PIC18F66J10T-I/PTSQTP [MICROCHIP]

64/80-Pin, High-Performance 1-Mbit Flash Microcontrollers with nanoWatt Technology; 八十〇分之六十四引脚,高性能的1兆位闪存微控制器采用纳瓦技术
PIC18F66J10T-I/PTSQTP
型号: PIC18F66J10T-I/PTSQTP
厂家: MICROCHIP    MICROCHIP
描述:

64/80-Pin, High-Performance 1-Mbit Flash Microcontrollers with nanoWatt Technology
八十〇分之六十四引脚,高性能的1兆位闪存微控制器采用纳瓦技术

闪存 微控制器
文件: 总410页 (文件大小:7111K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18F87J10 Family  
Data Sheet  
64/80-Pin, High-Performance  
1-Mbit Flash Microcontrollers  
with nanoWatt Technology  
© 2009 Microchip Technology Inc.  
DS39663F  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
32  
PICtail, PIC logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS39663F-page ii  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
64/80-Pin, High-Performance, 1-Mbit Flash Microcontrollers  
with nanoWatt Technology  
Special Microcontroller Features:  
Peripheral Highlights:  
• Operating Voltage Range: 2.0V to 3.6V  
• 5.5V Tolerant Input (digital pins only)  
• On-Chip 2.5V Regulator  
• High-Current Sink/Source 25 mA/25 mA  
(PORTB and PORTC)  
• Four Programmable External Interrupts  
• Four Input Change Interrupts  
• Low-Power, High-Speed CMOS Flash Technology  
• C Compiler Optimized Architecture:  
• Two Capture/Compare/PWM (CCP) modules  
• Three Enhanced Capture/Compare/PWM (ECCP)  
modules:  
- Optional extended instruction set designed to  
optimize re-entrant code  
- One, two or four PWM outputs  
- Selectable polarity  
• Priority Levels for Interrupts  
• 8 x 8 Single-Cycle Hardware Multiplier  
• Extended Watchdog Timer (WDT):  
- Programmable period from 4 ms to 131s  
- Programmable dead time  
- Auto-shutdown and auto-restart  
• Two Master Synchronous Serial Port (MSSP)  
modules Supporting 3-Wire SPI (all 4 modes) and  
I2C™ Master and Slave modes  
• Single-Supply In-Circuit Serial Programming™  
(ICSP™) via Two Pins  
• In-Circuit Debug (ICD) with Three Break points via  
Two Pins  
• Two Enhanced Addressable USART modules:  
- Supports RS-485, RS-232 and LIN/2602  
- Auto-wake-up on Start bit  
• Power-Managed modes:  
- Run: CPU on, peripherals on  
- Idle: CPU off, peripherals on  
- Sleep: CPU off, peripherals off  
• Flash Program Memory:  
- Auto-Baud Detect (ABD)  
• 10-Bit, up to 15-Channel Analog-to-Digital  
Converter module (A/D):  
- Auto-acquisition capability  
- 1000 erase/write cycle endurance typical  
- 20 year retention minimum  
- Conversion available during Sleep  
- Self-calibration feature  
- Self-write capability during normal operation  
• Dual Analog Comparators with Input Multiplexing  
Flexible Oscillator Structure:  
External Memory Bus  
(PIC18F8XJ10/8XJ15 only):  
• Two Crystal modes, up to 40 MHz  
• 4x Phase Lock Loop (PLL)  
• Address Capability of up to 2 Mbytes  
• 8-Bit or 16-Bit Interface  
• Two External Clock modes, up to 40 MHz  
• Internal 31 kHz Oscillator  
• 12-Bit, 16-Bit and 20-Bit Addressing modes  
• Secondary Oscillator using Timer1 @ 32 kHz  
• Two-Speed Oscillator Start-up  
• Fail-Safe Clock Monitor:  
- Allows for safe shutdown if peripheral clock stops  
© 2009 Microchip Technology Inc.  
DS39663F-page 1  
PIC18F87J10 FAMILY  
Program Memory  
SRAM Data  
MSSP  
SPI  
CCP/  
ECCP  
(PWM)  
10-Bit  
A/D (ch)  
Device  
Memory  
(bytes)  
I/O  
Flash # Single-Word  
(bytes) Instructions  
Master  
I C™  
2
PIC18F65J10  
PIC18F65J15  
PIC18F66J10  
PIC18F66J15  
32K  
48K  
64K  
96K  
16384  
24576  
32768  
49152  
65536  
16384  
24576  
32768  
49152  
65536  
2048  
2048  
2048  
3936  
3936  
2048  
2048  
2048  
3936  
3936  
50  
50  
50  
50  
50  
66  
66  
66  
66  
66  
11  
11  
11  
11  
11  
15  
15  
15  
15  
15  
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
2
2
2
2
2
2
2
2
2
2
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
2/3  
N
N
N
N
N
Y
Y
Y
Y
Y
PIC18F67J10 128K  
PIC18F85J10  
PIC18F85J15  
PIC18F86J10  
PIC18F86J15  
32K  
48K  
64K  
96K  
PIC18F87J10 128K  
Pin Diagrams  
64-Pin TQFP  
Pins are up to 5.5V tolerant  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RB0/INT0/FLT0  
RB1/INT1  
1
2
3
4
5
6
7
8
RE1/WR/P2C  
RE0/RD/P2D  
RG0/ECCP3/P3A  
RG1/TX2/CK2  
RG2/RX2/DT2  
RG3/CCP4/P3D  
MCLR  
RB2/INT2  
RB3/INT3  
RB4/KBI0  
RB5/KBI1  
RB6/KBI2/PGC  
VSS  
PIC18F6XJ10  
PIC18F6XJ15  
RG4/CCP5/P1D  
VSS  
9
OSC2/CLKO  
OSC1/CLKI  
VDD  
RB7/KBI3/PGD  
RC5/SDO1  
RC4/SDI1/SDA1  
RC3/SCK1/SCL1  
RC2/ECCP1/P1A  
10  
11  
12  
13  
14  
15  
16  
VDDCORE/VCAP  
RF7/SS1  
RF6/AN11  
RF5/AN10/CVREF  
RF4/AN9  
RF3/AN8  
RF2/AN7/C1OUT  
Note 1: The ECCP2/P2A pin placement depends on the setting of the CCP2MX Configuration bit.  
DS39663F-page 2  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
Pin Diagrams (Continued)  
Pins are up to 5.5V tolerant  
80-Pin TQFP  
RH2/A18  
1
RJ2/WRL  
60  
RH3/A19  
RJ3/WRH  
2
59  
RB0/INT0/FLT0  
58  
RE1/AD9/WR/P2C  
3
RB1/INT1  
RE0/AD8/RD/P2D  
57  
4
RB2/INT2  
56  
RB3/INT3/ECCP2(1)/P2A(1)  
55  
RB4/KBI0  
54  
RG2/RX2/DT2  
7
RB5/KBI1  
RG3/CCP4/P3D  
53  
8
RB6/KBI2/PGC  
52  
MCLR  
9
PIC18F8XJ10  
PIC18F8XJ15  
RG4/CCP5/P1D  
VSS  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
10  
VSS  
11  
OSC2/CLKO  
OSC1/CLKI  
VDD  
VDDCORE/VCAP  
12  
RF7/SS1  
13  
RB7/KBI3/PGD  
RC5/SDO1  
RC4/SDI1/SDA1  
RC3/SCK1/SCL1  
RC2/ECCP1/P1A  
RF6/AN11  
14  
RF5/AN10/CVREF  
15  
RF4/AN9  
16  
RF3/AN8  
17  
RF2/AN7/C1OUT  
18  
RH7/AN15/P1B(2)  
19  
RJ7/UB  
RJ6/LB  
RH6/AN14/P1C(2)  
20  
Note 1: The ECCP2/P2A pin placement depends on the setting of the CCP2MX Configuration bit and the program memory mode.  
2: P1B, P1C, P3B and P3C pin placement depends on the setting of the ECCPMX Configuration bit.  
© 2009 Microchip Technology Inc.  
DS39663F-page 3  
PIC18F87J10 FAMILY  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 5  
2.0 Guidelines for Getting Started with PIC18FJ Microcontrollers ................................................................................................... 27  
3.0 Oscillator Configurations ............................................................................................................................................................ 31  
4.0 Power-Managed Modes ............................................................................................................................................................. 39  
5.0 Reset.......................................................................................................................................................................................... 47  
6.0 Memory Organization................................................................................................................................................................. 59  
7.0 Flash Program Memory.............................................................................................................................................................. 85  
8.0 External Memory Bus................................................................................................................................................................. 95  
9.0 8 x 8 Hardware Multiplier.......................................................................................................................................................... 107  
10.0 Interrupts .................................................................................................................................................................................. 109  
11.0 I/O Ports ................................................................................................................................................................................... 125  
12.0 Timer0 Module ......................................................................................................................................................................... 151  
13.0 Timer1 Module ......................................................................................................................................................................... 155  
14.0 Timer2 Module ......................................................................................................................................................................... 161  
15.0 Timer3 Module ......................................................................................................................................................................... 163  
16.0 Timer4 Module ......................................................................................................................................................................... 167  
17.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 169  
18.0 Enhanced Capture/Compare/PWM (ECCP) Module................................................................................................................ 177  
19.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 193  
20.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)............................................................... 239  
21.0 10-Bit Analog-to-Digital Converter (A/D) Module ..................................................................................................................... 261  
22.0 Comparator Module.................................................................................................................................................................. 271  
23.0 Comparator Voltage Reference Module................................................................................................................................... 277  
24.0 Special Features of the CPU.................................................................................................................................................... 281  
25.0 Instruction Set Summary.......................................................................................................................................................... 293  
26.0 Development Support............................................................................................................................................................... 343  
27.0 Electrical Characteristics .......................................................................................................................................................... 347  
28.0 Packaging Information.............................................................................................................................................................. 385  
Appendix A: Migration Between High-End Device Families............................................................................................................... 391  
Appendix B: Revision History............................................................................................................................................................. 393  
Index .................................................................................................................................................................................................. 395  
The Microchip Web Site..................................................................................................................................................................... 405  
Customer Change Notification Service .............................................................................................................................................. 405  
Customer Support.............................................................................................................................................................................. 405  
Reader Response .............................................................................................................................................................................. 406  
Product Identification System............................................................................................................................................................. 407  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS39663F-page 4  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
The internal oscillator block provides a stable reference  
source that gives the family additional features for  
robust operation:  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the following devices:  
Fail-Safe Clock Monitor: This option constantly  
monitors the main clock source against a reference  
signal provided by the internal oscillator. If a clock  
failure occurs, the controller is switched to the  
internal oscillator, allowing for continued low-speed  
operation or a safe application shutdown.  
• PIC18F65J10  
• PIC18F65J15  
• PIC18F66J10  
• PIC18F66J15  
• PIC18F67J10  
• PIC18F85J10  
• PIC18F85J15  
• PIC18F86J10  
• PIC18F86J15  
• PIC18F87J10  
Two-Speed Start-up: This option allows the  
internal oscillator to serve as the clock source  
from Power-on Reset, or wake-up from Sleep  
mode, until the primary clock source is available.  
This family introduces a new line of low-voltage devices  
with the main traditional advantage of all PIC18 micro-  
controllers – namely, high computational performance  
and a rich feature set – at an extremely competitive  
price point. These features make the PIC18F87J10  
family a logical choice for many high-performance  
applications where cost is a primary consideration.  
1.1.3  
EXPANDED MEMORY  
The PIC18F87J10 family provides ample room for  
application code, from 32 Kbytes to 128 Kbytes of code  
space. The Flash cells for program memory are rated  
to last up to 100 erase/write cycles. The PIC18F87J10  
family also provides plenty of room for dynamic  
application data, with up to 3936 bytes of data RAM.  
1.1  
Core Features  
1.1.1  
nanoWatt TECHNOLOGY  
1.1.4  
EXTERNAL MEMORY BUS  
All of the devices in the PIC18F87J10 family incorporate  
a range of features that can significantly reduce power  
consumption during operation. Key items include:  
In the unlikely event that 128 Kbytes of memory are  
inadequate for an application, the 80-pin members of  
the PIC18F87J10 family also implement an external  
memory bus. This allows the controller’s internal  
program counter to address a memory space of up to  
2 Mbytes, permitting a level of data access that few  
8-bit devices can claim. This allows additional memory  
options, including:  
Alternate Run Modes: By clocking the controller  
from the Timer1 source or the internal RC oscilla-  
tor, power consumption during code execution  
can be reduced by as much as 90%.  
Multiple Idle Modes: The controller can also run  
with its CPU core disabled but the peripherals still  
active. In these states, power consumption can be  
reduced even further, to as little as 4% of normal  
operation requirements.  
• Using combinations of on-chip and external  
memory up to the 2-Mbyte limit  
• Using external Flash memory for reprogrammable  
application code or large data tables  
On-the-Fly Mode Switching: The  
power-managed modes are invoked by user code  
during operation, allowing the user to incorporate  
power-saving ideas into their application’s  
software design.  
• Using external RAM devices for storing large  
amounts of variable data  
1.1.5  
EXTENDED INSTRUCTION SET  
The PIC18F87J10 family implements the optional  
extension to the PIC18 instruction set, adding 8 new  
instructions and an Indexed Addressing mode.  
Enabled as a device configuration option, the extension  
has been specifically designed to optimize re-entrant  
application code originally developed in high-level  
languages, such as ‘C’.  
1.1.2  
OSCILLATOR OPTIONS AND  
FEATURES  
All of the devices in the PIC18F87J10 family offer five  
different oscillator options, allowing users a range of  
choices in developing application hardware. These  
include:  
• Two Crystal modes, using crystals or ceramic  
resonators.  
• Two External Clock modes, offering the option of  
a divide-by-4 clock output.  
• A Phase Lock Loop (PLL) frequency multiplier,  
available to the external oscillator modes which  
allows clock speeds of up to 40 MHz.  
• An internal RC oscillator with a fixed 31-kHz  
output which provides an extremely low-power  
option for timing-insensitive applications.  
© 2009 Microchip Technology Inc.  
DS39663F-page 5  
PIC18F87J10 FAMILY  
1.1.6  
EASY MIGRATION  
1.3  
Details on Individual Family  
Members  
Regardless of the memory size, all devices share the  
same rich set of peripherals, allowing for a smooth  
migration path as applications grow and evolve.  
Devices in the PIC18F87J10 family are available in  
64-pin and 80-pin packages. Block diagrams for the  
two groups are shown in Figure 1-1 and Figure 1-2.  
The consistent pinout scheme used throughout the  
entire family also aids in migrating to the next larger  
device. This is true when moving between the 64-pin  
members, between the 80-pin members, or even  
jumping from 64-pin to 80-pin devices.  
The devices are differentiated from each other in four  
ways:  
1. Flash program memory (six sizes, ranging from  
32 Kbytes for PIC18FX5J10 devices to  
128 Kbytes for PIC18FX7J10).  
The PIC18F87J10 family is also pin compatible with  
other PIC18 families, such as the PIC18F8720 and  
PIC18F8722. This allows a new dimension to the  
evolution of applications, allowing developers to select  
different price points within Microchip’s PIC18 portfolio,  
while maintaining the same feature set.  
2. Data  
RAM  
(2048  
bytes  
for  
PIC18FX5J10/X5J15/X6J10 devices, 3936  
bytes for PIC18FX6J15/X7J10 devices).  
3. A/D channels (11 for 64-pin devices, 15 for  
80-pin devices).  
4. I/O ports (7 bidirectional ports on 64-pin devices,  
9 bidirectional ports on 80-pin devices).  
1.2  
Other Special Features  
Communications: The PIC18F87J10 family  
incorporates a range of serial communication  
peripherals, including 2 independent Enhanced  
USARTs and 2 Master SSP modules, capable of  
both SPI and I2C™ (Master and Slave) modes of  
operation. In addition, one of the general purpose  
I/O ports can be reconfigured as an 8-bit Parallel  
Slave Port for direct processor-to-processor  
communications.  
All other features for devices in this family are identical.  
These are summarized in Table 1-1 and Table 1-2.  
The pinouts for all devices are listed in Table 1-3 and  
Table 1-4.  
CCP Modules: All devices in the family incorporate  
two Capture/Compare/PWM (CCP) modules and  
three Enhanced CCP modules to maximize  
flexibility in control applications. Up to four different  
time bases may be used to perform several  
different operations at once. Each of the three  
ECCPs offers up to four PWM outputs, allowing for  
a total of 12 PWMs. The ECCPs also offer many  
beneficial features, including polarity selection,  
programmable dead time, auto-shutdown and  
restart and Half-Bridge and Full-Bridge Output  
modes.  
10-Bit A/D Converter: This module incorporates  
programmable acquisition time, allowing for a  
channel to be selected and a conversion to be  
initiated without waiting for a sampling period and  
thus, reducing code overhead.  
Extended Watchdog Timer (WDT): This  
enhanced version incorporates a 16-bit prescaler,  
allowing an extended time-out range that is stable  
across operating voltage and temperature. See  
Section 27.0 “Electrical Characteristics” for  
time-out periods.  
DS39663F-page 6  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 1-1:  
DEVICE FEATURES FOR THE PIC18F87J10 FAMILY (64-PIN DEVICES)  
Features  
PIC18F65J10 PIC18F65J15 PIC18F66J10 PIC18F66J15 PIC18F67J10  
Operating Frequency  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Interrupt Sources  
DC – 40 MHz DC – 40 MHz DC – 40 MHz DC – 40 MHz DC – 40 MHz  
32K  
16384  
2048  
48K  
24576  
2048  
64K  
96K  
49152  
3936  
128K  
65536  
3936  
32768  
2048  
27  
I/O Ports  
Ports A, B, C, D, E, F, G  
Timers  
5
2
3
Capture/Compare/PWM Modules  
Enhanced Capture/  
Compare/PWM Modules  
Serial Communications  
MSSP (2), Enhanced USART (2)  
Parallel Communications (PSP)  
10-Bit Analog-to-Digital Module  
Resets (and Delays)  
Yes  
11 Input Channels  
POR, BOR, RESETInstruction, Stack Full, Stack Underflow, MCLR, WDT  
(PWRT, OST)  
Instruction Set  
Packages  
75 Instructions, 83 with Extended Instruction Set enabled  
64-pin TQFP  
TABLE 1-2:  
DEVICE FEATURES FOR THE PIC18F87J10 FAMILY (80-PIN DEVICES)  
Features  
PIC18F85J10 PIC18F85J15 PIC18F86J10 PIC18F86J15 PIC18F87J10  
Operating Frequency  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Interrupt Sources  
DC – 40 MHz DC – 40 MHz DC – 40 MHz DC – 40 MHz DC – 40 MHz  
32K  
16384  
2048  
48K  
24576  
2048  
64K  
32768  
2048  
27  
96K  
49152  
3936  
128K  
65536  
3936  
I/O Ports  
Ports A, B, C, D, E, F, G, H, J  
Timers  
5
2
3
Capture/Compare/PWM Modules  
Enhanced Capture/  
Compare/PWM Modules  
Serial Communications  
MSSP (2), Enhanced USART (2)  
Yes  
Parallel Communications (PSP)  
10-Bit Analog-to-Digital Module  
Resets (and Delays)  
15 Input Channels  
POR, BOR, RESETInstruction, Stack Full, Stack Underflow, MCLR, WDT  
(PWRT, OST)  
Instruction Set  
Packages  
75 Instructions, 83 with Extended Instruction Set enabled  
80-pin TQFP  
© 2009 Microchip Technology Inc.  
DS39663F-page 7  
PIC18F87J10 FAMILY  
FIGURE 1-1:  
PIC18F6XJ10/6XJ15 (64-PIN) BLOCK DIAGRAM  
Data Bus<8>  
Table Pointer<21>  
inc/dec logic  
21  
PORTA  
Data Latch  
8
RA0:RA5(1)  
8
Data Memory  
(2.0, 3.9  
PCLATU PCLATH  
Kbytes)  
Address Latch  
20  
PCU PCH PCL  
Program Counter  
12  
PORTB  
Data Address<12>  
RB0:RB7(1)  
31 Level Stack  
STKPTR  
4
BSR  
12  
FSR0  
FSR1  
FSR2  
4
Address Latch  
Access  
Bank  
Program Memory  
(96 Kbytes)  
12  
Data Latch  
PORTC  
RC0:RC7(1)  
inc/dec  
logic  
8
Table Latch  
Address  
Decode  
ROM Latch  
IR  
Instruction Bus <16>  
PORTD  
RD0:RD7(1)  
8
State Machine  
Control Signals  
Instruction  
Decode and  
Control  
PRODH PRODL  
8 x 8 Multiply  
PORTE  
RE0:RE7(1)  
3
8
Power-up  
Timer  
Timing  
Generation  
OSC2/CLKO  
OSC1/CLKI  
BITOP  
8
W
8
Oscillator  
Start-up Timer  
8
INTRC  
Oscillator  
PORTF  
8
Power-on  
Reset  
8
RF1:RF7(1)  
Precision  
Band Gap  
Reference  
ALU<8>  
8
Watchdog  
Timer  
ENVREG  
Brown-out  
Reset(2)  
Voltage  
Regulator  
PORTG  
RG0:RG4(1)  
VDDCORE/VCAP  
VDD,VSS  
MCLR  
ADC  
10-Bit  
Timer0  
ECCP3  
Timer1  
CCP4  
Timer2  
CCP5  
Timer3  
Comparators  
Timer4  
ECCP1  
ECCP2  
MSSP1  
MSSP2  
EUSART1  
EUSART2  
Note 1: See Table 1-3 for I/O port pin descriptions.  
2: BOR functionality is provided when the on-board voltage regulator is enabled.  
DS39663F-page 8  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 1-2:  
PIC18F8XJ10/8XJ15 (80-PIN) BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
Data Latch  
Table Pointer<21>  
inc/dec logic  
8
RA0:RA5(1)  
8
Data Memory  
(2.0, 3.9  
Kbytes)  
PCLATH  
PCLATU  
Address Latch  
21  
20  
PORTB  
PCU PCH PCL  
Program Counter  
RB0:RB7(1)  
12  
Data Address<12>  
31 Level Stack  
STKPTR  
4
BSR  
4
12  
FSR0  
FSR1  
FSR2  
Address Latch  
PORTC  
Access  
Bank  
Program Memory  
(128 Kbytes)  
RC0:RC7(1)  
12  
Data Latch  
inc/dec  
logic  
8
PORTD  
Table Latch  
ROM Latch  
RD0:RD7(1)  
Address  
Decode  
Instruction Bus <16>  
PORTE  
IR  
RE0:RE7(1)  
AD15:AD0, A19:A16  
(Multiplexed with PORTD,  
PORTE and PORTH)  
8
PORTF  
PRODH PRODL  
8 x 8 Multiply  
Instruction  
Decode &  
Control  
State Machine  
Control Signals  
RF1:RF7(1)  
3
8
W
BITOP  
8
PORTG  
8
Power-up  
Timer  
8
Timing  
Generation  
OSC2/CLKO  
OSC1/CLKI  
RG0:RG4(1)  
Oscillator  
Start-up Timer  
8
8
INTRC  
Oscillator  
ALU<8>  
Power-on  
Reset  
PORTH  
8
RH0:RH7(1)  
Precision  
Band Gap  
Reference  
Watchdog  
Timer  
ENVREG  
Brown-out  
Reset(2)  
Voltage  
Regulator  
PORTJ  
RJ0:RJ7(1)  
VDDCORE/VCAP  
VDD,VSS  
Timer1  
MCLR  
ADC  
10-Bit  
Timer0  
Timer2  
Timer3  
Comparators  
Timer4  
ECCP1  
ECCP2  
ECCP3  
CCP4  
CCP5  
MSSP1  
MSSP2  
EUSART1  
EUSART2  
Note 1: See Table 1-4 for I/O port pin descriptions.  
2: BOR functionality is provided when the on-board voltage regulator is enabled.  
© 2009 Microchip Technology Inc.  
DS39663F-page 9  
PIC18F87J10 FAMILY  
TABLE 1-3:  
Pin Name  
PIC18F6XJ10/6XJ15 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin  
Buffer  
Type  
Description  
Type  
TQFP  
MCLR  
7
I
ST  
Master Clear (Reset) input. This pin is an active-low Reset  
to the device.  
OSC1/CLKI  
OSC1  
39  
40  
Oscillator crystal or external clock input.  
Oscillator crystal input or external clock source input.  
ST buffer when configured in RC mode; CMOS  
otherwise.  
I
I
ST  
CLKI  
CMOS  
External clock source input. Always associated  
with pin function OSC1. (See related OSC1/CLKI,  
OSC2/CLKO pins.)  
OSC2/CLKO  
OSC2  
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKO which has  
1/4 the frequency of OSC1 and denotes the  
instruction cycle rate.  
CLKO  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
24  
23  
22  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D reference voltage (low) input.  
RA3/AN3/VREF+  
RA3  
21  
I/O  
TTL  
Digital I/O.  
AN3  
VREF+  
I
I
Analog  
Analog  
Analog input 3.  
A/D reference voltage (high) input.  
RA4/T0CKI  
RA4  
28  
27  
I/O  
I
ST  
ST  
Digital I/O.  
Timer0 external clock input.  
T0CKI  
RA5/AN4  
RA5  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 4.  
AN4  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Default assignment for ECCP2/P2A when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared.  
DS39663F-page 10  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 1-3:  
PIC18F6XJ10/6XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/INT0/FLT0  
RB0  
48  
I/O  
I
I
TTL  
ST  
ST  
Digital I/O.  
External interrupt 0.  
ECCP1/2/3 Fault input.  
INT0  
FLT0  
RB1/INT1  
RB1  
47  
46  
45  
44  
43  
42  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 1.  
INT1  
RB2/INT2  
RB2  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 2.  
INT2  
RB3/INT3  
RB3  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 3.  
INT3  
RB4/KBI0  
RB4  
I/O  
I
TTL  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
KBI0  
RB5/KBI1  
RB5  
I/O  
I
TTL  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
KBI1  
RB6/KBI2/PGC  
RB6  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP™ programming clock  
pin.  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
37  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP™ programming data pin.  
KBI3  
PGD  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Default assignment for ECCP2/P2A when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared.  
© 2009 Microchip Technology Inc.  
DS39663F-page 11  
PIC18F87J10 FAMILY  
TABLE 1-3:  
PIC18F6XJ10/6XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T13CKI  
RC0  
30  
29  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T13CKI  
RC1/T1OSI/ECCP2/P2A  
RC1  
I/O  
I
I/O  
O
ST  
CMOS  
ST  
Digital I/O.  
Timer1 oscillator input.  
Capture 2 input/Compare 2 output/PWM 2 output.  
ECCP2 PWM output A.  
T1OSI  
ECCP2(1)  
P2A(1)  
RC2/ECCP1/P1A  
RC2  
33  
34  
35  
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
ECCP1  
P1A  
Capture 1 input/Compare 1 output/PWM 1 output.  
ECCP1 PWM output A.  
RC3/SCK1/SCL1  
RC3  
I/O  
I/O  
I/O  
ST  
ST  
Digital I/O.  
SCK1  
SCL1  
Synchronous serial clock input/output for SPI mode.  
I2C/SMB  
Synchronous serial clock input/output for I2C™ mode.  
RC4/SDI1/SDA1  
RC4  
I/O  
I
I/O  
ST  
ST  
Digital I/O.  
SPI data in.  
I2C data I/O.  
SDI1  
SDA1  
I2C/SMB  
RC5/SDO1  
RC5  
36  
31  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO1  
RC6/TX1/CK1  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX1  
CK1  
EUSART1 asynchronous transmit.  
EUSART1 synchronous clock (see related RX1/DT1).  
RC7/RX1/DT1  
RC7  
32  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX1  
DT1  
EUSART1 asynchronous receive.  
EUSART1 synchronous data (see related TX1/CK1).  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Default assignment for ECCP2/P2A when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared.  
DS39663F-page 12  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 1-3:  
PIC18F6XJ10/6XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTD is a bidirectional I/O port.  
RD0/PSP0  
RD0  
58  
55  
54  
53  
52  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP0  
RD1/PSP1  
RD1  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP1  
RD2/PSP2  
RD2  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP2  
RD3/PSP3  
RD3  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP3  
RD4/PSP4/SDO2  
RD4  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
SPI data out.  
PSP4  
SDO2  
RD5/PSP5/SDI2/SDA2  
51  
50  
49  
RD5  
I/O  
I/O  
I
ST  
TTL  
Digital I/O.  
PSP5  
SDI2  
SDA2  
Parallel Slave Port data.  
SPI data in.  
ST  
I/O  
I2C/SMB  
I2C™ data I/O.  
RD6/PSP6/SCK2/SCL2  
RD6  
I/O  
I/O  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP6  
SCK2  
SCL2  
ST  
Synchronous serial clock input/output for SPI mode.  
I2C/SMB  
Synchronous serial clock input/output for I2C mode.  
RD7/PSP7/SS2  
RD7  
I/O  
I/O  
I
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
SPI slave select input.  
PSP7  
SS2  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Default assignment for ECCP2/P2A when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared.  
© 2009 Microchip Technology Inc.  
DS39663F-page 13  
PIC18F87J10 FAMILY  
TABLE 1-3:  
PIC18F6XJ10/6XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTE is a bidirectional I/O port.  
RE0/RD/P2D  
RE0  
2
1
I/O  
I
O
ST  
TTL  
Digital I/O.  
Read control for Parallel Slave Port.  
ECCP2 PWM output D.  
RD  
P2D  
RE1/WR/P2C  
RE1  
I/O  
I
O
ST  
TTL  
Digital I/O.  
Write control for Parallel Slave Port.  
ECCP2 PWM output C.  
WR  
P2C  
RE2/CS/P2B  
RE2  
64  
I/O  
I
O
ST  
TTL  
Digital I/O.  
Chip select control for Parallel Slave Port.  
ECCP2 PWM output B.  
CS  
P2B  
RE3/P3C  
RE3  
63  
62  
61  
60  
59  
I/O  
O
ST  
Digital I/O.  
ECCP3 PWM output C.  
P3C  
RE4/P3B  
RE4  
I/O  
O
ST  
Digital I/O.  
ECCP3 PWM output B.  
P3B  
RE5/P1C  
RE5  
I/O  
O
ST  
Digital I/O.  
ECCP1 PWM output C.  
P1C  
RE6/P1B  
RE6  
I/O  
O
ST  
Digital I/O.  
ECCP1 PWM output B.  
P1B  
RE7/ECCP2/P2A  
RE7  
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
ECCP2(2)  
P2A(2)  
Capture 2 input/Compare 2 output/PWM 2 output.  
ECCP2 PWM output A.  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Default assignment for ECCP2/P2A when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared.  
DS39663F-page 14  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 1-3:  
PIC18F6XJ10/6XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTF is a bidirectional I/O port.  
RF1/AN6/C2OUT  
RF1  
17  
16  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 6.  
Comparator 2 output.  
AN6  
C2OUT  
RF2/AN7/C1OUT  
RF2  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 7.  
Comparator 1 output.  
AN7  
C1OUT  
RF3/AN8  
RF3  
15  
14  
13  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 8.  
AN8  
RF4/AN9  
RF4  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 9.  
AN9  
RF5/AN10/CVREF  
RF5  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 10.  
Comparator reference voltage output.  
AN10  
CVREF  
RF6/AN11  
RF6  
12  
11  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 11.  
AN11  
RF7/SS1  
RF7  
I/O  
I
ST  
TTL  
Digital I/O.  
SPI slave select input.  
SS1  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Default assignment for ECCP2/P2A when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared.  
© 2009 Microchip Technology Inc.  
DS39663F-page 15  
PIC18F87J10 FAMILY  
TABLE 1-3:  
PIC18F6XJ10/6XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
TQFP  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTG is a bidirectional I/O port.  
RG0/ECCP3/P3A  
RG0  
3
4
5
6
8
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
ECCP3  
P3A  
Capture 3 input/Compare 3 output/PWM 3 output.  
ECCP3 PWM output A.  
RG1/TX2/CK2  
RG1  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX2  
CK2  
EUSART2 asynchronous transmit.  
EUSART2 synchronous clock (see related RX2/DT2).  
RG2/RX2/DT2  
RG2  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX2  
DT2  
EUSART2 asynchronous receive.  
EUSART2 synchronous data (see related TX2/CK2).  
RG3/CCP4/P3D  
RG3  
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
CCP4  
P3D  
Capture 4 input/Compare 4 output/PWM 4 output.  
ECCP3 PWM output D.  
RG4/CCP5/P1D  
RG4  
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
CCP5  
P1D  
Capture 5 input/Compare 5 output/PWM 5 output.  
ECCP1 PWM output D.  
VSS  
9, 25, 41, 56  
P
P
P
P
I
ST  
Ground reference for logic and I/O pins.  
Positive supply for peripheral digital logic and I/O pins.  
Ground reference for analog modules.  
Positive supply for analog modules.  
VDD  
26, 38, 57  
AVSS  
AVDD  
ENVREG  
20  
19  
18  
10  
Enable for on-chip voltage regulator.  
VDDCORE/VCAP  
VDDCORE  
Core logic power or external filter capacitor connection.  
Positive supply for microcontroller core logic  
(regulator disabled).  
P
P
VCAP  
External filter capacitor connection (regulator enabled).  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Default assignment for ECCP2/P2A when Configuration bit, CCP2MX, is set.  
2: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared.  
DS39663F-page 16  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 1-4:  
PIC18F8XJ10/8XJ15 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
TQFP  
MCLR  
9
I
ST  
Master Clear (Reset) input. This pin is an active-low Reset to  
the device.  
OSC1/CLKI  
OSC1  
49  
50  
Oscillator crystal or external clock input.  
Oscillator crystal input or external clock source input.  
ST buffer when configured in RC mode; CMOS  
otherwise.  
I
I
ST  
CLKI  
CMOS  
External clock source input. Always associated with  
pin function OSC1. (See related OSC1/CLKI,  
OSC2/CLKO pins.)  
OSC2/CLKO  
OSC2  
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKO which has  
1/4 the frequency of OSC1 and denotes the  
instruction cycle rate.  
CLKO  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
30  
29  
28  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D reference voltage (low) input.  
RA3/AN3/VREF+  
RA3  
27  
I/O  
TTL  
Digital I/O.  
AN3  
VREF+  
I
I
Analog  
Analog  
Analog input 3.  
A/D reference voltage (high) input.  
RA4/T0CKI  
RA4  
34  
33  
I/O  
I
ST  
ST  
Digital I/O.  
Timer0 external clock input.  
T0CKI  
RA5/AN4  
RA5  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 4.  
AN4  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).  
2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).  
3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).  
4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).  
5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).  
© 2009 Microchip Technology Inc.  
DS39663F-page 17  
PIC18F87J10 FAMILY  
TABLE 1-4:  
PIC18F8XJ10/8XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
TQFP  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/INT0/FLT0  
RB0  
58  
I/O  
I
I
TTL  
ST  
ST  
Digital I/O.  
External interrupt 0.  
ECCP1/2/3 Fault input.  
INT0  
FLT0  
RB1/INT1  
RB1  
57  
56  
55  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 1.  
INT1  
RB2/INT2  
RB2  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 2.  
INT2  
RB3/INT3/ECCP2/P2A  
RB3  
INT3  
I/O  
I
I/O  
O
TTL  
ST  
ST  
Digital I/O.  
External interrupt 3.  
Capture 2 input/Compare 2 output/PWM 2 output.  
ECCP2 PWM output A.  
(1)  
ECCP2  
(1)  
P2A  
RB4/KBI0  
RB4  
54  
53  
52  
I/O  
I
TTL  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
KBI0  
RB5/KBI1  
RB5  
I/O  
I
TTL  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
KBI1  
RB6/KBI2/PGC  
RB6  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP™ programming clock pin.  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
47  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP™ programming data pin.  
KBI3  
PGD  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).  
2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).  
3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).  
4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).  
5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).  
DS39663F-page 18  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 1-4:  
PIC18F8XJ10/8XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTC is a bidirectional I/O port.  
TQFP  
RC0/T1OSO/T13CKI  
RC0  
36  
35  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T13CKI  
RC1/T1OSI/ECCP2/P2A  
RC1  
T1OSI  
I/O  
I
I/O  
O
ST  
CMOS  
ST  
Digital I/O.  
Timer1 oscillator input.  
Capture 2 input/Compare 2 output/PWM 2 output.  
ECCP2 PWM output A.  
(2)  
ECCP2  
(2)  
P2A  
RC2/ECCP1/P1A  
RC2  
43  
44  
45  
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
ECCP1  
P1A  
Capture 1 input/Compare 1 output/PWM 1 output.  
ECCP1 PWM output A.  
RC3/SCK1/SCL1  
RC3  
I/O  
I/O  
ST  
ST  
Digital I/O.  
SCK1  
SCL1  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I C™ mode.  
I/O I2C/SMB  
2
RC4/SDI1/SDA1  
RC4  
I/O  
I
ST  
ST  
Digital I/O.  
SDI1  
SDA1  
SPI data in.  
I/O I2C/SMB  
I C data I/O.  
2
RC5/SDO1  
RC5  
46  
37  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO1  
RC6/TX1/CK1  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX1  
CK1  
EUSART1 asynchronous transmit.  
EUSART1 synchronous clock (see related RX1/DT1).  
RC7/RX1/DT1  
RC7  
38  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX1  
DT1  
EUSART1 asynchronous receive.  
EUSART1 synchronous data (see related TX1/CK1).  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).  
2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).  
3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).  
4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).  
5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).  
© 2009 Microchip Technology Inc.  
DS39663F-page 19  
PIC18F87J10 FAMILY  
TABLE 1-4:  
PIC18F8XJ10/8XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTD is a bidirectional I/O port.  
TQFP  
RD0/AD0/PSP0  
RD0  
72  
69  
68  
67  
66  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 0.  
Parallel Slave Port data.  
AD0  
PSP0  
RD1/AD1/PSP1  
RD1  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 1.  
Parallel Slave Port data.  
AD1  
PSP1  
RD2/AD2/PSP2  
RD2  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 2.  
Parallel Slave Port data.  
AD2  
PSP2  
RD3/AD3/PSP3  
RD3  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 3.  
Parallel Slave Port data.  
AD3  
PSP3  
RD4/AD4/PSP4/SDO2  
RD4  
AD4  
PSP4  
SDO2  
I/O  
I/O  
I/O  
O
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 4.  
Parallel Slave Port data.  
SPI data out.  
RD5/AD5/PSP5/  
SDI2/SDA2  
RD5  
65  
64  
63  
I/O  
I/O  
I/O  
I
ST  
TTL  
TTL  
ST  
Digital I/O.  
AD5  
PSP5  
SDI2  
SDA2  
External memory address/data 5.  
Parallel Slave Port data.  
SPI data in.  
I/O I2C/SMB  
I C™ data I/O.  
2
RD6/AD6/PSP6/  
SCK2/SCL2  
RD6  
I/O  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
ST  
Digital I/O.  
External memory address/data 6.  
Parallel Slave Port data.  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I C mode.  
AD6  
PSP6  
SCK2  
SCL2  
I/O I2C/SMB  
2
RD7/AD7/PSP7/SS2  
RD7  
AD7  
PSP7  
SS2  
I/O  
I/O  
I/O  
I
ST  
Digital I/O.  
TTL  
TTL  
TTL  
External memory address/data 7.  
Parallel Slave Port data.  
SPI slave select input.  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).  
2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).  
3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).  
4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).  
5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).  
DS39663F-page 20  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 1-4:  
PIC18F8XJ10/8XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTE is a bidirectional I/O port.  
TQFP  
RE0/AD8/RD/P2D  
4
3
RE0  
AD8  
RD  
I/O  
I/O  
I
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 8.  
Read control for Parallel Slave Port.  
ECCP2 PWM output D.  
P2D  
O
RE1/AD9/WR/P2C  
RE1  
AD9  
WR  
I/O  
I/O  
I
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 9.  
Write control for Parallel Slave Port.  
ECCP2 PWM output C.  
P2C  
O
RE2/AD10/CS/P2B  
78  
RE2  
AD10  
CS  
I/O  
I/O  
I
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 10.  
Chip select control for Parallel Slave Port.  
ECCP2 PWM output B.  
P2B  
O
RE3/AD11/P3C  
RE3  
77  
76  
75  
74  
73  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address/data 11.  
ECCP3 PWM output C.  
AD11  
(3)  
P3C  
RE4/AD12/P3B  
RE4  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address/data 12.  
ECCP3 PWM output B.  
AD12  
(3)  
P3B  
RE5/AD13/P1C  
RE5  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address/data 13.  
ECCP1 PWM output C.  
AD13  
(3)  
P1C  
RE6/AD14/P1B  
RE6  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address/data 14.  
ECCP1 PWM output B.  
AD14  
(3)  
P1B  
RE7/AD15/ECCP2/P2A  
RE7  
AD15  
I/O  
I/O  
I/O  
O
ST  
TTL  
ST  
Digital I/O.  
External memory address/data 15.  
Capture 2 input/Compare 2 output/PWM 2 output.  
ECCP2 PWM output A.  
(4)  
ECCP2  
(4)  
P2A  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).  
2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).  
3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).  
4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).  
5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).  
© 2009 Microchip Technology Inc.  
DS39663F-page 21  
PIC18F87J10 FAMILY  
TABLE 1-4:  
PIC18F8XJ10/8XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTF is a bidirectional I/O port.  
TQFP  
RF1/AN6/C2OUT  
RF1  
23  
18  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 6.  
Comparator 2 output.  
AN6  
C2OUT  
RF2/AN7/C1OUT  
RF2  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 7.  
Comparator 1 output.  
AN7  
C1OUT  
RF3/AN8  
RF3  
17  
16  
15  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 8.  
AN8  
RF4/AN9  
RF4  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 9.  
AN9  
RF5/AN10/CVREF  
RF5  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 10.  
Comparator reference voltage output.  
AN10  
CVREF  
RF6/AN11  
RF6  
14  
13  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 11.  
AN11  
RF7/SS1  
RF7  
I/O  
I
ST  
TTL  
Digital I/O.  
SPI slave select input.  
SS1  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).  
2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).  
3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).  
4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).  
5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).  
DS39663F-page 22  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 1-4:  
PIC18F8XJ10/8XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTG is a bidirectional I/O port.  
TQFP  
RG0/ECCP3/P3A  
RG0  
5
6
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
ECCP3  
P3A  
Capture 3 input/Compare 3 output/PWM 3 output.  
ECCP3 PWM output A.  
RG1/TX2/CK2  
RG1  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX2  
CK2  
EUSART2 asynchronous transmit.  
EUSART2 synchronous clock (see related RX2/DT2).  
RG2/RX2/DT2  
RG2  
7
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX2  
DT2  
EUSART2 asynchronous receive.  
EUSART2 synchronous data (see related TX2/CK2).  
RG3/CCP4/P3D  
RG3  
8
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
CCP4  
P3D  
Capture 4 input/Compare 4 output/PWM 4 output.  
ECCP3 PWM output D.  
RG4/CCP5/P1D  
RG4  
10  
I/O  
I/O  
O
ST  
ST  
Digital I/O.  
CCP5  
P1D  
Capture 5 input/Compare 5 output/PWM 5 output.  
ECCP1 PWM output D.  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).  
2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).  
3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).  
4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).  
5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).  
© 2009 Microchip Technology Inc.  
DS39663F-page 23  
PIC18F87J10 FAMILY  
TABLE 1-4:  
PIC18F8XJ10/8XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTH is a bidirectional I/O port.  
TQFP  
RH0/A16  
RH0  
79  
80  
1
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 16.  
A16  
RH1/A17  
RH1  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 17.  
A17  
RH2/A18  
RH2  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 18.  
A18  
RH3/A19  
RH3  
2
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 19.  
A19  
RH4/AN12/P3C  
RH4  
22  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 12.  
ECCP3 PWM output C.  
AN12  
(5)  
P3C  
RH5/AN13/P3B  
RH5  
21  
20  
19  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 13.  
ECCP3 PWM output B.  
AN13  
(5)  
P3B  
RH6/AN14/P1C  
RH6  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 14.  
ECCP1 PWM output C.  
AN14  
(5)  
P1C  
RH7/AN15/P1B  
RH7  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 15.  
ECCP1 PWM output B.  
AN15  
(5)  
P1B  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).  
2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).  
3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).  
4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).  
5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).  
DS39663F-page 24  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 1-4:  
PIC18F8XJ10/8XJ15 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTJ is a bidirectional I/O port.  
TQFP  
RJ0/ALE  
RJ0  
62  
61  
60  
59  
39  
40  
41  
42  
I/O  
O
ST  
Digital I/O.  
External memory address latch enable.  
ALE  
RJ1/OE  
RJ1  
I/O  
O
ST  
Digital I/O.  
External memory output enable.  
OE  
RJ2/WRL  
RJ2  
I/O  
O
ST  
Digital I/O.  
External memory write low control.  
WRL  
RJ3/WRH  
RJ3  
I/O  
O
ST  
Digital I/O.  
External memory write high control.  
WRH  
RJ4/BA0  
RJ4  
I/O  
O
ST  
Digital I/O.  
External memory byte address 0 control.  
BA0  
RJ5/CE  
RJ5  
I/O  
O
ST  
Digital I/O  
External memory chip enable control.  
CE  
RJ6/LB  
RJ6  
I/O  
O
ST  
Digital I/O.  
External memory low byte control.  
LB  
RJ7/UB  
RJ7  
I/O  
O
ST  
Digital I/O.  
External memory high byte control.  
UB  
VSS  
11, 31, 51, 70  
P
P
P
P
I
ST  
Ground reference for logic and I/O pins.  
Positive supply for peripheral digital logic and I/O pins.  
Ground reference for analog modules.  
Positive supply for analog modules.  
VDD  
32, 48, 71  
AVSS  
AVDD  
ENVREG  
26  
25  
24  
12  
Enable for on-chip voltage regulator.  
VDDCORE/VCAP  
VDDCORE  
Core logic power or external filter capacitor connection.  
Positive supply for microcontroller core logic  
(regulator disabled).  
P
P
VCAP  
External filter capacitor connection (regulator enabled).  
Legend: TTL  
= TTL compatible input  
= Schmitt Trigger input with CMOS levels  
= Input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
I2C/SMB = I2C™/SMBus input buffer  
Note 1: Alternate assignment for ECCP2/P2A when Configuration bit, CCP2MX, is cleared (Extended Microcontroller mode).  
2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX is set).  
3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).  
4: Alternate assignment for ECCP2/P2A when CCP2MX is cleared (Microcontroller mode).  
5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).  
© 2009 Microchip Technology Inc.  
DS39663F-page 25  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 26  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTIONS  
2.0  
2.1  
GUIDELINES FOR GETTING  
STARTED WITH PIC18FJ  
MICROCONTROLLERS  
(2)  
C2  
VDD  
Basic Connection Requirements  
Getting started with the PIC18F87J10 family of 8-bit  
microcontrollers requires attention to a minimal set of  
device pin connections before proceeding with  
development.  
(1)  
(1)  
R1  
R2  
ENVREG  
MCLR  
VCAP/VDDCORE  
C1  
The following pins must always be connected:  
C7  
PIC18FXXJXX  
• All VDD and VSS pins  
(see Section 2.2 “Power Supply Pins”)  
VDD  
VSS  
VSS  
VDD  
(2)  
(2)  
C3  
C6  
• All AVDD and AVSS pins, regardless of whether or  
not the analog device features are used  
(see Section 2.2 “Power Supply Pins”)  
• MCLR pin  
(see Section 2.3 “Master Clear (MCLR) Pin”)  
(2)  
(2)  
C4  
C5  
• ENVREG (if implemented) and VCAP/VDDCORE pins  
(see Section 2.4 “Voltage Regulator Pins  
(ENVREG and VCAP/VDDCORE)”)  
Key (all values are recommendations):  
These pins must also be connected if they are being  
used in the end application:  
C1 through C6: 0.1 μF, 20V ceramic  
C7: 10 μF, 6.3V or greater, tantalum or ceramic  
R1: 10 k  
• PGC/PGD pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
R2: 100to 470Ω  
Note 1: See Section 2.4 “Voltage Regulator Pins  
(ENVREG and VCAP/VDDCORE)” for  
• OSCI and OSCO pins when an external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
explanation of ENVREG pin connections.  
2: The example shown is for a PIC18FJ device  
with five VDD/VSS and AVDD/AVSS pairs.  
Other devices may have more or less pairs;  
adjust the number of decoupling capacitors  
appropriately.  
Additionally, the following pins may be required:  
• VREF+/VREF- pins used when external voltage  
reference for analog modules is implemented  
Note:  
The AVDD and AVSS pins must always be  
connected, regardless of whether any of  
the analog modules are being used.  
The minimum mandatory connections are shown in  
Figure 2-1.  
© 2009 Microchip Technology Inc.  
DS39663F-page 27  
PIC18F87J10 FAMILY  
2.2  
Power Supply Pins  
2.3  
Master Clear (MCLR) Pin  
The MCLR pin provides two specific device  
functions: device Reset, and device programming  
and debugging. If programming and debugging are  
2.2.1  
DECOUPLING CAPACITORS  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS, is required.  
not required in the end application,  
a
direct  
connection to VDD may be all that is required. The  
addition of other components, to help increase the  
application’s resistance to spurious Resets from  
Consider the following criteria when using decoupling  
capacitors:  
voltage sags, may be beneficial.  
A
typical  
Value and type of capacitor: A 0.1 μF (100 nF),  
10-20V capacitor is recommended. The capacitor  
should be a low-ESR device with a resonance  
frequency in the range of 200 MHz and higher.  
Ceramic capacitors are recommended.  
configuration is shown in Figure 2-1. Other circuit  
designs may be implemented depending on the  
application’s requirements.  
During programming and debugging, the resistance  
and capacitance that can be added to the pin must  
be considered. Device programmers and debuggers  
drive the MCLR pin. Consequently, specific voltage  
levels (VIH and VIL) and fast signal transitions must  
not be adversely affected. Therefore, specific values  
of R1 and C1 will need to be adjusted based on the  
application and PCB requirements. For example, it is  
recommended that the capacitor, C1, be isolated  
from the MCLR pin during programming and  
debugging operations by using a jumper (Figure 2-2).  
The jumper is replaced for normal run-time  
operations.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is no greater  
than 0.25 inch (6 mm).  
Handling high-frequency noise: If the board is  
experiencing high-frequency noise (upward of  
tens of MHz), add a second ceramic type capaci-  
tor in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 μF to 0.001 μF. Place this  
second capacitor next to each primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible  
(e.g., 0.1 μF in parallel with 0.001 μF).  
Any components associated with the MCLR pin  
should be placed within 0.25 inch (6 mm) of the pin.  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
VDD  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to  
a minimum, thereby reducing PCB trace  
inductance.  
R1  
R2  
MCLR  
PIC18FXXJXX  
JP  
C1  
Note 1: R1 10 kΩ is recommended. A suggested  
starting value is 10 kΩ. Ensure that the  
MCLR pin VIH and VIL specifications are met.  
2.2.2  
TANK CAPACITORS  
On boards with power traces running longer than six  
inches in length, it is suggested to use a tank capacitor  
for integrated circuits including microcontrollers to  
supply a local power source. The value of the tank  
capacitor should be determined based on the trace  
resistance that connects the power supply source to  
the device and the maximum current drawn by the  
device in the application. In other words, select the tank  
capacitor so that it meets the acceptable voltage sag at  
the device. Typical values range from 4.7 μF to 47 μF.  
2: R2 470Ω will limit any current flowing into  
MCLR from the external capacitor, C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
DS39663F-page 28  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
2.4  
Voltage Regulator Pins (ENVREG  
and VCAP/VDDCORE)  
2.5  
ICSP Pins  
The PGC and PGD pins are used for In-Circuit Serial  
Programming (ICSP) and debugging purposes. It is  
recommended to keep the trace length between the  
ICSP connector and the ICSP pins on the device as  
short as possible. If the ICSP connector is expected to  
experience an ESD event, a series resistor is recom-  
mended, with the value in the range of a few tens of  
ohms, not to exceed 100.  
The on-chip voltage regulator enable pin, ENVREG,  
must always be connected directly to either a supply  
voltage or to ground. Tying ENVREG to VDD enables  
the regulator, while tying it to ground disables the  
regulator. Refer to Section 24.3 “On-Chip Voltage  
Regulator” for details on connecting and using the  
on-chip regulator.  
Pull-up resistors, series diodes and capacitors on the  
PGC and PGD pins are not recommended as they will  
interfere with the programmer/debugger com-  
munications to the device. If such discrete components  
are an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternatively, refer to the AC/DC characteristics and  
timing requirements information in the respective device  
Flash programming specification for information on  
capacitive loading limits and pin input voltage high (VIH)  
and input low (VIL) requirements.  
When the regulator is enabled, a low-ESR (<5)  
capacitor is required on the VCAP/VDDCORE pin to  
stabilize the voltage regulator output voltage. The  
VCAP/VDDCORE pin must not be connected to VDD and  
must use a capacitor of 10 μF connected to ground. The  
type can be ceramic or tantalum. A suitable example is  
the Murata GRM21BF50J106ZE01 (10 μF, 6.3V) or  
equivalent. Designers may use Figure 2-3 to evaluate  
ESR equivalence of candidate devices.  
It is recommended that the trace length not exceed  
0.25 inch (6 mm). Refer to Section 27.0 “Electrical  
Characteristics” for additional information.  
For device emulation, ensure that the “Communication  
Channel Select” (i.e., PGC/PGD pins) programmed  
into the device matches the physical connections for  
the ICSP to the MPLAB® ICD 2, MPLAB ICD 3 or  
REAL ICE™ emulator.  
When the regulator is disabled, the VCAP/VDDCORE pin  
must be tied to a voltage supply at the VDDCORE level.  
Refer to Section 27.0 “Electrical Characteristics” for  
information on VDD and VDDCORE.  
For more information on the ICD 2, ICD 3 and REAL ICE  
emulator connection requirements, refer to the following  
documents that are available on the Microchip web site.  
“MPLAB® ICD 2 In-Circuit Debugger User’s  
Guide” (DS51331)  
“Using MPLAB® ICD 2” (poster) (DS51265)  
“MPLAB® ICD 2 Design Advisory” (DS51566)  
“Using MPLAB® ICD 3” (poster) (DS51765)  
“MPLAB® ICD 3 Design Advisory” (DS51764)  
Note that the “LF” versions of some low pin count  
PIC18FJ parts (e.g., the PIC18LF45J10) do not have  
the ENVREG pin. These devices are provided with the  
voltage regulator permanently disabled; they must  
always be provided with a supply voltage on the  
VDDCORE pin.  
FIGURE 2-3:  
FREQUENCY vs. ESR  
PERFORMANCE FOR  
SUGGESTED VCAP  
“MPLAB® REAL ICE™ In-Circuit Emulator User’s  
Guide” (DS51616)  
“Using MPLAB® REAL ICE™ In-Circuit Emulator”  
10  
1
(poster) (DS51749)  
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
1000 10,000  
Frequency (MHz)  
Note:  
Data for Murata GRM21BF50J106ZE01 shown.  
Measurements at 25°C, 0V DC bias.  
© 2009 Microchip Technology Inc.  
DS39663F-page 29  
PIC18F87J10 FAMILY  
FIGURE 2-4:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
2.6  
External Oscillator Pins  
Many microcontrollers have options for at least two  
oscillators: a high-frequency primary oscillator and a  
low-frequency  
secondary  
oscillator  
(refer to  
Section 3.0 “Oscillator Configurations” for details).  
Main Oscillator  
Guard Ring  
13  
14  
15  
16  
17  
18  
19  
20  
The oscillator circuit should be placed on the same  
side of the board as the device. Place the oscillator  
circuit close to the respective oscillator pins with no  
more than 0.5 inch (12 mm) between the circuit  
components and the pins. The load capacitors should  
be placed next to the oscillator itself, on the same side  
of the board.  
Guard Trace  
Secondary  
Oscillator  
Use a grounded copper pour around the oscillator  
circuit to isolate it from surrounding circuits. The  
grounded copper pour should be routed directly to the  
MCU ground. Do not run any signal traces or power  
traces inside the ground pour. Also, if using a  
two-sided board, avoid any traces on the other side of  
the board where the crystal is placed. A suggested  
layout is shown in Figure 2-4.  
2.7  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic low state. Alternatively, connect a 1 kΩ  
to 10 kresistor to VSS on unused pins and drive the  
output to logic low.  
For additional information and design guidance on  
oscillator circuits, please refer to these Microchip  
Application Notes, available at the corporate web site  
(www.microchip.com):  
AN826, Crystal Oscillator Basics and Crystal  
Selection for rfPIC™ and PICmicro® Devices”  
AN849, “Basic PICmicro® Oscillator Design”  
• AN943, “Practical PICmicro® Oscillator Analysis  
and Design”  
AN949, “Making Your Oscillator Work”  
DS39663F-page 30  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 3-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS OR HSPLL  
3.0  
3.1  
OSCILLATOR  
CONFIGURATIONS  
CONFIGURATION)  
Oscillator Types  
(1)  
C1  
The PIC18F87J10 family of devices can be operated in  
five different oscillator modes:  
OSC1  
To  
Internal  
Logic  
1. HS  
High-Speed Crystal/Resonator  
(3)  
RF  
XTAL  
2. HSPLL High-Speed Crystal/Resonator  
with Software PLL Control  
Sleep  
OSC2  
3. EC  
External Clock with FOSC/4 Output  
(1)  
(2)  
RS  
PIC18F87J10  
C2  
4. ECPLL External Clock with Software PLL  
Control  
Note 1: See Table 3-1 and Table 3-2 for initial values of  
5. INTRC Internal 31 kHz Oscillator  
C1 and C2.  
Four of these are selected by the user by programming  
the FOSC<2:0> Configuration bits. The fifth mode  
(INTRC) may be invoked under software control; it can  
also be configured as the default mode on device  
Resets.  
2: A series resistor (RS) may be required for AT  
strip cut crystals.  
3: RF varies with the oscillator mode chosen.  
TABLE 3-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
3.2  
Crystal Oscillator/Ceramic  
Resonators (HS Modes)  
Typical Capacitor Values Used:  
In HS or HSPLL Oscillator modes, a crystal or ceramic  
resonator is connected to the OSC1 and OSC2 pins to  
establish oscillation. Figure 3-1 shows the pin  
connections.  
Mode  
Freq.  
OSC1  
OSC2  
HS  
8.0 MHz  
16.0 MHz  
27 pF  
22 pF  
27 pF  
22 pF  
The oscillator design requires the use of a parallel cut  
crystal.  
Capacitor values are for design guidance only.  
These capacitors were tested with the resonators  
listed below for basic start-up and operation. These  
values are not optimized.  
Note:  
Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturer’s  
specifications.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
See the notes following Table 3-2 for additional  
information.  
Resonators Used:  
4.0 MHz  
8.0 MHz  
16.0 MHz  
© 2009 Microchip Technology Inc.  
DS39663F-page 31  
PIC18F87J10 FAMILY  
TABLE 3-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
3.3  
External Clock Input (EC Modes)  
The EC and ECPLL Oscillator modes require an exter-  
nal clock source to be connected to the OSC1 pin.  
There is no oscillator start-up time required after a  
Power-on Reset or after an exit from Sleep mode.  
Typical Capacitor Values  
Crystal  
Freq.  
Tested:  
Osc Type  
C1  
C2  
In the EC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 3-2 shows the pin connections for the EC  
Oscillator mode.  
HS  
4 MHz  
8 MHz  
20 MHz  
27 pF  
22 pF  
15 pF  
27 pF  
22 pF  
15 pF  
Capacitor values are for design guidance only.  
These capacitors were tested with the crystals listed  
below for basic start-up and operation. These values  
are not optimized.  
FIGURE 3-2:  
EXTERNAL CLOCK  
INPUT OPERATION  
(EC CONFIGURATION)  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
OSC1/CLKI  
Clock from  
Ext. System  
PIC18F87J10  
OSC2/CLKO  
See the notes following this table for additional  
information.  
FOSC/4  
Crystals Used:  
4 MHz  
8 MHz  
20 MHz  
An external clock source may also be connected to the  
OSC1 pin in the HS mode, as shown in Figure 3-3. In  
this configuration, the divide-by-4 output on OSC2 is  
not available.  
FIGURE 3-3:  
EXTERNAL CLOCK INPUT  
OPERATION (HS OSC  
CONFIGURATION)  
Note 1: Higher capacitance increases the stability  
of oscillator but also increases the  
start-up time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
OSC1  
Clock from  
appropriate  
components.  
values  
of  
external  
Ext. System  
PIC18F87J10  
(HS Mode)  
OSC2  
Open  
3: Rs may be required to avoid overdriving  
crystals with low drive level specification.  
4: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
DS39663F-page 32  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 3-4:  
PLL BLOCK DIAGRAM  
3.4  
PLL Frequency Multiplier  
A Phase Locked Loop (PLL) circuit is provided as an  
option for users who want to use a lower frequency  
oscillator circuit, or to clock the device up to its highest  
rated frequency from a crystal oscillator. This may be  
useful for customers who are concerned with EMI due  
to high-frequency crystals, or users who require higher  
clock speeds from an internal oscillator. For these  
reasons, the HSPLL and ECPLL modes are available.  
HSPLL or ECPLL (CONFIG2L)  
PLL Enable (OSCTUNE)  
OSC2  
Phase  
Comparator  
FIN  
HS or EC  
OSC1 Mode  
FOUT  
The HSPLL and ECPLL modes provide the ability to  
selectively run the device at 4 times the external oscil-  
lating source to produce frequencies up to 40 MHz.  
The PLL is enabled by setting the PLLEN bit in the  
OSCTUNE register (Register 3-1).  
Loop  
Filter  
÷4  
VCO  
SYSCLK  
REGISTER 3-1:  
OSCTUNE: PLL CONTROL REGISTER  
U-0  
R/W-0  
PLLEN(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
PLLEN: Frequency Multiplier PLL Enable bit(1)  
1= PLL enabled  
0= PLL disabled  
bit 5-0  
Unimplemented: Read as ‘0’  
Note 1: Available only for ECPLL and HSPLL oscillator configurations; otherwise, this bit is unavailable and read  
as ‘0’.  
© 2009 Microchip Technology Inc.  
DS39663F-page 33  
PIC18F87J10 FAMILY  
The primary oscillators include the External Crystal  
and Resonator modes and the External Clock modes.  
The particular mode is defined by the FOSC<2:0>  
Configuration bits. The details of these modes are  
covered earlier in this chapter.  
3.5  
Internal Oscillator Block  
The PIC18F87J10 family of devices includes an inter-  
nal oscillator source (INTRC) which provides a nominal  
31 kHz output. The INTRC is enabled on device  
power-up and clocks the device during its configuration  
cycle until it enters operating mode. INTRC is also  
enabled if it is selected as the device clock source or if  
any of the following are enabled:  
The secondary oscillators are those external sources  
not connected to the OSC1 or OSC2 pins. These  
sources may continue to operate even after the  
controller is placed in a power-managed mode.  
• Fail-Safe Clock Monitor  
• Watchdog Timer  
• Two-Speed Start-up  
PIC18F87J10 family devices offer the Timer1 oscillator  
as a secondary oscillator. This oscillator, in all  
power-managed modes, is often the time base for  
functions such as a real-time clock.  
These features are discussed in greater detail in  
Section 24.0 “Special Features of the CPU”.  
Most often, a 32.768 kHz watch crystal is connected  
between the RC0/T1OSO/T13CKI and RC1/T1OSI  
pins. Loading capacitors are also connected from each  
pin to ground.  
The INTRC can also be optionally configured as the  
default clock source on device start-up by setting the  
FOSC2 Configuration bit. This is discussed in  
Section 3.6.1 “Oscillator Control Register”.  
The Timer1 oscillator is discussed in greater detail in  
Section 13.3 “Timer1 Oscillator”.  
3.6  
Clock Sources and  
Oscillator Switching  
In addition to being a primary clock source, the internal  
oscillator is available as a power-managed mode  
clock source. The INTRC source is also used as the  
clock source for several special features, such as the  
WDT and Fail-Safe Clock Monitor.  
The PIC18F87J10 family includes a feature that allows  
the device clock source to be switched from the main  
oscillator to an alternate clock source. PIC18F87J10  
family devices offer two alternate clock sources. When  
an alternate clock source is enabled, the various  
power-managed operating modes are available.  
The clock sources for the PIC18F87J10 family devices  
are shown in Figure 3-5. See Section 24.0 “Special  
Features of the CPU” for Configuration register details.  
Essentially, there are three clock sources for these  
devices:  
• Primary oscillators  
• Secondary oscillators  
• Internal oscillator  
FIGURE 3-5:  
PIC18F87J10 FAMILY CLOCK DIAGRAM  
PIC18F87J10 Family  
Primary Oscillator  
HS, EC  
OSC2  
Sleep  
HSPLL, ECPLL  
4 x PLL  
OSC1  
Peripherals  
Secondary Oscillator  
T1OSC  
T1OSO  
T1OSCEN  
Enable  
Oscillator  
T1OSI  
Internal Oscillator  
INTRC  
Source  
CPU  
IDLEN  
Clock  
Control  
FOSC<2:0>  
OSCCON<1:0>  
Clock Source Option  
for Other Modules  
WDT, PWRT, FSCM  
and Two-Speed Start-up  
DS39663F-page 34  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
3.6.1  
OSCILLATOR CONTROL REGISTER  
3.6.1.1  
System Clock Selection and the  
FOSC2 Configuration Bit  
The OSCCON register (Register 3-2) controls several  
aspects of the device clock’s operation, both in  
full-power operation and in power-managed modes.  
The SCS bits are cleared on all forms of Reset. In the  
device’s default configuration, this means the primary  
oscillator defined by FOSC<1:0> (that is, one of the HC  
or EC modes) is used as the primary clock source on  
device Resets.  
The System Clock Select bits, SCS<1:0>, select the  
clock source. The available clock sources are the  
primary clock (defined by the FOSC<2:0> Configura-  
tion bits), the secondary clock (Timer1 oscillator) and  
the internal oscillator. The clock source changes after  
one or more of the bits are written to, following a brief  
clock transition interval.  
The default clock configuration on Reset can be  
changed with the FOSC2 Configuration bit. The effect of  
this bit is to set the clock source selected when  
SCS<1:0> = 00. When FOSC2 = 1 (default), the  
oscillator source defined by FOSC<1:0> is selected  
whenever SCS<1:0> = 00. When FOSC2 = 0, the  
INTRC oscillator is selected whenever SCS<1:2> = 00.  
Because the SCS bits are cleared on Reset, the FOSC2  
setting also changes the default oscillator mode on  
Reset.  
The OSTS (OSCCON<3>) and T1RUN (T1CON<6>)  
bits indicate which clock source is currently providing  
the device clock. The OSTS bit indicates that the  
Oscillator Start-up Timer (OST) has timed out and the  
primary clock is providing the device clock in primary  
clock modes. The T1RUN bit indicates when the  
Timer1 oscillator is providing the device clock in  
secondary clock modes. In power-managed modes,  
only one of these bits will be set at any time. If neither  
of these bits are set, the INTRC is providing the clock,  
or the internal oscillator has just started and is not yet  
stable.  
Regardless of the setting of FOSC2, INTRC will always  
be enabled on device power-up. It will serve as the  
clock source until the device has loaded its configura-  
tion values from memory. It is at this point that the  
FOSC Configuration bits are read and the oscillator  
selection of the operational mode is made.  
The IDLEN bit determines if the device goes into Sleep  
mode or one of the Idle modes when the SLEEP  
instruction is executed.  
Note that either the primary clock or the internal  
oscillator will have two bit setting options, at any given  
time, depending on the setting of FOSC2.  
The use of the flag and control bits in the OSCCON  
register is discussed in more detail in Section 4.0  
“Power-Managed Modes”.  
3.6.2  
OSCILLATOR TRANSITIONS  
PIC18F87J10 family devices contain circuitry to  
prevent clock “glitches” when switching between clock  
sources. A short pause in the device clock occurs  
during the clock switch. The length of this pause is the  
sum of two cycles of the old clock source and three to  
four cycles of the new clock source. This formula  
assumes that the new clock source is stable.  
Note 1: The Timer1 oscillator must be enabled to  
select the secondary clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit in the Timer1 Control regis-  
ter (T1CON<3>). If the Timer1 oscillator is  
not enabled, then any attempt to select a  
secondary clock source when executing a  
SLEEPinstruction will be ignored.  
Clock transitions are discussed in greater detail in  
Section 4.1.2 “Entering Power-Managed Modes”.  
2: It is recommended that the Timer1  
oscillator be operating and stable before  
executing the SLEEPinstruction or a very  
long delay may occur while the Timer1  
oscillator starts.  
© 2009 Microchip Technology Inc.  
DS39663F-page 35  
PIC18F87J10 FAMILY  
REGISTER 3-2:  
OSCCON: OSCILLATOR CONTROL REGISTER  
R/W-0  
IDLEN  
bit 7  
U-0  
U-0  
U-0  
R-q(1)  
OSTS  
U-0  
R/W-0  
SCS1  
R/W-0  
SCS0  
bit 0  
Legend:  
q = Value determined by configuration  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IDLEN: Idle Enable bit  
1= Device enters Idle mode on SLEEPinstruction  
0= Device enters Sleep mode on SLEEPinstruction  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
OSTS: Oscillator Start-up Time-out Status bit(1)  
1= Oscillator Start-up Timer time-out has expired; primary oscillator is running  
0= Oscillator Start-up Timer time-out is running; primary oscillator is not ready  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
SCS<1:0>: System Clock Select bits  
11= Internal oscillator  
10= Primary oscillator  
01= Timer1 oscillator  
When FOSC2 = 1:  
00= Primary oscillator  
When FOSC2 = 0:  
00= Internal oscillator  
Note 1: The Reset value is ‘0’ when HS mode and Two-Speed Start-up are both enabled; otherwise, it is ‘1’.  
DS39663F-page 36  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
Timer1 oscillator may be operating to support a  
Real-Time Clock. Other features may be operating that  
do not require a device clock source (i.e., MSSP slave,  
PSP, INTx pins and others). Peripherals that may add  
significant current consumption are listed in  
Section 27.2 “DC Characteristics: Power-Down and  
Supply Current”.  
3.7  
Effects of Power-Managed Modes  
on the Various Clock Sources  
When PRI_IDLE mode is selected, the designated  
primary oscillator continues to run without interruption.  
For all other power-managed modes, the oscillator  
using the OSC1 pin is disabled. The OSC1 pin (and  
OSC2 pin if used by the oscillator) will stop oscillating.  
3.8  
Power-up Delays  
In secondary clock modes (SEC_RUN and  
SEC_IDLE), the Timer1 oscillator is operating and  
providing the device clock. The Timer1 oscillator may  
also run in all power-managed modes if required to  
clock Timer1 or Timer3.  
Power-up delays are controlled by two timers, so that  
no external Reset circuitry is required for most applica-  
tions. The delays ensure that the device is kept in  
Reset until the device power supply is stable under  
normal circumstances and the primary clock is operat-  
ing and stable. For additional information on power-up  
delays, see Section 5.5 “Power-up Timer (PWRT)”.  
In RC_RUN and RC_IDLE modes, the internal oscilla-  
tor provides the device clock source. The 31 kHz  
INTRC output can be used directly to provide the clock  
and may be enabled to support various special  
features, regardless of the power-managed mode (see  
Section 24.2 “Watchdog Timer (WDT)” through  
Section 24.5 “Fail-Safe Clock Monitor” for more  
information on WDT, Fail-Safe Clock Monitor and  
Two-Speed Start-up).  
The first timer is the Power-up Timer (PWRT), which  
provides a fixed delay on power-up (parameter 33,  
Table 27-12). It is always enabled.  
The second timer is the Oscillator Start-up Timer  
(OST), intended to keep the chip in Reset until the  
crystal oscillator is stable (HS modes). The OST does  
this by counting 1024 oscillator cycles before allowing  
the oscillator to clock the device.  
If the Sleep mode is selected, all clock sources are  
stopped. Since all the transistor switching currents  
have been stopped, Sleep mode achieves the lowest  
current consumption of the device (only leakage  
currents).  
There is a delay of interval, TCSD (parameter 38,  
Table 27-12), following POR, while the controller  
becomes ready to execute instructions.  
Enabling any on-chip feature that will operate during  
Sleep will increase the current consumed during Sleep.  
The INTRC is required to support WDT operation. The  
TABLE 3-3:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
Oscillator Mode  
OSC1 Pin  
OSC2 Pin  
EC, ECPLL  
HS, HSPLL  
Floating, pulled by external clock  
At logic low (clock/4 output)  
Feedback inverter disabled at quiescent  
voltage level  
Feedback inverter disabled at quiescent  
voltage level  
Note:  
See Table 5-2 in Section 5.0 “Reset” for time-outs due to Sleep and MCLR Reset.  
© 2009 Microchip Technology Inc.  
DS39663F-page 37  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 38  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
4.1.1  
CLOCK SOURCES  
4.0  
POWER-MANAGED MODES  
The SCS<1:0> bits allow the selection of one of three  
clock sources for power-managed modes. They are:  
The PIC18F87J10 family devices provide the ability to  
manage power consumption by simply managing clock-  
ing to the CPU and the peripherals. In general, a lower  
clock frequency and a reduction in the number of circuits  
being clocked constitutes lower consumed power. For  
the sake of managing power in an application, there are  
three primary modes of operation:  
• The primary clock, as defined by the FOSC<2:0>  
Configuration bits  
• The secondary clock (Timer1 oscillator)  
• The internal oscillator  
4.1.2  
ENTERING POWER-MANAGED  
MODES  
• Run mode  
• Idle mode  
• Sleep mode  
Switching from one power-managed mode to another  
begins by loading the OSCCON register. The  
SCS<1:0> bits select the clock source and determine  
which Run or Idle mode is to be used. Changing these  
bits causes an immediate switch to the new clock  
source, assuming that it is running. The switch may  
also be subject to clock transition delays. These are  
discussed in Section 4.1.3 “Clock Transitions and  
Status Indicators” and subsequent sections.  
These modes define which portions of the device are  
clocked and at what speed. The Run and Idle modes  
may use any of the three available clock sources  
(primary, secondary or internal oscillator block); the  
Sleep mode does not use a clock source.  
The power-managed modes include several  
power-saving features offered on previous PIC®  
devices. One is the clock switching feature, offered in  
other PIC18 devices, allowing the controller to use the  
Timer1 oscillator in place of the primary oscillator. Also  
included is the Sleep mode, offered by all PIC devices,  
where all device clocks are stopped.  
Entry to the power-managed Idle or Sleep modes is  
triggered by the execution of a SLEEPinstruction. The  
actual mode that results depends on the status of the  
IDLEN bit.  
Depending on the current mode and the mode being  
switched to, a change to a power-managed mode does  
not always require setting all of these bits. Many  
transitions may be done by changing the oscillator  
select bits, or changing the IDLEN bit, prior to issuing a  
SLEEP instruction. If the IDLEN bit is already  
configured correctly, it may only be necessary to  
perform a SLEEP instruction to switch to the desired  
mode.  
4.1  
Selecting Power-Managed Modes  
Selecting  
a power-managed mode requires two  
decisions: if the CPU is to be clocked or not and which  
clock source is to be used. The IDLEN bit  
(OSCCON<7>) controls CPU clocking, while the  
SCS<1:0> bits (OSCCON<1:0>) select the clock  
source. The individual modes, bit settings, clock  
sources and affected modules are summarized in  
Table 4-1.  
TABLE 4-1:  
Mode  
POWER-MANAGED MODES  
OSCCON Bits<7,1:0> Module Clocking  
CPU Peripherals  
Off Off  
Available Clock and Oscillator Source  
IDLEN(1)  
SCS<1:0>  
Sleep  
0
N/A  
None – All clocks are disabled  
PRI_RUN  
N/A  
10  
Clocked Clocked Primary – HS, EC, HSPLL, ECPLL;  
this is the normal full-power execution mode.  
