction  
REG  
W
=
=
1Ah  
B5h  
DS39933D-page 380  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
A summary of the instructions in the extended instruc-  
tion set is provided in Table 26-3. Detailed descriptions  
are provided in Section 26.2.2 “Extended Instruction  
Set”. The opcode field descriptions in Table 26-1  
(page 340) apply to both the standard and extended  
PIC18 instruction sets.  
26.2 Extended Instruction Set  
In addition to the standard 75 instructions of the PIC18  
instruction set, the PIC18F87J90 family family of  
devices also provide an optional extension to the core  
CPU functionality. The added features include eight  
additional instructions that augment Indirect and  
Indexed Addressing operations and the implementa-  
tion of Indexed Literal Offset Addressing for many of  
the standard PIC18 instructions.  
Note:  
The instruction set extension and the  
Indexed Literal Offset Addressing mode  
were designed for optimizing applications  
written in C; the user may likely never use  
these instructions directly in assembler.  
The syntax for these commands is  
provided as a reference for users who may  
be reviewing code that has been  
generated by a compiler.  
The additional features of the extended instruction set  
are enabled by default on unprogrammed devices.  
Users must properly set or clear the XINST Configura-  
tion bit during programming to enable or disable these  
features.  
The instructions in the extended set can all be  
classified as literal operations, which either manipulate  
the File Select Registers, or use them for Indexed  
Addressing. Two of the instructions, ADDFSR and  
SUBFSR, each have an additional special instantiation  
for using FSR2. These versions (ADDULNK and  
SUBULNK) allow for automatic return after execution.  
26.2.1  
EXTENDED INSTRUCTION SYNTAX  
Most of the extended instructions use indexed argu-  
ments, using one of the File Select Registers and some  
offset to specify a source or destination register. When  
an argument for an instruction serves as part of  
Indexed Addressing, it is enclosed in square brackets  
(“[ ]”). This is done to indicate that the argument is used  
as an index or offset. The MPASM™ Assembler will  
flag an error if it determines that an index or offset value  
is not bracketed.  
The extended instructions are specifically implemented  
to optimize re-entrant program code (that is, code that  
is recursive or that uses a software stack) written in  
high-level languages, particularly C. Among other  
things, they allow users working in high-level  
languages to perform certain operations on data  
structures more efficiently. These include:  
When the extended instruction set is enabled, brackets  
are also used to indicate index arguments in  
byte-oriented and bit-oriented instructions. This is in  
addition to other changes in their syntax. For more  
details, see Section 26.2.3.1 “Extended Instruction  
Syntax with Standard PIC18 Commands”.  
• Dynamic allocation and deallocation of software  
stack space when entering and leaving  
subroutines  
• Function Pointer invocation  
Note:  
In the past, square brackets have been  
used to denote optional arguments in the  
PIC18 and earlier instruction sets. In this  
text and going forward, optional  
arguments are denoted by braces (“{ }”).  
• Software Stack Pointer manipulation  
• Manipulation of variables located in a software  
stack  
TABLE 26-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
ADDFSR  
ADDULNK  
CALLW  
f, k  
k
Add Literal to FSR  
Add Literal to FSR2 and Return  
Call Subroutine using WREG  
1
2
2
2
1110 1000 ffkk kkkk  
1110 1000 11kk kkkk  
0000 0000 0001 0100  
1110 1011 0zzz zzzz  
1111 ffff ffff ffff  
1110 1011 1zzz zzzz  
1111 xxxx xzzz zzzz  
1110 1010 kkkk kkkk  
None  
None  
None  
None  
MOVSF  
zs, fd Move zs (source) to 1st word  
fd (destination) 2nd word  
zs, zd Move zs (source) to 1st word  
zd (destination) 2nd word  
MOVSS  
PUSHL  
2
1
None  
None  
k
Store Literal at FSR2,  
Decrement FSR2  
SUBFSR  
SUBULNK  
f, k  
k
Subtract Literal from FSR  
Subtract Literal from FSR2 and  
Return  
1
2
1110 1001 ffkk kkkk  
1110 1001 11kk kkkk  
None  
None  
2010 Microchip Technology Inc.  
DS39933D-page 381  
PIC18F87J90 FAMILY  
26.2.2  
EXTENDED INSTRUCTION SET  
ADDFSR  
Add Literal to FSR  
ADDULNK  
Add Literal to FSR2 and Return  
Syntax:  
ADDFSR f, k  
Syntax:  
ADDULNK k  
Operands:  
0 k 63  
f [ 0, 1, 2 ]  
Operands:  
Operation:  
0 k 63  
FSR2 + k FSR2,  
(TOS) PC  
Operation:  
FSR(f) + k FSR(f)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
1000  
ffkk  
kkkk  
1110  
1000  
11kk  
kkkk  
Description:  
The 6-bit literal ‘k’ is added to the  
contents of the FSR specified by ‘f’.  
Description:  
The 6-bit literal ‘k’ is added to the  
contents of FSR2. A RETURNis then  
executed by loading the PC with the  
TOS.  
Words:  
1
1
Cycles:  
The instruction takes two cycles to  
execute; a NOPis performed during  
the second cycle.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
FSR  
This may be thought of as a special  
case of the ADDFSRinstruction,  
where f = 3 (binary ‘11’); it operates  
only on FSR2.  
Example:  
ADDFSR 2, 23h  
Words:  
1
2
Before Instruction  
FSR2  
After Instruction  
FSR2  
Cycles:  
=
03FFh  
0422h  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
=
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
FSR  
No  
No  
No  
No  
Operation  
Operation  
Operation  
Operation  
Example:  
ADDULNK 23h  
Before Instruction  
FSR2  
PC  
=
=
03FFh  
0100h  
After Instruction  
FSR2  
PC  
=
=
0422h  
(TOS)  
Note:  
All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in  
symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).  
DS39933D-page 382  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
CALLW  
Subroutine Call Using WREG  
MOVSF  
Move Indexed to f  
Syntax:  
CALLW  
None  
Syntax:  
MOVSF [z ], f  
s
d
Operands:  
Operation:  
Operands:  
0 z 127  
s
0 f 4095  
d
(PC + 2) TOS,  
(W) PCL,  
Operation:  
((FSR2) + z ) f  
s
d
(PCLATH) PCH,  
(PCLATU) PCU  
Status Affected:  
None  
Encoding:  
1st word (source)  
2nd word (destin.)  
Status Affected:  
Encoding:  
None  
1110  
1111  
1011  
ffff  
0zzz  
ffff  
zzzz  
ffff  
s
d
0000  
0000  
0001  
0100  
Description  
First, the return address (PC + 2) is  
pushed onto the return stack. Next, the  
contents of W are written to PCL; the  
existing value is discarded. Then, the  
contents of PCLATH and PCLATU are  
latched into PCH and PCU,  
respectively. The second cycle is  
executed as a NOPinstruction while the  
new next instruction is fetched.  
Description:  
The contents of the source register are  
moved to destination register ‘f ’. The  
d
actual address of the source register is  
determined by adding the 7-bit literal  
offset ‘z ’, in the first word, to the value  
s
of FSR2. The address of the destination  
register is specified by the 12-bit literal  
‘f ’ in the second word. Both addresses  
d
can be anywhere in the 4096-byte data  
space (000h to FFFh).  
Unlike CALL, there is no option to  
update W, STATUS or BSR.  
The MOVSFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
Words:  
Cycles:  
1
2
If the resultant source address points to  
an Indirect Addressing register, the  
value returned will be 00h.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
WREG  
Push PC to  
stack  
No  
operation  
Words:  
Cycles:  
2
2
No  
No  
No  
No  
Q Cycle Activity:  
Q1  
operation  
operation  
operation  
operation  
Q2  
Q3  
Q4  
Decode  
Determine  
source addr source addr source reg  
Determine  
Read  
Example:  
HERE  
CALLW  
Before Instruction  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
PC  
=
address (HERE)  
PCLATH =  
PCLATU =  
10h  
00h  
06h  
No dummy  
read  
W
=
After Instruction  
PC  
=
001006h  
TOS  
=
address (HERE + 2)  
Example:  
MOVSF  
[05h], REG2  
PCLATH =  
PCLATU =  
W
10h  
00h  
06h  
Before Instruction  
=
FSR2  
=
80h  
33h  
Contents  
of 85h  
REG2  
=
=
11h  
After Instruction  
FSR2  
=
80h  
Contents  
of 85h  
REG2  
=
=
33h  
33h  
2010 Microchip Technology Inc.  
DS39933D-page 383  
PIC18F87J90 FAMILY  
MOVSS  
Move Indexed to Indexed  
PUSHL  
Store Literal at FSR2, Decrement FSR2  
Syntax:  
MOVSS [z ], [z ]  
Syntax:  
PUSHL k  
s
d
Operands:  
0 z 127  
s
Operands:  
Operation:  
0k 255  
0 z 127  
d
k (FSR2),  
FSR2 – 1FSR2  
Operation:  
((FSR2) + z ) ((FSR2) + z )  
s d  
Status Affected:  
None  
Status Affected:  
Encoding:  
None  
Encoding:  
1st word (source)  
2nd word (dest.)  
1111  
1010  
kkkk  
kkkk  
1110  
1111  
1011  
xxxx  
1zzz  
xzzz  
zzzz  
zzzz  
s
d
Description:  
The 8-bit literal ‘k’ is written to the data  
memory address specified by FSR2.  
FSR2 is decremented by 1 after the  
operation.  
Description  
The contents of the source register are  
moved to the destination register. The  
addresses of the source and destination  
registers are determined by adding the  
This instruction allows users to push  
values onto a software stack.  
7-bit literal offsets, ‘z ’ or ‘z ’,  
s
d
respectively, to the value of FSR2. Both  
registers can be located anywhere in  
the 4096-byte data memory space  
(000h to FFFh).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
The MOVSSinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
Q2  
Q3  
Q4  
Decode  
Read ‘k’  
Process  
data  
Write to  
destination  
If the resultant source address points to  
an Indirect Addressing register, the  
value returned will be 00h. If the  
Example:  
PUSHL 08h  
resultant destination address points to  
an Indirect Addressing register, the  
instruction will execute as a NOP.  
Before Instruction  
FSR2H:FSR2L  
Memory (01ECh)  
=
=
01ECh  
00h  
Words:  
2
2
After Instruction  
Cycles:  
FSR2H:FSR2L  
Memory (01ECh)  
=
=
01EBh  
08h  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Determine  
Determine  
Read  
source addr source addr source reg  
Decode  
Determine  
dest addr  
Determine  
dest addr  
Write  
to dest reg  
Example:  
MOVSS [05h], [06h]  
Before Instruction  
FSR2  
=
=
=
80h  
33h  
11h  
Contents  
of 85h  
Contents  
of 86h  
After Instruction  
FSR2  
=
=
=
80h  
33h  
33h  
Contents  
of 85h  
Contents  
of 86h  
DS39933D-page 384  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
SUBFSR  
Subtract Literal from FSR  
SUBULNK  
Subtract Literal from FSR2 and Return  
Syntax:  
SUBFSR f, k  
0 k 63  
Syntax:  
SUBULNK k  
Operands:  
Operands:  
Operation:  
0 k 63  
f [ 0, 1, 2 ]  
FSRf – k FSRf  
None  
FSR2 – k FSR2,  
(TOS) PC  
Operation:  
Status Affected: None  
Status Affected:  
Encoding:  
Encoding:  
1110  
1001  
11kk  
kkkk  
1110  
1001  
ffkk  
kkkk  
Description:  
The 6-bit literal ‘k’ is subtracted from the  
contents of the FSR2. A RETURNis then  
executed by loading the PC with the  
TOS.  
Description:  
The 6-bit literal ‘k’ is subtracted from  
the contents of the FSR specified  
by ‘f’.  
Words:  
1
1
The instruction takes two cycles to  
execute; a NOPis performed during the  
second cycle.  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
This may be thought of as a special case  
of the SUBFSRinstruction, where f = 3  
(binary ‘11’); it operates only on FSR2.  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Words:  
1
2
Example:  
SUBFSR 2, 23h  
03FFh  
Cycles:  
Before Instruction  
FSR2  
After Instruction  
FSR2  
Q Cycle Activity:  
Q1  
=
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
=
03DCh  
No  
No  
No  
No  
Operation  
Operation  
Operation  
Operation  
Example:  
SUBULNK 23h  
Before Instruction  
FSR2  
PC  
=
=
03FFh  
0100h  
After Instruction  
FSR2  
PC  
=
=
03DCh  
(TOS)  
2010 Microchip Technology Inc.  
DS39933D-page 385  
PIC18F87J90 FAMILY  
26.2.3  
BYTE-ORIENTED AND  
BIT-ORIENTED INSTRUCTIONS IN  
INDEXED LITERAL OFFSET MODE  
26.2.3.1  
Extended Instruction Syntax with  
Standard PIC18 Commands  
When the extended instruction set is enabled, the file  
register argument, ‘f’, in the standard byte-oriented and  
bit-oriented commands is replaced with the literal offset  
value, ‘k’. As already noted, this occurs only when ‘f’ is  
less than or equal to 5Fh. When an offset value is used,  
it must be indicated by square brackets (“[ ]”). As with  
the extended instructions, the use of brackets indicates  
to the compiler that the value is to be interpreted as an  
index or an offset. Omitting the brackets, or using a  
value greater than 5Fh within the brackets, will  
generate an error in the MPASM Assembler.  
Note: Enabling the PIC18 instruction set exten-  
sion may cause legacy applications to  
behave erratically or fail entirely.  
In addition to eight new commands in the extended set,  
enabling the extended instruction set also enables  
Indexed Literal Offset Addressing (Section 6.6.1  
“Indexed Addressing with Literal Offset”). This has  
a significant impact on the way that many commands of  
the standard PIC18 instruction set are interpreted.  
When the extended set is disabled, addresses embed-  
ded in opcodes are treated as literal memory locations:  
either as a location in the Access Bank (a = 0) or in a  
GPR bank designated by the BSR (a = 1). When the  
extended instruction set is enabled and a = 0, however,  
a file register argument of 5Fh or less is interpreted as  
an offset from the pointer value in FSR2 and not as a  
literal address. For practical purposes, this means that  
all instructions that use the Access RAM bit as an  
argument – that is, all byte-oriented and bit-oriented  
instructions, or almost half of the core PIC18 instruc-  
tions – may behave differently when the extended  
instruction set is enabled.  
If the index argument is properly bracketed for Indexed  
Literal Offset Addressing, the Access RAM argument is  
never specified; it will automatically be assumed to be  
0’. This is in contrast to standard operation (extended  
instruction set disabled), when ‘a’ is set on the basis of  
the target address. Declaring the Access RAM bit in  
this mode will also generate an error in the MPASM  
Assembler.  
The destination argument ‘d’ functions as before.  
In the latest versions of the MPASM Assembler,  
language support for the extended instruction set must  
be explicitly invoked. This is done with either the  
command line option, /y, or the PE directive in the  
source listing.  
When the content of FSR2 is 00h, the boundaries of  
the Access RAM are essentially remapped to their  
original values. This may be useful in creating  
backward-compatible code. If this technique is used, it  
may be necessary to save the value of FSR2 and  
restore it when moving back and forth between C and  
assembly routines in order to preserve the Stack  
Pointer. Users must also keep in mind the syntax  
requirements of the extended instruction set (see  
Section 26.2.3.1 “Extended Instruction Syntax with  
Standard PIC18 Commands”).  
26.2.4  
CONSIDERATIONS WHEN  
ENABLING THE EXTENDED  
INSTRUCTION SET  
It is important to note that the extensions to the instruc-  
tion set may not be beneficial to all users. In particular,  
users who are not writing code that uses a software  
stack may not benefit from using the extensions to the  
instruction set.  
Although the Indexed Literal Offset mode can be very  
useful for dynamic stack and pointer manipulation, it  
can also be very annoying if a simple arithmetic opera-  
tion is carried out on the wrong register. Users who are  
accustomed to the PIC18 programming must keep in  
mind that, when the extended instruction set is  
enabled, register addresses of 5Fh or less are used for  
Indexed Literal Offset Addressing.  
Additionally, the Indexed Literal Offset Addressing  
mode may create issues with legacy applications  
written to the PIC18 assembler. This is because  
instructions in the legacy code may attempt to address  
registers in the Access Bank below 5Fh. Since these  
addresses are interpreted as literal offsets to FSR2  
when the instruction set extension is enabled, the  
application may read or write to the wrong data  
addresses.  
Representative examples of typical byte-oriented and  
bit-oriented instructions in the Indexed Literal Offset  
mode are provided on the following page to show how  
execution is affected. The operand conditions shown in  
the examples are applicable to all instructions of these  
types.  
When porting an application to the PIC18F87J90 family  
family, it is very important to consider the type of code.  
A large, re-entrant application that is written in C and  
would benefit from efficient compilation will do well  
when using the instruction set extensions. Legacy  
applications that heavily use the Access Bank will most  
likely not benefit from using the extended instruction  
set.  
DS39933D-page 386  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
ADD W to Indexed  
(Indexed Literal Offset mode)  
Bit Set Indexed  
BSF  
ADDWF  
(Indexed Literal Offset mode)  
Syntax:  
ADDWF  
[k] {,d}  
Syntax:  
BSF [k], b  
Operands:  
0 k 95  
d [0,1]  
Operands:  
0 f 95  
0 b 7  
Operation:  
(W) + ((FSR2) + k) dest  
Operation:  
1((FSR2) + k)<b>  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
None  
0010  
01d0  
kkkk  
kkkk  
1000  
bbb0  
kkkk  
kkkk  
Description:  
The contents of W are added to the  
contents of the register indicated by  
FSR2, offset by the value ‘k’.  
Description:  
Bit ‘b’ of the register indicated by FSR2,  
offset by the value ‘k’, is set.  
Words:  
Cycles:  
1
1
If ‘d’ is ‘0’, the result is stored in W. If ‘d’  
is ‘1’, the result is stored back in  
register ‘f’.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q Cycle Activity:  
Q1  
Example:  
BSF  
[FLAG_OFST], 7  
Q2  
Q3  
Q4  
Decode  
Read ‘k’  
Process  
Data  
Write to  
destination  
Before Instruction  
FLAG_OFST  
FSR2  
=
=
0Ah  
0A00h  
Contents  
of 0A0Ah  
After Instruction  
Example:  
ADDWF  
[OFST],0  
=
55h  
D5h  
Before Instruction  
W
OFST  
FSR2  
=
=
=
17h  
Contents  
of 0A0Ah  
2Ch  
=
0A00h  
Contents  
of 0A2Ch  
=
20h  
After Instruction  
Set Indexed  
(Indexed Literal Offset mode)  
SETF  
W
=
=
37h  
20h  
Contents  
of 0A2Ch  
Syntax:  
SETF [k]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 95  
FFh ((FSR2) + k)  
None  
0110  
1000  
kkkk  
kkkk  
The contents of the register indicated by  
FSR2, offset by ‘k’, are set to FFh.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read ‘k’  
Process  
Data  
Write  
register  
Example:  
SETF  
[OFST]  
2Ch  
Before Instruction  
OFST  
FSR2  
=
=
0A00h  
Contents  
of 0A2Ch  
=
00h  
After Instruction  
Contents  
of 0A2Ch  
=
FFh  
2010 Microchip Technology Inc.  
DS39933D-page 387  
PIC18F87J90 FAMILY  
To develop software for the extended instruction set,  
the user must enable support for the instructions and  
the Indexed Addressing mode in their language tool(s).  
Depending on the environment being used, this may be  
done in several ways:  
26.2.5  
SPECIAL CONSIDERATIONS WITH  
MICROCHIP MPLAB® IDE TOOLS  
The latest versions of Microchip’s software tools have  
been designed to fully support the extended instruction  
set for the PIC18F87J90 family family. This includes  
the MPLAB C18 C Compiler, MPASM assembly  
language and MPLAB Integrated Development  
Environment (IDE).  
• A menu option or dialog box within the  
environment that allows the user to configure the  
language tool and its settings for the project  
• A command line option  
When selecting  
a
target device for software  
• A directive in the source code  
development, MPLAB IDE will automatically set default  
Configuration bits for that device. The default setting for  
the XINST Configuration bit is ‘1’, enabling the  
extended instruction set and Indexed Literal Offset  
Addressing. For proper execution of applications  
developed to take advantage of the extended  
instruction set, XINST must be set during  
programming.  
These options vary between different compilers,  
assemblers and development environments. Users are  
encouraged to review the documentation accompany-  
ing their development systems for the appropriate  
information.  
DS39933D-page 388  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
27.1 MPLAB Integrated Development  
Environment Software  
27.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- HI-TECH C for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2010 Microchip Technology Inc.  
DS39933D-page 389  
PIC18F87J90 FAMILY  
27.2 MPLAB C Compilers for Various  
Device Families  
27.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
27.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
27.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
27.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS39933D-page 390  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
27.7 MPLAB SIM Software Simulator  
27.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
27.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
27.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers signifi-  
cant advantages over competitive emulators including  
low-cost, full-speed emulation, run-time variable  
watches, trace analysis, complex breakpoints, a rugge-  
dized probe interface and long (up to three meters) inter-  
connection cables.  
2010 Microchip Technology Inc.  
DS39933D-page 391  
PIC18F87J90 FAMILY  
27.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
27.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
27.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS39933D-page 392  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
28.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +100°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any digital only I/O pin or MCLR with respect to VSS (except VDD) ........................................... -0.3V to 6.0V  
Voltage on any combined digital and analog pin with respect to VSS (except VDD and MCLR)...... -0.3V to (VDD + 0.3V)  
Voltage on VDDCORE with respect to VSS................................................................................................... -0.3V to 2.75V  