SEC_RUN  
RC_RUN  
PRI_IDLE  
SEC_IDLE  
RC_IDLE  
N/A  
N/A  
1
01  
11  
10  
01  
11  
Clocked Clocked Secondary – Timer1 Oscillator  
Clocked Clocked Internal Oscillator  
Off  
Off  
Off  
Clocked Primary – HS, EC, HSPLL, ECPLL  
Clocked Secondary – Timer1 Oscillator  
Clocked Internal Oscillator  
1
1
Note 1: IDLEN reflects its value when the SLEEPinstruction is executed.  
© 2009 Microchip Technology Inc.  
DS39663F-page 39  
PIC18F87J10 FAMILY  
4.1.3  
CLOCK TRANSITIONS AND STATUS  
INDICATORS  
4.2  
Run Modes  
In the Run modes, clocks to both the core and  
peripherals are active. The difference between these  
modes is the clock source.  
The length of the transition between clock sources is  
the sum of two cycles of the old clock source and three  
to four cycles of the new clock source. This formula  
assumes that the new clock source is stable.  
4.2.1  
PRI_RUN MODE  
Two bits indicate the current clock source and its  
The PRI_RUN mode is the normal, full-power execu-  
tion mode of the microcontroller. This is also the default  
mode upon a device Reset unless Two-Speed Start-up  
is enabled (see Section 24.4 “Two-Speed Start-up”  
for details). In this mode, the OSTS bit is set. (see  
Section 3.6.1 “Oscillator Control Register”).  
status:  
OSTS  
(OSCCON<3>)  
and  
T1RUN  
(T1CON<6>). In general, only one of these bits will be  
set while in a given power-managed mode. When the  
OSTS bit is set, the primary clock is providing the  
device clock. When the T1RUN bit is set, the Timer1  
oscillator is providing the clock. If neither of these bits  
is set, INTRC is clocking the device.  
4.2.2  
SEC_RUN MODE  
The SEC_RUN mode is the compatible mode to the  
“clock switching” feature offered in other PIC18  
devices. In this mode, the CPU and peripherals are  
clocked from the Timer1 oscillator. This gives users the  
option of lower power consumption while still using a  
high-accuracy clock source.  
Note:  
Executing a SLEEP instruction does not  
necessarily place the device into Sleep  
mode. It acts as the trigger to place the  
controller into either the Sleep mode or  
one of the Idle modes, depending on the  
setting of the IDLEN bit.  
SEC_RUN mode is entered by setting the SCS<1:0>  
bits to ‘01’. The device clock source is switched to the  
Timer1 oscillator (see Figure 4-1), the primary oscilla-  
tor is shut down, the T1RUN bit (T1CON<6>) is set and  
the OSTS bit is cleared.  
4.1.4  
MULTIPLE SLEEP COMMANDS  
The power-managed mode that is invoked with the  
SLEEP instruction is determined by the setting of the  
IDLEN bit at the time the instruction is executed. If  
another SLEEPinstruction is executed, the device will  
enter the power-managed mode specified by IDLEN at  
that time. If IDLEN has changed, the device will enter  
the new power-managed mode specified by the new  
setting.  
DS39663F-page 40  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
On transitions from SEC_RUN mode to PRI_RUN, the  
peripherals and CPU continue to be clocked from the  
Timer1 oscillator while the primary clock is started.  
When the primary clock becomes ready, a clock switch  
back to the primary clock occurs (see Figure 4-2).  
When the clock switch is complete, the T1RUN bit is  
cleared, the OSTS bit is set and the primary clock is  
providing the clock. The IDLEN and SCS bits are not  
affected by the wake-up; the Timer1 oscillator  
continues to run.  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_RUN mode.  
If the T1OSCEN bit is not set when the  
SCS<1:0> bits are set to ‘01’, entry to  
SEC_RUN mode will not occur. If the  
Timer1 oscillator is enabled, but not yet  
running, device clocks will be delayed until  
the oscillator has started. In such  
situations, initial oscillator operation is far  
from stable and unpredictable operation  
may result.  
FIGURE 4-1:  
TRANSITION TIMING FOR ENTRY TO SEC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
n-1  
n
T1OSI  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
FIGURE 4-2:  
TRANSITION TIMING FROM SEC_RUN MODE TO PRI_RUN MODE (HSPLL)  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
T1OSI  
OSC1  
(1)  
TOST  
(1)  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 2  
PC + 4  
PC  
OSTS Bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
SCS<1:0> Bits Changed  
© 2009 Microchip Technology Inc.  
DS39663F-page 41  
PIC18F87J10 FAMILY  
On transitions from RC_RUN mode to PRI_RUN mode,  
the device continues to be clocked from the INTRC  
while the primary clock is started. When the primary  
clock becomes ready, a clock switch to the primary  
clock occurs (see Figure 4-4). When the clock switch is  
complete, the OSTS bit is set and the primary clock is  
providing the device clock. The IDLEN and SCS bits  
are not affected by the switch. The INTRC source will  
continue to run if either the WDT or the Fail-Safe Clock  
Monitor is enabled.  
4.2.3  
RC_RUN MODE  
In RC_RUN mode, the CPU and peripherals are  
clocked from the internal oscillator; the primary clock is  
shut down. This mode provides the best power conser-  
vation of all the Run modes while still executing code.  
It works well for user applications which are not highly  
timing sensitive or do not require high-speed clocks at  
all times.  
This mode is entered by setting the SCS bits to ‘11’.  
When the clock source is switched to the INTRC (see  
Figure 4-3), the primary oscillator is shut down and the  
OSTS bit is cleared.  
FIGURE 4-3:  
TRANSITION TIMING TO RC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
n-1  
n
INTRC  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
FIGURE 4-4:  
TRANSITION TIMING FROM RC_RUN MODE TO PRI_RUN MODE  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q1  
Q2  
INTRC  
OSC1  
(1)  
TOST  
(1)  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 2  
PC + 4  
PC  
SCS<1:0> Bits Changed  
OSTS Bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
DS39663F-page 42  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
4.3  
Sleep Mode  
4.4  
Idle Modes  
The power-managed Sleep mode is identical to the  
legacy Sleep mode offered in all other PIC devices. It is  
entered by clearing the IDLEN bit (the default state on  
device Reset) and executing the SLEEP instruction.  
This shuts down the selected oscillator (Figure 4-5). All  
clock source status bits are cleared.  
The Idle modes allow the controller’s CPU to be  
selectively shut down while the peripherals continue to  
operate. Selecting a particular Idle mode allows users  
to further manage power consumption.  
If the IDLEN bit is set to a ‘1’ when a SLEEPinstruction is  
executed, the peripherals will be clocked from the clock  
source selected using the SCS<1:0> bits; however, the  
CPU will not be clocked. The clock source status bits are  
not affected. Setting IDLEN and executing a SLEEP  
instruction provides a quick method of switching from a  
given Run mode to its corresponding Idle mode.  
Entering the Sleep mode from any other mode does not  
require a clock switch. This is because no clocks are  
needed once the controller has entered Sleep. If the  
WDT is selected, the INTRC source will continue to  
operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
If the WDT is selected, the INTRC source will continue  
to operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
When a wake event occurs in Sleep mode (by interrupt,  
Reset or WDT time-out), the device will not be clocked  
until the clock source selected by the SCS<1:0> bits  
becomes ready (see Figure 4-6), or it will be clocked  
from the internal oscillator if either the Two-Speed  
Start-up or the Fail-Safe Clock Monitor are enabled  
(see Section 24.0 “Special Features of the CPU”). In  
either case, the OSTS bit is set when the primary clock  
is providing the device clocks. The IDLEN and SCS bits  
are not affected by the wake-up.  
Since the CPU is not executing instructions, the only  
exits from any of the Idle modes are by interrupt, WDT  
time-out or a Reset. When a wake event occurs, CPU  
execution is delayed by an interval of TCSD  
(parameter 38, Table 27-12) while it becomes ready to  
execute code. When the CPU begins executing code,  
it resumes with the same clock source for the current  
Idle mode. For example, when waking from RC_IDLE  
mode, the internal oscillator block will clock the CPU  
and peripherals (in other words, RC_RUN mode). The  
IDLEN and SCS bits are not affected by the wake-up.  
While in any Idle mode or the Sleep mode, a WDT  
time-out will result in a WDT wake-up to the Run mode  
currently specified by the SCS<1:0> bits.  
FIGURE 4-5:  
TRANSITION TIMING FOR ENTRY TO SLEEP MODE  
Q1 Q2 Q3 Q4 Q1  
OSC1  
CPU  
Clock  
Peripheral  
Clock  
Sleep  
Program  
Counter  
PC  
PC + 2  
FIGURE 4-6:  
TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL)  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q2 Q3 Q4 Q1 Q2  
Q1  
OSC1  
(1)  
(1)  
TOST  
TPLL  
PLL Clock  
Output  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
PC + 6  
Wake Event  
OSTS Bit Set  
Note1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
© 2009 Microchip Technology Inc.  
DS39663F-page 43  
PIC18F87J10 FAMILY  
4.4.1  
PRI_IDLE MODE  
4.4.2  
SEC_IDLE MODE  
This mode is unique among the three low-power Idle  
modes, in that it does not disable the primary device  
clock. For timing-sensitive applications, this allows for  
the fastest resumption of device operation with its more  
accurate primary clock source, since the clock source  
does not have to “warm up” or transition from another  
oscillator.  
In SEC_IDLE mode, the CPU is disabled but the  
peripherals continue to be clocked from the Timer1  
oscillator. This mode is entered from SEC_RUN by set-  
ting the IDLEN bit and executing a SLEEPinstruction. If  
the device is in another Run mode, set IDLEN first, then  
set SCS<1:0> to ‘01’ and execute SLEEP. When the  
clock source is switched to the Timer1 oscillator, the  
primary oscillator is shut down, the OSTS bit is cleared  
and the T1RUN bit is set.  
PRI_IDLE mode is entered from PRI_RUN mode by  
setting the IDLEN bit and executing a SLEEP instruc-  
tion. If the device is in another Run mode, set IDLEN  
first, then set the SCS bits to ‘10’ and execute SLEEP.  
Although the CPU is disabled, the peripherals continue  
to be clocked from the primary clock source specified  
by the FOSC<1:0> Configuration bits. The OSTS bit  
remains set (see Figure 4-7).  
When a wake event occurs, the peripherals continue to  
be clocked from the Timer1 oscillator. After an interval  
of TCSD following the wake event, the CPU begins exe-  
cuting code being clocked by the Timer1 oscillator. The  
IDLEN and SCS bits are not affected by the wake-up;  
the Timer1 oscillator continues to run (see Figure 4-8).  
When a wake event occurs, the CPU is clocked from the  
primary clock source. A delay of interval, TCSD, is  
required between the wake event and when code  
execution starts. This is required to allow the CPU to  
become ready to execute instructions. After the  
wake-up, the OSTS bit remains set. The IDLEN and  
SCS bits are not affected by the wake-up (see  
Figure 4-8).  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_IDLE mode.  
If the T1OSCEN bit is not set when the  
SLEEPinstruction is executed, the SLEEP  
instruction will be ignored and entry to  
SEC_IDLE mode will not occur. If the  
Timer1 oscillator is enabled, but not yet  
running, peripheral clocks will be delayed  
until the oscillator has started. In such  
situations, initial oscillator operation is far  
from stable and unpredictable operation  
may result.  
FIGURE 4-7:  
TRANSITION TIMING FOR ENTRY TO IDLE MODE  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 4-8:  
TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE  
Q1  
Q3  
Q4  
Q2  
OSC1  
TCSD  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
Wake Event  
DS39663F-page 44  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
4.4.3  
RC_IDLE MODE  
4.5.2  
EXIT BY WDT TIME-OUT  
In RC_IDLE mode, the CPU is disabled but the  
peripherals continue to be clocked from the internal  
oscillator. This mode allows for controllable power  
conservation during Idle periods.  
A WDT time-out will cause different actions depending  
on which power-managed mode the device is in when  
the time-out occurs.  
If the device is not executing code (all Idle modes and  
Sleep mode), the time-out will result in an exit from the  
power-managed mode (see Section 4.2 “Run  
Modes” and Section 4.3 “Sleep Mode”). If the device  
is executing code (all Run modes), the time-out will  
result in a WDT Reset (see Section 24.2 “Watchdog  
Timer (WDT)”).  
From RC_RUN, this mode is entered by setting the  
IDLEN bit and executing a SLEEP instruction. If the  
device is in another Run mode, first set IDLEN, then  
clear the SCS bits and execute SLEEP. When the clock  
source is switched to the INTRC, the primary oscillator  
is shut down and the OSTS bit is cleared.  
When a wake event occurs, the peripherals continue to  
be clocked from the INTRC. After a delay of TCSD  
following the wake event, the CPU begins executing  
code being clocked by the INTRC. The IDLEN and  
SCS bits are not affected by the wake-up. The INTRC  
source will continue to run if either the WDT or the  
Fail-Safe Clock Monitor is enabled.  
The Watchdog Timer and postscaler are cleared by one  
of the following events:  
• executing a SLEEPor CLRWDTinstruction  
• the loss of a currently selected clock source (if the  
Fail-Safe Clock Monitor is enabled)  
4.5.3  
EXIT BY RESET  
Exiting an Idle or Sleep mode by Reset automatically  
forces the device to run from the INTRC.  
4.5  
Exiting Idle and Sleep Modes  
An exit from Sleep mode, or any of the Idle modes, is  
triggered by an interrupt, a Reset or a WDT time-out.  
This section discusses the triggers that cause exits  
from power-managed modes. The clocking subsystem  
actions are discussed in each of the power-managed  
modes sections (see Section 4.2 “Run Modes”,  
Section 4.3 “Sleep Mode” and Section 4.4 “Idle  
Modes”).  
4.5.4  
EXIT WITHOUT AN OSCILLATOR  
START-UP DELAY  
Certain exits from power-managed modes do not  
invoke the OST at all. There are two cases:  
• PRI_IDLE mode, where the primary clock source  
is not stopped; and  
• the primary clock source is either the EC or  
ECPLL mode.  
4.5.1  
EXIT BY INTERRUPT  
Any of the available interrupt sources can cause the  
device to exit from an Idle mode, or the Sleep mode, to  
a Run mode. To enable this functionality, an interrupt  
source must be enabled by setting its enable bit in one  
of the INTCON or PIE registers. The exit sequence is  
initiated when the corresponding interrupt flag bit is set.  
In these instances, the primary clock source either  
does not require an oscillator start-up delay, since it is  
already running (PRI_IDLE), or normally does not  
require an oscillator start-up delay (EC). However, a  
fixed delay of interval, TCSD, following the wake event  
is still required when leaving Sleep and Idle modes to  
allow the CPU to prepare for execution. Instruction  
execution resumes on the first clock cycle following this  
delay.  
On all exits from Idle or Sleep modes by interrupt, code  
execution branches to the interrupt vector if the  
GIE/GIEH bit (INTCON<7>) is set. Otherwise, code  
execution continues or resumes without branching  
(see Section 10.0 “Interrupts”).  
A fixed delay of interval TCSD following the wake event  
is required when leaving Sleep and Idle modes. This  
delay is required for the CPU to prepare for execution.  
Instruction execution resumes on the first clock cycle  
following this delay.  
© 2009 Microchip Technology Inc.  
DS39663F-page 45  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 46  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
5.1  
RCON Register  
5.0  
RESET  
Device Reset events are tracked through the RCON  
register (Register ). The lower five bits of the register  
indicate that a specific Reset event has occurred. In  
most cases, these bits can only be set by the event and  
must be cleared by the application after the event. The  
state of these flag bits, taken together, can be read to  
indicate the type of Reset that just occurred. This is  
described in more detail in Section 5.6 “Reset State  
of Registers”.  
The PIC18F87J10 family of devices differentiate  
between various kinds of Reset:  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during power-managed modes  
d) Watchdog Timer (WDT) Reset (during  
execution)  
e) Brown-out Reset (BOR)  
f) RESETInstruction  
The RCON register also has a control bit for setting  
interrupt priority (IPEN). Interrupt priority is discussed  
in Section 10.0 “Interrupts”.  
g) Stack Full Reset  
h) Stack Underflow Reset  
This section discusses Resets generated by MCLR,  
POR and BOR and covers the operation of the various  
start-up timers. Stack Reset events are covered in  
Section 6.1.6.4 “Stack Full and Underflow Resets”.  
WDT Resets are covered in Section 24.2 “Watchdog  
Timer (WDT)”.  
A simplified block diagram of the on-chip Reset circuit  
is shown in Figure 5-1.  
FIGURE 5-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack Full/Underflow Reset  
External Reset  
Stack  
Pointer  
MCLR  
( )_IDLE  
Sleep  
WDT  
Time-out  
VDD Rise  
Detect  
POR Pulse  
VDD  
Brown-out  
Reset  
(1)  
S
PWRT  
32 μs  
Chip_Reset  
65.5 ms  
PWRT  
11-Bit Ripple Counter  
R
Q
INTRC  
Note 1: The ENVREG pin must be tied high to enable Brown-out Reset. The Brown-out Reset is provided by the on-chip  
voltage regulator when there is insufficient source voltage to maintain regulation.  
© 2009 Microchip Technology Inc.  
DS39663F-page 47  
PIC18F87J10 FAMILY  
REGISTER 5-1:  
RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed (set by firmware only)  
0= The RESET instruction was executed causing a device Reset (must be set in software after a  
Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
1= Set by power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-Down Detection Flag bit  
1= Set by power-up or by the CLRWDTinstruction  
0= Set by execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= A Power-on Reset has not occurred (set by firmware only)  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred (set by firmware only)  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: It is recommended that the POR bit be set after a Power-on Reset has been detected, so that subsequent  
Power-on Resets may be detected.  
2: If the on-chip voltage regulator is disabled, BOR remains ‘0’ at all times. See Section 5.4.1 “Detecting  
BOR” for more information.  
3: Brown-out Reset is said to have occurred when BOR is ‘0’ and POR is ‘1’ (assuming that POR was set to  
1’ by software immediately after a Power-on Reset.  
DS39663F-page 48  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 5-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
5.2  
Master Clear (MCLR)  
The MCLR pin provides a method for triggering a hard  
external Reset of the device. A Reset is generated by  
holding the pin low. PIC18 extended microcontroller  
devices have a noise filter in the MCLR Reset path  
which detects and ignores small pulses.  
VDD  
VDD  
D
R
The MCLR pin is not driven low by any internal Resets,  
including the WDT.  
R1  
MCLR  
PIC18F87J10  
C
5.3  
Power-on Reset (POR)  
A Power-on Reset condition is generated on-chip  
whenever VDD rises above a certain threshold. This  
allows the device to start in the initialized state when  
VDD is adequate for operation.  
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
To take advantage of the POR circuitry, tie the MCLR  
pin through a resistor (1 kΩ to 10 kΩ) to VDD. This will  
eliminate external RC components usually needed to  
create a Power-on Reset delay. A minimum rise rate for  
VDD is specified (parameter D004). For a slow rise  
time, see Figure 5-2.  
2: R < 40 kΩ is recommended to make sure that  
the voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 1 kΩ will limit any current flowing into  
MCLR from external capacitor C, in the event  
of MCLR/VPP pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
When the device starts normal operation (i.e., exits the  
Reset condition), device operating parameters  
(voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
5.4.1  
DETECTING BOR  
The BOR bit always resets to ‘0’ on any BOR or POR  
event. This makes it difficult to determine if a BOR  
event has occurred just by reading the state of BOR  
alone. A more reliable method is to simultaneously  
check the state of both POR and BOR. This assumes  
that the POR bit is reset to ‘1’ in software immediately  
after any POR event. If BOR is ‘0’ while POR is ‘1’, it  
can be reliably assumed that a BOR event has  
occurred.  
POR events are captured by the POR bit (RCON<1>).  
The state of the bit is set to ‘0’ whenever a POR occurs;  
it does not change for any other Reset event. POR is  
not reset to ‘1’ by any hardware event. To capture  
multiple events, the user manually resets the bit to ‘1’  
in software following any POR.  
5.4  
Brown-out Reset (BOR)  
If the voltage regulator is disabled, Brown-out Reset  
functionality is disabled. In this case, the BOR bit  
cannot be used to determine a BOR event. The BOR  
bit is still cleared by a POR event.  
The PIC18F87J10 family of devices incorporate a  
simple BOR function when the internal regulator is  
enabled (ENVREG pin is tied to VDD). Any drop of VDD  
below VBOR (parameter D005) for greater than time  
TBOR (parameter 35) will reset the device. A Reset may  
or may not occur if VDD falls below VBOR for less than  
TBOR. The chip will remain in Brown-out Reset until  
VDD rises above VBOR.  
Once a BOR has occurred, the Power-up Timer will  
keep the chip in Reset for TPWRT (parameter 33). If  
VDD drops below VBOR while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be initialized. Once VDD  
rises above VBOR, the Power-up Timer will execute the  
additional time delay.  
© 2009 Microchip Technology Inc.  
DS39663F-page 49  
PIC18F87J10 FAMILY  
5.5.1  
TIME-OUT SEQUENCE  
5.5  
Power-up Timer (PWRT)  
If enabled, the PWRT time-out is invoked after the POR  
pulse has cleared. The total time-out will vary based on  
the status of the PWRT. Figure 5-3, Figure 5-4,  
Figure 5-5 and Figure 5-6 all depict time-out  
sequences on power-up with the Power-up Timer  
enabled.  
PIC18F87J10 family devices incorporate an on-chip  
Power-up Timer (PWRT) to help regulate the Power-on  
Reset process. The PWRT is always enabled. The  
main function is to ensure that the device voltage is  
stable before code is executed.  
The Power-up Timer (PWRT) of the PIC18F87J10 family  
devices is an 11-bit counter which uses the INTRC  
source as the clock input. This yields an approximate  
time interval of 2048 x 32 μs = 65.6 ms. While the  
PWRT is counting, the device is held in Reset.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the PWRT will expire. Bringing  
MCLR high will begin execution immediately  
(Figure 5-5). This is useful for testing purposes, or to  
synchronize more than one PIC18FXXXX device  
operating in parallel.  
The power-up time delay depends on the INTRC clock  
and will vary from chip-to-chip due to temperature and  
process variation. See DC parameter 33 for details.  
FIGURE 5-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
INTERNAL RESET  
FIGURE 5-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
INTERNAL RESET  
DS39663F-page 50  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 5-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
INTERNAL RESET  
FIGURE 5-6:  
SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)  
3.3V  
0V  
1V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
INTERNAL RESET  
© 2009 Microchip Technology Inc.  
DS39663F-page 51  
PIC18F87J10 FAMILY  
Table 5-2 describes the Reset states for all of the  
Special Function Registers. These are categorized by  
Power-on and Brown-out Resets, Master Clear and  
WDT Resets and WDT wake-ups.  
5.6  
Reset State of Registers  
Most registers are unaffected by a Reset. Their status  
is unknown on POR and unchanged by all other  
Resets. The other registers are forced to a “Reset  
state” depending on the type of Reset that occurred.  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal  
operation. Status bits from the RCON register, RI, TO,  
PD, POR and BOR, are set or cleared differently in  
different Reset situations, as indicated in Table 5-1.  
These bits are used in software to determine the nature  
of the Reset.  
TABLE 5-1:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
RCON Register  
STKPTR Register  
Program  
Condition  
Counter(1)  
RI  
TO  
PD  
POR  
BOR  
STKFUL STKUNF  
Power-on Reset  
RESETInstruction  
Brown-out  
0000h  
0000h  
0000h  
0000h  
1
0
1
u
1
u
1
1
1
u
1
u
0
u
u
u
0
u
0
u
0
u
u
u
0
u
u
u
MCLR during power-managed  
Run modes  
MCLR during power-managed  
Idle modes and Sleep mode  
0000h  
0000h  
0000h  
u
u
u
1
0
u
0
u
u
u
u
u
u
u
u
u
u
u
u
u
u
WDT time-out during full-power  
or power-managed Run modes  
MCLR during full-power  
execution  
Stack Full Reset (STVREN = 1)  
0000h  
0000h  
u
u
u
u
u
u
u
u
u
u
1
u
u
1
Stack Underflow Reset  
(STVREN = 1)  
Stack Underflow Error (not an  
actual Reset, STVREN = 0)  
0000h  
u
u
u
0
u
0
u
u
u
u
u
u
1
u
WDT time-out during  
power-managed Idle or Sleep  
modes  
PC + 2  
Interrupt exit from  
PC + 2  
u
u
0
u
u
u
u
power-managed modes  
Legend: u= unchanged  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
DS39663F-page 52  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 5-2:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction  
Stack Resets  
TOSU  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 1111  
1100 0000  
N/A  
---0 0000  
0000 0000  
0000 0000  
uu-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 1111  
1100 0000  
N/A  
---0 uuuu(1)  
uuuu uuuu(1)  
uuuu uuuu(1)  
uu-u uuuu(1)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
N/A  
TOSH  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
FSR0L  
WREG  
INDF1  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
FSR1H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
---- 0000  
---- uuuu  
uuuu uuuu  
---- 0000  
---- uuuu  
uuuu uuuu  
---- uuuu  
FSR1L  
BSR  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 5-1 for Reset value for specific condition.  
© 2009 Microchip Technology Inc.  
DS39663F-page 53  
PIC18F87J10 FAMILY  
TABLE 5-2:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
RESET Instruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
INDF2  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
N/A  
N/A  
N/A  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
0--- q-00  
---- ---0  
0--1 1100  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
--00 0000  
0-00 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
0000 0000  
uuuu uuuu  
1111 1111  
0--- q-00  
---- ---0  
0--q qquu  
uuuu uuuu  
uuuu uuuu  
u0uu uuuu  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0-00 0000  
--00 0000  
0-00 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
u--- q-uu  
---- ---u  
u--u qquu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
--uu uuuu  
u-uu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
WDTCON  
RCON(4)  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
SSP1BUF  
SSP1ADD  
SSP1STAT  
SSP1CON1  
SSP1CON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 5-1 for Reset value for specific condition.  
DS39663F-page 54  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 5-2:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction  
Stack Resets  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
CCPR3H  
CCPR3L  
CCP3CON  
ECCP1AS  
CVRCON  
CMCON  
TMR3H  
TMR3L  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0111  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 ----  
0000 0000  
0000 0000  
xxxx xxxx  
0000 0010  
0000 000x  
---- ----  
---0 x00-  
1111 1111  
0000 0000  
0000 0000  
11-- 1-11  
00-- 0-00  
00-- 0-00  
1111 1111  
0000 0000  
0000 0000  
0-00 --00  
-0-- ----  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0111  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 ----  
0000 0000  
0000 0000  
uuuu uuuu  
0000 0010  
0000 000x  
---- ----  
---0 u00-  
1111 1111  
0000 0000  
0000 0000  
11-- 1-11  
00-- 0-00  
00-- 0-00  
1111 1111  
0000 0000  
0000 0000  
0-00 --00  
-0-- ----  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu ----  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- ----  
---0 u00-  
uuuu uuuu  
uuuu uuuu(3)  
uuuu uuuu  
uu-- u-uu  
uu-- u-uu(3)  
uu-- u-uu  
uuuu uuuu  
uuuu uuuu(3)  
uuuu uuuu  
u-uu --uu  
-u-- ----  
T3CON  
PSPCON  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
EECON2  
EECON1  
IPR3  
PIR3  
PIE3  
IPR2  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
MEMCON  
OSCTUNE  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 5-1 for Reset value for specific condition.  
© 2009 Microchip Technology Inc.  
DS39663F-page 55  
PIC18F87J10 FAMILY  
TABLE 5-2:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
RESET Instruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
TRISJ  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
1111 1111  
1111 1111  
---1 1111  
1111 111-  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
--11 1111  
xxxx xxxx  
xxxx xxxx  
---x xxxx  
xxxx xxx-  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
--xx xxxx  
xxxx xxxx  
0000 xxxx  
111x xxxx  
x000 000-  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
--0x 0000  
0000 0000  
01-0 0-00  
0000 0000  
01-0 0-00  
1111 1111  
1111 1111  
---1 1111  
1111 111-  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
--11 1111  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuu-  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
111u uuuu  
x000 000-  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--0u 0000  
0000 0000  
01-0 0-00  
0000 0000  
01-0 0-00  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuu-  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuu-  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuu-  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uu-u u-uu  
uuuu uuuu  
uu-u u-uu  
TRISH  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
LATJ  
LATH  
LATG  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA  
PORTJ  
PORTH  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
SPBRGH1  
BAUDCON1  
SPBRG2  
BAUDCON2  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 5-1 for Reset value for specific condition.  
DS39663F-page 56  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 5-2:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction  
Stack Resets  
ECCP1DEL  
TMR4  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
PIC18F6XJ1X PIC18F8XJ1X  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
PR4  
T4CON  
CCPR4H  
CCPR4L  
CCP4CON  
CCPR5H  
CCPR5L  
CCP5CON  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
RCSTA2  
ECCP3AS  
ECCP3DEL  
ECCP2AS  
ECCP2DEL  
SSP2BUF  
SSP2ADD  
SSP2STAT  
SSP2CON1  
SSP2CON2  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 5-1 for Reset value for specific condition.  
© 2009 Microchip Technology Inc.  
DS39663F-page 57  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 58  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
6.1  
Program Memory Organization  
6.0  
MEMORY ORGANIZATION  
PIC18 microcontrollers implement a 21-bit program  
counter which is capable of addressing a 2-Mbyte  
program memory space. Accessing a location between  
the upper boundary of the physically implemented  
memory and the 2-Mbyte address will return all ‘0’s (a  
NOPinstruction).  
There are two types of memory in PIC18 Flash  
microcontroller devices:  
• Program Memory  
• Data RAM  
As Harvard architecture devices, the data and program  
memories use separate busses; this allows for  
concurrent access of the two memory spaces.  
The entire PIC18F87J10 family offers a range of  
on-chip Flash program memory sizes, from 32 Kbytes  
(up to 16,384 single-word instructions) to 128 Kbytes  
(65,536 single-word instructions). The program  
memory maps for individual family members are shown  
in Figure 6-3.  
Additional detailed information on the operation of the  
Flash program memory is provided in Section 7.0  
“Flash Program Memory”.  
FIGURE 6-1:  
MEMORY MAPS FOR PIC18F87J10 FAMILY DEVICES  
PC<20:0>  
21  
CALL, CALLW, RCALL,  
RETURN, RETFIE, RETLW,  
ADDULNK, SUBULNK  
Stack Level 1  
Stack Level 31  
PIC18FX5J10  
PIC18FX5J15  
PIC18FX6J10  
PIC18FX6J15  
PIC18FX7J10  
000000h  
On-Chip  
Memory  
On-Chip  
Memory  
On-Chip  
Memory  
On-Chip  
Memory  
On-Chip  
Memory  
005FFFh  
007FFFh  
Config. Words  
Config. Words  
00BFFFh  
00FFFFh  
Config. Words  
Config. Words  
017FFFh  
01FFFFh  
Config. Words  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
1FFFFFh  
Note:  
Sizes of memory areas are not to scale. Sizes of program memory areas are enhanced to show detail.  
© 2009 Microchip Technology Inc.  
DS39663F-page 59  
PIC18F87J10 FAMILY  
6.1.1  
HARD MEMORY VECTORS  
6.1.2  
FLASH CONFIGURATION WORDS  
All PIC18 devices have a total of three hard-coded  
return vectors in their program memory space. The  
Reset vector address is the default value to which the  
program counter returns on all device Resets; it is  
located at 0000h.  
Because PIC18F87J10 family devices do not have per-  
sistent configuration memory, the top four words of  
on-chip program memory are reserved for configuration  
information. On Reset, the configuration information is  
copied into the Configuration registers.  
PIC18 devices also have two interrupt vector  
addresses for the handling of high-priority and  
low-priority interrupts. The high-priority interrupt vector  
is located at 0008h and the low-priority interrupt vector  
is at 0018h. Their locations in relation to the program  
memory map are shown in Figure 6-2.  
The Configuration Words are stored in their program  
memory location in numerical order, starting with the  
lower byte of CONFIG1 at the lowest address and end-  
ing with the upper byte of CONFIG4. For these devices,  
only Configuration Words, CONFIG1 through  
CONFIG3, are used; CONFIG4 is reserved. The actual  
addresses of the Flash Configuration Word for devices  
in the PIC18F87J10 family are shown in Table 6-1.  
Their location in the memory map is shown with the  
other memory vectors in Figure 6-2.  
FIGURE 6-2:  
HARD VECTOR AND  
CONFIGURATION WORD  
LOCATIONS FOR  
PIC18F87J10 FAMILY  
DEVICES  
Additional details on the device Configuration Words  
are provided in Section 24.1 “Configuration Bits”.  
TABLE 6-1:  
FLASH CONFIGURATION  
WORD FOR PIC18F87J10  
FAMILY DEVICES  
0000h  
Reset Vector  
High-Priority Interrupt Vector  
Low-Priority Interrupt Vector  
0008h  
0018h  
Program  
Memory  
(Kbytes)  
Configuration  
Word  
Addresses  
Device  
PIC18F65J10  
PIC18F85J10  
PIC18F65J15  
PIC18F85J15  
PIC18F66J10  
PIC18F86J10  
PIC18F66J15  
PIC18F86J15  
PIC18F67J10  
PIC18F87J10  
32  
48  
7FF8h to 7FFFh  
BFF8h to BFFFh  
FFF8h to FFFFh  
On-Chip  
Program Memory  
64  
17FF8h to to  
17FFFh  
(Top of Memory-7)  
(Top of Memory)  
Flash Configuration Words  
96  
1FFF8h to to  
1FFFFh  
128  
Read ‘0’  
1FFFFFh  
Legend:  
(Top of Memory) represents upper boundary  
of on-chip program memory space (see  
Figure 6-1 for device-specific values).  
Shaded area represents unimplemented  
memory. Areas are not shown to scale.  
DS39663F-page 60  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
• The Extended Microcontroller Mode allows  
access to both internal and external program  
memories as a single block. The device can  
access its entire on-chip program memory; above  
this, the device accesses external program  
memory up to the 2-Mbyte program space limit.  
Execution automatically switches between the  
two memories as required.  
6.1.3  
PIC18F8XJ10/8XJ15 PROGRAM  
MEMORY MODES  
The 80-pin devices in this family can address up to a  
total of 2 Mbytes of program memory. This is achieved  
through the external memory bus. There are two  
distinct operating modes available to the controllers:  
• Microcontroller (MC)  
• Extended Microcontroller (EMC)  
The setting of the EMB Configuration bits also controls  
the address bus width of the external memory bus. This  
is covered in more detail in Section 8.0 “External  
Memory Bus”.  
The program memory mode is determined by setting  
the EMB Configuration bits (CONFIG3L<5:4>), as  
shown in Register 6-1. (See also Section 24.1  
“Configuration Bits” for additional details on the  
device Configuration bits.)  
In all modes, the microcontroller has complete access  
to data RAM.  
The program memory modes operate as follows:  
Figure 6-3 compares the memory maps of the different  
program memory modes. The differences between  
on-chip and external memory access limitations are  
more fully explained in Table 6-2.  
• The Microcontroller Mode accesses only on-chip  
Flash memory. Attempts to read above the top of  
on-chip memory causes a read of all ‘0’s (a NOP  
instruction).  
The Microcontroller mode is also the only operating  
mode available to 64-pin devices.  
REGISTER 6-1:  
CONFIG3L: CONFIGURATION REGISTER 3 LOW  
R/WO-1  
WAIT  
R/WO-1  
BW  
R/WO-1  
EMB1  
R/WO-1  
EMB0  
R/WO-1  
EASHFT  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value after erase  
bit 7  
Wait: External Bus Wait Enable bit  
1= Wait states on the external bus are disabled  
0= Wait states on the external bus are enabled and selected by MEMCON<5:4>  
bit 6  
BW: Data Bus Width Select bit  
1= 16-Bit Data Width modes  
0= 8-Bit Data Width modes  
bit 5-4  
EMB<1:0>: External Memory Bus Configuration bits  
11= Microcontroller mode, external bus disabled  
10= Extended Microcontroller mode, 12-bit address width for external bus  
01= Extended Microcontroller mode, 16-bit address width for external bus  
00= Extended Microcontroller mode, 20-bit address width for external bus  
bit 3  
EASHFT: External Address Bus Shift Enable bit  
1= Address shifting enabled – external address bus is shifted to start at 000000h  
0= Address shifting disabled – external address bus reflects the PC value  
bit 2-0  
Unimplemented: Read as ‘0’  
© 2009 Microchip Technology Inc.  
DS39663F-page 61  
PIC18F87J10 FAMILY  
To avoid this, the Extended Microcontroller mode  
implements an address shifting option to enable auto-  
matic address translation. In this mode, addresses  
presented on the external bus are shifted down by the  
size of the on-chip program memory and are remapped  
to start at 0000h. This allows the complete use of the  
external memory device’s memory space.  
6.1.4  
EXTENDED MICROCONTROLLER  
MODE AND ADDRESS SHIFTING  
By default, devices in Extended Microcontroller mode  
directly present the program counter value on the  
external address bus for those addresses in the range  
of the external memory space. In practical terms, this  
means addresses in the external memory device below  
the top of on-chip memory are unavailable.  
FIGURE 6-3:  
MEMORY MAPS FOR PIC18F87J10 FAMILY PROGRAM MEMORY MODES  
(1)  
(2)  
Extended Microcontroller Mode  
Microcontroller Mode  
Extended Microcontroller Mode  
(2)  
with Address Shifting  
On-Chip  
Memory  
Space  
On-Chip  
Memory  
Space  
External  
Memory  
Space  
External  
Memory  
Space  
On-Chip  
Memory  
Space  
000000h  
000000h  
000000h  
On-Chip  
Program  
Memory  
On-Chip  
Program  
Memory  
On-Chip  
Program  
Memory  
No  
Access  
(Top of Memory)  
(Top of Memory) + 1  
(Top of Memory)  
(Top of Memory) + 1  
(Top of Memory)  
(Top of Memory) + 1  
External  
Memory  
Mapped  
to  
External  
Memory  
Space  
Reads  
0’s  
Mapped  
to  
External  
Memory  
Space  
External  
Memory  
1FFFFFh –  
(Top of Memory)  
1FFFFFh  
1FFFFFh  
1FFFFFh  
Legend:  
(Top of Memory) represents upper boundary of on-chip program memory space (see Figure 6-1 for device-specific  
values). Shaded areas represent unimplemented, or inaccessible areas, depending on the mode.  
Note 1: This mode is the only available mode on 64-pin devices and the default on 80-pin devices.  
2: These modes are only available on 80-pin devices.  
TABLE 6-2:  
MEMORY ACCESS FOR PIC18F8XJ10/8XJ15 PROGRAM MEMORY MODES  
Internal Program Memory External Program Memory  
Execution Table Read Table Write Execution Table Read Table Write  
Operating Mode  
From  
From  
To  
From  
From  
To  
Microcontroller  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No Access  
Yes  
No Access  
Yes  
No Access  
Yes  
Extended Microcontroller  
DS39663F-page 62  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
The stack operates as a 31-word by 21-bit RAM and a  
5-bit Stack Pointer, STKPTR. The stack space is not  
part of either program or data space. The Stack Pointer  
is readable and writable and the address on the top of  
the stack is readable and writable through the  
Top-of-Stack Special Function Registers. Data can also  
be pushed to, or popped from the stack, using these  
registers.  
6.1.5  
PROGRAM COUNTER  
The Program Counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21 bits wide  
and is contained in three separate 8-bit registers. The  
low byte, known as the PCL register, is both readable  
and writable. The high byte, or PCH register, contains  
the PC<15:8> bits; it is not directly readable or writable.  
Updates to the PCH register are performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits; it is also not  
directly readable or writable. Updates to the PCU  
register are performed through the PCLATU register.  
A CALLtype instruction causes a push onto the stack.  
The Stack Pointer is first incremented and the location  
pointed to by the Stack Pointer is written with the  
contents of the PC (already pointing to the instruction  
following the CALL). A RETURNtype instruction causes  
a pop from the stack. The contents of the location  
pointed to by the STKPTR are transferred to the PC  
and then the Stack Pointer is decremented.  
The contents of PCLATH and PCLATU are transferred  
to the program counter by any operation that writes  
PCL. Similarly, the upper two bytes of the program  
counter are transferred to PCLATH and PCLATU by an  
operation that reads PCL. This is useful for computed  
offsets to the PC (see Section 6.1.8.1 “Computed  
GOTO”).  
The Stack Pointer is initialized to ‘00000’ after all  
Resets. There is no RAM associated with the location  
corresponding to a Stack Pointer value of ‘00000’; this  
is only a Reset value. Status bits indicate if the stack is  
full, has overflowed or has underflowed.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the Least Significant bit of PCL is fixed to  
a value of ‘0’. The PC increments by 2 to address  
sequential instructions in the program memory.  
6.1.6.1  
Only the top of the return address stack (TOS) is read-  
able and writable. set of three registers,  
Top-of-Stack Access  
A
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
TOSU:TOSH:TOSL, hold the contents of the stack  
location pointed to by the STKPTR register  
(Figure 6-4). This allows users to implement a software  
stack if necessary. After a CALL, RCALLor interrupt  
(and ADDULNK and SUBULNK instructions if the  
extended instruction set is enabled), the software can  
6.1.6  
RETURN ADDRESS STACK  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC is  
pushed onto the stack when a CALLor RCALLinstruc-  
tion is executed, or an interrupt is Acknowledged. The  
PC value is pulled off the stack on a RETURN, RETLW  
or a RETFIE instruction (and on ADDULNK and  
SUBULNKinstructions if the extended instruction set is  
enabled). PCLATU and PCLATH are not affected by  
any of the RETURNor CALLinstructions.  
read  
the  
pushed  
value  
by  
reading  
the  
TOSU:TOSH:TOSL registers. These values can be  
placed on a user-defined software stack. At return time,  
the software can return these values to  
TOSU:TOSH:TOSL and do a return.  
The user must disable the global interrupt enable bits  
while accessing the stack to prevent inadvertent stack  
corruption.  
FIGURE 6-4:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack<20:0>  
Stack Pointer  
Top-of-Stack Registers  
11111  
11110  
11101  
STKPTR<4:0>  
TOSU TOSH TOSL  
00010  
00h  
1Ah  
34h  
00011  
00010  
00001  
00000  
001A34h  
000D58h  
Top-of-Stack  
© 2009 Microchip Technology Inc.  
DS39663F-page 63  
PIC18F87J10 FAMILY  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and set the STKUNF bit, while the Stack  
Pointer remains at zero. The STKUNF bit will remain  
set until cleared by software or until a POR occurs.  
6.1.6.2  
Return Stack Pointer (STKPTR)  
The STKPTR register (Register 6-2) contains the Stack  
Pointer value, the STKFUL (Stack Full) status bit and  
the STKUNF (Stack Underflow) status bit. The value of  
the Stack Pointer can be 0 through 31. The Stack  
Pointer increments before values are pushed onto the  
stack and decrements after values are popped off the  
stack. On Reset, the Stack Pointer value will be zero.  
The user may read and write the Stack Pointer value.  
This feature can be used by a Real-Time Operating  
System (RTOS) for return stack maintenance.  
Note:  
Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the Reset vector, where the  
stack conditions can be verified and  
appropriate actions can be taken. This is  
not the same as a Reset, as the contents  
of the SFRs are not affected.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit is cleared by software or by a  
POR.  
6.1.6.3  
PUSHand POPInstructions  
Since the Top-of-Stack is readable and writable, the  
ability to push values onto the stack and pull values off  
the stack, without disturbing normal program execu-  
tion, is a desirable feature. The PIC18 instruction set  
includes two instructions, PUSH and POP, that permit  
the TOS to be manipulated under software control.  
TOSU, TOSH and TOSL can be modified to place data  
or a return address on the stack.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (Stack Over-  
flow Reset Enable) Configuration bit. (Refer to  
Section 24.1 “Configuration Bits” for a description of  
the device Configuration bits.) If STVREN is set  
(default), the 31st push will push the (PC + 2) value  
onto the stack, set the STKFUL bit and reset the  
device. The STKFUL bit will remain set and the Stack  
Pointer will be set to zero.  
The PUSHinstruction places the current PC value onto  
the stack. This increments the Stack Pointer and loads  
the current PC value onto the stack.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the Stack Pointer will increment to 31.  
Any additional pushes will not overwrite the 31st push  
and the STKPTR will remain at 31.  
The POP instruction discards the current TOS by  
decrementing the Stack Pointer. The previous value  
pushed onto the stack then becomes the TOS value.  
REGISTER 6-2:  
STKPTR: STACK POINTER REGISTER  
R/C-0  
STKFUL(1)  
bit 7  
R/C-0  
STKUNF(1)  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
STKFUL: Stack Full Flag bit(1)  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit(1)  
1= Stack underflow occurred  
0= Stack underflow did not occur  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
SP<4:0>: Stack Pointer Location bits  
Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.  
DS39663F-page 64  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
6.1.6.4  
Stack Full and Underflow Resets  
6.1.8  
LOOK-UP TABLES IN PROGRAM  
MEMORY  
Device Resets on stack overflow and stack underflow  
conditions are enabled by setting the STVREN bit in  
Configuration Register 1L. When STVREN is set, a full  
or underflow condition will set the appropriate STKFUL  
or STKUNF bit and then cause a device Reset. When  
STVREN is cleared, a full or underflow condition will set  
the appropriate STKFUL or STKUNF bit, but not cause  
a device Reset. The STKFUL or STKUNF bit is cleared  
by the user software or a Power-on Reset.  
There may be programming situations that require the  
creation of data structures, or look-up tables, in  
program memory. For PIC18 devices, look-up tables  
can be implemented in two ways:  
• Computed GOTO  
Table Reads  
6.1.8.1  
Computed GOTO  
6.1.7  
FAST REGISTER STACK  
A computed GOTOis accomplished by adding an offset  
to the program counter. An example is shown in  
Example 6-2.  
A Fast Register Stack is provided for the STATUS,  
WREG and BSR registers to provide a “fast return”  
option for interrupts. This stack is only one level deep  
and is neither readable nor writable. It is loaded with the  
current value of the corresponding register when the  
processor vectors for an interrupt. All interrupt sources  
will push values into the Stack registers. The values in  
the registers are then loaded back into the working  
registers if the RETFIE, FAST instruction is used to  
return from the interrupt.  
A look-up table can be formed with an ADDWF PCL  
instruction and a group of RETLW nninstructions. The  
W register is loaded with an offset into the table before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCLinstruction. The next  
instruction executed will be one of the RETLW nn  
instructions that returns the value ‘nn’ to the calling  
function.  
If both low and high-priority interrupts are enabled, the  
Stack registers cannot be used reliably to return from  
low-priority interrupts. If a high-priority interrupt occurs  
while servicing a low-priority interrupt, the Stack  
register values stored by the low-priority interrupt will  
be overwritten. In these cases, users must save the key  
registers in software during a low-priority interrupt.  
The offset value (in WREG) specifies the number of  
bytes that the program counter should advance and  
should be multiples of 2 (LSb = 0).  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
If interrupt priority is not used, all interrupts may use the  
Fast Register Stack for returns from interrupt. If no  
interrupts are used, the Fast Register Stack can be  
used to restore the STATUS, WREG and BSR registers  
at the end of a subroutine call. To use the Fast Register  
Stack for a subroutine call, a CALL label, FAST  
instruction must be executed to save the STATUS,  
WREG and BSR registers to the Fast Register Stack. A  
RETURN, FASTinstruction is then executed to restore  
these registers from the Fast Register Stack.  
EXAMPLE 6-2:  
COMPUTED GOTO USING  
AN OFFSET VALUE  
OFFSET, W  
TABLE  
MOVF  
CALL  
ORG  
TABLE  
nn00h  
ADDWF  
RETLW  
RETLW  
RETLW  
.
PCL  
nnh  
nnh  
nnh  
.
Example 6-1 shows a source code example that uses  
the Fast Register Stack during a subroutine call and  
return.  
.
6.1.8.2  
Table Reads  
A better method of storing data in program memory  
allows two bytes of data to be stored in each instruction  
location.  
EXAMPLE 6-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
CALL SUB1, FAST  
Look-up table data may be stored two bytes per  
program word while programming. The Table Pointer  
(TBLPTR) specifies the byte address and the Table  
Latch (TABLAT) contains the data that is read from the  
program memory. Data is transferred from program  
memory one byte at a time.  
SUB1  
RETURN FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
Table read operation is discussed further in  
Section 7.1 “Table Reads and Table Writes”.  
© 2009 Microchip Technology Inc.  
DS39663F-page 65  
PIC18F87J10 FAMILY  
6.2.2  
INSTRUCTION FLOW/PIPELINING  
6.2  
PIC18 Instruction Cycle  
An “Instruction Cycle” consists of four Q cycles, Q1  
through Q4. The instruction fetch and execute are pipe-  
lined in such a manner that a fetch takes one instruction  
cycle, while the decode and execute takes another  
instruction cycle. However, due to the pipelining, each  
instruction effectively executes in one cycle. If an  
instruction causes the program counter to change (e.g.,  
GOTO), then two cycles are required to complete the  
instruction (Example 6-3).  
6.2.1  
CLOCKING SCHEME  
The microcontroller clock input, whether from an  
internal or external source, is internally divided by four  
to generate four non-overlapping quadrature clocks  
(Q1, Q2, Q3 and Q4). Internally, the program counter is  
incremented on every Q1; the instruction is fetched  
from the program memory and latched into the instruc-  
tion register during Q4. The instruction is decoded and  
executed during the following Q1 through Q4. The  
clocks and instruction execution flow are shown in  
Figure 6-5.  
A fetch cycle begins with the Program Counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the Instruction Register (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 6-5:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Q4  
Internal  
Phase  
Clock  
PC  
PC  
PC + 2  
PC + 4  
OSC2/CLKO  
(RC mode)  
Execute INST (PC – 2)  
Fetch INST (PC)  
Execute INST (PC)  
Fetch INST (PC + 2)  
Execute INST (PC + 2)  
Fetch INST (PC + 4)  
EXAMPLE 6-3:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush (NOP)  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction  
is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
DS39663F-page 66  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
The CALL and GOTO instructions have the absolute  
program memory address embedded into the instruc-  
tion. Since instructions are always stored on word  
boundaries, the data contained in the instruction is a  
word address. The word address is written to PC<20:1>  
which accesses the desired byte address in program  
memory. Instruction #2 in Figure 6-6 shows how the  
instruction, GOTO 0006h, is encoded in the program  
memory. Program branch instructions, which encode a  
relative address offset, operate in the same manner. The  
offset value stored in a branch instruction represents the  
number of single-word instructions that the PC will be  
offset by. Section 25.0 “Instruction Set Summary”  
provides further details of the instruction set.  
6.2.3  
INSTRUCTIONS IN PROGRAM  
MEMORY  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte of an instruction  
word is always stored in a program memory location  
with an even address (LSB = 0). To maintain alignment  
with instruction boundaries, the PC increments in steps  
of 2 and the LSB will always read ‘0’ (see Section 6.1.5  
“Program Counter”).  
Figure 6-6 shows an example of how instruction words  
are stored in the program memory.  
FIGURE 6-6:  
INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
Byte Locations →  
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Instruction 1:  
Instruction 2:  
MOVLW  
GOTO  
055h  
0006h  
0Fh  
EFh  
F0h  
C1h  
F4h  
55h  
03h  
00h  
23h  
56h  
Instruction 3:  
MOVFF  
123h, 456h  
and used by the instruction sequence. If the first word  
is skipped for some reason and the second word is  
executed by itself, a NOP is executed instead. This is  
necessary for cases when the two-word instruction is  
preceded by a conditional instruction that changes the  
PC. Example 6-4 shows how this works.  
6.2.4  
TWO-WORD INSTRUCTIONS  
The standard PIC18 instruction set has four two-word  
instructions: CALL, MOVFF, GOTO and LSFR. In all  
cases, the second word of the instructions always has  
1111’ as its four Most Significant bits; the other 12 bits  
are literal data, usually a data memory address.  
Note:  
See Section 6.5 “Program Memory and  
the Extended Instruction Set” for  
information on two-word instructions in the  
extended instruction set.  
The use of ‘1111’ in the 4 MSbs of an instruction  
specifies a special form of NOP. If the instruction is  
executed in proper sequence – immediately after the  
first word – the data in the second word is accessed  
EXAMPLE 6-4:  
CASE 1:  
TWO-WORD INSTRUCTIONS  
Object Code  
Source Code  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
CASE 2:  
TSTFSZ  
MOVFF  
REG1  
REG1, REG2 ; No, skip this word  
; Execute this word as a NOP  
; continue code  
; is RAM location 0?  
ADDWF  
REG3  
Object Code  
Source Code  
TSTFSZ  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
REG1  
; is RAM location 0?  
MOVFF  
REG1, REG2 ; Yes, execute this word  
; 2nd word of instruction  
ADDWF  
REG3  
; continue code  
© 2009 Microchip Technology Inc.  
DS39663F-page 67  
PIC18F87J10 FAMILY  
6.3.1  
BANK SELECT REGISTER  
6.3  
Data Memory Organization  
Large areas of data memory require an efficient  
addressing scheme to make rapid access to any  
address possible. Ideally, this means that an entire  
address does not need to be provided for each read or  
write operation. For PIC18 devices, this is accom-  
plished with a RAM banking scheme. This divides the  
memory space into 16 contiguous banks of 256 bytes.  
Depending on the instruction, each location can be  
addressed directly by its full 12-bit address, or an 8-bit  
low-order address and a 4-bit Bank Pointer.  
Note:  
The operation of some aspects of data  
memory are changed when the PIC18  
extended instruction set is enabled. See  
Section 6.6 “Data Memory and the  
Extended Instruction Set” for more  
information.  
The data memory in PIC18 devices is implemented as  
static RAM. Each register in the data memory has a  
12-bit address, allowing up to 4096 bytes of data  
memory. The memory space is divided into as many as  
16 banks that contain 256 bytes each. The  
PIC18FX5J10/X5J15/X6J10 devices, with up to  
64 Kbytes of program memory, implement 8 complete  
banks for a total of 2048 bytes. PIC18FX6J15 and  
PIC18FX7J10 devices, with 96 or 128 Kbytes of  
program memory, implement all available banks and  
provide 3936 bytes of data memory available to the  
user. Figure 6-7 and Figure 6-8 show the data memory  
organization for the devices.  
Most instructions in the PIC18 instruction set make use  
of the Bank Pointer, known as the Bank Select Register  
(BSR). This SFR holds the 4 Most Significant bits of a  
location’s address; the instruction itself includes the  
8 Least Significant bits. Only the four lower bits of the  
BSR are implemented (BSR<3:0>). The upper four bits  
are unused; they will always read ‘0’ and cannot be  
written to. The BSR can be loaded directly by using the  
MOVLBinstruction.  
The value of the BSR indicates the bank in data  
memory. The 8 bits in the instruction show the location  
in the bank and can be thought of as an offset from the  
bank’s lower boundary. The relationship between the  
BSR’s value and the bank division in data memory is  
shown in Figure 6-9.  
The data memory contains Special Function Registers  
(SFRs) and General Purpose Registers (GPRs). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratchpad operations in the user’s  
application. Any read of an unimplemented location will  
read as ‘0’s.  
Since up to 16 registers may share the same low-order  
address, the user must always be careful to ensure that  
the proper bank is selected before performing a data  
read or write. For example, writing what should be  
program data to an 8-bit address of F9h while the BSR  
is 0Fh, will end up resetting the program counter.  
The instruction set and architecture allow operations  
across all banks. The entire data memory may be  
accessed by Direct, Indirect or Indexed Addressing  
modes. Addressing modes are discussed later in this  
section.  
While any bank can be selected, only those banks that  
are actually implemented can be read or written to.  
Writes to unimplemented banks are ignored, while  
reads from unimplemented banks will return ‘0’s. Even  
so, the STATUS register will still be affected as if the  
operation was successful. The data memory map in  
Figure 6-7 indicates which banks are implemented.  
To ensure that commonly used registers (select SFRs  
and select GPRs) can be accessed in a single cycle,  
PIC18 devices implement an Access Bank. This is a  
256-byte memory space that provides fast access to  
select SFRs and the lower portion of GPR Bank 0 with-  
out using the BSR. Section 6.3.2 “Access Bank”  
provides a detailed description of the Access RAM.  
In the core PIC18 instruction set, only the MOVFF  
instruction fully specifies the 12-bit address of the  
source and target registers. This instruction ignores the  
BSR completely when it executes. All other instructions  
include only the low-order address as an operand and  
must use either the BSR or the Access Bank to locate  
their target registers.  
DS39663F-page 68  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 6-7:  
DATA MEMORY MAP FOR PIC18FX5J10/X5J15/X6J10 DEVICES  
When a = 0:  
The BSR is ignored and the  
BSR<3:0>  
Data Memory Map  
Access Bank is used.  
00h  
000h  
05Fh  
060h  
0FFh  
100h  
Access RAM  
GPR  
The first 96 bytes are general  
purpose RAM (from Bank 0).  
= 0000  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Bank 4  
Bank 5  
Bank 6  
Bank 7  
FFh  
00h  
The second 160 bytes are  
Special Function Registers  
(from Bank 15).  
= 0001  
= 0010  
= 0011  
= 0100  
= 0101  
= 0110  
= 0111  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
1FFh  
200h  
FFh  
00h  
When a = 1:  
The BSR specifies the bank  
used by the instruction.  
FFh  
00h  
2FFh  
300h  
3FFh  
400h  
FFh  
00h  
FFh  
00h  
4FFh  
500h  
FFh  
00h  
5FFh  
600h  
FFh  
00h  
6FFh  
700h  
Access Bank  
00h  
FFh  
00h  
7FFh  
800h  
Access RAM Low  
5Fh  
60h  
Access RAM High  
(SFRs)  
FFh  
= 1000  
Bank 8  
Unused  
to  
Read as ‘0’  
= 1110  
= 1111  
Bank 14  
Bank 15  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
FFh  
00h  
Unused  
SFR  
FFh  
© 2009 Microchip Technology Inc.  
DS39663F-page 69  
PIC18F87J10 FAMILY  
FIGURE 6-8:  
DATA MEMORY MAP FOR PIC18FX6J15/X7J10 DEVICES  
When a = 0:  
The BSR is ignored and the  
BSR<3:0>  
Data Memory Map  
Access Bank is used.  
00h  
000h  
05Fh  
060h  
0FFh  
100h  
The first 96 bytes are general  
purpose RAM (from Bank 0).  
Access RAM  
GPR  
= 0000  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Bank 4  
Bank 5  
Bank 6  
Bank 7  
Bank 8  
Bank 9  
Bank 10  
Bank 11  
Bank 12  
Bank 13  
Bank 14  
Bank 15  
The remaining 160 bytes are  
Special Function Registers  
(from Bank 15).  
FFh  
00h  
= 0001  
= 0010  
= 0011  
= 0100  
= 0101  
= 0110  
= 0111  
= 1000  
= 1001  
= 1010  
= 1011  
= 1100  
= 1101  
= 1110  
= 1111  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
1FFh  
200h  
FFh  
00h  
When a = 1:  
The BSR specifies the bank  
used by the instruction.  
FFh  
00h  
2FFh  
300h  
3FFh  
400h  
FFh  
00h  
FFh  
00h  
4FFh  
500h  
FFh  
00h  
5FFh  
600h  
Access Bank  
FFh  
00h  
6FFh  
700h  
00h  
Access RAM Low  
5Fh  
60h  
FFh  
00h  
7FFh  
800h  
Access RAM High  
(SFRs)  
FFh  
FFh  
00h  
8FFh  
900h  
FFh  
00h  
9FFh  
A00h  
FFh  
00h  
AFFh  
B00h  
FFh  
00h  
BFFh  
C00h  
FFh  
00h  
CFFh  
D00h  
FFh  
00h  
DFFh  
E00h  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
FFh  
00h  
GPR  
SFR  
FFh  
DS39663F-page 70  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 6-9:  
USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)  
Data Memory  
Bank 0  
(2)  
(1)  
From Opcode  
BSR  
000h  
100h  
7
0
7
0
00h  
0
0
0
0
0
0
1
0
1
1
1
1
1
1
1
1
FFh  
00h  
Bank 1  
(2)  
Bank Select  
FFh  
00h  
200h  
300h  
Bank 2  
FFh  
00h  
Bank 3  
through  
Bank 13  
FFh  
00h  
E00h  
Bank 14  
Bank 15  
FFh  
00h  
F00h  
FFFh  
FFh  
Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to  
the registers of the Access Bank.  
2: The MOVFFinstruction embeds the entire 12-bit address in the instruction.  
Using this “forced” addressing allows the instruction to  
operate on a data address in a single cycle without  
updating the BSR first. For 8-bit addresses of 60h and  
above, this means that users can evaluate and operate  
on SFRs more efficiently. The Access RAM below 60h  
is a good place for data values that the user might need  
to access rapidly, such as immediate computational  
results or common program variables. Access RAM  
also allows for faster and more code efficient context  
saving and switching of variables.  
6.3.2  
ACCESS BANK  
While the use of the BSR with an embedded 8-bit  
address allows users to address the entire range of  
data memory, it also means that the user must always  
ensure that the correct bank is selected. Otherwise,  
data may be read from or written to the wrong location.  
This can be disastrous if a GPR is the intended target  
of an operation, but an SFR is written to instead.  
Verifying and/or changing the BSR for each read or  
write to data memory can become very inefficient.  
The mapping of the Access Bank is slightly different  
when the extended instruction set is enabled (XINST  
Configuration bit = 1). This is discussed in more detail  
in Section 6.6.3 “Mapping the Access Bank in  
Indexed Literal Offset Mode”.  
To streamline access for the most commonly used data  
memory locations, the data memory is configured with  
an Access Bank, which allows users to access a  
mapped block of memory without specifying a BSR.  
The Access Bank consists of the first 96 bytes of  
memory (00h-5Fh) in Bank 0 and the last 160 bytes of  
memory (60h-FFh) in Bank 15. The lower half is known  
as the “Access RAM” and is composed of GPRs. The  
upper half is where the device’s SFRs are mapped.  
These two areas are mapped contiguously in the  
Access Bank and can be addressed in a linear fashion  
by an 8-bit address (Figure 6-7).  
6.3.3  
GENERAL PURPOSE  
REGISTER FILE  
PIC18 devices may have banked memory in the GPR  
area. This is data RAM which is available for use by all  
instructions. GPRs start at the bottom of Bank 0  
(address 000h) and grow upwards towards the bottom  
of the SFR area. GPRs are not initialized by a  
Power-on Reset and are unchanged on all other  
Resets.  
The Access Bank is used by core PIC18 instructions  
that include the Access RAM bit (the ‘a’ parameter in  
the instruction). When ‘a’ is equal to ‘1’, the instruction  
uses the BSR and the 8-bit address included in the  
opcode for the data memory address. When ‘a’ is ‘0’,  
however, the instruction is forced to use the Access  
Bank address map; the current value of the BSR is  
ignored entirely.  
© 2009 Microchip Technology Inc.  
DS39663F-page 71  
PIC18F87J10 FAMILY  
The SFRs can be classified into two sets: those  
associated with the “core” device functionality (ALU,  
Resets and interrupts) and those related to the  
peripheral functions. The Reset and Interrupt registers  
are described in their respective chapters, while the  
ALU’s STATUS register is described later in this  
section. Registers related to the operation of the  
peripheral features are described in the chapter for that  
peripheral.  
6.3.4  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral modules for controlling  
the desired operation of the device. These registers are  
implemented as static RAM. SFRs start at the top of  
data memory (FFFh) and extend downward to occupy  
more than the top half of Bank 15 (F60h to FFFh). A list  
of these registers is given in Table 6-3 and Table 6-4.  
The SFRs are typically distributed among the  
peripherals whose functions they control. Unused SFR  
locations are unimplemented and read as ‘0’s.  
TABLE 6-3:  
SPECIAL FUNCTION REGISTER MAP FOR PIC18F87J10 FAMILY DEVICES  
Address  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
(1)  
FFFh  
FFEh  
FFDh  
TOSU  
TOSH  
TOSL  
FDFh  
INDF2  
FBFh  
FBEh  
CCPR1H  
CCPR1L  
F9Fh  
F9Eh  
F9Dh  
IPR1  
PIR1  
PIE1  
F7Fh SPBRGH1  
F7Eh BAUDCON1  
F7Dh SPBRGH2  
(1)  
(1)  
FDEh POSTINC2  
FDDh POSTDEC2  
FBDh CCP1CON  
(1)  
(3)  
FFCh  
FFBh  
FFAh  
FF9h  
FF8h  
FF7h  
FF6h  
FF5h  
FF4h  
FF3h  
FF2h  
FF1h  
FF0h  
FEFh  
STKPTR  
PCLATU  
PCLATH  
PCL  
FDCh PREINC2  
FBCh  
FBBh  
CCPR2H  
CCPR2L  
F9Ch MEMCON  
F7Ch BAUDCON2  
(1)  
(2)  
FDBh PLUSW2  
F9Bh OSCTUNE  
F7Bh  
F7Ah  
(3)  
(2)  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FD5h  
FD4h  
FD3h  
FD2h  
FD1h  
FD0h  
FCFh  
FCEh  
FCDh  
FCCh  
FCBh  
FCAh  
FC9h  
FC8h  
FSR2H  
FSR2L  
FBAh CCP2CON  
F9Ah  
F99h  
F98h  
F97h  
F96h  
F95h  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
F88h  
F87h  
F86h  
F85h  
F84h  
F83h  
F82h  
F81h  
F80h  
TRISJ  
TRISH  
(3)  
FB9h  
FB8h  
CCPR3H  
CCPR3L  
F79h ECCP1DEL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
STATUS  
TMR0H  
TMR0L  
T0CON  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
F78h  
F77h  
F76h  
F75h  
F74h  
TMR4  
PR4  
FB7h CCP3CON  
FB6h ECCP1AS  
T4CON  
CCPR4H  
CCPR4L  
FB5h  
FB4h  
FB3h  
FB2h  
FB1h  
FB0h  
FAFh  
FAEh  
FADh  
FACh  
FABh  
FAAh  
FA9h  
FA8h  
FA7h  
FA6h  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
CVRCON  
CMCON  
TMR3H  
(2)  
OSCCON  
F73h CCP4CON  
(2)  
INTCON  
INTCON2  
INTCON3  
TMR3L  
F72h  
F71h  
CCPR5H  
CCPR5L  
(3)  
WDTCON  
RCON  
T3CON  
LATJ  
(3)  
PSPCON  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
LATH  
F70h CCP5CON  
(1)  
INDF0  
TMR1H  
TMR1L  
T1CON  
TMR2  
LATG  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA  
F6Fh  
F6Eh  
F6Dh  
F6Ch  
F6Bh  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
RCSTA2  
(1)  
(1)  
FEEh POSTINC0  
FEDh POSTDEC0  
(1)  
FECh PREINC0  
(1)  
FEBh PLUSW0  
PR2  
(2)  
FEAh  
FE9h  
FE8h  
FE7h  
FSR0H  
FSR0L  
WREG  
T2CON  
SSP1BUF  
SSP1ADD  
F6Ah ECCP3AS  
F69h ECCP3DEL  
F68h ECCP2AS  
F67h ECCP2DEL  
(2)  
(2)  
(3)  
PORTJ  
PORTH  
(1)  
(3)  
INDF1  
FC7h SSP1STAT  
FC6h SSP1CON1  
FC5h SSP1CON2  
EECON2  
EECON1  
IPR3  
(1)  
(1)  
FE6h POSTINC1  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
F66h  
SSP2BUF  
FE5h POSTDEC1  
F65h SSP2ADD  
F64h SSP2STAT  
F63h SSP2CON1  
(1)  
FE4h PREINC1  
FC4h  
FC3h  
FC2h  
FC1h  
FC0h  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
PIR3  
(1)  
FE3h PLUSW1  
PIE3  
FE2h  
FE1h  
FE0h  
FSR1H  
FSR1L  
BSR  
IPR2  
F62h SSP2CON2  
(2)  
PIR2  
F61h  
F60h  
(2)  
PIE2  
Note 1: This is not a physical register.  
2: Unimplemented registers are read as ‘0’.  
3: This register is not available on 64-pin devices.  
DS39663F-page 72  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 6-4:  
File Name  
TOSU  
REGISTER FILE SUMMARY (PIC18F87J10 FAMILY)  
Value on  
POR, BOR on page:  
Details  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
53, 63  
53, 63  
53, 63  
53, 64  
53, 63  
53, 63  
53, 63  
53, 93  
53, 93  
53, 93  
53, 93  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
bit 21(1)  
SP4  
SP3  
SP2  
SP1  
SP0  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
bit 21  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
xxxx xxxx 53, 107  
xxxx xxxx 53, 107  
0000 000x 53, 111  
1111 1111 53, 112  
1100 0000 53, 113  
Product Register Low Byte  
GIE/GIEH  
RBPU  
PEIE/GIEL  
INTEDG0  
INT1IP  
TMR0IE  
INTEDG1  
INT3IE  
INT0IE  
INTEDG2  
INT2IE  
RBIE  
INTEDG3  
INT1IE  
TMR0IF  
TMR0IP  
INT3IF  
INT0IF  
INT3IP  
INT2IF  
RBIF  
RBIP  
INT2IP  
INT1IF  
Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)  
N/A  
N/A  
N/A  
N/A  
N/A  
53, 79  
53, 80  
53, 80  
53, 80  
53, 80  
POSTINC0  
POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)  
PREINC0  
PLUSW0  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) –  
value of FSR0 offset by W  
FSR0H  
FSR0L  
Indirect Data Memory Address Pointer 0 High Byte  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
N/A  
53, 79  
53, 79  
53  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
WREG  
INDF1  
Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)  
53, 79  
53, 80  
53, 80  
53, 80  
53, 80  
POSTINC1  
N/A  
POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)  
N/A  
PREINC1  
PLUSW1  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)  
N/A  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) –  
value of FSR1 offset by W  
N/A  
FSR1H  
FSR1L  
BSR  
Indirect Data Memory Address Pointer 1 High Byte  
---- xxxx  
xxxx xxxx  
---- 0000  
N/A  
53, 79  
53, 79  
53, 68  
54, 79  
54, 80  
54, 80  
54, 80  
54, 80  
Indirect Data Memory Address Pointer 1 Low Byte  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)  
POSTINC2  
N/A  
POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)  
N/A  
PREINC2  
PLUSW2  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)  
N/A  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) –  
value of FSR2 offset by W  
N/A  
FSR2H  
FSR2L  
STATUS  
Indirect Data Memory Address Pointer 2 High Byte  
---- xxxx  
xxxx xxxx  
---x xxxx  
54, 79  
54, 79  
54, 78  
Indirect Data Memory Address Pointer 2 Low Byte  
N
OV  
Z
DC  
C
Legend:  
Note 1:  
2:  
x= unknown, u= unchanged, -= unimplemented, q= value depends on condition  
Bit 21 of the PC is only available in Serial Programming modes.  
These bits and/or registers are only available in 80-pin devices; otherwise, they are unimplemented and read as ‘0’. Reset values are  
shown for 80-pin devices.  
3:  
This register and its bits are not implemented in 64-pin devices. In 80-pin devices, the bits are unwritable and read as ‘0’ in Microcontroller  
mode.  
4:  
5:  
The PLLEN bit is available only when either ECPLL or HSPLL Oscillator modes are selected; otherwise, the bit is read as ‘0’.  
Reset value is ‘0’ when Two-Speed Start-up is enabled and ‘1’ if disabled.  
© 2009 Microchip Technology Inc.  
DS39663F-page 73  
PIC18F87J10 FAMILY  
TABLE 6-4:  
REGISTER FILE SUMMARY (PIC18F87J10 FAMILY) (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0H  
TMR0L  
Timer0 Register High Byte  
Timer0 Register Low Byte  
0000 0000 54, 153  
xxxx xxxx 54, 153  
1111 1111 54, 151  
T0CON  
OSCCON  
WDTCON  
RCON  
TMR0ON  
IDLEN  
T08BIT  
T0CS  
T0SE  
PSA  
OSTS(5)  
T0PS2  
T0PS1  
SCS1  
T0PS0  
SCS0  
0--- q-00  
--- ---0  
36, 54  
SWDTEN  
BOR  
54, 287  
IPEN  
RI  
TO  
PD  
POR  
0--1 1100 48, 54,  
123  
TMR1H  
TMR1L  
T1CON  
TMR2  
Timer1 Register High Byte  
Timer1 Register Low Byte  
xxxx xxxx 54, 159  
xxxx xxxx 54, 159  
RD16  
T1RUN  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR2ON  
TMR1CS  
T2CKPS1  
TMR1ON 0000 0000 54, 155  
0000 0000 54, 162  
Timer2 Register  
PR2  
Timer2 Period Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0  
MSSP1 Receive Buffer/Transmit Register  
1111 1111 54, 162  
T2CON  
SSP1BUF  
T2CKPS0 -000 0000 54, 161  
xxxx xxxx 54, 203,  
238  
SSP1ADD  
SSP1STAT  
MSSP1 Address Register (I2C™ Slave mode), MSSP1 Baud Rate Reload Register (I2C Master mode)  
0000 0000 54, 203  
SMP  
WCOL  
GCEN  
CKE  
D/A  
P
S
R/W  
UA  
BF  
0000 0000 54, 194,  
204  
SSP1CON1  
SSP1CON2  
SSPOV  
ACKSTAT  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
SEN  
0000 0000 54, 195,  
204  
ACKDT/  
ACKEN/  
RCEN/  
PEN/  
RSEN/  
0000 0000 54, 206  
ADMSK5  
ADMSK4  
ADMSK3  
ADMSK2  
ADMSK1  
ADRESH  
ADRESL  
A/D Result Register High Byte  
A/D Result Register Low Byte  
xxxx xxxx 54, 269  
xxxx xxxx 54, 269  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
CCPR3H  
CCPR3L  
CCP3CON  
ECCP1AS  
CVRCON  
CMCON  
TMR3H  
ADCAL  
CHS3  
VCFG1  
ACQT2  
CHS2  
VCFG0  
ACQT1  
CHS1  
PCFG3  
ACQT0  
CHS0  
PCFG2  
ADCS2  
GO/DONE  
PCFG1  
ADON  
PCFG0  
ADCS0  
0-00 0000 54, 261  
--00 0000 54, 262  
0-00 0000 54, 263  
xxxx xxxx 55, 192  
xxxx xxxx 55, 192  
0000 0000 55, 177  
xxxx xxxx 55, 192  
xxxx xxxx 55, 192  
0000 0000 55, 177  
xxxx xxxx 55, 192  
xxxx xxxx 55, 192  
0000 0000 55, 177  
ADFM  
ADCS1  
Capture/Compare/PWM Register 1 High Byte  
Capture/Compare/PWM Register 1 Low Byte  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3  
CCP2M3  
CCP3M3  
CCP1M2  
CCP2M2  
CCP3M2  
CCP1M1  
CCP2M1  
CCP3M1  
CCP1M0  
CCP2M0  
CCP3M0  
Capture/Compare/PWM Register 2 High Byte  
Capture/Compare/PWM Register 2 Low Byte  
P2M1  
P2M0  
DC2B1  
DC2B0  
Capture/Compare/PWM Register 1 High Byte  
Capture/Compare/PWM Register 1 Low Byte  
P3M1  
P3M0  
DC3B1  
DC3B0  
ECCP1ASE ECCP1AS2 ECCP1AS1 ECCP1AS0 PSS1AC1  
PSS1AC0 PSS1BD1(2) PSS1BD0(2) 0000 0000 55, 189  
CVREN  
C2OUT  
CVROE  
C1OUT  
CVRR  
C2INV  
CVRSS  
C1INV  
CVR3  
CIS  
CVR2  
CM2  
CVR1  
CM1  
CVR0  
CM0  
0000 0000 55, 277  
0000 0111 55, 271  
xxxx xxxx 55, 165  
xxxx xxxx 55, 165  
Timer3 Register High Byte  
Timer3 Register Low Byte  
TMR3L  
T3CON  
RD16  
IBF  
T3CCP2  
OBF  
T3CKPS1  
IBOV  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON 0000 0000 55, 163  
PSPCON  
SPBRG1  
RCREG1  
PSPMODE  
0000 ---- 55, 149  
0000 0000 55, 243  
EUSART1 Baud Rate Generator Register Low Byte  
EUSART1 Receive Register  
0000 0000 55, 251,  
252  
Legend:  
Note 1:  
2:  
x= unknown, u= unchanged, -= unimplemented, q= value depends on condition  
Bit 21 of the PC is only available in Serial Programming modes.  
These bits and/or registers are only available in 80-pin devices; otherwise, they are unimplemented and read as ‘0’. Reset values are  
shown for 80-pin devices.  
3:  
This register and its bits are not implemented in 64-pin devices. In 80-pin devices, the bits are unwritable and read as ‘0’ in Microcontroller  
mode.  
4:  
5:  
The PLLEN bit is available only when either ECPLL or HSPLL Oscillator modes are selected; otherwise, the bit is read as ‘0’.  
Reset value is ‘0’ when Two-Speed Start-up is enabled and ‘1’ if disabled.  
DS39663F-page 74  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 6-4:  
REGISTER FILE SUMMARY (PIC18F87J10 FAMILY) (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXREG1  
EUSART1 Transmit Register  
xxxx xxxx 55, 249,  
250  
TXSTA1  
RCSTA1  
EECON2  
EECON1  
IPR3  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SENDB  
ADDEN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
0000 0010 55, 240  
0000 000x 55, 241  
Program Memory Control Register 2 (not a physical register)  
---- ----  
---0 x00-  
55  
55  
BCL2IP  
BCL2IF  
BCL2IE  
CMIP  
CMIF  
CMIE  
ADIP  
ADIF  
FREE  
TX2IP  
TX2IF  
TX2IE  
WRERR  
TMR4IP  
TMR4IF  
TMR4IE  
BCL1IP  
BCL1IF  
BCL1IE  
SSP1IP  
SSP1IF  
SSP1IE  
WREN  
CCP5IP  
CCP5IF  
CCP5IE  
WR  
SSP2IP  
SSP2IF  
SSP2IE  
OSCFIP  
OSCFIF  
OSCFIE  
PSPIP  
PSPIF  
PSPIE  
EBDIS  
RC2IP  
RC2IF  
RC2IE  
CCP4IP  
CCP4IF  
CCP4IE  
TMR3IP  
TMR3IF  
TMR3IE  
TMR2IP  
TMR2IF  
TMR2IE  
WM1  
CCP3IP  
CCP3IF  
CCP3IE  
CCP2IP  
CCP2IF  
CCP2IE  
TMR1IP  
TMR1IF  
TMR1IE  
WM0  
1111 1111 55, 123  
0000 0000 55, 117  
0000 0000 55, 120  
11-- 1-11 55, 121  
00-- 0-00 55, 115  
00-- 0-00 55, 120  
1111 1111 55, 120  
0000 0000 55, 114  
0000 0000 55, 117  
PIR3  
PIE3  
IPR2  
PIR2  
PIE2  
IPR1  
RC1IP  
RC1IF  
RC1IE  
WAIT1  
TX1IP  
TX1IF  
TX1IE  
WAIT0  
CCP1IP  
CCP1IF  
CCP1IE  
PIR1  
PIE1  
ADIE  
MEMCON(3)  
OSCTUNE  
TRISJ(2)  
TRISH(2)  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
LATJ(2)  
LATH(2)  
LATG  
0-00 --00  
-0-- ----  
55, 96  
33, 55  
PLLEN(4)  
TRISJ6  
TRISH6  
TRISJ7  
TRISH7  
TRISJ5  
TRISH5  
TRISJ4  
TRISH4  
TRISG4  
TRISF4  
TRISE4  
TRISD4  
TRISC4  
TRISB4  
TRISA4  
LATJ4  
LATH4  
LATG4  
LATF4  
LATE4  
LATD4  
LATC4  
LATB4  
LATA4  
RJ4  
TRISJ3  
TRISH3  
TRISG3  
TRISF3  
TRISE3  
TRISD3  
TRISC3  
TRISB3  
TRISA3  
LATJ3  
LATH3  
LATG3  
LATF3  
LATE3  
LATD3  
LATC3  
LATB3  
LATA3  
RJ3  
TRISJ2  
TRISH2  
TRISG2  
TRISF2  
TRISE2  
TRISD2  
TRISC2  
TRISB2  
TRISA2  
LATJ2  
LATH2  
LATG2  
LATF2  
LATE2  
LATD2  
LATC2  
LATB2  
LATA2  
RJ2  
TRISJ1  
TRISH1  
TRISG1  
TRISF1  
TRISE1  
TRISD1  
TRISC1  
TRISB1  
TRISA1  
LATJ1  
LATH1  
LATG1  
LATF1  
LATE1  
LATD1  
LATC1  
LATB1  
LATA1  
RJ1  
TRISJ0  
TRISH0  
TRISG0  
1111 1111 56, 147  
1111 1111 56, 145  
---1 1111 56, 143  
1111 111- 56, 141  
1111 1111 56, 139  
1111 1111 56, 136  
1111 1111 56, 133  
1111 1111 56, 130  
--11 1111 56, 127  
xxxx xxxx 56, 147  
xxxx xxxx 56, 145  
---x xxxx 56, 143  
xxxx xxx- 56, 141  
xxxx xxxx 56, 139  
xxxx xxxx 56, 136  
xxxx xxxx 56, 133  
xxxx xxxx 56, 130  
--xx xxxx 56, 127  
xxxx xxxx 56, 147  
0000 xxxx 56, 145  
111x xxxx 56, 143  
x000 000- 56, 141  
xxxx xxxx 56, 139  
xxxx xxxx 56, 136  
xxxx xxxx 56, 133  
xxxx xxxx 56, 130  
--0x 0000 56, 127  
TRISF7  
TRISE7  
TRISD7  
TRISC7  
TRISB7  
TRISF6  
TRISE6  
TRISD6  
TRISC6  
TRISB6  
TRISF5  
TRISE5  
TRISD5  
TRISC5  
TRISB5  
TRISA5  
LATJ5  
LATH5  
TRISE0  
TRISD0  
TRISC0  
TRISB0  
TRISA0  
LATJ0  
LATH0  
LATG0  
LATJ7  
LATH7  
LATJ6  
LATH6  
LATF  
LATF7  
LATE7  
LATD7  
LATC7  
LATB7  
LATF6  
LATE6  
LATD6  
LATC6  
LATB6  
LATF5  
LATE5  
LATD5  
LATC5  
LATB5  
LATA5  
RJ5  
LATE  
LATE0  
LATD0  
LATC0  
LATB0  
LATA0  
RJ0  
LATD  
LATC  
LATB  
LATA  
PORTJ(2)  
PORTH(2)  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
RJ7  
RJ6  
RH7  
RH6  
RH5  
RJPU(2)  
RH4  
RH3  
RH2  
RH1  
RH0  
RDPU  
RF7  
REPU  
RF6  
RG4  
RG3  
RG2  
RG1  
RG0  
RF5  
RF4  
RF3  
RF2  
RF1  
RE7  
RE6  
RE5  
RE4  
RE3  
RE2  
RE1  
RE0  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
Legend:  
Note 1:  
2:  
x= unknown, u= unchanged, -= unimplemented, q= value depends on condition  
Bit 21 of the PC is only available in Serial Programming modes.  
These bits and/or registers are only available in 80-pin devices; otherwise, they are unimplemented and read as ‘0’. Reset values are  
shown for 80-pin devices.  
3:  
This register and its bits are not implemented in 64-pin devices. In 80-pin devices, the bits are unwritable and read as ‘0’ in Microcontroller  
mode.  
4:  
5:  
The PLLEN bit is available only when either ECPLL or HSPLL Oscillator modes are selected; otherwise, the bit is read as ‘0’.  
Reset value is ‘0’ when Two-Speed Start-up is enabled and ‘1’ if disabled.  
© 2009 Microchip Technology Inc.  
DS39663F-page 75  
PIC18F87J10 FAMILY  
TABLE 6-4:  
REGISTER FILE SUMMARY (PIC18F87J10 FAMILY) (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPBRGH1  
BAUDCON1  
SPBRGH2  
BAUDCON2  
ECCP1DEL  
TMR4  
EUSART1 Baud Rate Generator Register High Byte  
ABDOVF RCIDL SCKP  
EUSART2 Baud Rate Generator Register High Byte  
0000 0000 56, 243  
01-0 0-00 56, 242  
0000 0000 56, 243  
01-0 0-00 56, 242  
0000 0000 57, 188  
0000 0000 57, 168  
1111 1111 57, 168  
BRG16  
WUE  
ABDEN  
ABDOVF  
RCIDL  
P1DC6  
SCKP  
BRG16  
P1DC3  
WUE  
ABDEN  
P1DC0  
P1RSEN  
P1DC5  
P1DC4  
P1DC2  
P1DC1  
Timer4 Register  
PR4  
Timer4 Period Register  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0  
T4CON  
TMR4ON  
CCP4M2  
CCP5M2  
T4CKPS1  
CCP4M1  
CCP5M1  
T4CKPS0 -000 0000 57, 167  
xxxx xxxx 57, 170  
CCPR4H  
CCPR4L  
CCP4CON  
CCPR5H  
CCPR5L  
CCP5CON  
SPBRG2  
RCREG2  
Capture/Compare/PWM Register 4 High Byte  
Capture/Compare/PWM Register 4 Low Byte  
xxxx xxxx 57, 170  
DC4B1  
DC4B0  
CCP4M3  
CCP5M3  
CCP4M0  
CCP5M0  
--00 0000 57, 169  
xxxx xxxx 57, 170  
xxxx xxxx 57, 170  
--00 0000 57, 169  
0000 0000 57, 243  
Capture/Compare/PWM Register 5 High Byte  
Capture/Compare/PWM Register 5 Low Byte  
DC5B1  
DC5B0  
EUSART2 Baud Rate Generator Register Low Byte  
EUSART2 Receive Register  
0000 0000 57, 251,  
252  
TXREG2  
EUSART2 Transmit Register  
0000 0000 57, 249,  
250  
TXSTA2  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SENDB  
ADDEN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
0000 0010 57, 240  
0000 000x 57, 241  
RCSTA2  
ECCP3AS  
ECCP3DEL  
ECCP2AS  
ECCP2DEL  
SSP2BUF  
ECCP3ASE ECCP3AS2 ECCP3AS1 ECCP3AS0 PSS3AC1  
P3RSEN P3DC6 P3DC5 P3DC4 P3DC3  
ECCP2ASE ECCP2AS2 ECCP2AS1 ECCP2AS0 PSS2AC1  
P2RSEN P2DC6 P2DC5 P2DC4 P2DC3  
MSSP2 Receive Buffer/Transmit Register  
PSS3AC0  
P3DC2  
PSS3BD1  
P3DC1  
PSS3BD0 0000 0000 57, 189  
P3DC0 0000 0000 57, 188  
PSS2BD0 0000 0000 57, 189  
PSS2AC0  
P2DC2  
PSS2BD1  
P2DC1  
P2DC0  
0000 0000 57, 188  
xxxx xxxx 57, 203,  
238  
SSP2ADD  
SSP2STAT  
MSSP2 Address Register (I2C™ Slave mode), MSSP2 Baud Rate Reload Register (I2C Master mode)  
0000 0000 57, 203  
SMP  
WCOL  
GCEN  
CKE  
D/A  
P
S
R/W  
UA  
BF  
0000 0000 57, 194,  
204  
SSP2CON1  
SSP2CON2  
SSPOV  
ACKSTAT  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
SEN  
0000 0000 57, 206,  
205  
ACKDT/  
ACKEN/  
RCEN/  
PEN/  
RSEN/  
0000 0000 57, 206  
ADMSK5  
ADMSK4  
ADMSK3  
ADMSK2  
ADMSK1  
Legend:  
Note 1:  
2:  
x= unknown, u= unchanged, -= unimplemented, q= value depends on condition  
Bit 21 of the PC is only available in Serial Programming modes.  
These bits and/or registers are only available in 80-pin devices; otherwise, they are unimplemented and read as ‘0’. Reset values are  
shown for 80-pin devices.  
3:  
This register and its bits are not implemented in 64-pin devices. In 80-pin devices, the bits are unwritable and read as ‘0’ in Microcontroller  
mode.  
4:  
5:  
The PLLEN bit is available only when either ECPLL or HSPLL Oscillator modes are selected; otherwise, the bit is read as ‘0’.  
Reset value is ‘0’ when Two-Speed Start-up is enabled and ‘1’ if disabled.  
DS39663F-page 76  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
register then reads back as ‘000u u1uu’. It is recom-  
mended, therefore, that only BCF, BSF, SWAPF, MOVFF  
and MOVWFinstructions are used to alter the STATUS  
register because these instructions do not affect the Z,  
C, DC, OV or N bits in the STATUS register.  
6.3.5  
STATUS REGISTER  
The STATUS register, shown in Register 6.4, contains  
the arithmetic status of the ALU. The STATUS register  
can be the operand for any instruction, as with any  
other register. If the STATUS register is the destination  
for an instruction that affects the Z, DC, C, OV or N bits,  
then the write to these five bits is disabled.  
For other instructions not affecting any Status bits, see  
the instruction set summaries in Table 25-2 and  
Table 25-3.  
These bits are set or cleared according to the device  
logic. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended. For example, CLRF STATUSwill set the Z bit  
but leave the other bits unchanged. The STATUS  
Note: The C and DC bits operate as a Borrow  
and Digit Borrow bit respectively, in  
subtraction.  
REGISTER 6-3:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
N
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
N: Negative bit  
This bit is used for signed arithmetic (2’s complement). It indicates whether the result was negative  
(ALU MSB = 1).  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the 7-bit magnitude  
which causes the sign bit (bit 7 of the result) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit(1)  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
bit 0  
C: Carry/Borrow bit(2)  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the 2’s complement of the second  
operand. For rotate (RRF, RLF) instructions, this bit is loaded with either bit 4 or bit 3 of the source register.  
2: For Borrow, the polarity is reversed. A subtraction is executed by adding the 2’s complement of the second  
operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the  
source register.  
© 2009 Microchip Technology Inc.  
DS39663F-page 77  
PIC18F87J10 FAMILY  
Purpose Register File”), or a location in the Access  
Bank (Section 6.3.2 “Access Bank”) as the data  
source for the instruction.  
6.4  
Data Addressing Modes  
Note:  
The execution of some instructions in the  
core PIC18 instruction set are changed  
when the PIC18 extended instruction set is  
enabled. See Section 6.6 “Data Memory  
and the Extended Instruction Set” for  
more information.  
The Access RAM bit ‘a’ determines how the address is  
interpreted. When ‘a’ is ‘1’, the contents of the BSR  
(Section 6.3.1 “Bank Select Register”) are used with  
the address to determine the complete 12-bit address  
of the register. When ‘a’ is ‘0’, the address is interpreted  
as being a register in the Access Bank. Addressing that  
uses the Access RAM is sometimes also known as  
Direct Forced Addressing mode.  
While the program memory can be addressed in only  
one way – through the program counter – information  
in the data memory space can be addressed in several  
ways. For most instructions, the addressing mode is  
fixed. Other instructions may use up to three modes,  
depending on which operands are used and whether or  
not the extended instruction set is enabled.  
A few instructions, such as MOVFF, include the entire  
12-bit address (either source or destination) in their  
opcodes. In these cases, the BSR is ignored entirely.  
The destination of the operation’s results is determined  
by the destination bit, ‘d’. When ‘d’ is ‘1’, the results are  
stored back in the source register, overwriting its origi-  
nal contents. When ‘d’ is ‘0’, the results are stored in  
the W register. Instructions without the ‘d’ argument  
have a destination that is implicit in the instruction; their  
destination is either the target register being operated  
on or the W register.  
The addressing modes are:  
• Inherent  
• Literal  
• Direct  
• Indirect  
An additional addressing mode, Indexed Literal Offset,  
is available when the extended instruction set is  
enabled (XINST Configuration bit = 1). Its operation is  
discussed in greater detail in Section 6.6.1 “Indexed  
Addressing with Literal Offset”.  
6.4.3  
INDIRECT ADDRESSING  
Indirect Addressing allows the user to access a location  
in data memory without giving a fixed address in the  
instruction. This is done by using File Select Registers  
(FSRs) as pointers to the locations to be read or written  
to. Since the FSRs are themselves located in RAM as  
Special Function Registers, they can also be directly  
manipulated under program control. This makes FSRs  
very useful in implementing data structures such as  
tables and arrays in data memory.  
6.4.1  
INHERENT AND LITERAL  
ADDRESSING  
Many PIC18 control instructions do not need any  
argument at all; they either perform an operation that  
globally affects the device, or they operate implicitly on  
one register. This addressing mode is known as  
Inherent Addressing. Examples include SLEEP, RESET  
and DAW.  
The registers for Indirect Addressing are also  
implemented with Indirect File Operands (INDFs) that  
permit automatic manipulation of the pointer value with  
auto-incrementing, auto-decrementing or offsetting  
with another value. This allows for efficient code using  
loops, such as the example of clearing an entire RAM  
bank in Example 6-5. It also enables users to perform  
Indexed Addressing and other Stack Pointer  
operations for program memory in data memory.  
Other instructions work in a similar way, but require an  
additional explicit argument in the opcode. This is  
known as Literal Addressing mode, because they  
require some literal value as an argument. Examples  
include ADDLWand MOVLW, which respectively, add or  
move a literal value to the W register. Other examples  
include CALL and GOTO, which include a 20-bit  
program memory address.  
EXAMPLE 6-5:  
HOW TO CLEAR RAM  
(BANK 1) USING  
6.4.2  
DIRECT ADDRESSING  
INDIRECT ADDRESSING  
Direct Addressing specifies all or part of the source  
and/or destination address of the operation within the  
opcode itself. The options are specified by the  
arguments accompanying the instruction.  
LFSR  
CLRF  
FSR0, 100h  
;
NEXT  
POSTINC0  
; Clear INDF  
; register then  
; inc pointer  
; All done with  
; Bank1?  
In the core PIC18 instruction set, bit-oriented and  
byte-oriented instructions use some version of Direct  
Addressing by default. All of these instructions include  
some 8-bit Literal Address as their Least Significant  
Byte. This address specifies either a register address in  
one of the banks of data RAM (Section 6.3.3 “General  
BTFSS  
BRA  
FSR0H, 1  
NEXT  
; NO, clear next  
; YES, continue  
CONTINUE  
DS39663F-page 78  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
the SFR space but are not physically implemented.  
Reading or writing to a particular INDF register actually  
accesses its corresponding FSR register pair. A read  
from INDF1, for example, reads the data at the address  
indicated by FSR1H:FSR1L. Instructions that use the  
INDF registers as operands actually use the contents  
of their corresponding FSR as a pointer to the instruc-  
tion’s target. The INDF operand is just a convenient  
way of using the pointer.  
6.4.3.1  
FSR Registers and the  
INDF Operand  
At the core of Indirect Addressing are three sets of  
registers: FSR0, FSR1 and FSR2. Each represents a  
pair of 8-bit registers, FSRnH and FSRnL. The four  
upper bits of the FSRnH register are not used, so each  
FSR pair holds a 12-bit value. This represents a value  
that can address the entire range of the data memory  
in a linear fashion. The FSR register pairs, then, serve  
as pointers to data memory locations.  
Because Indirect Addressing uses a full 12-bit address,  
data RAM banking is not necessary. Thus, the current  
contents of the BSR and the Access RAM bit have no  
effect on determining the target address.  
Indirect Addressing is accomplished with a set of Indi-  
rect File Operands, INDF0 through INDF2. These can  
be thought of as “virtual” registers: they are mapped in  
FIGURE 6-10:  
INDIRECT ADDRESSING  
000h  
Using an instruction with one of the  
Indirect Addressing registers as the  
operand....  
Bank 0  
Bank 1  
ADDWF, INDF1, 1  
100h  
200h  
300h  
Bank 2  
FSR1H:FSR1L  
...uses the 12-bit address stored in  
the FSR pair associated with that  
register....  
7
0
7
0
Bank 3  
through  
Bank 13  
x x x x 1 1 1 1  
1 1 0 0 1 1 0 0  
...to determine the data memory  
location to be used in that operation.  
E00h  
In this case, the FSR1 pair contains  
FCCh. This means the contents of  
location FCCh will be added to that  
of the W register and stored back in  
FCCh.  
Bank 14  
Bank 15  
F00h  
FFFh  
Data Memory  
© 2009 Microchip Technology Inc.  
DS39663F-page 79  
PIC18F87J10 FAMILY  
6.4.3.2  
FSR Registers and POSTINC,  
6.4.3.3  
Operations by FSRs on FSRs  
POSTDEC, PREINC and PLUSW  
Indirect Addressing operations that target other FSRs  
or virtual registers represent special cases. For  
example, using an FSR to point to one of the virtual reg-  
isters will not result in successful operations. As a  
specific case, assume that FSR0H:FSR0L contains  
FE7h, the address of INDF1. Attempts to read the  
value of the INDF1, using INDF0 as an operand, will  
return 00h. Attempts to write to INDF1, using INDF0 as  
the operand, will result in a NOP.  
In addition to the INDF operand, each FSR register pair  
also has four additional indirect operands. Like INDF,  
these are “virtual” registers that cannot be indirectly  
read or written to. Accessing these registers actually  
accesses the associated FSR register pair, but also  
performs a specific action on its stored value. They are:  
• POSTDEC: accesses the FSR value, then  
automatically decrements it by ‘1’ afterwards  
On the other hand, using the virtual registers to write to  
an FSR pair may not occur as planned. In these cases,  
the value will be written to the FSR pair but without any  
incrementing or decrementing. Thus, writing to INDF2  
or POSTDEC2 will write the same value to the  
FSR2H:FSR2L.  
• POSTINC: accesses the FSR value, then  
automatically increments it by ‘1’ afterwards  
• PREINC: increments the FSR value by ‘1’, then  
uses it in the operation  
• PLUSW: adds the signed value of the W register  
(range of -127 to 128) to that of the FSR and uses  
the new value in the operation  
Since the FSRs are physical registers mapped in the  
SFR space, they can be manipulated through all direct  
operations. Users should proceed cautiously when  
working on these registers, particularly if their code  
uses Indirect Addressing.  
In this context, accessing an INDF register uses the  
value in the FSR registers without changing them.  
Similarly, accessing a PLUSW register gives the FSR  
value offset by the value in the W register; neither value  
is actually changed in the operation. Accessing the  
other virtual registers changes the value of the FSR  
registers.  
Similarly, operations by Indirect Addressing are gener-  
ally permitted on all other SFRs. Users should exercise  
the appropriate caution that they do not inadvertently  
change settings that might affect the operation of the  
device.  
Operations on the FSRs with POSTDEC, POSTINC  
and PREINC affect the entire register pair; that is, roll-  
overs of the FSRnL register from FFh to 00h carry over  
to the FSRnH register. On the other hand, results of  
these operations do not change the value of any flags  
in the STATUS register (e.g., Z, N, OV, etc.).  
The PLUSW register can be used to implement a form  
of Indexed Addressing in the data memory space. By  
manipulating the value in the W register, users can  
reach addresses that are fixed offsets from pointer  
addresses. In some applications, this can be used to  
implement some powerful program control structure,  
such as software stacks, inside of data memory.  
DS39663F-page 80  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
When using the extended instruction set, this  
addressing mode requires the following:  
6.5  
Program Memory and the  
Extended Instruction Set  
• The use of the Access Bank is forced (‘a’ = 0);  
and  
The operation of program memory is unaffected by the  
use of the extended instruction set.  
• The file address argument is less than or equal to  
5Fh.  
Enabling the extended instruction set adds five  
additional two-word commands to the existing PIC18  
instruction set: ADDFSR, CALLW, MOVSF, MOVSS and  
SUBFSR. These instructions are executed as described  
in Section 6.2.4 “Two-Word Instructions”.  
Under these conditions, the file address of the  
instruction is not interpreted as the lower byte of an  
address (used with the BSR in Direct Addressing) or as  
an 8-bit address in the Access Bank. Instead, the value  
is interpreted as an offset value to an Address Pointer  
specified by FSR2. The offset and the contents of  
FSR2 are added to obtain the target address of the  
operation.  
6.6  
Data Memory and the Extended  
Instruction Set  
Enabling the PIC18 extended instruction set (XINST  
Configuration bit = 1) significantly changes certain  
aspects of data memory and its addressing. Specifically,  
the use of the Access Bank for many of the core PIC18  
instructions is different; this is due to the introduction of  
a new addressing mode for the data memory space.  
This mode also alters the behavior of Indirect  
Addressing using FSR2 and its associated operands.  
6.6.2  
INSTRUCTIONS AFFECTED BY  
INDEXED LITERAL OFFSET MODE  
Any of the core PIC18 instructions that can use Direct  
Addressing are potentially affected by the Indexed  
Literal Offset Addressing mode. This includes all  
byte-oriented and bit-oriented instructions, or almost  
one-half of the standard PIC18 instruction set. Instruc-  
tions that only use Inherent or Literal Addressing  
modes are unaffected.  
What does not change is just as important. The size of  
the data memory space is unchanged, as well as its  
linear addressing. The SFR map remains the same.  
Core PIC18 instructions can still operate in both Direct  
and Indirect Addressing mode; inherent and literal  
instructions do not change at all. Indirect Addressing  
with FSR0 and FSR1 also remains unchanged.  
Additionally, byte-oriented and bit-oriented instructions  
are not affected if they do not use the Access Bank  
(Access RAM bit is ‘1’) or include a file address of 60h  
or above. Instructions meeting these criteria will  
continue to execute as before. A comparison of the dif-  
ferent possible addressing modes when the extended  
instruction set is enabled is shown in Figure 6-11.  
6.6.1  
INDEXED ADDRESSING WITH  
LITERAL OFFSET  
Enabling the PIC18 extended instruction set changes  
the behavior of Indirect Addressing using the FSR2  
register pair and its associated file operands. Under the  
proper conditions, instructions that use the Access  
Bank – that is, most bit-oriented and byte-oriented  
instructions – can invoke a form of Indexed Addressing  
using an offset specified in the instruction. This special  
addressing mode is known as Indexed Addressing with  
Literal Offset, or Indexed Literal Offset mode.  
Those who desire to use byte-oriented or bit-oriented  
instructions in the Indexed Literal Offset mode should  
note the changes to assembler syntax for this mode.  
This is described in more detail in Section 25.2.1  
“Extended Instruction Syntax”.  
© 2009 Microchip Technology Inc.  
DS39663F-page 81  
PIC18F87J10 FAMILY  
FIGURE 6-11:  
COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND  
BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)  
EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)  
000h  
When a = 0 and f 60h:  
The instruction executes in  
Direct Forced mode. ‘f’ is  
interpreted as a location in the  
Access RAM between 060h  
and FFFh. This is the same as  
locations F60h to FFFh  
(Bank 15) of data memory.  
060h  
100h  
Bank 0  
00h  
60h  
Bank 1  
through  
Bank 14  
Valid range  
for ‘f’  
Locations below 060h are not  
available in this addressing  
mode.  
FFh  
F00h  
Access RAM  
Bank 15  
SFRs  
F60h  
FFFh  
Data Memory  
When a = 0 and f 5Fh:  
000h  
060h  
100h  
Bank 0  
The instruction executes in  
Indexed Literal Offset mode. ‘f’  
is interpreted as an offset to the  
address value in FSR2. The  
two are added together to  
obtain the address of the target  
register for the instruction. The  
address can be anywhere in  
the data memory space.  
001001da ffffffff  
Bank 1  
through  
Bank 14  
FSR2H  
FSR2L  
F00h  
F60h  
Note that in this mode, the  
correct syntax is now:  
Bank 15  
SFRs  
ADDWF [k], d  
where ‘k’ is the same as ‘f’.  
FFFh  
Data Memory  
BSR  
000h  
060h  
100h  
00000000  
When a = 1 (all values of f):  
Bank 0  
The instruction executes in  
Direct mode (also known as  
Direct Long mode). ‘f’ is  
interpreted as a location in  
one of the 16 banks of the data  
memory space. The bank is  
designated by the Bank Select  
Register (BSR). The address  
can be in any implemented  
bank in the data memory  
space.  
001001da ffffffff  
Bank 1  
through  
Bank 14  
F00h  
F60h  
Bank 15  
SFRs  
FFFh  
Data Memory  
DS39663F-page 82  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
Remapping of the Access Bank applies only to opera-  
tions using the Indexed Literal Offset mode. Operations  
that use the BSR (Access RAM bit is ‘1’) will continue  
to use Direct Addressing as before. Any Indirect or  
Indexed Addressing operation that explicitly uses any  
of the indirect file operands (including FSR2) will con-  
tinue to operate as standard Indirect Addressing. Any  
instruction that uses the Access Bank, but includes a  
register address of greater than 05Fh, will use Direct  
Addressing and the normal Access Bank map.  
6.6.3  
MAPPING THE ACCESS BANK IN  
INDEXED LITERAL OFFSET MODE  
The use of Indexed Literal Offset Addressing mode  
effectively changes how the lower part of Access RAM  
(00h to 5Fh) is mapped. Rather than containing just the  
contents of the bottom part of Bank 0, this mode maps  
the contents from Bank 0 and a user-defined “window”  
that can be located anywhere in the data memory  
space. The value of FSR2 establishes the lower bound-  
ary of the addresses mapped into the window, while the  
upper boundary is defined by FSR2 plus 95 (5Fh).  
Addresses in the Access RAM above 5Fh are mapped  
as previously described (see Section 6.3.2 “Access  
Bank”). An example of Access Bank remapping in this  
addressing mode is shown in Figure 6-12.  
6.6.4  
BSR IN INDEXED LITERAL  
OFFSET MODE  
Although the Access Bank is remapped when the  
extended instruction set is enabled, the operation of the  
BSR remains unchanged. Direct Addressing, using the  
BSR to select the data memory bank, operates in the  
same manner as previously described.  
FIGURE 6-12:  
REMAPPING THE ACCESS BANK WITH INDEXED LITERAL  
OFFSET ADDRESSING  
Example Situation:  
000h  
ADDWF f, d, a  
Not Accessible  
05Fh  
FSR2H:FSR2L = 120h  
Bank 0  
Locations in the region  
from the FSR2 Pointer  
(120h) to the pointer plus  
05Fh (17Fh) are mapped  
to the bottom of the  
Access RAM (000h-05Fh).  
100h  
120h  
17Fh  
Window  
Bank 1  
00h  
Bank 1 “Window”  
200h  
5Fh  
60h  
Special Function Regis-  
ters at F60h through FFFh  
are mapped to 60h  
through FFh, as usual.  
Bank 2  
through  
Bank 14  
SFRs  
Bank 0 addresses below  
5Fh are not available in  
this mode. They can still  
be addressed by using the  
BSR.  
FFh  
Access Bank  
F00h  
Bank 15  
SFRs  
F60h  
FFFh  
Data Memory  
© 2009 Microchip Technology Inc.  
DS39663F-page 83  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 84  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
7.1  
Table Reads and Table Writes  
7.0  
FLASH PROGRAM MEMORY  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data RAM:  
The Flash program memory is readable, writable and  
erasable during normal operation over the entire VDD  
range.  
Table Read (TBLRD)  
Table Write (TBLWT)  
A read from program memory is executed on one byte  
at a time. A write to program memory is executed on  
blocks of 64 bytes at a time. Program memory is  
erased in blocks of 1024 bytes at a time. A bulk erase  
operation may not be issued from user code.  
The program memory space is 16 bits wide, while the  
data RAM space is 8 bits wide. Table reads and table  
writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
Writing or erasing program memory will cease  
instruction fetches until the operation is complete. The  
program memory cannot be accessed during the write  
or erase, therefore, code cannot execute. An internal  
programming timer terminates program memory writes  
and erases.  
Table read operations retrieve data from program  
memory and place it into the data RAM space.  
Figure 7-1 shows the operation of a table read with  
program memory and data RAM.  
Table write operations store data from the data memory  
space into holding registers in program memory. The  
procedure to write the contents of the holding registers  
into program memory is detailed in Section 7.5 “Writing  
to Flash Program Memory”. Figure 7-2 shows the  
operation of a table write with program memory and data  
RAM.  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
Table operations work with byte entities. A table block  
containing data, rather than program instructions, is not  
required to be word-aligned. Therefore, a table block can  
start and end at any byte address. If a table write is being  
used to write executable code into program memory,  
program instructions will need to be word-aligned.  
FIGURE 7-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: The Table Pointer register points to a byte in program memory.  
© 2009 Microchip Technology Inc.  
DS39663F-page 85  
PIC18F87J10 FAMILY  
FIGURE 7-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: The Table Pointer actually points to one of 64 holding registers, the address of which is determined by  
TBLPTRL<5:0>. The process for physically writing data to the program memory array is discussed in  
Section 7.5 “Writing to Flash Program Memory”.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set in hardware when the WR bit is set and cleared  
when the internal programming timer expires and the  
write operation is complete.  
7.2  
Control Registers  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• EECON1 register  
• EECON2 register  
• TABLAT register  
• TBLPTR registers  
Note:  
During normal operation, the WRERR is  
read as ‘1’. This can indicate that a write  
operation was prematurely terminated by  
a
Reset, or  
a write operation was  
7.2.1  
EECON1 AND EECON2 REGISTERS  
attempted improperly.  
The EECON1 register (Register 7.2.2) is the control  
register for memory accesses. The EECON2 register is  
not a physical register; it is used exclusively in the  
memory write and erase sequences. Reading  
EECON2 will read all ‘0’s.  
The WR control bit initiates write operations. The bit  
cannot be cleared, only set, in software. It is cleared in  
hardware at the completion of the write operation.  
The FREE bit, when set, will allow a program memory  
erase operation. When FREE is set, the erase  
operation is initiated on the next WR command. When  
FREE is clear, only writes are enabled.  
DS39663F-page 86  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
REGISTER 7-1:  
EECON1: EEPROM CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
U-0  
WRERR  
bit 7  
bit 0  
Legend:  
S = Settable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Erase Enable bit  
1= Erase the program memory block addressed by TBLPTR on the next WR command (cleared by  
completion of erase operation)  
0= Perform write-only  
bit 3  
WRERR: Flash Program Error Flag bit  
1= A write operation is prematurely terminated (any Reset during self-timed programming in normal  
operation or an improper write attempt)  
0= The write operation completed  
bit 2  
bit 1  
WREN: Flash Program Write Enable bit  
1= Allows write cycles to Flash program memory  
0= Inhibits write cycles to Flash program memory  
WR: Write Control bit  
1= Initiates a program memory erase cycle or write cycle  
(The operation is self-timed and the bit is cleared by hardware once the write is complete.  
The WR bit can only be set (not cleared) in software.)  
0= Write cycle is complete  
bit 0  
Unimplemented: Read as ‘0’  
© 2009 Microchip Technology Inc.  
DS39663F-page 87  
PIC18F87J10 FAMILY  
7.2.2  
TABLE LATCH REGISTER (TABLAT)  
7.2.4  
TABLE POINTER BOUNDARIES  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch register is used to  
hold 8-bit data during data transfers between program  
memory and data RAM.  
TBLPTR is used in reads, writes and erases of the  
Flash program memory.  
When a TBLRDis executed, all 22 bits of the TBLPTR  
determine which byte is read from program memory  
into TABLAT.  
7.2.3  
TABLE POINTER REGISTER  
(TBLPTR)  
When a TBLWT is executed, the seven LSbs of the  
Table Pointer register (TBLPTR<6:0>) determine which  
of the 64 program memory holding registers is written  
to. When the timed write to program memory begins  
(via the WR bit), the 12 MSbs of the TBLPTR  
(TBLPTR<21:10>) determine which program memory  
block of 1024 bytes is written to. For more detail, see  
Section 7.5 “Writing to Flash Program Memory”.  
The Table Pointer (TBLPTR) register addresses a byte  
within the program memory. The TBLPTR is comprised  
of three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-  
ters join to form a 22-bit wide pointer. The low-order  
21 bits allow the device to address up to 2 Mbytes of  
program memory space. The 22nd bit allows access to  
the Device ID, the User ID and the Configuration bits.  
When an erase of program memory is executed, the  
12 MSbs of the Table Pointer register point to the  
1024-byte block that will be erased. The Least  
Significant bits are ignored.  
The Table Pointer register, TBLPTR, is used by the  
TBLRDand TBLWTinstructions. These instructions can  
update the TBLPTR in one of four ways based on the  
table operation. These operations are shown in  
Table 7-1. These operations on the TBLPTR only affect  
the low-order 21 bits.  
Figure 7-3 describes the relevant boundaries of  
TBLPTR based on Flash program memory operations.  
TABLE 7-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 7-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
ERASE: TBLPTR<21:10>  
TABLE WRITE: TBLPTR<21:6>  
TABLE READ: TBLPTR<21:0>  
DS39663F-page 88  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TBLPTR points to a byte address in program space.  
Executing TBLRD places the byte pointed to into  
TABLAT. In addition, TBLPTR can be modified  
automatically for the next table read operation.  
7.3  
Reading the Flash Program  
Memory  
The TBLRD instruction is used to retrieve data from  
program memory and places it into data RAM. Table  
reads from program memory are performed one byte at  
a time.  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 7-4  
shows the interface between the internal program  
memory and the TABLAT.  
FIGURE 7-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
(Even Byte Address)  
(Odd Byte Address)  
TBLPTR = xxxxx1  
TBLPTR = xxxxx0  
Instruction Register  
TABLAT  
Read Register  
FETCH  
TBLRD  
(IR)  
EXAMPLE 7-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base  
; address of the word  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
READ_WORD  
TBLRD*+  
MOVF  
MOVWF  
TBLRD*+  
MOVF  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_EVEN  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_ODD  
MOVF  
© 2009 Microchip Technology Inc.  
DS39663F-page 89  
PIC18F87J10 FAMILY  
7.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
7.4  
Erasing Flash Program Memory  
The minimum erase block is 512 words or 1024 bytes.  
Only through the use of an external programmer, or  
through ICSP control, can larger blocks of program  
memory be bulk erased. Word erase in the Flash array  
is not supported.  
The sequence of events for erasing a block of internal  
program memory location is:  
1. Load Table Pointer register with the address of  
the block being erased.  
When initiating an erase sequence from the micro-  
controller itself, a block of 1024 bytes of program  
memory is erased. The Most Significant 12 bits of the  
TBLPTR<21:10> point to the block being erased.  
TBLPTR<9:0> are ignored.  
2. Set the WREN and FREE bits (EECON1<2,4>)  
to enable the erase operation.  
3. Disable interrupts.  
4. Write 55h to EECON2.  
5. Write 0AAh to EECON2.  
The EECON1 register commands the erase operation.  
The WREN bit must be set to enable write operations.  
The FREE bit is set to select an erase operation. For  
protection, the write initiate sequence for EECON2  
must be used.  
6. Set the WR bit. This will begin the erase cycle.  
7. The CPU will stall for duration of the erase for  
TIE (see parameter D133B).  
8. Re-enable interrupts.  
A long write is necessary for erasing the internal Flash.  
Instruction execution is halted while in a long write  
cycle. The long write will be terminated by the internal  
programming timer.  
EXAMPLE 7-2:  
ERASING FLASH PROGRAM MEMORY  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE_BLOCK  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
; enable write to memory  
; enable Erase operation  
; disable interrupts  
Required  
Sequence  
; write 55h  
; write 0AAh  
; start erase (CPU stall)  
; re-enable interrupts  
BSF  
DS39663F-page 90  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
The on-chip timer controls the write time. The  
write/erase voltages are generated by an on-chip  
charge pump, rated to operate over the voltage range  
of the device.  
7.5  
Writing to Flash Program Memory  
The minimum programming block is 32 words or  
64 bytes. Word or byte programming is not supported.  
Table writes are used internally to load the holding  
registers needed to program the Flash memory. There  
are 64 holding registers used by the table writes for  
programming.  
Note 1: Unlike previous PIC devices, members of  
the PIC18F87J10 family do not reset the  
holding registers after a write occurs. The  
holding registers must be cleared or  
Since the Table Latch (TABLAT) is only a single byte, the  
TBLWTinstruction may need to be executed 64 times for  
each programming operation. All of the table write  
operations will essentially be short writes because only  
the holding registers are written. At the end of updating  
the 64 holding registers, the EECON1 register must be  
written to in order to start the programming operation  
with a long write.  
overwritten before  
sequence.  
a
programming  
2: To maintain the endurance of the program  
memory cells, each Flash byte should not  
be programmed more than one time  
between erase operations. Before  
attempting to modify the contents of the  
target cell a second time, a block erase,  
or a bulk erase of the entire memory, must  
be performed.  
The long write is necessary for programming the inter-  
nal Flash. Instruction execution is halted while in a long  
write cycle. The long write will be terminated by the  
internal programming timer.  
FIGURE 7-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
TBLPTR = xxxxx0  
TBLPTR = xxxxx1  
TBLPTR = xxxxx2  
TBLPTR = xxxx3F  
Holding Register  
Holding Register  
Holding Register  
Holding Register  
Program Memory  
8. Disable interrupts.  
7.5.1  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE  
9. Write 55h to EECON2.  
10. Write 0AAh to EECON2.  
The sequence of events for programming an internal  
program memory location should be:  
11. Set the WR bit. This will begin the write cycle.  
12. The CPU will stall for duration of the write for TIW  
(see parameter D133A).  
1. Read 1024 bytes into RAM.  
2. Update data values in RAM as necessary.  
13. Re-enable interrupts.  
3. Load Table Pointer register with address being  
erased.  
14. Repeat steps 6 through 13 until all 1024 bytes  
are written to program memory.  
4. Execute the erase procedure.  
15. Verify the memory (table read).  
5. Load Table Pointer register with address of first  
byte being written, minus 1.  
An example of the required code is shown in  
Example 7-3 on the following page.  
6. Write the 64 bytes into the holding registers with  
auto-increment.  
Note:  
Before setting the WR bit, the Table  
Pointer address needs to be within the  
intended address range of the 64 bytes in  
the holding register.  
7. Set the WREN bit (EECON1<2>) to enable byte  
writes.  
© 2009 Microchip Technology Inc.  
DS39663F-page 91  
PIC18F87J10 FAMILY  
EXAMPLE 7-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base address  
; of the memory block, minus 1  
ERASE_BLOCK  
BSF  
BSF  
BCF  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
0AAh  
; enable write to memory  
; enable Erase operation  
; disable interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BSF  
MOVLW  
MOVWF  
; write 55h  
EECON2  
; write 0AAh  
; start erase (CPU stall)  
; re-enable interrupts  
EECON1, WR  
INTCON, GIE  
D'16'  
WRITE_COUNTER  
; Need to write 16 blocks of 64 to write  
; one erase block of 1024  
RESTART_BUFFER  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
D'64'  
COUNTER  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
; point to buffer  
FILL_BUFFER  
...  
; read the new data from I2C, SPI,  
; PSP, USART, etc.  
WRITE_BUFFER  
MOVLW  
MOVWF  
D’64  
COUNTER  
; number of bytes in holding register  
WRITE_BYTE_TO_HREGS  
MOVFF  
MOVWF  
TBLWT+*  
POSTINC0, WREG  
TABLAT  
; get low byte of buffer data  
; present data to table latch  
; write data, perform a short write  
; to internal TBLWT holding register.  
; loop until buffers are full  
DECFSZ COUNTER  
BRA WRITE_WORD_TO_HREGS  
PROGRAM_MEMORY  
BSF  
BCF  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
0AAh  
; enable write to memory  
; disable interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
Required  
Sequence  
; write 55h  
EECON2  
; write 0AAh  
EECON1, WR  
INTCON, GIE  
EECON1, WREN  
; start program (CPU stall)  
; re-enable interrupts  
; disable write to memory  
BSF  
BCF  
DECFSZ WRITE_COUNTER  
BRA RESTART_BUFFER  
; done with one write cycle  
; if not done replacing the erase block  
DS39663F-page 92  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
7.5.2  
WRITE VERIFY  
7.6  
Flash Program Operation During  
Code Protection  
Depending on the application, good programming  
practice may dictate that the value written to the  
memory should be verified against the original value.  
This should be used in applications where excessive  
writes can stress bits near the specification limit.  
See Section 24.6 “Program Verification and Code  
Protection” for details on code protection of Flash  
program memory.  
7.5.3  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected Reset, the memory  
location just programmed should be verified and repro-  
grammed if needed. If the write operation is interrupted  
by a MCLR Reset or a WDT Time-out Reset during  
normal operation, the user can check the WRERR bit  
and rewrite the location(s) as needed.  
TABLE 7-2:  
Name  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Reset  
Values on  
page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TBLPTRU  
bit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
53  
53  
53  
53  
53  
55  
55  
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
TABLAT  
INTCON  
Program Memory Table Latch  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
WR  
RBIF  
EECON2 Program Memory Control Register 2 (not a physical register)  
EECON1 FREE WRERR WREN  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during program memory access.  
© 2009 Microchip Technology Inc.  
DS39663F-page 93  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 94  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
The bus is implemented with 28 pins, multiplexed  
across four I/O ports. Three ports (PORTD, PORTE  
and PORTH) are multiplexed with the address/data bus  
for a total of 20 available lines, while PORTJ is  
multiplexed with the bus control signals.  
8.0  
EXTERNAL MEMORY BUS  
Note:  
The external memory bus is not  
implemented on 64-pin devices.  
The external memory bus allows the device to access  
external memory devices (such as Flash, EPROM,  
SRAM, etc.) as program or data memory. It supports  
both 8 and 16-Bit Data Width modes and three address  
widths of up to 20 bits.  
A list of the pins and their functions is provided in  
Table 8-1.  
TABLE 8-1:  
Name  
PIC18F8XJ10/8XJ15 EXTERNAL BUS – I/O PORT FUNCTIONS  
Port  
Bit  
External Memory Bus Function  
RD0/AD0  
RD1/AD1  
RD2/AD2  
RD3/AD3  
RD4/AD4  
RD5/AD5  
RD6/AD6  
RD7/AD7  
RE0/AD8  
RE1/AD9  
RE2/AD10  
RE3/AD11  
RE4/AD12  
RE5/AD13  
RE6/AD14  
RE7/AD15  
RH0/A16  
RH1/A17  
RH2/A18  
RH3/A19  
RJ0/ALE  
RJ1/OE  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTH  
PORTH  
PORTH  
PORTH  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
0
1
2
3
4
5
6
7
Address Bit 0 Or Data Bit 0  
Address Bit 1 Or Data Bit 1  
Address Bit 2 Or Data Bit 2  
Address Bit 3 Or Data Bit 3  
Address Bit 4 Or Data Bit 4  
Address Bit 5 Or Data Bit 5  
Address Bit 6 Or Data Bit 6  
Address Bit 7 Or Data Bit 7  
Address Bit 8 Or Data Bit 8  
Address Bit 9 Or Data Bit 9  
Address Bit 10 Or Data Bit 10  
Address Bit 11 Or Data Bit 11  
Address Bit 12 Or Data Bit 12  
Address Bit 13 Or Data Bit 13  
Address Bit 14 Or Data Bit 14  
Address Bit 15 Or Data Bit 15  
Address Bit 16  
Address Bit 17  
Address Bit 18  
Address Bit 19  
Address Latch Enable (ALE) Control Pin  
Output Enable (OE) Control Pin  
Write Low (WRL) Control Pin  
Write High (WRH) Control Pin  
Byte Address Bit 0 (BA0)  
Chip Enable (CE) Control Pin  
Lower Byte Enable (LB) Control Pin  
Upper Byte Enable (UB) Control Pin  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
RJ5/CE  
RJ6/LB  
RJ7/UB  
Note:  
For the sake of clarity, only I/O port and external bus assignments are shown here. One or more additional  
multiplexed features may be available on some pins.  
© 2009 Microchip Technology Inc.  
DS39663F-page 95  
PIC18F87J10 FAMILY  
The operation of the EBDIS bit is also influenced by the  
program memory mode being used. This is discussed  
in more detail in Section 8.5 “Program Memory  
Modes and the External Memory Bus”.  
8.1  
External Memory Bus Control  
The operation of the interface is controlled by the  
MEMCON register (Register 8-1). This register is  
available in all program memory operating modes  
except Microcontroller mode. In this mode, the register  
is disabled and cannot be written to.  
The WAIT bits allow for the addition of wait states to  
external memory operations. The use of these bits is  
discussed in Section 8.3 “Wait States”.  
The EBDIS bit (MEMCON<7>) controls the operation  
of the bus and related port functions. Clearing EBDIS  
enables the interface and disables the I/O functions of  
the ports, as well as any other functions multiplexed to  
those pins. Setting the bit enables the I/O ports and  
other functions, but allows the interface to override  
everything else on the pins when an external memory  
operation is required. By default, the external bus is  
always enabled and disables all other I/O.  
The WM bits select the particular operating mode used  
when the bus is operating in 16-Bit Data Width mode.  
These are discussed in more detail in Section 8.6  
“16-Bit Data Width Modes”. These bits have no effect  
when an 8-Bit Data Width mode is selected.  
REGISTER 8-1:  
MEMCON: EXTERNAL MEMORY BUS CONTROL REGISTER  
R/W-0  
EBDIS  
bit 7  
U-0  
R/W-0  
WAIT1  
R/W-0  
WAIT0  
U-0  
U-0  
R/W-0  
WM1  
R/W-0  
WM0  
bit 0  
Legend:  
S = Settable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
EBDIS: External Bus Disable bit  
1= External bus enabled when microcontroller accesses external memory; otherwise, all external bus  
drivers are mapped as I/O ports  
0= External bus always enabled, I/O ports are disabled  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-4  
WAIT<1:0>: Table Reads and Writes Bus Cycle Wait Count bits  
11= Table reads and writes will wait 0 TCY  
10= Table reads and writes will wait 1 TCY  
01= Table reads and writes will wait 2 TCY  
00= Table reads and writes will wait 3 TCY  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0  
WM<1:0>: TBLWTOperation with 16-Bit Data Bus Width Select bits  
1x= Word Write mode: TABLAT0 and TABLAT1 word output; WRH active when TABLAT1 written  
01= Byte Select mode: TABLAT data copied on both MSB and LSB; WRH and (UB or LB) will activate  
00= Byte Write mode: TABLAT data copied on both MSB and LSB; WRH or WRL will activate  
DS39663F-page 96  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
8.2.1  
ADDRESS SHIFTING ON THE  
EXTERNAL BUS  
8.2  
Address and Data Width  
The PIC18F87J10 family of devices can be indepen-  
dently configured for different address and data widths  
on the same memory bus. Both address and data width  
are set by Configuration bits in the CONFIG3L register.  
As Configuration bits, this means that these options  
can only be configured by programming the device and  
are not controllable in software.  
By default, the address presented on the external bus  
is the value of the PC. In practical terms, this means  
that addresses in the external memory device below  
the top of on-chip memory are unavailable to the micro-  
controller. To access these physical locations, the glue  
logic between the microcontroller and the external  
memory must somehow translate addresses.  
The BW bit selects an 8-bit or 16-bit data bus width.  
Setting this bit (default) selects a data width of 16 bits.  
To simplify the interface, the external bus offers an  
extension of Extended Microcontroller mode that  
automatically performs address shifting. This feature is  
controlled by the EASHFT Configuration bit. Setting  
this bit offsets addresses on the bus by the size of the  
microcontroller’s on-chip program memory and sets  
the bottom address at 0000h. This allows the device to  
use the entire range of physical addresses of the  
external memory.  
The EMB<1:0> bits determine both the program  
memory operating mode and the address bus width.  
The available options are 20-bit, 16-bit and 12-bit, as  
well as Microcontroller mode (external bus disabled).  
Selecting a 16-bit or 12-bit width makes a correspond-  
ing number of high-order lines available for I/O  
functions. These pins are no longer affected by the  
setting of the EBDIS bit. For example, selecting a  
16-Bit Addressing mode (EMB<1:0> = 01) disables  
A<19:16> and allows PORTH<3:0> to function without  
interruptions from the bus. Using the smaller address  
widths allows users to tailor the memory bus to the size  
of the external memory space for a particular design  
while freeing up pins for dedicated I/O operation.  
8.2.2  
21-BIT ADDRESSING  
As an extension of 20-bit address width operation, the  
external memory bus can also fully address a 2-Mbyte  
memory space. This is done by using the Bus Address  
bit 0 (BA0) control line as the Least Significant bit of the  
address. The UB and LB control signals may also be  
used with certain memory devices to select the upper  
and lower bytes within a 16-bit wide data word.  
Because the EMB bits have the effect of disabling pins  
for memory bus operations, it is important to always  
select an address width at least equal to the data width.  
If a 12-bit address width is used with a 16-bit data  
width, the upper four bits of data will not be available on  
the bus.  
This addressing mode is available in both 8-Bit and  
certain 16-Bit Data Width modes. Additional details are  
provided in Section 8.6.3 “16-Bit Byte Select Mode”  
and Section 8.7 “8-Bit Mode”.  
All combinations of address and data widths require  
multiplexing of address and data information on the  
same lines. The address and data multiplexing, as well  
as I/O ports made available by the use of smaller  
address widths, are summarized in Table 8-2.  
TABLE 8-2:  
Data Width  
ADDRESS AND DATA LINES FOR DIFFERENT ADDRESS AND DATA WIDTHS  
Multiplexed Data and  
Address Only Lines (and  
Corresponding Ports)  
Ports Available  
Address Width  
Address Lines (and  
for I/O  
Corresponding Ports)  
AD<11:8>  
(PORTE<3:0>)  
PORTE<7:4>,  
All of PORTH  
12-Bit  
16-Bit  
AD<15:8>  
(PORTE<7:0>)  
AD<7:0>  
(PORTD<7:0>)  
All of PORTH  
8-Bit  
A<19:16>, AD<15:8>  
(PORTH<3:0>,  
20-Bit  
PORTE<7:0>)  
16-Bit  
20-Bit  
All of PORTH  
AD<15:0>  
(PORTD<7:0>,  
PORTE<7:0>)  
16-Bit  
A<19:16>  
(PORTH<3:0>)  
© 2009 Microchip Technology Inc.  
DS39663F-page 97  
PIC18F87J10 FAMILY  
If the device fetches or accesses external memory  
while EBDIS = 1, the pins will switch to external bus. If  
the EBDIS bit is set by a program executing from exter-  
nal memory, the action of setting the bit will be delayed  
until the program branches into the internal memory. At  
that time, the pins will change from external bus to I/O  
ports.  
8.3  
Wait States  
While it may be assumed that external memory devices  
will operate at the microcontroller clock rate, this is  
often not the case. In fact, many devices require longer  
times to write or retrieve data than the time allowed by  
the execution of table read or table write operations.  
To compensate for this, the external memory bus can  
be configured to add a fixed delay to each table opera-  
tion using the bus. Wait states are enabled by setting  
the WAIT Configuration bit. When enabled, the amount  
of delay is set by the WAIT<1:0> bits (MEMCON<5:4>).  
The delay is based on multiples of microcontroller  
instruction cycle time and are added following the  
instruction cycle when the table operation is executed.  
The range is from no delay to 3 TCY (default value).  
If the device is executing out of internal memory when  
EBDIS = 0, the memory bus address/data and control  
pins will not be active. They will go to a state where the  
active address/data pins are tri-state; the CE, OE,  
WRH, WRL, UB and LB signals are ‘1’ and ALE and  
BA0 are ‘0’. Note that only those pins associated with  
the current address width are forced to tri-state; the  
other pins continue to function as I/O. In the case of  
16-bit address width, for example, only AD<15:0>  
(PORTD and PORTE) are affected; A<19:16>  
(PORTH<3:0>) continue to function as I/O.  
8.4  
Port Pin Weak Pull-ups  
In all external memory modes, the bus takes priority  
over any other peripherals that may share pins with it.  
This includes the Parallel Slave Port and serial commu-  
nications modules which would otherwise take priority  
over the I/O port.  
With the exception of the upper address lines,  
A<19:16>, the pins associated with the external  
memory bus are equipped with weak pull-ups. The  
pull-ups are controlled by the upper three bits of the  
PORTG register. They are named RDPU, REPU and  
RJPU and control pull-ups on PORTD, PORTE and  
PORTJ, respectively. Clearing one of these bits  
enables the corresponding pull-ups for that port. All  
pull-ups are disabled by default on all device Resets.  
8.6  
16-Bit Data Width Modes  
In 16-Bit Data Width mode, the external memory  
interface can be connected to external memories in  
three different configurations:  
8.5  
Program Memory Modes and the  
External Memory Bus  
• 16-Bit Byte Write  
• 16-Bit Word Write  
• 16-Bit Byte Select  
The PIC18F87J10 family of devices is capable of  
operating in one of two program memory modes, using  
combinations of on-chip and external program memory.  
The functions of the multiplexed port pins depend on  
the program memory mode selected, as well as the  
setting of the EBDIS bit.  
The configuration to be used is determined by the  
WM<1:0>  
bits  
in  
the  
MEMCON  
register  
(MEMCON<1:0>). These three different configurations  
allow the designer maximum flexibility in using both  
8-bit and 16-bit devices with 16-bit data.  
In Microcontroller Mode, the bus is not active and the  
pins have their port functions only. Writes to the  
MEMCOM register are not permitted. The Reset value  
of EBDIS (‘0’) is ignored and EMB pins behave as I/O  
ports.  
For all 16-bit modes, the Address Latch Enable (ALE)  
pin indicates that the address bits, AD<15:0>, are avail-  
able on the external memory interface bus. Following  
the address latch, the Output Enable signal (OE) will  
enable both bytes of program memory at once to form  
a 16-bit instruction word. The Chip Enable signal (CE)  
is active at any time that the microcontroller accesses  
external memory, whether reading or writing; it is  
inactive (asserted high) whenever the device is in  
Sleep mode.  
In Extended Microcontroller Mode, the external  
program memory bus shares I/O port functions on the  
pins. When the device is fetching or doing table  
read/table write operations on the external program  
memory space, the pins will have the external bus  
function.  
In Byte Select mode, JEDEC standard Flash memories  
will require BA0 for the byte address line and one I/O  
line to select between Byte and Word mode. The other  
16-bit modes do not need BA0. JEDEC standard static  
RAM memories will use the UB or LB signals for byte  
selection.  
If the device is fetching and accessing internal program  
memory locations only, the EBDIS control bit will  
change the pins from external memory to I/O port  
functions. When EBDIS = 0, the pins function as the  
external bus. When EBDIS = 1, the pins function as I/O  
ports.  
DS39663F-page 98  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
During a TBLWTinstruction cycle, the TABLAT data is  
presented on the upper and lower bytes of the  
AD<15:0> bus. The appropriate WRH or WRL control  
line is strobed on the LSb of the TBLPTR.  
8.6.1  
16-BIT BYTE WRITE MODE  
Figure 8-1 shows an example of 16-Bit Byte Write  
mode for PIC18F87J10 family devices. This mode is  
used for two separate 8-bit memories connected for  
16-bit operation. This generally includes basic EPROM  
and Flash devices. It allows table writes to byte-wide  
external memories.  
FIGURE 8-1:  
16-BIT BYTE WRITE MODE EXAMPLE  
D<7:0>  
(MSB)  
A<x:0>  
(LSB)  
PIC18F8XJ10  
AD<7:0>  
A<19:0>  
D<15:8>  
373  
373  
A<x:0>  
D<7:0>  
D<7:0>  
CE  
D<7:0>  
CE  
AD<15:8>  
ALE  
(2)  
(2)  
OE WR  
OE WR  
(1)  
A<19:16>  
CE  
OE  
WRH  
WRL  
Address Bus  
Data Bus  
Control Lines  
Note 1: Upper order address lines are used only for 20-bit address widths.  
2: This signal only applies to table writes. See Section 7.1 “Table Reads and Table Writes”.  
© 2009 Microchip Technology Inc.  
DS39663F-page 99  
PIC18F87J10 FAMILY  
During  
a
TBLWT cycle to an odd address  
8.6.2  
16-BIT WORD WRITE MODE  
(TBLPTR<0> = 1), the TABLAT data is presented on  
the upper byte of the AD<15:0> bus. The contents of  
the holding latch are presented on the lower byte of the  
AD<15:0> bus.  
Figure 8-2 shows an example of 16-Bit Word Write  
mode for PIC18F65J10 devices. This mode is used for  
word-wide memories which include some of the  
EPROM and Flash type memories. This mode allows  
opcode fetches and table reads from all forms of 16-bit  
memory and table writes to any type of word-wide  
external memories. This method makes a distinction  
between TBLWTcycles to even or odd addresses.  
The WRH signal is strobed for each write cycle; the  
WRL pin is unused. The signal on the BA0 pin indicates  
the LSb of the TBLPTR, but it is left unconnected.  
Instead, the UB and LB signals are active to select both  
bytes. The obvious limitation to this method is that the  
table write must be done in pairs on a specific word  
boundary to correctly write a word location.  
During  
a
TBLWT cycle to an even address  
(TBLPTR<0> = 0), the TABLAT data is transferred to a  
holding latch and the external address data bus is  
tri-stated for the data portion of the bus cycle. No write  
signals are activated.  
FIGURE 8-2:  
16-BIT WORD WRITE MODE EXAMPLE  
PIC18F8XJ10  
AD<7:0>  
A<20:1>  
D<15:0>  
JEDEC Word  
EPROM Memory  
A<x:0>  
373  
D<15:0>  
CE  
(2)  
OE  
WR  
AD<15:8>  
ALE  
373  
(1)  
A<19:16>  
CE  
OE  
WRH  
Address Bus  
Data Bus  
Control Lines  
Note 1: Upper order address lines are used only for 20-bit address widths.  
2: This signal only applies to table writes. See Section 7.1 “Table Reads and Table Writes”.  
DS39663F-page 100  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
Flash and SRAM devices use different control signal  
combinations to implement Byte Select mode. JEDEC  
standard Flash memories require that a controller I/O  
port pin be connected to the memory’s BYTE/WORD  
pin to provide the select signal. They also use the BA0  
signal from the controller as a byte address. JEDEC  
standard static RAM memories, on the other hand, use  
the UB or LB signals to select the byte.  
8.6.3  
16-BIT BYTE SELECT MODE  
Figure 8-3 shows an example of 16-Bit Byte Select  
mode. This mode allows table write operations to  
word-wide external memories with byte selection  
capability. This generally includes both word-wide  
Flash and SRAM devices.  
During a TBLWTcycle, the TABLAT data is presented  
on the upper and lower byte of the AD<15:0> bus. The  
WRH signal is strobed for each write cycle; the WRL  
pin is not used. The BA0 or UB/LB signals are used to  
select the byte to be written, based on the Least  
Significant bit of the TBLPTR register.  
FIGURE 8-3:  
16-BIT BYTE SELECT MODE EXAMPLE  
PIC18F8XJ10  
AD<7:0>  
A<20:1>  
JEDEC Word  
FLASH Memory  
373  
373  
A<x:1>  
D<15:0>  
D<15:0>  
(3)  
138  
CE  
A0  
AD<15:8>  
ALE  
(1)  
BYTE/WORD OE WR  
(2)  
A<19:16>  
OE  
WRH  
WRL  
A<20:1>  
JEDEC Word  
A<x:1>  
SRAM Memory  
BA0  
I/O  
D<15:0>  
D<15:0>  
CE  
LB  
LB  
(1)  
UB  
OE WR  
UB  
Address Bus  
Data Bus  
Control Lines  
Note 1: This signal only applies to table writes. See Section 7.1 “Table Reads and Table Writes”.  
2: Upper order address lines are used only for 20-bit address width.  
3: Demultiplexing is only required when multiple memory devices are accessed.  
© 2009 Microchip Technology Inc.  
DS39663F-page 101  
PIC18F87J10 FAMILY  
8.6.4  
16-BIT MODE TIMING  
The presentation of control signals on the external  
memory bus is different for the various operating  
modes. Typical signal timing diagrams are shown in  
Figure 8-4 and Figure 8-5.  
FIGURE 8-4:  
EXTERNAL MEMORY BUS TIMING FOR TBLRD (EXTENDED  
MICROCONTROLLER MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
0Ch  
A<19:16>  
CF33h  
9256h  
AD<15:0>  
CE  
ALE  
OE  
Opcode Fetch  
TBLRD *  
from 000100h  
Opcode Fetch  
MOVLW55h  
from 000102h  
TBLRD92h  
from 199E67h  
Opcode Fetch  
ADDLW55h  
from 000104h  
Memory  
Cycle  
Instruction  
Execution  
INST(PC – 2)  
TBLRDCycle 1  
TBLRDCycle 2  
MOVLW  
FIGURE 8-5:  
EXTERNAL MEMORY BUS TIMING FOR SLEEP (EXTENDED  
MICROCONTROLLER MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
00h  
00h  
A<19:16>  
AD<15:0>  
0E55h  
0003h  
3AAAh  
3AABh  
CE  
ALE  
OE  
Memory  
Cycle  
Opcode Fetch  
MOVLW55h  
Opcode Fetch  
SLEEP  
Sleep Mode, Bus Inactive  
from 007554h  
from 007556h  
Instruction  
Execution  
INST(PC – 2)  
SLEEP  
DS39663F-page 102  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
will enable one byte of program memory for a portion of  
the instruction cycle, then BA0 will change and the  
second byte will be enabled to form the 16-bit instruc-  
tion word. The Least Significant bit of the address, BA0,  
must be connected to the memory devices in this  
mode. The Chip Enable signal (CE) is active at any  
time that the microcontroller accesses external  
memory, whether reading or writing. It is inactive  
(asserted high) whenever the device is in Sleep mode.  
8.7  
8-Bit Mode  
In 8-Bit Data Width mode, the external memory bus  
operates only in Multiplexed mode; that is, data shares  
the 8 Least Significant bits of the address bus.  
Figure 8-6 shows an example of 8-Bit Multiplexed  
mode for 80-pin devices. This mode is used for a single  
8-bit memory connected for 16-bit operation. The  
instructions will be fetched as two 8-bit bytes on a  
shared data/address bus. The two bytes are sequen-  
tially fetched within one instruction cycle (TCY).  
Therefore, the designer must choose external memory  
devices according to timing calculations based on  
1/2 TCY (2 times the instruction rate). For proper mem-  
ory speed selection, glue logic propagation delay times  
must be considered, along with setup and hold times.  
This generally includes basic EPROM and Flash  
devices. It allows table writes to byte-wide external  
memories.  
During a TBLWTinstruction cycle, the TABLAT data is  
presented on the upper and lower bytes of the  
AD<15:0> bus. The appropriate level of the BA0 control  
line is strobed on the LSb of the TBLPTR.  
The Address Latch Enable (ALE) pin indicates that the  
address bits, AD<15:0>, are available on the external  
memory interface bus. The Output Enable signal (OE)  
FIGURE 8-6:  
8-BIT MULTIPLEXED MODE EXAMPLE  
D<7:0>  
PIC18F8XJ10  
AD<7:0>  
A<19:0>  
A<x:1>  
373  
ALE  
D<15:8>  
A0  
D<7:0>  
CE  
(1)  
AD<15:8>  
(1)  
(2)  
A<19:16>  
OE WR  
BA0  
CE  
OE  
WRL  
Address Bus  
Data Bus  
Control Lines  
Note 1: Upper order address bits are only used for 20-bit address width. The upper AD byte is used for all  
address widths except 8-bit.  
2: This signal only applies to table writes. See Section 7.1 “Table Reads and Table Writes”.  
© 2009 Microchip Technology Inc.  
DS39663F-page 103  
PIC18F87J10 FAMILY  
8.7.1  
8-BIT MODE TIMING  
The presentation of control signals on the external  
memory bus is different for the various operating  
modes. Typical signal timing diagrams are shown in  
Figure 8-7 and Figure 8-8.  
FIGURE 8-7:  
EXTERNAL MEMORY BUS TIMING FOR TBLRD (EXTENDED  
MICROCONTROLLER MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
0Ch  
CFh  
A<19:16>  
AD<15:8>  
AD<7:0>  
CE  
33h  
92h  
ALE  
OE  
Opcode Fetch  
TBLRD *  
from 000100h  
Opcode Fetch  
MOVLW55h  
from 000102h  
Opcode Fetch  
ADDLW55h  
from 000104h  
TBLRD92h  
from 199E67h  
Memory  
Cycle  
Instruction  
Execution  
INST(PC – 2)  
TBLRDCycle 1  
TBLRDCycle 2  
MOVLW  
FIGURE 8-8:  
EXTERNAL MEMORY BUS TIMING FOR SLEEP (EXTENDED  
MICROCONTROLLER MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
00h  
00h  
A<19:16>  
AD<15:8>  
AD<7:0>  
3Ah  
00h 03h  
3Ah  
0Eh 55h  
AAh  
ABh  
BA0  
CE  
ALE  
OE  
Memory  
Cycle  
Opcode Fetch  
MOVLW55h  
Opcode Fetch  
Sleep Mode, Bus Inactive  
SLEEP  
from 007554h  
from 007556h  
Instruction  
Execution  
INST(PC – 2)  
SLEEP  
DS39663F-page 104  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
In Sleep and Idle modes, the microcontroller core does  
not need to access data; bus operations are  
suspended. The state of the external bus is frozen, with  
the address/data pins and most of the control pins hold-  
ing at the same state they were in when the mode was  
invoked. The only potential changes are the CE, LB  
and UB pins, which are held at logic high.  
8.8  
Operation in Power-Managed  
Modes  
In alternate power-managed Run modes, the external  
bus continues to operate normally. If a clock source  
with a lower speed is selected, bus operations will run  
at that speed. In these cases, excessive access times  
for the external memory may result if wait states have  
been enabled and added to external memory opera-  
tions. If operations in a lower power Run mode are  
anticipated, users should provide in their applications  
for adjusting memory access times at the lower clock  
speeds.  
© 2009 Microchip Technology Inc.  
DS39663F-page 105  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 106  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
EXAMPLE 9-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
9.0  
9.1  
8 x 8 HARDWARE MULTIPLIER  
Introduction  
MOVF  
MULWF  
ARG1, W  
ARG2  
;
; ARG1 * ARG2 ->  
; PRODH:PRODL  
All PIC18 devices include an 8 x 8 hardware multiplier  
as part of the ALU. The multiplier performs an unsigned  
operation and yields a 16-bit result that is stored in the  
product register pair, PRODH:PRODL. The multiplier’s  
operation does not affect any flags in the STATUS  
register.  
EXAMPLE 9-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
Making multiplication a hardware operation allows it to  
be completed in a single instruction cycle. This has the  
advantages of higher computational throughput and  
reduced code size for multiplication algorithms and  
allows the PIC18 devices to be used in many applica-  
tions previously reserved for digital signal processors.  
A comparison of various hardware and software  
multiply operations, along with the savings in memory  
and execution time, is shown in Table 9-1.  
MOVF  
MULWF  
ARG1, W  
ARG2  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
; Test Sign Bit  
; PRODH = PRODH  
BTFSC  
SUBWF  
ARG2, SB  
PRODH, F  
;
- ARG1  
MOVF  
BTFSC  
SUBWF  
ARG2, W  
ARG1, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
9.2  
Operation  
Example 9-1 shows the instruction sequence for an 8 x 8  
unsigned multiplication. Only one instruction is required  
when one of the arguments is already loaded in the  
WREG register.  
Example 9-2 shows the sequence to do an 8 x 8 signed  
multiplication. To account for the sign bits of the argu-  
ments, each argument’s Most Significant bit (MSb) is  
tested and the appropriate subtractions are done.  
TABLE 9-1:  
Routine  
PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS  
Program  
Memory  
(Words)  
Time  
Cycles  
(Max)  
Multiply Method  
@ 40 MHz @ 10 MHz @ 4 MHz  
Without Hardware Multiply  
Hardware Multiply  
13  
1
69  
1
6.9 μs  
100 ns  
9.1 μs  
600 ns  
24.2 μs  
2.8 μs  
25.4 μs  
4.0 μs  
27.6 μs  
400 ns  
36.4 μs  
2.4 μs  
69 μs  
1 μs  
8 x 8 unsigned  
8 x 8 signed  
Without Hardware Multiply  
Hardware Multiply  
33  
6
91  
6
91 μs  
6 μs  
Without Hardware Multiply  
Hardware Multiply  
21  
28  
52  
35  
242  
28  
254  
40  
96.8 μs  
11.2 μs  
102.6 μs  
16.0 μs  
242 μs  
28 μs  
254 μs  
40 μs  
16 x 16 unsigned  
16 x 16 signed  
Without Hardware Multiply  
Hardware Multiply  
© 2009 Microchip Technology Inc.  
DS39663F-page 107  
PIC18F87J10 FAMILY  
Example 9-3 shows the sequence to do a 16 x 16  
unsigned multiplication. Equation 9-1 shows the  
algorithm that is used. The 32-bit result is stored in four  
registers (RES3:RES0).  
EQUATION 9-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0 = ARG1H:ARG1L ARG2H:ARG2L  
16  
= (ARG1H ARG2H 2 ) +  
(ARG1H ARG2L 2 ) +  
(ARG1L ARG2H 2 ) +  
(ARG1L ARG2L) +  
(-1 ARG2H<7> ARG1H:ARG1L 2 ) +  
(-1 ARG1H<7> ARG2H:ARG2L 2  
8
EQUATION 9-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
8
16  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
)
16  
(ARG1H ARG2H 2 ) +  
8
(ARG1H ARG2L 2 ) +  
8
(ARG1L ARG2H 2 ) +  
EXAMPLE 9-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
(ARG1L ARG2L)  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
EXAMPLE 9-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
; ARG1L * ARG2L->  
; PRODH:PRODL  
;
;
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
;
;
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVF  
MULWF  
ARG1H, W  
ARG2H  
; ARG1H * ARG2H->  
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1L, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1L, W  
ARG2H  
; ARG1L * ARG2H->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
ARG2H, 7  
SIGN_ARG1  
ARG1L, W  
RES2  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
Example 9-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 9-2 shows the algorithm  
used. The 32-bit result is stored in four registers  
(RES3:RES0). To account for the sign bits of the  
arguments, the MSb for each argument pair is tested  
and the appropriate subtractions are done.  
ARG1H, W  
SUBWFB RES3  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H, 7  
CONT_CODE  
ARG2L, W  
RES2  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
MOVF  
SUBWF  
MOVF  
ARG2H, W  
SUBWFB RES3  
;
CONT_CODE  
:
DS39663F-page 108  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
When the IPEN bit is cleared (default state), the  
interrupt priority feature is disabled and interrupts are  
compatible with PIC® mid-range devices. In  
Compatibility mode, the interrupt priority bits for each  
source have no effect. INTCON<6> is the PEIE bit  
which enables/disables all peripheral interrupt sources.  
INTCON<7> is the GIE bit which enables/disables all  
interrupt sources. All interrupts branch to address  
0008h in Compatibility mode.  
10.0 INTERRUPTS  
Members of the PIC18F87J10 family of devices have  
multiple interrupt sources and an interrupt priority  
feature that allows most interrupt sources to be  
assigned a high-priority level or a low-priority level. The  
high-priority interrupt vector is at 0008h and the  
low-priority interrupt vector is at 0018h. High-priority  
interrupt events will interrupt any low-priority interrupts  
that may be in progress.  
When an interrupt is responded to, the global interrupt  
enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt priority  
levels are used, this will be either the GIEH or GIEL bit.  