Voltage on VDD with respect to VSS ........................................................................................................... -0.3V to 3.6V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin..............................................................................................................................250 mA  
Maximum output current sunk by PORTA<7:6> and any PORTB and PORTC I/O pins.........................................25 mA  
Maximum output current sunk by any PORTD, PORTE and PORTJ I/O pins ..........................................................8 mA  
Maximum output current sunk by PORTA<5:0> and any PORTF, PORTG and PORTH I/O pins ............................2 mA  
Maximum output current sourced by PORTA<7:6> and any PORTB and PORTC I/O pins ...................................25 mA  
Maximum output current sourced by any PORTD, PORTE and PORTJ I/O pins.....................................................8 mA  
Maximum output current sourced by PORTA<5:0> and any PORTF, PORTG and PORTH I/O pins .......................2 mA  
Maximum current sunk byall ports combined.......................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2010 Microchip Technology Inc.  
DS39933D-page 393  
PIC18F87J90 FAMILY  
FIGURE 28-1:  
VOLTAGE-FREQUENCY GRAPH,  
REGULATOR ENABLED (INDUSTRIAL)(1)  
4.0V  
3.5V  
3.6V  
PIC18F6XJ90/PIC18F8XJ90  
3.0V  
2.5V  
2.0V  
2.35V  
0
8 MHz  
48 MHz  
Frequency  
Note 1: When the on-chip regulator is enabled, its BOR circuit will automatically trigger a device Reset  
before VDD reaches a level at which full-speed operation is not possible.  
FIGURE 28-2:  
VOLTAGE-FREQUENCY GRAPH,  
REGULATOR DISABLED (INDUSTRIAL)(1,2)  
3.00V  
2.75V  
2.50V  
2.7V  
PIC18F6XJ90/PIC18F8XJ90  
2.35V  
2.25V  
2.00V  
48 MHz  
8 MHz  
Frequency  
Note 1: When the on-chip voltage regulator is disabled, VDD and VDDCORE must be maintained so that  
VDDCORE VDD 3.6V.  
DS39933D-page 394  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
28.1 DC Characteristics: Supply Voltage  
PIC18F87J90 Family (Industrial)  
PIC18F87J90 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
Symbol  
No.  
Characteristic  
Supply Voltage  
Min  
Typ  
Max  
Units  
Conditions  
D001  
VDD  
VDDCORE  
3.6  
3.6  
V
V
ENVREG tied to VSS  
ENVREG tied to VDD  
2.0  
D001B VDDCORE External Supply for  
2.0  
2.70  
V
ENVREG tied to VSS  
Microcontroller Core  
D001C AVDD  
D001D AVSS  
Analog Supply Voltage  
VDD – 0.3  
VDD + 0.3  
VSS + 0.3  
V
V
V
Analog Ground Potential VSS – 0.3  
D002  
VDR  
RAM Data Retention  
Voltage(1)  
1.5  
D003  
VPOR  
VDD Start Voltage  
to Ensure Internal  
Power-on Reset Signal  
0.7  
V
See Section 5.3 “Power-on  
Reset (POR)” for details  
D004  
D005  
SVDD  
VBOR  
VDD Rise Rate  
to Ensure Internal  
Power-on Reset Signal  
0.05  
V/ms See Section 5.3 “Power-on  
Reset (POR)” for details  
Brown-out Reset Voltage  
1.8  
V
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.  
2010 Microchip Technology Inc.  
DS39933D-page 395  
PIC18F87J90 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J90 Family (Industrial)  
PIC18F87J90 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Typ  
Max Units  
Conditions  
(1)  
Power-Down Current (IPD)  
All devices  
0.4  
0.1  
0.8  
5.5  
0.5  
0.1  
1
1.4  
1.4  
6
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+60°C  
+85°C  
-40°C  
+25°C  
+60°C  
+85°C  
-40°C  
+25°C  
+60°C  
+85°C  
(4)  
VDD = 2.0V  
(Sleep mode)  
10.2  
1.5  
1.5  
8
All devices  
All devices  
(4)  
VDD = 2.5V  
(Sleep mode)  
6.8  
2.9  
3.6  
4.1  
9.6  
12.6  
7
(5)  
7
VDD = 3.3V  
(Sleep mode)  
10  
19  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG = 0, tied to VSS).  
5: Voltage regulator enabled (ENVREG = 1, tied to VDD, REGSLP = 1).  
DS39933D-page 396  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J90 Family (Industrial) (Continued)  
PIC18F87J90 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
(2,3)  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
5
14.2  
14.2  
19.0  
16.5  
16.5  
22.4  
84  
A  
A  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V,  
VDDCORE = 2.0V  
5.5  
10  
(4)  
(4)  
A  
6.8  
7.6  
14  
A  
FOSC = 31 kHz  
(RC_RUN mode,  
internal oscillator source)  
VDD = 2.5V,  
VDDCORE = 2.5V  
A  
A  
37  
A  
(5)  
51  
84  
A  
VDD = 3.3V  
72  
108  
A  
0.43  
0.47  
0.52  
0.52  
0.57  
0.63  
0.59  
0.65  
0.72  
0.88  
1
0.82  
0.82  
0.95  
0.98  
0.98  
1.10  
0.96  
0.96  
1.18  
1.45  
1.45  
1.58  
1.72  
1.72  
1.85  
2.87  
2.87  
2.96  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD = 2.0V,  
VDDCORE = 2.0V  
(4)  
(4)  
FOSC = 1 MHz  
(RC_RUN mode,  
internal oscillator source)  
VDD = 2.5V,  
VDDCORE = 2.5V  
(5)  
VDD = 3.3V  
VDD = 2.0V,  
VDDCORE = 2.0V  
(4)  
(4)  
1.1  
1.2  
1.3  
1.4  
1.3  
1.4  
1.5  
FOSC = 4 MHz  
(RC_RUN mode,  
internal oscillator source)  
VDD = 2.5V,  
VDDCORE = 2.5V  
(5)  
VDD = 3.3V  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG = 0, tied to VSS).  
5: Voltage regulator enabled (ENVREG = 1, tied to VDD, REGSLP = 1).  
2010 Microchip Technology Inc.  
DS39933D-page 397  
PIC18F87J90 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J90 Family (Industrial) (Continued)  
PIC18F87J90 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD) Cont.  
All devices  
3
9.4  
A  
A  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V,  
VDDCORE = 2.0V  
3.3  
9.4  
(4)  
(4)  
8.5  
17.2  
10.5  
10.5  
19.5  
82  
A  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
4
A  
FOSC = 31 kHz  
(RC_IDLE mode,  
VDD = 2.5V,  
VDDCORE = 2.5V  
4.3  
A  
internal oscillator source)  
10.3  
34  
A  
A  
(5)  
48  
82  
A  
VDD = 3.3V  
69  
105  
A  
0.33  
0.37  
0.41  
0.39  
0.42  
0.47  
0.43  
0.48  
0.54  
0.53  
0.57  
0.61  
0.63  
0.67  
0.72  
0.7  
0.75  
0.75  
0.84  
0.78  
0.78  
0.91  
0.82  
0.82  
0.95  
0.98  
0.98  
1.12  
1.14  
1.14  
1.25  
1.27  
1.27  
1.45  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD = 2.0V,  
VDDCORE = 2.0V  
(4)  
(4)  
FOSC = 1 MHz  
(RC_IDLE mode,  
VDD = 2.5V,  
VDDCORE = 2.5V  
internal oscillator source)  
(5)  
VDD = 3.3V  
VDD = 2.0V,  
VDDCORE = 2.0V  
(4)  
(4)  
FOSC = 4 MHz  
(RC_IDLE mode,  
VDD = 2.5V,  
VDDCORE = 2.5V  
internal oscillator source)  
(5)  
0.76  
0.82  
VDD = 3.3V  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG = 0, tied to VSS).  
5: Voltage regulator enabled (ENVREG = 1, tied to VDD, REGSLP = 1).  
DS39933D-page 398  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J90 Family (Industrial) (Continued)  
PIC18F87J90 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD) Cont.  
All devices  
0.17  
0.18  
0.20  
0.29  
0.31  
0.34  
0.59  
0.44  
0.42  
0.70  
0.75  
0.79  
1.10  
1.10  
1.12  
1.55  
1.47  
1.54  
9.9  
0.35  
0.35  
0.42  
0.52  
0.52  
0.61  
1.1  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V,  
VDDCORE = 2.0V  
(4)  
(4)  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
FOSC = 1 MHZ  
(PRI_RUN mode,  
EC oscillator)  
VDD = 2.5V,  
VDDCORE = 2.5V  
(5)  
0.85  
0.85  
1.25  
1.25  
1.36  
1.7  
VDD = 3.3V  
VDD = 2.0V,  
VDDCORE = 2.0V  
(4)  
(4)  
FOSC = 4 MHz  
(PRI_RUN mode,  
EC oscillator)  
VDD = 2.5V,  
VDDCORE = 2.5V  
1.7  
1.82  
1.95  
1.89  
1.92  
14.8  
14.8  
15.2  
23.2  
22.7  
22.7  
(5)  
VDD = 3.3V  
VDD = 2.5V,  
VDDCORE = 2.5V  
9.5  
(4)  
FOSC = 48 MHZ  
(PRI_RUN mode,  
EC oscillator)  
10.1  
13.3  
12.2  
12.1  
(5)  
VDD = 3.3V  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG = 0, tied to VSS).  
5: Voltage regulator enabled (ENVREG = 1, tied to VDD, REGSLP = 1).  
2010 Microchip Technology Inc.  
DS39933D-page 399  
PIC18F87J90 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J90 Family (Industrial) (Continued)  
PIC18F87J90 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD) Cont.  
All devices  
4.5  
4.4  
5.2  
5.2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.5V,  
VDDCORE = 2.5V  
(4)  
FOSC = 4 MHZ,  
16 MHz internal  
(PRI_RUN HSPLL mode)  
4.5  
5.2  
All devices  
All devices  
All devices  
5.7  
6.7  
(5)  
5.5  
6.3  
VDD = 3.3V  
5.3  
6.3  
10.8  
10.8  
9.9  
13.5  
13.5  
13.0  
24.1  
20.2  
19.5  
VDD = 2.5V,  
VDDCORE = 2.5V  
(4)  
FOSC = 10 MHZ,  
40 MHz internal  
(PRI_RUN HSPLL mode)  
13.4  
12.3  
11.2  
(5)  
VDD = 3.3V  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG = 0, tied to VSS).  
5: Voltage regulator enabled (ENVREG = 1, tied to VDD, REGSLP = 1).  
DS39933D-page 400  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J90 Family (Industrial) (Continued)  
PIC18F87J90 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD) Cont.  
All devices  
0.10  
0.07  
0.09  
0.25  
0.13  
0.10  
0.45  
0.26  
0.30  
0.36  
0.33  
0.35  
0.52  
0.45  
0.46  
0.80  
0.66  
0.65  
5.2  
0.26  
0.18  
0.22  
0.48  
0.30  
0.26  
0.68  
0.45  
0.54  
0.60  
0.56  
0.56  
0.81  
0.70  
0.70  
1.15  
0.98  
0.98  
6.5  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V,  
VDDCORE = 2.0V  
(4)  
(4)  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
All devices  
FOSC = 1 MHz  
(PRI_IDLE mode,  
EC oscillator)  
VDD = 2.5V,  
VDDCORE = 2.5V  
(5)  
VDD = 3.3V  
VDD = 2.0V,  
VDDCORE = 2.0V  
(4)  
(4)  
FOSC = 4 MHz  
(PRI_IDLE mode,  
EC oscillator)  
VDD = 2.5V,  
VDDCORE = 2.5V  
(5)  
VDD = 3.3V  
VDD = 2.5V,  
VDDCORE = 2.5V  
4.9  
5.9  
(4)  
FOSC = 48 MHz  
(PRI_IDLE mode,  
EC oscillator)  
3.4  
4.5  
6.2  
12.4  
11.5  
11.5  
(5)  
5.9  
VDD = 3.3V  
5.8  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG = 0, tied to VSS).  
5: Voltage regulator enabled (ENVREG = 1, tied to VDD, REGSLP = 1).  
2010 Microchip Technology Inc.  
DS39933D-page 401  
PIC18F87J90 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J90 Family (Industrial) (Continued)  
PIC18F87J90 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Typ  
Max Units  
Conditions  
(2,3)  
Supply Current (IDD) Cont.  
All devices  
18  
19  
35  
35  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V,  
VDDCORE = 2.0V  
(4)  
(4)  
28  
49  
All devices  
All devices  
All devices  
All devices  
All devices  
20  
45  
(3)  
FOSC = 32 kHz  
VDD = 2.5V,  
VDDCORE = 2.5V  
21  
45  
(SEC_RUN mode,  
Timer1 as clock)  
32  
61  
0.06  
0.07  
0.09  
14  
0.11  
0.11  
0.15  
28  
(5)  
VDD = 3.3V  
VDD = 2.0V,  
VDDCORE = 2.0V  
15  
28  
(4)  
(4)  
24  
43  
15  
31  
(3)  
FOSC = 32 kHz  
VDD = 2.5V,  
VDDCORE = 2.5V  
16  
31  
(SEC_IDLE mode,  
Timer1 as clock)  
27  
50  
0.05  
0.06  
0.08  
0.10  
0.10  
0.14  
(5)  
VDD = 3.3V  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG = 0, tied to VSS).  
5: Voltage regulator enabled (ENVREG = 1, tied to VDD, REGSLP = 1).  
DS39933D-page 402  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
28.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J90 Family (Industrial) (Continued)  
PIC18F87J90 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Typ  
Max Units  
Conditions  
D022  
Module Differential Currents (IWDT, IOSCB, IAD)  
Watchdog Timer  
2.1  
2.2  
4.3  
3.0  
3.1  
5.5  
5.9  
6.2  
7.0  
7.0  
9.5  
8.0  
8.0  
10.4  
12.1  
12.1  
13.6  
5
A  
A  
A  
A  
A  
A  
A  
A  
A  
µA  
µA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+25°C  
+25°C  
VDD = 2.0V,  
VDDCORE = 2.0V  
(4)  
(4)  
VDD = 2.5V,  
VDDCORE = 2.5V  
VDD = 3.3V  
6.9  
(6,7)  
D024  
(ILCD)  
LCD Module  
2
VDD = 2.0V  
VDD = 2.5V  
Resistive Ladder  
CPEN = 0;  
(6,7)  
(6,7)  
2.7  
3.5  
5
CKSEL<1:0> = 00;  
CS<1:0> = 10;  
LP<3:0> = 0100  
7
µA  
+25°C  
VDD = 3.0V  
(7)  
16  
17  
24  
25  
25  
40  
µA  
µA  
µA  
+25°C  
+25°C  
+25°C  
VDD = 2.0V  
VDD = 2.5V  
Charge Pump  
BIAS<2:0> = 111;  
CPEN = 1;  
CKSEL<1:0> = 11;  
CS<1:0> = 10  
(7)  
(7)  
VDD = 3.0V  
D025  
(IOSCB)  
RTCC + Timer1 Osc. with  
0.9  
4.0  
4.5  
4.5  
4.5  
5.0  
5.0  
6.5  
6.5  
8.0  
10.0  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
-10°C  
+25°C  
+85°C  
-10°C  
+25°C  
+85°C  
-10°C  
+25°C  
+85°C  
VDD = 2.0V,  
VDDCORE = 2.0V  
(6)  
(3)  
32 kHz Crystal  
32 kHz on Timer1  
32 kHz on Timer1  
32 kHz on Timer1  
1.0  
1.1  
1.1  
1.2  
1.2  
1.6  
1.6  
2.1  
3.0  
(4)  
(4)  
VDD = 2.5V,  
VDDCORE = 2.5V  
(3)  
(3)  
VDD = 3.3V  
D026  
(IAD)  
A/D Converter  
VDD = 2.0V,  
VDDCORE = 2.0V  
-40°C to +85°C  
(4)  
A/D on, not converting  
3.0  
10.0  
A  
-40°C to +85°C  
VDD = 2.5V,  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of the operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG = 0, tied to VSS).  
5: Voltage regulator enabled (ENVREG = 1, tied to VDD, REGSLP = 1).  
2010 Microchip Technology Inc.  
DS39933D-page 403  
PIC18F87J90 FAMILY  
28.3 DC Characteristics: PIC18F87J90 Family (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
All I/O Ports:  
with TTL Buffer  
D030  
VSS  
0.15 VDD  
0.8  
V
V
V
V
V
V
V
V
VDD < 3.3V  
D030A  
D031  
3.3V VDD 3.6V  
with Schmitt Trigger Buffer  
with RC3 and RC4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
0.8  
D031A  
D031B  
D032  
I2C™ enabled  
SMBus enabled  
MCLR  
0.2 VDD  
0.3 VDD  
0.2 VDD  
D033  
OSC1  
OSC1  
HS, HSPLL modes  
EC, ECPLL modes  
D033A  
D034  
T13CKI  
VSS  
0.3  
V
VIH  
Input High Voltage  
I/O Ports with non 5.5V Tolerance:  
with TTL Buffer  
D040  
0.25 VDD + 0.8V  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
VDD < 3.3V  
D040A  
D041  
3.3V VDD 3.6V  
with Schmitt Trigger Buffer  
RC3 and RC4  
0.8 VDD  
0.7 VDD  
2.1  
D041A  
D041B  
I2C enabled  
SMBus enabled  
I/O Ports with 5.5V Tolerance:  
with TTL Buffer  
0.25 VDD + 0.8V  
2.0  
5.5  
5.5  
V
V
V
V
V
V
VDD < 3.3V  
3.3V VDD 3.6V  
with Schmitt Trigger Buffer  
0.8 VDD  
0.8 VDD  
0.7 VDD  
0.8 VDD  
5.5  
D042  
D043  
D043A  
MCLR  
OSC1  
OSC1  
VDD  
VDD  
VDD  
HS, HSPLL modes  
EC, ECPLL modes  
D044  
T13CKI  
1.6  
VDD  
V
IIL  
Input Leakage Current(1)  
D060  
I/O Ports with Analog Functions  
200  
nA VSS VPIN VDD,  
Pin at high-impedance  
Digital Only I/O Ports  
MCLR  
200  
1  
nA VSS VPIN V  
A Vss VPIN VDD  
A Vss VPIN VDD  
D061  
D063  
OSC1  
1  
IPU  
Weak Pull-up Current  
PORTB Weak Pull-up Current  
D070  
IPURB  
30  
400  
A VDD = 3.3V, VPIN = VSS  
Note 1: Negative current is defined as current sourced by the pin.  
DS39933D-page 404  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
28.3 DC Characteristics: PIC18F87J90 Family (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
I/O Ports:  
D080  
PORTA, PORTF, PORTG,  
PORTH  
0.4  
0.4  
0.4  
0.4  
V
V
V
V
IOL = 2 mA, VDD = 3.3V,  
-40C to +85C  
PORTD, PORTE, PORTJ  
IOL = 3.4 mA, VDD = 3.3V,  
-40C to +85C  
PORTB, PORTC  
IOL = 3.4 mA, VDD = 3.3V,  
-40C to +85C  
D083  
D090  
OSC2/CLKO  
IOL = 1.6 mA, VDD = 3.3V,  
(EC, ECPLL modes)  
Output High Voltage(1)  
I/O Ports:  
-40C to +85C  
VOH  
V
V
PORTA, PORTF, PORTG,  
PORTH  
2.4  
2.4  
2.4  
2.4  
IOH = -2 mA, VDD = 3.3V,  
-40C to +85C  
PORTD, PORTE, PORTJ  
V
V
V
IOH = -2 mA, VDD = 3.3V,  
-40C to +85C  
PORTB, PORTC  
IOH = -2 mA, VDD = 3.3V,  
-40C to +85C  
D092  
OSC2/CLKO  
IOH = -1 mA, VDD = 3.3V,  
(INTOSC, EC, ECPLL modes)  
-40C to +85C  
Capacitive Loading Specs  
on Output Pins  
D100(4) COSC2 OSC2 Pin  
15  
pF In HS mode when  
external clock is used to  
drive OSC1  
D101  
D102  
CIO  
CB  
All I/O Pins and OSC2  
SCL, SDA  
50  
pF To meet the AC Timing  
Specifications  
pF I2C™ Specification  
400  
Note 1: Negative current is defined as current sourced by the pin.  
28.4 DC Characteristics: CTMU Current Source Specifications  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
IOUT1 CTMU Current Source,  
Base Range  
550  
nA  
CTMUICON<1:0> = 01  
IOUT2 CTMU Current Source,  
10x Range  
5.5  
55  
A  
A  
CTMUICON<1:0> = 10  
CTMUICON<1:0> = 11  
IOUT3 CTMU Current Source,  
100x Range  
Note 1: Nominal value at center point of current trim range (CTMUICON<7:2> = 000000).  
2010 Microchip Technology Inc.  
DS39933D-page 405  
PIC18F87J90 FAMILY  
TABLE 28-1: MEMORY PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
10K  
E/W -40C to +85C  
VPR  
VDD for Read  
VMIN  
3.6  
V
VMIN = Minimum operating  
voltage  
D132B VPEW Voltage for Self-Timed Erase or  
Write operations  
VDD  
VDDCORE  
2.35  
2.25  
3.6  
2.7  
V
V
ENVREG tied to VDD  
ENVREG tied to VSS  
D133A TIW  
D133B TIE  
Self-Timed Write Cycle Time  
2.8  
33  
ms  
ms  
Self-Timed Block Erased Cycle  
Time  
D134 TRETD Characteristic Retention  
20  
3
14  
1
Year Provided no other  
specifications are violated  
D135  
D140  
IDDP  
Supply Current during  
Programming  
mA  
TWE  
Writes per Erase Cycle  
For each physical address  
Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
DS39933D-page 406  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 28-2: COMPARATOR SPECIFICATIONS  
Operating Conditions: 3.0V VDD 3.6V, -40°C TA +85°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Input Offset Voltage  
Min  
Typ  
Max  
Units  
Comments  
D300  
VIOFF  
0
±5.0  
±25  
AVDD – 1.5  
mV  
V
D301  
D302  
D303  
D304  
VICM  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time(1)  
CMRR  
TRESP  
55  
dB  
ns  
s  
150  
400  
TMC2OV Comparator Mode Change to  
Output Valid*  
10  
Note 1: Response time measured with one comparator input at (AVDD – 1.5)/2, while the other input transitions  
from VSS to VDD.  
TABLE 28-3: VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: 3.0V VDD 3.6V, -40°C TA +85°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Resolution  
Min  
Typ  
Max  
Units  
Comments  
D310  
VRES  
VDD/24  
2k  
VDD/32  
1/2  
LSb  
LSb  
D311  
D312  
D313  
VRAA  
VRUR  
TSET  
Absolute Accuracy  
Unit Resistor Value (R)  
Settling Time(1)  
10  
s  
Note 1: Settling time measured while CVRR = 1and CVR<3:0> transitions from ‘0000’ to ‘1111’.  
TABLE 28-4: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: -40°C TA +85°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
VRGOUT Regulator Output Voltage  
External Filter Capacitor Value  
2.5  
10  
V
CEFC  
4.7  
F  
Capacitor must be  
low-ESR, a low series  
resistance (< 5)  
TABLE 28-5: INTERNAL LCD VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: 2.0V VDD 3.6V, -40°C TA +85°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Fly Back Capacitor  
Min  
Typ  
Max  
Units  
Comments  
CFLY  
VBIAS  
0.47  
4.7  
3.6  
F  
V
V
V
V
V
V
V
V
Capacitor must be low-ESR  
BIAS<2:0> = 111  
BIAS<2:0> = 110  
BIAS<2:0> = 101  
BIAS<2:0> = 100  
BIAS<2:0> = 011  
BIAS<2:0> = 010  
BIAS<2:0> = 001  
BIAS<2:0> = 000  
VPK-PK between LCDBIAS0 &  
LCDBIAS3  
3.40  
3.27  
3.14  
3.01  
2.88  
2.75  
2.62  
2.49  
2010 Microchip Technology Inc.  
DS39933D-page 407  
PIC18F87J90 FAMILY  
28.5 AC (Timing) Characteristics  
28.5.1  
TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T13CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
Fall  
P
R
V
Z
Period  
H
High  
Rise  
I
L
Invalid (High-impedance)  
Low  
Valid  
High-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
Start condition  
STO  
Stop condition  
DS39933D-page 408  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
28.5.2  
TIMING CONDITIONS  
The temperature and voltages specified in Table 28-6  
apply to all timing specifications unless otherwise  
noted. Figure 28-3 specifies the load conditions for the  
timing specifications.  
TABLE 28-6: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
Operating voltage VDD range as described in Section 28.1 and Section 28.3.  
FIGURE 28-3:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1  
VDD/2  
Load Condition 2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464  
CL = 50 pF for all pins except OSC2/CLKO/RA6  
and including D and E outputs as ports  
CL = 15 pF for OSC2/CLKO/RA6  
2010 Microchip Technology Inc.  
DS39933D-page 409  
PIC18F87J90 FAMILY  
28.5.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 28-4:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
CLKO  
3
3
4
2
TABLE 28-7: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
1A  
FOSC  
External CLKI Frequency(1)  
DC  
DC  
4
48  
10  
25  
10  
MHz EC Oscillator mode  
ECPLL Oscillator mode  
MHz HS Oscillator mode  
HSPLL Oscillator mode  
Oscillator Frequency(1)  
External CLKI Period(1)  
Oscillator Period(1)  
4
1
TOSC  
TCY  
20.8  
100  
40.0  
100  
83.3  
10  
ns  
EC Oscillator mode  
ECPLL Oscillator mode  
HS Oscillator mode  
250  
250  
ns  
HSPLL Oscillator mode  
TCY = 4/FOSC, Industrial  
HS Oscillator mode  
2
3
Instruction Cycle Time(1)  
ns  
ns  
TOSL,  
TOSH  
External Clock in (OSC1)  
High or Low Time  
4
TOSR,  
TOSF  
External Clock in (OSC1)  
Rise or Fall Time  
7.5  
ns  
HS Oscillator mode  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations  
except PLL. All specified values are based on characterization data for that particular oscillator type under  
standard operating conditions with the device executing code. Exceeding these specified limits may result  
in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested  
to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock  
input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.  
DS39933D-page 410  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 28-8: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.15V TO 3.6V)  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
F10  
F11  
F12  
F13  
FOSC Oscillator Frequency Range  
4
10  
40  
2
MHz HS mode only  
FSYS On-Chip VCO System Frequency  
16  
-2  
MHz HS mode only  
trc  
PLL Start-up Time (Lock Time)  
ms  
%
CLK CLKO Stability (Jitter)  
+2  
Data in “Typ” column is at 3.3V, 25C, unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
TABLE 28-9: INTERNAL RC ACCURACY (INTOSC AND INTRC SOURCES)  
PIC18F87J90 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Min  
Typ  
Max  
Units  
Conditions  
INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz, 31 kHz(1)  
All Devices  
-2  
-5  
+/-1  
2
5
%
%
%
+25°C  
VDD = 2.7-3.3V  
VDD = 2.0-3.3V  
VDD = 2.0-3.3V  
-10°C to +85°C  
-40°C to +85°C  
-10  
+/-1  
10  
INTRC Accuracy @ Freq = 31 kHz(1)  
All Devices 21.7  
40.3  
kHz  
-40°C to +85°C  
VDD = 2.0-3.3V  
Note 1: The accuracy specification of the 31 kHz clock is determined by which source is providing it at a given  
time. When INTSRC (OSCTUNE<7>) is ‘1’, use the INTOSC accuracy specification. When INTSRC is ‘0’,  