There are thirteen registers which are used to control  
interrupt operation. These registers are:  
• RCON  
High-priority interrupt sources can interrupt  
a
• INTCON  
low-priority interrupt. Low-priority interrupts are not  
processed while high-priority interrupts are in progress.  
• INTCON2  
• INTCON3  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address (0008h  
or 0018h). Once in the Interrupt Service Routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bits must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
• PIR1, PIR2, PIR3  
• PIE1, PIE2, PIE3  
• IPR1, IPR2, IPR3  
It is recommended that the Microchip header files  
supplied with MPLAB® IDE be used for the symbolic bit  
names in these registers. This allows the  
assembler/compiler to automatically take care of the  
placement of these bits within the specified register.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used) which re-enables interrupts.  
In general, interrupt sources have three bits to control  
their operation. They are:  
For external interrupt events, such as the INTx pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two-cycle instructions.  
Individual interrupt flag bits are set regardless of the  
status of their corresponding enable bit or the GIE bit.  
Flag bit to indicate that an interrupt event  
occurred  
Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
Note:  
Do not use the MOVFFinstruction to modify  
any of the interrupt control registers while  
any interrupt is enabled. Doing so may  
cause erratic microcontroller behavior.  
Priority bit to select high priority or low priority  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON<7>). When interrupt priority is  
enabled, there are two bits which enable interrupts  
globally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts that have the priority bit set (high priority).  
Setting the GIEL bit (INTCON<6>) enables all  
interrupts that have the priority bit cleared (low priority).  
When the interrupt flag, enable bit and appropriate  
global interrupt enable bit are set, the interrupt will  
vector immediately to address 0008h or 0018h,  
depending on the priority bit setting. Individual  
interrupts can be disabled through their corresponding  
enable bits.  
© 2009 Microchip Technology Inc.  
DS39663F-page 109  
PIC18F87J10 FAMILY  
FIGURE 10-1:  
PIC18F87J10 FAMILY INTERRUPT LOGIC  
Wake-up if in  
Idle or Sleep modes  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
INT3IF  
INT3IE  
INT3IP  
Interrupt to CPU  
Vector to Location  
0008h  
PIR1<7:0>  
PIE1<7:0>  
IPR1<7:0>  
GIE/GIEH  
PIR2<7:6, 3:0>  
PIE2<7:6, 3:0>  
IPR2<7:6, 3:0>  
IPEN  
PIR3<7, 0>  
PIE3<7, 0>  
IPR3<7, 0>  
IPEN  
PEIE/GIEL  
IPEN  
High-Priority Interrupt Generation  
Low-Priority Interrupt Generation  
PIR1<7:0>  
PIE1<7:0>  
IPR1<7:0>  
PIR2<7:6, 3:0>  
PIE2<7:6, 3:0>  
IPR2<7:6, 3:0>  
Interrupt to CPU  
Vector to Location  
0018h  
TMR0IF  
TMR0IE  
TMR0IP  
IPEN  
PIR3<7, 0>  
PIE3<7, 0>  
IPR3<7, 0>  
RBIF  
RBIE  
RBIP  
GIE/GIEH  
PEIE/GIEL  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
INT3IF  
INT3IE  
INT3IP  
DS39663F-page 110  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
10.1 INTCON Registers  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
interrupt enable bit. User software should  
ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt.  
This feature allows for software polling.  
The INTCON registers are readable and writable  
registers which contain various enable, priority and flag  
bits.  
REGISTER 10-1: INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF(1)  
GIE/GIEH  
PEIE/GIEL  
TMR0IE  
INT0IE  
TMR0IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN = 1:  
1= Enables all high-priority interrupts  
0= Disables all interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN = 1:  
1= Enables all low-priority peripheral interrupts  
0= Disables all low-priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit(1)  
1= At least one of the RB<7:4> pins changed state (must be cleared in software)  
0= None of the RB<7:4> pins have changed state  
Note 1: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow  
the bit to be cleared.  
© 2009 Microchip Technology Inc.  
DS39663F-page 111  
PIC18F87J10 FAMILY  
REGISTER 10-2: INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
RBIP  
INTEDG0  
INTEDG1  
INTEDG2  
INTEDG3  
TMR0IP  
INT3IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt 2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG3: External Interrupt 3 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IP: INT3 External Interrupt Priority bit  
1= High priority  
0= Low priority  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Note:  
Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding  
enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt. This feature allows for software polling.  
DS39663F-page 112  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT3IF  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
INT3IE  
INT2IE  
INT1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IE: INT3 External Interrupt Enable bit  
1= Enables the INT3 external interrupt  
0= Disables the INT3 external interrupt  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
INT3IF: INT3 External Interrupt Flag bit  
1= The INT3 external interrupt occurred (must be cleared in software)  
0= The INT3 external interrupt did not occur  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Note:  
Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding  
enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt. This feature allows for software polling.  
© 2009 Microchip Technology Inc.  
DS39663F-page 113  
PIC18F87J10 FAMILY  
10.2 PIR Registers  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE (INTCON<7>).  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are three Peripheral Interrupt  
Request (Flag) registers (PIR1, PIR2, PIR3).  
2: User software should ensure the  
appropriate interrupt flag bits are cleared  
prior to enabling an interrupt and after  
servicing that interrupt.  
REGISTER 10-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1  
R/W-0  
PSPIF  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RC1IF  
TX1IF  
SSP1IF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit  
1= A read or write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
RC1IF: EUSART1 Receive Interrupt Flag bit  
1= The EUSART1 receive buffer, RCREGx, is full (cleared when RCREGx is read)  
0= The EUSART1 receive buffer is empty  
TX1IF: EUSART1 Transmit Interrupt Flag bit  
1= The EUSART1 transmit buffer, TXREGx, is empty (cleared when TXREGx is written)  
0= The EUSART1 transmit buffer is full  
SSP1IF: Master Synchronous Serial Port 1 Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
CCP1IF: ECCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1/TMR3 register capture occurred (must be cleared in software)  
0= No TMR1/TMR3 register capture occurred  
Compare mode:  
1= A TMR1/TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1/TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
DS39663F-page 114  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
REGISTER 10-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2  
R/W-0  
R/W-0  
CMIF  
U-0  
U-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
OSCFIF  
BCL1IF  
TMR3IF  
CCP2IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
OSCFIF: Oscillator Fail Interrupt Flag bit  
1= Device oscillator failed, clock input has changed to INTRC (must be cleared in software)  
0= Device clock operating  
CMIF: Comparator Interrupt Flag bit  
1= Comparator input has changed (must be cleared in software)  
0= Comparator input has not changed  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
BCL1IF: Bus Collision Interrupt Flag bit (MSSP1 module)  
1= A bus collision occurred (must be cleared in software)  
0= No bus collision occurred  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed (must be cleared in software)  
0= TMR3 register did not overflow  
bit 0  
CCP2IF: ECCP2 Interrupt Flag bit  
Capture mode:  
1= A TMR1/TMR3 register capture occurred (must be cleared in software)  
0= No TMR1/TMR3 register capture occurred  
Compare mode:  
1= A TMR1/TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1 or TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
© 2009 Microchip Technology Inc.  
DS39663F-page 115  
PIC18F87J10 FAMILY  
REGISTER 10-6: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3  
R/W-0  
R/W-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSP2IF  
BCL2IF  
RC2IF  
TX2IF  
TMR4IF  
CCP5IF  
CCP4IF  
CCP3IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
SSP2IF: Master Synchronous Serial Port 2 Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
BCL2IF: Bus Collision Interrupt Flag bit (MSSP2 module)  
1= A bus collision occurred (must be cleared in software)  
0= No bus collision occurred  
RC2IF: EUSART2 Receive Interrupt Flag bit  
1= The EUSART2 Receive Buffer, RCREGx, is full (cleared when RCREGx is read)  
0= The EUSART2 Receive Buffer is empty  
TX2IF: EUSART2 Transmit Interrupt Flag bit  
1= The EUSART2 Transmit Buffer, TXREGx, is empty (cleared when TXREGx is written)  
0= The EUSART2 Transmit Buffer is full  
TMR4IF: TMR4 to PR4 Match Interrupt Flag bit  
1= TMR4 to PR4 match occurred (must be cleared in software)  
0= No TMR4 to PR4 match occurred  
CCP5IF: CCP5 Interrupt Flag bit  
Capture mode:  
1= A TMR1/TMR3 register capture occurred (must be cleared in software)  
0= No TMR1/TMR3 register capture occurred  
Compare mode:  
1= A TMR1/TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1/TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 1  
CCP4IF: CCP4 Interrupt Flag bit  
Capture mode:  
1= A TMR1/TMR3 register capture occurred (must be cleared in software)  
0= No TMR1/TMR3 register capture occurred  
Compare mode:  
1= A TMR1/TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1/TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 0  
CCP3IF: ECCP3 Interrupt Flag bit  
Capture mode:  
1= A TMR1/TMR3 register capture occurred (must be cleared in software)  
0= No TMR1/TMR3 register capture occurred  
Compare mode:  
1= A TMR1/TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1/TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
DS39663F-page 116  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
10.3 PIE Registers  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three Peripheral  
Interrupt Enable registers (PIE1, PIE2, PIE3). When  
IPEN = 0, the PEIE bit must be set to enable any of  
these peripheral interrupts.  
REGISTER 10-7: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
PSPIE  
R/W-0  
ADIE  
R/W-0  
RC1IE  
R/W-0  
TX1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSP1IE  
CCP1IE  
TMR2IE  
TMR1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RC1IE: EUSART1 Receive Interrupt Enable bit  
1= Enables the EUSART1 receive interrupt  
0= Disables the EUSART1 receive interrupt  
TX1IE: EUSART1 Transmit Interrupt Enable bit  
1= Enables the EUSART1 transmit interrupt  
0= Disables the EUSART1 transmit interrupt  
SSP1IE: Master Synchronous Serial Port 1 Interrupt Enable bit  
1= Enables the MSSP1 interrupt  
0= Disables the MSSP1 interrupt  
CCP1IE: ECCP1 Interrupt Enable bit  
1= Enables the ECCP1 interrupt  
0= Disables the ECCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
© 2009 Microchip Technology Inc.  
DS39663F-page 117  
PIC18F87J10 FAMILY  
REGISTER 10-8: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0  
R/W-0  
CMIE  
U-0  
U-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
OSCFIE  
BCL1IE  
TMR3IE  
CCP2IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
OSCFIE: Oscillator Fail Interrupt Enable bit  
1= Enabled  
0= Disabled  
CMIE: Comparator Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
BCL1IE: Bus Collision Interrupt Enable bit (MSSP1 module)  
1= Enabled  
0= Disabled  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 0  
CCP2IE: ECCP2 Interrupt Enable bit  
1= Enabled  
0= Disabled  
DS39663F-page 118  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
REGISTER 10-9: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3  
R/W-0  
R/W-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSP2IE  
BCL2IE  
RC2IE  
TX2IE  
TMR4IE  
CCP5IE  
CCP4IE  
CCP3IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SSP2IE: Master Synchronous Serial Port 2 Interrupt Enable bit  
1= Enabled  
0= Disabled  
BCL2IE: Bus Collision Interrupt Enable bit (MSSP2 module)  
1= Enabled  
0= Disabled  
RC2IE: EUSART2 Receive Interrupt Enable bit  
1= Enabled  
0= Disabled  
TX2IE: EUSART2 Transmit Interrupt Enable bit  
1= Enabled  
0= Disabled  
TMR4IE: TMR4 to PR4 Match Interrupt Enable bit  
1= Enabled  
0= Disabled  
CCP5IE: CCP5 Interrupt Enable bit  
1= Enabled  
0= Disabled  
CCP4IE: CCP4 Interrupt Enable bit  
1= Enabled  
0= Disabled  
CCP3IE: ECCP3 Interrupt Enable bit  
1= Enabled  
0= Disabled  
© 2009 Microchip Technology Inc.  
DS39663F-page 119  
PIC18F87J10 FAMILY  
10.4 IPR Registers  
The IPR registers contain the individual priority bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three Peripheral  
Interrupt Priority registers (IPR1, IPR2, IPR3). Using  
the priority bits requires that the Interrupt Priority  
Enable (IPEN) bit be set.  
REGISTER 10-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1  
R/W-1  
PSPIP  
R/W-1  
ADIP  
R/W-1  
RC1IP  
R/W-1  
TX1IP  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SSP1IP  
CCP1IP  
TMR2IP  
TMR1IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
PSPIP: Parallel Port Read/Write Interrupt Priority bit  
1= High priority  
0= Low priority  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
RC1IP: EUSART1 Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TX1IP: EUSART1 Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
bit 0  
SSP1IP: Master Synchronous Serial Port 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP1IP: ECCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
DS39663F-page 120  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
REGISTER 10-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2  
R/W-1  
R/W-1  
CMIP  
U-0  
U-0  
R/W-1  
U-0  
R/W-1  
R/W-1  
OSCFIP  
BCL1IP  
TMR3IP  
CCP2IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
OSCFIP: Oscillator Fail Interrupt Priority bit  
1= High priority  
0= Low priority  
CMIP: Comparator Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
BCL1IP: Bus Collision Interrupt Priority bit (MSSP1 module)  
1= High priority  
0= Low priority  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 0  
CCP2IP: ECCP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
© 2009 Microchip Technology Inc.  
DS39663F-page 121  
PIC18F87J10 FAMILY  
REGISTER 10-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3  
R/W-1  
R/W-1  
R/W-1  
RC2IP  
R/W-1  
TX2IP  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SSP2IP  
BCL2IP  
TMR4IP  
CCP5IP  
CCP4IP  
CCP3IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SSP2IP: Master Synchronous Serial Port 2 Interrupt Priority bit  
1= High priority  
0= Low priority  
BCL2IP: Bus Collision Interrupt Priority bit (MSSP2 module)  
1= High priority  
0= Low priority  
RC2IP: EUSART2 Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TX2IP: EUSART2 Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR4IE: TMR4 to PR4 Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP5IP: CCP5 Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP4IP: CCP4 Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP3IP: ECCP3 Interrupt Priority bit  
1= High priority  
0= Low priority  
DS39663F-page 122  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
10.5 RCON Register  
The RCON register contains bits used to determine the  
cause of the last Reset or wake-up from Idle or Sleep  
modes. RCON also contains the bit that enables  
interrupt priorities (IPEN).  
REGISTER 10-13: RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
RI: RESETInstruction Flag bit  
For details of bit operation, see Register 4-1.  
TO: Watchdog Time-out Flag bit  
bit 3  
bit 2  
bit 1  
bit 0  
For details of bit operation, see Register 4-1.  
PD: Power-Down Detection Flag bit  
For details of bit operation, see Register 4-1.  
POR: Power-on Reset Status bit(2)  
For details of bit operation, see Register 4-1.  
BOR: Brown-out Reset Status bit  
For details of bit operation, see Register 4-1.  
© 2009 Microchip Technology Inc.  
DS39663F-page 123  
PIC18F87J10 FAMILY  
10.6 INTx Pin Interrupts  
10.7 TMR0 Interrupt  
External interrupts on the RB0/INT0, RB1/INT1,  
RB2/INT2 and RB3/INT3 pins are edge-triggered. If the  
corresponding INTEDGx bit in the INTCON2 register is  
set (= 1), the interrupt is triggered by a rising edge; if  
the bit is clear, the trigger is on the falling edge. When  
a valid edge appears on the RBx/INTx pin, the  
corresponding flag bit, INTxIF, is set. This interrupt can  
be disabled by clearing the corresponding enable bit,  
INTxIE. Flag bit, INTxIF, must be cleared in software in  
the Interrupt Service Routine before re-enabling the  
interrupt.  
In 8-bit mode (which is the default), an overflow in the  
TMR0 register (FFh 00h) will set flag bit, TMR0IF. In  
16-bit mode, an overflow in the TMR0H:TMR0L register  
pair (FFFFh 0000h) will set TMR0IF. The interrupt  
can be enabled/disabled by setting/clearing enable bit,  
TMR0IE (INTCON<5>). Interrupt priority for Timer0 is  
determined by the value contained in the interrupt prior-  
ity bit, TMR0IP (INTCON2<2>). See Section 12.0  
“Timer0 Module” for further details on the Timer0  
module.  
10.8 PORTB Interrupt-on-Change  
All external interrupts (INT0, INT1, INT2 and INT3) can  
wake-up the processor from the power-managed  
modes if bit, INTxIE, was set prior to going into the  
power-managed modes. If the Global Interrupt Enable  
bit, GIE, is set, the processor will branch to the interrupt  
vector following wake-up.  
An input-on-change PORTB<7:4> sets flag bit, RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<3>).  
Interrupt priority for PORTB interrupt-on-change is  
determined by the value contained in the interrupt  
priority bit, RBIP (INTCON2<0>).  
Interrupt priority for INT1, INT2 and INT3 is determined  
by the value contained in the interrupt priority bits,  
INT1IP (INTCON3<6>), INT2IP (INTCON3<7>) and  
INT3IP (INTCON2<1>). There is no priority bit  
associated with INT0. It is always a high-priority  
interrupt source.  
10.9 Context Saving During Interrupts  
During interrupts, the return PC address is saved on  
the stack. Additionally, the WREG, STATUS and BSR  
registers are saved on the fast return stack. If a fast  
return from interrupt is not used (see Section 6.3  
“Data Memory Organization”), the user may need to  
save the WREG, STATUS and BSR registers on entry  
to the Interrupt Service Routine. Depending on the  
user’s application, other registers may also need to be  
saved. Example 10-1 saves and restores the WREG,  
STATUS and BSR registers during an Interrupt Service  
Routine.  
EXAMPLE 10-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR_TMEP located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
DS39663F-page 124  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
11.1 I/O Port Pin Capabilities  
11.0 I/O PORTS  
When developing an application, the capabilities of the  
port pins must be considered. Outputs on some pins  
have higher output drive strength than others. Similarly,  
some pins can tolerate higher than VDD input levels.  
Depending on the device selected and features  
enabled, there are up to nine ports available. Some  
pins of the I/O ports are multiplexed with an alternate  
function from the peripheral features on the device. In  
general, when a peripheral is enabled, that pin may not  
be used as a general purpose I/O pin.  
11.1.1  
PIN OUTPUT DRIVE  
The output pin drive strengths vary for groups of pins  
intended to meet the needs for a variety of applications.  
PORTB and PORTC are designed to drive higher  
loads, such as LEDs. The external memory interface  
ports (PORTD, PORTE and PORTJ) are designed to  
drive medium loads. All other ports are designed for  
small loads, typically indication only. Table 11-1 sum-  
marizes the output capabilities. Refer to Section 27.0  
“Electrical Characteristics” for more details.  
Each port has three registers for its operation. These  
registers are:  
• TRIS register (Data Direction register)  
• PORT register (reads the levels on the pins of the  
device)  
• LAT register (Output Latch register)  
The Output Latch (LAT register) is useful for  
read-modify-write operations on the value that the I/O  
pins are driving.  
TABLE 11-1: OUTPUT DRIVE LEVELS  
A simplified model of a generic I/O port, without the  
interfaces to other peripherals, is shown in Figure 11-1.  
Port  
Drive  
Description  
PORTA  
PORTF  
PORTG  
PORTH(1)  
PORTD  
PORTE  
PORTJ(1)  
PORTB  
PORTC  
Minimum Intended for indication.  
FIGURE 11-1:  
GENERIC I/O PORT  
OPERATION  
RD LAT  
Medium Sufficient drive levels for  
external memory interfacing  
as well as indication.  
Data  
Bus  
D
Q
WR LAT  
or Port  
I/O pin(1)  
High  
Suitable for direct LED drive  
levels.  
CK  
Data Latch  
Note 1: These ports are not available on 64-pin  
D
Q
devices.  
WR TRIS  
RD TRIS  
CK  
TRIS Latch  
Input  
Buffer  
Q
D
EN  
RD Port  
© 2009 Microchip Technology Inc.  
DS39663F-page 125  
PIC18F87J10 FAMILY  
11.1.2  
INPUT PINS AND VOLTAGE  
CONSIDERATIONS  
11.2 PORTA, TRISA and  
LATA Registers  
The voltage tolerance of pins used as device inputs is  
dependent on the pin’s input function. Pins that are used  
as digital only inputs are able to handle DC voltages up  
to 5.5V, a level typical for digital logic circuits. In contrast,  
pins that also have analog input functions of any kind  
can only tolerate voltages up to VDD. Voltage excursions  
beyond VDD on these pins should be avoided.  
Table 11-2 summarizes the input capabilities. Refer to  
Section 27.0 “Electrical Characteristics” for more  
details.  
PORTA is a 6-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Reading the PORTA register reads the status of the  
pins, whereas writing to it, will write to the port latch.  
The Output Latch register (LATA) is also memory  
mapped. Read-modify-write operations on the LATA  
register read and write the latched output value for  
PORTA.  
TABLE 11-2: INPUT VOLTAGE LEVELS  
Tolerated  
Port or Pin  
Description  
Input  
The RA4 pin is multiplexed with the Timer0 module  
clock input to become the RA4/T0CKI pin. The other  
PORTA pins are multiplexed with the analog VREF+ and  
VREF- inputs. The operation of pins RA<5:0> as A/D  
Converter inputs is selected by clearing or setting the  
PCFG<3:0> control bits in the ADCON1 register.  
PORTA<5:0>  
PORTC<1:0>  
PORTF<6:1>  
PORTH<7:4>(1)  
PORTB<7:0>  
PORTC<7:2>  
PORTD<7:0>  
PORTE<7:0>  
PORTF<7>  
VDD  
Only VDD input levels  
tolerated.  
5.5V  
Tolerates input levels  
above VDD, useful for  
most standard logic.  
Note:  
RA5 and RA<3:0> are configured as  
analog inputs on any Reset and are read  
as ‘0’. RA4 is configured as a digital input.  
The RA4/T0CKI pin is a Schmitt Trigger input. All other  
PORTA pins have TTL input levels and full CMOS  
output drivers.  
PORTG<4:0>  
PORTH<3:0>(1)  
PORTJ<7:0>(1)  
The TRISA register controls the direction of the PORTA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Note 1: These ports are not available on 64-pin  
devices.  
EXAMPLE 11-1:  
INITIALIZING PORTA  
CLRF  
PORTA  
LATA  
07h  
; Initialize PORTA by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
CLRF  
MOVLW  
MOVWF  
MOVWF  
MOVWF  
MOVLW  
; Configure A/D  
ADCON1 ; for digital inputs  
07h  
CMCON  
0CFh  
; Configure comparators  
; for digital input  
; Value used to  
; initialize data  
; direction  
MOVWF  
TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
DS39663F-page 126  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 11-3: PORTA FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
RA0/AN0  
Function  
I/O  
Description  
RA0  
0
1
1
O
I
DIG  
TTL  
ANA  
LATA<0> data output; not affected by analog input.  
PORTA<0> data input; disabled when analog input enabled.  
AN0  
RA1  
I
A/D Input Channel 0. Default input configuration on POR; does not  
affect digital output.  
RA1/AN1  
0
1
1
O
I
DIG  
TTL  
ANA  
LATA<1> data output; not affected by analog input.  
PORTA<1> data input; disabled when analog input enabled.  
AN1  
RA2  
I
A/D Input Channel 1. Default input configuration on POR; does not  
affect digital output.  
RA2/AN2/VREF-  
0
1
1
O
I
DIG  
TTL  
ANA  
LATA<2> data output; not affected by analog input. Disabled when  
CVREF output enabled.  
PORTA<2> data input. Disabled when analog functions enabled;  
disabled when CVREF output enabled.  
AN2  
I
A/D Input Channel 2 and Comparator C2+ input. Default input  
configuration on POR; not affected by analog output.  
VREF-  
RA3  
1
0
1
1
1
0
1
x
0
1
1
I
O
I
ANA  
DIG  
TTL  
ANA  
ANA  
DIG  
ST  
A/D and Comparator low reference voltage input.  
LATA<3> data output; not affected by analog input.  
PORTA<3> data input; disabled when analog input enabled.  
A/D Input Channel 3. Default input configuration on POR.  
A/D high reference voltage input.  
RA3/AN3/VREF+  
AN3  
VREF+  
RA4  
I
I
RA4/T0CKI  
RA5/AN4  
O
I
LATA<4> data output.  
PORTA<4> data input; default configuration on POR.  
Timer0 clock input.  
T0CKI  
RA5  
I
ST  
O
I
DIG  
TTL  
ANA  
LATA<5> data output; not affected by analog input.  
PORTA<5> data input; disabled when analog input enabled.  
A/D Input Channel 4. Default configuration on POR.  
AN4  
I
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
56  
56  
56  
54  
LATA  
LATA5  
TRISA5  
VCFG1  
LATA4  
TRISA4  
VCFG0  
LATA3  
TRISA3  
PCFG3  
LATA2  
TRISA2  
PCFG2  
LATA1  
TRISA1  
PCFG1  
LATA0  
TRISA0  
PCFG0  
TRISA  
ADCON1  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTA.  
© 2009 Microchip Technology Inc.  
DS39663F-page 127  
PIC18F87J10 FAMILY  
Four of the PORTB pins (RB<7:4>) have an  
interrupt-on-change feature. Only pins configured as  
inputs can cause this interrupt to occur (i.e., any  
RB<7:4> pin configured as an output is excluded from  
the interrupt-on-change comparison). The input pins (of  
RB<7:4>) are compared with the old value latched on  
the last read of PORTB. The “mismatch” outputs of  
RB<7:4> are ORed together to generate the RB Port  
Change Interrupt with Flag bit, RBIF (INTCON<0>).  
11.3 PORTB, TRISB and  
LATB Registers  
PORTB is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISB bit (= 0)  
will make the corresponding PORTB pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
All pins on PORTB are digital only and tolerate voltages  
up to 5.5V.  
This interrupt can wake the device from  
power-managed modes. The user, in the Interrupt  
Service Routine, can clear the interrupt in the following  
manner:  
The Output Latch register (LATB) is also memory  
mapped. Read-modify-write operations on the LATB  
register read and write the latched output value for  
PORTB.  
a) Any read or write of PORTB (except with the  
MOVFF (ANY), PORTB instruction). This will  
end the mismatch condition.  
b) Clear flag bit, RBIF.  
EXAMPLE 11-2:  
INITIALIZING PORTB  
A mismatch condition will continue to set flag bit, RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit, RBIF, to be cleared.  
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
CLRF  
LATB  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
MOVLW  
MOVWF  
0CFh  
TRISB  
For 80-pin devices, RB3 can be configured as the  
alternate peripheral pin for the ECCP2 module and  
Enhanced PWM Output 2A by clearing the CCP2MX  
Configuration bit. This applies only to 80-pin devices  
operating in Extended Microcontroller mode. If the  
device is in Microcontroller mode, the alternate  
assignment for ECCP2 is RE7. As with other ECCP2  
configurations, the user must ensure that the TRISB<3>  
bit is set appropriately for the intended operation.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
performed by clearing bit, RBPU (INTCON2<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
DS39663F-page 128  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 11-5: PORTB FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RB0/INT0/FLT0  
RB0  
0
1
1
1
0
1
1
0
1
1
0
1
1
0
1
0
O
I
DIG LATB<0> data output.  
TTL PORTB<0> data input; weak pull-up when RBPU bit is cleared.  
INT0  
FLT0  
RB1  
I
ST  
ST  
External Interrupt 0 input.  
I
Enhanced PWM Fault input (ECCP1 module); enabled in software.  
RB1/INT1  
RB2/INT2  
O
I
DIG LATB<1> data output.  
TTL PORTB<1> data input; weak pull-up when RBPU bit is cleared.  
INT1  
RB2  
I
ST  
External Interrupt 1 input.  
O
I
DIG LATB<2> data output.  
TTL PORTB<2> data input; weak pull-up when RBPU bit is cleared.  
INT2  
RB3  
I
ST  
External Interrupt 2 input.  
RB3/INT3/  
ECCP2/P2A  
O
I
DIG LATB<3> data output.  
TTL PORTB<3> data input; weak pull-up when RBPU bit is cleared.  
INT3  
I
ST  
DIG CCP2 compare output and CCP2 PWM output; takes priority over port data.  
ST CCP2 capture input.  
External Interrupt 3 input.  
(1)  
ECCP2  
O
I
(1)  
P2A  
O
DIG ECCP2 Enhanced PWM output, Channel A. May be configured for  
tri-state during Enhanced PWM shutdown events. Takes priority over port  
data.  
RB4/KBI0  
RB4  
0
1
O
I
DIG LATB<4> data output.  
TTL PORTB<4> data input; weak pull-up when RBPU bit is cleared.  
TTL Interrupt-on-pin change.  
KBI0  
RB5  
I
RB5/KBI1  
0
1
O
I
DIG LATB<5> data output.  
TTL PORTB<5> data input; weak pull-up when RBPU bit is cleared.  
TTL Interrupt-on-pin change.  
KBI1  
RB6  
I
RB6/KBI2/PGC  
0
1
1
x
0
1
1
x
x
O
I
DIG LATB<6> data output.  
TTL PORTB<6> data input; weak pull-up when RBPU bit is cleared.  
KBI2  
PGC  
RB7  
I
TTL Interrupt-on-pin change.  
(2)  
I
ST  
Serial execution (ICSP™) clock input for ICSP and ICD operation.  
RB7/KBI3/PGD  
O
I
DIG LATB<7> data output.  
TTL PORTB<7> data input; weak pull-up when RBPU bit is cleared.  
TTL Interrupt-on-pin change.  
KBI3  
PGD  
I
(2)  
O
I
DIG Serial execution data output for ICSP and ICD operation.  
(2)  
ST  
Serial execution data input for ICSP and ICD operation.  
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Alternate assignment for ECCP2/P2A when the CCP2MX Configuration bit is cleared (Extended Microcontroller mode,  
80-pin devices only); default assignment is RC1.  
2: All other pin functions are disabled when ICSP or ICD are enabled.  
© 2009 Microchip Technology Inc.  
DS39663F-page 129  
PIC18F87J10 FAMILY  
TABLE 11-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
56  
56  
56  
53  
53  
53  
LATB  
LATB7  
TRISB7  
LATB6  
TRISB6  
LATB5  
LATB4  
LATB3  
LATB2  
LATB1  
LATB0  
TRISB  
TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0  
INTCON  
INTCON2  
INTCON3  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
INTEDG0 INTEDG1 INTEDG2 INTEDG3 TMR0IP  
INT1IP INT3IE INT2IE INT1IE INT3IF  
RBIE  
TMR0IF  
INT0IF  
INT3IP  
INT2IF  
RBIF  
RBIP  
RBPU  
INT2IP  
INT1IF  
Legend: Shaded cells are not used by PORTB.  
DS39663F-page 130  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
11.4 PORTC, TRISC and  
LATC Registers  
Note:  
These pins are configured as digital inputs  
on any device Reset.  
PORTC is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISC bit (= 0)  
will make the corresponding PORTC pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
Only PORTC pins, RC2 through RC7, are digital only  
pins and can tolerate input voltages up to 5.5V.  
The contents of the TRISC register are affected by  
peripheral overrides. Reading TRISC always returns  
the current contents, even though a peripheral device  
may be overriding one or more of the pins.  
EXAMPLE 11-3:  
INITIALIZING PORTC  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
The Output Latch register (LATC) is also memory  
mapped. Read-modify-write operations on the LATC  
register read and write the latched output value for  
PORTC.  
CLRF  
LATC  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
MOVLW  
MOVWF  
0CFh  
PORTC is multiplexed with several peripheral functions  
(Table 11-7). The pins have Schmitt Trigger input  
buffers. RC1 is normally configured by Configuration  
bit, CCP2MX, as the default peripheral pin for the  
ECCP2 module and enhanced PWM output, P2A  
(default state, CCP2MX = 1).  
TRISC  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an output,  
while other peripherals override the TRIS bit to make a  
pin an input. The user should refer to the corresponding  
peripheral section for the correct TRIS bit settings.  
© 2009 Microchip Technology Inc.  
DS39663F-page 131  
PIC18F87J10 FAMILY  
TABLE 11-7: PORTC FUNCTIONS  
TRIS  
Setting  
Pin Name  
Function  
I/O  
I/O Type  
Description  
RC0/T1OSO/  
T13CKI  
RC0  
0
1
x
O
I
DIG  
ST  
LATC<0> data output.  
PORTC<0> data input.  
T1OSO  
O
ANA  
Timer1 oscillator output; enabled when Timer1 oscillator enabled. Disables  
digital I/O.  
T13CKI  
RC1  
1
0
1
x
I
O
I
ST  
DIG  
ST  
Timer1/Timer3 counter input.  
LATC<1> data output.  
RC1/T1OSI/  
ECCP2/P2A  
PORTC<1> data input.  
T1OSI  
I
ANA  
Timer1 oscillator input; enabled when Timer1 oscillator enabled. Disables  
digital I/O.  
(1)  
ECCP2  
0
1
0
O
I
DIG  
ST  
CCP2 compare output and CCP2 PWM output; takes priority over port data.  
CCP2 capture input.  
(1)  
P2A  
O
DIG  
ECCP2 Enhanced PWM output, Channel A. May be configured for tri-state  
during Enhanced PWM shutdown events. Takes priority over port data.  
RC2/ECCP1/  
P1A  
RC2  
0
1
0
1
0
O
I
DIG  
ST  
LATC<2> data output.  
PORTC<2> data input.  
ECCP1  
O
I
DIG  
ST  
CCP1 compare output and CCP1 PWM output; takes priority over port data.  
CCP1 capture input.  
P1A  
RC3  
O
DIG  
ECCP1 Enhanced PWM output, Channel A. May be configured for tri-state  
during Enhanced PWM shutdown events. Takes priority over port data.  
RC3/SCK1/  
SCL1  
0
1
0
1
0
1
0
1
1
1
1
0
1
0
0
1
1
1
O
I
DIG  
ST  
LATC<3> data output.  
PORTC<3> data input.  
SCK1  
SCL1  
RC4  
O
I
DIG  
ST  
SPI clock output (MSSP1 module); takes priority over port data.  
SPI clock input (MSSP1 module).  
2
O
I
DIG  
I C™ clock output (MSSP1 module); takes priority over port data.  
2
2
I C/SMB I C clock input (MSSP1 module); input type depends on module setting.  
RC4/SDI1/  
SDA1  
O
I
DIG  
ST  
LATC<4> data output.  
PORTC<4> data input.  
SDI1  
I
ST  
SPI data input (MSSP1 module).  
2
SDA1  
O
I
DIG  
I C data output (MSSP1 module); takes priority over port data.  
2
2
I C/SMB I C data input (MSSP1 module); input type depends on module setting.  
RC5/SDO1  
RC5  
O
I
DIG  
ST  
LATC<5> data output.  
PORTC<5> data input.  
SDO1  
RC6  
O
O
I
DIG  
DIG  
ST  
SPI data output (MSSP1 module); takes priority over port data.  
LATC<6> data output.  
RC6/TX1/CK1  
PORTC<6> data input.  
TX1  
CK1  
O
O
DIG  
DIG  
Synchronous serial data output (EUSART1 module); takes priority over port data.  
Synchronous serial data input (EUSART1 module). User must configure as  
an input.  
1
0
1
1
1
I
O
I
ST  
DIG  
ST  
Synchronous serial clock input (EUSART1 module).  
LATC<7> data output.  
RC7/RX1/DT1  
RC7  
PORTC<7> data input.  
RX1  
DT1  
I
ST  
Asynchronous serial receive data input (EUSART1 module).  
O
DIG  
Synchronous serial data output (EUSART1 module); takes priority over port  
data.  
1
I
ST  
Synchronous serial data input (EUSART1 module). User must configure as  
an input.  
2
2
Legend:  
PWR = Power Supply, O = Output, I = Input, I C™/SMB = I C/SMBus input buffer, ANA = Analog Signal, DIG = Digital Out-  
put, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden  
for this option).  
Note 1: Default assignment for ECCP2/P2A when the CCP2MX Configuration bit is set.  
DS39663F-page 132  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 11-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
56  
56  
56  
LATC  
LATC7  
LATBC6  
LATC5  
LATCB4  
LATC3  
LATC2  
LATC1  
LATC0  
TRISC  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
© 2009 Microchip Technology Inc.  
DS39663F-page 133  
PIC18F87J10 FAMILY  
PORTD can also be configured to function as an 8-bit  
wide, parallel microprocessor port by setting the  
PSPMODE control bit (PSPCON<4>). In this mode,  
parallel port data takes priority over other digital I/O (but  
not the external memory interface). When the parallel  
port is active, the input buffers are TTL. For more  
information, refer to Section 11.11 “Parallel Slave  
Port”.  
11.5 PORTD, TRISD and  
LATD Registers  
PORTD is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISD. Setting a  
TRISD bit (= 1) will make the corresponding PORTD  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISD bit (= 0)  
will make the corresponding PORTD pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
All pins on PORTD are digital only and tolerate voltages  
up to 5.5V.  
EXAMPLE 11-4:  
INITIALIZING PORTD  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
The Output Latch register (LATD) is also memory  
mapped. Read-modify-write operations on the LATD  
register read and write the latched output value for  
PORTD.  
CLRF  
LATD  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
0CFh  
; Value used to  
; initialize data  
; direction  
; Set RD<3:0> as inputs  
; RD<5:4> as outputs  
; RD<7:6> as inputs  
All pins on PORTD are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
TRISD  
Note:  
These pins are configured as digital inputs  
on any device Reset.  
On 80-pin devices, PORTD is multiplexed with the  
system bus as part of the external memory interface.  
I/O port and other functions are only available when the  
interface is disabled by setting the EBDIS bit  
(MEMCON<7>). When the interface is enabled,  
PORTD is the low-order byte of the multiplexed  
address/data bus (AD<7:0>). The TRISD bits are also  
overridden.  
Each of the PORTD pins has a weak internal pull-up.  
The pull-ups are provided to keep the inputs at a known  
state for the external memory interface while powering  
up. A single control bit can turn off all the pull-ups. This  
is performed by clearing bit, RDPU (PORTG<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on all device Resets.  
DS39663F-page 134  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 11-9: PORTD FUNCTIONS  
TRIS  
Setting  
Pin Name  
Function  
I/O  
I/O Type  
Description  
RD0/AD0/PSP0  
RD0  
0
1
x
x
O
I
DIG  
ST  
LATD<0> data output.  
PORTD<0> data input.  
(2)  
(1)  
AD0  
O
I
DIG  
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 0 output.  
(1)  
External memory interface, data bit 0 input.  
PSP0  
RD1  
O
I
PSP read output data (LATD<0>); takes priority over port data.  
PSP write data input.  
RD1/AD1/PSP1  
RD2/AD2/PSP2  
RD3/AD3/PSP3  
0
1
x
x
x
x
0
1
x
x
x
x
0
1
x
x
x
x
0
1
x
x
x
x
0
0
1
x
x
x
x
1
1
1
O
I
LATD<1> data output.  
PORTD<1> data input.  
(2)  
(1)  
AD1  
O
I
DIG  
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 1 output.  
(1)  
External memory interface, data bit 1 input.  
PSP1  
RD2  
O
I
PSP read output data (LATD<1>); takes priority over port data.  
PSP write data input.  
O
I
LATD<2> data output.  
PORTD<2> data input.  
(2)  
(1)  
AD2  
O
I
DIG  
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 2 output.  
(1)  
External memory interface, data bit 2 input.  
PSP2  
RD3  
O
I
PSP read output data (LATD<2>); takes priority over port data.  
PSP write data input.  
O
I
LATD<3> data output.  
PORTD<3> data input.  
(2)  
(1)  
AD3  
O
I
DIG  
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 3 output.  
(1)  
External memory interface, data bit 3 input.  
PSP3  
RD4  
O
I
PSP read output data (LATD<3>); takes priority over port data.  
PSP write data input.  
RD4/AD4/  
PSP4/SDO2  
O
I
LATD<4> data output.  
PORTD<4> data input.  
(2)  
(1)  
AD4  
O
I
DIG  
TTL  
DIG  
TTL  
DIG  
DIG  
ST  
External memory interface, address/data bit 4 output.  
(1)  
External memory interface, data bit 4 input.  
PSP4  
O
I
PSP read output data (LATD<4>); takes priority over port data.  
PSP write data input.  
SDO2  
RD5  
O
O
I
SPI data output (MSSP2 module); takes priority over port data.  
LATD<5> data output.  
RD5/AD5/  
PSP5/SDI2/  
SDA2  
PORTD<5> data input.  
(2)  
(1)  
AD5  
O
I
DIG  
TTL  
DIG  
TTL  
ST  
External memory interface, address/data bit 5 output.  
(1)  
External memory interface, data bit 5 input.  
PSP5  
O
I
PSP read output data (LATD<5>); takes priority over port data.  
PSP write data input.  
SDI2  
I
SPI data input (MSSP2 module).  
2
SDA2  
O
I
DIG  
I C™ data output (MSSP2 module); takes priority over port data.  
2
2
I C/SMB I C data input (MSSP2 module); input type depends on module  
setting.  
2
2
Legend:  
PWR = Power Supply, O = Output, I = Input, I C™/SMB = I C/SMBus input buffer, ANA = Analog Signal, DIG = Digital  
Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is  
overridden for this option).  
Note 1: External memory interface I/O takes priority over all other digital and PSP I/O.  
2: Available on 80-pin devices only.  
© 2009 Microchip Technology Inc.  
DS39663F-page 135  
PIC18F87J10 FAMILY  
TABLE 11-9: PORTD FUNCTIONS (CONTINUED)  
TRIS  
Setting  
Pin Name  
Function  
I/O  
I/O Type  
Description  
RD6/AD6/  
PSP6/SCK2/  
SCL2  
RD6  
0
1
x
x
x
x
0
1
0
1
O
I
DIG  
ST  
LATD<6> data output.  
PORTD<6> data input.  
(2)  
(1)  
AD6  
O
I
DIG-3  
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 6 output.  
(1)  
External memory interface, data bit 6 input.  
PSP6  
SCK2  
SCL2  
O
I
PSP read output data (LATD<6>); takes priority over port data.  
PSP write data input.  
O
I
SPI clock output (MSSP2 module); takes priority over port data.  
SPI clock input (MSSP2 module).  
2
O
I
DIG  
I C™ clock output (MSSP2 module); takes priority over port data.  
2
2
I C/SMB I C clock input (MSSP2 module); input type depends on module  
setting.  
RD7/AD7/  
PSP7/SS2  
RD7  
0
1
x
x
x
x
x
O
I
DIG  
ST  
LATD<7> data output.  
PORTD<7> data input.  
(2)  
(1)  
AD7  
O
I
DIG  
TTL  
DIG  
TTL  
TTL  
External memory interface, address/data bit 7 output.  
(1)  
External memory interface, data bit 7 input.  
PSP7  
O
I
PSP read output data (LATD<7>); takes priority over port data.  
PSP write data input.  
SS2  
I
Slave select input for MSSP (MSSP2 module).  
2
2
Legend:  
PWR = Power Supply, O = Output, I = Input, I C™/SMB = I C/SMBus input buffer, ANA = Analog Signal, DIG = Digital  
Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is  
overridden for this option).  
Note 1: External memory interface I/O takes priority over all other digital and PSP I/O.  
2: Available on 80-pin devices only.  
TABLE 11-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
RD7  
RD6  
LATD6  
TRISD6  
REPU  
RD5  
RD4  
LATD4  
TRISD4  
RG4  
RD3  
LATD3  
TRISD3  
RG3  
RD2  
LATD2  
TRISD2  
RG2  
RD1  
LATD1  
TRISD1  
RG1  
RD0  
LATD0  
TRISD0  
RG0  
56  
56  
56  
56  
LATD7  
TRISD7  
RDPU  
LATD5  
TRISD5  
RJPU(1)  
TRISD  
PORTG  
Legend: Shaded cells are not used by PORTD.  
Note 1: Unimplemented on 64-pin devices, read as ‘0’.  
DS39663F-page 136  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
PORTE is also multiplexed with Enhanced PWM  
outputs B and C for ECCP1 and ECCP3 and outputs B,  
C and D for ECCP2. For all devices, their default  
assignments are on PORTE<6:3>. On 80-pin devices,  
the multiplexing for the outputs of ECCP1 and ECCP3  
is controlled by the ECCPMX Configuration bit.  
Clearing this bit reassigns the P1B/P1C and P3B/P3C  
outputs to PORTH.  
11.6 PORTE, TRISE and  
LATE Registers  
PORTE is a 7-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISE. Setting a  
TRISE bit (= 1) will make the corresponding PORTE  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISE bit (= 0)  
will make the corresponding PORTE pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
All pins on PORTE are digital only and tolerate voltages  
up to 5.5V.  
For devices operating in Microcontroller mode, pin RE7  
can be configured as the alternate peripheral pin for the  
ECCP2 module and Enhanced PWM output 2A. This is  
done by clearing the CCP2MX Configuration bit.  
The Output Latch register (LATE) is also memory  
mapped. Read-modify-write operations on the LATE  
register read and write the latched output value for  
PORTE.  
When the Parallel Slave Port is active on PORTD, three  
of the PORTE pins (RE0, RE1 and RE2) are configured  
as digital control inputs for the port. The control  
functions are summarized in Table 11-11. The reconfig-  
uration occurs automatically when the PSPMODE  
control bit (PSPCON<4>) is set. Users must still make  
certain the corresponding TRISE bits are set to  
configure these pins as digital inputs.  
All pins on PORTE are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
Note:  
These pins are configured as digital inputs  
on any device Reset.  
EXAMPLE 11-5:  
INITIALIZING PORTE  
On 80-pin devices, PORTE is multiplexed with the  
system bus as part of the external memory interface.  
I/O port and other functions are only available when the  
interface is disabled, by setting the EBDIS bit  
(MEMCON<7>). When the interface is enabled,  
PORTE is the high-order byte of the multiplexed  
address/data bus (AD<15:8>). The TRISE bits are also  
overridden.  
CLRF  
PORTE  
LATE  
03h  
; Initialize PORTE by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
CLRF  
MOVLW  
MOVWF  
TRISE  
; Set RE<1:0> as inputs  
; RE<7:2> as outputs  
Each of the PORTE pins has a weak internal pull-up.  
The pull-ups are provided to keep the inputs at a known  
state for the external memory interface while powering  
up. A single control bit can turn off all the pull-ups. This  
is performed by clearing bit, REPU (PORTG<6>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on any device Reset.  
© 2009 Microchip Technology Inc.  
DS39663F-page 137  
PIC18F87J10 FAMILY  
TABLE 11-11: PORTE FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RE0/AD8/RD/  
P2D  
RE0  
0
1
x
x
1
0
O
I
DIG  
ST  
LATE<0> data output.  
PORTE<0> data input.  
(3)  
(2)  
AD8  
O
I
DIG  
TTL  
TTL  
DIG  
External memory interface, address/data bit 8 output.  
(2)  
External memory interface, data bit 8 input.  
RD  
I
Parallel Slave Port read enable control input.  
P2D  
O
ECCP2 Enhanced PWM output, Channel D; takes priority over port  
and PSP data. May be configured for tri-state during Enhanced PWM  
shutdown events.  
RE1/AD9/WR/  
P2C  
RE1  
0
1
x
x
1
0
O
I
DIG  
ST  
LATE<1> data output.  
PORTE<1> data input.  
(3)  
(2)  
AD9  
O
I
DIG  
TTL  
TTL  
DIG  
External memory interface, address/data bit 9 output.  
(2)  
External memory interface, data bit 9 input.  
WR  
I
Parallel Slave Port write enable control input.  
P2C  
O
ECCP2 Enhanced PWM output, Channel C; takes priority over port  
and PSP data. May be configured for tri-state during Enhanced PWM  
shutdown events.  
RE2/AD10/CS/  
P2B  
RE2  
0
1
x
x
1
0
O
I
DIG  
ST  
LATE<2> data output.  
PORTE<2> data input.  
(3)  
(2)  
AD10  
O
I
DIG  
TTL  
TTL  
DIG  
External memory interface, address/data bit 10 output.  
(2)  
External memory interface, data bit 10 input.  
CS  
I
Parallel Slave Port chip select control input.  
P2B  
O
ECCP2 Enhanced PWM output, Channel B; takes priority over port  
and PSP data. May be configured for tri-state during Enhanced PWM  
shutdown events.  
RE3/AD11/  
P3C  
RE3  
0
1
x
x
0
O
I
DIG  
ST  
LATE<3> data output.  
PORTE<3> data input.  
(3)  
(2)  
AD11  
O
I
DIG  
TTL  
DIG  
External memory interface, address/data bit 11 output.  
(2)  
External memory interface, data bit 11 input.  
(1)  
P3C  
O
ECCP3 Enhanced PWM output, Channel C; takes priority over port  
and PSP data. May be configured for tri-state during Enhanced PWM  
shutdown events.  
RE4/AD12/  
P3B  
RE4  
0
1
x
x
0
O
I
DIG  
ST  
LATE<4> data output.  
PORTE<4> data input.  
(3)  
(2)  
AD12  
O
I
DIG  
TTL  
DIG  
External memory interface, address/data bit 12 output.  
(2)  
External memory interface, data bit 12 input.  
(1)  
P3B  
O
ECCP3 Enhanced PWM output, Channel B; takes priority over port  
and PSP data. May be configured for tri-state during Enhanced PWM  
shutdown events.  
RE5/AD13/  
P1C  
RE5  
0
1
x
x
0
O
I
DIG  
ST  
LATE<5> data output.  
PORTE<5> data input.  
(3)  
(2)  
AD13  
O
I
DIG  
TTL  
DIG  
External memory interface, address/data bit 13 output.  
(2)  
External memory interface, data bit 13 input.  
(1)  
P1C  
O
ECCP1 Enhanced PWM output, Channel C; takes priority over port  
and PSP data. May be configured for tri-state during Enhanced PWM  
shutdown events.  
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Default assignments for P1B/P1C and P3B/P3C when ECCPMX Configuration bit is set (80-pin devices only).  
2: External memory interface I/O takes priority over all other digital and PSP I/O.  
3: Available on 80-pin devices only.  
4: Alternate assignment for ECCP2/P2A when the CCP2MX Configuration bit is cleared (all devices in Microcontroller mode).  
DS39663F-page 138  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 11-11: PORTE FUNCTIONS (CONTINUED)  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RE6/AD14/  
P1B  
RE6  
0
1
x
x
0
O
I
DIG  
ST  
LATE<6> data output.  
PORTE<6> data input.  
(3)  
(2)  
AD14  
O
I
DIG  
TTL  
DIG  
External memory interface, address/data bit 14 output.  
(2)  
External memory interface, data bit 14 input.  
(1)  
P1B  
O
ECCP1 Enhanced PWM output, Channel B; takes priority over port  
and PSP data. May be configured for tri-state during Enhanced PWM  
shutdown events.  
RE7/AD15/  
ECCP2/P2A  
RE7  
0
1
x
x
0
O
I
DIG  
ST  
LATE<7> data output.  
PORTE<7> data input.  
(3)  
(2)  
AD15  
O
I
DIG  
TTL  
DIG  
External memory interface, address/data bit 15 output.  
(2)  
External memory interface, data bit 15 input.  
(4)  
ECCP2  
O
CCP2 compare output and CCP2 PWM output; takes priority over  
port data.  
1
0
I
ST  
CCP2 capture input.  
(4)  
P2A  
O
DIG  
ECCP2 Enhanced PWM output, Channel A; takes priority over port  
and PSP data. May be configured for tri-state during Enhanced PWM  
shutdown events.  
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Default assignments for P1B/P1C and P3B/P3C when ECCPMX Configuration bit is set (80-pin devices only).  
2: External memory interface I/O takes priority over all other digital and PSP I/O.  
3: Available on 80-pin devices only.  
4: Alternate assignment for ECCP2/P2A when the CCP2MX Configuration bit is cleared (all devices in Microcontroller mode).  
TABLE 11-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
PORTE  
LATE  
RE7  
RE6  
RE5  
RE4  
LATE4  
TRISE4  
RG4  
RE3  
LATE3  
TRISE3  
RG3  
RE2  
LATE2  
TRISE2  
RG2  
RE1  
LATE1  
TRISE1  
RG1  
RE0  
LATE0  
TRISE0  
RG0  
56  
56  
56  
56  
LATE7  
TRISE7  
RDPU  
LATE6  
TRISE6  
REPU  
LATE5  
TRISE5  
RJPU(1)  
TRISE  
PORTG  
Legend: Shaded cells are not used by PORTE.  
Note 1: Unimplemented on 64-pin devices, read as ‘0’.  
© 2009 Microchip Technology Inc.  
DS39663F-page 139  
PIC18F87J10 FAMILY  
11.7 PORTF, LATF and TRISF Registers  
Note 1: On device Resets, pins, RF<6:1>, are  
configured as analog inputs and are read  
as ‘0’.  
PORTF is a 7-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISF. Setting a  
TRISF bit (= 1) will make the corresponding PORTF pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISF bit (= 0) will  
make the corresponding PORTF pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Only pin 7 of PORTF has no analog input; it is the only  
pin that can tolerate voltages up to 5.5V.  
2: To configure PORTF as digital I/O, turn off  
comparators and set ADCON1 value.  
EXAMPLE 11-6:  
INITIALIZING PORTF  
CLRF  
PORTF  
; Initialize PORTF by  
; clearing output  
; data latches  
The Output Latch register (LATF) is also memory  
mapped. Read-modify-write operations on the LATF  
register read and write the latched output value for  
PORTF.  
CLRF  
LATF  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
07h  
CMCON  
0Fh;  
;
All pins on PORTF are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
; Turn off comparators  
ADCON1 ; Set PORTF as digital I/O  
0CEh  
PORTF is multiplexed with several analog peripheral  
functions, including the A/D Converter and comparator  
inputs, as well as the comparator outputs. Pins, RF2  
through RF6, may be used as comparator inputs or  
outputs by setting the appropriate bits in the CMCON  
register. To use RF<6:3> as digital inputs, it is also  
necessary to turn off the comparators.  
; Value used to  
; initialize data  
; direction  
; Set RF3:RF1 as inputs  
; RF5:RF4 as outputs  
; RF7:RF6 as inputs  
MOVWF  
TRISF  
DS39663F-page 140  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 11-13: PORTF FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RF1/AN6/  
C2OUT  
RF1  
0
1
1
0
0
1
1
0
0
1
1
O
I
DIG  
ST  
LATF<1> data output; not affected by analog input.  
PORTF<1> data input; disabled when analog input enabled.  
A/D Input Channel 6. Default configuration on POR.  
Comparator 2 output; takes priority over port data.  
LATF<2> data output; not affected by analog input.  
PORTF<2> data input; disabled when analog input enabled.  
A/D Input Channel 7. Default configuration on POR.  
Comparator 1 output; takes priority over port data.  
LATF<3> data output; not affected by analog input.  
PORTF<3> data input; disabled when analog input enabled.  
AN6  
C2OUT  
RF2  
I
ANA  
DIG  
DIG  
ST  
O
O
I
RF2/AN7/  
C1OUT  
AN7  
C1OUT  
RF3  
I
ANA  
TTL  
DIG  
ST  
O
O
I
RF3/AN8  
RF4/AN9  
AN8  
RF4  
I
ANA  
A/D Input Channel 8 and Comparator C2+ input. Default input  
configuration on POR; not affected by analog output.  
0
1
1
O
I
DIG  
ST  
LATF<4> data output; not affected by analog input.  
PORTF<4> data input; disabled when analog input enabled.  
AN9  
RF5  
I
ANA  
A/D Input Channel 9 and Comparator C2- input. Default input  
configuration on POR; does not affect digital output.  
RF5/AN10/  
CVREF  
0
1
1
x
O
I
DIG  
ST  
LATF<5> data output; not affected by analog input. Disabled when  
CVREF output enabled.  
PORTF<5> data input; disabled when analog input enabled. Disabled  
when CVREF output enabled.  
AN10  
CVREF  
RF6  
I
ANA  
ANA  
A/D Input Channel 10 and Comparator C1+ input. Default input  
configuration on POR.  
O
Comparator voltage reference output. Enabling this feature disables  
digital I/O.  
RF6/AN11  
0
1
1
O
I
DIG  
ST  
LATF<6> data output; not affected by analog input.  
PORTF<6> data input; disabled when analog input enabled.  
AN11  
RF7  
I
ANA  
A/D Input Channel 11 and Comparator C1- input. Default input  
configuration on POR; does not affect digital output.  
RF7/SS1  
0
1
1
O
I
DIG  
ST  
LATF<7> data output.  
PORTF<7> data input.  
SS1  
I
TTL  
Slave select input for MSSP (MSSP1 module).  
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 11-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTF  
LATF  
RF7  
LATF7  
TRISF7  
RF6  
LATF6  
TRISF6  
RF5  
RF4  
RF3  
LATF3  
TRISF3  
PCFG3  
CIS  
RF2  
LATF2  
TRISF2  
PCFG2  
CM2  
RF1  
LATF1  
TRISF1  
PCFG1  
CM1  
56  
56  
56  
54  
55  
55  
LATF5  
TRISF5  
VCFG1  
C2INV  
CVRR  
LATF4  
TRISF4  
VCFG0  
C1INV  
CVRSS  
TRISF  
ADCON1  
CMCON  
CVRCON  
PCFG0  
CM0  
CVR0  
C2OUT  
CVREN  
C1OUT  
CVROE  
CVR3  
CVR2  
CVR1  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTF.  
© 2009 Microchip Technology Inc.  
DS39663F-page 141  
PIC18F87J10 FAMILY  
Although the port is only five bits wide, PORTG<7:5>  
bits are still implemented. These are used to control the  
weak pull-ups on the I/O ports associated with the  
external memory bus (PORTD, PORTE and PORTJ).  
Setting these bits enables the pull-ups. Since these are  
control bits and are not associated with port I/O, the  
corresponding TRISG and LATG bits are not  
implemented.  
11.8 PORTG, TRISG and  
LATG Registers  
PORTG is a 5-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISG. Setting a  
TRISG bit (= 1) will make the corresponding PORTG  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISG bit (= 0)  
will make the corresponding PORTG pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
All pins on PORTG are digital only and tolerate  
voltages up to 5.5V.  
EXAMPLE 11-7:  
INITIALIZING PORTG  
CLRF  
PORTG  
LATG  
04h  
; Initialize PORTG by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
The Output Latch register (LATG) is also memory  
mapped. Read-modify-write operations on the LATG  
register read and write the latched output value for  
PORTG.  
CLRF  
MOVLW  
MOVWF  
PORTG is multiplexed with EUSART2 functions  
(Table 11-15). PORTG pins have Schmitt Trigger input  
buffers.  
TRISG  
; Set RG1:RG0 as outputs  
; RG2 as input  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTG pin. Some  
peripherals override the TRIS bit to make a pin an  
output, while other peripherals override the TRIS bit to  
make a pin an input. The user should refer to the  
corresponding peripheral section for the correct TRIS  
bit settings. The pin override value is not loaded into  
the TRIS register. This allows read-modify-write of the  
TRIS register without concern due to peripheral  
overrides.  
; RG4:RG3 as inputs  
DS39663F-page 142  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 11-15: PORTG FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RG0/ECCP3/  
P3A  
RG0  
0
1
O
I
DIG  
ST  
LATG<0> data output.  
PORTG<0> data input.  
ECCP3  
P3A  
O
I
DIG  
ST  
CCP3 compare and PWM output; takes priority over port data.  
CCP3 capture input.  
0
O
DIG  
ECCP3 Enhanced PWM output, Channel A; takes priority over port and  
PSP data. May be configured for tri-state during Enhanced PWM  
shutdown events.  
RG1/TX2/CK2  
R21  
0
1
1
O
I
DIG  
ST  
LATG<1> data output.  
PORTG<1> data input.  
TX2  
CK2  
O
DIG  
Synchronous serial data output (EUSART2 module); takes priority over  
port data.  
1
O
DIG  
Synchronous serial data input (EUSART2 module). User must configure  
as an input.  
1
0
1
1
1
I
O
I
ST  
DIG  
ST  
Synchronous serial clock input (EUSART2 module).  
LATG<2> data output.  
RG2/RX2/DT2  
RG2  
PORTG<2> data input.  
RX2  
DT2  
I
ST  
Asynchronous serial receive data input (EUSART2 module).  
O
DIG  
Synchronous serial data output (EUSART2 module); takes priority over  
port data.  
1
I
ST  
Synchronous serial data input (EUSART2 module). User must configure  
as an input.  
RG3/CCP4/  
P3D  
RG3  
CCP4  
P3D  
0
1
0
1
0
O
I
DIG  
ST  
LATG<3> data output.  
PORTG<3> data input.  
O
I
DIG  
ST  
CCP4 compare output and CCP4 PWM output; takes priority over port data.  
CCP4 capture input.  
O
DIG  
ECCP3 Enhanced PWM output, Channel D; takes priority over port and  
PSP data. May be configured for tri-state during Enhanced PWM  
shutdown events.  
RG4/CCP5/  
P1D  
RG4  
CCP5  
P1D  
0
1
0
1
0
O
I
DIG  
ST  
LATG<4> data output.  
PORTG<4> data input.  
O
I
DIG  
ST  
CCP5 compare output and CCP5 PWM output; takes priority over port data.  
CCP5 capture input.  
O
DIG  
ECCP1 Enhanced PWM output, Channel D; takes priority over port and  
PSP data. May be configured for tri-state during Enhanced PWM  
shutdown events.  
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 11-16: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG  
Reset  
Values on  
page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTG  
RDPU  
REPU  
RJPU(1)  
RG4  
RG3  
RG2  
RG1  
RG0  
56  
56  
56  
LATG  
LATG4  
LATG3  
LATG2  
LATG1  
LATG0  
TRISG  
TRISG4 TRISG3 TRISG2 TRISG1 TRISG0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTG.  
Note 1: Unimplemented on 64-pin devices, read as ‘0’.  
© 2009 Microchip Technology Inc.  
DS39663F-page 143  
PIC18F87J10 FAMILY  
When the external memory interface is enabled, four of  
the PORTH pins function as the high-order address  
lines for the interface. The address output from the  
interface takes priority over other digital I/O. The  
corresponding TRISH bits are also overridden.  
11.9 PORTH, LATH and  
TRISH Registers  
Note: PORTH is available only on 80-pin  
devices.  
PORTH pins, RH4 through RH7, are multiplexed with  
analog converter inputs. The operation of these pins as  
analog inputs is selected by clearing or setting the  
PCFG<3:0> control bits in the ADCON1 register.  
PORTH is an 8-bit wide, bidirectional I/O port. The cor-  
responding Data Direction register is TRISH. Setting a  
TRISH bit (= 1) will make the corresponding PORTH  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISH bit (= 0)  
will make the corresponding PORTH pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
PORTH<3:0> pins are digital only and tolerate voltages  
up to 5.5V.  
PORTH can also be configured as the alternate  
Enhanced PWM output Channels B and C for the  
ECCP1 and ECCP3 modules. This is done by clearing  
the ECCPMX Configuration bit.  
EXAMPLE 11-8:  
INITIALIZING PORTH  
The Output Latch register (LATH) is also memory  
mapped. Read-modify-write operations on the LATH  
register read and write the latched output value for  
PORTH.  
CLRF  
PORTH  
; Initialize PORTH by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Configure PORTH as  
; digital I/O  
; Value used to  
CLRF  
LATH  
All pins on PORTH are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
MOVLW  
MOVWF  
MOVLW  
0Fh  
ADCON1  
0CFh  
; initialize data  
; direction  
MOVWF  
TRISH  
; Set RH3:RH0 as inputs  
; RH5:RH4 as outputs  
; RH7:RH6 as inputs  
DS39663F-page 144  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 11-17: PORTH FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
RH0/A16  
Function  
I/O  
Description  
RH0  
0
1
x
0
1
x
0
1
x
0
1
x
0
1
O
I
DIG LATH<0> data output.  
ST PORTH<0> data input.  
A16  
O
O
I
DIG External memory interface, address line 16. Takes priority over port data.  
DIG LATH<1> data output.  
RH1/A17  
RH1  
ST  
PORTH<1> data input.  
A17  
O
O
I
DIG External memory interface, address line 17. Takes priority over port data.  
DIG LATH<2> data output.  
RH2/A18  
RH2  
ST  
PORTH<2> data input.  
A18  
O
O
I
DIG External memory interface, address line 18. Takes priority over port data.  
DIG LATH<3> data output.  
RH3/A19  
RH3  
ST  
PORTH<3> data input.  
A19  
O
O
I
DIG External memory interface, address line 19. Takes priority over port data.  
DIG LATH<4> data output.  
RH4/AN12/P3C  
RH4  
ST  
PORTH<4> data input.  
AN12  
I
ANA A/D input channel 12. Default input configuration on POR; does not affect  
digital output.  
(1)  
P3C  
0
O
DIG ECCP3 Enhanced PWM output, Channel C; takes priority over port and PSP  
data. May be configured for tri-state during Enhanced PWM shutdown events.  
RH5/AN13/P3B  
RH6/AN14/P1C  
RH7/AN15/P1B  
RH5  
0
1
O
I
DIG LATH<5> data output.  
ST  
PORTH<5> data input.  
AN13  
I
ANA A/D input channel 13. Default input configuration on POR; does not affect  
digital output.  
(1)  
P3B  
0
O
DIG ECCP3 Enhanced PWM output, Channel B; takes priority over port and PSP  
data. May be configured for tri-state during Enhanced PWM shutdown events.  
RH6  
0
1
O
I
DIG LATH<6> data output.  
ST  
PORTH<6> data input.  
AN14  
I
ANA A/D input channel 14. Default input configuration on POR; does not affect  
digital output.  
(1)  
P1C  
0
O
DIG ECCP1 Enhanced PWM output, Channel C; takes priority over port and PSP  
data. May be configured for tri-state during Enhanced PWM shutdown events.  
RH7  
0
1
O
I
DIG LATH<7> data output.  
ST  
PORTH<7> data input.  
AN15  
I
ANA A/D input channel 15. Default input configuration on POR; does not affect  
digital output.  
(1)  
P1B  
0
O
DIG ECCP1 Enhanced PWM output, Channel B; takes priority over port and PSP  
data. May be configured for tri-state during Enhanced PWM shutdown events.  
Legend:  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
Note 1: Alternate assignments for P1B/P1C and P3B/P3C when the ECCPMX Configuration bit is cleared. Default assignments  
are PORTE<6:3>.  
TABLE 11-18: SUMMARY OF REGISTERS ASSOCIATED WITH PORTH  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
PORTH  
LATH  
RH7  
RH6  
RH5  
RH4  
RH3  
RH2  
RH1  
RH0  
56  
56  
56  
LATH7  
TRISH7  
LATH6  
TRISH6  
LATH5  
TRISH5  
LATH4  
TRISH4  
LATH3  
TRISH3  
LATH2  
LATH1  
LATH0  
TRISH  
TRISH2 TRISH1 TRISH0  
© 2009 Microchip Technology Inc.  
DS39663F-page 145  
PIC18F87J10 FAMILY  
When the external memory interface is enabled, all of  
the PORTJ pins function as control outputs for the  
interface. This occurs automatically when the interface  
is enabled by clearing the EBDIS control bit  
(MEMCON<7>). The TRISJ bits are also overridden.  
11.10 PORTJ, TRISJ and  
LATJ Registers  
Note: PORTJ is available only on 80-pin devices.  
PORTJ is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISJ. Setting a  
TRISJ bit (= 1) will make the corresponding PORTJ pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISJ bit (= 0) will  
make the corresponding PORTJ pin an output (i.e., put  
the contents of the output latch on the selected pin). All  
pins on PORTJ are digital only and tolerate voltages up  
to 5.5V.  
Each of the PORTJ pins has a weak internal pull-up.  
The pull-ups are provided to keep the inputs at a known  
state for the external memory interface while powering  
up. A single control bit can turn off all the pull-ups. This  
is performed by clearing bit, RJPU (PORTG<5>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on any device Reset.  
The Output Latch register (LATJ) is also memory  
mapped. Read-modify-write operations on the LATJ  
register read and write the latched output value for  
PORTJ.  
EXAMPLE 11-9:  
INITIALIZING PORTJ  
CLRF  
PORTJ  
; Initialize PORTG by  
; clearing output  
; data latches  
All pins on PORTJ are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
CLRF  
LATJ  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
; Set RJ3:RJ0 as inputs  
; RJ5:RJ4 as output  
; RJ7:RJ6 as inputs  
MOVLW  
MOVWF  
0CFh  
Note:  
These pins are configured as digital inputs  
on any device Reset.  
TRISJ  
DS39663F-page 146  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 11-19: PORTJ FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
RJ0/ALE  
Function  
I/O  
Description  
RJ0  
O
I
DIG  
ST  
LATJ<0> data output.  
0
1
x
PORTJ<0> data input.  
ALE  
RJ1  
O
DIG  
External memory interface address latch enable control output; takes  
priority over digital I/O.  
RJ1/OE  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
RJ5/CE  
RJ6/LB  
0
1
x
O
I
DIG  
ST  
LATJ<1> data output.  
PORTJ<1> data input.  
OE  
O
DIG  
External memory interface output enable control output; takes priority  
over digital I/O.  
RJ2  
0
1
x
O
I
DIG  
ST  
LATJ<2> data output.  
PORTJ<2> data input.  
WRL  
RJ3  
O
DIG  
External memory bus write low byte control; takes priority over  
digital I/O.  
0
1
x
O
I
DIG  
ST  
LATJ<3> data output.  
PORTJ<3> data input.  
WRH  
RJ4  
O
DIG  
External memory interface write high byte control output; takes priority  
over digital I/O.  
0
1
x
O
I
DIG  
ST  
LATJ<4> data output.  
PORTJ<4> data input.  
BA0  
RJ5  
O
DIG  
External memory interface byte address 0 control output; takes priority  
over digital I/O.  
0
1
x
O
I
DIG  
ST  
LATJ<5> data output.  
PORTJ<5> data input.  
CE  
O
DIG  
External memory interface chip enable control output; takes priority  
over digital I/O.  
RJ6  
0
1
x
O
I
DIG  
ST  
LATJ<6> data output.  
PORTJ<6> data input.  
LB  
O
DIG  
External memory interface lower byte enable control output; takes  
priority over digital I/O.  
RJ7/UB  
Legend:  
RJ7  
0
1
x
O
I
DIG  
ST  
LATJ<7> data output.  
PORTJ<7> data input.  
UB  
O
DIG  
External memory interface upper byte enable control output; takes  
priority over digital I/O.  
PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 11-20: SUMMARY OF REGISTERS ASSOCIATED WITH PORTJ  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTJ  
RJ7  
RJ6  
RJ5  
RJ4  
LATJ4  
TRISJ4  
RG4  
RJ3  
LATJ3  
TRISJ3  
RG3  
RJ2  
LATJ2  
TRISJ2  
RG2  
RJ1  
LATJ1  
TRISJ1  
RG1  
RJ0  
LATJ0  
TRISJ0  
RG0  
56  
56  
56  
56  
LATJ  
LATJ7  
LATJ6  
LATJ5  
TRISJ5  
RJPU  
TRISJ  
PORTG  
TRISJ7 TRISJ6  
RDPU REPU  
Legend: Shaded cells are not used by PORTJ.  
© 2009 Microchip Technology Inc.  
DS39663F-page 147  
PIC18F87J10 FAMILY  
FIGURE 11-2:  
PORTD AND PORTE  
BLOCK DIAGRAM  
(PARALLELSLAVEPORT)  
11.11 Parallel Slave Port  
PORTD can also function as an 8-bit wide Parallel  
Slave Port, or microprocessor port, when control bit,  
PSPMODE (PSPCON<4>), is set. It is asynchronously  
readable and writable by the external world through RD  
control input pin (RE0/RD) and WR control input pin  
(RE1/WR).  
Data Bus  
D
Q
RDx  
Pin  
WR LATD  
or  
PORTD  
CK  
Data Latch  
Note: For 80-pin devices, the Parallel Slave Port  
TTL  
is available only in Microcontroller mode.  
Q
D
The PSP can directly interface to an 8-bit micro-  
processor data bus. The external microprocessor can  
read or write the PORTD latch as an 8-bit latch. Setting  
the PSPMODE bit enables port pin, RE0/RD, to be the  
RD input, RE1/WR to be the WR input and RE2/CS to  
be the CS (Chip Select) input. For this functionality, the  
corresponding data direction bits of the TRISE register  
(TRISE<2:0>) must be configured as inputs (set).  
RD PORTD  
EN  
TRIS Latch  
RD LATD  
A write to the PSP occurs when both the CS and WR  
lines are first detected low and ends when either are  
detected high. The PSPIF and IBF flag bits are both set  
when the write ends.  
One bit of PORTD  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
A read from the PSP occurs when both the CS and RD  
lines are first detected low. The data in PORTD is read  
out and the OBF bit is set. If the user writes new data  
to PORTD to set OBF, the data is immediately read out;  
however, the OBF bit is not set.  
Read  
When either the CS or RD lines are detected high, the  
PORTD pins return to the input state and the PSPIF bit  
is set. User applications should wait for PSPIF to be set  
before servicing the PSP. When this happens, the IBF  
and OBF bits can be polled and the appropriate action  
taken.  
RD  
CS  
TTL  
Chip Select  
TTL  
Write  
WR  
TTL  
The timing for the control signals in Write and Read  
modes is shown in Figure 11-3 and Figure 11-4,  
respectively.  
Note: I/O pin has protection diodes to VDD and VSS.  
DS39663F-page 148  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
REGISTER 11-1: PSPCON: PARALLEL SLAVE PORT CONTROL REGISTER  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
U-0  
U-0  
U-0  
OBF  
PSPMODE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
IBF: Input Buffer Full Status bit  
1= A word has been received and is waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit  
1= A write occurred when a previously input word had not been read  
(must be cleared in software)  
0= No overflow occurred  
bit 4  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel Slave Port mode  
0= General Purpose I/O mode  
bit 3-0  
Unimplemented: Read as ‘0’  
FIGURE 11-3:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
© 2009 Microchip Technology Inc.  
DS39663F-page 149  
PIC18F87J10 FAMILY  
FIGURE 11-4:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 11-21: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
RD7  
LATD7  
TRISD7  
RE7  
RD6  
LATD6  
TRISD6  
RE6  
RD5  
LATD5  
TRISD5  
RE5  
RD4  
LATD4  
TRISD4  
RE4  
RD3  
RD2  
RD1  
RD0  
56  
56  
56  
56  
56  
56  
55  
53  
55  
55  
55  
LATD3  
LATD2  
LATD1  
LATD0  
TRISD  
PORTE  
LATE  
TRISD3 TRISD2  
TRISD1 TRISD0  
RE3  
LATE3  
TRISE3  
RE2  
LATE2  
TRISE2  
RE1  
LATE1  
TRISE1  
RE0  
LATE0  
TRISE0  
LATE7  
TRISE7  
IBF  
LATE6  
TRISE6  
OBF  
LATE5  
TRISE5  
IBOV  
LATE4  
TRISE4  
PSPMODE  
INT0IE  
TX1IF  
TRISE  
PSPCON  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
SSP1IF  
SSP1IE  
SSP1IP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
TX1IE  
IPR1  
TX1IP  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Parallel Slave Port.  
DS39663F-page 150  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
The T0CON register (Register 12-1) controls all  
aspects of the module’s operation, including the  
prescale selection. It is both readable and writable.  
12.0 TIMER0 MODULE  
The Timer0 module incorporates the following features:  
• Software-selectable operation as a timer or counter  
in both 8-bit or 16-bit modes  
A simplified block diagram of the Timer0 module in 8-bit  
mode is shown in Figure 12-1. Figure 12-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
• Readable and writable registers  
• Dedicated 8-bit, software programmable  
prescaler  
• Selectable clock source (internal or external)  
• Edge select for external clock  
• Interrupt-on-overflow  
REGISTER 12-1: T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
TMR0ON  
T08BIT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-Bit/16-Bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
T0PS<2:0>: Timer0 Prescaler Select bits  
111= 1:256 Prescale value  
110= 1:128 Prescale value  
101= 1:64 Prescale value  
100= 1:32 Prescale value  
011= 1:16 Prescale value  
010= 1:8 Prescale value  
001= 1:4 Prescale value  
000= 1:2 Prescale value  
© 2009 Microchip Technology Inc.  
DS39663F-page 151  
PIC18F87J10 FAMILY  
internal phase clock (TOSC). There is a delay between  
synchronization and the onset of incrementing the  
timer/counter.  
12.1 Timer0 Operation  
Timer0 can operate as either a timer or a counter. The  
mode is selected with the T0CS bit (T0CON<5>). In  
Timer mode (T0CS = 0), the module increments on  
every clock by default unless a different prescaler value  
is selected (see Section 12.3 “Prescaler”). If the  
TMR0 register is written to, the increment is inhibited  
for the following two instruction cycles. The user can  
work around this by writing an adjusted value to the  
TMR0 register.  
12.2 Timer0 Reads and Writes in  
16-Bit Mode  
TMR0H is not the actual high byte of Timer0 in 16-bit  
mode. It is actually a buffered version of the real high  
byte of Timer0 which is not directly readable nor writ-  
able (refer to Figure 12-2). TMR0H is updated with the  
contents of the high byte of Timer0 during a read of  
TMR0L. This provides the ability to read all 16 bits of  
Timer0 without having to verify that the read of the high  
and low byte were valid, due to a rollover between  
successive reads of the high and low byte.  
The Counter mode is selected by setting the T0CS bit  
(= 1). In this mode, Timer0 increments either on every  
rising or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit, T0SE (T0CON<4>); clearing this bit selects  
the rising edge. Restrictions on the external clock input  
are discussed below.  
Similarly, a write to the high byte of Timer0 must also  
take place through the TMR0H Buffer register. The high  
byte is updated with the contents of TMR0H when a  
write occurs to TMR0L. This allows all 16 bits of Timer0  
to be updated at once.  
An external clock source can be used to drive Timer0;  
however, it must meet certain requirements to ensure  
that the external clock can be synchronized with the  
FIGURE 12-1:  
TIMER0 BLOCK DIAGRAM (8-BIT MODE)  
FOSC/4  
0
1
1
0
Set  
TMR0IF  
on Overflow  
Sync with  
Internal  
Clocks  
TMR0L  
8
Programmable  
Prescaler  
T0CKI Pin  
(2 TCY Delay)  
T0SE  
T0CS  
3
T0PS<2:0>  
PSA  
8
Internal Data Bus  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
FIGURE 12-2:  
TIMER0 BLOCK DIAGRAM (16-BIT MODE)  
FOSC/4  
0
1
Sync with  
Internal  
Clocks  
Set  
TMR0  
High Byte  
1
TMR0L  
TMR0IF  
Programmable  
Prescaler  
on Overflow  
T0CKI Pin  
0
8
(2 TCY Delay)  
T0SE  
3
T0CS  
Read TMR0L  
Write TMR0L  
T0PS<2:0>  
PSA  
8
8
TMR0H  
8
8
Internal Data Bus  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
DS39663F-page 152  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
12.3.1  
SWITCHING PRESCALER  
ASSIGNMENT  
12.3 Prescaler  
An 8-bit counter is available as a prescaler for the Timer0  
module. The prescaler is not directly readable or writable.  
Its value is set by the PSA and T0PS<2:0> bits  
(T0CON<3:0>) which determine the prescaler  
assignment and prescale ratio.  
The prescaler assignment is fully under software  
control and can be changed “on-the-fly” during program  
execution.  
12.4 Timer0 Interrupt  
Clearing the PSA bit assigns the prescaler to the  
Timer0 module. When it is assigned, prescale values  
from 1:2 through 1:256 in power-of-2 increments are  
selectable.  
The TMR0 interrupt is generated when the TMR0  
register overflows from FFh to 00h in 8-bit mode, or  
from FFFFh to 0000h in 16-bit mode. This overflow sets  
the TMR0IF flag bit. The interrupt can be masked by  
clearing the TMR0IE bit (INTCON<5>). Before  
re-enabling the interrupt, the TMR0IF bit must be  
cleared in software by the Interrupt Service Routine.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF  
TMR0, BSF TMR0, etc.) clear the prescaler count.  
Note:  
Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count but will not change the prescaler  
assignment.  
Since Timer0 is shut down in Sleep mode, the TMR0  
interrupt cannot awaken the processor from Sleep.  
TABLE 12-1: REGISTERS ASSOCIATED WITH TIMER0  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0L  
Timer0 Register Low Byte  
Timer0 Register High Byte  
54  
54  
53  
54  
56  
TMR0H  
INTCON  
T0CON  
TRISA  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
T0SE  
RBIE  
PSA  
TMR0IF  
T0PS2  
INT0IF  
T0PS1  
TRISA1  
RBIF  
T0PS0  
TRISA0  
TMR0ON  
T08BIT  
T0CS  
TRISA5  
TRISA4  
TRISA3  
TRISA2  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by Timer0.  
© 2009 Microchip Technology Inc.  
DS39663F-page 153  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 154  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
A simplified block diagram of the Timer1 module is  
shown in Figure 13-1. A block diagram of the module’s  
operation in Read/Write mode is shown in Figure 13-2.  
13.0 TIMER1 MODULE  
The Timer1 timer/counter module incorporates these  
features:  
The module incorporates its own low-power oscillator  
to provide an additional clocking option. The Timer1  
oscillator can also be used as a low-power clock source  
for the microcontroller in power-managed operation.  
• Software selectable operation as a 16-bit timer or  
counter  
• Readable and writable 8-bit registers (TMR1H  
and TMR1L)  
Timer1 can also be used to provide Real-Time Clock  
(RTC) functionality to applications with only a minimal  
addition of external components and code overhead.  
• Selectable clock source (internal or external) with  
device clock or Timer1 oscillator internal options  
• Interrupt-on-overflow  
Timer1 is controlled through the T1CON Control  
register (Register 13-1). It also contains the Timer1  
Oscillator Enable bit (T1OSCEN). Timer1 can be  
enabled or disabled by setting or clearing control bit,  
TMR1ON (T1CON<0>).  
• Reset on CCP Special Event Trigger  
• Device clock status flag (T1RUN)  
REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1RUN  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
RD16: 16-Bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
bit 6  
T1RUN: Timer1 System Clock Status bit  
1= Device clock is derived from Timer1 oscillator  
0= Device clock is derived from another source  
bit 5-4  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from the RC0/T1OSO/T13CKI pin (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
© 2009 Microchip Technology Inc.  
DS39663F-page 155  
PIC18F87J10 FAMILY  
cycle (FOSC/4). When the bit is set, Timer1 increments  
on every rising edge of the Timer1 external clock input  
or the Timer1 oscillator, if enabled.  
13.1  
Timer1 Operation  
Timer1 can operate in one of these modes:  
• Timer  
When Timer1 is enabled, the RC1/T1OSI and  
RC0/T1OSO/T13CKI pins become inputs. This means  
the values of TRISC<1:0> are ignored and the pins are  
read as ‘0’.  
• Synchronous Counter  
• Asynchronous Counter  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>). When TMR1CS is cleared  
(= 0), Timer1 increments on every internal instruction  
FIGURE 13-1:  
TIMER1 BLOCK DIAGRAM  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
On/Off  
T1OSO/T13CKI  
T1OSI  
1
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
0
2
Sleep Input  
T1OSCEN(1)  
T1CKPS<1:0>  
T1SYNC  
Timer1  
On/Off  
TMR1CS  
TMR1ON  
Set  
TMR1  
High Byte  
Clear TMR1  
(CCP Special Event Trigger)  
TMR1L  
TMR1IF  
on Overflow  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
FIGURE 13-2:  
TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
T1OSO/T13CKI  
T1OSI  
1
0
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
T1CKPS<1:0>  
T1SYNC  
Timer1  
On/Off  
TMR1CS  
TMR1ON  
Set  
TMR1IF  
on Overflow  
TMR1  
High Byte  
Clear TMR1  
(CCP Special Event Trigger)  
TMR1L  
8
Read TMR1L  
Write TMR1L  
8
8
TMR1H  
8
8
Internal Data Bus  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
DS39663F-page 156  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 13-1: CAPACITOR SELECTION FOR  
THETIMEROSCILLATOR(2,3,4)  
13.2 Timer1 16-Bit Read/Write Mode  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 13-2). When the RD16 control bit  
(T1CON<7>) is set, the address for TMR1H is mapped  
to a buffer register for the high byte of Timer1. A read  
from TMR1L will load the contents of the high byte of  
Timer1 into the Timer1 High Byte Buffer register. This  
provides the user with the ability to accurately read all  
16 bits of Timer1 without having to determine whether  
a read of the high byte, followed by a read of the low  
byte, has become invalid due to a rollover between  
reads.  
Oscillator  
Freq.  
C1  
C2  
Type  
LP  
32 kHz  
27 pF(1)  
27 pF(1)  
Note 1: Microchip suggests these values as a  
starting point in validating the oscillator  
circuit.  
2: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time.  
A write to the high byte of Timer1 must also take place  
through the TMR1H Buffer register. The Timer1 high  
byte is updated with the contents of TMR1H when a  
write occurs to TMR1L. This allows a user to write all  
16 bits to both the high and low bytes of Timer1 at once.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate  
values  
of  
external  
components.  
The high byte of Timer1 is not directly readable or  
writable in this mode. All reads and writes must take  
place through the Timer1 High Byte Buffer register.  
Writes to TMR1H do not clear the Timer1 prescaler.  
The prescaler is only cleared on writes to TMR1L.  
4: Capacitor values are for design guidance  
only.  
13.3.1  
USING TIMER1 AS A  
CLOCK SOURCE  
The Timer1 oscillator is also available as a clock source  
in power-managed modes. By setting the clock select  
bits, SCS<1:0> (OSCCON<1:0>), to ‘01’, the device  
switches to SEC_RUN mode; both the CPU and  
peripherals are clocked from the Timer1 oscillator. If the  
IDLEN bit (OSCCON<7>) is cleared and a SLEEP  
instruction is executed, the device enters SEC_IDLE  
mode. Additional details are available in Section 4.0  
“Power-Managed Modes”.  
13.3 Timer1 Oscillator  
An on-chip crystal oscillator circuit is incorporated  
between pins T1OSI (input) and T1OSO (amplifier  
output). It is enabled by setting the Timer1 Oscillator  
Enable bit, T1OSCEN (T1CON<3>). The oscillator is a  
low-power circuit rated for 32 kHz crystals. It will  
continue to run during all power-managed modes. The  
circuit for a typical LP oscillator is shown in Figure 13-3.  
Table 13-1 shows the capacitor selection for the Timer1  
oscillator.  
Whenever the Timer1 oscillator is providing the clock  
source, the Timer1 System Clock Status Flag, T1RUN  
(T1CON<6>), is set. This can be used to determine the  
controller’s current clocking mode. It can also indicate  
the clock source being currently used by the Fail-Safe  
Clock Monitor. If the Clock Monitor is enabled and the  
Timer1 oscillator fails while providing the clock, polling  
the T1RUN bit will indicate whether the clock is being  
provided by the Timer1 oscillator or another source.  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
FIGURE 13-3:  
EXTERNAL  
COMPONENTS FOR THE  
TIMER1 LP OSCILLATOR  
C1  
27 pF  
PIC18F87J10  
13.3.2  
LOW-POWER TIMER1 OPTION  
T1OSI  
The Timer1 oscillator can operate at two distinct levels  
of power consumption based on device configuration.  
When the LPT1OSC Configuration bit is set, the Timer1  
oscillator operates in a low-power mode. When  
LPT1OSC is not set, Timer1 operates at a higher power  
level. Power consumption for a particular mode is rela-  
tively constant regardless of the device’s operating  
mode. The default Timer1 configuration is the higher  
power mode.  
XTAL  
32.768 kHz  
T1OSO  
C2  
27 pF  
Note:  
See the Notes with Table 13-1 for additional  
information about capacitor selection.  
As the low-power Timer1 mode tends to be more  
sensitive to interference, high noise environments may  
cause some oscillator instability. The low-power option is,  
therefore, best suited for low noise applications where  
power conservation is an important design consideration.  
© 2009 Microchip Technology Inc.  
DS39663F-page 157  
PIC18F87J10 FAMILY  
13.3.3  
TIMER1 OSCILLATOR LAYOUT  
CONSIDERATIONS  
13.5 Resetting Timer1 Using the ECCP  
Special Event Trigger  
The Timer1 oscillator circuit draws very little power  
during operation. Due to the low-power nature of the  
oscillator, it may also be sensitive to rapidly changing  
signals in close proximity.  
If ECCP1 or ECCP2 is configured to use Timer1 and to  
generate a Special Event Trigger in Compare mode  
(CCPxM<3:0> = 1011), this signal will reset Timer3.  
The trigger from ECCP2 will also start an A/D conver-  
sion if the A/D module is enabled (see Section 18.2.1  
“Special Event Trigger” for more information).  
The oscillator circuit, shown in Figure 13-3, should be  
located as close as possible to the microcontroller.  
There should be no circuits passing within the oscillator  
circuit boundaries other than VSS or VDD.  
The module must be configured as either a timer or a  
synchronous counter to take advantage of this feature.  
When used this way, the CCPRxH:CCPRxL register  
pair effectively becomes a period register for Timer1.  
If a high-speed circuit must be located near the oscilla-  
tor (such as the ECCP1 pin in Output Compare or PWM  
mode, or the primary oscillator using the OSC2 pin), a  
grounded guard ring around the oscillator circuit, as  
shown in Figure 13-4, may be helpful when used on a  
single-sided PCB or in addition to a ground plane.  
If Timer1 is running in Asynchronous Counter mode,  
this Reset operation may not work.  
In the event that a write to Timer1 coincides with a  
Special Event Trigger, the write operation will take  
precedence.  
FIGURE 13-4:  
OSCILLATOR CIRCUIT  
WITH GROUNDED  
GUARD RING  
Note:  
The Special Event Triggers from the  
ECCPx module will not set the TMR1IF  
interrupt flag bit (PIR1<0>).  
VDD  
VSS  
13.6 Using Timer1 as a Real-Time Clock  
Adding an external LP oscillator to Timer1 (such as the  
one described in Section 13.3 “Timer1 Oscillator”  
above) gives users the option to include RTC function-  
ality to their applications. This is accomplished with an  
inexpensive watch crystal to provide an accurate time  
base and several lines of application code to calculate  
the time. When operating in Sleep mode and using a  
battery or supercapacitor as a power source, it can  
completely eliminate the need for a separate RTC  
device and battery backup.  
OSC1  
OSC2  
RC0  
RC1  
RC2  
The application code routine, RTCisr, shown in  
Example 13-1, demonstrates a simple method to  
increment a counter at one-second intervals using an  
Interrupt Service Routine. Incrementing the TMR1  
register pair to overflow triggers the interrupt and calls  
the routine which increments the seconds counter by  
one. Additional counters for minutes and hours are  
incremented as the previous counter overflows.  
Note: Not drawn to scale.  
13.4 Timer1 Interrupt  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
Timer1 interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit, TMR1IF  
(PIR1<0>). This interrupt can be enabled or disabled  
by setting or clearing the Timer1 Interrupt Enable bit,  
TMR1IE (PIE1<0>).  
Since the register pair is 16 bits wide, counting up to  
overflow the register directly from a 32.768 kHz clock  
would take 2 seconds. To force the overflow at the  
required one-second intervals, it is necessary to pre-  
load it. The simplest method is to set the MSb of  
TMR1H with a BSF instruction. Note that the TMR1L  
register is never preloaded or altered; doing so may  
introduce cumulative error over many cycles.  
For this method to be accurate, Timer1 must operate in  
Asynchronous mode and the Timer1 overflow interrupt  
must be enabled (PIE1<0> = 1) as shown in the  
routine, RTCinit. The Timer1 oscillator must also be  
enabled and running at all times.  
DS39663F-page 158  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
EXAMPLE 13-1:  
IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE  
RTCinit  
MOVLW  
MOVWF  
CLRF  
80h  
TMR1H  
TMR1L  
; Preload TMR1 register pair  
; for 1 second overflow  
MOVLW  
MOVWF  
CLRF  
b’00001111’  
T1CON  
secs  
; Configure for external clock,  
; Asynchronous operation, external oscillator  
; Initialize timekeeping registers  
;
CLRF  
mins  
MOVLW  
MOVWF  
BSF  
.12  
hours  
PIE1, TMR1IE  
; Enable Timer1 interrupt  
RETURN  
RTCisr  
BSF  
BCF  
INCF  
MOVLW  
CPFSGT  
RETURN  
CLRF  
TMR1H, 7  
PIR1, TMR1IF  
secs, F  
.59  
; Preload for 1 sec overflow  
; Clear interrupt flag  
; Increment seconds  
; 60 seconds elapsed?  
secs  
; No, done  
secs  
mins, F  
.59  
; Clear seconds  
; Increment minutes  
; 60 minutes elapsed?  
INCF  
MOVLW  
CPFSGT  
RETURN  
CLRF  
mins  
; No, done  
mins  
hours, F  
.23  
; clear minutes  
; Increment hours  
; 24 hours elapsed?  
INCF  
MOVLW  
CPFSGT  
RETURN  
CLRF  
hours  
; No, done  
; Reset hours  
; Done  
hours  
RETURN  
TABLE 13-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
53  
55  
55  
55  
54  
54  
54  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
SSP1IF  
SSP1IE  
SSP1IP  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
IPR1  
TMR1L  
TMR1H  
T1CON  
Timer1 Register Low Byte  
Timer1 Register High Byte  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Legend: Shaded cells are not used by the Timer1 module.  
© 2009 Microchip Technology Inc.  
DS39663F-page 159  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 160  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
14.1 Timer2 Operation  
14.0 TIMER2 MODULE  
In normal operation, TMR2 is incremented from 00h on  
each clock (FOSC/4). A 4-bit counter/prescaler on the  
clock input gives direct input, divide-by-4 and  
divide-by-16 prescale options. These are selected by  
The Timer2 module incorporates the following features:  
• 8-Bit Timer and Period registers (TMR2 and PR2,  
respectively)  
• Readable and writable (both registers)  
the  
prescaler  
control  
bits,  
T2CKPS<1:0>  
• Software programmable prescaler  
(1:1, 1:4 and 1:16)  
(T2CON<1:0>). The value of TMR2 is compared to that  
of the Period register, PR2, on each clock cycle. When  
the two values match, the comparator generates a  
match signal as the timer output. This signal also resets  
the value of TMR2 to 00h on the next cycle and drives  
the output counter/postscaler (see Section 14.2  
“Timer2 Interrupt”).  
• Software programmable postscaler  
(1:1 through 1:16)  
• Interrupt on TMR2 to PR2 match  
• Optional use as the shift clock for the  
MSSP module  
The TMR2 and PR2 registers are both directly readable  
and writable. The TMR2 register is cleared on any  
device Reset, while the PR2 register initializes at FFh.  
Both the prescaler and postscaler counters are cleared  
on the following events:  
The module is controlled through the T2CON register  
(Register 14-1) which enables or disables the timer and  
configures the prescaler and postscaler. Timer2 can be  
shut off by clearing control bit, TMR2ON (T2CON<2>),  
to minimize power consumption.  
• a write to the TMR2 register  
• a write to the T2CON register  
A simplified block diagram of the module is shown in  
Figure 14-1.  
• any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 14-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
T2OUTPS<3:0>: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
© 2009 Microchip Technology Inc.  
DS39663F-page 161  
PIC18F87J10 FAMILY  
14.2 Timer2 Interrupt  
14.3 Timer2 Output  
Timer2 can also generate an optional device interrupt.  
The Timer2 output signal (TMR2 to PR2 match) pro-  
vides the input for the 4-bit output counter/postscaler.  
This counter generates the TMR2 match interrupt flag  
which is latched in TMR2IF (PIR1<1>). The interrupt is  
enabled by setting the TMR2 Match Interrupt Enable  
bit, TMR2IE (PIE1<1>).  
The unscaled output of TMR2 is available primarily to  
the CCP modules, where it is used as a time base for  
operations in PWM mode.  
Timer2 can be optionally used as the shift clock source  
for the MSSP module operating in SPI mode.  
Additional information is provided in Section 19.0  
“Master Synchronous Serial Port (MSSP) Module”.  
A range of 16 postscale options (from 1:1 through 1:16  
inclusive) can be selected with the postscaler control  
bits, T2OUTPS<3:0> (T2CON<6:3>).  
FIGURE 14-1:  
TIMER2 BLOCK DIAGRAM  
4
1:1 to 1:16  
T2OUTPS<3:0>  
T2CKPS<1:0>  
Set TMR2IF  
Postscaler  
2
TMR2 Output  
(to PWM or MSSP)  
TMR2/PR2  
Match  
Reset  
1:1, 1:4, 1:16  
Prescaler  
Comparator  
PR2  
FOSC/4  
TMR2  
8
8
8
Internal Data Bus  
TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
53  
55  
55  
55  
54  
54  
54  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
SSP1IF  
SSP1IE  
SSP1IP  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
IPR1  
TMR2  
T2CON  
PR2  
Timer2 Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
DS39663F-page 162  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
A simplified block diagram of the Timer3 module is  
shown in Figure 15-1. A block diagram of the module’s  
operation in Read/Write mode is shown in Figure 15-2.  
15.0 TIMER3 MODULE  
The Timer3 timer/counter module incorporates these  
features:  
The Timer3 module is controlled through the T3CON  
register (Register 15-1). It also selects the clock source  
options for the CCP and ECCP modules; see  
• Software selectable operation as a 16-bit timer or  
counter  
• Readable and writable 8-bit registers (TMR3H  
and TMR3L)  
Section 17.1.1  
Resources” for more information.  
“CCP  
Modules  
and  
Timer  
• Selectable clock source (internal or external) with  
device clock or Timer1 oscillator internal options  
• Interrupt-on-overflow  
• Module Reset on CCP Special Event Trigger  
REGISTER 15-1: T3CON: TIMER3 CONTROL REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TMR3ON  
bit 0  
T3CCP2  
T3CKPS1  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
RD16: 16-Bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer3 in one 16-bit operation  
0= Enables register read/write of Timer3 in two 8-bit operations  
bit 6,3  
T3CCP<2:1>: Timer3 and Timer1 to CCPx Enable bits  
11= Timer3 and Timer4 are the clock sources for all CCP/ECCP modules  
10= Timer3 and Timer4 are the clock sources for ECCP3, CCP4 and CCP5;  
Timer1 and Timer2 are the clock sources for ECCP1 and ECCP2  
01= Timer3 and Timer4 are the clock sources for ECCP2, ECCP3, CCP4 and CCP5;  
Timer1 and Timer2 are the clock sources for ECCP1  
00= Timer1 and Timer2 are the clock sources for all CCP/ECCP modules  
bit 5-4  
bit 2  
T3CKPS<1:0>: Timer3 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the device clock comes from Timer1/Timer3.)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
bit 1  
bit 0  
TMR3CS: Timer3 Clock Source Select bit  
1= External clock input from Timer1 oscillator or T13CKI (on the rising edge after the first falling edge)  
0= Internal clock (FOSC/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
© 2009 Microchip Technology Inc.  
DS39663F-page 163  
PIC18F87J10 FAMILY  
The operating mode is determined by the clock select  
bit, TMR3CS (T3CON<1>). When TMR3CS is cleared  
(= 0), Timer3 increments on every internal instruction  
cycle (FOSC/4). When the bit is set, Timer3 increments  
on every rising edge of the Timer1 external clock input  
or the Timer1 oscillator, if enabled.  
15.1 Timer3 Operation  
Timer3 can operate in one of three modes:  
• Timer  
• Synchronous Counter  
• Asynchronous Counter  
As  
with  
Timer1,  
the  
RC1/T1OSI  
and  
RC0/T1OSO/T13CKI pins become inputs when the  
Timer1 oscillator is enabled. This means the values of  
TRISC<1:0> are ignored and the pins are read as ‘0’.  
FIGURE 15-1:  
TIMER3 BLOCK DIAGRAM  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
1
0
T1OSO/T13CKI  
T1OSI  
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
TMR3CS  
Timer3  
On/Off  
T3CKPS<1:0>  
T3SYNC  
TMR3ON  
CCPx Special Event Trigger  
Clear TMR3  
Set  
TMR3  
High Byte  
TMR3L  
TMR3IF  
CCPx Select from T3CON<6,3>  
on Overflow  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
FIGURE 15-2:  
TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
1
0
T13CKI/T1OSO  
T1OSI  
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
T3CKPS<1:0>  
T3SYNC  
Timer3  
On/Off  
TMR3CS  
TMR3ON  
CCPx Special Event Trigger  
Clear TMR3  
Set  
TMR3IF  
on Overflow  
TMR3  
High Byte  
TMR3L  
CCPx Select from T3CON<6,3>  
8
Read TMR1L  
Write TMR1L  
8
8
TMR3H  
8
8
Internal Data Bus  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
DS39663F-page 164  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
15.2 Timer3 16-Bit Read/Write Mode  
15.4 Timer3 Interrupt  
Timer3 can be configured for 16-bit reads and writes  
(see Figure 15-2). When the RD16 control bit  
(T3CON<7>) is set, the address for TMR3H is mapped  
to a buffer register for the high byte of Timer3. A read  
from TMR3L will load the contents of the high byte of  
Timer3 into the Timer3 High Byte Buffer register. This  
provides the user with the ability to accurately read all  
16 bits of Timer1 without having to determine whether  
a read of the high byte, followed by a read of the low  
byte, has become invalid due to a rollover between  
reads.  
The TMR3 register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and overflows to 0000h. The  
Timer3 interrupt, if enabled, is generated on overflow  
and is latched in interrupt flag bit, TMR3IF (PIR2<1>).  
This interrupt can be enabled or disabled by setting or  
clearing the Timer3 Interrupt Enable bit, TMR3IE  
(PIE2<1>).  
15.5 Resetting Timer3 Using the ECCP  
Special Event Trigger  
If ECCP1 or ECCP2 is configured to use Timer3 and to  
generate a Special Event Trigger in Compare mode  
(CCPxM<3:0> = 1011), this signal will reset Timer3.  
The trigger from ECCP2 will also start an A/D conver-  
sion if the A/D module is enabled (see Section 18.2.1  
“Special Event Trigger” for more information).  
A write to the high byte of Timer3 must also take place  
through the TMR3H Buffer register. The Timer3 high  
byte is updated with the contents of TMR3H when a  
write occurs to TMR3L. This allows a user to write all  
16 bits to both the high and low bytes of Timer3 at once.  
The high byte of Timer3 is not directly readable or  
writable in this mode. All reads and writes must take  
place through the Timer3 High Byte Buffer register.  
The module must be configured as either a timer or  
synchronous counter to take advantage of this feature.  
When used this way, the CCPRxH:CCPRxL register  
pair effectively becomes a period register for Timer3.  
Writes to TMR3H do not clear the Timer3 prescaler.  
The prescaler is only cleared on writes to TMR3L.  
If Timer3 is running in Asynchronous Counter mode,  
the Reset operation may not work.  
15.3 Using the Timer1 Oscillator as the  
Timer3 Clock Source  
In the event that a write to Timer3 coincides with a  
Special Event Trigger from an ECCP module, the write  
will take precedence.  
The Timer1 internal oscillator may be used as the clock  
source for Timer3. The Timer1 oscillator is enabled by  
setting the T1OSCEN (T1CON<3>) bit. To use it as the  
Timer3 clock source, the TMR3CS bit must also be set.  
As previously noted, this also configures Timer3 to  
increment on every rising edge of the oscillator source.  
Note:  
The Special Event Triggers from the  
ECCPx module will not set the TMR3IF  
interrupt flag bit (PIR1<0>).  
The Timer1 oscillator is described in Section 13.0  
“Timer1 Module”.  
TABLE 15-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
TMR3IF  
TMR3IE  
TMR3IP  
RBIF  
53  
55  
55  
55  
55  
55  
54  
55  
OSCFIF  
OSCFIE  
OSCFIP  
CMIF  
CMIE  
CMIP  
BCL1IF  
BCL1IE  
BCL1IP  
CCP2IF  
CCP2IE  
CCP2IP  
PIE2  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
Timer3 Register Low Byte  
Timer3 Register High Byte  
RD16  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer3 module.  
© 2009 Microchip Technology Inc.  
DS39663F-page 165  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 166  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
16.1 Timer4 Operation  
16.0 TIMER4 MODULE  
Timer4 can be used as the PWM time base for the  
PWM mode of the CCP module. The TMR4 register is  
readable and writable and is cleared on any device  
Reset. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4 or 1:16, selected by control bits  
T4CKPS<1:0> (T4CON<1:0>). The match output of  
TMR4 goes through a 4-bit postscaler (which gives a  
1:1 to 1:16 scaling inclusive) to generate a TMR4  
interrupt, latched in flag bit, TMR4IF (PIR3<3>).  
The Timer4 timer module has the following features:  
• 8-Bit Timer register (TMR4)  
• 8-Bit Period register (PR4)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR4 match of PR4  
Timer4 has a control register shown in Register 16-1.  
Timer4 can be shut off by clearing control bit, TMR4ON  
(T4CON<2>), to minimize power consumption. The  
prescaler and postscaler selection of Timer4 are also  
controlled by this register. Figure 16-1 is a simplified  
block diagram of the Timer4 module.  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
• a write to the TMR4 register  
• a write to the T4CON register  
• any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
TMR4 is not cleared when T4CON is written.  
REGISTER 16-1: T4CON: TIMER4 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0  
TMR4ON  
T4CKPS1  
T4CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
T4OUTPS<3:0>: Timer4 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR4ON: Timer4 On bit  
1= Timer4 is on  
0= Timer4 is off  
bit 1-0  
T4CKPS<1:0>: Timer4 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
© 2009 Microchip Technology Inc.  
DS39663F-page 167  
PIC18F87J10 FAMILY  
16.2 Timer4 Interrupt  
16.3 Output of TMR4  
The Timer4 module has an 8-Bit Period register, PR4,  
which is both readable and writable. Timer4 increments  
from 00h until it matches PR4 and then resets to 00h on  
the next increment cycle. The PR4 register is initialized  
to FFh upon Reset.  
The output of TMR4 (before the postscaler) is used  
only as a PWM time base for the CCP modules. It is not  
used as a baud rate clock for the MSSP as is the  
Timer2 output.  
FIGURE 16-1:  
TIMER4 BLOCK DIAGRAM  
4
1:1 to 1:16  
Set TMR4IF  
Postscaler  
T4OUTPS<3:0>  
2
TMR4 Output  
T4CKPS<1:0>  
(to PWM)  
TMR4/PR4  
Match  
Reset  
1:1, 1:4, 1:16  
Prescaler  
FOSC/4  
Comparator  
PR4  
TMR4  
8
8
8
Internal Data Bus  
TABLE 16-1: REGISTERS ASSOCIATED WITH TIMER4 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IP  
TX2IF  
TX2IE  
RBIE  
TMR0IF  
CCP5IP  
CCP5IF  
CCP5IE  
INT0IF  
CCP4IP  
CCP4IF  
CCP4IE  
RBIF  
53  
55  
55  
55  
57  
57  
57  
IPR3  
SSP2IP  
SSP2IF  
SSP2IE  
BCL2IP  
BCL2IF  
BCL2IE  
RC2IP  
RC2IF  
RC2IE  
TMR4IP  
TMR4IF  
TMR4IE  
CCP3IP  
CCP3IF  
CCP3IE  
PIR3  
PIE3  
TMR4  
T4CON  
PR4  
Timer4 Register  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON T4CKPS1 T4CKPS0  
Timer4 Period Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer4 module.  
DS39663F-page 168  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
register. For the sake of clarity, all CCP module opera-  
tion in the following sections is described with respect  
to CCP4, but is equally applicable to CCP5.  
17.0 CAPTURE/COMPARE/PWM  
(CCP) MODULES  
Members of the PIC18F87J10 family of devices all have  
a total of five CCP (Capture/Compare/PWM) modules.  
Two of these (CCP4 and CCP5) implement standard  
Capture, Compare and Pulse-Width Modulation (PWM)  
modes and are discussed in this section. The other three  
modules (ECCP1, ECCP2, ECCP3) implement  
standard Capture and Compare modes, as well as  
Enhanced PWM modes. These are discussed in  
Section 18.0 “Enhanced Capture/Compare/PWM  
(ECCP) Module”.  
Capture and compare operations described in this  
chapter apply to all standard and Enhanced CCP  
modules. The operations of PWM mode, described in  
Section 17.4 “PWM Mode”, apply to CCP4 and CCP5  
only.  
Note: Throughout this section and Section 18.0  
“Enhanced Capture/Compare/PWM (ECCP)  
Module”, references to register and bit names  
that may be associated with a specific CCP  
module are referred to generically by the use of  
‘x’ or ‘y’ in place of the specific module number.  
Thus, “CCPxCON” might refer to the control  
register for ECCP1, ECCP2, ECCP3, CCP4 or  
CCP5.  
Each CCP/ECCP module contains a 16-bit register  
which can operate as a 16-Bit Capture register, a 16-Bit  
Compare register or a PWM Master/Slave Duty Cycle  
REGISTER 17-1: CCPxCON: CCPx CONTROL REGISTER (CCP4 AND CCP5)  
U0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
DCxB0  
CCPxM3  
CCPxM2  
CCPxM1  
CCPxM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DCxB<1:0>: CCP Module x PWM Duty Cycle bit 1 and bit 0  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two Least Significant bits (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight  
Most Significant bits (DCxB<9:2>) of the duty cycle are found in CCPRxL.  
bit 3-0  
CCPxM<3:0>: CCP Module x Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCPx module)  
0001= Reserved  
0010= Compare mode, toggle output on match (CCPxIF bit is set)  
0011= Reserved  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode; initialize CCPx pin low; on compare match, force CCPx pin high (CCPxIF bit  
is set)  
1001= Compare mode; initialize CCPx pin high; on compare match, force CCPx pin low (CCPxIF bit  
is set)  
1010= Compare mode; generate software interrupt on compare match (CCPxIF bit is set, CCPx pin  
reflects I/O state)  
1011= Reserved  
11xx= PWM mode  
© 2009 Microchip Technology Inc.  
DS39663F-page 169  
PIC18F87J10 FAMILY  
The assignment of a particular timer to a module is  
determined by the Timer to CCP enable bits in the  
T3CON register (Register 15-1, page 163). Depending  
on the configuration selected, up to four timers may be  
active at once, with modules in the same configuration  
(capture/compare or PWM) sharing timer resources.  
The possible configurations are shown in Figure 17-1.  
17.1 CCP Module Configuration  
Each Capture/Compare/PWM module is associated  
with a control register (generically, CCPxCON) and a  
data register (CCPRx). The data register, in turn, is  
comprised of two 8-bit registers: CCPRxL (low byte)  
and CCPRxH (high byte). All registers are both  
readable and writable.  
17.1.2  
ECCP2 PIN ASSIGNMENT  
17.1.1  
CCP MODULES AND TIMER  
RESOURCES  
The pin assignment for ECCP2 (capture input,  
compare and PWM output) can change, based on  
device configuration. The CCP2MX Configuration bit  
determines which pin ECCP2 is multiplexed to. By  
default, it is assigned to RC1 (CCP2MX = 1). If the  
Configuration bit is cleared, ECCP2 is multiplexed with  
RE7 on 64-pin devices and RB3 or RE7 on 80-pin  
devices depending on mode setting.  
The CCP/ECCP modules utilize Timers 1, 2, 3 or 4,  
depending on the mode selected. Timer1 and Timer3  
are available to modules in Capture or Compare  
modes, while Timer2 and Timer4 are available for  
modules in PWM mode.  
TABLE 17-1: CCP MODE – TIMER  
RESOURCE  
Changing the pin assignment of ECCP2 does not auto-  
matically change any requirements for configuring the  
port pin. Users must always verify that the appropriate  
TRIS register is configured correctly for ECCP2  
operation regardless of where it is located.  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2 or Timer4  
FIGURE 17-1:  
CCP/ECCP AND TIMER INTERCONNECT CONFIGURATIONS  
T3CCP<2:1> = 00  
T3CCP<2:1> = 01  
T3CCP<2:1> = 10  
T3CCP<2:1> = 11  
TMR1  
TMR3  
TMR1  
TMR3  
TMR1  
TMR3  
TMR1  
TMR3  
ECCP1  
ECCP1  
ECCP2  
ECCP3  
CCP4  
ECCP1  
ECCP2  
ECCP1  
ECCP2  
ECCP3  
CCP4  
ECCP2  
ECCP3  
CCP4  
ECCP3  
CCP4  
CCP5  
CCP5  
CCP5  
CCP5  
TMR2  
TMR4  
TMR2  
TMR4  
TMR2  
TMR4  
TMR2  
TMR4  
Timer1 is used for all capture Timer1 and Timer2 are used Timer1 and Timer2 are used Timer3 is used for all capture  
and compare operations for for capture and compare or for capture and compare or and compare operations for  
all CCP modules. Timer2 is PWM operations for ECCP1 PWM operations for ECCP1 all CCP modules. Timer4 is  
used for PWM operations for only (depending on selected and ECCP2 only (depending used for PWM operations for  
all CCP modules. Modules mode).  
may share either timer  
on the mode selected for each all CCP modules. Modules  
module). Both modules may may share either timer  
use a timer as a common time resource as a common time  
base if they are both in base.  
All other modules use either  
resource as a common time  
base.  
Timer3 or Timer4. Modules  
may share either timer  
capture/compare or PWM  
modes.  
Timer3 and Timer4 are not resource as a common time  
Timer1 and Timer2 are not  
available.  
base  
if  
they  
are  
in  
available.  
capture/compare or PWM The other modules use either  
modes.  
Timer3 or Timer4. Modules  
may share either timer  
resource as a common time  
base  
if  
they  
are  
in  
capture/compare or PWM  
modes.  
DS39663F-page 170  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
17.2.3  
SOFTWARE INTERRUPT  
17.2 Capture Mode  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCPxIE interrupt enable bit clear to avoid false  
interrupts. The interrupt flag bit, CCPxIF, should also be  
cleared following any such change in operating mode.  
In Capture mode, the CCPRxH:CCPRxL register pair  
captures the 16-bit value of the TMR1 or TMR3  
registers when an event occurs on the corresponding  
CCPx pin. An event is defined as one of the following:  
• every falling edge  
• every rising edge  
17.2.4  
CCP PRESCALER  
• every 4th rising edge  
• every 16th rising edge  
There are four prescaler settings in Capture mode.  
They are specified as part of the operating mode  
selected by the mode select bits (CCPxM<3:0>).  
Whenever the CCP module is turned off or Capture  
mode is disabled, the prescaler counter is cleared. This  
means that any Reset will clear the prescaler counter.  
The event is selected by the mode select bits,  
CCPxM<3:0> (CCPxCON<3:0>). When a capture is  
made, the interrupt request flag bit, CCPxIF, is set; it  
must be cleared in software. If another capture occurs  
before the value in register CCPRx is read, the old  
captured value is overwritten by the new captured value.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared; therefore, the first capture may be from  
17.2.1  
CCP PIN CONFIGURATION  
a
non-zero prescaler. Example 17-1 shows the  
recommended method for switching between capture  
prescalers. This example also clears the prescaler  
counter and will not generate the “false” interrupt.  
In Capture mode, the appropriate CCPx pin should be  
configured as an input by setting the corresponding  
TRIS direction bit.  
Note:  
If RG4/CCP5 is configured as an output, a  
write to the port can cause a capture  
condition.  
EXAMPLE 17-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
(CCP5 SHOWN)  
CLRF  
CCP5CON  
; Turn CCP module off  
17.2.2  
TIMER1/TIMER3 MODE SELECTION  
MOVLW NEW_CAPT_PS ; Load WREG with the  
; new prescaler mode  
The timers that are to be used with the capture feature  
(Timer1 and/or Timer3) must be running in Timer mode or  
Synchronized Counter mode. In Asynchronous Counter  
mode, the capture operation will not work. The timer to be  
used with each CCP module is selected in the T3CON  
register (see Section 17.1.1 “CCP Modules and Timer  
Resources”).  
; value and CCP ON  
; Load CCP5CON with  
; this value  
MOVWF CCP5CON  
FIGURE 17-2:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3L  
Set CCP4IF  
T3CCP2  
TMR3  
Enable  
CCP4 pin  
Prescaler  
÷ 1, 4, 16  
and  
Edge Detect  
CCPR4H  
CCPR4L  
TMR1  
Enable  
T3CCP2  
TMR1H  
TMR3H  
TMR1L  
TMR3L  
4
4
CCP4CON<3:0>  
Q1:Q4  
Set CCP5IF  
4
CCP5CON<3:0>  
T3CCP1  
T3CCP2  
TMR3  
Enable  
CCP5 pin  
Prescaler  
÷ 1, 4, 16  
and  
Edge Detect  
CCPR5H  
CCPR5L  
TMR1L  
TMR1  
Enable  
T3CCP2  
T3CCP1  
TMR1H  
© 2009 Microchip Technology Inc.  
DS39663F-page 171  
PIC18F87J10 FAMILY  
17.3 Compare Mode  
Note:  
Clearing the CCP5CON register will force  
the RG4 compare output latch (depend-  
ing on device configuration) to the default  
low level. This is not the PORTB or  
PORTC I/O data latch.  
In Compare mode, the 16-Bit CCPRx register value is  
constantly compared against either the TMR1 or TMR3  
register pair value. When a match occurs, the CCPx pin  
can be:  
• driven high  
17.3.2  
TIMER1/TIMER3 MODE SELECTION  
• driven low  
Timer1 and/or Timer3 must be running in Timer mode  
or Synchronized Counter mode if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
• toggled (high-to-low or low-to-high)  
• remains unchanged (that is, reflects the state of  
the I/O latch)  
The action on the pin is based on the value of the mode  
select bits (CCPxM<3:0>). At the same time, the  
interrupt flag bit, CCPxIF, is set.  
17.3.3  
SOFTWARE INTERRUPT MODE  
When the Generate Software Interrupt mode is chosen  
(CCPxM<3:0> = 1010), the corresponding CCPx pin is  
not affected. Only a CCP interrupt is generated, if  
enabled and the CCPxIE bit is set.  
17.3.1  
CCP PIN CONFIGURATION  
The user must configure the CCPx pin as an output by  
clearing the appropriate TRIS bit.  
FIGURE 17-3:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Set CCP4IF  
CCPR4H  
CCPR4L  
CCP4 Pin  
S
R
Q
Compare  
Match  
Output  
Logic  
Comparator  
TRIS  
Output Enable  
4
CCP4CON<3:0>  
TMR1H  
TMR3H  
TMR1L  
TMR3L  
0
1
0
1
T3CCP1  
T3CCP2  
Set CCP5IF  
CCP5 Pin  
S
R
Q
Compare  
Match  
Output  
Logic  
Comparator  
TRIS  
Output Enable  
4
CCPR5H  
CCPR5L  
CCP5CON<3:0>  
DS39663F-page 172  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 17-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
53  
54  
55  
55  
55  
55  
55  
55  
55  
55  
55  
56  
54  
54  
54  
55  
55  
55  
57  
57  
57  
57  
57  
57  
IPEN  
PSPIF  
PSPIE  
PSPIP  
OSCFIF  
OSCFIE  
OSCFIP  
SSP2IF  
SSP2IE  
SSP2IP  
RC1IF  
RC1IE  
RC1IP  
ADIF  
TX1IF  
TX1IE  
TX1IP  
SSP1IF  
SSP1IE  
SSP1IP  
BCL1IF  
BCL1IE  
BCL1IP  
TMR4IF  
TMR4IE  
TMR4IP  
TRISG3  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
ADIE  
ADIP  
CMIF  
CMIE  
CMIP  
BCL2IF  
BCL2IE  
BCL2IP  
IPR1  
PIR2  
TMR3IF CCP2IF  
TMR3IE CCP2IE  
TMR3IP CCP2IP  
PIE2  
IPR2  
PIR3  
RC2IF  
RC2IE  
RC2IP  
TX2IF  
TX2IE  
TX2IP  
TRISG4  
CCP5IF  
CCP4IF  
CCP3IF  
PIE3  
CCP5IE CCP4IE CCP3IE  
CCP5IP CCP4IP CCP3IP  
TRISG2 TRISG1 TRISG0  
IPR3  
TRISG  
TMR1L  
TMR1H  
T1CON  
TMR3H  
TMR3L  
T3CON  
CCPR4L  
CCPR4H  
CCPR5L  
CCPR5H  
CCP4CON  
CCP5CON  
Timer1 Register Low Byte  
Timer1 Register High Byte  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Timer3 Register High Byte  
Timer3 Register Low Byte  
RD16  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
Capture/Compare/PWM Register 4 Low Byte  
Capture/Compare/PWM Register 4 High Byte  
Capture/Compare/PWM Register 5 Low Byte  
Capture/Compare/PWM Register 5 High Byte  
DC4B1  
DC5B1  
DC4B0  
DC5B0  
CCP4M3 CCP4M2 CCP4M1 CCP4M0  
CCP5M3 CCP5M2 CCP5M1 CCP5M0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by capture/compare, Timer1 or Timer3.  
© 2009 Microchip Technology Inc.  
DS39663F-page 173  
PIC18F87J10 FAMILY  
17.4.1  
PWM PERIOD  
17.4 PWM Mode  
The PWM period is specified by writing to the PR2  
(PR4) register. The PWM period can be calculated  
using Equation 17-1:  
In Pulse-Width Modulation (PWM) mode, the CCPx pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP4 and CCP5 pins are multiplexed with a  
PORTG data latch, the appropriate TRISG bit must be  
cleared to make the CCP4 or CCP5 pin an output.  
EQUATION 17-1:  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
Note:  
Clearing the CCP4CON or CCP5CON  
register will force the RG3 or RG4 output  
latch (depending on device configuration)  
to the default low level. This is not the  
PORTG I/O data latch.  
PWM frequency is defined as 1/[PWM period].  
When TMR2 (TMR4) is equal to PR2 (PR4), the  
following three events occur on the next increment  
cycle:  
Figure 17-4 shows a simplified block diagram of the  
CCP module in PWM mode.  
For a step-by-step procedure on how to set up a CCP  
module for PWM operation, see Section 17.4.3  
“Setup for PWM Operation”.  
• TMR2 (TMR4) is cleared  
• The CCPx pin is set (exception: if PWM duty  
cycle = 0%, the CCPx pin will not be set)  
• The PWM duty cycle is latched from CCPRxL into  
CCPRxH  
FIGURE 17-4:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note:  
The Timer2 and Timer 4 postscalers (see  
Section 14.0 “Timer2 Module” and  
Section 16.0 “Timer4 Module”) are not  
used in the determination of the PWM  
frequency. The postscaler could be used  
to have a servo update rate at a different  
frequency than the PWM output.  
Duty Cycle Register  
9
0
CCPR1L  
CCP1CON<5:4>  
Latch  
Duty Cycle  
(1)  
CCPR1H  
Comparator  
TMR2  
17.4.2  
PWM DUTY CYCLE  
S
R
Q
ECCP1  
Pin  
The PWM duty cycle is specified by writing to the  
CCPRxL register and to the CCPxCON<5:4> bits. Up  
to 10-bit resolution is available. The CCPRxL contains  
the eight MSbs and the CCPxCON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPRxL:CCPxCON<5:4>. Equation 17-2 is used to  
calculate the PWM duty cycle in time.  
Reset  
TMR2 = PR2  
Match  
2 LSbs Latched  
from Q Clocks  
Comparator  
PR2  
TRIS  
Output Enable  
Set CCPx pin  
EQUATION 17-2:  
Note 1: The two LSbs of the Duty Cycle register are held by a  
2-bit latch that is part of the module’s hardware. It is  
physically separate from the CCPR registers.  
PWM Duty Cycle = (CCPRXL:CCPXCON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
A PWM output (Figure 17-5) has a time base (period)  
and a time that the output stays high (duty cycle).  
The frequency of the PWM is the inverse of the  
period (1/period).  
CCPRxL and CCPxCON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPRxH until after a match between PR2 (PR4) and  
TMR2 (TMR4) occurs (i.e., the period is complete). In  
PWM mode, CCPRxH is a read-only register.  
FIGURE 17-5:  
PWM OUTPUT  
Period  
Duty Cycle  
TMR2 (TMR4) = PR2 (PR4)  
TMR2 (TMR4) = Duty Cycle  
TMR2 (TMR4) = PR2 (TMR4)  
DS39663F-page 174  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
The CCPRxH register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitchless PWM  
operation.  
17.4.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2 (PR4)  
register.  
When the CCPRxH and 2-bit latch match TMR2  
(TMR4), concatenated with an internal 2-bit Q clock or  
2 bits of the TMR2 (TMR4) prescaler, the CCPx pin is  
cleared.  
2. Set the PWM duty cycle by writing to the  
CCPRxL register and CCPxCON<5:4> bits.  
3. Make the CCPx pin an output by clearing the  
appropriate TRIS bit.  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by Equation 17-3:  
4. Set the TMR2 (TMR4) prescale value, then  
enable Timer2 (Timer4) by writing to T2CON  
(T4CON).  
EQUATION 17-3:  
FOSC  
5. Configure the CCPx module for PWM operation.  
log( )  
FPWM  
log(2)  
PWM Resolution (max) =  
bits  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the CCPx pin will not be  
cleared.  
TABLE 17-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
10  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
© 2009 Microchip Technology Inc.  
DS39663F-page 175  
PIC18F87J10 FAMILY  
TABLE 17-4: REGISTERS ASSOCIATED WITH PWM, TIMER2 AND TIMER4  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
53  
54  
55  
55  
55  
55  
55  
55  
56  
54  
54  
54  
57  
57  
57  
57  
57  
57  
57  
57  
57  
IPEN  
PSPIF  
PSPIE  
PSPIP  
SSP2IF  
SSP2IE  
SSP2IP  
ADIF  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
TX1IF  
TX1IE  
TX1IP  
TX2IF  
TX2IE  
TX2IP  
TRISG4  
SSP1IF  
SSP1IE  
SSP1IP  
TMR4IF  
TMR4IE  
TMR4IP  
TRISG3  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
ADIE  
ADIP  
BCL2IF  
BCL2IE  
BCL2IP  
IPR1  
PIR3  
CCP5IF  
CCP4IF  
CCP3IF  
PIE3  
CCP5IE CCP4IE CCP3IE  
CCP5IP CCP4IP CCP3IP  
TRISG2 TRISG1 TRISG0  
IPR3  
TRISG  
TMR2  
PR2  
Timer2 Register  
Timer2 Period Register  
T2CON  
TMR4  
PR4  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer4 Register  
Timer4 Period Register  
T4CON  
CCPR4L  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON T4CKPS1 T4CKPS0  
Capture/Compare/PWM Register 4 Low Byte  
CCPR4H Capture/Compare/PWM Register 4 High Byte  
CCPR5L Capture/Compare/PWM Register 5 Low Byte  
CCPR5H Capture/Compare/PWM Register 5 High Byte  
CCP4CON  
CCP5CON  
DC4B1  
DC5B1  
DC4B0  
DC5B0  
CCP4M3 CCP4M2 CCP4M1 CCP4M0  
CCP5M3 CCP5M2 CCP5M1 CCP5M0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PWM, Timer2 or Timer4.  
DS39663F-page 176  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
The control register for the Enhanced CCP module is  
shown in Register 18-1. It differs from the CCP4CON/  
CCP5CON registers in that the two Most Significant  
bits are implemented to control PWM functionality.  
18.0 ENHANCED CAPTURE/  
COMPARE/PWM (ECCP)  
MODULE  
In the PIC18F87J10 family of devices, three of the CCP  
modules are implemented as standard CCP modules  
with Enhanced PWM capabilities. These include the  
provision for 2 or 4 output channels, user-selectable  
polarity, dead-band control and automatic shutdown  
and restart. The Enhanced features are discussed in  
detail in Section 18.4 “Enhanced PWM Mode”.  
Capture, Compare and single-output PWM functions of  
the ECCP module are the same as described for the  
standard CCP module.  
In addition to the expanded range of modes available  
through the Enhanced CCPxCON register, the ECCP  
modules each have two additional registers associated  
with Enhanced PWM operation and auto-shutdown  
features. They are:  
• ECCPxDEL (Dead-Band Delay)  
• ECCPxAS (Auto-Shutdown Configuration)  
REGISTER 18-1: CCPxCON: ENHANCED CCPx CONTROL REGISTER (ECCP1/ECCP2/ECCP3)  
R/W-0  
PxM1  
R/W-0  
PxM0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
DCxB0  
CCPxM3  
CCPxM2  
CCPxM1  
CCPxM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
PxM<1:0>: Enhanced PWM Output Configuration bits  
If CCPxM<3:2> = 00, 01, 10:  
xx= PxA assigned as capture/compare input/output; PxB, PxC, PxD assigned as port pins  
If CCPxM<3:2> = 11:  
00= Single output: PxA modulated; PxB, PxC, PxD assigned as port pins  
01= Full-bridge output forward: P1D modulated; P1A active; P1B, P1C inactive  
10= Half-bridge output: P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins  
11= Full-bridge output reverse: P1B modulated; P1C active; P1A, P1D inactive  
bit 5-4  
bit 3-0  
DCxB<1:0>: PWM Duty Cycle Bit 1 and Bit 0  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the 2 LSbs of the 10-bit PWM duty cycle. The 8 MSbs of the duty cycle are found in CCPRxL.  
CCPxM<3:0>: Enhanced CCP Module x Mode Select bits  
0000= Capture/Compare/PWM off (resets ECCPx module)  
0001= Reserved  
0010= Compare mode, toggle output on match  
0011= Capture mode  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, initialize ECCPx pin low, set output on compare match (set CCPxIF)  
1001= Compare mode, initialize ECCPx pin high, clear output on compare match (set CCPxIF)  
1010= Compare mode, generate software interrupt only, ECCPx pin reverts to I/O state  
1011= Compare mode, trigger special event (ECCPx resets TMR1 or TMR3, sets CCPxIF bit, ECCP2  
trigger also starts A/D conversion if A/D module is enabled)(1)  
1100= PWM mode: PxA, PxC active-high; PxB, PxD active-high  
1101= PWM mode: PxA, PxC active-high; PxB, PxD active-low  
1110= PWM mode: PxA, PxC active-low; PxB, PxD active-high  
1111= PWM mode: PxA, PxC active-low; PxB, PxD active-low  
Note 1: Implemented only for ECCP1 and ECCP2; same as ‘1010’ for ECCP3.  
© 2009 Microchip Technology Inc.  
DS39663F-page 177  
PIC18F87J10 FAMILY  
18.1.2  
ECCP2 OUTPUTS AND PROGRAM  
MEMORY MODES  
18.1 ECCP Outputs and Configuration  
Each of the Enhanced CCP modules may have up to  
four PWM outputs, depending on the selected  
operating mode. These outputs, designated PxA  
through PxD, are multiplexed with various I/O pins.  
Some ECCP pin assignments are constant, while  
others change based on device configuration. For  
those pins that do change, the controlling bits are:  
For 80-pin devices, the program memory mode of the  
device (Section 6.1.3 “PIC18F8XJ10/8XJ15 Program  
Memory Modes”) also impacts pin multiplexing for the  
module.  
The ECCP2 input/output (ECCP2/P2A) can be multi-  
plexed to one of three pins. The default assignment  
(CCP2MX Configuration bit is set) for all devices is  
RC1. Clearing CCP2MX reassigns ECCP2/P2A to  
RE7.  
• CCP2MX Configuration bit  
• ECCPMX Configuration bit (80-pin devices only)  
• Program Memory Operating mode, set by the  
EMB Configuration bits (80-pin devices only)  
An additional option exists for 80-pin devices. When  
these devices are operating in Microcontroller mode,  
the multiplexing options described above still apply. In  
Extended Microcontroller mode, clearing CCP2MX  
reassigns ECCP2/P2A to RB3.  
The pin assignments for the Enhanced CCP modules  
are summarized in Table 18-1, Table 18-2 and  
Table 18-3. To configure the I/O pins as PWM outputs,  
the proper PWM mode must be selected by setting the  
PxMx and CCPxMx bits (CCPxCON<7:6> and <3:0>,  
respectively). The appropriate TRIS direction bits for  
the corresponding port pins must also be set as  
outputs.  
18.1.3  
USE OF CCP4 AND CCP5 WITH  
ECCP1 AND ECCP3  
Only the ECCP2 module has four dedicated output pins  
that are available for use. Assuming that the I/O ports  
or other multiplexed functions on those pins are not  
needed, they may be used whenever needed without  
interfering with any other CCP module.  
18.1.1  
ECCP1/ECCP3 OUTPUTS AND  
PROGRAM MEMORY MODE  
In 80-pin devices, the use of Extended Microcontroller  
mode has an indirect effect on the use of ECCP1 and  
ECCP3 in Enhanced PWM modes. By default, PWM  
outputs, P1B/P1C and P3B/P3C, are multiplexed to  
PORTE pins, along with the high-order byte of the  
external memory bus. When the bus is active in  
Extended Microcontroller mode, it overrides the  
Enhanced CCP outputs and makes them unavailable.  
Because of this, ECCP1 and ECCP3 can only be used  
in compatible (single-output) PWM modes when the  
device is in Extended Microcontroller mode and default  
pin configuration.  
ECCP1 and ECCP3, on the other hand, only have  
three dedicated output pins: ECCPx/PxA, PxB and  
PxC. Whenever these modules are configured for  
Quad PWM mode, the pin normally used for CCP4 or  
CCP5 becomes the PxD output pins for ECCP3 and  
ECCP1, respectively. The CCP4 and CCP5 modules  
remain functional but their outputs are overridden.  
18.1.4  
ECCP MODULES AND TIMER  
RESOURCES  
Like the standard CCP modules, the ECCP modules  
can utilize Timers 1, 2, 3 or 4, depending on the mode  
selected. Timer1 and Timer3 are available for modules  
in Capture or Compare modes, while Timer2 and  
Timer4 are available for modules in PWM mode.  
Additional details on timer resources are provided in  
An exception to this configuration is when a 12-bit  
address width is selected for the external bus  
(EMB<1:0> Configuration bits = 01). In this case, the  
upper pins of PORTE continue to operate as digital I/O,  
even when the external bus is active. P1B/P1C and  
P3B/P3C remain available for use as Enhanced PWM  
outputs.  
Section 17.1.1  
“CCP  
Modules  
and  
Timer  
Resources”.  
If an application requires the use of additional PWM  
outputs during Enhanced microcontroller operation, the  
P1B/P1C and P3B/P3C outputs can be reassigned to  
the upper bits of PORTH. This is done by clearing the  
ECCPMX Configuration bit.  
DS39663F-page 178  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 18-1: PIN CONFIGURATIONS FOR ECCP1  
CCP1CON  
ECCP Mode  
RC2  
RE6  
RE5  
RG4  
RH7  
RH6  
Configuration  
All PIC18F6XJ10/6XJ15 Devices:  
Compatible CCP 00xx 11xx  
ECCP1  
P1A  
RE6  
P1B  
P1B  
RE5  
RE5  
P1C  
RG4/CCP5  
RG4/CCP5  
P1D  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
P1A  
PIC18F8XJ10/8XJ15 Devices, ECCPMX = 0, Microcontroller mode:  
Compatible CCP 00xx 11xx  
ECCP1  
P1A  
RE6/AD14 RE5/AD13 RG4/CCP5 RH7/AN15 RH6/AN14  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
RE6/AD14 RE5/AD13 RG4/CCP5  
RE6/AD14 RE5/AD13 P1D  
P1B  
P1B  
RH6/AN14  
P1C  
P1A  
PIC18F8XJ10/8XJ15 Devices, ECCPMX = 1, Extended Microcontroller mode, 16-Bit or 20-Bit Address Width:  
Compatible CCP 00xx 11xx ECCP1 RE6/AD14 RE5/AD13 RG4/CCP5 RH7/AN15 RH6/AN14  
PIC18F8XJ10/8XJ15 Devices, ECCPMX = 1,  
Microcontroller mode or Extended Microcontroller mode, 12-Bit Address Width:  
Compatible CCP 00xx 11xx  
ECCP1  
P1A  
RE6/AD14 RE5/AD13 RG4/CCP5 RH7/AN15 RH6/AN14  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
P1B  
P1B  
RE5/AD13 RG4/CCP5 RH7/AN15 RH6/AN14  
P1C P1D RH7/AN15 RH6/AN14  
P1A  
Legend: x= Don’t care, N/A = Not available. Shaded cells indicate pin assignments not used by ECCP1 in a given mode.  
Note 1: With ECCP1 in Quad PWM mode, CCP5’s output is overridden by P1D; otherwise, CCP5 is fully operational.  
TABLE 18-2: PIN CONFIGURATIONS FOR ECCP2  
CCP2CON  
ECCP Mode  
RB3  
RC1  
RE7  
RE2  
RE1  
RE0  
Configuration  
All Devices, CCP2MX = 1, Either Operating mode:  
Compatible CCP 00xx 11xx  
RB3/INT3  
RB3/INT3  
RB3/INT3  
ECCP2  
P2A  
RE7  
RE7  
RE7  
RE2  
P2B  
P2B  
RE1  
RE1  
P2C  
RE0  
RE0  
P2D  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
P2A  
All Devices, CCP2MX = 0, Microcontroller mode:  
Compatible CCP 00xx 11xx  
RB3/INT3 RC1/T1OS1  
RB3/INT3 RC1/T1OS1  
RB3/INT3 RC1/T1OS1  
ECCP2  
P2A  
RE2  
P2B  
P2B  
RE1  
RE1  
P2C  
RE0  
RE0  
P2D  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
P2A  
PIC18F8XJ10/8XJ15 Devices, CCP2MX = 0, Extended Microcontroller mode:  
Compatible CCP 00xx 11xx  
ECCP2  
P2A  
RC1/T1OS1 RE7/AD15  
RC1/T1OS1 RE7/AD15  
RC1/T1OS1 RE7/AD15  
RE2/CS  
P2B  
RE1/WR  
RE1/WR  
P2C  
RE0/RD  
RE0/RD  
P2D  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
P2A  
P2B  
Legend: x= Don’t care. Shaded cells indicate pin assignments not used by ECCP2 in a given mode.  
© 2009 Microchip Technology Inc.  
DS39663F-page 179  
PIC18F87J10 FAMILY  
TABLE 18-3: PIN CONFIGURATIONS FOR ECCP3  
CCP3CON  
ECCP Mode  
RG0  
RE4  
RE3  
RG3  
RH5  
RH4  
Configuration  
All PIC18F6XJ10/6XJ15 Devices:  
Compatible CCP 00xx 11xx  
ECCP3  
P3A  
RE4  
P3B  
P3B  
RE3  
RE3  
P3C  
RG3/CCP4  
RG3/CCP4  
P3D  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
P3A  
PIC18F8XJ10/8XJ15 Devices, ECCPMX = 0, Microcontroller mode:  
Compatible CCP 00xx 11xx  
ECCP3  
P3A  
RE6/AD14 RE5/AD13 RG3/CCP4 RH7/AN15 RH6/AN14  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
RE6/AD14 RE5/AD13 RG3/CCP4  
RE6/AD14 RE5/AD13 P3D  
P3B  
P3B  
RH6/AN14  
P3C  
P3A  
PIC18F8XJ10/8XJ15 Devices, ECCPMX = 1, Extended Microcontroller mode, 16-Bit or 20-Bit Address Width:  
Compatible CCP 00xx 11xx ECCP3 RE6/AD14 RE5/AD13 RG3/CCP4 RH7/AN15 RH6/AN14  
PIC18F8XJ10/8XJ15 Devices, ECCPMX = 1,  
Microcontroller mode or Extended Microcontroller mode, 12-Bit Address Width:  
Compatible CCP 00xx 11xx  
ECCP3  
P3A  
RE4/AD12 RE3/AD11 RG3/CCP4 RH5/AN13 RH4/AN12  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
P3B  
P3B  
RE3/AD11 RG3/CCP4 RH5/AN13 RH4/AN12  
P3C P3D RH5/AN13 RH4/AN12  
P3A  
Legend: x= Don’t care, N/A = Not available. Shaded cells indicate pin assignments not used by ECCP3 in a given mode.  
Note 1: With ECCP3 in Quad PWM mode, CCP4’s output is overridden by P1D; otherwise, CCP4 is fully operational.  
Special Event Triggers are not implemented for  
18.2 Capture and Compare Modes  
ECCP3, CCP4 or CCP5. Selecting the Special Event  
Except for the operation of the Special Event Trigger  
Trigger mode for these modules has the same effect as  
discussed below, the Capture and Compare modes of  
selecting the Compare with Software Interrupt mode  
the ECCP module are identical in operation to that of  
CCP4. These are discussed in detail in Section 17.2  
“Capture Mode” and Section 17.3 “Compare  
Mode”.  
(CCPxM<3:0> = 1010).  
Note:  
The Special Event Trigger from ECCP2  
will not set the Timer1 or Timer3 interrupt  
flag bits.  
18.2.1  
SPECIAL EVENT TRIGGER  
18.3 Standard PWM Mode  
ECCP1 and ECCP2 incorporate an internal hardware  
trigger that is generated in Compare mode on a match  
between the CCPRx register pair and the selected  
timer. This can be used in turn to initiate an action. This  
mode is selected by setting CCPxCON<3:0> to ‘1011’.  
When configured in Single Output mode, the ECCP  
module functions identically to the standard CCP  
module in PWM mode, as described in Section 17.4  
“PWM Mode”. This is also sometimes referred to as  
“Compatible CCP” mode as in Tables 18-1  
through 18-3.  
The Special Event Trigger output of either ECCP1 or  
ECCP2 resets the TMR1 or TMR3 register pair, depend-  
ing on which timer resource is currently selected. This  
allows the CCPRx register pair to effectively be a 16-bit  
programmable period register for Timer1 or Timer3. In  
addition, the ECCP2 Special Event Trigger will also start  
an A/D conversion if the A/D module is enabled.  
Note:  
When setting up single-output PWM  
operations, users are free to use either of  
the processes described in Section 17.4.3  
“Setup for PWM Operation” or  
Section 18.4.9 “Setup for PWM Opera-  
tion”. The latter is more generic but will  
work for either single or multi-output PWM.  
DS39663F-page 180  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
waveforms do not exactly match the standard PWM  
waveforms, but are instead offset by one full instruction  
cycle (4 TOSC).  
18.4 Enhanced PWM Mode  
The Enhanced PWM mode provides additional PWM  
output options for a broader range of control applica-  
tions. The module is a backward compatible version of  
the standard CCP module and offers up to four outputs,  
designated PxA through PxD. Users are also able to  
select the polarity of the signal (either active-high or  
active-low). The module’s output mode and polarity  
are configured by setting the PxM<1:0> and  
CCPxM<3:0> bits of the CCPxCON register  
(CCPxCON<7:6> and CCPxCON<3:0>, respectively).  
As before, the user must manually configure the  
appropriate TRIS bits for output.  
18.4.1  
PWM PERIOD  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
equation:  
EQUATION 18-1:  
For the sake of clarity, Enhanced PWM mode operation  
is described generically throughout this section with  
respect to ECCP1 and TMR2 modules. Control register  
names are presented in terms of ECCP1. All three  
Enhanced modules, as well as the two timer resources,  
can be used interchangeably and function identically.  
TMR2 or TMR4 can be selected for PWM operation by  
selecting the proper bits in T3CON.  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
PWM frequency is defined as 1/[PWM period]. When  
TMR2 is equal to PR2, the following three events occur  
on the next increment cycle:  
• TMR2 is cleared  
Figure 18-1 shows a simplified block diagram of PWM  
operation. All control registers are double-buffered and  
are loaded at the beginning of a new PWM cycle (the  
period boundary when Timer2 resets) in order to pre-  
vent glitches on any of the outputs. The exception is the  
PWM Delay register, ECCP1DEL, which is loaded at  
either the duty cycle boundary or the boundary period  
(whichever comes first). Because of the buffering, the  
module waits until the assigned timer resets instead of  
starting immediately. This means that Enhanced PWM  
• The ECCP1 pin is set (if PWM duty cycle = 0%,  
the ECCP1 pin will not be set)  
• The PWM duty cycle is copied from CCPR1L into  
CCPR1H  
Note:  
The Timer2 postscaler (see Section 14.0  
“Timer2 Module”) is not used in the  
determination of the PWM frequency. The  
postscaler could be used to have a servo  
update rate at a different frequency than  
the PWM output.  
FIGURE 18-1:  
SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE  
CCP1CON<5:4>  
P1M1<1:0>  
CCP1M<3:0>  
4
Duty Cycle Registers  
2
CCPR1L  
ECCP1/P1A  
P1B  
ECCP1/P1A  
P1B  
TRISx<x>  
TRISx<x>  
TRISx<x>  
TRISx<x>  
CCPR1H (Slave)  
Output  
Controller  
R
S
Q
Comparator  
P1C  
P1C  
P1D  
(Note 1)  
TMR2  
P1D  
Comparator  
Clear Timer,  
set ECCP1 pin and  
latch D.C.  
PR2  
ECCP1DEL  
Note: The 8-bit timer TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler, to create the 10-bit  
time base.  
© 2009 Microchip Technology Inc.  
DS39663F-page 181  
PIC18F87J10 FAMILY  
18.4.2  
PWM DUTY CYCLE  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the ECCP1 pin will not  
be cleared.  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The PWM duty cycle is  
calculated by the equation:  
18.4.3  
PWM OUTPUT CONFIGURATIONS  
The P1M<1:0> bits in the CCP1CON register allow one  
of four configurations:  
• Single Output  
EQUATION 18-2:  
• Half-Bridge Output  
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
• Full-Bridge Output, Forward mode  
• Full-Bridge Output, Reverse mode  
The Single Output mode is the standard PWM mode  
discussed in Section 18.4 “Enhanced PWM Mode”.  
The Half-Bridge and Full-Bridge Output modes are  
covered in detail in the sections that follow.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time but the duty cycle value is not copied into  
CCPR1H until a match between PR2 and TMR2 occurs  
(i.e., the period is complete). In PWM mode, CCPR1H  
is a read-only register.  
The general relationship of the outputs in all  
configurations is summarized in Figure 18-2.  
The CCPR1H register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitchless PWM opera-  
tion. When the CCPR1H and 2-bit latch match TMR2,  
concatenated with an internal 2-bit Q clock or two bits  
of the TMR2 prescaler, the ECCP1 pin is cleared. The  
maximum PWM resolution (bits) for a given PWM  
frequency is given by the equation:  
EQUATION 18-3:  
FOSC  
log  
(
)
FPWM  
bits  
PWM Resolution (max) =  
log(2)  
TABLE 18-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
10  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
DS39663F-page 182  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 18-2:  
PWM OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)  
0
PR2 + 1  
Duty  
Cycle  
SIGNAL  
CCP1CON<7:6>  
Period  
(Single Output)  
(Half-Bridge)  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
00  
10  
(1)  
(1)  
Delay  
Delay  
(Full-Bridge,  
Forward)  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
01  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
FIGURE 18-3:  
PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)  
0
Duty  
Cycle  
PR2 + 1  
SIGNAL  
CCP1CON<7:6>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
(Half-Bridge)  
00  
10  
(1)  
(1)  
Delay  
Delay  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Forward)  
01  
11  
(Full-Bridge,  
Reverse)  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Duty Cycle = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (ECCP1DEL<6:0>)  
Note 1: The dead-band delay is programmed using the ECCP1DEL register (Section 18.4.6 “Programmable  
Dead-Band Delay”).  
© 2009 Microchip Technology Inc.  
DS39663F-page 183  
PIC18F87J10 FAMILY  
18.4.4  
HALF-BRIDGE MODE  
FIGURE 18-4:  
HALF-BRIDGE PWM  
OUTPUT  
In the Half-Bridge Output mode, two pins are used as  
outputs to drive push-pull loads. The PWM output  
signal is output on the P1A pin, while the complemen-  
tary PWM output signal is output on the P1B pin  
(Figure 18-4). This mode can be used for half-bridge  
applications, as shown in Figure 18-5, or for full-bridge  
applications, where four power switches are being  
modulated with two PWM signals.  
Period  
Period  
Duty Cycle  
(2)  
(2)  
P1A  
P1B  
td  
td  
In Half-Bridge Output mode, the programmable  
dead-band delay can be used to prevent shoot-through  
current in half-bridge power devices. The value of bits,  
P1DC<6:0>, sets the number of instruction cycles  
before the output is driven active. If the value is greater  
than the duty cycle, the corresponding output remains  
inactive during the entire cycle. See Section 18.4.6  
“Programmable Dead-Band Delay” for more details  
on dead-band delay operations.  
(1)  
(1)  
(1)  
td = Dead Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
2: The output signals are shown as active-high.  
Since the P1A and P1B outputs are multiplexed with  
the PORTC<2> and PORTE<6> data latches, the  
TRISC<2> and TRISE<6> bits must be cleared to  
configure P1A and P1B as outputs.  
FIGURE 18-5:  
EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS  
V+  
Standard Half-Bridge Circuit (“Push-Pull”)  
PIC18F87J10  
FET  
Driver  
+
V
-
P1A  
Load  
FET  
Driver  
+
V
-
P1B  
V-  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
PIC18F87J10  
FET  
FET  
Driver  
Driver  
P1A  
Load  
FET  
FET  
Driver  
Driver  
P1B  
V-  
DS39663F-page 184  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
P1A, P1B, P1C and P1D outputs are multiplexed with  
the port pins as described in Table 18-1, Table 18-2  
and Table 18-3. The corresponding TRIS bits must be  
cleared to make the P1A, P1B, P1C and P1D pins  
outputs.  
18.4.5  
FULL-BRIDGE MODE  
In Full-Bridge Output mode, four pins are used as  
outputs; however, only two outputs are active at a time.  
In the Forward mode, pin P1A is continuously active  
and pin P1D is modulated. In the Reverse mode, pin  
P1C is continuously active and pin P1B is modulated.  
These are illustrated in Figure 18-6.  
FIGURE 18-6:  
FULL-BRIDGE PWM OUTPUT  
Forward Mode  
Period  
(2)  
P1A  
Duty Cycle  
(2)  
(2)  
P1B  
P1C  
(2)  
P1D  
(1)  
(1)  
Reverse Mode  
Period  
Duty Cycle  
(2)  
P1A  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
Note 2: The output signal is shown as active-high.  
© 2009 Microchip Technology Inc.  
DS39663F-page 185  
PIC18F87J10 FAMILY  
FIGURE 18-7:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
PIC18F87J10  
QC  
QA  
FET  
Driver  
FET  
Driver  
P1A  
Load  
P1B  
FET  
Driver  
FET  
Driver  
P1C  
P1D  
QD  
QB  
V-  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
18.4.5.1  
Direction Change in Full-Bridge Mode  
In the Full-Bridge Output mode, the P1M1 bit in the  
CCP1CON register allows users to control the forward/  
reverse direction. When the application firmware  
changes this direction control bit, the module will  
assume the new direction on the next PWM cycle.  
2. The turn-off time of the power switch, including  
the power device and driver circuit, is greater  
than the turn-on time.  
Figure 18-9 shows an example where the PWM direc-  
tion changes from forward to reverse at a near 100%  
duty cycle. At time t1, the outputs P1A and P1D  
become inactive, while output P1C becomes active. In  
this example, since the turn-off time of the power  
devices is longer than the turn-on time, a shoot-through  
current may flow through power devices QC and QD  
(see Figure 18-7) for the duration of ‘t’. The same  
phenomenon will occur to power devices QA and QB  
for PWM direction change from reverse to forward.  
Just before the end of the current PWM period, the  
modulated outputs (P1B and P1D) are placed in their  
inactive state, while the unmodulated outputs (P1A and  
P1C) are switched to drive in the opposite direction.  
This occurs in a time interval of (4 TOSC * (Timer2  
Prescale Value) before the next PWM period begins.  