use the INTRC accuracy specification.  
2010 Microchip Technology Inc.  
DS39933D-page 411  
PIC18F87J90 FAMILY  
FIGURE 28-5:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKO  
13  
14  
12  
19  
18  
16  
I/O pin  
(Input)  
15  
17  
I/O pin  
(Output)  
New Value  
Old Value  
20, 21  
Refer to Figure 28-3 for load conditions.  
Note:  
TABLE 28-10: CLKO AND I/O TIMING REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
No.  
10  
TOSH2CKL OSC1 to CLKO   
TOSH2CKH OSC1 to CLKO   
75  
75  
15  
15  
50  
200  
200  
30  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
11  
12  
13  
14  
15  
16  
17  
18  
TCKR  
TCKF  
CLKO Rise Time  
CLKO Fall Time  
30  
TCKL2IOV CLKO to Port Out Valid  
TIOV2CKH Port In Valid before CLKO   
TCKH2IOI Port In Hold after CLKO   
TOSH2IOV OSC1 (Q1 cycle) to Port Out Valid  
0.5 TCY + 20 ns  
0.25 TCY + 25  
ns  
ns  
ns  
ns  
0
150  
TOSH2IOI OSC1 (Q2 cycle) to Port Input Invalid  
100  
(I/O in hold time)  
19  
TIOV2OSH Port Input Valid to OSC1   
0
ns  
(I/O in setup time)  
20  
TIOR  
TIOF  
TINP  
TRBP  
Port Output Rise Time  
Port Output Fall Time  
INTx pin High or Low Time  
6
5
ns  
ns  
ns  
ns  
21  
22†  
23†  
TCY  
TCY  
RB<7:4> Change INTx High or Low  
Time  
These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in EC mode, where CLKO output is 4 x TOSC.  
DS39933D-page 412  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 28-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
Oscillator  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O pins  
Note:  
Refer to Figure 28-3 for load conditions.  
TABLE 28-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
(Note 1)  
30  
TMCL  
MCLR Pulse Width (low)  
2 TCY  
10  
TCY  
31  
TWDT  
Watchdog Timer Time-out Period  
(no postscaler)  
3.4  
4.0  
4.6  
ms  
32  
33  
34  
TOST  
Oscillation Start-up Timer Period  
1024 TOSC  
45.8  
65.5  
2
1024 TOSC  
85.2  
TOSC = OSC1 period  
TPWRT Power-up Timer Period  
ms  
µs  
TIOZ  
I/O High-Impedance from MCLR  
Low or Watchdog Timer Reset  
38  
TCSD  
CPU Start-up Time  
10  
µs  
200  
µs Voltage Regulator  
enabled and put to  
sleep  
39  
TIOBST Time for INTOSC to Stabilize  
1
µs  
Note 1: To ensure device Reset, MCLR must be low for at least 2 TCY or 400 s, whichever is lower.  
2010 Microchip Technology Inc.  
DS39933D-page 413  
PIC18F87J90 FAMILY  
FIGURE 28-7:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T13CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note:  
Refer to Figure 28-3 for load conditions.  
TABLE 28-12: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
40  
TT0H  
T0CKI High Pulse Width  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
TCY + 10  
Greater of:  
20 ns or  
ns N = prescale  
value  
(TCY + 40)/N  
(1, 2, 4,..., 256)  
45  
46  
47  
TT1H  
TT1L  
TT1P  
T13CKI High Synchronous, no prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
Time  
Synchronous, with prescaler  
10  
Asynchronous  
30  
0.5 TCY + 5  
10  
T13CKI Low Synchronous, no prescaler  
Time  
Synchronous, with prescaler  
Asynchronous  
30  
T13CKI Input Synchronous  
Period  
Greater of:  
20 ns or  
ns N = prescale  
value  
(TCY + 40)/N  
(1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
FT1  
T13CKI Oscillator Input Frequency Range  
48  
TCKE2TMRI Delay from External T13CKI Clock Edge to  
Timer Increment  
2 TOSC  
7 TOSC  
DS39933D-page 414  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 28-8:  
CAPTURE/COMPARE/PWM TIMINGS (CCP1, CCP2 MODULES)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Note:  
Refer to Figure 28-3 for load conditions.  
TABLE 28-13: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1, CCP2 MODULES)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TCCL  
CCPx Input Low No prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
Time  
With prescaler  
10  
0.5 TCY + 20  
10  
51  
52  
TCCH  
TCCP  
CCPx Input  
High Time  
No prescaler  
With prescaler  
CCPx Input Period  
3 TCY + 40  
N
N = prescale  
value (1, 4 or 16)  
53  
54  
TCCR  
TCCF  
CCPx Output Fall Time  
CCPx Output Fall Time  
25  
25  
ns  
ns  
2010 Microchip Technology Inc.  
DS39933D-page 415  
PIC18F87J90 FAMILY  
FIGURE 28-9:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
70  
SCK  
(CKP = 0)  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
bit 6 - - - - - - 1  
MSb  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
73  
Note: Refer to Figure 28-3 for load conditions.  
TABLE 28-14: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
73  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
20  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
40  
ns  
75  
76  
78  
79  
80  
TDOR  
TDOF  
TSCR  
TSCF  
SDO Data Output Rise Time  
25  
25  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
SDO Data Output Fall Time  
SCK Output Rise Time (Master mode)  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after SCK Edge  
TSCL2DOV  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
DS39933D-page 416  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 28-10:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
81  
SCK  
(CKP = 0)  
79  
78  
73  
SCK  
(CKP = 1)  
80  
bit 6 - - - - - - 1  
LSb  
MSb  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
Note: Refer to Figure 28-3 for load conditions.  
TABLE 28-15: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
73  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
20  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
40  
ns  
75  
76  
78  
79  
80  
TDOR  
TDOF  
TSCR  
TSCF  
SDO Data Output Rise Time  
25  
25  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
SDO Data Output Fall Time  
SCK Output Rise Time (Master mode)  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after SCK Edge  
TSCL2DOV  
81  
TDOV2SCH, SDO Data Output Setup to SCK Edge  
TDOV2SCL  
TCY  
ns  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
2010 Microchip Technology Inc.  
DS39933D-page 417  
PIC18F87J90 FAMILY  
FIGURE 28-11:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
MSb  
LSb  
SDO  
SDI  
bit 6 - - - - - - 1  
75, 76  
77  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
73  
Note:  
Refer to Figure 28-3 for load conditions.  
TABLE 28-16: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SS to SCK or SCK Input  
3 TCY  
ns  
TSSL2SCL  
70A  
71  
TSSL2WB SS to write to SSPBUF  
3 TCY  
ns  
TSCH  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
ns (Note 1)  
TSCL  
SCK Input Low Time  
(Slave mode)  
1.25 TCY + 30  
ns  
72A  
73  
40  
20  
ns (Note 1)  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
40  
ns  
75  
76  
77  
78  
79  
80  
TDOR  
TDOF  
SDO Data Output Rise Time  
SDO Data Output Fall Time  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TSSH2DOZ SS to SDO Output High-Impedance  
TSCR  
TSCF  
SCK Output Rise Time (Master mode)  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after SCK Edge  
TSCL2DOV  
83  
TSCH2SSH, SS after SCK Edge  
1.5 TCY + 40  
ns  
TSCL2SSH  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
DS39933D-page 418  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 28-12:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
bit 6 - - - - - - 1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
Note: Refer to Figure 28-3 for load conditions.  
TABLE 28-17: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SS to SCK or SCK Input  
3 TCY  
ns  
TSSL2SCL  
70A  
71  
TSSL2WB SS to write to SSPBUF  
3 TCY  
1.25 TCY + 30  
40  
ns  
TSCH  
TSCL  
TB2B  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
ns  
71A  
72  
ns (Note 1)  
ns  
SCK Input Low Time  
(Slave mode)  
1.25 TCY + 30  
40  
72A  
73A  
74  
ns (Note 1)  
ns (Note 2)  
ns  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
40  
75  
76  
77  
78  
79  
80  
TDOR  
TDOF  
SDO Data Output Rise Time  
SDO Data Output Fall Time  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TSSH2DOZ SS to SDO Output High-Impedance  
TSCR  
TSCF  
SCK Output Rise Time (Master mode)  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after SCK Edge  
TSCL2DOV  
82  
83  
TSSL2DOV SDO Data Output Valid after SS Edge  
50  
ns  
ns  
TSCH2SSH, SS after SCK Edge  
1.5 TCY + 40  
TSCL2SSH  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
2010 Microchip Technology Inc.  
DS39933D-page 419  
PIC18F87J90 FAMILY  
FIGURE 28-13:  
I2C™ BUS START/STOP BITS TIMING  
SCL  
91  
93  
90  
92  
SDA  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 28-3 for load conditions.  
TABLE 28-18: I2C™ BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
Only relevant for Repeated  
Start condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
4000  
600  
ns  
ns  
ns  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
4700  
600  
THD:STO Stop Condition  
Hold Time  
4000  
600  
DS39933D-page 420  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
FIGURE 28-14:  
I2C™ BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 28-3 for load conditions.  
TABLE 28-19: I2C™ BUS DATA REQUIREMENTS (SLAVE MODE)  
Param.  
No.  
Symbol  
Characteristic  
100 kHz mode  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock High Time  
Clock Low Time  
4.0  
0.6  
s  
s  
400 kHz mode  
MSSP Module  
100 kHz mode  
400 kHz mode  
MSSP Module  
1.5 TCY  
4.7  
101  
TLOW  
s  
s  
1.3  
1.5 TCY  
102  
103  
TR  
SDA and SCL Rise Time 100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1 CB  
CB is specified to be from  
10 to 400 pF  
TF  
SDA and SCL Fall Time  
100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1 CB  
CB is specified to be from  
10 to 400 pF  
90  
TSU:STA  
Start Condition Setup Time 100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
s  
s  
s  
s  
ns  
s  
ns  
ns  
s  
s  
ns  
ns  
s  
s  
pF  
Only relevant for Repeated  
Start condition  
91  
THD:STA Start Condition Hold Time 100 kHz mode  
400 kHz mode  
After this period, the first clock  
pulse is generated  
106  
107  
92  
THD:DAT Data Input Hold Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
0
0.9  
TSU:DAT Data Input Setup Time  
250  
100  
4.7  
0.6  
(Note 2)  
TSU:STO Stop Condition Setup Time 100 kHz mode  
400 kHz mode  
109  
110  
D102  
TAA  
TBUF  
CB  
Output Valid from Clock  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
3500  
(Note 1)  
Bus Free Time  
4.7  
1.3  
Time the bus must be free before  
a new transmission can start  
Bus Capacitive Loading  
400  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2
2
2: A Fast mode I C™ bus device can be used in a Standard mode I C bus system, but the requirement, TSU:DAT 250 ns,  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If  
such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line,  
2
TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I C bus specification), before the SCL line  
is released.  
2010 Microchip Technology Inc.  
DS39933D-page 421  
PIC18F87J90 FAMILY  
FIGURE 28-15:  
MSSP I2C™ BUS START/STOP BITS TIMING WAVEFORMS  
SCL  
93  
91  
90  
92  
SDA  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 28-3 for load conditions.  
TABLE 28-20: MSSP I2C™ BUS START/STOP BITS REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns Only relevant for  
Repeated Start  
condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns After this period, the  
first clock pulse is  
generated  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
TSU:STO Stop Condition  
Setup Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns  
400 kHz mode  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins.  
FIGURE 28-16:  
MSSP I2C™ BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
91  
92  
107  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 28-3 for load conditions.  
DS39933D-page 422  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 28-21: MSSP I2C™ BUS DATA REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
100  
101  
102  
103  
90  
THIGH  
Clock High  
Time  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ms  
ms  
ms  
ns  
TLOW  
TR  
Clock Low Time 100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
SDA and SCL 100 kHz mode  
Rise Time  
1000  
300  
300  
300  
300  
100  
CB is specified to be from  
10 to 400 pF  
400 kHz mode  
20 + 0.1 CB  
ns  
1 MHz mode(1)  
ns  
TF  
SDA and SCL 100 kHz mode  
Fall Time  
20 + 0.1 CB  
ns  
CB is specified to be from  
10 to 400 pF  
400 kHz mode  
1 MHz mode(1)  
ns  
ns  
TSU:STA Start Condition 100 kHz mode 2(TOSC)(BRG + 1)  
ms Only relevant for Repeated  
Setup Time  
Start condition  
400 kHz mode 2(TOSC)(BRG + 1)  
ms  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
91  
THD:STA Start Condition 100 kHz mode 2(TOSC)(BRG + 1)  
ms After this period, the first  
Hold Time  
clock pulse is generated  
400 kHz mode 2(TOSC)(BRG + 1)  
ms  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
ns  
106  
107  
92  
THD:DAT Data Input  
Hold Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
0
0
0.9  
ms  
TSU:DAT Data Input  
Setup Time  
250  
100  
ns  
ns  
(Note 2)  
TSU:STO Stop Condition 100 kHz mode 2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ns  
Setup Time  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
109  
TAA  
Output Valid  
from Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
3500  
1000  
ns  
ns  
110  
TBUF  
CB  
Bus Free Time 100 kHz mode  
400 kHz mode  
4.7  
1.3  
ms Time the bus must be free  
before a new transmission  
ms  
can start  
pF  
D102  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins.  
2: A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but parameter #107 250 ns  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the  
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit  
to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the  
SCL line is released.  
2010 Microchip Technology Inc.  
DS39933D-page 423  
PIC18F87J90 FAMILY  
FIGURE 28-17:  
EUSART/AUSART SYNCHRONOUSTRANSMISSION (MASTER/SLAVE)TIMING  
TXx/CKx  
pin  
121  
121  
RXx/DTx  
pin  
120  
Note: Refer to Figure 28-3 for load conditions.  
122  
TABLE 28-22: EUSART/AUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TCKH2DTV SYNC XMIT (MASTER and SLAVE)  
Clock High to Data Out Valid  
40  
20  
20  
ns  
ns  
ns  
121  
122  
TCKRF  
TDTRF  
Clock Out Rise Time and Fall Time (Master mode)  
Data Out Rise Time and Fall Time  
FIGURE 28-18:  
EUSART/AUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
TXx/CKx  
pin  
125  
RXx/DTx  
pin  
126  
Note: Refer to Figure 28-3 for load conditions.  
TABLE 28-23: EUSART/AUSART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TDTV2CKL SYNC RCV (MASTER and SLAVE)  
Data Hold before CKx (DTx hold time)  
10  
15  
ns  
ns  
126  
TCKL2DTL Data Hold after CKx (DTx hold time)  
DS39933D-page 424  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
TABLE 28-24: A/D CONVERTER CHARACTERISTICS: PIC18F87J90 FAMILY (INDUSTRIAL)  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
No.  
A01  
NR  
Resolution  
10  
bits  
A03  
A04  
A06  
A07  
A10  
A20  
EIL  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
<±1  
<±1  
<±3  
<±3  
LSb VREF 3.0V  
LSb VREF 3.0V  
LSb VREF 3.0V  
LSb VREF 3.0V  
EDL  
EOFF  
EGN  
Gain Error  
Monotonicity  
Guaranteed(1)  
VSS VAIN VREF  
VREF Reference Voltage Range  
2.0  
2.0  
V
V
VDD 3.0V  
VDD 3.0V  
(VREFH – VREFL)  
A21  
A22  
A25  
A30  
VREFH Reference Voltage High  
VSS + VREF  
VSS – 0.3V  
VREFL  
VDD  
VDD – 3.0V  
VREFH  
V
V
VREFL  
VAIN  
Reference Voltage Low  
Analog Input Voltage  
V
ZAIN  
Recommended Impedance of  
Analog Voltage Source  
2.5  
k  
A50  
IREF  
VREF Input Current(2)  
5
150  
A During VAIN acquisition.  
A During A/D conversion  
cycle.  
Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing  
codes.  
2: VREFH current is from RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source.  
VREFL current is from RA2/AN2/VREF- pin or VSS, whichever is selected as the VREFL source.  
2010 Microchip Technology Inc.  
DS39933D-page 425  
PIC18F87J90 FAMILY  
FIGURE 28-19:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
OLD_DATA  
TCY (Note 1)  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEPinstruction to  
be executed.  
2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.  
TABLE 28-25: A/D CONVERSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
130  
TAD  
A/D Clock Period  
0.7  
25.0(1)  
s TOSC based, VREF 3.0V  
s A/D RC mode  
TAD  
1
131  
TCNV  
Conversion Time  
11  
12  
(not including acquisition time)(2)  
132  
135  
136  
TACQ  
TSWC  
TDIS  
Acquisition Time(3)  
1.4  
(Note 4)  
s -40C to +85C  
Switching Time from Convert Sample  
Discharge Time  
0.2  
s  
Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
2: ADRES registers may be read on the following TCY cycle.  
3: The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale  
after the conversion (VDD to VSS or VSS to VDD). The source impedance (RS) on the input channels is 50.  
4: On the following cycle of the device clock.  
DS39933D-page 426  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
29.0 PACKAGING INFORMATION  
29.1 Package Marking Information  
64-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
18F65J90  
-I/PT  
1010017  
e
3
80-Lead TQFP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC18F85J90  
-I/PT  
1010017  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010 Microchip Technology Inc.  
DS39933D-page 427  
PIC18F87J90 FAMILY  
29.2 Package Details  
The following sections give the technical details of the  
packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
1 2 3  
NOTE 1  
c
NOTE 2  
α
A
φ
A2  
A1  
β
L
L1  
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
89ꢒ  
;ꢔ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓ@/1  
DS39933D-page 428  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
2010 Microchip Technology Inc.  
DS39933D-page 429  
PIC18F87J90 FAMILY  
)ꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
NOTE 1  
12 3  
α
NOTE 2  
A
c
φ
A2  
β
A1  
L1  
L
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
M
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
89ꢒ  
@ꢓ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓꢛꢎ1  
DS39933D-page 430  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
)ꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
2010 Microchip Technology Inc.  
DS39933D-page 431  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 432  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
APPENDIX A: REVISION HISTORY  
APPENDIX B: MIGRATION FROM  
PIC18F85J90 TO  
Revision A (October 2008)  
PIC18F87J90  
Original data sheet for PIC18F87J90 family devices.  
Devices in the PIC18F87J90 and PIC18F85J90 fami-  
lies are almost similar in their functions and features.  
Code can be migrated from the 18F85J90 to the  
PIC18F87J90 without many changes. The differences  
between the two device families are listed in Table B-1.  
Revision B (December 2008)  
Changes to Section 28.2 “DC Characteristics:  
Power-Down and Supply Current PIC18F87J90  
Family (Industrial)” and removal of Section 27.5 “DC  
Characteristics: RTCC Power-Down Current (IPD)”.  
Revision C (February 2009)  
Added register CONFIG3L to Section 25.0 “Special  
Features of the CPU” and made minor corrections.  
Revision D (January 2010)  
Added 60°C IPD specification to Section 28.0 “Electri-  
cal Characteristics”. Removed Preliminary condition  
tag. Minor edits to text throughout the document.  
TABLE B-1:  
NOTABLE DIFFERENCES BETWEEN PIC18F87J90 AND PIC18F85J90 FAMILIES  
Characteristic  
18F85J90 Family  
PIC18F87J90 Family  
Max Operating Frequency  
Max Program Memory  
Data Memory  
48 MHz  
40 MHz  
128 Kbytes  
32 Kbytes  
3,923 Bytes  
2,048 Bytes  
Program Memory Endurance  
Single-Word Write for Flash  
Oscillator Options  
CTMU  
10,000 Write/Erase (minimum)  
1,000 Write/Erase (minimum)  
Yes  
No  
PLL can be used with INTOSC  
PLL cannot be used with INTOSC  
Yes  
Yes  
No  
No  
No  
RTCC  
Timer1 Oscillator Options  
Low-power oscillator option for  
Timer1  
TICKI Clock  
T1CKI can be used as a clock without  
enabling the Timer1 oscillator  
No  
2010 Microchip Technology Inc.  
DS39933D-page 433  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 434  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
INDEX  
Baud Rates, Asynchronous Modes .................. 279  
High Baud Rate Select (BRGH Bit) .................. 278  
Operation in Power-Managed Modes............... 278  
Sampling .......................................................... 278  
Synchronous Master Mode....................................... 284  
Associated Registers, Receive......................... 286  
Associated Registers, Transmit........................ 285  
Reception ......................................................... 286  
Transmission .................................................... 284  
Synchronous Slave Mode......................................... 287  
Associated Registers, Receive......................... 288  
Associated Registers, Transmit........................ 287  
Reception ......................................................... 288  
Transmission .................................................... 287  
A
A/D.................................................................................... 289  
A/D Converter Interrupt, Configuring ........................ 293  
Acquisition Requirements ......................................... 294  
ADCAL Bit................................................................. 297  
ADCON0 Register..................................................... 289  
ADCON1 Register..................................................... 289  
ADCON2 Register..................................................... 289  
ADRESH Register............................................. 289, 292  
ADRESL Register ..................................................... 289  
Analog Port Pins, Configuring................................... 295  
Associated Registers ................................................ 297  
Automatic Selecting and Configuring  
Acquisition Time ............................................... 295  
Configuring the Module............................................. 293  
Conversion Clock (TAD) ............................................ 295  
Conversion Requirements ........................................ 426  
Conversion Status (GO/DONE Bit)........................... 292  
Conversions.............................................................. 296  
Converter Calibration................................................ 297  
Converter Characteristics ......................................... 425  
Operation in Power-Managed Modes ....................... 297  
Special Event Trigger (CCP)..................................... 296  
Use of the CCP2 Trigger........................................... 296  
Absolute Maximum Ratings .............................................. 393  
AC (Timing) Characteristics.............................................. 408  
Load Conditions for Device  
Timing Specifications....................................... 409  
Parameter Symbology .............................................. 408  
Temperature and Voltage Specifications.................. 409  
Timing Conditions ..................................................... 409  
ACKSTAT ......................................................................... 245  
ACKSTAT Status Flag ...................................................... 245  
ADCAL Bit......................................................................... 297  
ADCON0 Register............................................................. 289  
GO/DONE Bit............................................................ 292  
ADCON1 Register............................................................. 289  
ADCON2 Register............................................................. 289  
ADDFSR ........................................................................... 382  
ADDLW ............................................................................. 345  
Addressable Universal Synchronous Asynchronous  
Receiver Transmitter (AUSART). See AUSART.  
B
Baud Rate Generator ....................................................... 241  
BC..................................................................................... 347  
BCF .................................................................................. 348  
BF ..................................................................................... 245  
BF Status Flag.................................................................. 245  
Bias Generation (LCD)  
Charge Pump Design Considerations ...................... 193  
Block Diagrams  
A/D............................................................................ 292  
Analog Input Model................................................... 293  
AUSART Receive..................................................... 282  
AUSART Transmit.................................................... 280  
Baud Rate Generator ............................................... 241  
Capture Mode Operation.......................................... 176  
Clock Source Multiplexing ........................................ 166  
Comparator Analog Input Model............................... 303  
Comparator I/O Operating Modes ............................ 300  
Comparator Output................................................... 302  
Comparator Voltage Reference................................ 306  
Comparator Voltage Reference  
Output Buffer Example ..................................... 307  
Compare Mode Operation........................................ 177  
Connections for On-Chip Voltage Regulator ............ 333  
CTMU ....................................................................... 309  
CTMU Current Source Calibration Circuit ................ 312  
CTMU Typical Connections and Internal  
Configuration for Pulse Delay Generation........ 320  
CTMU Typical Connections and Internal  
ADDULNK......................................................................... 382  
ADDWF............................................................................. 345  
ADDWFC .......................................................................... 346  
ADRESH Register............................................................. 289  
ADRESL Register ..................................................... 289, 292  
Analog-to-Digital Converter. See A/D.  
ANDLW ............................................................................. 346  
ANDWF............................................................................. 347  
Assembler  
Configuration for Time Measurement............... 319  
Device Clock............................................................... 35  
EUSART Receive..................................................... 266  
EUSART Transmit.................................................... 264  
External Power-on Reset Circuit  
(Slow VDD Power-up) ......................................... 55  
Fail-Safe Clock Monitor ............................................ 335  
Generic I/O Port Operation....................................... 117  
Interrupt Logic........................................................... 102  
LCD Clock Generation.............................................. 188  
LCD Driver Module................................................... 183  
LCD Regulator Connections (M0 and M1) ............... 190  
MPASM Assembler................................................... 390  
AUSART  
Asynchronous Mode ................................................. 280  
Associated Registers, Receive ......................... 283  
Associated Registers, Transmit ........................ 281  
Receiver............................................................ 282  
Setting up 9-Bit Mode with  
2
MSSP (I C Master Mode)......................................... 239  
2
MSSP (I C Mode)..................................................... 220  
MSSP (SPI Mode) .................................................... 211  
On-Chip Reset Circuit................................................. 53  
PIC18F6XJ90 (64-Pin) ............................................... 12  
PIC18F8XJ90 (80-Pin) ............................................... 13  
PLL ............................................................................. 40  
PWM Operation (Simplified)..................................... 179  
Address Detect ......................................... 282  
Transmitter........................................................ 280  
Baud Rate Generator (BRG)..................................... 278  
Associated Registers........................................ 278  
Baud Rate Error, Calculating ............................ 278  
2010 Microchip Technology Inc.  
DS39933D-page 435  
PIC18F87J90 FAMILY  
Reads From Flash Program Memory..........................93  
Resistor Ladder Connections for  
M2 Configuration...............................................191  
Resistor Ladder Connections for  
Measuring Capacitance with the CTMU ................... 317  
Measuring Time........................................................ 319  
Module Initialization .................................................. 311  
Operation.................................................................. 310  
During Sleep and Idle Modes ........................... 320  
Clock Sources..................................................................... 37  
Default System Clock on Reset.................................. 38  
Selection Using OSCCON Register............................ 38  
CLRF ................................................................................ 355  
CLRWDT .......................................................................... 355  
Code Examples  
M3 Configuration...............................................192  
RTCC ........................................................................155  
Single Comparator ....................................................301  
SPI Master/Slave Connection ...................................215  
Table Read Operation.................................................89  
Table Write Operation.................................................90  
Table Writes to Flash Program Memory .....................95  
Timer0 in 16-Bit Mode...............................................140  
Timer0 in 8-Bit Mode.................................................140  
Timer1 (16-Bit Read/Write Mode) .............................144  
Timer1 (8-Bit Mode)..................................................144  
Timer2.......................................................................150  
Timer3 (16-Bit Read/Write Mode) .............................152  
Timer3 (8-Bit Mode)..................................................152  
Watchdog Timer........................................................331  
BN .....................................................................................348  
BNC...................................................................................349  
BNN...................................................................................349  
BNOV................................................................................350  
BNZ...................................................................................350  
BOR. See Brown-out Reset.  
16 x 16 Signed Multiply Routine ............................... 100  
16 x 16 Unsigned Multiply Routine ........................... 100  
8 x 8 Signed Multiply Routine ..................................... 99  
8 x 8 Unsigned Multiply Routine ................................. 99  
Capacitance Calibration Routine .............................. 316  
Changing Between Capture Prescalers.................... 176  
Computed GOTO Using an Offset Value.................... 69  
Current Calibration Routine ...................................... 314  
Erasing Flash Program Memory................................. 94  
Fast Register Stack .................................................... 69  
How to Clear RAM (Bank 1) Using Indirect Addressing .  
82  
Implementing a Real-Time Clock Using a  
Timer1 Interrupt Service................................... 147  
Initializing PORTA..................................................... 118  
Initializing PORTB..................................................... 120  
Initializing PORTC .................................................... 123  
Initializing PORTD .................................................... 126  
Initializing PORTE..................................................... 128  
Initializing PORTF..................................................... 130  
Initializing PORTG .................................................... 133  
Initializing PORTH .................................................... 135  
Initializing PORTJ ..................................................... 137  
Loading the SSPBUF (SSPSR) Register.................. 214  
Reading a Flash Program Memory Word ................... 93  
Routine for Capacitive Touch Switch........................ 318  
Saving STATUS, WREG and BSR  
BOV...................................................................................353  
BRA...................................................................................351  
Break Character (12-Bit) Transmit and Receive ...............269  
BRG. See Baud Rate Generator.  
BRGH Bit  
TXSTA1 Register......................................................259  
TXSTA2 Register......................................................278  
Brown-out Reset (BOR) ......................................................55  
and On-Chip Voltage Regulator................................334  
Detecting.....................................................................55  
BSF ...................................................................................351  
BTFSC ..............................................................................352  
BTFSS...............................................................................352  
BTG...................................................................................353  
BZ......................................................................................354  
Registers in RAM.............................................. 116  
Setting the RTCWREN Bit........................................ 167  
Setup for CTMU Calibration Routines ...................... 313  
Single-Word Write to Flash Program Memory............ 97  
Writing to Flash Program Memory.............................. 96  
Code Protection................................................................ 325  
COMF ............................................................................... 356  
Comparator....................................................................... 299  
Analog Input Connection Considerations ................. 303  
Associated Registers................................................ 303  
Configuration ............................................................ 300  
Effects of a Reset ..................................................... 302  
Interrupts .................................................................. 302  
Operation.................................................................. 301  
Operation During Sleep ............................................ 302  
Outputs ..................................................................... 301  
Reference ................................................................. 301  
External Signal ................................................. 301  
Internal Signal................................................... 301  
Response Time......................................................... 301  
Comparator Specifications................................................ 407  
Comparator Voltage Reference........................................ 305  
Accuracy and Error................................................... 306  
Associated Registers................................................ 307  
Configuring ............................................................... 305  
Connection Considerations....................................... 306  
Effects of a Reset ..................................................... 306  
C
C Compilers  
MPLAB C18 ..............................................................390  
CALL .................................................................................354  
CALLW..............................................................................383  
Capture (CCP Module)......................................................176  
CCP Pin Configuration..............................................176  
CCPR2H:CCPR2L Registers....................................176  
Software Interrupt .....................................................176  
Timer1/Timer3 Mode Selection.................................176  
Capture/Compare/PWM (CCP).........................................173  
Capture Mode. See Capture.  
CCP Mode and Timer Resources.............................174  
CCPRxH Register.....................................................174  
CCPRxL Register......................................................174  
Compare Mode. See Compare.  
Configuration.............................................................174  
Interaction of CCP1 and CCP2 for  
Timer Resources...............................................175  
Interconnect Configurations ......................................174  
Charge Time Measurement Unit (CTMU) .........................309  
Associated Registers ................................................323  
Calibrating the Module ..............................................311  
Creating a Delay .......................................................320  
Effects of a Reset......................................................320  
DS39933D-page 436  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Operation During Sleep ............................................ 306  
Compare (CCP Module) ................................................... 177  
Capture, Compare, Timer1, Timers Associated  
E
Effect on Standard PIC18 Instructions.............................. 386  
Effects of Power-Managed Modes on Various  
Registers........................................................... 178  
Clock Sources ............................................................ 43  
Electrical Characteristics .................................................. 393  
Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART). See EUSART.  
ENVREG Pin .................................................................... 333  
Equations  
CCP Pin Configuration.............................................. 177  
CCPR2 Register ....................................................... 177  
Software Interrupt ..................................................... 177  
Special Event Trigger................................ 153, 177, 296  
Timer1/Timer3 Mode Selection................................. 177  
Computed GOTO................................................................ 69  
Configuration Bits.............................................................. 325  
Configuration Mismatch (CM) ............................................. 55  
Configuration Register Protection ..................................... 337  
Core Features  
16 x 16 Signed Multiplication Algorithm.................... 100  
16 x 16 Unsigned Multiplication Algorithm................ 100  
A/D Acquisition Time ................................................ 294  
A/D Minimum Charging Time ................................... 294  
Calculating the Minimum Required  
Easy Migration .............................................................. 9  
Extended Instruction Set............................................... 9  
Memory Options............................................................ 9  
nanoWatt Technology................................................... 9  
Oscillator Options and Features ................................... 9  
CPFSEQ ........................................................................... 356  
CPFSGT ........................................................................... 357  
CPFSLT ............................................................................ 357  
Crystal Oscillator/Ceramic Resonator................................. 39  
Customer Change Notification Service ............................. 445  
Customer Notification Service........................................... 445  
Customer Support............................................................. 445  
Acquisition Time ............................................... 294  
Converting Error, Clock Pulses ................................ 168  
LCD Static and Dynamic Current ............................. 193  
Errata.................................................................................... 8  
EUSART  
Asynchronous Mode................................................. 264  
12-Bit Break Transmit and Receive.................. 269  
Associated Registers, Receive......................... 267  
Associated Registers, Transmit........................ 265  
Auto-Wake-up on Sync Break Character ......... 268  
Receiver ........................................................... 266  
Setting up 9-Bit Mode with  
Address Detect......................................... 266  
Transmitter ....................................................... 264  
Baud Rate Generator (BRG) .................................... 259  
Associated Registers........................................ 259  
Auto-Baud Rate Detect..................................... 262  
Baud Rate Error, Calculating............................ 259  
Baud Rates, Asynchronous Modes .................. 260  
High Baud Rate Select (BRGH Bit) .................. 259  
Operation in Power-Managed Modes............... 259  
Sampling .......................................................... 259  
Synchronous Master Mode....................................... 270  
Associated Registers, Receive......................... 272  
Associated Registers, Transmit........................ 271  
Reception ......................................................... 272  
Transmission .................................................... 270  
Synchronous Slave Mode......................................... 273  
Associated Registers, Receive......................... 274  
Associated Registers, Transmit........................ 273  
Reception ......................................................... 274  
Transmission .................................................... 273  
Extended Instruction Set  
ADDFSR................................................................... 382  
ADDULNK ................................................................ 382  
CALLW ..................................................................... 383  
MOVSF..................................................................... 383  
MOVSS..................................................................... 384  
PUSHL...................................................................... 384  
SUBFSR................................................................... 385  
SUBULNK................................................................. 385  
External Oscillator Modes  
D
Data Addressing Modes...................................................... 82  
Comparing Addressing Modes with the  
Extended Instruction Set Enabled ...................... 86  
Direct........................................................................... 82  
Indexed Literal Offset.................................................. 85  
BSR .................................................................... 87  
Instructions Affected ........................................... 85  
Mapping Access Bank ........................................ 87  
Indirect ........................................................................ 82  
Inherent and Literal..................................................... 82  
Data Memory ...................................................................... 72  
Access Bank ............................................................... 74  
Bank Select Register (BSR)........................................ 72  