The Timer2 prescaler will be either 1, 4 or 16, depend-  
ing on the value of the T2CKPS bits (T2CON<1:0>).  
During the interval from the switch of the unmodulated  
outputs to the beginning of the next period, the  
modulated outputs (P1B and P1D) remain inactive.  
This relationship is shown in Figure 18-8.  
If changing PWM direction at high duty cycle is required  
for an application, one of the following requirements  
must be met:  
Note that in the Full-Bridge Output mode, the ECCP1  
module does not provide any dead-band delay. In  
general, since only one output is modulated at all times,  
dead-band delay is not required. However, there is a  
situation where a dead-band delay might be required.  
This situation occurs when both of the following  
conditions are true:  
1. Reduce PWM for  
changing directions.  
a PWM period before  
2. Use switch drivers that can drive the switches off  
faster than they can drive them on.  
Other options to prevent shoot-through current may  
exist.  
DS39663F-page 186  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 18-8:  
PWM DIRECTION CHANGE  
(1)  
Period  
Period  
SIGNAL  
P1A (Active-High)  
P1B (Active-High)  
DC  
P1C (Active-High)  
P1D (Active-High)  
(Note 2)  
DC  
Note 1: The direction bit in the ECCP1 Control register (CCP1CON<7>) is written at any time during the PWM cycle.  
2: When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle at intervals  
of 4 TOSC, 16 TOSC or 64 TOSC, depending on the Timer2 prescaler value. The modulated P1B and P1D signals  
are inactive at this time.  
FIGURE 18-9:  
PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE  
Forward Period  
Reverse Period  
t1  
(1)  
(1)  
P1A  
P1B  
DC  
(1)  
P1C  
P1D  
(1)  
DC  
(2)  
t
ON  
(1)  
(1)  
External Switch C  
External Switch D  
(3)  
t
OFF  
(2,3)  
Potential  
t = t  
– t  
ON  
OFF  
Shoot-Through  
(1)  
Current  
Note 1: All signals are shown as active-high.  
2:  
3:  
t
t
is the turn-on delay of power switch, QC, and its driver.  
ON  
is the turn-off delay of power switch, QD, and its driver.  
OFF  
© 2009 Microchip Technology Inc.  
DS39663F-page 187  
PIC18F87J10 FAMILY  
A shutdown event can be caused by either of the two  
comparator modules or the FLT0 pin (or any combination  
of these three sources). The comparators may be used  
to monitor a voltage input proportional to a current being  
monitored in the bridge circuit. If the voltage exceeds a  
threshold, the comparator switches state and triggers a  
shutdown. Alternatively, a low-level digital signal on the  
18.4.6  
PROGRAMMABLE DEAD-BAND  
DELAY  
In half-bridge applications, where all power switches  
are modulated at the PWM frequency at all times, the  
power switches normally require more time to turn off  
than to turn on. If both the upper and lower power  
switches are switched at the same time (one turned on  
and the other turned off), both switches may be on for  
a short period of time until one switch completely turns  
off. During this brief interval, a very high current  
(shoot-through current) may flow through both power  
switches, shorting the bridge supply. To avoid this  
potentially destructive shoot-through current from flow-  
ing during switching, turning on either of the power  
switches is normally delayed to allow the other switch  
to completely turn off.  
FLT0 pin can also trigger  
a
shutdown. The  
auto-shutdown feature can be disabled by not selecting  
any auto-shutdown sources. The auto-shutdown sources  
to be used are selected using the ECCP1AS<2:0> bits  
(bits<6:4> of the ECCP1AS register).  
When a shutdown occurs, the output pins are  
asynchronously placed in their shutdown states,  
specified by the PSS1AC<1:0> and PSS1BD<1:0> bits  
(ECCP1AS<3:0>). Each pin pair (P1A/P1C and P1B/  
P1D) may be set to drive high, drive low or be tri-stated  
(not driving). The ECCP1ASE bit (ECCP1AS<7>) is  
also set to hold the Enhanced PWM outputs in their  
shutdown states.  
In the Half-Bridge Output mode, a digitally program-  
mable dead-band delay is available to avoid  
shoot-through current from destroying the bridge  
power switches. The delay occurs at the signal  
transition from the non-active state to the active state.  
See Figure 18-4 for illustration. The lower seven bits of  
the ECCP1DEL register (Register 18-2) set the delay  
period in terms of microcontroller instruction cycles  
(TCY or 4 TOSC).  
The ECCP1ASE bit is set by hardware when a  
shutdown event occurs. If automatic restarts are not  
enabled, the ECCP1ASE bit is cleared by firmware  
when the cause of the shutdown clears. If automatic  
restarts are enabled, the ECCP1ASE bit is automati-  
cally cleared when the cause of the auto-shutdown has  
cleared.  
18.4.7  
ENHANCED PWM  
AUTO-SHUTDOWN  
If the ECCP1ASE bit is set when a PWM period begins,  
the PWM outputs remain in their shutdown state for that  
entire PWM period. When the ECCP1ASE bit is  
cleared, the PWM outputs will return to normal  
operation at the beginning of the next PWM period.  
When the ECCP1 is programmed for any of the  
Enhanced PWM modes, the active output pins may be  
configured for auto-shutdown. Auto-shutdown immedi-  
ately places the Enhanced PWM output pins into a  
defined shutdown state when a shutdown event  
occurs.  
Note:  
Writing to the ECCP1ASE bit is disabled  
while a shutdown condition is active.  
REGISTER 18-2: ECCPxDEL: PWM DEAD-BAND DELAY REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PxRSEN  
PxDC6  
PxDC5  
PxDC4  
PxDC3  
PxDC2  
PxDC1  
PxDC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
PxRSEN: PWM Restart Enable bit  
1= Upon auto-shutdown, the ECCPxASE bit clears automatically once the shutdown event goes  
away; the PWM restarts automatically  
0= Upon auto-shutdown, ECCPxASE must be cleared in software to restart the PWM  
bit 6-0  
PxDC<6:0>: PWM Delay Count bits  
Delay time, in number of FOSC/4 (4 * TOSC) cycles, between the scheduled and actual time for a PWM  
signal to transition to active.  
DS39663F-page 188  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
REGISTER 18-3: ECCPxAS: ENHANCED CCPx AUTO-SHUTDOWN CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ECCPxASE  
ECCPxAS2 ECCPxAS1 ECCPxAS0 PSSxAC1  
PSSxAC0  
PSSxBD1  
PSSxBD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ECCPxASE: ECCPx Auto-Shutdown Event Status bit  
1= A shutdown event has occurred; ECCPx outputs are in a shutdown state  
0= ECCPx outputs are operating  
bit 6-4  
ECCPxAS<2:0>: ECCPx Auto-Shutdown Source Select bits  
111= FLT0 or Comparator 1 or Comparator 2  
110= FLT0 or Comparator 2  
101= FLT0 or Comparator 1  
100= FLT0  
011= Either Comparator 1 or 2  
010= Comparator 2 output  
001= Comparator 1 output  
000= Auto-shutdown is disabled  
bit 3-2  
bit 1-0  
PSSxAC<1:0>: Pins A and C Shutdown State Control bits  
1x= Pins A and C tri-state  
01= Drive Pins A and C to ‘1’  
00= Drive Pins A and C to ‘0’  
PSSxBD<1:0>: Pins B and D Shutdown State Control bits(1)  
1x= Pins B and D tri-state  
01= Drive Pins B and D to ‘1’  
00= Drive Pins B and D to ‘0’  
The Auto-Shutdown mode can be forced by writing a ‘1’  
to the ECCP1ASE bit.  
18.4.7.1  
Auto-Shutdown and Automatic  
Restart  
The auto-shutdown feature can be configured to allow  
automatic restarts of the module following a shutdown  
event. This is enabled by setting the P1RSEN bit of the  
ECCP1DEL register (ECCP1DEL<7>).  
18.4.8  
START-UP CONSIDERATIONS  
When the ECCP1 module is used in the PWM mode,  
the application hardware must use the proper external  
pull-up and/or pull-down resistors on the PWM output  
pins. When the microcontroller is released from Reset,  
all of the I/O pins are in the high-impedance state. The  
external circuits must keep the power switch devices in  
the OFF state until the microcontroller drives the I/O  
pins with the proper signal levels, or activates the PWM  
output(s).  
In Shutdown mode with P1RSEN = 1 (Figure 18-10),  
the ECCP1ASE bit will remain set for as long as the  
cause of the shutdown continues. When the shutdown  
condition clears, the ECCP1ASE bit is cleared. If  
P1RSEN = 0 (Figure 18-11), once a shutdown condi-  
tion occurs, the ECCP1ASE bit will remain set until it is  
cleared by firmware. Once ECCP1ASE is cleared, the  
Enhanced PWM will resume at the beginning of the  
next PWM period.  
The CCP1M<1:0> bits (CCP1CON<1:0>) allow the  
user to choose whether the PWM output signals are  
active-high or active-low for each pair of PWM output  
pins (P1A/P1C and P1B/P1D). The PWM output  
polarities must be selected before the PWM pins are  
configured as outputs. Changing the polarity configura-  
tion while the PWM pins are configured as outputs is  
not recommended since it may result in damage to the  
application circuits.  
Note:  
Writing to the ECCP1ASE bit is disabled  
while a shutdown condition is active.  
Independent of the P1RSEN bit setting, if the  
auto-shutdown source is one of the comparators, the  
shutdown condition is a level. The ECCP1ASE bit  
cannot be cleared as long as the cause of the shutdown  
persists.  
© 2009 Microchip Technology Inc.  
DS39663F-page 189  
PIC18F87J10 FAMILY  
The P1A, P1B, P1C and P1D output latches may not be  
in the proper states when the PWM module is initialized.  
Enabling the PWM pins for output at the same time as  
the ECCP1 module may cause damage to the applica-  
tion circuit. The ECCP1 module must be enabled in the  
proper output mode and complete a full PWM cycle  
before configuring the PWM pins as outputs. The com-  
pletion of a full PWM cycle is indicated by the TMR2IF  
bit being set as the second PWM period begins.  
FIGURE 18-10:  
PWM AUTO-SHUTDOWN (P1RSEN = 1, AUTO-RESTART ENABLED)  
PWM Period  
Shutdown Event  
ECCP1ASE bit  
PWM Activity  
Normal PWM  
Start of  
PWM Period  
Shutdown  
Event Occurs Event Clears  
Shutdown  
PWM  
Resumes  
FIGURE 18-11:  
PWM AUTO-SHUTDOWN (P1RSEN = 0, AUTO-RESTART DISABLED)  
PWM Period  
Shutdown Event  
ECCP1ASE bit  
PWM Activity  
Normal PWM  
ECCP1ASE  
Cleared by  
Start of  
PWM Period  
Shutdown  
Event Occurs Event Clears  
Shutdown Firmware PWM  
Resumes  
DS39663F-page 190  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
8. If auto-restart operation is required, set the  
PxRSEN bit (ECCPxDEL<7>).  
18.4.9  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the ECCPx module for PWM operation:  
9. Configure and start TMRx (TMR2 or TMR4):  
• Clear the TMRx interrupt flag bit by clearing  
the TMRxIF bit (PIR1<1> for Timer2 or  
PIR3<3> for Timer4).  
1. Configure the PWM pins, PxA and PxB (and  
PxC and PxD, if used), as inputs by setting the  
corresponding TRIS bits.  
• Set the TMRx prescale value by loading the  
TxCKPS bits (TxCON<1:0>).  
2. Set the PWM period by loading the PR2 (PR4)  
register.  
• Enable Timer2 (or Timer4) by setting the  
TMRxON bit (TxCON<2>).  
3. Configure the ECCPx module for the desired  
PWM mode and configuration by loading the  
CCPxCON register with the appropriate values:  
10. Enable PWM outputs after a new PWM cycle  
has started:  
• Select one of the available output  
configurations and direction with the  
PxM<1:0> bits.  
• Wait until TMRx overflows (TMRxIF bit is set).  
• Enable the ECCPx/PxA, PxB, PxC and/or  
PxD pin outputs by clearing the respective  
TRIS bits.  
• Select the polarities of the PWM output  
signals with the CCPxM<3:0> bits.  
• Clear the ECCPxASE bit (ECCPxAS<7>).  
4. Set the PWM duty cycle by loading the CCPRxL  
register and the CCPxCON<5:4> bits.  
18.4.10 EFFECTS OF A RESET  
5. For auto-shutdown:  
Both Power-on Reset and subsequent Resets will force  
all ports to Input mode and the ECCP registers to their  
Reset states.  
• Disable auto-shutdown; ECCP1ASE = 0.  
• Configure auto-shutdown source.  
• Wait for Run condition.  
This forces the Enhanced CCP module to reset to a  
state compatible with the standard CCP module.  
6. For Half-Bridge Output mode, set the  
dead-band delay by loading ECCPxDEL<6:0>  
with the appropriate value.  
7. If auto-shutdown operation is required, load the  
ECCPxAS register:  
• Select the auto-shutdown sources using the  
ECCPxAS<2:0> bits.  
• Select the shutdown states of the PWM  
output pins using the PSSxAC<1:0> and  
PSSxBD<1:0> bits.  
• Set the ECCPxASE bit (ECCPxAS<7>).  
© 2009 Microchip Technology Inc.  
DS39663F-page 191  
PIC18F87J10 FAMILY  
TABLE 18-5: REGISTERS ASSOCIATED WITH ECCP MODULES AND TIMER1 TO TIMER4  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
53  
54  
55  
55  
55  
55  
55  
55  
55  
55  
55  
56  
56  
56  
56  
56  
54  
54  
54  
54  
54  
54  
55  
55  
55  
57  
57  
57  
55  
55,  
55  
55, 57  
57  
IPEN  
PSPIF  
TO  
ADIF  
RC1IF  
RC1IE  
RC1IP  
TX1IF  
TX1IE  
TX1IP  
SSP1IF  
SSP1IE  
SSP1IP  
BCL1IF  
BCL1IE  
BCL1IP  
TMR4IF  
TMR4IE  
TMR4IP  
TRISB3  
TRISC3  
TRISE3  
TRISG3  
TRISH3  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
PSPIE  
PSPIP  
OSCFIF  
OSCFIE  
OSCFIP  
SSP2IF  
SSP2IE  
SSP2IP  
TRISB7  
TRISC7  
TRISE7  
ADIE  
IPR1  
ADIP  
PIR2  
CMIF  
TMR3IF CCP2IF  
TMR3IE CCP2IE  
TMR3IP CCP2IP  
PIE2  
CMIE  
IPR2  
CMIP  
PIR3  
BCL2IF  
BCL2IE  
BCL2IP  
TRISB6  
TRISC6  
TRISE6  
RC2IF  
RC2IE  
RC2IP  
TRISB5  
TRISC5  
TRISE5  
TX2IF  
TX2IE  
TX2IP  
TRISB4  
TRISC4  
TRISE4  
TRISG4  
TRISH4  
CCP5IF CCP4IF CCP3IF  
CCP5IE CCP4IE CCP3IE  
CCP5IP CCP4IP CCP3IP  
TRISB2 TRISB1 TRISB0  
TRISC2 TRISC1 TRISC0  
TRISE2 TRISE1 TRISE0  
TRISG2 TRISG1 TRISG0  
TRISH2 TRISH1 TRISH0  
PIE3  
IPR3  
TRISB  
TRISC  
TRISE  
TRISG  
TRISH  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
PR2  
TRISH7  
TRISH6  
TRISH5  
Timer1 Register Low Byte  
Timer1 Register High Byte  
RD16  
Timer2 Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
T1RUN  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Timer2 Period Register  
Timer3 Register Low Byte  
Timer3 Register High Byte  
TMR3L  
TMR3H  
T3CON  
TMR4  
T4CON  
PR4  
RD16  
Timer4 Register  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON T4CKPS1 T4CKPS0  
T3CCP2  
T3CKPS1 T3CKPS0  
T3CCP1 T3SYNC TMR3CS TMR3ON  
Timer4 Period Register  
(1)  
CCPRxL  
CCPRxH  
Capture/Compare/PWM Register x Low Byte  
Capture/Compare/PWM Register x High Byte  
(1)  
(1)  
CCPxCON  
PxM1  
PxM0  
DCxB1  
DCxB0  
CCPxM3 CCPxM2 CCPxM1 CCPxM0  
(1)  
ECCPxAS  
ECCPxASE ECCPxAS2 ECCPxAS1 ECCPxAS0 PSSxAC1 PSSxAC0 PSSxBD1 PSSxBD0  
(1)  
ECCPxDEL  
PxRSEN  
PxDC6  
PxDC5  
PxDC4  
PxDC3  
PxDC2  
PxDC1  
PxDC0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during ECCP operation.  
Note 1: Generic term for all of the identical registers of this name for all Enhanced CCP modules, where ‘x’ identifies the  
individual module (ECCP1, ECCP2 or ECCP3). Bit assignments and Reset values for all registers of the same  
generic name are identical.  
DS39663F-page 192  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
19.3 SPI Mode  
19.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four  
modes of SPI are supported. To accomplish  
communication, typically three pins are used:  
19.1 Master SSP (MSSP) Module  
Overview  
• Serial Data Out (SDOx) – RC5/SDO1 or  
RD4/SDO2  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface, useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers,  
display drivers, A/D Converters, etc. The MSSP  
module can operate in one of two modes:  
• Serial Data In (SDIx) – RC4/SDI1/SDA1 or  
RD5/SDI2/SDA2  
• Serial Clock (SCKx) – RC3/SCK1/SCL1 or  
RD6/SCK2/SCL2  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C™)  
- Full Master mode  
• Slave Select (SSx) – RF7/SS1 or RD7/SS2  
Figure 19-1 shows the block diagram of the MSSP  
module when operating in SPI mode.  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
FIGURE 19-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
• Master mode  
Internal  
Data Bus  
• Multi-Master mode  
• Slave mode (with address masking for both 10-bit  
and 7-bit addressing)  
Read  
Write  
All members of the PIC18F87J10 family have two  
MSSP modules, designated as MSSP1 and MSSP2.  
Each module operates independently of the other.  
SSPxBUF reg  
SDIx  
Note:  
Throughout this section, generic refer-  
ences to an MSSP module in any of its  
operating modes may be interpreted as  
being equally applicable to MSSP1 or  
MSSP2. Register names and module I/O  
signals use the generic designator ‘x’ to  
indicate the use of a numeral to distinguish  
a particular module when required. Control  
bit names are not individuated.  
SSPxSR reg  
Shift  
Clock  
bit 0  
SDOx  
SSx  
Control  
Enable  
SSx  
Edge  
Select  
19.2 Control Registers  
Each MSSP module has three associated control regis-  
ters. These include a status register (SSPxSTAT) and  
two control registers (SSPxCON1 and SSPxCON2). The  
use of these registers and their individual Configuration  
bits differ significantly depending on whether the MSSP  
module is operated in SPI or I2C mode.  
2
Clock Select  
SSPM<3:0>  
SMP:CKE  
2
4
TMR2 Output  
(
)
2
SCKx  
Edge  
Select  
Additional details are provided under the individual  
sections.  
TOSC  
Prescaler  
4, 16, 64  
Note:  
In devices with more than one MSSP  
module, it is very important to pay close  
attention to SSPCON register names.  
SSP1CON1 and SSP1CON2 control  
different operational aspects of the same  
Data to TXx/RXx in SSPxSR  
TRIS bit  
Note: Only port I/O names are used in this diagram for  
the sake of brevity. Refer to the text for a full list of  
multiplexed functions.  
module,  
while  
SSP1CON1  
and  
SSP2CON1 control the same features for  
two different modules.  
© 2009 Microchip Technology Inc.  
DS39663F-page 193  
PIC18F87J10 FAMILY  
SSPxSR is the shift register used for shifting data in or  
out. SSPxBUF is the buffer register to which data  
bytes are written to or read from.  
19.3.1  
REGISTERS  
Each MSSP module has four registers for SPI mode  
operation. These are:  
In receive operations, SSPxSR and SSPxBUF  
together create a double-buffered receiver. When  
SSPxSR receives a complete byte, it is transferred to  
SSPxBUF and the SSPxIF interrupt is set.  
• MSSP Control Register 1 (SSPxCON1)  
• MSSP Status Register (SSPxSTAT)  
• Serial Receive/Transmit Buffer Register  
(SSPxBUF)  
During transmission, the SSPxBUF is not  
double-buffered. A write to SSPxBUF will write to both  
SSPxBUF and SSPxSR.  
• MSSP Shift Register (SSPxSR) – Not directly  
accessible  
SSPxCON1 and SSPxSTAT are the control and status  
registers in SPI mode operation. The SSPxCON1  
register is readable and writable. The lower 6 bits of  
the SSPxSTAT are read-only. The upper two bits of the  
SSPxSTAT are read/write.  
REGISTER 19-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)  
R/W-0  
SMP  
R/W-0  
CKE(1)  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode.  
bit 6  
CKE: SPI Clock Select bit(1)  
1= Transmit occurs on transition from active to Idle clock state  
0= Transmit occurs on transition from Idle to active clock state  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D/A: Data/Address bit  
Used in I2C mode only.  
P: Stop bit  
Used in I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.  
S: Start bit  
Used in I2C mode only.  
R/W: Read/Write Information bit  
Used in I2C mode only.  
UA: Update Address bit  
Used in I2C mode only.  
BF: Buffer Full Status bit (Receive mode only)  
1= Receive complete, SSPxBUF is full  
0= Receive not complete, SSPxBUF is empty  
Note 1: The polarity of the clock state is set by the CKP bit (SSPxCON1<4>).  
DS39663F-page 194  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
REGISTER 19-2: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)  
R/W-0  
WCOL  
R/W-0  
SSPOV(1)  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
WCOL: Write Collision Detect bit  
1= The SSPxBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0= No collision  
SSPOV: Receive Overflow Indicator bit(1)  
SPI Slave mode:  
1= A new byte is received while the SSPxBUF register is still holding the previous data. In case of over-  
flow, the data in SSPxSR is lost. Overflow can only occur in Slave mode. The user must read the  
SSPxBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software).  
0= No overflow  
bit 5  
SSPEN: Master Synchronous Serial Port Enable bit  
1= Enables serial port and configures SCKx, SDOx, SDIx and SSx as serial port pins(2)  
0= Disables serial port and configures these pins as I/O port pins(2)  
bit 4  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
bit 3-0  
SSPM<3:0>: Master Synchronous Serial Port Mode Select bits  
0101= SPI Slave mode, clock = SCKx pin, SSx pin control disabled, SSx can be used as I/O pin(3)  
0100= SPI Slave mode, clock = SCKx pin, SSx pin control enabled(3)  
0011= SPI Master mode, clock = TMR2 output/2(3)  
0010= SPI Master mode, clock = FOSC/64(3)  
0001= SPI Master mode, clock = FOSC/16(3)  
0000= SPI Master mode, clock = FOSC/4(3)  
Note 1: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by  
writing to the SSPxBUF register.  
2: When enabled, these pins must be properly configured as input or output.  
3: Bit combinations not specifically listed here are either reserved or implemented in I2C mode only.  
© 2009 Microchip Technology Inc.  
DS39663F-page 195  
PIC18F87J10 FAMILY  
reading the data that was just received. Any write to the  
SSPxBUF register during transmission/reception of data  
will be ignored and the Write Collision Detect bit, WCOL  
(SSPxCON1<7>), will be set. User software must clear  
the WCOL bit so that it can be determined if the following  
write(s) to the SSPxBUF register completed  
successfully.  
19.3.2  
OPERATION  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>).  
These control bits allow the following to be specified:  
• Master mode (SCKx is the clock output)  
• Slave mode (SCKx is the clock input)  
• Clock Polarity (Idle state of SCKx)  
When the application software is expecting to receive  
valid data, the SSPxBUF should be read before the next  
byte of data to transfer is written to the SSPxBUF. The  
Buffer Full bit, BF (SSPxSTAT<0>), indicates when  
SSPxBUF has been loaded with the received data  
(transmission is complete). When the SSPxBUF is read,  
the BF bit is cleared. This data may be irrelevant if the  
SPI is only a transmitter. Generally, the MSSP interrupt  
is used to determine when the transmission/reception  
has completed. If the interrupt method is not going to be  
used, then software polling can be done to ensure that a  
write collision does not occur. Example 19-1 shows the  
loading of the SSPxBUF (SSPxSR) for data  
transmission.  
• Data Input Sample Phase (middle or end of data  
output time)  
• Clock Edge (output data on rising/falling edge of  
SCKx)  
• Clock Rate (Master mode only)  
• Slave Select mode (Slave mode only)  
Each MSSP module consists of a transmit/receive shift  
register (SSPxSR) and a buffer register (SSPxBUF).  
The SSPxSR shifts the data in and out of the device,  
MSb first. The SSPxBUF holds the data that was written  
to the SSPxSR until the received data is ready. Once the  
8 bits of data have been received, that byte is moved to  
the SSPxBUF register. Then, the Buffer Full detect bit,  
BF (SSPxSTAT<0>), and the interrupt flag bit, SSPxIF,  
are set. This double-buffering of the received data  
(SSPxBUF) allows the next byte to start reception before  
The SSPxSR is not directly readable or writable and  
can only be accessed by addressing the SSPxBUF  
register. Additionally, the SSPxSTAT register indicates  
the various status conditions.  
EXAMPLE 19-1:  
LOADING THE SSP1BUF (SSP1SR) REGISTER  
LOOP  
BTFSS  
BRA  
SSP1STAT, BF  
LOOP  
;Has data been received (transmit complete)?  
;No  
MOVF  
SSP1BUF, W  
;WREG reg = contents of SSP1BUF  
MOVWF  
RXDATA  
;Save in user RAM, if data is meaningful  
MOVF  
MOVWF  
TXDATA, W  
SSP1BUF  
;W reg = contents of TXDATA  
;New data to xmit  
DS39663F-page 196  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
Any serial port function that is not desired may be  
overridden by programming the corresponding Data  
Direction (TRIS) register to the opposite value.  
19.3.3  
ENABLING SPI I/O  
To enable the serial port, MSSP Enable bit, SSPEN  
(SSPxCON1<5>), must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, reinitialize the  
SSPxCON registers and then set the SSPEN bit. This  
configures the SDIx, SDOx, SCKx and SSx pins as  
serial port pins. For the pins to behave as the serial port  
function, some must have their data direction bits (in  
the TRIS register) appropriately programmed as  
follows:  
19.3.4  
TYPICAL CONNECTION  
Figure 19-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCKx signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge and latched on the opposite edge  
of the clock. Both processors should be programmed to  
the same Clock Polarity (CKP), then both controllers  
would send and receive data at the same time.  
Whether the data is meaningful (or dummy data)  
depends on the application software. This leads to  
three scenarios for data transmission:  
• SDIx is automatically controlled by the  
SPI module  
• SDOx must have the TRISC<5> or TRISD<4> bit  
cleared  
• SCKx (Master mode) must have the TRISC<3> or  
TRISD<6>bit cleared  
• Master sends data – Slave sends dummy data  
• Master sends data – Slave sends data  
• SCKx (Slave mode) must have the TRISC<3> or  
TRISD<6> bit set  
• Master sends dummy data – Slave sends data  
• SSx must have the TRISF<7> or TRISD<7> bit  
set  
FIGURE 19-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM<3:0> = 00xxb  
SPI Slave SSPM<3:0> = 010xb  
SDIx  
SDOx  
Serial Input Buffer  
(SSPxBUF)  
Serial Input Buffer  
(SSPxBUF)  
SDIx  
SDOx  
Shift Register  
(SSPxSR)  
Shift Register  
(SSPxSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCKx  
SCKx  
PROCESSOR 1  
PROCESSOR 2  
© 2009 Microchip Technology Inc.  
DS39663F-page 197  
PIC18F87J10 FAMILY  
shown in Figure 19-3, Figure 19-5 and Figure 19-6,  
where the MSB is transmitted first. In Master mode, the  
SPI clock rate (bit rate) is user programmable to be one  
of the following:  
19.3.5  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCKx. The master determines  
when the slave (Processor 1, Figure 19-2) is to  
broadcast data by the software protocol.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
In Master mode, the data is transmitted/received as  
soon as the SSPxBUF register is written to. If the SPI  
is only going to receive, the SDOx output could be dis-  
abled (programmed as an input). The SSPxSR register  
will continue to shift in the signal present on the SDIx  
pin at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPxBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “Line Activity Monitor” mode.  
This allows a maximum data rate (at 40 MHz) of  
10.00 Mbps.  
Figure 19-3 shows the waveforms for Master mode.  
When the CKE bit is set, the SDOx data is valid before  
there is a clock edge on SCKx. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPxBUF is loaded with the received  
data is shown.  
The clock polarity is selected by appropriately  
programming the CKP bit (SSPxCON1<4>). This then,  
would give waveforms for SPI communication as  
FIGURE 19-3:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPxBUF  
SCKx  
(CKP = 0  
CKE = 0)  
SCKx  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCKx  
(CKP = 0  
CKE = 1)  
SCKx  
(CKP = 1  
CKE = 1)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
SDOx  
(CKE = 0)  
bit 7  
bit 7  
bit 3  
bit 3  
SDOx  
(CKE = 1)  
SDIx  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDIx  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPxIF  
Next Q4 Cycle  
after Q2↓  
SSPxSR to  
SSPxBUF  
DS39663F-page 198  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
transmitted byte and becomes a floating output.  
External pull-up/pull-down resistors may be desirable  
depending on the application.  
19.3.6  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCKx. When the  
last bit is latched, the SSPxIF interrupt flag bit is set.  
Note 1: When the SPI is in Slave mode  
with  
SSx pin  
control  
enabled  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCKx pin. This  
external clock must meet the minimum high and low  
times as specified in the electrical specifications.  
(SSPxCON1<3:0> = 0100), the SPI  
module will reset if the SSx pin is set to VDD.  
2: If the SPI is used in Slave mode with CKE  
set, then the SSx pin control must be  
enabled.  
While in Sleep mode, the slave can transmit/receive  
data. When a byte is received, the device can be  
configured to wake-up from Sleep.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SSx pin to  
a high level or clearing the SSPEN bit.  
19.3.7  
SLAVE SELECT  
SYNCHRONIZATION  
To emulate two-wire communication, the SDOx pin can  
be connected to the SDIx pin. When the SPI needs to  
operate as a receiver, the SDOx pin can be configured  
as an input. This disables transmissions from the  
SDOx. The SDIx can always be left as an input (SDI  
function) since it cannot create a bus conflict.  
The SSx pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with the SSx pin control  
enabled (SSPxCON1<3:0> = 04h). When the SSx pin  
is low, transmission and reception are enabled and the  
SDOx pin is driven. When the SSx pin goes high, the  
SDOx pin is no longer driven, even if in the middle of a  
FIGURE 19-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SSx  
SCKx  
(CKP = 0  
CKE = 0)  
SCKx  
(CKP = 1  
CKE = 0)  
Write to  
SSPxBUF  
bit 6  
bit 7  
bit 7  
bit 0  
SDOx  
bit 7  
SDIx  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPxIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2  
SSPxSR to  
SSPxBUF  
© 2009 Microchip Technology Inc.  
DS39663F-page 199  
PIC18F87J10 FAMILY  
FIGURE 19-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SSx  
Optional  
SCKx  
(CKP = 0  
CKE = 0)  
SCKx  
(CKP = 1  
CKE = 0)  
Write to  
SSPxBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 3  
bit 1  
bit 0  
SDOx  
bit 7  
SDIx  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPxIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPxSR to  
SSPxBUF  
FIGURE 19-6:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SSx  
Not Optional  
SCKx  
(CKP = 0  
CKE = 1)  
SCKx  
(CKP = 1  
CKE = 1)  
Write to  
SSPxBUF  
bit 6  
bit 3  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDOx  
bit 7  
bit 7  
SDIx  
(SMP = 0)  
bit 0  
Input  
Sample  
(SMP = 0)  
SSPxIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPxSR to  
SSPxBUF  
DS39663F-page 200  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
19.3.8  
OPERATION IN POWER-MANAGED  
MODES  
19.3.10 BUS MODE COMPATIBILITY  
Table 19-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
In SPI Master mode, module clocks may be operating  
at a different speed than when in Full-Power mode; in  
the case of the Sleep mode, all clocks are halted.  
TABLE 19-1: SPI BUS MODES  
In Idle modes, a clock is provided to the peripherals.  
That clock can be from the primary clock source, the  
secondary clock (Timer1 oscillator) or the INTOSC  
source. See Section 3.6 “Clock Sources and  
Oscillator Switching” for additional information.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
In most cases, the speed that the master clocks SPI  
data is not important; however, this should be  
evaluated for each system.  
If MSSP interrupts are enabled, they can wake the con-  
troller from Sleep mode, or one of the Idle modes, when  
the master completes sending data. If an exit from  
Sleep or Idle mode is not desired, MSSP interrupts  
should be disabled.  
There is also an SMP bit which controls when the data  
is sampled.  
19.3.11 SPI CLOCK SPEED AND MODULE  
INTERACTIONS  
If the Sleep mode is selected, all module clocks are  
halted and the transmission/reception will remain in  
that state until the devices wakes. After the device  
returns to Run mode, the module will resume  
transmitting and receiving data.  
Because MSSP1 and MSSP2 are independent  
modules, they can operate simultaneously at different  
data rates. Setting the SSPM<3:0> bits of the  
SSPxCON1 register determines the rate for the  
corresponding module.  
In SPI Slave mode, the SPI Transmit/Receive Shift  
register operates asynchronously to the device. This  
allows the device to be placed in any power-managed  
mode and data to be shifted into the SPI  
Transmit/Receive Shift register. When all 8 bits have  
been received, the MSSP interrupt flag bit will be set  
and if enabled, will wake the device.  
An exception is when both modules use Timer2 as a  
time base in Master mode. In this instance, any  
changes to the Timer2 module’s operation will affect  
both MSSP modules equally. If different bit rates are  
required for each module, the user should select one of  
the other three time base options for one of the  
modules.  
19.3.9  
EFFECTS OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
© 2009 Microchip Technology Inc.  
DS39663F-page 201  
PIC18F87J10 FAMILY  
TABLE 19-2: REGISTERS ASSOCIATED WITH SPI OPERATION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
CCP5IF  
CCP5IE  
CCP5IP  
TRISC2  
TRISD2  
TRISF2  
INT0IF  
RBIF  
53  
55  
PSPIF  
PSPIE  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
TRISC5  
TRISD5  
TRISF5  
SSP1IF  
SSP1IE  
SSP1IP  
TMR4IF  
TMR4IE  
TMR4IP  
TRISC3  
TRISD3  
TRISF3  
TMR2IF  
TMR1IF  
PIE1  
TX1IE  
TX1IP  
TX2IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
55  
IPR1  
PSPIP  
ADIP  
55  
PIR3  
SSP2IF  
SSP2IE  
SSP2IP  
TRISC7  
TRISD7  
TRISF7  
BCL2IF  
BCL2IE  
BCL2IP  
TRISC6  
TRISD6  
TRISF6  
CCP4IF  
CCP4IE  
CCP4IP  
TRISC1  
TRISD1  
TRISF1  
CCP3IF  
CCP3IE  
CCP3IP  
TRISC0  
TRISD0  
55  
PIE3  
TX2IE  
TX2IP  
TRISC4  
TRISD4  
TRISF4  
55  
IPR3  
55  
TRISC  
TRISD  
TRISF  
56  
56  
56  
SSP1BUF MSSP1 Receive Buffer/Transmit Register  
54  
SSPxCON1 WCOL  
SSPxSTAT SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
SSPM0  
BF  
54, 57  
54, 57  
57  
SSP2BUF MSSP2 Receive Buffer/Transmit Register  
Legend: Shaded cells are not used by the MSSP module in SPI mode.  
DS39663F-page 202  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
2
19.4.1  
REGISTERS  
19.4 I C Mode  
The MSSP module has six registers for I2C operation.  
These are:  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call  
support) and provides interrupts on Start and Stop bits  
in hardware to determine a free bus (multi-master  
function). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
• MSSP Control Register 1 (SSPxCON1)  
• MSSP Control Register 2 (SSPxCON2)  
• MSSP Status Register (SSPxSTAT)  
• Serial Receive/Transmit Buffer Register  
(SSPxBUF)  
Two pins are used for data transfer:  
• MSSP Shift Register (SSPxSR) – Not directly  
accessible  
• Serial clock (SCLx) – RC3/SCK1/SCL1 or  
RD6/SCK2/SCL2  
• MSSP Address Register (SSPxADD)  
• Serial data (SDAx) – RC4/SDI1/SDA1 or  
RD5/SDI2/SDA2  
SSPxCON1, SSPxCON2 and SSPxSTAT are the  
control and status registers in I2C mode operation. The  
SSPxCON1 and SSPxCON2 registers are readable and  
writable. The lower 6 bits of the SSPxSTAT are  
read-only. The upper two bits of the SSPxSTAT are  
read/write.  
The user must configure these pins as inputs by setting  
the associated TRIS bits.  
FIGURE 19-7:  
MSSP BLOCK DIAGRAM  
(I2C™ MODE)  
SSPxSR is the shift register used for shifting data in or  
out. SSPxBUF is the buffer register to which data  
bytes are written to or read from.  
Internal  
Data Bus  
SSPxADD register holds the slave device address  
when the MSSP is configured in I2C Slave mode.  
When the MSSP is configured in Master mode, the  
lower seven bits of SSPxADD act as the Baud Rate  
Generator reload value.  
Read  
Write  
SSPxBUF reg  
SCLx  
SDAx  
Shift  
Clock  
In receive operations, SSPxSR and SSPxBUF  
together create a double-buffered receiver. When  
SSPxSR receives a complete byte, it is transferred to  
SSPxBUF and the SSPxIF interrupt is set.  
SSPxSR reg  
LSb  
MSb  
During transmission, the SSPxBUF is not  
double-buffered. A write to SSPxBUF will write to both  
SSPxBUF and SSPxSR.  
Match Detect  
Addr Match  
Address Mask  
SSPxADD reg  
Set, Reset  
Start and  
Stop bit Detect  
S, P bits  
(SSPxSTAT reg)  
Note: Only port I/O names are used in this diagram for  
the sake of brevity. Refer to the text for a full list of  
multiplexed functions.  
© 2009 Microchip Technology Inc.  
DS39663F-page 203  
PIC18F87J10 FAMILY  
REGISTER 19-3: SSPxSTAT: MSSPx STATUS REGISTER (I2C™ MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P(1)  
R-0  
S(1)  
R-0  
R/W(2,3)  
R-0  
UA  
R-0  
BF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SMP: Slew Rate Control bit  
In Master or Slave mode:  
1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz)  
0 = Slew rate control enabled for High-Speed mode (400 kHz)  
CKE: SMBus Select bit  
In Master or Slave mode:  
1= Enable SMBus specific inputs  
0= Disable SMBus specific inputs  
D/A: Data/Address bit  
In Master mode:  
Reserved.  
In Slave mode:  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
bit 2  
P: Stop bit(1)  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
S: Start bit(1)  
1= Indicates that a Start bit has been detected last  
0= Start bit was not detected last  
R/W: Read/Write Information bit(2,3)  
In Slave mode:  
1= Read  
0= Write  
In Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
bit 1  
bit 0  
UA: Update Address bit (10-Bit Slave mode only)  
1= Indicates that the user needs to update the address in the SSPxADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
In Transmit mode:  
1= SSPxBUF is full  
0= SSPxBUF is empty  
In Receive mode:  
1= SSPxBUF is full (does not include the ACK and Stop bits)  
0= SSPxBUF is empty (does not include the ACK and Stop bits)  
Note 1: This bit is cleared on Reset and when SSPEN is cleared.  
2: This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next Start bit, Stop bit or not ACK bit.  
3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.  
DS39663F-page 204  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
REGISTER 19-4: SSPxCON1: MSSPx CONTROL REGISTER 1 (I2C™ MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WCOL: Write Collision Detect bit  
In Master Transmit mode:  
1= A write to the SSPxBUF register was attempted while the I2C conditions were not valid for a  
transmission to be started (must be cleared in software)  
0= No collision  
In Slave Transmit mode:  
1= The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in  
software)  
0= No collision  
In Receive mode (Master or Slave modes):  
This is a “don’t care” bit.  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In Receive mode:  
1= A byte is received while the SSPxBUF register is still holding the previous byte (must be cleared  
in software)  
0= No overflow  
In Transmit mode:  
This is a “don’t care” bit in Transmit mode.  
bit 5  
bit 4  
SSPEN: Master Synchronous Serial Port Enable bit  
1= Enables the serial port and configures the SDAx and SCLx pins as the serial port pins(1)  
0= Disables serial port and configures these pins as I/O port pins(1)  
CKP: SCKx Release Control bit  
In Slave mode:  
1= Release clock  
0= Holds clock low (clock stretch); used to ensure data setup time  
In Master mode:  
Unused in this mode.  
bit 3-0  
SSPM<3:0>: Master Synchronous Serial Port Mode Select bits  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled(2)  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled(2)  
1011= I2C Firmware Controlled Master mode (slave Idle)(2)  
1000= I2C Master mode, clock = FOSC/(4 * (SSPADD + 1))(2)  
0111= I2C Slave mode, 10-bit address(2)  
0110= I2C Slave mode, 7-bit address(2)  
Note 1: When enabled, the SDAx and SCLx pins must be properly configured as input or output.  
2: Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.  
© 2009 Microchip Technology Inc.  
DS39663F-page 205  
PIC18F87J10 FAMILY  
REGISTER 19-5: SSPxCON2: MSSPx CONTROL REGISTER 2 (I2C™ MODE)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SEN(2)  
ACKSTAT  
ACKDT/  
ACKEN/  
ADMSK4  
RCEN/  
ADMSK3  
PEN/  
ADMSK2  
RSEN/  
ADMSK1  
ADMSK5(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
GCEN: General Call Enable bit (Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPxSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (Master Transmit mode only)  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
ACKDT/ADMSK5: Acknowledge Data bit (Master Receive mode only)(1)  
In Master Receive mode:  
1= Not Acknowledge  
0= Acknowledge  
In Slave mode:  
1= Address masking of ADD5 enabled  
0= Address masking of ADD5 disabled  
bit 4  
ACKEN/ADMSK4: Acknowledge Sequence Enable bit  
In Master Receive mode:(2)  
1= Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence Idle  
In Slave mode:  
1= Address masking of ADD4 enabled  
0= Address masking of ADD4 disabled  
bit 3  
RCEN/ADMSK3: Receive Enable bit (Master Receive mode only)  
In Master Receive mode:(2)  
1= Enables Receive mode for I2C  
0= Receive Idle  
In Slave mode:  
1= Address masking of ADD3 enabled  
0= Address masking of ADD3 disabled  
bit 2  
PEN/ADMSK2: Stop Condition Enable bit  
In Master mode:(2)  
1= Initiate Stop condition on SDAx and SCLx pins. Automatically cleared by hardware.  
0= Stop condition Idle  
In Slave mode:  
1= Address masking of ADD2 enabled  
0= Address masking of ADD2 disabled  
Note 1: Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.  
2: For bits, ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is active, these bits may not be set (no  
spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).  
DS39663F-page 206  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
REGISTER 19-5: SSPxCON2: MSSPx CONTROL REGISTER 2 (I2C™ MODE) (CONTINUED)  
bit 1  
RSEN/ADMSK1: Repeated Start Condition Enable bit  
In Master mode:(2)  
1= Initiate Repeated Start condition on SDAx and SCLx pins. Automatically cleared by hardware.  
0= Repeated Start condition Idle  
In Slave mode (7-Bit Addressing mode):  
1= Address masking of ADD1 enabled  
0= Address masking of ADD1 disabled  
In Slave mode (10-Bit Addressing mode):  
1= Address masking of ADD1 and ADD0 enabled  
0= Address masking of ADD1 and ADD0 disabled  
bit 0  
SEN: Start Condition Enable/Stretch Enable bit(2)  
In Master mode:  
1= Initiate Start condition on SDAx and SCLx pins. Automatically cleared by hardware.  
0= Start condition Idle  
In Slave mode:  
1= Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)  
0= Clock stretching is disabled  
Note 1: Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.  
2: For bits, ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is active, these bits may not be set (no  
spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).  
© 2009 Microchip Technology Inc.  
DS39663F-page 207  
PIC18F87J10 FAMILY  
REGISTER 19-6: SSPxADD: MSSP1 and MSSP2 ADDRESS REGISTER(1)  
R/W-0  
ADD7  
R/W-0  
ADD6  
R/W-0  
ADD5  
R/W-0  
ADD4  
R/W-0  
ADD3  
R/W-0  
ADD2  
R/W-0  
ADD1  
R/W-0  
ADD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADD<7:0>: MSSP Address bits  
Note 1: MSSP1 and MSSP2 Address register in I2C Slave mode. MSSP1 and MSSP2 Baud Rate Reload register  
in I2C Master mode.  
DS39663F-page 208  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
19.4.2  
OPERATION  
19.4.3.1  
Addressing  
The MSSP module functions are enabled by setting  
MSSP Enable bit, SSPEN (SSPxCON1<5>).  
The SSPxCON1 register allows control of the I2C  
operation. Four mode selection bits (SSPxCON1<3:0>)  
allow one of the following I2C modes to be selected:  
• I2C Master mode, clock  
• I2C Slave mode (7-bit addressing)  
• I2C Slave mode (10-bit addressing)  
Once the MSSP module has been enabled, it waits for  
a Start condition to occur. Following the Start condition,  
the 8 bits are shifted into the SSPxSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCLx) line. The value of register, SSPxSR<7:1>,  
is compared to the value of the SSPxADD register. The  
address is compared on the falling edge of the eighth  
clock (SCLx) pulse. If the addresses match and the BF  
and SSPOV bits are clear, the following events occur:  
• I2C Slave mode (7-bit addressing) with Start and  
Stop bit interrupts enabled  
• I2C Slave mode (10-bit addressing) with Start and  
Stop bit interrupts enabled  
• I2C Firmware Controlled Master mode, slave is  
Idle  
Selection of any I2C mode with the SSPEN bit set  
forces the SCLx and SDAx pins to be open-drain,  
provided these pins are programmed as inputs by  
setting the appropriate TRISC or TRISD bits. To ensure  
proper operation of the module, pull-up resistors must  
be provided externally to the SCLx and SDAx pins.  
1. The SSPxSR register value is loaded into the  
SSPxBUF register.  
2. The Buffer Full bit, BF, is set.  
3. An ACK pulse is generated.  
4. The MSSP Interrupt Flag bit, SSPxIF, is set (and  
interrupt is generated, if enabled) on the falling  
edge of the ninth SCLx pulse.  
In 10-Bit Addressing mode, two address bytes need to  
be received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit, R/W (SSPxSTAT<2>), must specify a  
write so the slave device will receive the second  
address byte. For a 10-bit address, the first byte would  
equal ‘11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the  
two MSbs of the address. The sequence of events for  
10-bit addressing is as follows, with steps 7 through 9  
for the slave-transmitter:  
19.4.3  
SLAVE MODE  
In Slave mode, the SCLx and SDAx pins must be  
configured as inputs (TRISC<4:3> set). The MSSP  
module will override the input state with the output data  
when required (slave-transmitter).  
The I2C Slave mode hardware will always generate an  
interrupt on an address match. Address masking will  
allow the hardware to generate an interrupt for more  
than one address (up to 31 in 7-bit addressing and up  
to 63 in 10-bit addressing). Through the mode select  
bits, the user can also choose to interrupt on Start and  
Stop bits.  
1. Receive first (high) byte of address (bits,  
SSPxIF, BF and UA, are set on address match).  
2. Update the SSPxADD register with second (low)  
byte of address (clears bit, UA, and releases the  
SCLx line).  
3. Read the SSPxBUF register (clears bit, BF) and  
clear flag bit, SSPxIF.  
4. Receive second (low) byte of address (bits,  
SSPxIF, BF and UA, are set).  
When an address is matched, or the data transfer after  
an address match is received, the hardware auto-  
matically will generate the Acknowledge (ACK) pulse  
and load the SSPxBUF register with the received value  
currently in the SSPxSR register.  
5. Update the SSPxADD register with the first  
(high) byte of address. If match releases the  
SCLx line, this will clear bit, UA.  
6. Read the SSPxBUF register (clears bit, BF) and  
clear flag bit, SSPxIF.  
Any combination of the following conditions will cause  
the MSSP module not to give this ACK pulse:  
7. Receive Repeated Start condition.  
• The Buffer Full bit, BF (SSPxSTAT<0>), was set  
before the transfer was received.  
8. Receive first (high) byte of address (bits,  
SSPxIF and BF, are set).  
• The overflow bit, SSPOV (SSPxCON1<6>), was  
set before the transfer was received.  
9. Read the SSPxBUF register (clears bit, BF) and  
clear flag bit, SSPxIF.  
In this case, the SSPxSR register value is not loaded  
into the SSPxBUF, but bit, SSPxIF, is set. The BF bit is  
cleared by reading the SSPxBUF register, while bit,  
SSPOV, is cleared through software.  
The SCLx clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, are shown in timing parameter 100 and  
parameter 101.  
© 2009 Microchip Technology Inc.  
DS39663F-page 209  
PIC18F87J10 FAMILY  
• 10-Bit Addressing mode  
19.4.3.2  
Address Masking  
Address Mask bits, ADMSK<5:2>, mask the  
corresponding address bits in the SSPxADD  
register. In addition, ADMSK<1> simultaneously  
masks the two LSBs of the address, ADD<1:0>.  
For any ADMSK bits that are active  
(ADMSK<x> = 1), the corresponding address bit is  
ignored (ADD<x> = x). Also note, that although in  
10-Bit Addressing mode, the upper address bits  
reuse part of the SSPxADD register bits; the  
address mask bits do not interact with those bits.  
They only affect the lower address bits.  
Masking an address bit causes that bit to become a  
“don’t care”. When one address bit is masked, two  
addresses will be Acknowledged and cause an  
interrupt. It is possible to mask more than one address  
bit at a time, which makes it possible to Acknowledge  
up to 31 addresses in 7-bit mode and up to  
63 addresses in 10-bit mode (see Example 19-2).  
The I2C slave behaves the same way whether address  
masking is used or not. However, when address  
masking is used, the I2C slave can Acknowledge  
multiple addresses and cause interrupts. When this  
occurs, it is necessary to determine which address  
caused the interrupt by checking SSPxBUF.  
Note 1: ADMSK<1> masks the two Least  
Significant bits of the address.  
• 7-Bit Addressing mode  
2: The two Most Significant bits of the  
address are not affected by address  
masking.  
Address Mask bits, ADMSK<5:1>, mask the  
corresponding address bits in the SSPxADD  
register. For any ADMSK bits that are active  
(ADMSK<x> = 1), the corresponding address bit is  
ignored (ADD<x> = x). For the module to issue an  
address Acknowledge, it is sufficient to match only  
on addresses that do not have an active address  
mask.  
EXAMPLE 19-2:  
7-Bit Addressing:  
SSPxADD<7:1> = 1010 0000  
ADMSK<5:1> = 00 111  
ADDRESS MASKING  
Addresses Acknowledged = 0xA0, 0xA2, 0xA4, 0xA6  
0xA8, 0xAA, 0xAC, 0xAE  
10-Bit Addressing:  
SSPxADD<7:0> = 1010 0000(The two MSbs are ignored in this example since they are not affected.)  
ADMSK<5:1>  
= 00 111  
Addresses Acknowledged = 0xA0, 0xA1, 0xA2, 0xA3  
0xA4, 0xA5, 0xA6, 0xA7  
0xA8, 0xA9, 0xAA 0xAB  
0xAC, 0xAD, 0xAE, 0xAF  
The upper two bits are not affected by the address masking.  
DS39663F-page 210  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
19.4.3.3  
Reception  
19.4.3.4  
Transmission  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPxSTAT  
register is cleared. The received address is loaded into  
the SSPxBUF register and the SDAx line is held low  
(ACK).  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPxSTAT register is set. The received address is  
loaded into the SSPxBUF register. The ACK pulse will  
be sent on the ninth bit and the SCLx pin is held low  
regardless of SEN (see Section 19.4.4 “Clock  
Stretching” for more detail). By stretching the clock,  
the master will be unable to assert another clock pulse  
until the slave is done preparing the transmit data. The  
transmit data must be loaded into the SSPxBUF regis-  
ter which also loads the SSPxSR register. Then pin,  
SCLx, should be enabled by setting bit, CKP  
(SSPxCON1<4>). The eight data bits are shifted out on  
the falling edge of the SCLx input. This ensures that the  
SDAx signal is valid during the SCLx high time  
(Figure 19-10).  
When the address byte overflow condition exists, then  
the no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit, BF (SSPxSTAT<0>),  
is set, or bit, SSPOV (SSPxCON1<6>), is set.  
An MSSP interrupt is generated for each data transfer  
byte. The interrupt flag bit, SSPxIF, must be cleared in  
software. The SSPxSTAT register is used to determine  
the status of the byte.  
If SEN is enabled (SSPxCON2<0> = 1), SCLx will be  
held low (clock stretch) following each data transfer. The  
clock must be released by setting bit, CKP  
The ACK pulse from the master-receiver is latched on  
the rising edge of the ninth SCLx input pulse. If the  
SDAx line is high (not ACK), then the data transfer is  
complete. In this case, when the ACK is latched by the  
slave, the slave logic is reset and the slave monitors for  
another occurrence of the Start bit. If the SDAx line was  
low (ACK), the next transmit data must be loaded into  
the SSPxBUF register. Again, pin, SCLx, must be  
enabled by setting bit, CKP.  
(SSPxCON1<4>).  
See  
Section 19.4.4  
“Clock  
Stretching” for more detail.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPxIF bit must be cleared in software and  
the SSPxSTAT register is used to determine the status  
of the byte. The SSPxIF bit is set on the falling edge of  
the ninth clock pulse.  
© 2009 Microchip Technology Inc.  
DS39663F-page 211  
PIC18F87J10 FAMILY  
2
FIGURE 19-8:  
I C™ SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 7-BIT ADDRESSING)  
DS39663F-page 212  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
2
FIGURE 19-9:  
I C™ SLAVE MODE TIMING WITH SEN = 0 AND ADMSK<5:1> = 01011  
(RECEPTION, 7-BIT ADDRESSING)  
© 2009 Microchip Technology Inc.  
DS39663F-page 213  
PIC18F87J10 FAMILY  
2
FIGURE 19-10:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 7-BIT ADDRESSING)  
DS39663F-page 214  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 19-11:  
I2C™ SLAVE MODE TIMING WITH SEN = 0 AND ADMSK<5:1> = 01001  
(RECEPTION, 10-BIT ADDRESSING)  
© 2009 Microchip Technology Inc.  
DS39663F-page 215  
PIC18F87J10 FAMILY  
FIGURE 19-12:  
I2C™ SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESSING)  
DS39663F-page 216  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
2
FIGURE 19-13:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESSING)  
© 2009 Microchip Technology Inc.  
DS39663F-page 217  
PIC18F87J10 FAMILY  
19.4.4  
CLOCK STRETCHING  
19.4.4.3  
Clock Stretching for 7-Bit Slave  
Transmit Mode  
Both 7-Bit and 10-Bit Slave modes implement  
automatic clock stretching during a transmit sequence.  
The 7-Bit Slave Transmit mode implements clock  
stretching by clearing the CKP bit after the falling edge  
of the ninth clock if the BF bit is clear. This occurs  
regardless of the state of the SEN bit.  
The SEN bit (SSPxCON2<0>) allows clock stretching  
to be enabled during receives. Setting SEN will cause  
the SCLx pin to be held low at the end of each data  
receive sequence.  
The user’s ISR must set the CKP bit before transmis-  
sion is allowed to continue. By holding the SCLx line  
low, the user has time to service the ISR and load the  
contents of the SSPxBUF before the master device  
can initiate another transmit sequence (see  
Figure 19-10).  
19.4.4.1  
Clock Stretching for 7-Bit Slave  
Receive Mode (SEN = 1)  
In 7-Bit Slave Receive mode, on the falling edge of the  
ninth clock at the end of the ACK sequence, if the BF  
bit is set, the CKP bit in the SSPxCON1 register is  
automatically cleared, forcing the SCLx output to be  
held low. The CKP being cleared to ‘0’ will assert the  
SCLx line low. The CKP bit must be set in the user’s  
ISR before reception is allowed to continue. By holding  
the SCLx line low, the user has time to service the ISR  
and read the contents of the SSPxBUF before the  
master device can initiate another receive sequence.  
This will prevent buffer overruns from occurring (see  
Figure 19-15).  
Note 1: If the user loads the contents of  
SSPxBUF, setting the BF bit before the  
falling edge of the ninth clock, the CKP bit  
will not be cleared and clock stretching  
will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit.  
19.4.4.4  
Clock Stretching for 10-Bit Slave  
Transmit Mode  
Note 1: If the user reads the contents of the  
SSPxBUF before the falling edge of the  
ninth clock, the BF bit will be cleared. The  
CKP bit will not be cleared and clock  
stretching will not occur.  
In 10-Bit Slave Transmit mode, clock stretching is  
controlled during the first two address sequences by  
the state of the UA bit, just as it is in 10-Bit Slave  
Receive mode. The first two addresses are followed  
by a third address sequence which contains the  
high-order bits of the 10-bit address and the R/W bit  
set to ‘1’. After the third address sequence is  
performed, the UA bit is not set, the module is now  
configured in Transmit mode and clock stretching is  
controlled by the BF flag as in 7-Bit Slave Transmit  
mode (see Figure 19-13).  
2: The CKP bit can be set in software  
regardless of the state of the BF bit. The  
user should be careful to clear the BF bit  
in the ISR before the next receive  
sequence in order to prevent an overflow  
condition.  
19.4.4.2  
Clock Stretching for 10-Bit Slave  
Receive Mode (SEN = 1)  
In 10-Bit Slave Receive mode during the address  
sequence, clock stretching automatically takes place  
but CKP is not cleared. During this time, if the UA bit is  
set after the ninth clock, clock stretching is initiated.  
The UA bit is set after receiving the upper byte of the  
10-bit address and following the receive of the second  
byte of the 10-bit address with the R/W bit cleared to  
0’. The release of the clock line occurs upon updating  
SSPxADD. Clock stretching will occur on each data  
receive sequence as described in 7-bit mode.  
Note:  
If the user polls the UA bit and clears it by  
updating the SSPxADD register before the  
falling edge of the ninth clock occurs, and  
if the user hasn’t cleared the BF bit by  
reading the SSPxBUF register before that  
time, then the CKP bit will still NOT be  
asserted low. Clock stretching on the basis  
of the state of the BF bit only occurs during  
a
data sequence, not an address  
sequence.  
DS39663F-page 218  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
already asserted the SCLx line. The SCLx output will  
remain low until the CKP bit is set and all other  
devices on the I2C bus have deasserted SCLx. This  
ensures that a write to the CKP bit will not violate the  
minimum high time requirement for SCLx (see  
Figure 19-14).  
19.4.4.5  
Clock Synchronization and  
the CKP Bit  
When the CKP bit is cleared, the SCLx output is forced  
to ‘0’. However, clearing the CKP bit will not assert the  
SCLx output low until the SCLx output is already  
sampled low. Therefore, the CKP bit will not assert the  
SCLx line until an external I2C master device has  
FIGURE 19-14:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDAx  
SCLx  
DX – 1  
DX  
Master device  
asserts clock  
CKP  
Master device  
deasserts clock  
WR  
SSPxCON1  
© 2009 Microchip Technology Inc.  
DS39663F-page 219  
PIC18F87J10 FAMILY  
2
FIGURE 19-15:  
I C™ SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 7-BIT ADDRESSING)  
DS39663F-page 220  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 19-16:  
I2C™ SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 10-BIT ADDRESSING)  
© 2009 Microchip Technology Inc.  
DS39663F-page 221  
PIC18F87J10 FAMILY  
If the general call address matches, the SSPxSR is  
transferred to the SSPxBUF, the BF flag bit is set  
(eighth bit) and on the falling edge of the ninth bit (ACK  
bit), the SSPxIF interrupt flag bit is set.  
19.4.5  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the Start condition usually  
determines which device will be the slave addressed by  
the master. The exception is the general call address  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
Acknowledge.  
When the interrupt is serviced, the source for the  
interrupt can be checked by reading the contents of the  
SSPxBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPxADD is required to be updated  
for the second half of the address to match and the UA  
bit is set (SSPxSTAT<1>). If the general call address is  
sampled when the GCEN bit is set, while the slave is  
configured in 10-Bit Addressing mode, then the second  
half of the address is not necessary, the UA bit will not  
be set and the slave will begin receiving data after the  
Acknowledge (Figure 19-17).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R/W = 0.  
The general call address is recognized when the  
General Call Enable bit, GCEN, is enabled  
(SSPxCON2<7> set). Following a Start bit detect, 8 bits  
are shifted into the SSPxSR and the address is  
compared against the SSPxADD. It is also compared to  
the general call address and fixed in hardware.  
FIGURE 19-17:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
(7 OR 10-BIT ADDRESSING MODE)  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving Data  
ACK  
R/W = 0  
General Call Address  
SDAx  
SCLx  
ACK D7 D6  
D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
S
SSPxIF  
BF (SSPxSTAT<0>)  
Cleared in software  
SSPxBUF is read  
SSPOV (SSPxCON1<6>)  
GCEN (SSPxCON2<7>)  
0’  
1’  
DS39663F-page 222  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
19.4.6  
MASTER MODE  
Note:  
The MSSP module, when configured in  
I2C Master mode, does not allow queueing  
of events. For instance, the user is not  
allowed to initiate a Start condition and  
immediately write the SSPxBUF register to  
initiate transmission before the Start condi-  
tion is complete. In this case, the  
SSPxBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPxBUF did not occur.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPxCON1 and by setting  
the SSPEN bit. In Master mode, the SCLx and SDAx  
lines are manipulated by the MSSP hardware if the  
TRIS bits are set.  
Master mode of operation is supported by interrupt  
generation on the detection of the Start and Stop con-  
ditions. The Stop (P) and Start (S) bits are cleared from  
a Reset or when the MSSP module is disabled. Control  
of the I2C bus may be taken when the P bit is set, or the  
bus is Idle, with both the S and P bits clear.  
The following events will cause the MSSP Interrupt  
Flag bit, SSPxIF, to be set (and MSSP interrupt, if  
enabled):  
In Firmware Controlled Master mode, user code  
conducts all I2C bus operations based on Start and  
Stop bit conditions.  
• Start condition  
• Stop condition  
Once Master mode is enabled, the user has six  
options.  
• Data transfer byte transmitted/received  
• Acknowledge transmit  
• Repeated Start  
1. Assert a Start condition on SDAx and SCLx.  
2. Assert a Repeated Start condition on SDAx and  
SCLx.  
3. Write to the SSPxBUF register initiating  
transmission of data/address.  
4. Configure the I2C port to receive data.  
5. Generate an Acknowledge condition at the end  
of a received byte of data.  
6. Generate a Stop condition on SDAx and SCLx.  
2
FIGURE 19-18:  
MSSP BLOCK DIAGRAM (I C™ MASTER MODE)  
Internal  
Data Bus  
SSPM<3:0>  
SSPxADD<6:0>  
Read  
Write  
SSPxBUF  
SSPxSR  
Baud  
Rate  
Generator  
SDAx  
Shift  
Clock  
SDAx In  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCLx  
Start bit Detect  
Stop bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
end of XMIT/RCV  
SCLx In  
Bus Collision  
Set/Reset S, P (SSPxSTAT), WCOL (SSPxCON1)  
Set SSPxIF, BCLxIF  
Reset ACKSTAT, PEN (SSPxCON2)  
© 2009 Microchip Technology Inc.  
DS39663F-page 223  
PIC18F87J10 FAMILY  
I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
19.4.6.1  
1. The user generates a Start condition by setting  
the Start Enable bit, SEN (SSPxCON2<0>).  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
2. SSPxIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
3. The user loads the SSPxBUF with the slave  
address to transmit.  
In Master Transmitter mode, serial data is output  
through SDAx, while SCLx outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ‘0’. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
4. Address is shifted out the SDAx pin until all 8 bits  
are transmitted.  
5. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPxCON2 register (SSPxCON2<6>).  
6. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the  
SSPxIF bit.  
In Master Receive mode, the first byte transmitted  
contains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave  
address, followed by a ‘1’ to indicate the receive bit.  
Serial data is received via SDAx, while SCLx outputs  
the serial clock. Serial data is received 8 bits at a time.  
After each byte is received, an Acknowledge bit is  
transmitted. Start and Stop conditions indicate the  
beginning and end of transmission.  
7. The user loads the SSPxBUF with eight bits of  
data.  
8. Data is shifted out the SDAx pin until all 8 bits  
are transmitted.  
9. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPxCON2 register (SSPxCON2<6>).  
10. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the  
SSPxIF bit.  
The Baud Rate Generator used for the SPI mode  
operation is used to set the SCLx clock frequency for  
either 100 kHz, 400 kHz or 1 MHz I2C operation. See  
Section 19.4.7 “Baud Rate” for more detail.  
11. The user generates a Stop condition by setting  
the Stop Enable bit, PEN (SSPxCON2<2>).  
12. Interrupt is generated once the Stop condition is  
complete.  
DS39663F-page 224  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
19.4.7  
BAUD RATE  
19.4.7.1  
Baud Rate and Module  
Interdependence  
In I2C Master mode, the Baud Rate Generator (BRG)  
reload value is placed in the lower 7 bits of the  
SSPxADD register (Figure 19-19). When a write  
occurs to SSPxBUF, the Baud Rate Generator will  
automatically begin counting. The BRG counts down to  
0 and stops until another reload has taken place. The  
BRG count is decremented twice per instruction cycle  
(TCY) on the Q2 and Q4 clocks. In I2C Master mode, the  
BRG is reloaded automatically.  
Because MSSP1 and MSSP2 are independent, they  
can operate simultaneously in I2C Master mode at  
different baud rates. This is done by using different  
BRG reload values for each module.  
Because this mode derives its basic clock source from  
the system clock, any changes to the clock will affect  
both modules in the same proportion. It may be  
possible to change one or both baud rates back to a  
previous value by changing the BRG reload value.  
Once the given operation is complete (i.e., transmis-  
sion of the last data bit is followed by ACK), the internal  
clock will automatically stop counting and the SCLx pin  
will remain in its last state.  
Table 19-3 demonstrates clock rates based on  
instruction cycles and the BRG value loaded into  
SSPxADD.  
FIGURE 19-19:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM<3:0>  
SSPxADD<6:0>  
SSPM<3:0>  
SCLx  
Reload  
Control  
Reload  
BRG Down Counter  
CLKO  
FOSC/4  
TABLE 19-3: I2C™ CLOCK RATE w/BRG  
FSCL  
FOSC  
FCY  
FCY * 2  
BRG Value  
(2 Rollovers of BRG)  
40 MHz  
40 MHz  
40 MHz  
16 MHz  
16 MHz  
16 MHz  
4 MHz  
10 MHz  
10 MHz  
10 MHz  
4 MHz  
4 MHz  
4 MHz  
1 MHz  
1 MHz  
1 MHz  
20 MHz  
20 MHz  
20 MHz  
8 MHz  
8 MHz  
8 MHz  
2 MHz  
2 MHz  
2 MHz  
18h  
1Fh  
63h  
09h  
0Ch  
27h  
02h  
09h  
00h  
400 kHz  
312.5 kHz  
100 kHz  
400 kHz  
308 kHz  
100 kHz  
333 kHz  
100 kHz  
1 MHz  
4 MHz  
4 MHz  
© 2009 Microchip Technology Inc.  
DS39663F-page 225  
PIC18F87J10 FAMILY  
SCLx pin is sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPxADD<6:0> and  
begins counting. This ensures that the SCLx high time  
will always be at least one BRG rollover count in the  
event that the clock is held low by an external device  
(Figure 19-20).  
19.4.7.2  
Clock Arbitration  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated Start/Stop condition,  
deasserts the SCLx pin (SCLx allowed to float high).  
When the SCLx pin is allowed to float high, the Baud  
Rate Generator (BRG) is suspended from counting  
until the SCLx pin is actually sampled high. When the  
FIGURE 19-20:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDAx  
DX  
DX – 1  
SCLx allowed to transition high  
SCLx deasserted but slave holds  
SCLx low (clock arbitration)  
SCLx  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCLx is sampled high, reload takes  
place and BRG starts its count  
BRG  
Reload  
DS39663F-page 226  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
19.4.8  
I2C MASTER MODE START  
CONDITION TIMING  
Note:  
If at the beginning of the Start condition, the  
SDAx and SCLx pins are already sampled  
low, or if during the Start condition, the  
SCLx line is sampled low before the SDAx  
line is driven low, a bus collision occurs, the  
Bus Collision Interrupt Flag, BCLxIF, is set,  
the Start condition is aborted and the I2C  
module is reset into its Idle state.  
To initiate a Start condition, the user sets the Start  
Enable bit, SEN (SSPxCON2<0>). If the SDAx and  
SCLx pins are sampled high, the Baud Rate Generator  
is reloaded with the contents of SSPxADD<6:0> and  
starts its count. If SCLx and SDAx are both sampled  
high when the Baud Rate Generator times out (TBRG),  
the SDAx pin is driven low. The action of the SDAx  
being driven low while SCLx is high is the Start condi-  
tion and causes the S bit (SSPxSTAT<3>) to be set.  
Following this, the Baud Rate Generator is reloaded  
with the contents of SSPxADD<6:0> and resumes its  
count. When the Baud Rate Generator times out  
(TBRG), the SEN bit (SSPxCON2<0>) will be auto-  
matically cleared by hardware; the Baud Rate Generator  
is suspended, leaving the SDAx line held low and the  
Start condition is complete.  
19.4.8.1  
WCOL Status Flag  
If the user writes the SSPxBUF when a Start sequence  
is in progress, the WCOL bit is set and the contents of  
the buffer are unchanged (the write doesn’t occur).  
Note:  
Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPxCON2 is disabled until the Start  
condition is complete.  
FIGURE 19-21:  
FIRST START BIT TIMING  
Set S bit (SSPxSTAT<3>)  
Write to SEN bit occurs here  
SDAx = 1,  
At completion of Start bit,  
hardware clears SEN bit  
and sets SSPxIF bit  
SCLx = 1  
TBRG  
TBRG  
Write to SSPxBUF occurs here  
2nd bit  
1st bit  
SDAx  
TBRG  
SCLx  
TBRG  
S
© 2009 Microchip Technology Inc.  
DS39663F-page 227  
PIC18F87J10 FAMILY  
19.4.9  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
A Repeated Start condition occurs when the RSEN bit  
(SSPxCON2<1>) is programmed high and the I2C logic  
module is in the Idle state. When the RSEN bit is set,  
the SCLx pin is asserted low. When the SCLx pin is  
sampled low, the Baud Rate Generator is loaded with  
the contents of SSPxADD<5:0> and begins counting.  
The SDAx pin is released (brought high) for one Baud  
Rate Generator count (TBRG). When the Baud Rate  
Generator times out, if SDAx is sampled high, the SCLx  
pin will be deasserted (brought high). When SCLx is  
sampled high, the Baud Rate Generator is reloaded  
with the contents of SSPxADD<6:0> and begins  
counting. SDAx and SCLx must be sampled high for  
one TBRG. This action is then followed by assertion of  
the SDAx pin (SDAx = 0) for one TBRG while SCLx is  
high. Following this, the RSEN bit (SSPxCON2<1>) will  
be automatically cleared and the Baud Rate Generator  
will not be reloaded, leaving the SDAx pin held low. As  
soon as a Start condition is detected on the SDAx and  
SCLx pins, the S bit (SSPxSTAT<3>) will be set. The  
SSPxIF bit will not be set until the Baud Rate Generator  
has timed out.  
2: A bus collision during the Repeated Start  
condition occurs if:  
• SDAx is sampled low when SCLx  
goes from low-to-high.  
• SCLx goes low before SDAx is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data ‘1’.  
Immediately following the SSPxIF bit getting set, the  
user may write the SSPxBUF with the 7-bit address in  
7-bit mode or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode) or eight bits of data (7-bit  
mode).  
19.4.9.1  
WCOL Status Flag  
If the user writes the SSPxBUF when a Repeated Start  
sequence is in progress, the WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
Note:  
Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPxCON2 is disabled until the Repeated  
Start condition is complete.  
FIGURE 19-22:  
REPEATED START CONDITION WAVEFORM  
S bit set by hardware  
SDAx = 1,  
SCLx = 1  
At completion of Start bit,  
hardware clears RSEN bit  
and sets SSPxIF  
Write to SSPxCON2 occurs here:  
SDAx = 1,  
SCLx (no change).  
TBRG TBRG  
TBRG  
1st bit  
SDAx  
RSEN bit set by hardware  
on falling edge of ninth clock,  
end of Xmit  
Write to SSPxBUF occurs here  
TBRG  
SCLx  
TBRG  
Sr = Repeated Start  
DS39663F-page 228  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
19.4.10 I2C MASTER MODE TRANSMISSION  
The user should verify that the WCOL bit is clear after  
each write to SSPxBUF to ensure the transfer is correct.  
In all cases, WCOL must be cleared in software.  
Transmission of a data byte, a 7-bit address, or the  
other half of a 10-bit address, is accomplished by sim-  
ply writing a value to the SSPxBUF register. This action  
will set the Buffer Full flag bit, BF, and allow the Baud  
Rate Generator to begin counting and start the next  
transmission. Each bit of address/data will be shifted  
out onto the SDAx pin after the falling edge of SCLx is  
asserted (see data hold time specification  
parameter 106). SCLx is held low for one Baud Rate  
Generator rollover count (TBRG). Data should be valid  
before SCLx is released high (see data setup time  
specification parameter 107). When the SCLx pin is  
released high, it is held that way for TBRG. The data on  
the SDAx pin must remain stable for that duration and  
some hold time after the next falling edge of SCLx.  
After the eighth bit is shifted out (the falling edge of the  
eighth clock), the BF flag is cleared and the master  
releases SDAx. This allows the slave device being  
addressed to respond with an ACK bit during the ninth  
bit time if an address match occurred, or if data was  
received properly. The status of ACK is written into the  
ACKDT bit on the falling edge of the ninth clock. If the  
master receives an Acknowledge, the Acknowledge  
Status bit, ACKSTAT, is cleared; if not, the bit is set.  
After the ninth clock, the SSPxIF bit is set and the  
master clock (Baud Rate Generator) is suspended until  
the next data byte is loaded into the SSPxBUF, leaving  
SCLx low and SDAx unchanged (Figure 19-23).  
19.4.10.3 ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPxCON2<6>)  
is cleared when the slave has sent an Acknowledge  
(ACK = 0) and is set when the slave does not Acknowl-  
edge (ACK = 1). A slave sends an Acknowledge when  
it has recognized its address (including a general call),  
or when the slave has properly received its data.  
19.4.11 I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (SSPxCON2<3>).  
Note:  
The MSSP module must be in an inactive  
state before the RCEN bit is set or the  
RCEN bit will be disregarded.  
The Baud Rate Generator begins counting and on each  
rollover, the state of the SCLx pin changes  
(high-to-low/low-to-high) and data is shifted into the  
SSPxSR. After the falling edge of the eighth clock, the  
receive enable flag is automatically cleared, the con-  
tents of the SSPxSR are loaded into the SSPxBUF, the  
BF flag bit is set, the SSPxIF flag bit is set and the Baud  
Rate Generator is suspended from counting, holding  
SCLx low. The MSSP is now in Idle state awaiting the  
next command. When the buffer is read by the CPU,  
the BF flag bit is automatically cleared. The user can  
then send an Acknowledge bit at the end of reception  
by setting the Acknowledge Sequence Enable bit,  
ACKEN (SSPxCON2<4>).  
After the write to the SSPxBUF, each bit of the address  
will be shifted out on the falling edge of SCLx until all  
seven address bits and the R/W bit are completed. On  
the falling edge of the eighth clock, the master will  
deassert the SDAx pin, allowing the slave to respond  
with an Acknowledge. On the falling edge of the ninth  
clock, the master will sample the SDAx pin to see if the  
address was recognized by a slave. The status of the  
ACK bit is loaded into the ACKSTAT status bit  
(SSPxCON2<6>). Following the falling edge of the  
ninth clock transmission of the address, the SSPxIF is  
set, the BF flag is cleared and the Baud Rate Generator  
is turned off until another write to the SSPxBUF takes  
place, holding SCLx low and allowing SDAx to float.  
19.4.11.1 BF Status Flag  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPxBUF from SSPxSR. It  
is cleared when the SSPxBUF register is read.  
19.4.11.2 SSPOV Status Flag  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPxSR and the BF flag bit is  
already set from a previous reception.  
19.4.10.1 BF Status Flag  
19.4.11.3 WCOL Status Flag  
In Transmit mode, the BF bit (SSPxSTAT<0>) is set  
when the CPU writes to SSPxBUF and is cleared when  
all 8 bits are shifted out.  
If the user writes the SSPxBUF when a receive is  
already in progress (i.e., SSPxSR is still shifting in a  
data byte), the WCOL bit is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
19.4.10.2 WCOL Status Flag  
If the user writes the SSPxBUF when a transmit is  
already in progress (i.e., SSPxSR is still shifting out a  
data byte), the WCOL bit is set and the contents of the  
buffer are unchanged (the write doesn’t occur) 2 TCY  
after the SSPxBUF write. If SSPxBUF is rewritten  
within 2 TCY, the WCOL bit is set and SSPxBUF is  
updated. This may result in a corrupted transfer.  
© 2009 Microchip Technology Inc.  
DS39663F-page 229  
PIC18F87J10 FAMILY  
FIGURE 19-23:  
I2CMASTERMODEWAVEFORM(TRANSMISSION, 7OR 10-BIT ADDRESSING)  
DS39663F-page 230  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
2
FIGURE 19-24:  
I C™ MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESSING)  
© 2009 Microchip Technology Inc.  
DS39663F-page 231  
PIC18F87J10 FAMILY  
19.4.12 ACKNOWLEDGE SEQUENCE  
TIMING  
19.4.13 STOP CONDITION TIMING  
A Stop bit is asserted on the SDAx pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN (SSPxCON2<2>). At the end of  
An Acknowledge sequence is enabled by setting the  
Acknowledge Sequence Enable bit, ACKEN  
(SSPxCON2<4>). When this bit is set, the SCLx pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDAx pin. If the user wishes to  
generate an Acknowledge, then the ACKDT bit should  
be cleared. If not, the user should set the ACKDT bit  
before starting an Acknowledge sequence. The Baud  
Rate Generator then counts for one rollover period  
(TBRG) and the SCLx pin is deasserted (pulled high).  
When the SCLx pin is sampled high (clock arbitration),  
the Baud Rate Generator counts for TBRG. The SCLx pin  
is then pulled low. Following this, the ACKEN bit is auto-  
matically cleared, the Baud Rate Generator is turned off  
and the MSSP module then goes into an inactive state  
(Figure 19-25).  
a
receive/transmit, the SCLx line is held low after the  
falling edge of the ninth clock. When the PEN bit is set,  
the master will assert the SDAx line low. When the  
SDAx line is sampled low, the Baud Rate Generator is  
reloaded and counts down to ‘0’. When the Baud Rate  
Generator times out, the SCLx pin will be brought high  
and one TBRG (Baud Rate Generator rollover count)  
later, the SDAx pin will be deasserted. When the SDAx  
pin is sampled high while SCLx is high, the P bit  
(SSPxSTAT<4>) is set. A TBRG later, the PEN bit is  
cleared and the SSPxIF bit is set (Figure 19-26).  
19.4.13.1 WCOL Status Flag  
If the user writes the SSPxBUF when a Stop sequence  
is in progress, then the WCOL bit is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
19.4.12.1 WCOL Status Flag  
If the user writes the SSPxBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 19-25:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
write to SSPxCON2,  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
ACK  
TBRG  
SDAx  
SCLx  
D0  
8
9
SSPxIF  
Cleared in  
software  
SSPxIF set at the end  
of Acknowledge sequence  
SSPxIF set at  
the end of receive  
Cleared in  
software  
Note: TBRG = one Baud Rate Generator period.  
FIGURE 19-26:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCLx = 1for TBRG, followed by SDAx = 1for TBRG  
after SDAx sampled high. P bit (SSPxSTAT<4>) is set.  
Write to SSPxCON2,  
set PEN  
PEN bit (SSPxCON2<2>) is cleared by  
hardware and the SSPxIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCLx  
SDAx  
ACK  
P
TBRG  
TBRG  
TBRG  
SCLx brought high after TBRG  
SDAx asserted low before rising edge of clock  
to setup Stop condition  
Note: TBRG = one Baud Rate Generator period.  
DS39663F-page 232  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
19.4.14 SLEEP OPERATION  
19.4.17 MULTI -MASTER COMMUNICATION,  
BUS COLLISION AND BUS  
While in Sleep mode, the I2C module can receive  
addresses or data and when an address match or  
complete byte transfer occurs, wake the processor  
from Sleep (if the MSSP interrupt is enabled).  
ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDAx pin, arbitration takes place when the master  
outputs a ‘1’ on SDAx, by letting SDAx float high and  
another master asserts a ‘0’. When the SCLx pin floats  
high, data should be stable. If the expected data on  
SDAx is a ‘1’ and the data sampled on the SDAx  
pin = 0, then a bus collision has taken place. The  
master will set the Bus Collision Interrupt Flag, BCLxIF,  
and reset the I2C port to its Idle state (Figure 19-27).  
19.4.15 EFFECTS OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
19.4.16 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the  
MSSP module is disabled. Control of the I2C bus may  
be taken when the P bit (SSPxSTAT<4>) is set, or the  
bus is Idle, with both the S and P bits clear. When the  
bus is busy, enabling the MSSP interrupt will generate  
the interrupt when the Stop condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDAx and SCLx lines are deasserted and  
the SSPxBUF can be written to. When the user services  
the bus collision Interrupt Service Routine and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
In multi-master operation, the SDAx line must be  
monitored for arbitration to see if the signal level is the  
expected output level. This check is performed in  
hardware with the result placed in the BCLxIF bit.  
If a Start, Repeated Start, Stop or Acknowledge condition  
was in progress when the bus collision occurred, the con-  
dition is aborted, the SDAx and SCLx lines are  
deasserted and the respective control bits in the  
SSPxCON2 register are cleared. When the user services  
the bus collision Interrupt Service Routine and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A Start Condition  
The master will continue to monitor the SDAx and SCLx  
pins. If a Stop condition occurs, the SSPxIF bit will be set.  
• A Repeated Start Condition  
• An Acknowledge Condition  
A write to the SSPxBUF will start the transmission of  
data at the first data bit regardless of where the  
transmitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of Start and Stop conditions allows the deter-  
mination of when the bus is free. Control of the I2C bus  
can be taken when the P bit is set in the SSPxSTAT  
register, or the bus is Idle and the S and P bits are  
cleared.  
FIGURE 19-27:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDAx. While SCLx is high,  
data doesn’t match what is driven  
by the master.  
Data changes  
while SCLx = 0  
SDAx line pulled low  
by another source  
Bus collision has occurred.  
SDAx released  
by master  
SDAx  
SCLx  
Set bus collision  
interrupt (BCLxIF)  
BCLxIF  
© 2009 Microchip Technology Inc.  
DS39663F-page 233  
PIC18F87J10 FAMILY  
If the SDAx pin is sampled low during this count, the  
BRG is reset and the SDAx line is asserted early  
(Figure 19-30). If, however, a ‘1’ is sampled on the  
SDAx pin, the SDAx pin is asserted low at the end of  
the BRG count. The Baud Rate Generator is then  
reloaded and counts down to 0. If the SCLx pin is  
sampled as ‘0’ during this time, a bus collision does not  
occur. At the end of the BRG count, the SCLx pin is  
asserted low.  
19.4.17.1 Bus Collision During a Start  
Condition  
During a Start condition, a bus collision occurs if:  
a) SDAx or SCLx are sampled low at the beginning  
of the Start condition (Figure 19-28).  
b) SCLx is sampled low before SDAx is asserted  
low (Figure 19-29).  
During a Start condition, both the SDAx and the SCLx  
pins are monitored.  
Note:  
The reason that bus collision is not a factor  
during a Start condition is that no two bus  
masters can assert a Start condition at the  
exact same time. Therefore, one master  
will always assert SDAx before the other.  
This condition does not cause a bus colli-  
sion because the two masters must be  
allowed to arbitrate the first address  
following the Start condition. If the address  
is the same, arbitration must be allowed to  
continue into the data portion, Repeated  
Start or Stop conditions.  
If the SDAx pin is already low, or the SCLx pin is  
already low, then all of the following occur:  
• the Start condition is aborted,  
• the BCLxIF flag is set and  
• the MSSP module is reset to its inactive state  
(Figure 19-28).  
The Start condition begins with the SDAx and SCLx  
pins deasserted. When the SDAx pin is sampled high,  
the Baud Rate Generator is loaded from  
SSPxADD<6:0> and counts down to 0. If the SCLx pin  
is sampled low while SDAx is high, a bus collision  
occurs because it is assumed that another master is  
attempting to drive a data ‘1’ during the Start condition.  
FIGURE 19-28:  
BUS COLLISION DURING START CONDITION (SDAx ONLY)  
SDAx goes low before the SEN bit is set.  
Set BCLxIF,  
S bit and SSPxIF set because  
SDAx = 0, SCLx = 1.  
SDAx  
SCLx  
SEN  
Set SEN, enable Start  
condition if SDAx = 1, SCLx = 1  
SEN cleared automatically because of bus collision.  
MSSP module reset into Idle state.  
SDAx sampled low before  
Start condition. Set BCLxIF.  
S bit and SSPxIF set because  
SDAx = 0, SCLx = 1.  
BCLxIF  
SSPxIF and BCLxIF are  
cleared in software  
S
SSPxIF  
SSPxIF and BCLxIF are  
cleared in software  
DS39663F-page 234  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 19-29:  
BUS COLLISION DURING START CONDITION (SCLx = 0)  
SDAx = 0, SCLx = 1  
TBRG  
TBRG  
SDAx  
Set SEN, enable Start  
sequence if SDAx = 1, SCLx = 1  
SCLx  
SEN  
SCLx = 0before SDAx = 0,  
bus collision occurs. Set BCLxIF.  
SCLx = 0before BRG time-out,  
bus collision occurs. Set BCLxIF.  
BCLxIF  
Interrupt cleared  
in software  
S
0’  
0’  
0’  
0’  
SSPxIF  
FIGURE 19-30:  
BRG RESET DUE TO SDAx ARBITRATION DURING START CONDITION  
SDAx = 0, SCLx = 1  
Set S  
Set SSPxIF  
Less than TBRG  
TBRG  
SDAx pulled low by other master.  
Reset BRG and assert SDAx.  
SDAx  
SCLx  
S
SCLx pulled low after BRG  
time-out  
SEN  
Set SEN, enable Start  
sequence if SDAx = 1, SCLx = 1  
0’  
BCLxIF  
S
SSPxIF  
Interrupts cleared  
in software  
SDAx = 0, SCLx = 1,  
set SSPxIF  
© 2009 Microchip Technology Inc.  
DS39663F-page 235  
PIC18F87J10 FAMILY  
If SDAx is low, a bus collision has occurred (i.e., another  
master is attempting to transmit a data ‘0’, Figure 19-31).  
If SDAx is sampled high, the BRG is reloaded and  
begins counting. If SDAx goes from high-to-low before  
the BRG times out, no bus collision occurs because no  
two masters can assert SDAx at exactly the same time.  
19.4.17.2 Bus Collision During a Repeated  
Start Condition  
During a Repeated Start condition, a bus collision  
occurs if:  
a) A low level is sampled on SDAx when SCLx  
goes from low level to high level.  
If SCLx goes from high-to-low before the BRG times  
out and SDAx has not already been asserted, a bus  
collision occurs. In this case, another master is  
attempting to transmit a data ‘1’ during the Repeated  
Start condition (see Figure 19-32).  
b) SCLx goes low before SDAx is asserted low,  
indicating that another master is attempting to  
transmit a data ‘1’.  
When the user deasserts SDAx and the pin is allowed  
to float high, the BRG is loaded with SSPxADD<6:0>  
and counts down to 0. The SCLx pin is then deasserted  
and when sampled high, the SDAx pin is sampled.  
If, at the end of the BRG time-out, both SCLx and SDAx  
are still high, the SDAx pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCLx pin, the SCLx pin is  
driven low and the Repeated Start condition is complete.  
FIGURE 19-31:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDAx  
SCLx  
Sample SDAx when SCLx goes high.  
If SDAx = 0, set BCLxIF and release SDAx and SCLx.  
RSEN  
BCLxIF  
Cleared in software  
0’  
S
0’  
SSPxIF  
FIGURE 19-32:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDAx  
SCLx  
SCLx goes low before SDAx,  
set BCLxIF. Release SDAx and SCLx.  
BCLxIF  
RSEN  
Interrupt cleared  
in software  
0’  
S
SSPxIF  
DS39663F-page 236  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
The Stop condition begins with SDAx asserted low.  
When SDAx is sampled low, the SCLx pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the Baud Rate Generator is loaded with  
SSPxADD<6:0> and counts down to 0. After the BRG  
times out, SDAx is sampled. If SDAx is sampled low, a  
bus collision has occurred. This is due to another  
master attempting to drive a data ‘0’ (Figure 19-33). If  
the SCLx pin is sampled low before SDAx is allowed to  
float high, a bus collision occurs. This is another case  
of another master attempting to drive a data ‘0’  
(Figure 19-34).  
19.4.17.3 Bus Collision During a Stop  
Condition  
Bus collision occurs during a Stop condition if:  
a) After the SDAx pin has been deasserted and  
allowed to float high, SDAx is sampled low after  
the BRG has timed out.  
b) After the SCLx pin is deasserted, SCLx is  
sampled low before SDAx goes high.  
FIGURE 19-33:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDAx sampled  
low after TBRG,  
set BCLxIF  
TBRG  
TBRG  
TBRG  
SDAx  
SDAx asserted low  
SCLx  
PEN  
BCLxIF  
P
0’  
0’  
SSPxIF  
FIGURE 19-34:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDAx  
SCLx goes low before SDAx goes high,  
set BCLxIF  
Assert SDAx  
SCLx  
PEN  
BCLxIF  
P
0’  
0’  
SSPxIF  
© 2009 Microchip Technology Inc.  
DS39663F-page 237  
PIC18F87J10 FAMILY  
TABLE 19-4: REGISTERS ASSOCIATED WITH I2C™ OPERATION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
RBIF  
53  
55  
55  
55  
55  
55  
55  
55  
55  
55  
56  
56  
54  
57  
PSPIF  
PSPIE  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
SSP1IF  
SSP1IE  
SSP1IP  
BCL1IF  
BCL1IE  
BCL1IP  
TMR4IF  
TMR4IE  
TMR4IP  
TRISC3  
TRISD3  
TMR2IF  
TMR1IF  
PIE1  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
IPR1  
PSPIP  
ADIP  
PIR2  
OSCFIF  
OSCFIE  
OSCFIP  
SSP2IF  
SSP2IE  
SSP2IP  
TRISC7  
TRISD7  
CMIF  
TMR3IF  
TMR3IE  
TMR3IP  
CCP4IF  
CCP4IE  
CCP4IP  
TRISC1  
TRISD1  
CCP2IF  
CCP2IE  
CCP2IP  
CCP3IF  
CCP3IE  
CCP3IP  
TRISC0  
TRISD0  
PIE2  
CMIE  
IPR2  
CMIP  
PIR3  
BCL2IF  
BCL2IE  
BCL2IP  
TRISC6  
TRISD6  
RC2IF  
RC2IE  
RC2IP  
TRISC5  
TRISD5  
TX2IF  
TX2IE  
TX2IP  
TRISC4  
TRISD4  
CCP5IF  
CCP5IE  
CCP5IP  
TRISC2  
TRISD2  
PIE3  
IPR3  
TRISC  
TRISD  
SSP1BUF MSSP1 Receive Buffer/Transmit Register  
SSP1ADD MSSP1 Address Register (I2C™ Slave mode),  
MSSP1 Baud Rate Reload Register (I2C Master mode)  
SSPxCON1 WCOL  
SSPxCON2 GCEN  
SSPOV  
SSPEN  
CKP  
SSPM3  
RCEN/  
SSPM2  
PEN/  
SSPM1  
RSEN/  
SSPM0  
SEN  
54, 57  
54, 57  
ACKSTAT ACKDT/ ACKEN/  
ADMSK5 ADMSK4 ADMSK3 ADMSK2 ADMSK1  
SSPxSTAT  
SMP  
CKE  
D/A R/W UA  
P
S
BF  
54, 57  
54  
SSP2BUF MSSP2 Receive Buffer/Transmit Register  
SSP2ADD MSSP2 Address Register (I2C Slave mode),  
57  
MSSP2 Baud Rate Reload Register (I2C Master mode)  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP module in I2C™ mode.  
DS39663F-page 238  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
The pins of EUSART1 and EUSART2 are multiplexed  
with the functions of PORTC (RC6/TX1/CK1 and  
RC7/RX1/DT1) and PORTG (RG1/TX2/CK2 and  
RG2/RX2/DT2), respectively. In order to configure  
these pins as an EUSART:  
20.0 ENHANCED UNIVERSAL  
SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
• For EUSART1:  
The Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) module is one of two  
serial I/O modules. (Generically, the EUSART is also  
known as a Serial Communications Interface or SCI.)  
The EUSART can be configured as a full-duplex  
asynchronous system that can communicate with  
peripheral devices, such as CRT terminals and  
personal computers. It can also be configured as a  
half-duplex synchronous system that can communicate  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs, etc.  
- bit, SPEN (RCSTA1<7>), must be set (= 1)  
- bit, TRISC<7>, must be set (= 1)  
- bit, TRISC<6>, must be cleared (= 0) for  
Asynchronous and Synchronous Master  
modes  
- bit, TRISC<6>, must be set (= 1) for  
Synchronous Slave mode  
• For EUSART2:  
- bit, SPEN (RCSTA2<7>), must be set (= 1)  
- bit, TRISG<2>, must be set (= 1)  
The Enhanced USART module implements additional  
features, including automatic baud rate detection and  
calibration, automatic wake-up on Sync Break recep-  
tion and 12-bit Break character transmit. These make it  
ideally suited for use in Local Interconnect Network bus  
(LIN bus) systems.  
- bit, TRISG<1>, must be cleared (= 0) for  
Asynchronous and Synchronous Master  
modes  
- bit, TRISC<6> must be set (= 1) for  
Synchronous Slave mode  
All members of the PIC18F87J10 family are equipped  
with two independent EUSART modules, referred to as  
EUSART1 and EUSART2. They can be configured in  
the following modes:  
Note:  
The EUSART control will automatically  
reconfigure the pin from input to output as  
needed.  
The operation of each Enhanced USART module is  
controlled through three registers:  
• Asynchronous (full duplex) with:  
- Auto-Wake-up on character reception  
- Auto-Baud calibration  
• Transmit Status and Control (TXSTAx)  
• Receive Status and Control (RCSTAx)  
• Baud Rate Control (BAUDCONx)  
- 12-bit Break character transmission  
• Synchronous – Master (half duplex) with  
selectable clock polarity  
These are detailed on the following pages in  
Register 20-1, Register 20-2 and Register 20-3,  
respectively.  
• Synchronous – Slave (half duplex) with selectable  
clock polarity  
Note:  
Throughout this section, references to  
register and bit names that may be associ-  
ated with a specific EUSART module are  
referred to generically by the use of ‘x’ in  
place of the specific module number.  
Thus, “RCSTAx” might refer to the  
Receive Status register for either  
EUSART1 or EUSART2.  
© 2009 Microchip Technology Inc.  
DS39663F-page 239  
PIC18F87J10 FAMILY  
REGISTER 20-1: TXSTAx: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN(1)  
R/W-0  
SYNC  
R/W-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
SENDB  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
bit 3  
TX9: 9-Bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit(1)  
1= Transmit enabled  
0= Transmit disabled  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care.  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
DS39663F-page 240  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
REGISTER 20-2: RCSTAx: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RXx/DTx and TXx/CKx pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-Bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care.  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading the RCREGx register and receiving the next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit, CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
© 2009 Microchip Technology Inc.  
DS39663F-page 241  
PIC18F87J10 FAMILY  
REGISTER 20-3: BAUDCONx: BAUD RATE CONTROL REGISTER  
R/W-0  
R-1  
U-0  
R/W-0  
SCKP  
R/W-0  
U-0  
R/W-0  
WUE  
R/W-0  
ABDOVF  
RCIDL  
BRG16  
ABDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
ABDOVF: Auto-Baud Acquisition Rollover Status bit  
1= A BRG rollover has occurred during Auto-Baud Rate Detect mode (must be cleared in software)  
0= No BRG rollover has occurred  
RCIDL: Receive Operation Idle Status bit  
1= Receive operation is Idle  
0= Receive operation is active  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
Unused in this mode.  
Synchronous modes:  
1= Idle state for clock (CKx) is a high level  
0= Idle state for clock (CKx) is a low level  
bit 3  
BRG16: 16-Bit Baud Rate Register Enable bit  
1= 16-bit Baud Rate Generator – SPBRGHx and SPBRGx  
0= 8-bit Baud Rate Generator – SPBRGx only (Compatible mode), SPBRGHx value ignored  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= EUSART will continue to sample the RXx pin – interrupt generated on falling edge; bit cleared in  
hardware on the following rising edge  
0= RXx pin not monitored or rising edge detected  
Synchronous mode:  
Unused in this mode.  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Enable baud rate measurement on the next character. Requires reception of a Sync field (55h);  
cleared in hardware upon completion.  
0= Baud rate measurement disabled or completed  
Synchronous mode:  
Unused in this mode.  
DS39663F-page 242  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
the high baud rate (BRGH = 1) or the 16-bit BRG to  
reduce the baud rate error, or achieve a slow baud rate  
for a fast oscillator frequency.  
20.1  
Baud Rate Generator (BRG)  
The BRG is a dedicated 8-bit or 16-bit generator that  
supports both the Asynchronous and Synchronous  
modes of the EUSART. By default, the BRG operates  
in 8-bit mode; setting the BRG16 bit (BAUDCONx<3>)  
selects 16-bit mode.  
Writing a new value to the SPBRGHx:SPBRGx regis-  
ters causes the BRG timer to be reset (or cleared). This  
ensures the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
The SPBRGHx:SPBRGx register pair controls the period  
of a free-running timer. In Asynchronous mode, bits  
BRGH (TXSTAx<2>) and BRG16 (BAUDCONx<3>) also  
control the baud rate. In Synchronous mode, BRGH is  
ignored. Table 20-1 shows the formula for computation of  
the baud rate for different EUSART modes which only  
apply in Master mode (internally generated clock).  
20.1.1  
OPERATION IN POWER-MANAGED  
MODES  
The device clock is used to generate the desired baud  
rate. When one of the power-managed modes is  
entered, the new clock source may be operating at a  
different frequency. This may require an adjustment to  
the value in the SPBRGx register pair.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRGHx:SPBRGx registers can  
be calculated using the formulas in Table 20-1. From this,  
the error in baud rate can be determined. An example  
calculation is shown in Example 20-1. Typical baud rates  
and error values for the various Asynchronous modes  
are shown in Table 20-2. It may be advantageous to use  
20.1.2  
SAMPLING  
The data on the RXx pin (either RC7/RX1/DT1 or  
RG2/RX2/DT2) is sampled three times by a majority  
detect circuit to determine if a high or a low level is  
present at the RXx pin.  
TABLE 20-1: BAUD RATE FORMULAS  
Configuration Bits  
BRG/EUSART Mode  
Baud Rate Formula  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-Bit/Asynchronous  
8-Bit/Asynchronous  
16-Bit/Asynchronous  
16-Bit/Asynchronous  
8-Bit/Synchronous  
16-Bit/Synchronous  
FOSC/[64 (n + 1)]  
FOSC/[16 (n + 1)]  
FOSC/[4 (n + 1)]  
Legend: x= Don’t care, n = value of SPBRGHx:SPBRGx register pair  
© 2009 Microchip Technology Inc.  
DS39663F-page 243  
PIC18F87J10 FAMILY  
EXAMPLE 20-1:  
CALCULATING BAUD RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:  
Desired Baud Rate FOSC/(64 ([SPBRGHx:SPBRGx] + 1))  
Solving for SPBRGHx:SPBRGx:  
=
X
=
=
=
=
=
=
=
((FOSC/Desired Baud Rate)/64) – 1  
((16000000/9600)/64) – 1  
[25.042] = 25  
16000000/(64 (25 + 1))  
9615  
Calculated Baud Rate  
Error  
(Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate  
(9615 – 9600)/9600 = 0.16%  
TABLE 20-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Reset Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTAx  
RCSTAx  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SCKP  
SENDB  
ADDEN  
BRG16  
BRGH  
FERR  
TRMT  
OERR  
WUE  
TX9D  
RX9D  
55  
55  
56  
56  
56  
BAUDCONx ABDOVF RCIDL  
ABDEN  
SPBRGHx EUSARTx Baud Rate Generator Register High Byte  
SPBRGx EUSARTx Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
DS39663F-page 244  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
Value  
SPBRG Actual  
SPBRG Actual  
Value  
(decimal)  
SPBRG  
Value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Value  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
255  
129  
31  
15  
4
129  
64  
15  
7
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
1.221  
1.73  
0.16  
1.73  
1.73  
8.51  
-9.58  
1.202  
2.404  
9.766  
19.531  
52.083  
78.125  
0.16  
0.16  
1.73  
1.73  
-9.58  
-32.18  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.404  
9.6  
9.766  
19.2  
57.6  
115.2  
19.531  
62.500  
104.167  
2
2
1
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
Value  
SPBRG Actual  
Value  
(decimal)  
SPBRG  
Value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.16  
0.16  
207  
51  
25  
6
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
103  
25  
12  
0.300  
1.201  
-0.16  
-0.16  
51  
12  
2.4  
2.404  
0.16  
9.6  
8.929  
-6.99  
8.51  
19.2  
57.6  
115.2  
20.833  
62.500  
62.500  
2
8.51  
0
-45.75  
0
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
Value  
(decimal)  
SPBRG Actual  
Value  
(decimal)  
SPBRG Actual  
Value  
(decimal)  
SPBRG  
Value  
%
Error  
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
(decimal)  
0.3  
1.2  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.403  
9.615  
19.230  
55.555  
-0.16  
-0.16  
-0.16  
3.55  
207  
51  
25  
8
9.6  
9.766  
19.231  
58.140  
113.636  
1.73  
0.16  
0.94  
-1.36  
255  
129  
42  
9.615  
19.231  
56.818  
113.636  
0.16  
0.16  
-1.36  
-1.36  
129  
64  
21  
10  
19.2  
57.6  
115.2  
21  
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
Value  
SPBRG Actual  
Value  
(decimal)  
SPBRG  
Value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
207  
103  
25  
12  
3
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
1.202  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
© 2009 Microchip Technology Inc.  
DS39663F-page 245  
PIC18F87J10 FAMILY  
TABLE 20-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
Value  
SPBRG Actual  
Value  
(decimal)  
SPBRG Actual  
Value  
(decimal)  
SPBRG  
Value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
0.02  
-0.03  
-0.03  
0.16  
4165  
1041  
520  
129  
64  
0.300  
1.200  
0.02  
-0.03  
0.16  
0.16  
1.73  
-1.36  
8.51  
2082  
520  
259  
64  
0.300  
1.201  
2.403  
9.615  
19.230  
55.555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
2.4  
2.402  
2.399  
2.404  
9.6  
9.615  
9.615  
9.615  
19.2  
57.6  
115.2  
19.231  
58.140  
113.636  
19.231  
56.818  
113.636  
0.16  
19.531  
56.818  
125.000  
31  
25  
-1.36  
-1.36  
21  
10  
8
21  
10  
4
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
Value  
SPBRG Actual  
Value  
(decimal)  
SPBRG  
Value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.04  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
832  
207  
103  
25  
12  
3
0.300  
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
-0.16  
415  
103  
51  
12  
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
Value  
SPBRG  
Value  
(decimal)  
%
Error  
%
%
%
Error  
Value  
(decimal)  
Rate  
(K)  
Value  
Rate  
(K)  
Rate  
(K)  
Error  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.00  
0.02  
0.06  
-0.03  
0.35  
-0.22  
33332  
8332  
4165  
1040  
520  
0.300  
1.200  
0.00  
0.02  
0.02  
-0.03  
0.16  
-0.22  
0.94  
16665  
4165  
2082  
520  
259  
86  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
-0.01  
-0.04  
-0.04  
-0.16  
-0.16  
0.79  
6665  
1665  
832  
207  
103  
34  
2.4  
2.400  
2.400  
2.402  
2.400  
9.6  
9.606  
9.596  
9.615  
9.615  
19.2  
57.6  
115.2  
19.193  
57.803  
114.943  
19.231  
57.471  
116.279  
19.231  
58.140  
113.636  
19.230  
57.142  
117.647  
172  
86  
42  
21  
-2.12  
16  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 2.000 MHz FOSC = 1.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG  
Value  
(decimal)  
%
Error  
%
Error  
%
Error  
Value  
Rate  
(K)  
Value  
Rate  
(K)  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.01  
0.04  
0.16  
0.16  
0.16  
2.12  
-3.55  
3332  
832  
415  
103  
51  
0.300  
1.201  
2.403  
9.615  
19.230  
55.555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
0.300  
1.201  
2.403  
9.615  
19.230  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
832  
207  
103  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
58.824  
111.111  
25  
12  
16  
8
8
DS39663F-page 246  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
20.1.3  
AUTO-BAUD RATE DETECT  
Note 1: If the WUE bit is set with the ABDEN bit,  
Auto-Baud Rate Detection will occur on  
the byte following the Break character.  
The Enhanced USART module supports the automatic  
detection and calibration of baud rate. This feature is  
active only in Asynchronous mode and while the WUE  
bit is clear.  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator frequency  
and EUSART baud rates are not possible  
due to bit error rates. Overall system tim-  
ing and communication baud rates must  
be taken into consideration when using the  
Auto-Baud Rate Detection feature.  
The automatic baud rate measurement sequence  
(Figure 20-1) begins whenever a Start bit is received  
and the ABDEN bit is set. The calculation is  
self-averaging.  
In the Auto-Baud Rate Detect (ABD) mode, the clock to  
the BRG is reversed. Rather than the BRG clocking the  
incoming RXx signal, the RXx signal is timing the BRG.  
In ABD mode, the internal Baud Rate Generator is  
used as a counter to time the bit period of the incoming  
serial byte stream.  
3: To maximize baud rate range, it is recom-  
mended to set the BRG16 bit if the  
auto-baud feature is used.  
Once the ABDEN bit is set, the state machine will clear  
the BRG and look for a Start bit. The Auto-Baud Rate  
Detect must receive a byte with the value 55h (ASCII  
“U”, which is also the LIN bus Sync character) in order to  
calculate the proper bit rate. The measurement is taken  
over both a low and a high bit time in order to minimize  
any effects caused by asymmetry of the incoming signal.  
After a Start bit, the SPBRGx begins counting up, using  
the preselected clock source on the first rising edge of  
RXx. After eight bits on the RXx pin or the fifth rising  
edge, an accumulated value totalling the proper BRG  
period is left in the SPBRGHx:SPBRGx register pair.  
Once the 5th edge is seen (this should correspond to the  
Stop bit), the ABDEN bit is automatically cleared.  
TABLE 20-4: BRG COUNTER  
CLOCK RATES  
BRG16 BRGH  
BRG Counter Clock  
0
0
1
1
0
1
0
1
FOSC/512  
FOSC/128  
FOSC/128  
FOSC/32  
20.1.3.1  
ABD and EUSART Transmission  
Since the BRG clock is reversed during ABD acquisi-  
tion, the EUSART transmitter cannot be used during  
ABD. This means that whenever the ABDEN bit is set,  
TXREGx cannot be written to. Users should also  
ensure that ABDEN does not become set during a  
transmit sequence. Failing to do this may result in  
unpredictable EUSART operation.  
If a rollover of the BRG occurs (an overflow from FFFFh  
to 0000h), the event is trapped by the ABDOVF status  
bit (BAUDCONx<7>). It is set in hardware by BRG roll-  
overs and can be set or cleared by the user in software.  
ABD mode remains active after rollover events and the  
ABDEN bit remains set (Figure 20-2).  
While calibrating the baud rate period, the BRG  
registers are clocked at 1/8th the preconfigured clock  
rate. Note that the BRG clock can be configured by the  
BRG16 and BRGH bits. The BRG16 bit must be set to  
use both SPBRG1 and SPBRGH1 as a 16-bit counter.  
This allows the user to verify that no carry occurred for  
8-bit modes by checking for 00h in the SPBRGHx  
register. Refer to Table 20-4 for counter clock rates to  
the BRG.  
While the ABD sequence takes place, the EUSART  
state machine is held in Idle. The RCxIF interrupt is set  
once the fifth rising edge on RXx is detected. The value  
in the RCREGx needs to be read to clear the RCxIF  
interrupt. The contents of RCREGx should be  
discarded.  
© 2009 Microchip Technology Inc.  
DS39663F-page 247  
PIC18F87J10 FAMILY  
FIGURE 20-1:  
AUTOMATIC BAUD RATE CALCULATION  
BRG Value  
RXx pin  
XXXXh  
0000h  
001Ch  
Edge #5  
Stop Bit  
Edge #2  
Bit 3  
Edge #3  
Bit 5  
Edge #4  
Bit 7  
Bit 6  
Edge #1  
Bit 1  
Start  
Bit 0  
Bit 2  
Bit 4  
BRG Clock  
Auto-Cleared  
Set by User  
ABDEN bit  
RCxIF bit  
(Interrupt)  
Read  
RCREGx  
XXXXh  
XXXXh  
1Ch  
00h  
SPBRGx  
SPBRGHx  
Note: The ABD sequence requires the EUSART module to be configured in Asynchronous mode and WUE = 0.  
FIGURE 20-2:  
BRG OVERFLOW SEQUENCE  
BRG Clock  
ABDEN bit  
RXx pin  
Start  
Bit 0  
ABDOVF bit  
BRG Value  
FFFFh  
XXXXh  
0000h  
0000h  
DS39663F-page 248  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
Once the TXREGx register transfers the data to the TSR  
register (occurs in one TCY), the TXREGx register is  
empty and the TXxIF flag bit is set. This interrupt can be  
enabled or disabled by setting or clearing the interrupt  
enable bit, TXxIE. TXxIF will be set regardless of the  
state of TXxIE; it cannot be cleared in software. TXxIF is  
also not cleared immediately upon loading TXREGx, but  
becomes valid in the second instruction cycle following  
the load instruction. Polling TX1IF immediately following  
a load of TXREGx will return invalid results.  
20.2 EUSART Asynchronous Mode  
The Asynchronous mode of operation is selected by  
clearing the SYNC bit (TXSTAx<4>). In this mode, the  
EUSART uses standard Non-Return-to-Zero (NRZ)  
format (one Start bit, eight or nine data bits and one Stop  
bit). The most common data format is 8 bits. An on-chip  
dedicated 8-bit/16-bit Baud Rate Generator can be used  
to derive standard baud rate frequencies from the  
oscillator.  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent but use the same data format and baud  
rate. The Baud Rate Generator produces a clock, either  
x16 or x64 of the bit shift rate, depending on the BRGH  
and BRG16 bits (TXSTAx<2> and BAUDCONx<3>).  
Parity is not supported by the hardware but can be  
implemented in software and stored as the 9th data bit.  
While TXxIF indicates the status of the TXREGx regis-  
ter, another bit, TRMT (TXSTAx<1>), shows the status  
of the TSR register. TRMT is a read-only bit which is set  
when the TSR register is empty. No interrupt logic is  
tied to this bit so the user has to poll this bit in order to  
determine if the TSR register is empty.  
Note 1: The TSR register is not mapped in data  
When operating in Asynchronous mode, the EUSART  
module consists of the following important elements:  
memory, so it is not available to the user.  
2: Flag bit, TX1IF, is set when enable bit  
• Baud Rate Generator  
TXEN is set.  
• Sampling Circuit  
To set up an Asynchronous Transmission:  
• Asynchronous Transmitter  
• Asynchronous Receiver  
1. Initialize the SPBRGHx:SPBRGx registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
• Auto-Wake-up on Sync Break Character  
• 12-Bit Break Character Transmit  
• Auto-Baud Rate Detection  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
20.2.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
3. If interrupts are desired, set enable bit, TXxIE.  
4. If 9-bit transmission is desired, set transmit bit,  
TX9; can be used as address/data bit.  
The EUSART transmitter block diagram is shown in  
Figure 20-3. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREGx. The TXREGx register is loaded with data in  
software. The TSR register is not loaded until the Stop  
bit has been transmitted from the previous load. As  
soon as the Stop bit is transmitted, the TSR is loaded  
with new data from the TXREGx register (if available).  
5. Enable the transmission by setting bit, TXEN,  
which will also set bit, TXxIF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
7. Load data to the TXREGx register (starts  
transmission).  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 20-3:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXxIF  
TXREGx Register  
TXxIE  
8
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
TSR Register  
TXx Pin  
Interrupt  
Baud Rate CLK  
TXEN  
TRMT  
SPEN  
BRG16  
SPBRGHx SPBRGx  
Baud Rate Generator  
TX9  
TX9D  
© 2009 Microchip Technology Inc.  
DS39663F-page 249  
PIC18F87J10 FAMILY  
FIGURE 20-4:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREGx  
Word 1  
BRG Output  
(Shift Clock)  
TXx (pin)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXxIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 20-5:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREGx  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TXx (pin)  
Start bit  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
1 TCY  
Word 2  
Word 1  
TXxIF bit  
(Interrupt Reg. Flag)  
1 TCY  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 20-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
53  
55  
55  
55  
55  
55  
55  
55  
55  
55  
56  
56  
56  
PSPIF  
PSPIE  
PSPIP  
SSP2IF  
SSP2IE  
SSP2IP  
SPEN  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
SSP1IF  
SSP1IE  
SSP1IP  
TMR4IF  
TMR2IF  
TMR1IF  
PIE1  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
ADIP  
PIR3  
BCL2IF  
BCL2IE  
BCL2IP  
RX9  
CCP5IF  
CCP4IF  
CCP4IE  
CCP4IP  
OERR  
CCP3IF  
CCP3IE  
CCP3IP  
RX9D  
PIE3  
TMR4IE CCP5IE  
TMR4IP CCP5IP  
IPR3  
RCSTAx  
TXREGx  
TXSTAx  
ADDEN  
FERR  
EUSARTx Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCONx ABDOVF  
RCIDL  
ABDEN  
SPBRGHx  
SPBRGx  
EUSARTx Baud Rate Generator Register High Byte  
EUSARTx Baud Rate Generator Register Low Byte  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
DS39663F-page 250  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
20.2.2  
EUSART ASYNCHRONOUS  
RECEIVER  
20.2.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 20-6.  
The data is received on the RXx pin and drives the data  
recovery block. The data recovery block is actually a  
high-speed shifter operating at x16 times the baud rate,  
whereas the main receive serial shifter operates at the  
bit rate or at FOSC. This mode would typically be used  
in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGHx:SPBRGx registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
To set up an Asynchronous Reception:  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
1. Initialize the SPBRGHx:SPBRGx registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCxIP bit.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
3. If interrupts are desired, set enable bit, RCxIE.  
4. If 9-bit reception is desired, set bit, RX9.  
5. Enable the reception by setting bit, CREN.  
7. The RCxIF bit will be set when reception is  
complete. The interrupt will be Acknowledged if  
the RCxIE and GIE bits are set.  
6. Flag bit, RCxIF, will be set when reception is  
complete and an interrupt will be generated if  
enable bit, RCxIE, was set.  
8. Read the RCSTAx register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
7. Read the RCSTAx register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read RCREGx to determine if the device is  
being addressed.  
10. If any error occurred, clear the CREN bit.  
8. Read the 8-bit received data by reading the  
RCREGx register.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
9. If any error occurred, clear the error by clearing  
enable bit, CREN.  
10. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 20-6:  
EUSART RECEIVE BLOCK DIAGRAM  
CREN  
OERR  
FERR  
x64 Baud Rate CLK  
÷ 64  
RSR Register  
• • •  
MSb  
Stop  
LSb  
Start  
BRG16  
SPBRGHx SPBRGx  
or  
÷ 16  
(8)  
7
1
0
or  
Baud Rate Generator  
÷ 4  
RX9  
Pin Buffer  
and Control  
Data  
Recovery  
RXx  
RX9D  
RCREGx Register  
FIFO  
SPEN  
8
Interrupt  
RCxIF  
RCxIE  
Data Bus  
© 2009 Microchip Technology Inc.  
DS39663F-page 251  
PIC18F87J10 FAMILY  
FIGURE 20-7:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RXx (pin)  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0 bit 1  
bit 7/8  
bit 0  
bit 7/8  
bit 7/8  
Rcv Shift Reg  
Rcv Buffer Reg  
Word 2  
RCREGx  
Word 1  
RCREGx  
Read Rcv  
Buffer Reg  
RCREGx  
RCxIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RXx input. The RCREGx (Receive Buffer) is read after the third word  
causing the OERR (Overrun) bit to be set.  
TABLE 20-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
INT0IF  
RBIF  
53  
55  
55  
55  
55  
55  
55  
55  
55  
55  
56  
56  
56  
PSPIF  
PSPIE  
PSPIP  
SSP2IF  
SSP2IE  
SSP2IP  
SPEN  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
SSP1IF  
SSP1IE  
SSP1IP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
IPR1  
ADIP  
PIR3  
BCL2IF  
BCL2IE  
BCL2IP  
RX9  
TMR4IF CCP5IF  
CCP4IF CCP3IF  
PIE3  
TMR4IE CCP5IE CCP4IE CCP3IE  
TMR4IP CCP5IP CCP4IP CCP3IP  
IPR3  
RCSTAx  
RCREGx  
TXSTAx  
ADDEN  
FERR  
OERR  
RX9D  
EUSARTx Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCONx ABDOVF  
RCIDL  
ABDEN  
SPBRGHx  
SPBRGx  
EUSARTx Baud Rate Generator Register High Byte  
EUSARTx Baud Rate Generator Register Low Byte  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
the RXx/DTx line. (This coincides with the start of a  
Sync Break or a Wake-up Signal character for the LIN  
protocol.)  
20.2.4  
AUTO-WAKE-UP ON SYNC BREAK  
CHARACTER  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper byte reception cannot be per-  
formed. The auto-wake-up feature allows the controller  
to wake-up due to activity on the RXx/DTx line while the  
EUSART is operating in Asynchronous mode.  
Following a wake-up event, the module generates an  
RCxIF interrupt. The interrupt is generated synchro-  
nously to the Q clocks in normal operating modes  
(Figure 20-8) and asynchronously if the device is in  
Sleep mode (Figure 20-9). The interrupt condition is  
cleared by reading the RCREGx register.  
The auto-wake-up feature is enabled by setting the  
WUE bit (BAUDCONx<1>). Once set, the typical  
receive sequence on RXx/DTx is disabled and the  
EUSART remains in an Idle state, monitoring for a  
wake-up event independent of the CPU mode. A  
wake-up event consists of a high-to-low transition on  
The WUE bit is automatically cleared once  
a
low-to-high transition is observed on the RXx line  
following the wake-up event. At this point, the EUSART  
module is in Idle mode and returns to normal operation.  
This signals to the user that the Sync Break event is  
over.  
DS39663F-page 252  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
20.2.4.1  
Special Considerations Using  
Auto-Wake-up  
20.2.4.2  
Special Considerations Using  
the WUE Bit  
Since auto-wake-up functions by sensing rising edge  
transitions on RXx/DTx, information with any state  
changes before the Stop bit may signal a false  
end-of-character and cause data or framing errors. To  
work properly, therefore, the initial character in the  
transmission must be all ‘0’s. This can be 00h (8 bytes)  
for standard RS-232 devices or 000h (12 bits) for LIN  
bus.  
The timing of WUE and RCxIF events may cause some  
confusion when it comes to determining the validity of  
received data. As noted, setting the WUE bit places the  
EUSART in an Idle mode. The wake-up event causes a  
receive interrupt by setting the RCxIF bit. The WUE bit  
is cleared after this when a rising edge is seen on  
RXx/DTx. The interrupt condition is then cleared by  
reading the RCREGx register. Ordinarily, the data in  
RCREGx will be dummy data and should be discarded.  
Oscillator start-up time must also be considered,  
especially in applications using oscillators with longer  
start-up intervals (i.e., HS or HSPLL mode). The Sync  
Break (or Wake-up Signal) character must be of  
sufficient length and be followed by a sufficient interval  
to allow enough time for the selected oscillator to start  
and provide proper initialization of the EUSART.  
The fact that the WUE bit has been cleared (or is still  
set) and the RCxIF flag is set should not be used as an  
indicator of the integrity of the data in RCREGx. Users  
should consider implementing a parallel method in  
firmware to verify received data integrity.  
To assure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process. If  
a receive operation is not occurring, the WUE bit may  
then be set just prior to entering the Sleep mode.  
FIGURE 20-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Bit set by user  
Auto-Cleared  
OSC1  
WUE bit(1)  
RXx/DTx Line  
RCxIF  
Cleared due to user read of RCREGx  
Note 1: The EUSART remains in Idle while the WUE bit is set.  
FIGURE 20-9:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Auto-Cleared  
OSC1  
WUE bit(2)  
RXx/DTx Line  
RCxIF  
Bit set by user  
Note 1  
Cleared due to user read of RCREGx  
Sleep Ends  
SLEEPCommand Executed  
Note 1: If the wake-up event requires long oscillator warm-up time, the auto-clear of the WUE bit can occur before the oscillator is ready. This  
sequence should not depend on the presence of Q clocks.  
2: The EUSART remains in Idle while the WUE bit is set.  
© 2009 Microchip Technology Inc.  
DS39663F-page 253  
PIC18F87J10 FAMILY  
1. Configure the EUSART for the desired mode.  
20.2.5  
BREAK CHARACTER SEQUENCE  
2. Set the TXEN and SENDB bits to set up the  
Break character.  
The EUSART module has the capability of sending the  
special Break character sequences that are required by  
the LIN bus standard. The Break character transmit  
consists of a Start bit, followed by twelve ‘0’ bits and a  
Stop bit. The Frame Break character is sent whenever  
the SENDB and TXEN bits (TXSTAx<3> and  
TXSTAx<5>) are set while the Transmit Shift Register  
is loaded with data. Note that the value of data written  
to TXREGx will be ignored and all ‘0’s will be  
transmitted.  
3. Load the TXREGx with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXREGx to load the Sync  
character into the transmit FIFO buffer.  
5. After the Break has been sent, the SENDB bit is  
reset by hardware. The Sync character now  
transmits in the preconfigured mode.  
When the TXREGx becomes empty, as indicated by  
the TXxIF, the next data byte can be written to  
TXREGx.  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN specification).  
20.2.6  
RECEIVING A BREAK CHARACTER  
The Enhanced USART module can receive a Break  
character in two ways.  
Note that the data value written to the TXREGx for the  
Break character is ignored. The write simply serves the  
purpose of initiating the proper sequence.  
The first method forces configuration of the baud rate  
at a frequency of 9/13 the typical speed. This allows for  
the Stop bit transition to be at the correct sampling  
location (13 bits for Break versus Start bit and 8 data  
bits for typical data).  
The TRMT bit indicates when the transmit operation is  
active or Idle, just as it does during normal transmis-  
sion. See Figure 20-10 for the timing of the Break  
character sequence.  
The second method uses the auto-wake-up feature  
described in Section 20.2.4 “Auto-Wake-up on Sync  
Break Character”. By enabling this feature, the  
EUSART will sample the next two transitions on  
RXx/DTx, cause an RCxIF interrupt and receive the  
next data byte followed by another interrupt.  
20.2.5.1  
Break and Sync Transmit Sequence  
The following sequence will send a message frame  
header made up of a Break, followed by an Auto-Baud  
Sync byte. This sequence is typical of a LIN bus  
master.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Rate Detect  
feature. For both methods, the user can set the ABDEN  
bit once the TXxIF interrupt is observed.  
FIGURE 20-10:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREGx  
Dummy Write  
BRG Output  
(Shift Clock)  
TXx (pin)  
Start Bit  
Bit 0  
Bit 1  
Break  
Bit 11  
Stop Bit  
TXxIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB sampled here  
Auto-Cleared  
SENDB bit  
(Transmit Shift  
Reg. Empty Flag)  
DS39663F-page 254  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
Once the TXREGx register transfers the data to the  
TSR register (occurs in one TCY), the TXREGx is empty  
and the TXxIF flag bit is set. The interrupt can be  
enabled or disabled by setting or clearing the interrupt  
enable bit, TXxIE. TXxIF is set regardless of the state  
of enable bit, TXxIE; it cannot be cleared in software. It  
will reset only when new data is loaded into the  
TXREGx register.  
20.3 EUSART Synchronous  
Master Mode  
The Synchronous Master mode is entered by setting  
the CSRC bit (TXSTAx<7>). In this mode, the data is  
transmitted in a half-duplex manner (i.e., transmission  
and reception do not occur at the same time). When  
transmitting data, the reception is inhibited and vice  
versa. Synchronous mode is entered by setting bit,  
SYNC (TXSTAx<4>). In addition, enable bit, SPEN  
(RCSTAx<7>), is set in order to configure the TXx and  
RXx pins to CKx (clock) and DTx (data) lines,  
respectively.  
While flag bit, TXxIF, indicates the status of the TXREGx  
register, another bit, TRMT (TXSTAx<1>), shows the  
status of the TSR register. TRMT is a read-only bit which  
is set when the TSR is empty. No interrupt logic is tied to  
this bit, so the user must poll this bit in order to determine  
if the TSR register is empty. The TSR is not mapped in  
data memory so it is not available to the user.  
The Master mode indicates that the processor trans-  
mits the master clock on the CKx line. Clock polarity is  
selected with the SCKP bit (BAUDCONx<4>); setting  
SCKP sets the Idle state on CKx as high, while clearing  
the bit sets the Idle state as low. This option is provided  
to support Microwire devices with this module.  
To set up a Synchronous Master Transmission:  
1. Initialize the SPBRGHx:SPBRGx registers for the  
appropriate baud rate. Set or clear the BRG16  
bit, as required, to achieve the desired baud rate.  
20.3.1  
EUSART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
3. If interrupts are desired, set enable bit, TXxIE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting bit, TXEN.  
The EUSART transmitter block diagram is shown in  
Figure 20-3. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREGx. The TXREGx register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREGx (if available).  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
7. Start transmission by loading data to the  
TXREGx register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 20-11:  
SYNCHRONOUS TRANSMISSION  
Q1 Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3Q4 Q1 Q2Q3Q4 Q1 Q2Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX1/DT1  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
bit 7  
Word 2  
Word 1  
RC6/TX1/CK1 pin  
(SCKP = 0)  
RC6/TX1/CK1 pin  
(SCKP = 1)  
Write to  
TXREG1 Reg  
Write Word 1  
Write Word 2  
TX1IF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note: Sync Master mode, SPBRGx = 0, continuous transmission of two 8-bit words. This example is equally applicable to EUSART2  
(RG1/TX2/CK2 and RG2/RX2/DT2).  
© 2009 Microchip Technology Inc.  
DS39663F-page 255  
PIC18F87J10 FAMILY  
FIGURE 20-12:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX1/DT1 pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
RC6/TX1/CK1 pin  
Write to  
TXREG1 reg  
TX1IF bit  
TRMT bit  
TXEN bit  
Note: This example is equally applicable to EUSART2 (RG1/TX2/CK2 and RG2/RX2/DT2).  
TABLE 20-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
INT0IF  
RBIF  
53  
55  
55  
55  
55  
55  
55  
55  
55  
55  
56  
56  
56  
PSPIF  
PSPIE  
PSPIP  
SSP2IF  
SSP2IE  
SSP2IP  
SPEN  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
SSP1IF  
SSP1IE  
SSP1IP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
IPR1  
ADIP  
PIR3  
BCL2IF  
BCL2IE  
BCL2IP  
RX9  
TMR4IF CCP5IF  
CCP4IF  
CCP3IF  
PIE3  
TMR4IE CCP5IE CCP4IE CCP3IE  
TMR4IP CCP5IP CCP4IP CCP3IP  
IPR3  
RCSTAx  
TXREGx  
TXSTAx  
ADDEN  
FERR  
OERR  
RX9D  
EUSARTx Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCONx ABDOVF  
RCIDL  
ABDEN  
SPBRGHx EUSARTx Baud Rate Generator Register High Byte  
SPBRGx EUSARTx Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
DS39663F-page 256  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
3. Ensure bits, CREN and SREN, are clear.  
4. If interrupts are desired, set enable bit, RCxIE.  
5. If 9-bit reception is desired, set bit, RX9.  
6. If a single reception is required, set bit, SREN.  
For continuous reception, set bit, CREN.  
7. Interrupt flag bit, RCxIF, will be set when recep-  
tion is complete and an interrupt will be generated  
if the enable bit, RCxIE, was set.  
8. Read the RCSTAx register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREGx register.  
20.3.2  
EUSART SYNCHRONOUS  
MASTER RECEPTION  
Once Synchronous mode is selected, reception is  
enabled by setting either the Single Receive Enable bit,  
SREN (RCSTAx<5>), or the Continuous Receive  
Enable bit, CREN (RCSTAx<4>). Data is sampled on  
the RXx pin on the falling edge of the clock.  
If enable bit, SREN, is set, only a single word is  
received. If enable bit, CREN, is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
then CREN takes precedence.  
To set up a Synchronous Master Reception:  
10. If any error occurred, clear the error by clearing  
bit, CREN.  
11. If using interrupts, ensure that the GIE and PEIE bits  
in the INTCON register (INTCON<7:6>) are set.  
1. Initialize the SPBRGHx:SPBRGx registers for the  
appropriate baud rate. Set or clear the BRG16  
bit, as required, to achieve the desired baud rate.  
2. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
FIGURE 20-13:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX1/DT1  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
RC6/TX1/CK1 pin  
(SCKP = 0)  
RC6/TX1/CK1 pin  
(SCKP = 1)  
Write to  
bit SREN  
SREN bit  
CREN bit  
0’  
0’  
RC1IF bit  
(Interrupt)  
Read  
RCREG1  
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0. This example is equally applicable to EUSART2  
(RG1/TX2/CK2 and RG2/RX2/DT2).  
TABLE 20-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Reset Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on page  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
53  
55  
55  
55  
55  
55  
55  
55  
55  
55  
56  
56  
56  
PSPIF  
PSPIE  
PSPIP  
SSP2IF  
SSP2IE  
SSP2IP  
SPEN  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
TX1IF  
TX1IE  
TX1IP  
TX2IF  
TX2IE  
TX2IP  
CREN  
SSP1IF CCP1IF TMR2IF TMR1IF  
SSP1IE CCP1IE TMR2IE TMR1IE  
SSP1IP CCP1IP TMR2IP TMR1IP  
TMR4IF CCP5IF CCP4IF CCP3IF  
TMR4IE CCP5IE CCP4IE CCP3IE  
TMR4IP CCP5IP CCP4IP CCP3IP  
PIE1  
IPR1  
ADIP  
PIR3  
BCL2IF  
BCL2IE  
BCL2IP  
RX9  
PIE3  
IPR3  
RCSTAx  
RCREGx  
TXSTAx  
ADDEN  
FERR  
OERR  
RX9D  
EUSARTx Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCONx ABDOVF  
RCIDL  
ABDEN  
SPBRGHx EUSARTx Baud Rate Generator Register High Byte  
SPBRGx EUSARTx Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
© 2009 Microchip Technology Inc.  
DS39663F-page 257  
PIC18F87J10 FAMILY  
To set up a Synchronous Slave Transmission:  
20.4 EUSART Synchronous  
Slave Mode  
1. Enable the synchronous slave serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
Synchronous Slave mode is entered by clearing bit,  
CSRC (TXSTAx<7>). This mode differs from the  
Synchronous Master mode in that the shift clock is sup-  
plied externally at the CKx pin (instead of being supplied  
internally in Master mode). This allows the device to  
transfer or receive data while in any low-power mode.  
2. Clear bits, CREN and SREN.  
3. If interrupts are desired, set enable bit, TXxIE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting enable bit,  
TXEN.  
20.4.1  
EUSART SYNCHRONOUS  
SLAVE TRANSMISSION  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of Sleep mode.  
7. Start transmission by loading data to the  
TXREGx register.  
If two words are written to the TXREGx and then the  
SLEEPinstruction is executed, the following will occur:  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in the TXREGx  
register.  
c) Flag bit, TXxIF, will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREGx register will transfer the second  
word to the TSR and flag bit, TXxIF, will now be  
set.  
e) If enable bit, TXxIE, is set, the interrupt will wake  
the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
TABLE 20-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
53  
55  
55  
55  
55  
55  
55  
55  
55  
55  
56  
56  
56  
PSPIF  
PSPIE  
PSPIP  
SSP2IF  
SSP2IE  
SSP2IP  
SPEN  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
SSP1IF  
SSP1IE  
SSP1IP  
TMR4IF  
TMR2IF TMR1IF  
PIE1  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
ADIP  
PIR3  
BCL2IF  
BCL2IE  
BCL2IP  
RX9  
CCP5IF  
CCP4IF  
CCP3IF  
PIE3  
TMR4IE CCP5IE  
TMR4IP CCP5IP  
CCP4IE CCP3IE  
CCP4IP CCP3IP  
IPR3  
RCSTAx  
TXREGx  
TXSTAx  
ADDEN  
FERR  
OERR  
RX9D  
EUSARTx Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCONx ABDOVF  
RCIDL  
ABDEN  
SPBRGHx EUSARTx Baud Rate Generator Register High Byte  
SPBRGx EUSARTx Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
DS39663F-page 258  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
To set up a Synchronous Slave Reception:  
20.4.2  
EUSART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of Sleep, or any  
Idle mode and bit, SREN, which is a “don’t care” in  
Slave mode.  
2. If interrupts are desired, set enable bit, RCxIE.  
3. If 9-bit reception is desired, set bit, RX9.  
4. To enable reception, set enable bit, CREN.  
If receive is enabled by setting the CREN bit prior to  
entering Sleep or any Idle mode, then a word may be  
received while in this low-power mode. Once the word  
is received, the RSR register will transfer the data to the  
RCREGx register; if the RCxIE enable bit is set, the  
interrupt generated will wake the chip from the  
Low-Power mode. If the global interrupt is enabled, the  
program will branch to the interrupt vector.  
5. Flag bit, RCxIF, will be set when reception is  
complete. An interrupt will be generated if  
enable bit, RCxIE, was set.  
6. Read the RCSTAx register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREGx register.  
8. If any error occurred, clear the error by clearing  
bit, CREN.  
9. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
TABLE 20-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
53  
55  
55  
55  
55  
55  
55  
55  
55  
55  
56  
56  
56  
PSPIF  
PSPIE  
PSPIP  
SSP2IF  
SSP2IE  
SSP2IP  
SPEN  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
SSP1IF  
SSP1IE  
SSP1IP  
TMR4IF  
TMR2IF TMR1IF  
PIE1  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
ADIP  
PIR3  
BCL2IF  
BCL2IE  
BCL2IP  
RX9  
CCP5IF  
CCP4IF  
CCP3IF  
CCP3IE  
CCP3IP  
RX9D  
PIE3  
TMR4IE CCP5IE CCP4IE  
TMR4IP CCP5IP CCP4IP  
IPR3  
RCSTAx  
RCREGx  
TXSTAx  
ADDEN  
FERR  
OERR  
EUSARTx Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCONx ABDOVF  
RCIDL  
ABDEN  
SPBRGHx EUSARTx Baud Rate Generator Register High Byte  
SPBRGx EUSARTx Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
© 2009 Microchip Technology Inc.  
DS39663F-page 259  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 260  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
The module has five registers:  
21.0 10-BIT ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
The Analog-to-Digital (A/D) Converter module has  
11 inputs for the 64-pin devices and 15 for the 80-pin  
devices. This module allows conversion of an analog  
input signal to a corresponding 10-bit digital number.  
The ADCON0 register, shown in Register 21-1,  
controls the operation of the A/D module. The  
ADCON1 register, shown in Register 21-2, configures  
the functions of the port pins. The ADCON2 register,  
shown in Register 21-3, configures the A/D clock  
source, programmed acquisition time and justification.  
REGISTER 21-1: ADCON0: A/D CONTROL REGISTER 0  
R/W-0  
U-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
ADCAL  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ADCAL: A/D Calibration bit  
1= Calibration is performed on next A/D conversion  
0= Normal A/D Converter operation (no calibration is performed)  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
CHS<3:0>: Analog Channel Select bits  
0000= Channel 0 (AN0)  
0001= Channel 1 (AN1)  
0010= Channel 2 (AN2)  
0011= Channel 3 (AN3)  
0100= Channel 4 (AN4)  
0101= Unused  
0110= Channel 6 (AN6)  
0111= Channel 7 (AN7)  
1000= Channel 8 (AN8)  
1001= Channel 9 (AN9)  
1010= Channel 10 (AN10)  
1011= Channel 11 (AN11)  
1100= Channel 12 (AN12)(1,2)  
1101= Unimplemented(1,2)  
1110= Unimplemented(1,2)  
1111= Unimplemented(1,2)  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress  
0= A/D Idle  
ADON: A/D On bit  
1= A/D converter module is enabled  
0= A/D converter module is disabled  
Note 1: These channels are not implemented on 64-pin devices.  
2: Performing a conversion on unimplemented channels will return random values.  
© 2009 Microchip Technology Inc.  
DS39663F-page 261  
PIC18F87J10 FAMILY  
REGISTER 21-2: ADCON1: A/D CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VCFG1  
VCFG0  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
VCFG1: Voltage Reference Configuration bit (VREF- source)  
1= VREF- (AN2)  
0= AVSS  
bit 4  
VCFG0: Voltage Reference Configuration bit (VREF+ source)  
1= VREF+ (AN3)  
0= AVDD  
bit 3-0  
PCFG<3:0>: A/D Port Configuration Control bits:  
PCFG<3:0>  
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A = Analog input  
D = Digital I/O  
Note 1: AN12 through AN15 are available only in 80-pin devices.  
DS39663F-page 262  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
REGISTER 21-3: ADCON2: A/D CONTROL REGISTER 2  
R/W-0  
ADFM  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ACQT2  
ACQT1  
ACQT0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-3  
ACQT<2:0>: A/D Acquisition Time Select bits  
111= 20 TAD  
110= 16 TAD  
101= 12 TAD  
100= 8 TAD  
011= 6 TAD  
010= 4 TAD  
001= 2 TAD  
(1)  
000= 0 TAD  
bit 2-0  
ADCS<2:0>: A/D Conversion Clock Select bits  
111= FRC (clock derived from A/D RC oscillator)(1)  
110= FOSC/64  
101= FOSC/16  
100= FOSC/4  
011= FRC (clock derived from A/D RC oscillator)(1)  
010= FOSC/32  
001= FOSC/8  
000= FOSC/2  
Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D clock  
starts. This allows the SLEEPinstruction to be executed before starting a conversion.  
© 2009 Microchip Technology Inc.  
DS39663F-page 263  
PIC18F87J10 FAMILY  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(AVDD and AVSS), or the voltage level on the  
RA3/AN3/VREF+ and RA2/AN2/VREF- pins.  
the A/D conversion. When the A/D conversion is com-  
plete, the result is loaded into the ADRESH:ADRESL  
register pair, the GO/DONE bit (ADCON0<1>) is  
cleared and A/D Interrupt Flag bit, ADIF, is set.  
The A/D Converter has a unique feature of being able  
to operate while the device is in Sleep mode. To  
operate in Sleep, the A/D conversion clock must be  
derived from the A/D’s internal RC oscillator.  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off and any  
conversion in progress is aborted. The value in the  
ADRESH:ADRESL register pair is not modified for a  
Power-on Reset. These registers will contain unknown  
data after a Power-on Reset.  
The output of the sample and hold is the input into the  
converter, which generates the result via successive  
approximation.  
The block diagram of the A/D module is shown in  
Figure 21-1.  
Each port pin associated with the A/D Converter can be  
configured as an analog input or as a digital I/O. The  
ADRESH and ADRESL registers contain the result of  
FIGURE 21-1:  
A/D BLOCK DIAGRAM  
CHS<3:0>  
1111  
AN15(1)  
1110  
AN14(1)  
1101  
AN13(1)  
1100  
AN12(1)  
1011  
AN11  
1010  
AN10  
1001  
AN9  
1000  
AN8  
0111  
AN7  
0110  
AN6  
0100  
AN4  
VAIN  
0011  
(Input Voltage)  
10-Bit  
A/D  
Converter  
AN3  
0010  
AN2  
0001  
VCFG<1:0>  
AN1  
0000  
(2)  
VDD  
AN0  
VREF+  
VREF-  
Reference  
Voltage  
(2)  
VSS  
Note 1: Channels AN15 through AN12 are not available on 64-pin devices.  
2: I/O pins have diode protection to VDD and VSS.  
DS39663F-page 264  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the  
conversion is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 21.1  
“A/D Acquisition Requirements”. After this acquisi-  
tion time has elapsed, the A/D conversion can be  
started. An acquisition time can be programmed to  
occur between setting the GO/DONE bit and the actual  
start of the conversion.  
3. Wait the required acquisition time (if required).  
4. Start conversion:  
• Set GO/DONE bit (ADCON0<1>)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result registers (ADRESH:ADRESL);  
clear bit, ADIF, if required.  
The following steps should be followed to do an A/D  
conversion:  
7. For next conversion, go to step 1 or step 2, as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before next acquisition starts.  
1. Configure the A/D module:  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D acquisition time (ADCON2)  
• Select A/D conversion clock (ADCON2)  
• Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set GIE bit  
FIGURE 21-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
RS  
CPIN  
VAIN  
ILEAKAGE  
±100 nA  
CHOLD = 25 pF  
VT = 0.6V  
5 pF  
VSS  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
6V  
5V  
VDD 4V  
VT  
ILEAKAGE = Leakage Current at the pin due to  
various junctions  
3V  
RIC  
= Interconnect Resistance  
2V  
SS  
= Sampling Switch  
CHOLD  
RSS  
= Sample/Hold Capacitance (from DAC)  
= Sampling Switch Resistance  
1
2
3
4
Sampling Switch (kΩ)  
© 2009 Microchip Technology Inc.  
DS39663F-page 265  
PIC18F87J10 FAMILY  
To calculate the minimum acquisition time,  
Equation 21-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
21.1 A/D Acquisition Requirements  
For the A/D Converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 21-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor, CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5 kΩ. After the analog input channel is  
selected (changed), the channel must be sampled for  
at least the minimum acquisition time before starting a  
conversion.  
Equation 21-3 shows the calculation of the minimum  
required acquisition time, TACQ. This calculation is  
based on the following application system  
assumptions:  
CHOLD  
Rs  
Conversion Error  
VDD  
Temperature  
=
=
=
=
25 pF  
2.5 kΩ  
1/2 LSb  
3V Rss = 2 kΩ  
85°C (system max.)  
Note: When the conversion is started, the  
holding capacitor is disconnected from the  
input pin.  
EQUATION 21-1: ACQUISITION TIME  
TACQ  
=
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
TAMP + TC + TCOFF  
EQUATION 21-2: A/D MINIMUM CHARGING TIME  
VHOLD  
or  
TC  
=
=
(VREF – (VREF/2048)) • (1 – e(-TC/CHOLD(RIC + RSS + RS))  
)
-(CHOLD)(RIC + RSS + RS) ln(1/2048)  
EQUATION 21-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
TAMP  
TCOFF  
=
=
=
TAMP + TC + TCOFF  
0.2 μs  
(Temp – 25°C)(0.02 μs/°C)  
(85°C – 25°C)(0.02 μs/°C)  
1.2 μs  
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 ms.  
TC  
=
-(CHOLD)(RIC + RSS + RS) ln(1/2048) μs  
-(25 pF) (1 kΩ + 2 kΩ + 2.5 kΩ) ln(0.0004883) μs  
1.05 μs  
TACQ  
=
0.2 μs + 1 μs + 1.2 μs  
2.4 μs  
DS39663F-page 266  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 21-1: TAD vs. DEVICE OPERATING  
FREQUENCIES  
21.2 Selecting and Configuring  
Automatic Acquisition Time  
AD Clock Source (TAD)  
Maximum  
Device  
Frequency  
The ADCON2 register allows the user to select an  
acquisition time that occurs each time the GO/DONE  
bit is set.  
Operation  
ADCS<2:0>  
2 TOSC  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC(2)  
000  
100  
001  
101  
010  
110  
x11  
2.86 MHz  
5.71 MHz  
11.43 MHz  
22.86 MHz  
40.0 MHz  
40.0 MHz  
1.00 MHz(1)  
When the GO/DONE bit is set, sampling is stopped and  
a conversion begins. The user is responsible for ensur-  
ing the required acquisition time has passed between  
selecting the desired input channel and setting the  
GO/DONE bit. This occurs when the ACQT<2:0> bits  
(ADCON2<5:3>) remain in their Reset state (‘000’) and  
is compatible with devices that do not offer  
programmable acquisition times.  
If desired, the ACQT bits can be set to select a pro-  
grammable acquisition time for the A/D module. When  
the GO/DONE bit is set, the A/D module continues to  
sample the input for the selected acquisition time, then  
automatically begins a conversion. Since the acquisi-  
tion time is programmed, there may be no need to wait  
for an acquisition time between selecting a channel and  
setting the GO/DONE bit.  
Note 1: The RC source has a typical TAD time of  
4 μs.  
2: For device frequencies above 1 MHz, the  
device must be in Sleep mode for the entire  
conversion or the A/D accuracy may be out  
of specification.  
21.4 Configuring Analog Port Pins  
In either case, when the conversion is completed, the  
GO/DONE bit is cleared, the ADIF flag is set and the  
A/D begins sampling the currently selected channel  
again. If an acquisition time is programmed, there is  
nothing to indicate if the acquisition time has ended or  
if the conversion has begun.  
The ADCON1, TRISA, TRISF and TRISH registers  
control the operation of the A/D port pins. The port pins  
needed as analog inputs must have their correspond-  
ing TRIS bits set (input). If the TRIS bit is cleared  
(output), the digital output level (VOH or VOL) will be  
converted.  
21.3 Selecting the A/D Conversion  
Clock  
The A/D operation is independent of the state of the  
CHS<3:0> bits and the TRIS bits.  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an  
analog input. Analog levels on a digitally  
configured input will be accurately  
converted.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 11 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable.  
There are seven possible options for TAD:  
• 2 TOSC  
• 4 TOSC  
2: Analog levels on any pin defined as a  
digital input may cause the digital input  
buffer to consume current out of the  
device’s specification limits.  
• 8 TOSC  
• 16 TOSC  
• 32 TOSC  
• 64 TOSC  
• Internal RC Oscillator  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be as short as possible but greater than the  
minimum TAD (see parameter 130 in Table 27-27 for  
more information).  
Table 21-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
© 2009 Microchip Technology Inc.  
DS39663F-page 267  
PIC18F87J10 FAMILY  
21.5 A/D Conversions  
21.6 Use of the ECCP2 Trigger  
Figure 21-3 shows the operation of the A/D Converter  
after the GO/DONE bit has been set and the  
ACQT<2:0> bits are cleared. A conversion is started  
after the following instruction to allow entry into Sleep  
mode before the conversion begins.  
An A/D conversion can be started by the “Special Event  
Trigger” of the ECCP2 module. This requires that the  
CCP2M<3:0> bits (CCP2CON<3:0>) be programmed  
as ‘1011’ and that the A/D module is enabled (ADON  
bit is set). When the trigger occurs, the GO/DONE bit  
will be set, starting the A/D acquisition and conversion  
and the Timer1 (or Timer3) counter will be reset to zero.  
Timer1 (or Timer3) is reset to automatically repeat the  
A/D acquisition period with minimal software overhead  
(moving ADRESH/ADRESL to the desired location).  
The appropriate analog input channel must be selected  
and the minimum acquisition period is either timed by  
the user, or an appropriate TACQ time is selected before  
the Special Event Trigger sets the GO/DONE bit (starts  
a conversion).  
Figure 21-4 shows the operation of the A/D Converter  
after the GO/DONE bit has been set, the ACQT<2:0>  
bits are set to ‘010’ and a 4 TAD acquisition time has  
been selected before the conversion starts.  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The A/D Result register  
pair will NOT be updated with the partially completed  
A/D  
conversion  
sample.  
This  
means  
the  
ADRESH:ADRESL registers will continue to contain  
the value of the last completed conversion (or the last  
value written to the ADRESH:ADRESL registers).  
If the A/D module is not enabled (ADON is cleared), the  
Special Event Trigger will be ignored by the A/D module  
but will still reset the Timer1 (or Timer3) counter.  
After the A/D conversion is completed or aborted, a  
2 TAD wait is required before the next acquisition can be  
started. After this wait, acquisition on the selected  
channel is automatically started.  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
FIGURE 21-3:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)  
TCY - TAD  
TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7  
b4  
b1  
b0  
b9  
b8  
b7  
b6  
b5  
b3  
b2  
Conversion starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO/DONE bit  
Next Q4: ADRESH/ADRESL is loaded, GO/DONE bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
FIGURE 21-4:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)  
TAD Cycles  
TACQT Cycles  
7
8
9
10  
b1  
11  
b0  
1
2
3
4
1
2
3
4
5
6
b7  
b6  
b3  
b2  
b8  
b5  
b4  
b9  
Automatic  
Acquisition  
Time  
Conversion starts  
(Holding capacitor is disconnected)  
Set GO/DONE bit  
(Holding capacitor continues  
acquiring input)  
Next Q4: ADRESH:ADRESL is loaded, GO/DONE bit is cleared,  
ADIF bit is set, holding capacitor is reconnected to analog input.  
DS39663F-page 268  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
If the A/D is expected to operate while the device is in  
21.7 A/D Converter Calibration  
a
power-managed mode, the ACQT<2:0> and  
The A/D Converter in the PIC18F87J10 family of  
devices includes a self-calibration feature which com-  
pensates for any offset generated within the module.  
The calibration process is automated and is initiated by  
setting the ADCAL bit (ADCON0<7>). The next time  
the GO/DONE bit is set, the module will perform a  
“dummy” conversion (that is, with reading none of the  
input channels) and store the resulting value internally  
to compensate for offset. Thus, subsequent offsets will  
be compensated.  
ADCS<2:0> bits in ADCON2 should be updated in  
accordance with the power-managed mode clock that  
will be used. After the power-managed mode is entered  
(either of the power-managed Run modes), an A/D  
acquisition or conversion may be started. Once an  
acquisition or conversion is started, the device should  
continue to be clocked by the same power-managed  
mode clock source until the conversion has been com-  
pleted. If desired, the device may be placed into the  
corresponding power-managed Idle mode during the  
conversion.  
The calibration process assumes that the device is in a  
relatively steady-state operating condition. If A/D  
calibration is used, it should be performed after each  
device Reset or if there are other major changes in  
operating conditions.  
If the power-managed mode clock frequency is less  
than 1 MHz, the A/D RC clock source should be  
selected.  
Operation in the Sleep mode requires the A/D RC clock  
to be selected. If bits, ACQT<2:0>, are set to ‘000’ and  
a conversion is started, the conversion will be delayed  
one instruction cycle to allow execution of the SLEEP  
instruction and entry to Sleep mode. The IDLEN and  
SCS bits in the OSCCON register must have already  
been cleared prior to starting the conversion.  