Extended Instruction Set............................................. 85  
General Purpose Registers......................................... 74  
Memory Maps  
PIC18FX6J90/X7J90 Devices ............................ 73  
Special Function Registers ................................. 75  
Special Function Registers ......................................... 75  
DAW.................................................................................. 358  
DC Characteristics ............................................................ 404  
Power-Down and Supply Current ............................. 396  
Supply Voltage.......................................................... 395  
DCFSNZ ........................................................................... 359  
DECF ................................................................................ 358  
DECFSZ............................................................................ 359  
Default System Clock.......................................................... 38  
Details on Individual Family Members ................................ 10  
Development Support ....................................................... 389  
Device Overview ................................................................... 9  
Features (64-Pin Devices) .......................................... 11  
Features (80-Pin Devices) .......................................... 11  
Direct Addressing................................................................ 83  
Clock Input (EC Modes) ............................................. 40  
HS............................................................................... 39  
2010 Microchip Technology Inc.  
DS39933D-page 437  
PIC18F87J90 FAMILY  
Master Mode............................................................. 239  
Baud Rate Generator ....................................... 241  
Operation.......................................................... 240  
Reception ......................................................... 245  
Repeated Start Condition Timing ..................... 244  
Start Condition Timing...................................... 243  
Transmission .................................................... 245  
Multi-Master Communication, Bus Collision  
F
Fail-Safe Clock Monitor............................................. 325, 335  
Exiting Fail-Safe Operation .......................................336  
Interrupts in Power-Managed Modes........................336  
POR or Wake-up From Sleep ...................................336  
WDT During Oscillator Failure ..................................335  
Fast Register Stack.............................................................69  
Firmware Instructions........................................................339  
Flash Configuration Words................................................325  
Flash Program Memory.......................................................89  
Associated Registers ..................................................98  
Control Registers ........................................................90  
EECON1 and EECON2 ......................................90  
TABLAT (Table Latch) Register..........................92  
TBLPTR (Table Pointer) Register.......................92  
Erase Sequence .........................................................94  
Erasing........................................................................94  
Operation During Code-Protect ..................................98  
Reading.......................................................................93  
Table Pointer  
Boundaries Based on Operation.........................92  
Table Pointer Boundaries ...........................................92  
Table Reads and Table Writes ...................................89  
Write Sequence ..........................................................95  
Write Sequence (Word Programming)........................97  
Writing.........................................................................95  
Unexpected Termination.....................................98  
Write Verify .........................................................98  
FSCM. See Fail-Safe Clock Monitor.  
and Arbitration .................................................. 249  
Multi-Master Mode.................................................... 249  
Operation.................................................................. 225  
Read/Write Bit Information (R/W Bit)................ 225, 227  
Registers .................................................................. 220  
Serial Clock (SCK/SCL)............................................ 227  
Slave Mode............................................................... 225  
Address Masking.............................................. 226  
Addressing........................................................ 225  
Reception ......................................................... 227  
Transmission .................................................... 227  
Sleep Operation........................................................ 249  
Stop Condition Timing .............................................. 248  
INCF ................................................................................. 360  
INCFSZ............................................................................. 361  
In-Circuit Debugger........................................................... 337  
In-Circuit Serial Programming (ICSP)....................... 325, 337  
Indexed Literal Offset Addressing  
and Standard PIC18 Instructions.............................. 386  
Indexed Literal Offset Mode.............................................. 386  
Indirect Addressing............................................................. 83  
INFSNZ............................................................................. 361  
Initialization Conditions for all Registers....................... 59–64  
Instruction Cycle ................................................................. 70  
Clocking Scheme........................................................ 70  
Flow/Pipelining............................................................ 70  
Instruction Set................................................................... 339  
ADDLW..................................................................... 345  
ADDWF..................................................................... 345  
ADDWF (Indexed Literal Offset Mode)..................... 387  
ADDWFC.................................................................. 346  
ANDLW..................................................................... 346  
ANDWF..................................................................... 347  
BC............................................................................. 347  
BCF .......................................................................... 348  
BN............................................................................. 348  
BNC .......................................................................... 349  
BNN .......................................................................... 349  
BNOV ....................................................................... 350  
BNZ .......................................................................... 350  
BOV .......................................................................... 353  
BRA .......................................................................... 351  
BSF........................................................................... 351  
BSF (Indexed Literal Offset Mode) ........................... 387  
BTFSC...................................................................... 352  
BTFSS ...................................................................... 352  
BTG .......................................................................... 353  
BZ ............................................................................. 354  
CALL......................................................................... 354  
CLRF ........................................................................ 355  
CLRWDT .................................................................. 355  
COMF ....................................................................... 356  
CPFSEQ................................................................... 356  
CPFSGT ................................................................... 357  
CPFSLT.................................................................... 357  
G
GOTO................................................................................360  
H
Hardware Multiplier .............................................................99  
8 x 8 Multiplication Algorithms ....................................99  
Operation ....................................................................99  
Performance Comparison (table)................................99  
I
I/O Ports............................................................................117  
Input Voltage Considerations....................................117  
Open-Drain Outputs..................................................118  
Output Pin Drive........................................................117  
Pin Capabilities .........................................................117  
Pull-up Configuration ................................................118  
2
I C Mode (MSSP) .............................................................220  
Acknowledge Sequence Timing................................248  
Associated Registers ................................................254  
Baud Rate Generator................................................241  
Bus Collision  
During a Repeated Start Condition...................252  
During a Stop Condition....................................253  
Clock Arbitration........................................................242  
Clock Stretching........................................................234  
10-Bit Slave Receive Mode (SEN = 1)..............234  
10-Bit Slave Transmit Mode..............................234  
7-Bit Slave Receive Mode (SEN = 1)................234  
7-Bit Slave Transmit Mode................................234  
Clock Synchronization and the CKP Bit....................235  
Effects of a Reset......................................................249  
General Call Address Support ..................................238  
2
I C Clock Rate w/BRG..............................................241  
DS39933D-page 438  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
DAW.......................................................................... 358  
DCFSNZ ................................................................... 359  
DECF ........................................................................ 358  
DECFSZ.................................................................... 359  
Extended Instructions ............................................... 381  
Considerations when Enabling ......................... 386  
Syntax............................................................... 381  
Use with MPLAB IDE Tools .............................. 388  
General Format......................................................... 341  
GOTO ....................................................................... 360  
INCF.......................................................................... 360  
INCFSZ..................................................................... 361  
INFSNZ..................................................................... 361  
IORLW ...................................................................... 362  
IORWF...................................................................... 362  
LFSR......................................................................... 363  
MOVF........................................................................ 363  
MOVFF ..................................................................... 364  
MOVLB ..................................................................... 364  
MOVLW .................................................................... 365  
MOVWF .................................................................... 365  
MULLW..................................................................... 366  
MULWF..................................................................... 366  
NEGF........................................................................ 367  
NOP .......................................................................... 367  
Opcode Field Descriptions........................................ 340  
POP .......................................................................... 368  
PUSH........................................................................ 368  
RCALL ...................................................................... 369  
RESET...................................................................... 369  
RETFIE ..................................................................... 370  
RETLW ..................................................................... 370  
RETURN................................................................... 371  
RLCF......................................................................... 371  
RLNCF...................................................................... 372  
RRCF........................................................................ 372  
RRNCF ..................................................................... 373  
SETF......................................................................... 373  
SETF (Indexed Literal Offset Mode) ......................... 387  
SLEEP ...................................................................... 374  
Standard Instructions................................................ 339  
SUBFWB................................................................... 374  
SUBLW ..................................................................... 375  
SUBWF..................................................................... 375  
SUBWFB................................................................... 376  
SWAPF ..................................................................... 376  
TBLRD ...................................................................... 377  
TBLWT...................................................................... 378  
TSTFSZ .................................................................... 379  
XORLW..................................................................... 379  
XORWF..................................................................... 380  
Interrupt Sources .............................................................. 325  
A/D Conversion Complete........................................ 293  
Capture Complete (CCP) ......................................... 176  
Compare Complete (CCP) ....................................... 177  
Interrupt-on-Change (RB7:RB4)............................... 120  
TMR0 Overflow......................................................... 141  
TMR1 Overflow......................................................... 143  
TMR2 to PR2 Match (PWM)..................................... 179  
TMR3 Overflow................................................. 151, 153  
Interrupts .......................................................................... 101  
During, Context Saving............................................. 116  
INTx Pin.................................................................... 116  
PORTB, Interrupt-on-Change................................... 116  
TMR0........................................................................ 116  
Interrupts, Flag Bits  
Interrupt-on-Change (RB7:RB4) Flag  
(RBIF Bit).......................................................... 120  
INTOSC, INTRC. See Internal Oscillator Block.  
IORLW.............................................................................. 362  
IORWF.............................................................................. 362  
L
LCD  
Associated Registers................................................ 209  
Bias Generation........................................................ 189  
Bias Configurations .......................................... 190  
M0 and M1 ............................................... 190  
M2 ............................................................ 191  
M3 ............................................................ 192  
Bias Types........................................................ 189  
Voltage Regulator............................................. 189  
Charge Pump ................................................... 190, 193  
Clock Source Selection ............................................ 188  
Configuring the Module ............................................ 208  
Frame Frequency ..................................................... 194  
Interrupts .................................................................. 206  
LCDCON Register.................................................... 184  
LCDDATA Registers................................................. 184  
LCDPS Register ....................................................... 184  
LCDREG Register .................................................... 184  
LCDSE Registers ..................................................... 184  
Multiplex Types......................................................... 193  
Operation During Sleep............................................ 207  
Pixel Control ............................................................. 193  
Segment Enables ..................................................... 193  
Waveform Generation .............................................. 194  
LCD Driver.......................................................................... 10  
LCDCON Register............................................................ 184  
LCDDATA Registers......................................................... 184  
LCDPS Register ............................................................... 184  
LCDREG Register ............................................................ 184  
LCDSE Registers.............................................................. 184  
LFSR ................................................................................ 363  
Liquid Crystal Display (LCD) Driver.................................. 183  
Low-Voltage Detection...................................................... 333  
INTCON Register  
RBIF Bit..................................................................... 120  
2
Inter-Integrated Circuit. See I C Mode.  
Internal LCD Voltage Regulator Specifications................. 407  
Internal Oscillator Block ...................................................... 41  
Adjustment.................................................................. 42  
INTIO Modes............................................................... 41  
INTOSC Frequency Drift............................................. 42  
INTOSC Output Frequency......................................... 42  
INTPLL Modes............................................................ 41  
Internal RC Oscillator  
M
Master Clear (MCLR).......................................................... 55  
Master Synchronous Serial Port (MSSP). See MSSP.  
Memory Organization ......................................................... 65  
Data Memory.............................................................. 72  
Program Memory........................................................ 65  
Memory Programming Requirements............................... 406  
Microchip Internet Web Site.............................................. 445  
Migration From PIC18F85J90 to PIC18F87J90................ 433  
Use with WDT........................................................... 331  
Internal Voltage Regulator Specifications......................... 407  
Internet Address................................................................ 445  
2010 Microchip Technology Inc.  
DS39933D-page 439  
PIC18F87J90 FAMILY  
MOVF................................................................................363  
MOVFF..............................................................................364  
MOVLB..............................................................................364  
MOVLW.............................................................................365  
MOVSF .............................................................................383  
MOVSS .............................................................................384  
MOVWF ............................................................................365  
MPLAB ASM30 Assembler, Linker, Librarian ...................390  
MPLAB Integrated Development  
Environment Software...............................................389  
MPLAB PM3 Device Programmer.....................................392  
MPLAB REAL ICE In-Circuit Emulator System.................391  
MPLINK Object Linker/MPLIB Object Librarian ................390  
MSSP  
ACK Pulse......................................................... 225, 227  
Control Registers (general).......................................211  
Module Overview ......................................................211  
SSPBUF Register .....................................................216  
SSPSR Register .......................................................216  
MULLW .............................................................................366  
MULWF.............................................................................366  
RB0/INT0/SEG30 ................................................. 15, 22  
RB1/INT1/SEG8 ................................................... 15, 22  
RB2/INT2/SEG9/CTED1....................................... 15, 22  
RB3/INT3/SEG10/CTED2..................................... 15, 22  
RB4/KBI0/SEG11 ................................................. 15, 22  
RB5/KBI1/SEG29 ................................................. 15, 22  
RB6/KBI2/PGC ..................................................... 15, 22  
RB7/KBI3/PGD ..................................................... 15, 22  
RC0/T1OSO/T13CKI ............................................ 16, 23  
RC1/T1OSI/CCP2/SEG32.................................... 16, 23  
RC2/CCP1/SEG13 ............................................... 16, 23  
RC3/SCK/SCL/SEG17.......................................... 16, 23  
RC4/SDI/SDA/SEG16........................................... 16, 23  
RC5/SDO/SEG12 ................................................. 16, 23  
RC6/TX1/CK1/SEG27 .......................................... 16, 23  
RC7/RX1/DT1/SEG28 .......................................... 16, 23  
RD0/SEG0/CTPLS ............................................... 17, 24  
RD1/SEG1............................................................ 17, 24  
RD2/SEG2............................................................ 17, 24  
RD3/SEG3............................................................ 17, 24  
RD4/SEG4............................................................ 17, 24  
RD5/SEG5............................................................ 17, 24  
RD6/SEG6............................................................ 17, 24  
RD7/SEG7............................................................ 17, 24  
RE0/LCDBIAS1 .................................................... 18, 25  
RE1/LCDBIAS2 .................................................... 18, 25  
RE3/COM0 ........................................................... 18, 25  
RE4/COM1 ........................................................... 18, 25  
RE5/COM2 ........................................................... 18, 25  
RE6/COM3 ........................................................... 18, 25  
RE7/CCP2/SEG31................................................ 18, 25  
RF1/AN6/C2OUT/SEG19 ..................................... 19, 26  
RF2/AN7/C1OUT/SEG20 ..................................... 19, 26  
RF3/AN8/SEG21/C2INB....................................... 19, 26  
RF4/AN9/SEG22/C2INA....................................... 19, 26  
RF5/AN10/CVREF/SEG23/C1INB......................... 19, 26  
RF6/AN11/SEG24/C1INA..................................... 19, 26  
RF7/AN5/SS/SEG25............................................. 19, 26  
RG0/LCDBIAS0.................................................... 20, 27  
RG1/TX2/CK2....................................................... 20, 27  
RG2/RX2/DT2/VLCAP1.......................................... 20, 27  
RG3/VLCAP2 ......................................................... 20, 27  
RG4/SEG26/RTCC............................................... 20, 27  
RH0/SEG47................................................................ 28  
RH1/SEG46................................................................ 28  
RH2/SEG45................................................................ 28  
RH3/SEG44................................................................ 28  
RH4/SEG40................................................................ 28  
RH5/SEG41................................................................ 28  
RH6/SEG42................................................................ 28  
RH7/SEG43................................................................ 28  
RJ0 ............................................................................. 29  
RJ1/SEG33................................................................. 29  
RJ2/SEG34................................................................. 29  
RJ3/SEG35................................................................. 29  
RJ4/SEG39................................................................. 29  
RJ5/SEG38................................................................. 29  
RJ6/SEG37................................................................. 29  
RJ7/SEG36................................................................. 29  
VDD ............................................................................. 20  
VDD ............................................................................. 29  
VDDCORE/VCAP...................................................... 20, 29  
VSS ............................................................................. 20  
VSS ............................................................................. 29  
N
NEGF ................................................................................367  
NOP ..................................................................................367  
Notable Differences Between  
PIC18F87J90 and PIC18F85J90 Families................433  
O
Oscillator Configuration.......................................................35  
EC ...............................................................................35  
ECPLL.........................................................................35  
HS...............................................................................35  
HSPLL.........................................................................35  
Internal Oscillator Block ..............................................41  
INTIO1 ........................................................................35  
INTIO2 ........................................................................35  
INTPLL1......................................................................35  
INTPLL2......................................................................35  
Oscillator Selection ...........................................................325  
Oscillator Start-up Timer (OST) ..........................................43  
Oscillator Switching.............................................................37  
Oscillator Transitions...........................................................38  
Oscillator, Timer1...................................................... 143, 153  
Oscillator, Timer3..............................................................151  
P
Packaging .........................................................................427  
Details.......................................................................428  
Marking .....................................................................427  
Pin Functions  
AVDD ...........................................................................20  
AVDD ...........................................................................29  
AVSS ...........................................................................29  
AVSS ...........................................................................20  
ENVREG............................................................... 20, 29  
LCDBIAS3............................................................. 18, 25  
MCLR....................................................................14, 21  
OSC1/CLKI/RA7 ................................................... 14, 21  
OSC2/CLKO/RA6 ................................................. 14, 21  
RA0/AN0 ............................................................... 14, 21  
RA1/AN1/SEG18 .................................................. 14, 21  
RA2/AN2/VREF-..................................................... 14, 21  
RA3/AN3/VREF+.................................................... 14, 21  
RA4/T0CKI/SEG14 ...............................................14, 21  
RA5/AN4/SEG15 .................................................. 14, 21  
DS39933D-page 440  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Pinout I/O Descriptions  
Exiting Idle and Sleep Modes..................................... 51  
By Interrupt......................................................... 51  
By Reset............................................................. 51  
By WDT Time-out............................................... 51  
Without an Oscillator Start-up Delay .................. 51  
Idle Modes.................................................................. 49  
PRI_IDLE ........................................................... 50  
RC_IDLE ............................................................ 51  
SEC_IDLE.......................................................... 50  
Multiple Sleep Commands.......................................... 46  
Run Modes ................................................................. 46  
PRI_RUN............................................................ 46  
RC_RUN............................................................. 48  
SEC_RUN .......................................................... 46  
Selecting..................................................................... 45  
Sleep Mode ................................................................ 49  
OSC1 and OSC2 Pin States............................... 43  
Summary (table)......................................................... 45  
Power-on Reset (POR)....................................................... 55  
Power-up Delays ................................................................ 43  
Power-up Timer (PWRT) .............................................. 43, 56  
Time-out Sequence .................................................... 56  
Prescaler, Capture............................................................ 176  
Prescaler, Timer0 ............................................................. 141  
Prescaler, Timer2 ............................................................. 180  
PRI_IDLE Mode.................................................................. 50  
PRI_RUN Mode.................................................................. 46  
Program Counter................................................................ 67  
PCL, PCH and PCU Registers ................................... 67  
PCLATH and PCLATU Registers............................... 67  
Program Memory  
Extended Instruction Set ............................................ 84  
Flash Configuration Words......................................... 66  
Hard Memory Vectors................................................. 66  
Instructions ................................................................. 71  
Two-Word........................................................... 71  
Interrupt Vector........................................................... 66  
Look-up Tables........................................................... 69  
Memory Maps............................................................. 65  
Hard Vectors and Configuration Words.............. 66  
Reset Vector............................................................... 66  
Program Verification and Code Protection ....................... 337  
Programming, Device Instructions.................................... 339  
Pulse-Width Modulation. See PWM (CCP Module).  
PUSH................................................................................ 368  
PUSH and POP Instructions............................................... 68  
PUSHL.............................................................................. 384  
PWM (CCP Module)  
PIC18F6XJ90.............................................................. 14  
PIC18F8XJ90.............................................................. 21  
PLL...................................................................................... 40  
HSPLL and ECPLL Oscillator Modes ......................... 40  
Use with INTOSC........................................................ 40  
POP .................................................................................. 368  
POR. See Power-on Reset.  
PORTA  
Associated Registers ................................................ 119  
LATA Register........................................................... 118  
PORTA Register ....................................................... 118  
TRISA Register......................................................... 118  
PORTB  
Associated Registers ................................................ 122  
LATB Register........................................................... 120  
PORTB Register ....................................................... 120  
RB7:RB4 Interrupt-on-Change Flag  
(RBIF Bit).......................................................... 120  
TRISB Register......................................................... 120  
PORTC  
Associated Registers ................................................ 125  
LATC Register .......................................................... 123  
PORTC Register....................................................... 123  
RC3/SCK/SCL/SEG17 Pin........................................ 227  
TRISC Register......................................................... 123  
PORTD  
Associated Registers ................................................ 127  
LATD Register .......................................................... 126  
PORTD Register....................................................... 126  
TRISD Register......................................................... 126  
PORTE  
Associated Registers ................................................ 129  
LATE Register........................................................... 128  
PORTE Register ....................................................... 128  
TRISE Register......................................................... 128  
PORTF  
Associated Registers ................................................ 132  
LATF Register........................................................... 130  
PORTF Register ....................................................... 130  
TRISF Register ......................................................... 130  
PORTG  
Associated Registers ................................................ 134  
LATG Register .......................................................... 133  
PORTG Register....................................................... 133  
TRISG Register......................................................... 133  
PORTH  
Associated Registers ................................................ 136  
LATH Register .......................................................... 135  
PORTH Register....................................................... 135  
TRISH Register......................................................... 135  
PORTJ  
Associated Registers ................................................ 138  
LATJ Register ........................................................... 137  
PORTJ Register........................................................ 137  
TRISJ Register.......................................................... 137  
Power-Managed Modes...................................................... 45  
and SPI Operation .................................................... 219  
Clock Sources............................................................. 45  
Clock Transitions and Status Indicators...................... 46  
Entering....................................................................... 45  
Associated Registers................................................ 181  
Duty Cycle ................................................................ 180  
Example Frequencies/Resolutions........................... 180  
Period ....................................................................... 179  
Setup for Operation .................................................. 181  
TMR2 to PR2 Match................................................. 179  
Q
Q Clock............................................................................. 180  
2010 Microchip Technology Inc.  
DS39933D-page 441  
PIC18F87J90 FAMILY  
PIR2 (Peripheral Interrupt Request (Flag) 2)............ 107  
PIR3 (Peripheral Interrupt Request (Flag) 3)............ 108  
RCON (Reset Control)........................................ 54, 115  
RCSTA1 (EUSART Receive Status  
and Control)...................................................... 257  
RCSTA2 (AUSART Receive Status  
R
RAM. See Data Memory.  
RC_IDLE Mode...................................................................51  
RC_RUN Mode ...................................................................48  
RCALL...............................................................................369  
RCON Register  
Bit Status During Initialization .....................................58  
Reader Response .............................................................446  
Real-Time Clock and Calendar  
Operation ..................................................................165  
Registers...................................................................156  
Real-Time Clock and Calendar (RTCC)............................155  
Register File........................................................................74  
Register File Summary.................................................. 76–80  
Registers  
and Control)...................................................... 277  
Reserved .................................................................. 160  
RTCCAL (RTCC Calibration).................................... 158  
RTCCFG (RTCC Configuration)............................... 157  
SECOND (Second Value)......................................... 162  
2
SSPCON1 (MSSP Control 1, I C Mode) .................. 222  
SSPCON1 (MSSP Control 1, SPI Mode).................. 213  
2
SSPCON2 (MSSP Control 2, I C Master Mode) ...... 223  
2
SSPCON2 (MSSP Control 2, I C Slave Mode) ........ 224  
2
SSPSTAT (MSSP Status, I C Mode) ....................... 221  
ADCON0 (A/D Control 0)..........................................289  
ADCON1 (A/D Control 1)..........................................290  
ADCON2 (A/D Control 2)..........................................291  
ALRMCFG (Alarm Configuration) .............................159  
ALRMDAY (Alarm Day Value) ..................................163  
ALRMHR (Alarm Hours Value) .................................164  
ALRMMIN (Alarm Minutes Value).............................164  
ALRMMNTH (Alarm Month Value)............................163  
ALRMRPT (Alarm Calibration)..................................160  
ALRMSEC (Alarm Seconds Value)...........................164  
ALRMWD (Alarm Weekday Value)...........................163  
BAUDCON1 (Baud Rate Control) 1 ..........................258  
CCPxCON (CCPx Control, CCP1 and CCP2) ..........173  
CMCON (Comparator Control) .................................299  
CONFIG1H (Configuration 1 High) ...........................327  
CONFIG1L (Configuration 1 Low).............................327  
CONFIG2H (Configuration 2 High) ...........................329  
CONFIG2L (Configuration 2 Low).............................328  
CONFIG3H (Configuration 3 High) ...........................330  
CONFIG3L (Configuration 3 Low).............................329  
CTMUCONH (CTMU Control High) ..........................321  
CTMUCONL (CTMU Control Low)............................322  
CTMUICON (CTMU Current Control) .......................323  
CVRCON (Comparator Voltage  
Reference Control)............................................305  
DAY (Day Value).......................................................161  
DEVID1 (Device ID 1)...............................................330  
DEVID2 (Device ID 2)...............................................330  
EECON1 (EEPROM Control 1)...................................91  
HOUR (Hour Value)..................................................162  
INTCON (Interrupt Control).......................................103  
INTCON2 (Interrupt Control 2)..................................104  
INTCON3 (Interrupt Control 3)..................................105  
IPR1 (Peripheral Interrupt Priority 1).........................112  
IPR2 (Peripheral Interrupt Priority 2).........................113  
IPR3 (Peripheral Interrupt Priority 3).........................114  
LCDCON (LCD Control)............................................184  
LCDDATAx (LCD Data) ............................................187  
LCDPS (LCD Phase) ................................................185  
LCDREG (LCD Voltage Regulator Control)..............189  
LCDSEx (LCD Segment Enable) ..............................186  
MINUTE (Minute Value)............................................162  
MONTH (Month Value) .............................................161  
OSCCON (Oscillator Control) .....................................36  
OSCTUNE (Oscillator Tuning)....................................37  
PADCFG1 (Pad Configuration).................................158  
PIE1 (Peripheral Interrupt Enable 1).........................109  
PIE2 (Peripheral Interrupt Enable 2).........................110  
PIE3 (Peripheral Interrupt Enable 3).........................111  
PIR1 (Peripheral Interrupt Request (Flag) 1)............106  
SSPSTAT (MSSP Status, SPI Mode)....................... 212  
STATUS ..................................................................... 81  
STKPTR (Stack Pointer)............................................. 68  
T0CON (Timer0 Control) .......................................... 139  
T1CON (Timer1 Control) .......................................... 143  
T2CON (Timer2 Control) .......................................... 149  
T3CON (Timer3 Control) .......................................... 151  
TXSTA1 (EUSART Transmit Status  
and Control)...................................................... 256  
TXSTA2 (AUSART Transmit Status  
and Control)...................................................... 276  
WDTCON (Watchdog Timer Control) ....................... 332  
WEEKDAY (Weekday Value) ................................... 161  
YEAR (Year Value)................................................... 160  
RESET.............................................................................. 369  
Reset .................................................................................. 53  
Brown-out Reset (BOR).............................................. 53  
Configuration Mismatch (CM) Reset........................... 53  
MCLR Reset, During Power-Managed Modes ........... 53  
MCLR Reset, Normal Operation................................. 53  
Power-on Reset (POR)............................................... 53  
RESET Instruction ...................................................... 53  
Stack Full Reset.......................................................... 53  
Stack Underflow Reset ............................................... 53  
Watchdog Timer (WDT) Reset ................................... 53  
Resets............................................................................... 325  
Brown-out Reset (BOR)............................................ 325  
Oscillator Start-up Timer (OST)................................ 325  
Power-on Reset (POR)............................................. 325  
Power-up Timer (PWRT) .......................................... 325  
RETFIE............................................................................. 370  
RETLW ............................................................................. 370  
RETURN........................................................................... 371  
Return Address Stack......................................................... 67  
Return Stack Pointer (STKPTR)......................................... 68  
Revision History................................................................ 433  
RLCF ................................................................................ 371  
RLNCF.............................................................................. 372  
RRCF................................................................................ 372  
RRNCF ............................................................................. 373  
RTCC  
Alarm ........................................................................ 168  
Configuring ....................................................... 168  
Interrupt ............................................................ 169  
Mask Settings................................................... 169  
Alarm Value Registers (ALRMVAL).......................... 163  
Control Registers...................................................... 157  
DS39933D-page 442  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
Operation  
Calibration......................................................... 168  
T
Table Pointer Operations (table)......................................... 92  
Table Reads/Table Writes.................................................. 69  
TBLRD.............................................................................. 377  
TBLWT ............................................................................. 378  
Timer0 .............................................................................. 139  
Associated Registers................................................ 141  
Clock Source Select (T0CS Bit) ............................... 140  
Operation.................................................................. 140  
Overflow Interrupt..................................................... 141  
Prescaler .................................................................. 141  
Switching Assignment ...................................... 141  
Prescaler Assignment (PSA Bit)............................... 141  
Prescaler Select (T0PS2:T0PS0 Bits)...................... 141  
Prescaler. See Prescaler, Timer0.  
Reads and Writes in 16-Bit Mode............................. 140  
Source Edge Select (T0SE Bit) ................................ 140  
Timer1 .............................................................................. 143  
16-Bit Read/Write Mode ........................................... 145  
Associated Registers................................................ 147  
Interrupt .................................................................... 146  
Operation.................................................................. 144  
Oscillator........................................................... 143, 145  
Layout Considerations...................................... 146  
Oscillator as Secondary Clock.................................... 37  
Overflow Interrupt..................................................... 143  
Resetting, Using the CCP Special  
Event Trigger.................................................... 146  
TMR1H Register....................................................... 143  
TMR1L Register ....................................................... 143  
Use as a Clock Source............................................. 145  
Use as a Real-Time Clock........................................ 146  
Timer2 .............................................................................. 149  
Associated Registers................................................ 150  
Interrupt .................................................................... 150  
Operation.................................................................. 149  
Output....................................................................... 150  
PR2 Register ............................................................ 179  
TMR2 to PR2 Match Interrupt................................... 179  
Timer3 .............................................................................. 151  
16-Bit Read/Write Mode ........................................... 153  
Associated Registers................................................ 153  
Operation.................................................................. 152  
Oscillator........................................................... 151, 153  
Overflow Interrupt............................................. 151, 153  
Special Event Trigger (CCP) .................................... 153  
TMR3H Register....................................................... 151  
TMR3L Register ....................................................... 151  
Timing Diagrams  
Clock Source .................................................... 166  
Digit Carry Rules............................................... 166  
General Functionality........................................ 167  
Leap Year ......................................................... 167  
Register Mapping.............................................. 167  
ALRMVAL................................................. 168  
RTCVAL.................................................... 167  
Safety Window for Register Reads  
and Writes................................................. 167  
Write Lock......................................................... 167  
Register Interface...................................................... 165  
Register Maps........................................................... 171  
Reset......................................................................... 170  
Device............................................................... 170  
Power-on Reset (POR)..................................... 170  
Sleep Mode............................................................... 170  
Value Registers (RTCVAL)....................................... 160  
RTCEN Bit Write ............................................................... 165  
S
SCK................................................................................... 211  
SDI.................................................................................... 211  
SDO .................................................................................. 211  
SEC_IDLE Mode................................................................. 50  
SEC_RUN Mode................................................................. 46  
Serial Clock, SCK ............................................................. 211  
Serial Data In (SDI)........................................................... 211  
Serial Data Out (SDO) ...................................................... 211  
Serial Peripheral Interface. See SPI Mode.  
SETF................................................................................. 373  
Slave Select (SS).............................................................. 211  
SLEEP .............................................................................. 374  
Software Simulator (MPLAB SIM)..................................... 391  
Special Event Trigger. See Compare (CCP Module).  
Special Features of the CPU ............................................ 325  
SPI Mode (MSSP)  
Associated Registers ................................................ 219  
Bus Mode Compatibility ............................................ 219  
Effects of a Reset...................................................... 219  
Enabling SPI I/O ....................................................... 215  
Master Mode............................................................. 216  
Operation .................................................................. 214  
Operation in Power-Managed Modes ....................... 219  
Serial Clock............................................................... 211  
Serial Data In ............................................................ 211  
Serial Data Out ......................................................... 211  
Slave Mode............................................................... 217  
Slave Select.............................................................. 211  
Slave Select Synchronization ................................... 217  
SPI Clock .................................................................. 216  
Typical Connection ................................................... 215  
SS ..................................................................................... 211  
SSPOV.............................................................................. 245  
SSPOV Status Flag .......................................................... 245  
SSPSTAT Register  
A/D Conversion ........................................................ 426  
Acknowledge Sequence........................................... 248  
Asynchronous Reception.................................. 267, 283  
Asynchronous Transmission ............................ 265, 281  
Asynchronous Transmission  
(Back to Back) .......................................... 265, 281  
Automatic Baud Rate Calculation............................. 263  
Auto-Wake-up Bit (WUE) During  
R/W Bit.............................................................. 225, 227  
Stack Full/Underflow Resets............................................... 69  
SUBFSR ........................................................................... 385  
SUBFWB........................................................................... 374  
SUBLW ............................................................................. 375  
SUBULNK......................................................................... 385  
SUBWF............................................................................. 375  
SUBWFB........................................................................... 376  
SWAPF ............................................................................. 376  
Normal Operation ............................................. 268  
Auto-Wake-up Bit (WUE) During Sleep.................... 268  
Baud Rate Generator with Clock Arbitration............. 242  
BRG Overflow Sequence ......................................... 263  
BRG Reset Due to SDA Arbitration During  
Start Condition.................................................. 251  
Bus Collision During a Repeated Start  
Condition (Case 1)............................................ 252  
2010 Microchip Technology Inc.  
DS39933D-page 443  
PIC18F87J90 FAMILY  
Bus Collision During a Repeated Start  
Condition (Case 2)............................................252  
Bus Collision During a Start  
Time-out Sequence on Power-up (MCLR Not  
Tied to VDD), Case 1 .......................................... 56  
Time-out Sequence on Power-up (MCLR Not  
Condition (SCL = 0) ..........................................251  
Bus Collision During a Stop  
Tied to VDD), Case 2 .......................................... 57  
Time-out Sequence on Power-up (MCLR  
Condition (Case 1)............................................253  
Bus Collision During a Stop Condition (Case 2) .......253  
Bus Collision During Start  
Condition (SDA Only)........................................250  
Bus Collision for Transmit and Acknowledge............249  
Capture/Compare/PWM............................................415  
CLKO and I/O ...........................................................412  
Clock Synchronization ..............................................235  
Clock/Instruction Cycle ...............................................70  
EUSART/AUSART Synchronous Receive  
Tied to VDD, VDD Rise Tpwrt)............................. 56  
Timer Pulse Generation............................................ 170  
Timer0 and Timer1 External Clock ........................... 414  
Transition for Entry to Idle Mode................................. 50  
Transition for Entry to SEC_RUN Mode ..................... 47  
Transition for Entry to Sleep Mode ............................. 49  
Transition for Two-Speed Start-up  
(INTRC to HSPLL)............................................ 334  
Transition for Wake From Idle to Run Mode............... 50  
Transition for Wake From Sleep (HSPLL) .................. 49  
Transition From RC_RUN Mode to  
(Master/Slave)...................................................424  
EUSART/AUSART Synchronous Transmission  
(Master/Slave)...................................................424  
Example SPI Master Mode (CKE = 0) ......................416  
Example SPI Master Mode (CKE = 1) ......................417  
Example SPI Slave Mode (CKE = 0) ........................418  
Example SPI Slave Mode (CKE = 1) ........................419  
External Clock...........................................................410  
Fail-Safe Clock Monitor.............................................336  
First Start Bit Timing .................................................243  
PRI_RUN Mode.................................................. 48  
Transition From SEC_RUN Mode to  
PRI_RUN Mode (HSPLL)................................... 47  
Transition to RC_RUN Mode...................................... 48  
Type-A in 1/2 MUX, 1/2 Bias Drive........................... 196  
Type-A in 1/2 MUX, 1/3 Bias Drive........................... 198  
Type-A in 1/3 MUX, 1/2 Bias Drive........................... 200  
Type-A in 1/3 MUX, 1/3 Bias Drive........................... 202  
Type-A in 1/4 MUX, 1/3 Bias Drive........................... 204  
Type-A/Type-B in Static Drive .................................. 195  
Type-B in 1/2 MUX, 1/2 Bias Drive........................... 197  
Type-B in 1/2 MUX, 1/3 Bias Drive........................... 199  
Type-B in 1/3 MUX, 1/2 Bias Drive........................... 201  
Type-B in 1/3 MUX, 1/3 Bias Drive........................... 203  
Type-B in 1/4 MUX, 1/3 Bias Drive........................... 205  
Timing Diagrams and Specifications  
2
I C Bus Data.............................................................421  
2
I C Bus Start/Stop Bits..............................................420  
2
I C Master Mode (7 or 10-Bit Transmission) ............246  
2
I C Master Mode (7-Bit Reception)...........................247  
2
I C Slave Mode (10-Bit Reception,  
SEN = 0, ADMSK = 01001) ..............................232  
I C Slave Mode (10-Bit Reception, SEN = 0) ...........231  
I C Slave Mode (10-Bit Reception, SEN = 1) ...........237  
I C Slave Mode (10-Bit Transmission)......................233  
2
2
Capture/Compare/PWM Requirements.................... 415  
CLKO and I/O Requirements.................................... 412  
EUSART/AUSART Synchronous Receive  
2
2
I C Slave Mode (7-Bit Reception,  
SEN = 0, ADMSK = 01011) ..............................229  
I C Slave Mode (7-Bit Reception, SEN = 0) .............228  
I C Slave Mode (7-Bit Reception, SEN = 1) .............236  
I C Slave Mode (7-Bit Transmission)........................230  
I C Slave Mode General Call Address  
Sequence (7 or 10-Bit Addressing Mode).........238  
I C Stop Condition Receive or Transmit Mode .........248  
Requirements ................................................... 424  
EUSART/AUSART Synchronous Transmission  
Requirements ................................................... 424  
Example SPI Mode Requirements (Master Mode,  
CKE = 0)........................................................... 416  
Example SPI Mode Requirements (Master Mode,  
CKE = 1)........................................................... 417  
Example SPI Mode Requirements (Slave Mode,  
CKE = 0)........................................................... 418  
Example SPI Slave Mode Requirements  
2
2
2
2
2
LCD Interrupt in Quarter Duty Cycle Drive................206  
LCD Sleep Entry/Exit When SLPEN = 1  
or CS1:CS0 = 00...............................................207  
2
MSSP I C Bus Data..................................................422  
(CKE = 1).......................................................... 419  
External Clock Requirements ................................... 410  
2
MSSP I C Bus Start/Stop Bits ..................................422  
2
PWM Output .............................................................179  
Repeated Start Condition..........................................244  
Reset, Watchdog Timer (WDT), Oscillator Start-up  
Timer (OST) and Power-up Timer (PWRT) ......413  
Send Break Character Sequence .............................269  
Slave Synchronization ..............................................217  
Slow Rise Time (MCLR Tied to VDD,  
VDD Rise > TPWRT) .............................................57  
SPI Mode (Master Mode)..........................................216  
SPI Mode (Slave Mode, CKE = 0) ............................218  
SPI Mode (Slave Mode, CKE = 1) ............................218  
Synchronous Reception (Master Mode,  
I C Bus Data Requirements (Slave Mode)............... 421  
2
I C Bus Start/Stop Bits Requirements  
(Slave Mode) .................................................... 420  
Internal RC Accuracy (INTOSC and INTRC)............ 411  
2
MSSP I C Bus Data Requirements.......................... 423  
2
MSSP I C Bus Start/Stop Bits Requirements........... 422  
PLL Clock ................................................................. 411  
Reset, Watchdog Timer, Oscillator Start-up  
Timer, Power-up Timer and Brown-out  
Reset Requirements......................................... 413  
Timer0 and Timer1 External Clock  
Requirements ................................................... 414  
Top-of-Stack Access........................................................... 67  
TSTFSZ ............................................................................ 379  
Two-Speed Start-up.................................................. 325, 334  
Two-Word Instructions  
SREN)....................................................... 272, 286  
Synchronous Transmission............................... 270, 284  
Synchronous Transmission  
(Through TXEN)........................................ 271, 285  
Example Cases........................................................... 71  
DS39933D-page 444  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
V
VDDCORE/VCAP Pin............................................................ 333  
Voltage Reference Specifications..................................... 407  
Voltage Regulator (On-Chip) ............................................ 333  
Brown-out Reset (BOR)............................................ 334  
Low-Voltage Detection (LVD) ................................... 333  
Operation in Sleep Mode .......................................... 334  
Power-up Requirements ........................................... 334  
W
Watchdog Timer (WDT) ............................................ 325, 331  
Associated Registers ................................................ 332  
Control Register........................................................ 331  
During Oscillator Failure ........................................... 335  
Programming Considerations ................................... 331  
WCOL ....................................................... 243, 244, 245, 248  
WCOL Status Flag .................................... 243, 244, 245, 248  
WWW Address.................................................................. 445  
WWW, On-Line Support ....................................................... 8  
X
XORLW............................................................................. 379  
XORWF............................................................................. 380  
2010 Microchip Technology Inc.  
DS39933D-page 445  
PIC18F87J90 FAMILY  
NOTES:  
DS39933D-page 446  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following informa-  
tion:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata, appli-  
cation notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
Customers should contact their distributor, representa-  
tive or field application engineer (FAE) for support.  
Local sales offices are also available to help custom-  
ers. A listing of sales offices and locations is included in  
the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of Micro-  
chip sales offices, distributors and factory repre-  
sentatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a spec-  
ified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change Notifi-  
cation and follow the registration instructions.  
2010 Microchip Technology Inc.  
DS39933D-page 447  
PIC18F87J90 FAMILY  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
DS39933D  
Literature Number:  
Application (optional):  
Would you like a reply?  
Y
N
PIC18F87J90 Family  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39933D-page 448  
2010 Microchip Technology Inc.  
PIC18F87J90 FAMILY  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
b)  
PIC18F87J90-I/PT 301 = Industrial temperature,  
TQFP package, QTP pattern #301.  
PIC18F87J90T-I/PT = Tape and reel, Industrial  
temperature, TQFP package.  
Device(1,2)  
PIC18F66J90, PIC18F66J90T  
PIC18F67J90, PIC18F67J90T  
PIC18F86J90, PIC18F86J90T  
PIC18F87J90, PIC18F87J90T  
Temperature Range I = -40C to +85C (Industrial)  
Package  
Pattern  
PT =TQFP (Thin Quad Flatpack)  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
Note 1:  
2:  
F
T
=
=
Standard Voltage Range  
In tape and reel  
2010 Microchip Technology Inc.  
DS39933D-page 449  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
12/30/09  
DS39933D-page 450  
2010 Microchip Technology Inc.  

相关型号:

PIC18F87J93

64/80-Pin, High-Performance Microcontrollers with LCD Driver, 12-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F87J93-I/PT

64/80-Pin, High-Performance Microcontrollers with LCD Driver, 12-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F87J93T-I/PT

64/80-Pin, High-Performance Microcontrollers with LCD Driver, 12-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F87J94

8-Bit LCD Flash Microcontroller with USB and XLP Technology
MICROCHIP

PIC18F87K22

64/80-Pin, High-Performance, 1-Mbit Enhanced Flash Microcontrollers with 12-Bit A/D and nanoWatt XLP Technology
MICROCHIP

PIC18F87K22-E/MR

64/80-Pin, High-Performance, 1-Mbit Enhanced Flash Microcontrollers with 12-Bit A/D and nanoWatt XLP Technology
MICROCHIP

PIC18F87K22-E/PT

64/80-Pin, High-Performance, 1-Mbit Enhanced Flash Microcontrollers with 12-Bit A/D and nanoWatt XLP Technology
MICROCHIP

PIC18F87K22-I/MR

64/80-Pin, High-Performance, 1-Mbit Enhanced Flash Microcontrollers with 12-Bit A/D and nanoWatt XLP Technology
MICROCHIP

PIC18F87K22-I/PT

64/80-Pin, High-Performance, 1-Mbit Enhanced Flash Microcontrollers with 12-Bit A/D and nanoWatt XLP Technology
MICROCHIP

PIC18F87K22EMRQTP

PIC18F87K22 Family Data Sheet
MICROCHIP

PIC18F87K22EMRSQTP

PIC18F87K22 Family Data Sheet
MICROCHIP

PIC18F87K22EPTQTP

PIC18F87K22 Family Data Sheet
MICROCHIP