21.8 Operation in Power-Managed  
Modes  
The selection of the automatic acquisition time and A/D  
conversion clock is determined in part by the clock  
source and frequency while in a power-managed  
mode.  
TABLE 21-2: SUMMARY OF A/D REGISTERS  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
TMR3IF  
TMR3IE  
TMR3IP  
RBIF  
53  
55  
55  
55  
55  
55  
55  
54  
54  
54  
54  
54  
55  
56  
56  
56  
56  
56  
56  
PSPIF  
PSPIE  
ADIF  
ADIE  
ADIP  
CMIF  
CMIE  
CMIP  
RC1IF  
RC1IE  
RC1IP  
SSP1IF  
SSP1IE  
SSP1IP  
BCL1IF  
BCL1IE  
BCL1IP  
TMR1IF  
TMR1IE  
TMR1IP  
CCP2IF  
CCP2IE  
CCP2IP  
PIE1  
IPR1  
PSPIP  
PIR2  
OSCFIF  
OSCFIE  
OSCFIP  
PIE2  
IPR2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCP2CON  
PORTA  
TRISA  
A/D Result Register High Byte  
A/D Result Register Low Byte  
ADCAL  
CHS3  
VCFG1  
ACQT2  
DC2B1  
RA5  
CHS3  
VCFG0  
ACQT1  
CHS1  
PCFG3  
ACQT0  
CHS0 GO/DONE ADON  
PCFG2  
ADCS2  
PCFG1  
ADCS1  
PCFG0  
ADCS0  
ADFM  
P2M1  
P2M0  
DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0  
RA4  
TRISA4  
RF4  
RA3  
TRISA3  
RF3  
RA2  
TRISA2  
RF2  
RA1  
TRISA1  
RF1  
RA0  
TRISA0  
TRISA5  
RF5  
PORTF  
TRISF  
PORTH(1)  
TRISH(1)  
RF7  
RF6  
TRISF4  
RH6  
TRISH6  
TRISF5  
RH7  
TRISF5  
RH5  
TRISF4  
RH4  
TRISF3  
RH3  
TRISF2  
RH2  
TRISF1  
RH1  
RH0  
TRISH7  
TRISH5  
TRISH4  
TRISH3  
TRISH2  
TRISH1  
TRISH0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for A/D conversion.  
Note 1: This register is not implemented on 64-pin devices.  
© 2009 Microchip Technology Inc.  
DS39663F-page 269  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 270  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
The CMCON register (Register 22-1) selects the  
comparator input and output configuration. Block  
diagrams of the various comparator configurations are  
shown in Figure 22-1.  
22.0 COMPARATOR MODULE  
The analog comparator module contains two  
comparators that can be configured in a variety of  
ways. The inputs can be selected from the analog  
inputs multiplexed with pins RF1 through RF6, as well  
as the on-chip voltage reference (see Section 23.0  
“Comparator Voltage Reference Module”). The digi-  
tal outputs (normal or inverted) are available at the pin  
level and can also be read through the control register.  
REGISTER 22-1: CMCON: COMPARATOR CONTROL REGISTER  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-1  
CM2  
R/W-1  
CM1  
R/W-1  
CM0  
C2OUT  
C1OUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output inverted  
0= C1 output not inverted  
CIS: Comparator Input Switch bit  
When CM<2:0> = 110:  
1= C1 VIN- connects to RA5/AN10/CVREF  
C2 VIN- connects to RF3/AN8  
0= C1 VIN- connects to RF6/AN11  
C2 VIN- connects to RF4/AN9  
bit 2-0  
CM<2:0>: Comparator Mode bits  
Figure 22-1 shows the Comparator modes and the CM<2:0> bit settings.  
© 2009 Microchip Technology Inc.  
DS39663F-page 271  
PIC18F87J10 FAMILY  
mode is changed, the comparator output level may not  
be valid for the specified mode change delay shown in  
Section 27.0 “Electrical Characteristics”.  
22.1 Comparator Configuration  
There are eight modes of operation for the compara-  
tors, shown in Figure 22-1. Bits, CM<2:0>, of the  
CMCON register are used to select these modes. The  
TRISF register controls the data direction of the  
comparator pins for each mode. If the Comparator  
Note:  
Comparator interrupts should be disabled  
during Comparator mode change;  
otherwise, a false interrupt may occur.  
a
FIGURE 22-1:  
COMPARATOR I/O OPERATING MODES  
Comparator Outputs Disabled  
Comparators Off (POR Default Value)  
CM<2:0> = 000  
CM<2:0> = 111  
A
D
VIN-  
VIN-  
RF6/AN11  
RF6/AN11  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
D
RF5/AN10/  
CVREF  
RF5/AN10/  
CVREF  
A
A
D
VIN-  
VIN-  
RF4/AN9  
RF3/AN8  
RF4/AN9  
VIN+  
VIN+  
D
RF3/AN8  
Two Independent Comparators  
Two Independent Comparators with Outputs  
CM<2:0> = 010  
CM<2:0> = 011  
A
A
VIN-  
VIN-  
RF6/AN11  
RF6/AN11  
C1OUT  
C2OUT  
C1OUT  
C2OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
A
RF5/AN10/  
CVREF  
RF5/AN10/  
CVREF  
RF2/AN7/C1OUT*  
A
A
VIN-  
RF4/AN9  
RF3/AN8  
A
VIN-  
RF4/AN9  
VIN+  
VIN+  
A
RF3/AN8  
RF1/AN6/C2OUT*  
Two Common Reference Comparators  
Two Common Reference Comparators with Outputs  
CM<2:0> = 100  
CM<2:0> = 101  
A
A
VIN-  
VIN-  
RF6/AN11  
RF6/AN11  
C1OUT  
C2OUT  
C1OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
A
RF5/AN10/  
CVREF  
RF5/AN10/  
CVREF  
RF2/AN7/C1OUT*  
A
D
VIN-  
RF4/AN9  
RF3/AN8  
RF4/AN9  
RF3/AN8  
A
D
VIN-  
VIN+  
C2OUT  
VIN+  
RF1/AN6/C2OUT*  
Four Inputs Multiplexed to Two Comparators  
One Independent Comparator with Output  
CM<2:0> = 110  
CM<2:0> = 001  
A
RF6/AN11  
A
A
VIN-  
RF6/AN11  
CIS = 0  
CIS = 1  
VIN-  
A
C1OUT  
RF5/AN10/  
CVREF  
C1  
VIN+  
C1OUT  
C2OUT  
RF5/AN10/  
CVREF  
C1  
C2  
VIN+  
A
A
RF2/AN7/C1OUT*  
RF4/AN9  
RF3/AN8  
VIN-  
CIS = 0  
CIS = 1  
VIN+  
D
VIN-  
RF4/AN9  
Off (Read as ‘0’)  
C2  
VIN+  
D
RF3/AN8  
CVREF  
From VREF module  
A = Analog Input, port reads zeros always  
D = Digital Input  
CIS (CMCON<3>) is the Comparator Input Switch  
* Setting the TRISF<2:1> bits will disable the comparator outputs by configuring the pins as inputs.  
DS39663F-page 272  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
22.3.2  
INTERNAL REFERENCE SIGNAL  
22.2 Comparator Operation  
The comparator module also allows the selection of an  
internally generated voltage reference from the  
comparator voltage reference module. This module is  
described in more detail in Section 23.0 “Comparator  
Voltage Reference Module”.  
A single comparator is shown in Figure 22-2, along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN-, the output of the comparator  
is a digital low level. When the analog input at VIN+ is  
greater than the analog input VIN-, the output of the  
comparator is a digital high level. The shaded areas of  
the output of the comparator in Figure 22-2 represent  
the uncertainty due to input offsets and response time.  
The internal reference is only available in the mode  
where four inputs are multiplexed to two comparators  
(CM<2:0> = 110). In this mode, the internal voltage  
reference is applied to the VIN+ pin of both  
comparators.  
22.3 Comparator Reference  
22.4 Comparator Response Time  
Depending on the comparator operating mode, either  
an external or internal voltage reference may be used.  
The analog signal present at VIN- is compared to the  
signal at VIN+ and the digital output of the comparator  
is adjusted accordingly (Figure 22-2).  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output has a valid level. If the internal ref-  
erence is changed, the maximum delay of the internal  
voltage reference must be considered when using the  
comparator outputs. Otherwise, the maximum delay of  
the comparators should be used (see Section 27.0  
“Electrical Characteristics”).  
FIGURE 22-2:  
SINGLE COMPARATOR  
VIN+  
VIN-  
+
22.5 Comparator Outputs  
Output  
The comparator outputs are read through the CMCON  
register. These bits are read-only. The comparator  
outputs may also be directly output to the RF1 and RF2  
I/O pins. When enabled, multiplexors in the output path  
of the RF1 and RF2 pins will switch and the output of  
each pin will be the unsynchronized output of the  
comparator. The uncertainty of each of the  
comparators is related to the input offset voltage and  
the response time given in the specifications.  
Figure 22-3 shows the comparator output block  
diagram.  
VIN-  
VIN+  
Output  
The TRISF bits will still function as an output enable/  
disable for the RF1 and RF2 pins while in this mode.  
The polarity of the comparator outputs can be changed  
using the C2INV and C1INV bits (CMCON<5:4>).  
22.3.1  
EXTERNAL REFERENCE SIGNAL  
Note 1: When reading the PORT register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert an analog input according to the  
Schmitt Trigger input specification.  
When external voltage references are used, the  
comparator module can be configured to have the com-  
parators operate from the same or different reference  
sources. However, threshold detector applications may  
require the same reference. The reference signal must  
be between VSS and VDD and can be applied to either  
pin of the comparator(s).  
2: Analog levels on any pin defined as a  
digital input may cause the input buffer to  
consume more current than is specified.  
© 2009 Microchip Technology Inc.  
DS39663F-page 273  
PIC18F87J10 FAMILY  
FIGURE 22-3:  
COMPARATOR OUTPUT BLOCK DIAGRAM  
Port Pins  
To RF1 or  
RF2 Pin  
D
Q
Bus  
Data  
CxINV  
EN  
Read CMCON  
D
Q
Set  
CMIF  
bit  
EN  
CL  
From  
Other  
Comparator  
Reset  
22.6 Comparator Interrupts  
22.7 Comparator Operation  
During Sleep  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that occurred. The CMIF  
bit (PIR2<6>) is the Comparator Interrupt Flag. The  
CMIF bit must be reset by clearing it. Since it is also  
possible to write a ‘1’ to this register, a simulated  
interrupt may be initiated.  
When a comparator is active and the device is placed  
in Sleep mode, the comparator remains active and the  
interrupt is functional, if enabled. This interrupt will  
wake-up the device from Sleep mode, when enabled.  
Each operational comparator will consume additional  
current, as shown in the comparator specifications. To  
minimize power consumption while in Sleep mode, turn  
off the comparators (CM<2:0> = 111) before entering  
Sleep. If the device wakes up from Sleep, the contents  
of the CMCON register are not affected.  
Both the CMIE bit (PIE2<6>) and the PEIE bit  
(INTCON<6>) must be set to enable the interrupt. In  
addition, the GIE bit (INTCON<7>) must also be set. If  
any of these bits are clear, the interrupt is not enabled,  
though the CMIF bit will still be set if an interrupt  
condition occurs.  
22.8 Effects of a Reset  
A device Reset forces the CMCON register to its Reset  
state, causing the comparator modules to be turned off  
(CM<2:0> = 111). However, the input pins (RF3  
through RF6) are configured as analog inputs by  
default on device Reset. The I/O configuration for these  
pins is determined by the setting of the PCFG<3:0> bits  
(ADCON1<3:0>). Therefore, device current is  
minimized when analog inputs are present at Reset  
time.  
Note:  
If a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR2  
register) interrupt flag may not get set.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON will end the  
mismatch condition.  
b) Clear flag bit, CMIF.  
A mismatch condition will continue to set flag bit, CMIF.  
Reading CMCON will end the mismatch condition and  
allow flag bit, CMIF, to be cleared.  
DS39663F-page 274  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latch-up condition may  
occur. A maximum source impedance of 10 kΩ is  
recommended for the analog sources. Any external  
component connected to an analog input pin, such as  
a capacitor or a Zener diode, should have very little  
leakage current.  
22.9 Analog Input Connection  
Considerations  
A simplified circuit for an analog input is shown in  
Figure 22-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input, therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
FIGURE 22-4:  
COMPARATOR ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RIC  
RS < 10k  
AIN  
Comparator  
Input  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
VSS  
Legend: CPIN  
=
=
Input Capacitance  
Threshold Voltage  
VT  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
=
=
=
Interconnect Resistance  
Source Impedance  
Analog Voltage  
TABLE 22-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
INTCON  
PIR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
BCL1IF  
BCL1IE  
BCL1IP  
CIS  
TMR0IF  
INT0IF  
RBIF  
53  
55  
55  
55  
55  
55  
56  
56  
56  
OSCFIF  
OSCFIE  
OSCFIP  
C2OUT  
CVREN  
RF7  
CMIF  
CMIE  
TMR3IF CCP2IF  
TMR3IE CCP2IE  
TMR3IP CCP2IP  
PIE2  
IPR2  
CMIP  
CMCON  
CVRCON  
PORTF  
LATF  
C1OUT  
CVROE  
RF6  
C2INV  
CVRR  
RF5  
C1INV  
CVRSS  
RF4  
CM2  
CVR2  
RF2  
CM1  
CVR1  
RF1  
CM0  
CVR0  
CVR3  
RF3  
LATF7  
LATF6  
TRISF6  
LATF5  
TRISF5  
LATF4  
TRISF4  
LATF3  
TRISF3  
LATF2  
TRISF2  
LATF1  
TRISF1  
TRISF  
TRISF7  
Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the comparator module.  
© 2009 Microchip Technology Inc.  
DS39663F-page 275  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 276  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
to be used is selected by the CVRR bit (CVRCON<5>).  
The primary difference between the ranges is the size  
of the steps selected by the CVREF Selection bits  
(CVR<3:0>), with one range offering finer resolution.  
The equations used to calculate the output of the  
comparator voltage reference are as follows:  
23.0 COMPARATOR VOLTAGE  
REFERENCE MODULE  
The comparator voltage reference is a 16-tap resistor  
ladder network that provides a selectable reference  
voltage. Although its primary purpose is to provide a  
reference for the analog comparators, it may also be  
used independently of them.  
If CVRR = 1:  
CVREF = ((CVR<3:0>)/24) x (CVRSRC)  
A block diagram of the module is shown in Figure 23-1.  
The resistor ladder is segmented to provide two ranges  
of CVREF values and has a power-down function to  
conserve power when the reference is not being used.  
The module’s supply reference can be provided from  
either device VDD/VSS or an external voltage reference.  
If CVRR = 0:  
CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) x  
(CVRSRC)  
The comparator reference supply voltage can come  
from either VDD and VSS, or the external VREF+ and  
VREF- that are multiplexed with RA2 and RA3. The  
voltage source is selected by the CVRSS bit  
(CVRCON<4>).  
23.1 Configuring the Comparator  
Voltage Reference  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF  
output (see Table 27-3 in Section 27.0 “Electrical  
Characteristics”).  
The comparator voltage reference module is controlled  
through the CVRCON register (Register 23-1). The  
comparator voltage reference provides two ranges of  
output voltage, each with 16 distinct levels. The range  
REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
R/W-0  
CVROE(1)  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVRSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
CVROE: Comparator VREF Output Enable bit(1)  
1= CVREF voltage level is also output on the RF5/AN10/CVREF pin  
0= CVREF voltage is disconnected from the RF5/AN10/CVREF pin  
CVRR: Comparator VREF Range Selection bit  
1= 0 to 0.667 CVRSRC, with CVRSRC/24 step size (low range)  
0= 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size (high range)  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source, CVRSRC = (VREF+) – (VREF-)  
0= Comparator reference source, CVRSRC = VDD – VSS  
CVR<3:0>: Comparator VREF Value Selection bits (0 (CVR<3:0>) 15)  
When CVRR = 1:  
CVREF = ((CVR<3:0>)/24) (CVRSRC)  
When CVRR = 0:  
CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) (CVRSRC)  
Note 1: CVROE overrides the TRISF<5> bit setting.  
© 2009 Microchip Technology Inc.  
DS39663F-page 277  
PIC18F87J10 FAMILY  
FIGURE 23-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRSS = 1  
CVRSS = 0  
VREF+  
VDD  
8R  
CVR<3:0>  
R
CVREN  
R
R
R
16 Steps  
CVREF  
R
R
R
CVRR  
VREF-  
8R  
CVRSS = 1  
CVRSS = 0  
23.2 Voltage Reference Accuracy/Error  
23.4 Effects of a Reset  
The full range of voltage reference cannot be realized  
due to the construction of the module. The transistors  
on the top and bottom of the resistor ladder network  
(Figure 23-1) keep CVREF from approaching the refer-  
ence source rails. The voltage reference is derived  
from the reference source; therefore, the CVREF output  
changes with fluctuations in that source. The tested  
absolute accuracy of the voltage reference can be  
found in Section 27.0 “Electrical Characteristics”.  
A device Reset disables the voltage reference by  
clearing bit, CVREN (CVRCON<7>). This Reset also  
disconnects the reference from the RA2 pin by clearing  
bit, CVROE (CVRCON<6>), and selects the high-  
voltage range by clearing bit, CVRR (CVRCON<5>).  
The CVR value select bits are also cleared.  
23.5 Connection Considerations  
The voltage reference module operates independently  
of the comparator module. The output of the reference  
generator may be connected to the RF5 pin if the  
CVROE bit is set. Enabling the voltage reference out-  
put onto RA2 when it is configured as a digital input will  
increase current consumption. Connecting RF5 as a  
digital output with CVRSS enabled will also increase  
current consumption.  
23.3 Operation During Sleep  
When the device wakes up from Sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the CVRCON register are not affected. To minimize  
current consumption in Sleep mode, the voltage  
reference should be disabled.  
The RF5 pin can be used as a simple D/A output with  
limited drive capability. Due to the limited current drive  
capability, a buffer must be used on the voltage  
reference output for external connections to VREF.  
Figure 23-2 shows an example buffering technique.  
DS39663F-page 278  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 23-2:  
COMPARATOR VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
PIC18F87J10  
CVREF  
(1)  
R
Module  
+
CVREF Output  
RF5  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the comparator voltage reference Configuration bits, CVRCON<5> and CVRCON<3:0>.  
TABLE 23-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
CVRCON  
CMCON  
TRISF  
CVREN  
C2OUT  
TRISF7  
CVROE  
C1OUT  
TRISF6  
CVRR  
C2INV  
CVRSS  
C1INV  
CVR3  
CIS  
CVR2  
CM2  
CVR1  
CM1  
CVR0  
CM0  
55  
55  
56  
TRISF5 TRISF4  
TRISF3  
TRISF2  
TRISF1  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used with the comparator voltage reference.  
© 2009 Microchip Technology Inc.  
DS39663F-page 279  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 280  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
24.1.1  
CONSIDERATIONS FOR  
CONFIGURING THE PIC18F87J10  
FAMILY DEVICES  
24.0 SPECIAL FEATURES OF THE  
CPU  
PIC18F87J10 family devices include several features  
intended to maximize reliability and minimize cost  
through elimination of external components. These are:  
Unlike previous PIC18 microcontrollers, devices of the  
PIC18F87J10 family do not use persistent memory  
registers to store configuration information. The config-  
uration bytes are implemented as volatile memory  
which means that configuration data must be  
programmed each time the device is powered up.  
• Oscillator Selection  
• Resets:  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
Configuration data is stored in the four words at the top  
of the on-chip program memory space, known as the  
Flash Configuration Words. It is stored in program  
memory in the same order shown in Table 24-2, with  
CONFIG1L at the lowest address and CONFIG3H at  
the highest. The data is automatically loaded in the  
proper Configuration registers during device power-up.  
• Watchdog Timer (WDT)  
• Fail-Safe Clock Monitor  
• Two-Speed Start-up  
• Code Protection  
When creating applications for these devices, users  
should always specifically allocate the location of the  
Flash Configuration Word for configuration data; this is  
to make certain that program code is not stored in this  
address when the code is compiled.  
• In-Circuit Serial Programming  
The oscillator can be configured for the application  
depending on frequency, power, accuracy and cost. All  
of the options are discussed in detail in Section 3.0  
“Oscillator Configurations”.  
The volatile memory cells used for the Configuration  
bits always reset to ‘1’ on Power-on Resets. For all  
other type of Reset events, the previously programmed  
values are maintained and used without reloading from  
program memory.  
A complete discussion of device Resets and interrupts  
is available in previous sections of this data sheet.  
In addition to their Power-up and Oscillator Start-up  
Timers provided for Resets, the PIC18F87J10 family of  
devices have a configurable Watchdog Timer which is  
controlled in software.  
The four Most Significant bits of CONFIG1H,  
CONFIG2H and CONFIG3H in program memory  
should also be ‘1111’. This makes these Configuration  
Words appear to be NOP instructions in the remote  
event that their locations are ever executed by  
accident. Since Configuration bits are not implemented  
in the corresponding locations, writing ‘1’s to these  
locations has no effect on device operation.  
The inclusion of an internal RC oscillator also provides  
the additional benefits of a Fail-Safe Clock Monitor  
(FSCM) and Two-Speed Start-up. FSCM provides for  
background monitoring of the peripheral clock and  
automatic switchover in the event of its failure.  
Two-Speed Start-up enables code to be executed  
almost immediately on start-up, while the primary clock  
source completes its start-up delays.  
To prevent inadvertent configuration changes during  
code execution, all programmable Configuration bits  
are write-once. After a bit is initially programmed during  
a power cycle, it cannot be written to again. Changing  
a device configuration requires that power to the device  
be cycled.  
All of these features are enabled and configured by  
setting the appropriate Configuration register bits.  
24.1 Configuration Bits  
TABLE 24-1: MAPPING OF THE FLASH  
CONFIGURATION WORDS TO  
THE CONFIGURATION  
The Configuration bits can be programmed (read as  
0’) or left unprogrammed (read as ‘1’) to select various  
device configurations. These bits are mapped starting  
at program memory location 300000h. A complete list  
is shown in Table 24-2. A detailed explanation of the  
various bit functions is provided in Register 24-1  
through Register 24-6.  
REGISTERS  
Configuration  
Register  
Address  
Code Space  
Address  
Configuration Byte  
CONFIG1L  
CONFIG1H  
CONFIG2L  
CONFIG2H  
CONFIG3L  
CONFIG3H  
CONFIG4L(1)  
CONFIG4H(1)  
XXXF8h  
XXXF9h  
XXXFAh  
XXXFBh  
XXXFCh  
XXXFDh  
XXXFEh  
XXXFFh  
300000h  
300001h  
300002h  
300003h  
300004h  
300005h  
300006h  
300007h  
Note 1:  
Unimplemented in PIC18F87J10 family devices.  
© 2009 Microchip Technology Inc.  
DS39663F-page 281  
PIC18F87J10 FAMILY  
TABLE 24-2: CONFIGURATION BITS AND DEVICE IDs  
Default/  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Unprogrammed  
(1)  
Value  
300000h CONFIG1L DEBUG  
XINST STVREN  
WDTEN  
111- ---1  
---- 01--  
11-- -111  
(2)  
(2)  
(2)  
(2)  
(3)  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
CP0  
IESO  
FCMEN  
FOSC2  
FOSC1  
FOSC0  
(2)  
(2)  
(2)  
(2)  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 ---- 1111  
(4)  
(4)  
(4)  
(4)  
(4)  
300004h CONFIG3L WAIT  
BW  
EMB1  
EMB0  
EASHFT  
ECCPMX  
REV1  
1111 1---  
(2)  
(2)  
(2)  
(2)  
(4)  
300005h CONFIG3H  
3FFFFEh DEVID1  
3FFFFFh DEVID2  
CCP2MX ---- --11  
(5)  
(5)  
DEV2  
DEV1  
DEV9  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV0  
DEV3  
xxxx xxxx  
0000 10x1  
DEV10  
DEV4  
Legend:  
x= unknown, u= unchanged, -= unimplemented. Shaded cells are unimplemented, read as ‘0’.  
Note 1: Values reflect the unprogrammed state as received from the factory and following Power-on Resets. In all other Reset  
states, the configuration bytes maintain their previously programmed states.  
2: The value of these bits in program memory should always be ‘1’. This ensures that the location is executed as a NOPif it  
is accidentally executed.  
3: This bit should always be maintained as ‘0’.  
4: Implemented in 80-pin devices only. On 64-pin devices, these bits are reserved and should always be maintained as ‘1’.  
5: See Register 24-7 and Register 24-8 for DEVID values. These registers are read-only and cannot be programmed by  
the user.  
DS39663F-page 282  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
REGISTER 24-1: CONFIG1L: CONFIGURATION REGISTER 1 LOW (BYTE ADDRESS 300000h)  
R/WO-1  
DEBUG  
R/WO-1  
XINST  
R/WO-1  
U-0  
U-0  
U-0  
U-0  
R/WO-1  
WDTEN  
STVREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7  
bit 6  
bit 5  
DEBUG: Background Debugger Enable bit  
1= Background debugger disabled; RB6 and RB7 configured as general purpose I/O pins  
0= Background debugger enabled; RB6 and RB7 are dedicated to In-Circuit Debug  
XINST: Extended Instruction Set Enable bit  
1= Instruction set extension and Indexed Addressing mode enabled  
0= Instruction set extension and Indexed Addressing mode disabled (Legacy mode)  
STVREN: Stack Overflow/Underflow Reset Enable bit  
1= Reset on stack overflow/underflow enabled  
0= Reset on stack overflow/underflow disabled  
bit 4-1  
bit 0  
Unimplemented: Read as ‘0’  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on SWDTEN bit)  
REGISTER 24-2: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/WO-1  
CP0  
U-0  
U-0  
(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7-3  
bit 2  
Unimplemented: Read as ‘0’  
CP0: Code Protection bit  
1= Program memory is not code-protected  
0= Program memory is code-protected  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: This bit should always be maintained as ‘0’.  
© 2009 Microchip Technology Inc.  
DS39663F-page 283  
PIC18F87J10 FAMILY  
REGISTER 24-3: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)  
R/WO-1  
IESO  
R/WO-1  
FCMEN  
U-0  
U-0  
U-0  
R/WO-1  
FOSC2  
R/WO-1  
FOSC1  
R/WO-1  
FOSC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7  
bit 6  
IESO: Two-Speed Start-up (Internal/External Oscillator Switchover) Control bit  
1= Two-Speed Start-up enabled  
0= Two-Speed Start-up disabled  
FCMEN: Fail-Safe Clock Monitor Enable bit  
1= Fail-Safe Clock Monitor enabled  
0= Fail-Safe Clock Monitor disabled  
bit 5-3  
bit 2  
Unimplemented: Read as ‘0’  
FOSC2: Default/Reset System Clock Select bit  
1= Clock selected by FOSC<1:0> as a system clock is enabled when OSCCON<1:0> = 00  
0= INTRC enabled as a system clock when OSCCON<1:0> = 00  
bit 1-0  
FOSC<1:0>: Oscillator Selection bits  
11= EC oscillator, PLL enabled and under software control, CLKO function on OSC2  
10= EC oscillator, CLKO function on OSC2  
01= HS oscillator, PLL enabled and under software control  
00= HS oscillator  
REGISTER 24-4: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)  
U-0  
U-0  
U-0  
U-0  
R/WO-1  
R/WO-1  
R/WO-1  
R/WO-1  
WDTPS0  
bit 0  
WDTPS3  
WDTPS2  
WDTPS1  
bit 7  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
WDTPS<3:0>: Watchdog Timer Postscale Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
DS39663F-page 284  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
REGISTER 24-5: CONFIG3L: CONFIGURATION REGISTER 3 LOW (BYTE ADDRESS 300004h)  
R/WO-1  
WAIT(1)  
R/WO-1  
BW(1)  
R/WO-1  
EMB1(1)  
R/WO-1  
EMB0(1)  
R/WO-1  
EASHFT(1)  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
bit 7  
WAIT: External Bus Wait Enable bit(1)  
1= Wait states for operations on external memory bus disabled  
0= Wait states for operations on external memory bus enabled  
bit 6  
BW: Data Bus Width Select bit(1)  
1= 16-Bit External Bus mode  
0= 8-Bit External Bus mode  
bit 5-4  
EMB<1:0>: External Memory Bus Configuration bits(1)  
11= Microcontroller mode – external bus disabled  
10= Extended Microcontroller mode,12-Bit Address mode  
01= Extended Microcontroller mode,16-Bit Address mode  
00= Extended Microcontroller mode, 20-Bit Address mode  
bit 3  
EASHFT: External Address Bus Shift Enable bit(1)  
1= Address shifting enabled; address on external bus is offset to start at 000000h  
0= Address shifting disabled; address on external bus reflects the PC value  
bit 2-0  
Unimplemented: Read as ‘0’  
Note 1: Implemented only on 80-pin devices.  
REGISTER 24-6: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/WO-1  
ECCPMX(1)  
R/WO-1  
CCP2MX  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
ECCPMX: ECCPx MUX bit(1)  
1= ECCP1 outputs (P1B/P1C) are multiplexed with RE6 and RE5;  
ECCP3 outputs (P3B/P3C) are multiplexed with RE4 and RE3  
0 = ECCP1 outputs (P1B/P1C) are multiplexed with RH7 and RH6;  
ECCP3 outputs (P3B/P3C) are multiplexed with RH5 and RH4  
bit 0  
CCP2MX: ECCP2 MUX bit  
1= ECCP2/P2A is multiplexed with RC1  
0= ECCP2/P2A is multiplexed with RE7 in Microcontroller mode (all devices) or with RB3 in Extended  
Microcontroller mode (80-pin devices only)  
Note 1: Available only on 80-pin devices.  
© 2009 Microchip Technology Inc.  
DS39663F-page 285  
PIC18F87J10 FAMILY  
REGISTER 24-7: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F87J10 FAMILY DEVICES  
R
R
R
R
R
R
R
R
DEV2(1)  
DEV1(1)  
DEV0(1)  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 7  
bit 0  
Legend:  
R = Read-only bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7-5  
DEV<2:0>: Device ID bits(1)  
111= PIC18F85J10  
101= PIC18F67J10  
100= PIC18F66J15  
011= PIC18F66J10 or PIC18F87J10  
010= PIC18F65J15 or PIC18F86J15  
001= PIC18F65J10 or PIC18F86J10  
000= PIC18F85J15  
bit 4-0  
REV<4:0>: Revision ID bits  
These bits are used to indicate the device revision.  
Note 1: Where values for DEV<2:0> are shared by more than one device number, the specific device is always  
identified by using the entire DEV<10:0> bit sequence.  
REGISTER 24-8: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F87J10 FAMILY DEVICES  
R
R
R
R
R
R
R
R
DEV10(1)  
DEV9(1)  
DEV8(1)  
DEV7(1)  
DEV6(1)  
DEV5(1)  
DEV4(1)  
DEV3(1)  
bit 7  
bit 0  
Legend:  
R = Read-only bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7-0  
DEV<10:3>: Device ID bits(1)  
These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number.  
0001 0101= PIC18F65J10/65J15/66J10/66J15/67J10/85J10 devices  
0001 0111= PIC18F85J15/86J10/86J15/87J10 devices  
Note 1: The values for DEV<10:3> may be shared with other device families. The specific device is always  
identified by using the entire DEV<10:0> bit sequence.  
DS39663F-page 286  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
24.2 Watchdog Timer (WDT)  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and postscaler counts  
when executed.  
For PIC18F87J10 family devices, the WDT is driven by  
the INTRC oscillator. When the WDT is enabled, the  
clock source is also enabled. The nominal WDT period is  
4 ms and has the same stability as the INTRC oscillator.  
2: When a CLRWDT instruction is executed,  
the postscaler count will be cleared.  
The 4 ms period of the WDT is multiplied by a 16-bit  
postscaler. Any output of the WDT postscaler is selected  
by a multiplexor, controlled by the WDTPS bits in Config-  
uration Register 2H. Available periods range from about  
4 ms to 135 seconds (2.25 minutes depending on  
voltage, temperature and WDT postscaler). The WDT  
and postscaler are cleared whenever a SLEEP or  
CLRWDT instruction is executed, or a clock failure  
(primary or Timer1 oscillator) has occurred.  
24.2.1  
CONTROL REGISTER  
The WDTCON register (Register 24-9) is a readable  
and writable register. The SWDTEN bit enables or dis-  
ables WDT operation. This allows software to override  
the WDTEN Configuration bit and enable the WDT only  
if it has been disabled by the Configuration bit.  
FIGURE 24-1:  
WDT BLOCK DIAGRAM  
Enable WDT  
INTRC Control  
SWDTEN  
WDT Counter  
Wake-up from  
Power-Managed  
÷128  
INTRC Oscillator  
Modes  
WDT  
Reset  
Reset  
CLRWDT  
All Device Resets  
Programmable Postscaler  
1:1 to 1:32,768  
WDT  
4
WDTPS<3:0>  
Sleep  
REGISTER 24-9: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN(1)  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’  
SWDTEN: Software Controlled Watchdog Timer Enable bit(1)  
1= Watchdog Timer is on  
0= Watchdog Timer is off  
Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled.  
TABLE 24-3: SUMMARY OF WATCHDOG TIMER REGISTERS  
ResetValues  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on page  
RCON  
WDTCON  
IPEN  
RI  
TO  
PD  
POR  
BOR  
54  
54  
SWDTEN  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Watchdog Timer.  
© 2009 Microchip Technology Inc.  
DS39663F-page 287  
PIC18F87J10 FAMILY  
FIGURE 24-2:  
CONNECTIONS FOR THE  
ON-CHIP REGULATOR  
24.3 On-Chip Voltage Regulator  
All of the PIC18F87J10 family devices power their core  
digital logic at a nominal 2.5V. For designs that are  
required to operate at a higher typical voltage, such as  
3.3V, all devices in the PIC18F87J10 family incorporate  
an on-chip regulator that allows the device to run its  
core logic from VDD.  
Regulator Enabled (ENVREG tied to VDD):  
3.3V  
PIC18FXXJ10/XXJ15  
VDD  
ENVREG  
The regulator is controlled by the ENVREG pin. Tying  
VDD to the pin enables the regulator, which in turn, pro-  
vides power to the core from the other VDD pins. When  
the regulator is enabled, a low-ESR filter capacitor  
must be connected to the VDDCORE/VCAP pin  
(Figure 24-2). This helps to maintain the stability of the  
regulator. The recommended value for the filter capac-  
itor is provided in Section 27.3 “DC Characteristics:  
PIC18F87J10 Family (Industrial)”.  
VDDCORE/VCAP  
CF  
VSS  
Regulator Disabled (ENVREG tied to ground):  
If ENVREG is tied to VSS, the regulator is disabled. In  
this case, separate power for the core logic at a nomi-  
nal 2.5V must be supplied to the device on the  
VDDCORE/VCAP pin to run the I/O pins at higher voltage  
levels, typically 3.3V. Alternatively, the VDDCORE/VCAP  
and VDD pins can be tied together to operate at a lower  
nominal voltage. Refer to Figure 24-2 for possible  
configurations.  
(1)  
(1)  
2.5V  
3.3V  
PIC18FXXJ10/XXJ15  
VDD  
ENVREG  
VDDCORE/VCAP  
VSS  
24.3.1  
ON-CHIP REGULATOR AND BOR  
When the on-chip regulator is enabled, PIC18F87J10  
family devices also have a simple brown-out capability.  
If the voltage supplied to the regulator is inadequate to  
maintain a regulated level, the regulator Reset circuitry  
will generate a BOR Reset. This event is captured by  
the BOR flag bit (RCON<0>).  
Regulator Disabled (VDD tied to VDDCORE):  
(1)  
2.5V  
PIC18FXXJ10/XXJ15  
VDD  
The operation of the BOR is described in more detail in  
Section 5.4 “Brown-out Reset (BOR)” and  
Section 5.4.1 “Detecting BOR”. The brown-out voltage  
levels are specific in Section 27.1 “DC Characteristics:  
Supply Voltage, PIC18F87J10 Family (Industrial)”.  
ENVREG  
VDDCORE/VCAP  
VSS  
24.3.2  
POWER-UP REQUIREMENTS  
The on-chip regulator is designed to meet the power-up  
requirements for the device. If the application does not  
use the regulator, then strict power-up conditions must  
be adhered to. While powering up, VDDCORE must  
never exceed VDD by 0.3 volts.  
Note 1: These are typical operating voltages. Refer  
to Section 27.1 “DC Characteristics:  
Supply Voltage” for the full operating  
ranges of VDD and VDDCORE.  
DS39663F-page 288  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
In all other power-managed modes, Two-Speed  
Start-up is not used. The device will be clocked by the  
currently selected clock source until the primary clock  
source becomes available. The setting of the IESO bit  
is ignored.  
24.4 Two-Speed Start-up  
The Two-Speed Start-up feature helps to minimize the  
latency period, from oscillator start-up to code execu-  
tion, by allowing the microcontroller to use the INTRC  
oscillator as a clock source until the primary clock  
source is available. It is enabled by setting the IESO  
Configuration bit.  
24.4.1  
SPECIAL CONSIDERATIONS FOR  
USING TWO-SPEED START-UP  
Two-Speed Start-up should be enabled only if the  
primary oscillator mode is HS or HSPLL  
(Crystal-based) modes. Since the EC and ECPLL  
modes do not require an OST start-up delay,  
Two-Speed Start-up should be disabled.  
While using the INTRC oscillator in Two-Speed  
Start-up, the device still obeys the normal command  
sequences for entering power-managed modes,  
including serial SLEEP instructions (refer to  
Section 4.1.4 “Multiple Sleep Commands”). In  
practice, this means that user code can change the  
SCS1:SCS0 bits setting or issue SLEEP instructions  
before the OST times out. This would allow an applica-  
tion to briefly wake-up, perform routine “housekeeping”  
tasks and return to Sleep before the device starts to  
operate from the primary oscillator.  
When enabled, Resets and wake-ups from Sleep mode  
cause the device to configure itself to run from the  
internal oscillator block as the clock source, following  
the time-out of the Power-up Timer after a Power-on  
Reset is enabled. This allows almost immediate code  
execution while the primary oscillator starts and the  
OST is running. Once the OST times out, the device  
automatically switches to PRI_RUN mode.  
User code can also check if the primary clock source is  
currently providing the device clocking by checking the  
status of the OSTS bit (OSCCON<3>). If the bit is set,  
the primary oscillator is providing the clock. Otherwise,  
the internal oscillator block is providing the clock during  
wake-up from Reset or Sleep mode.  
FIGURE 24-3:  
TIMING TRANSITION FOR TWO-SPEED START-UP (INTRC TO HSPLL)  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2  
Q3  
Q3  
Q1  
Q2  
INTRC  
OSC1  
(1)  
(1)  
TOST  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC  
PC + 2  
OSTS Bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
PC + 6  
Wake from Interrupt Event  
© 2009 Microchip Technology Inc.  
DS39663F-page 289  
PIC18F87J10 FAMILY  
During switchover, the postscaler frequency from the  
internal oscillator block may not be sufficiently stable  
for timing sensitive applications. In these cases, it may  
be desirable to select another clock configuration and  
enter an alternate power-managed mode. This can be  
done to attempt a partial recovery or execute a  
controlled shutdown. See Section 4.1.4 “Multiple  
Sleep Commands” and Section 24.4.1 “Special  
Considerations for Using Two-Speed Start-up” for  
more details.  
24.5 Fail-Safe Clock Monitor  
The Fail-Safe Clock Monitor (FSCM) allows the  
microcontroller to continue operation in the event of an  
external oscillator failure by automatically switching the  
device clock to the internal oscillator block. The FSCM  
function is enabled by setting the FCMEN Configuration  
bit.  
When FSCM is enabled, the INTRC oscillator runs at  
all times to monitor clocks to peripherals and provide a  
backup clock in the event of a clock failure. Clock  
monitoring (shown in Figure 24-4) is accomplished by  
creating a sample clock signal which is the INTRC out-  
put divided by 64. This allows ample time between  
FSCM sample clocks for a peripheral clock edge to  
occur. The peripheral device clock and the sample  
clock are presented as inputs to the Clock Monitor latch  
(CM). The CM is set on the falling edge of the device  
clock source but cleared on the rising edge of the  
sample clock.  
The FSCM will detect failures of the primary or second-  
ary clock sources only. If the internal oscillator block  
fails, no failure would be detected, nor would any action  
be possible.  
24.5.1  
FSCM AND THE WATCHDOG TIMER  
Both the FSCM and the WDT are clocked by the  
INTRC oscillator. Since the WDT operates with a  
separate divider and counter, disabling the WDT has  
no effect on the operation of the INTRC oscillator when  
the FSCM is enabled.  
FIGURE 24-4:  
FSCM BLOCK DIAGRAM  
As already noted, the clock source is switched to the  
INTRC clock when a clock failure is detected; this may  
mean a substantial change in the speed of code execu-  
tion. If the WDT is enabled with a small prescale value,  
a decrease in clock speed allows a WDT time-out to  
occur and a subsequent device Reset. For this reason,  
fail-safe clock events also reset the WDT and  
postscaler, allowing it to start timing from when execu-  
tion speed was changed and decreasing the likelihood  
of an erroneous time-out.  
Clock Monitor  
Latch (CM)  
(edge-triggered)  
Peripheral  
Clock  
S
C
Q
Q
INTRC  
Source  
÷ 64  
488 Hz  
(2.048 ms)  
(32 μs)  
24.5.2  
EXITING FAIL-SAFE OPERATION  
Clock  
Failure  
Detected  
The fail-safe condition is terminated by either a device  
Reset or by entering a power-managed mode. On  
Reset, the controller starts the primary clock source  
specified in Configuration Register 2H (with any  
required start-up delays that are required for the oscil-  
lator mode, such as OST or PLL timer). The INTRC  
oscillator provides the device clock until the primary  
clock source becomes ready (similar to a Two-Speed  
Start-up). The clock source is then switched to the  
primary clock (indicated by the OSTS bit in the  
OSCCON register becoming set). The Fail-Safe Clock  
Monitor then resumes monitoring the peripheral clock.  
Clock failure is tested for on the falling edge of the  
sample clock. If a sample clock falling edge occurs  
while CM is still set, a clock failure has been detected  
(Figure 24-5). This causes the following:  
• the FSCM generates an oscillator fail interrupt by  
setting bit, OSCFIF (PIR2<7>);  
• the device clock source is switched to the internal  
oscillator block (OSCCON is not updated to show  
the current clock source – this is the fail-safe  
condition); and  
The primary clock source may never become ready  
during start-up. In this case, operation is clocked by the  
INTRC oscillator. The OSCCON register will remain in  
its Reset state until a power-managed mode is entered.  
• the WDT is reset.  
DS39663F-page 290  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 24-5:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
Device  
Clock  
Output  
CM Output  
(Q)  
Failure  
Detected  
OSCFIF  
CM Test  
CM Test  
CM Test  
Note:  
The device clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
24.5.3  
FSCM INTERRUPTS IN  
24.5.4  
POR OR WAKE-UP FROM SLEEP  
POWER-MANAGED MODES  
The FSCM is designed to detect oscillator failure at any  
point after the device has exited Power-on Reset  
(POR) or low-power Sleep mode. When the primary  
device clock is either EC or INTRC modes, monitoring  
can begin immediately following these events.  
By entering a power-managed mode, the clock  
multiplexor selects the clock source selected by the  
OSCCON register. Fail-Safe Monitoring of the  
power-managed clock source resumes in the  
power-managed mode.  
For HS or HSPLL modes, the situation is somewhat dif-  
ferent. Since the oscillator may require a start-up time  
considerably longer than the FSCM sample clock time,  
a false clock failure may be detected. To prevent this,  
the internal oscillator block is automatically configured  
as the device clock and functions until the primary clock  
is stable (the OST and PLL timers have timed out). This  
is identical to Two-Speed Start-up mode. Once the  
primary clock is stable, the INTRC returns to its role as  
the FSCM source.  
If an oscillator failure occurs during power-managed  
operation, the subsequent events depend on whether  
or not the oscillator failure interrupt is enabled. If  
enabled (OSCFIF = 1), code execution will be clocked  
by the INTRC multiplexor. An automatic transition back  
to the failed clock source will not occur.  
If the interrupt is disabled, subsequent interrupts while  
in Idle mode will cause the CPU to begin executing  
instructions while being clocked by the INTRC source.  
Note:  
The same logic that prevents false oscilla-  
tor failure interrupts on POR, or wake from  
Sleep, will also prevent the detection of  
the oscillator’s failure to start at all follow-  
ing these events. This can be avoided by  
monitoring the OSTS bit and using a  
timing routine to determine if the oscillator  
is taking too long to start. Even so, no  
oscillator failure interrupt will be flagged.  
As noted in Section 24.4.1 “Special Considerations  
for Using Two-Speed Start-up”, it is also possible to  
select another clock configuration and enter an alternate  
power-managed mode while waiting for the primary  
clock to become stable. When the new power-managed  
mode is selected, the primary clock is disabled.  
© 2009 Microchip Technology Inc.  
DS39663F-page 291  
PIC18F87J10 FAMILY  
24.6 Program Verification and  
Code Protection  
24.7  
In-Circuit Serial Programming  
PIC18F87J10 family microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
For all devices in the PIC18F87J10 family of devices,  
the on-chip program memory space is treated as a  
single block. Code protection for this block is controlled  
by one Configuration bit, CP0. This bit inhibits external  
reads and writes to the program memory space. It has  
no direct effect in normal execution mode.  
24.6.1  
CONFIGURATION REGISTER  
PROTECTION  
24.8 In-Circuit Debugger  
The Configuration registers are protected against  
untoward changes or reads in two ways. The primary  
protection is the write-once feature of the Configuration  
bits which prevents reconfiguration once the bit has  
been programmed during a power cycle. To safeguard  
against unpredictable events, Configuration bit  
changes resulting from individual cell-level disruptions  
(such as ESD events) will cause a parity error and  
trigger a device Reset.  
When the DEBUG Configuration bit is programmed to  
a ‘0’, the In-Circuit Debugger functionality is enabled.  
This function allows simple debugging functions when  
used with MPLAB® IDE. When the microcontroller has  
this feature enabled, some resources are not available  
for general use. Table 24-4 shows which resources are  
required by the background debugger.  
The data for the Configuration registers is derived from  
the Flash Configuration Words in program memory.  
When the CP0 bit set, the source data for device  
configuration is also protected as a consequence.  
TABLE 24-4: DEBUGGER RESOURCES  
I/O pins:  
RB6, RB7  
2 levels  
Stack:  
Program Memory:  
Data Memory:  
512 bytes  
10 bytes  
DS39663F-page 292  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
The literal instructions may use some of the following  
operands:  
25.0 INSTRUCTION SET SUMMARY  
The PIC18F87J10 family of devices incorporate the  
standard set of 75 PIC18 core instructions, as well as  
an extended set of 8 new instructions for the optimiza-  
tion of code that is recursive or that utilizes a software  
stack. The extended set is discussed later in this  
section.  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
• No operand required  
(specified by ‘—’)  
25.1 Standard Instruction Set  
The control instructions may use some of the following  
operands:  
The standard PIC18 instruction set adds many  
enhancements to the previous PIC® MCU instruction  
sets, while maintaining an easy migration from these  
PIC MCU instruction sets. Most instructions are a  
single program memory word (16 bits), but there are  
four instructions that require two program memory  
locations.  
• A program memory address (specified by ‘n’)  
• The mode of the CALLor RETURNinstructions  
(specified by ‘s’)  
• The mode of the table read and table write  
instructions (specified by ‘m’)  
• No operand required  
(specified by ‘—’)  
Each single-word instruction is a 16-bit word divided  
into an opcode, which specifies the instruction type and  
one or more operands, which further specify the  
operation of the instruction.  
All instructions are a single word, except for four  
double-word instructions. These instructions were  
made double-word to contain the required information  
in 32 bits. In the second word, the 4 MSbs are ‘1’s. If  
this second word is executed as an instruction (by  
itself), it will execute as a NOP.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
All single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP.  
Control operations  
The PIC18 instruction set summary in Table 25-2 lists  
byte-oriented, bit-oriented, literal and control  
operations. Table 25-1 shows the opcode field  
descriptions.  
The double-word instructions execute in two instruction  
cycles.  
Most byte-oriented instructions have three operands:  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 μs. If a conditional test is  
true, or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 μs.  
Two-word branch instructions (if true) would take 3 μs.  
1. The file register (specified by ‘f’)  
2. The destination of the result (specified by ‘d’)  
3. The accessed memory (specified by ‘a’)  
The file register designator, ‘f’, specifies which file reg-  
ister is to be used by the instruction. The destination  
designator, ‘d’, specifies where the result of the  
operation is to be placed. If ‘d’ is zero, the result is  
placed in the WREG register. If ‘d’ is one, the result is  
placed in the file register specified in the instruction.  
Figure 25-1 shows the general formats that the instruc-  
tions can have. All examples use the convention ‘nnh’  
to represent a hexadecimal number.  
The Instruction Set Summary, shown in Table 25-2,  
lists the standard instructions recognized by the  
Microchip MPASMTM Assembler.  
All bit-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
Section 25.1.1 “Standard Instruction Set” provides  
a description of each instruction.  
2. The bit in the file register (specified by ‘b’)  
3. The accessed memory (specified by ‘a’)  
The bit field designator, ‘b’, selects the number of the bit  
affected by the operation, while the file register  
designator, ‘f’, represents the number of the file in  
which the bit is located.  
© 2009 Microchip Technology Inc.  
DS39663F-page 293  
PIC18F87J10 FAMILY  
TABLE 25-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit:  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
Bit address within an 8-bit file register (0 to 7).  
BSR  
Bank Select Register. Used to select the current RAM bank.  
ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.  
C, DC, Z, OV, N  
d
Destination select bit:  
d = 0: store result in WREG  
d = 1: store result in file register f  
dest  
f
Destination: either the WREG register or the specified register file location.  
8-bit Register file address (00h to FFh) or 2-bit FSR designator (0h to 3h).  
12-bit Register file address (000h to FFFh). This is the source address.  
12-bit Register file address (000h to FFFh). This is the destination address.  
Global Interrupt Enable bit.  
f
f
s
d
GIE  
k
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).  
Label name.  
label  
mm  
The mode of the TBLPTR register for the table read and table write instructions.  
Only used with table read and table write instructions:  
*
No Change to register (such as TBLPTR with table reads and writes)  
Post-Increment register (such as TBLPTR with table reads and writes)  
Post-Decrement register (such as TBLPTR with table reads and writes)  
Pre-Increment register (such as TBLPTR with table reads and writes)  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions or the direct address for  
Call/Branch and Return instructions.  
PC  
Program Counter.  
PCL  
Program Counter Low Byte.  
Program Counter High Byte.  
Program Counter High Byte Latch.  
Program Counter Upper Byte Latch.  
Power-Down bit.  
PCH  
PCLATH  
PCLATU  
PD  
PRODH  
PRODL  
s
Product of Multiply High Byte.  
Product of Multiply Low Byte.  
Fast Call/Return mode select bit:  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
TBLPTR  
TABLAT  
TO  
21-bit Table Pointer (points to a Program Memory location).  
8-bit Table Latch.  
Time-out bit.  
TOS  
u
Top-of-Stack.  
Unused or Unchanged.  
Watchdog Timer.  
WDT  
WREG  
x
Working register (accumulator).  
Don’t care (‘0’ or ‘1’). The assembler will generate code with x = 0. It is the recommended form of use for  
compatibility with all Microchip software tools.  
z
z
{
7-bit offset value for Indirect Addressing of register files (source).  
7-bit offset value for Indirect Addressing of register files (destination).  
Optional argument.  
s
d
}
[text]  
(text)  
[expr]<n>  
Indicates an Indexed Address.  
The contents of text.  
Specifies bit nof the register indicated by the pointer expr.  
Assigned to.  
< >  
Register bit field.  
In the set of.  
italics  
User-defined term (font is Courier).  
DS39663F-page 294  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 25-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
15 10  
Example Instruction  
9
8
7
0
ADDWF MYREG, W, B  
OPCODE  
d
a
f (FILE #)  
d = 0for result destination to be WREG register  
d = 1for result destination to be file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
MOVFF MYREG1, MYREG2  
OPCODE  
f (Source FILE #)  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 7Fh  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
0
1111  
n<19:8> (literal)  
S = Fast bit  
15  
15  
11 10  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
n<7:0> (literal)  
8 7  
OPCODE  
© 2009 Microchip Technology Inc.  
DS39663F-page 295  
PIC18F87J10 FAMILY  
TABLE 25-2: PIC18F87J10 FAMILY INSTRUCTION SET  
16-bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
BYTE-ORIENTED OPERATIONS  
ADDWF f, d, a Add WREG and f  
ADDWFC f, d, a Add WREG and Carry bit to f  
ANDWF f, d, a AND WREG with f  
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
1
1
1
1
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
1,2  
2
1, 2  
4
CLRF  
f, a  
Clear f  
COMF  
f, d, a Complement f  
CPFSEQ f, a  
CPFSGT f, a  
CPFSLT f, a  
Compare f with WREG, Skip =  
Compare f with WREG, Skip >  
Compare f with WREG, Skip <  
1 (2 or 3) 0110 001a ffff ffff None  
1 (2 or 3) 0110 010a ffff ffff None  
1 (2 or 3) 0110 000a ffff ffff None  
4
1, 2  
DECF  
f, d, a Decrement f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
DECFSZ f, d, a Decrement f, Skip if 0  
DCFSNZ f, d, a Decrement f, Skip if Not 0  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1, 2, 3, 4  
1, 2  
INCF  
f, d, a Increment f  
1
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
INCFSZ f, d, a Increment f, Skip if 0  
INFSNZ f, d, a Increment f, Skip if Not 0  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4
1, 2  
1, 2  
1
IORWF  
MOVF  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF fs, fd Move fs (source) to 1st word  
fd (destination) 2nd word  
MOVWF f, a  
MULWF f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
0101 01da ffff ffff C, DC, Z, OV, N  
1, 2  
1, 2  
NEGF  
RLCF  
RLNCF  
RRCF  
f, a  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
RRNCF f, d, a Rotate Right f (No Carry)  
SETF f, a Set f  
SUBFWB f, d, a Subtract f from WREG with  
Borrow  
1, 2  
SUBWF f, d, a Subtract WREG from f  
SUBWFB f, d, a Subtract WREG from f with  
Borrow  
1
1
0101 11da ffff ffff C, DC, Z, OV, N 1, 2  
0101 10da ffff ffff C, DC, Z, OV, N  
SWAPF f, d, a Swap Nibbles in f  
1
0011 10da ffff ffff None  
4
TSTFSZ f, a  
XORWF f, d, a Exclusive OR WREG with f  
Test f, Skip if 0  
1 (2 or 3) 0110 011a ffff ffff None  
0001 10da ffff ffff Z, N  
1, 2  
1
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be  
that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input  
and is driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be  
cleared if assigned.  
3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that  
all program memory locations have a valid instruction.  
DS39663F-page 296  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 25-2: PIC18F87J10 FAMILY INSTRUCTION SET (CONTINUED)  
16-bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
BIT-ORIENTED OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, b, a Bit Toggle f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
1 (2)  
2
CALL  
Call Subroutine 1st word  
2nd word  
CLRWDT —  
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to Address 1st word  
2nd word  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111 C  
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
DAW  
n
GOTO  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
No Operation  
Pop Top of Return Stack (TOS)  
Push Top of Return Stack (TOS) 1  
Relative Call  
Software Device Reset  
Return from Interrupt Enable  
1
1
1
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
4
2
1
2
s
k
RETLW  
RETURN s  
SLEEP  
Return with Literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be  
that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input  
and is driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be  
cleared if assigned.  
3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that  
all program memory locations have a valid instruction.  
© 2009 Microchip Technology Inc.  
DS39663F-page 297  
PIC18F87J10 FAMILY  
TABLE 25-2: PIC18F87J10 FAMILY INSTRUCTION SET (CONTINUED)  
16-bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add Literal and WREG  
AND Literal with WREG  
Inclusive OR Literal with WREG 1  
Move Literal (12-bit) 2nd word  
to FSR(f) 1st word  
1
1
0000 1111 kkkk kkkk C, DC, Z, OV, N  
0000 1011 kkkk kkkk Z, N  
0000 1001 kkkk kkkk Z, N  
1110 1110 00ff kkkk None  
1111 0000 kkkk kkkk  
2
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
Move Literal to BSR<3:0>  
Move Literal to WREG  
Multiply Literal with WREG  
Return with Literal in WREG  
Subtract WREG from Literal  
1
1
1
2
1
0000 0001 0000 kkkk None  
0000 1110 kkkk kkkk None  
0000 1101 kkkk kkkk None  
0000 1100 kkkk kkkk None  
0000 1000 kkkk kkkk C, DC, Z, OV, N  
0000 1010 kkkk kkkk Z, N  
Exclusive OR Literal with WREG 1  
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000 1000 None  
0000 0000 0000 1001 None  
0000 0000 0000 1010 None  
0000 0000 0000 1011 None  
0000 0000 0000 1100 None  
0000 0000 0000 1101 None  
0000 0000 0000 1110 None  
0000 0000 0000 1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with Post-Increment  
Table Read with Post-Decrement  
Table Read with Pre-Increment  
Table Write  
Table Write with Post-Increment  
Table Write with Post-Decrement  
Table Write with Pre-Increment  
2
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be  
that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input  
and is driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be  
cleared if assigned.  
3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that  
all program memory locations have a valid instruction.  
DS39663F-page 298  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
25.1.1  
STANDARD INSTRUCTION SET  
ADDLW  
ADD Literal to W  
ADDWF  
ADD W to f  
Syntax:  
ADDLW  
k
Syntax:  
ADDWF  
f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) + k W  
N, OV, C, DC, Z  
Operation:  
(W) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
The contents of W are added to the  
8-bit literal ‘k’ and the result is placed in  
W.  
0010  
01da  
ffff  
ffff  
Description:  
Add W to register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
ADDLW  
15h  
Before Instruction  
10h  
After Instruction  
25h  
W
=
Words:  
Cycles:  
1
1
W
=
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
ADDWF  
REG, 0, 0  
Before Instruction  
W
REG  
=
=
17h  
0C2h  
After Instruction  
W
REG  
=
=
0D9h  
0C2h  
Note:  
All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in  
symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).  
© 2009 Microchip Technology Inc.  
DS39663F-page 299  
PIC18F87J10 FAMILY  
ADDWFC  
ADD W and Carry bit to f  
ANDLW  
AND Literal with W  
Syntax:  
ADDWFC  
f {,d {,a}}  
Syntax:  
ANDLW  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .AND. k W  
N, Z  
Operation:  
(W) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
The contents of W are ANDed with the  
8-bit literal ‘k’. The result is placed in W.  
0010  
00da  
ffff  
ffff  
Description:  
Add W, the Carry flag and data memory  
location, ‘f’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed in data memory location ‘f’.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
ANDLW  
05Fh  
Before Instruction  
W
=
A3h  
03h  
After Instruction  
W
=
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
ADDWFC  
REG, 0, 1  
Before Instruction  
Carry bit =  
1
02h  
4Dh  
REG  
W
=
=
After Instruction  
Carry bit =  
0
02h  
50h  
REG  
W
=
=
DS39663F-page 300  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
ANDWF  
AND W with f  
BC  
Branch if Carry  
BC  
Syntax:  
ANDWF  
f {,d {,a}}  
Syntax:  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(W) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ’1’, then the program  
Description:  
The contents of W are ANDed with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Words:  
Cycles:  
1
1
No  
No  
No  
operation  
No  
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
ANDWF  
REG, 0, 0  
Example:  
HERE  
BC  
5
Before Instruction  
Before Instruction  
W
REG  
=
=
17h  
C2h  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
PC  
If Carry  
PC  
=
=
=
=
1;  
W
REG  
=
=
02h  
C2h  
address (HERE + 12)  
0;  
address (HERE + 2)  
© 2009 Microchip Technology Inc.  
DS39663F-page 301  
PIC18F87J10 FAMILY  
BCF  
Bit Clear f  
BN  
Branch if Negative  
BN  
Syntax:  
BCF f, b {,a}  
Syntax:  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Negative bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ‘1’, then the  
Description:  
Bit ‘b’ in register ‘f’ is cleared.  
program will branch.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Words:  
Cycles:  
1
1
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
BCF  
FLAG_REG, 7, 0  
Before Instruction  
FLAG_REG = C7h  
After Instruction  
FLAG_REG = 47h  
Example:  
HERE  
BN Jump  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
PC  
If Negative  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
DS39663F-page 302  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
BNC  
Branch if Not Carry  
BNC  
BNN  
Branch if Not Negative  
BNN  
Syntax:  
n
Syntax:  
n
Operands:  
Operation:  
-128 n 127  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘0’,  
(PC) + 2 + 2n PC  
if Negative bit is ‘0’,  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ‘0’, then the program  
Description:  
If the Negative bit is ‘0’, then the  
will branch.  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNC Jump  
Example:  
HERE  
BNN Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
PC  
If Carry  
PC  
=
=
=
=
0;  
If Negative  
PC  
If Negative  
PC  
=
=
=
=
0;  
address (Jump)  
address (Jump)  
1;  
1;  
address (HERE + 2)  
address (HERE + 2)  
© 2009 Microchip Technology Inc.  
DS39663F-page 303  
PIC18F87J10 FAMILY  
BNOV  
Branch if Not Overflow  
BNOV  
BNZ  
Branch if Not Zero  
BNZ  
Syntax:  
n
Syntax:  
n
Operands:  
Operation:  
-128 n 127  
Operands:  
Operation:  
-128 n 127  
if Overflow bit is ‘0’,  
(PC) + 2 + 2n PC  
if Zero bit is ‘0’,  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ‘0’, then the  
Description:  
If the Zero bit is ‘0’, then the program  
program will branch.  
will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNOV Jump  
Example:  
HERE  
BNZ Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Overflow  
PC  
If Overflow  
PC  
=
=
=
=
0;  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
0;  
address (Jump)  
address (Jump)  
1;  
1;  
address (HERE + 2)  
address (HERE + 2)  
DS39663F-page 304  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
BRA  
Unconditional Branch  
BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
BSF f, b {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1f<b>  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
Add the 2’s complement number ‘2n’ to  
the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit ‘b’ in register ‘f’ is set.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Words:  
Cycles:  
1
2
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Example:  
HERE  
BRA Jump  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
PC  
=
=
address (HERE)  
address (Jump)  
After Instruction  
PC  
Example:  
BSF  
FLAG_REG, 7, 1  
0Ah  
8Ah  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
=
=
© 2009 Microchip Technology Inc.  
DS39663F-page 305  
PIC18F87J10 FAMILY  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
BTFSC f, b {,a}  
Syntax:  
BTFSS f, b {,a}  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, then the next  
instruction is skipped. If bit ‘b’ is ‘0’, then  
the next instruction fetched during the  
current instruction execution is discarded  
and a NOPis executed instead, making  
this a two-cycle instruction.  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, then the next  
instruction is skipped. If bit ‘b’ is ‘1’, then  
the next instruction fetched during the  
current instruction execution is discarded  
and a NOPis executed instead, making  
this a two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction set  
is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1, 0  
Example:  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1, 0  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
After Instruction  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
=
=
=
=
0;  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
=
=
=
=
0;  
address (TRUE)  
1;  
address (FALSE)  
1;  
address (FALSE)  
address (TRUE)  
DS39663F-page 306  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
BOV  
Syntax:  
BTG f, b {,a}  
Syntax:  
n
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Overflow bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ‘1’, then the  
Description:  
Bit ‘b’ in data memory location ‘f’ is  
inverted.  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Q Cycle Activity:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
BTG  
PORTC, 4, 0  
Before Instruction:  
PORTC  
After Instruction:  
PORTC  
=
0111 0101 [75h]  
0110 0101 [65h]  
Example:  
HERE  
BOV Jump  
Before Instruction  
=
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
If Overflow  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
© 2009 Microchip Technology Inc.  
DS39663F-page 307  
PIC18F87J10 FAMILY  
BZ  
Branch if Zero  
BZ  
CALL  
Subroutine Call  
Syntax:  
n
Syntax:  
CALL k {,s}  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0,1]  
if Zero bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>;  
if s = 1,  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
Description:  
If the Zero bit is ‘1’, then the program  
will branch.  
Status Affected:  
None  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2-Mbyte  
memory range. First, return address  
Words:  
Cycles:  
1
(PC+ 4) is pushed onto the return stack.  
If ‘s’ = 1, the W, STATUS and BSR  
registers are also pushed into their  
respective shadow registers, WS,  
STATUSS and BSRS. If ‘s’ = 0, no  
update occurs. Then, the 20-bit value ‘k’  
is loaded into PC<20:1>. CALLis a  
two-cycle instruction.  
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal Push PC to Read literal  
‘k’<7:0>,  
stack  
’k’<19:8>,  
Write to PC  
Example:  
HERE  
BZ Jump  
No  
No  
No  
No  
Before Instruction  
operation  
operation  
operation  
operation  
PC  
=
address (HERE)  
After Instruction  
Example:  
HERE  
CALL THERE,1  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
1;  
address (Jump)  
Before Instruction  
PC  
After Instruction  
0;  
=
address (HERE)  
address (HERE + 2)  
PC  
=
address (THERE)  
TOS  
WS  
=
=
=
address (HERE + 4)  
W
BSR  
STATUS  
BSRS  
STATUSS =  
DS39663F-page 308  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
CLRF f {,a}  
Syntax:  
CLRWDT  
None  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
000h WDT,  
000h WDT postscaler,  
1TO,  
Operation:  
000h f,  
1Z  
1PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register.  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits, TO  
and PD, are set.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
Process  
Data  
No  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
CLRWDT  
Before Instruction  
Q Cycle Activity:  
Q1  
WDT Counter  
After Instruction  
WDT Counter  
WDT Postscaler  
TO  
=
?
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
=
=
=
=
00h  
0
1
PD  
1
Example:  
CLRF  
FLAG_REG,1  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
=
=
5Ah  
00h  
© 2009 Microchip Technology Inc.  
DS39663F-page 309  
PIC18F87J10 FAMILY  
CPFSEQ  
Compare f with W, Skip if f = W  
COMF  
Complement f  
Syntax:  
CPFSEQ f {,a}  
Syntax:  
COMF f {,d {,a}}  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – (W),  
skip if (f) = (W)  
(unsigned comparison)  
Operation:  
f dest  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
complemented. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
If ‘f’ = W, then the fetched instruction is  
discarded and a NOPis executed  
instead, making this a two-cycle  
instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
Q2  
Q3  
Q4  
1(2)  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Example:  
COMF  
REG, 0, 0  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
No  
operation  
Before Instruction  
Decode  
REG  
=
13h  
After Instruction  
If skip:  
Q1  
REG  
W
=
=
13h  
ECh  
Q2  
No  
Q3  
No  
Q4  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
No  
Q2  
No  
Q3  
No  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
CPFSEQ REG, 0  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
=
=
=
HERE  
?
?
W
REG  
After Instruction  
If REG  
PC  
If REG  
PC  
=
=
=
W;  
Address (EQUAL)  
W;  
Address (NEQUAL)  
DS39663F-page 310  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
CPFSGT  
Compare f with W, Skip if f > W  
CPFSLT  
Compare f with W, Skip if f < W  
Syntax:  
CPFSGT f {,a}  
Syntax:  
CPFSLT f {,a}  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) – (W),  
skip if (f) > (W)  
(unsigned comparison)  
Operation:  
(f) – (W),  
skip if (f) < (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of the W by  
performing an unsigned subtraction.  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
If the contents of ‘f’ are greater than the  
contents of WREG, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction.  
If the contents of ‘f’ are less than the  
contents of W, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
Decode  
Read  
Process  
Data  
No  
operation  
1(2)  
register ‘f’  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
No  
operation  
Decode  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
If skip:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
No  
Q3  
No  
Q4  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
No  
operation  
No  
Q2  
No  
operation  
No  
Q3  
No  
operation  
No  
Q4  
No  
operation  
No  
Example:  
HERE  
NLESS  
LESS  
CPFSLT REG, 1  
:
:
operation  
operation  
operation  
operation  
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
Example:  
HERE  
CPFSGT REG, 0  
NGREATER  
GREATER  
:
:
After Instruction  
If REG  
PC  
If REG  
PC  
<
=
=
W;  
Address (LESS)  
W;  
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
Address (NLESS)  
After Instruction  
If REG  
PC  
If REG  
PC  
>
=
=
W;  
Address (GREATER)  
W;  
Address (NGREATER)  
© 2009 Microchip Technology Inc.  
DS39663F-page 311  
PIC18F87J10 FAMILY  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
DAW  
None  
Syntax:  
DECF f {,d {,a}}  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
If [W<3:0> > 9] or [DC = 1] then,  
(W<3:0>) + 6 W<3:0>;  
else,  
Operation:  
(f) – 1dest  
(W<3:0>) W<3:0>;  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
0000  
01da  
ffff  
ffff  
If [W<7:4> > 9] or [C = 1] then,  
(W<7:4>) + 6 W<7:4>;  
C = 1,  
Description:  
Decrement register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
else,  
(W<7:4>) W<7:4>  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Status Affected:  
Encoding:  
C
0000  
0000  
0000  
0111  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Description:  
DAW adjusts the eight-bit value in W,  
resulting from the earlier addition of two  
variables (each in packed BCD format)  
and produces a correct packed BCD  
result.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register W  
Process  
Data  
Write  
W
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
DAW  
Before Instruction  
Example:  
DECF  
CNT,  
1, 0  
W
=
=
=
A5h  
0
C
Before Instruction  
DC  
0
CNT  
Z
=
01h  
0
After Instruction  
=
W
=
=
=
05h  
1
0
After Instruction  
C
CNT  
Z
=
=
00h  
1
DC  
Example 2:  
Before Instruction  
W
=
=
=
CEh  
0
0
C
DC  
After Instruction  
W
=
=
=
34h  
1
0
C
DC  
DS39663F-page 312  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
DECFSZ  
Decrement f, Skip if 0  
DCFSNZ  
Decrement f, Skip if not 0  
Syntax:  
DECFSZ f {,d {,a}}  
Syntax:  
DCFSNZ f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1dest,  
skip if result = 0  
Operation:  
(f) – 1dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
If the result is ‘0’, the next instruction  
which is already fetched is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction.  
If the result is not ‘0’, the next  
instruction which is already fetched is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
Process  
Data  
Write to  
destination  
register ‘f’  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
DECFSZ  
GOTO  
CNT, 1, 1  
LOOP  
Example:  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP, 1, 0  
:
:
CONTINUE  
Before Instruction  
PC  
After Instruction  
Before Instruction  
TEMP  
After Instruction  
=
Address (HERE)  
=
?
CNT  
=
CNT – 1  
0;  
If CNT  
=
=
=
TEMP  
If TEMP  
PC  
If TEMP  
PC  
=
=
=
=
TEMP – 1,  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
PC  
Address (CONTINUE)  
0;  
If CNT  
PC  
Address (HERE + 2)  
© 2009 Microchip Technology Inc.  
DS39663F-page 313  
PIC18F87J10 FAMILY  
GOTO  
Unconditional Branch  
GOTO  
INCF  
Increment f  
Syntax:  
k
Syntax:  
INCF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
0 k 1048575  
k PC<20:1>  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
1110  
1111  
1111  
kkk  
k kkk  
kkkk  
kkkk  
kkkk  
7
0
8
k
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional branch  
Description:  
The contents of register ‘f’ are  
anywhere within entire 2-Mbyte memory  
range. The 20-bit value ‘k’ is loaded into  
PC<20:1>. GOTOis always a two-cycle  
instruction.  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Words:  
Cycles:  
2
2
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’<7:0>,  
No  
operation  
Read literal  
‘k’<19:8>,  
Write to PC  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
GOTO THERE  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
PC  
=
Address (THERE)  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
INCF  
CNT, 1, 0  
Before Instruction  
CNT  
Z
=
FFh  
0
=
=
=
C
?
DC  
?
After Instruction  
CNT  
Z
=
00h  
1
=
=
=
C
1
DC  
1
DS39663F-page 314  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
INFSNZ  
Increment f, Skip if not 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
INFSNZ f {,d {,a}}  
Syntax:  
INCFSZ f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1dest,  
skip if result 0  
Operation:  
(f) + 1dest,  
skip if result = 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0100  
10da  
ffff  
ffff  
0011  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
If the result is not ‘0’, the next  
instruction which is already fetched is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction.  
If the result is ‘0’, the next instruction  
which is already fetched is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT, 1, 0  
Example:  
HERE  
ZERO  
NZERO  
INFSNZ REG, 1, 0  
Before Instruction  
PC  
After Instruction  
Before Instruction  
PC  
After Instruction  
=
Address (HERE)  
=
Address (HERE)  
REG  
If REG  
PC  
If REG  
PC  
=
REG + 1  
CNT  
If CNT  
PC  
If CNT  
PC  
=
CNT + 1  
=
=
=
0;  
=
=
=
0;  
Address (NZERO)  
0;  
Address (ZERO)  
Address (ZERO)  
0;  
Address (NZERO)  
© 2009 Microchip Technology Inc.  
DS39663F-page 315  
PIC18F87J10 FAMILY  
IORLW  
Inclusive OR Literal with W  
IORLW  
IORWF  
Inclusive OR W with f  
Syntax:  
k
Syntax:  
IORWF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .OR. k W  
N, Z  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, Z  
The contents of W are ORed with the  
eight-bit literal ‘k’. The result is placed  
in W.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register ‘f’. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is ‘1’,  
the result is placed back in register ‘f’.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
IORLW  
35h  
Before Instruction  
W
=
9Ah  
BFh  
After Instruction  
Words:  
Cycles:  
1
1
W
=
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
IORWF RESULT, 0, 1  
Before Instruction  
RESULT =  
13h  
91h  
W
=
After Instruction  
RESULT =  
13h  
93h  
W
=
DS39663F-page 316  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
LFSR f, k  
Syntax:  
MOVF f {,d {,a}}  
Operands:  
0 f 2  
0 k 4095  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
1111  
1110  
0000  
00ff  
k kkk  
k kkk  
11  
kkkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ‘k’ is loaded into the  
file select register pointed to by ‘f’.  
Description:  
The contents of register ‘f’ are moved to  
a destination dependent upon the  
status of ‘d’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’. Location ‘f’  
can be anywhere in the  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
256-byte bank.  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Decode  
Read literal  
‘k’ MSB  
Process  
Data  
Write  
literal ‘k’  
MSB to  
FSRfH  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Decode  
Read literal  
‘k’ LSB  
Process  
Data  
Write literal  
‘k’ to FSRfL  
Example:  
LFSR 2, 3ABh  
After Instruction  
FSR2H  
FSR2L  
=
=
03h  
ABh  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
W
Example:  
MOVF  
REG, 0, 0  
Before Instruction  
REG  
W
=
=
22h  
FFh  
After Instruction  
REG  
W
=
=
22h  
22h  
© 2009 Microchip Technology Inc.  
DS39663F-page 317  
PIC18F87J10 FAMILY  
MOVFF  
Move f to f  
MOVFF f ,f  
MOVLB  
Move Literal to Low Nibble in BSR  
MOVLW  
Syntax:  
Syntax:  
k
s
d
Operands:  
0 f 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
k BSR  
None  
s
0 f 4095  
d
Operation:  
(f ) f  
s
d
Status Affected:  
None  
0000  
0001  
kkkk  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
The eight-bit literal ‘k’ is loaded into the  
Bank Select Register (BSR). The value  
of BSR<7:4> always remains ‘0’  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
s
d
Description:  
The contents of source register ‘f ’ are  
regardless of the value of k :k .  
s
7 4  
moved to destination register ‘f ’.  
d
Words:  
Cycles:  
1
1
Location of source ‘f ’ can be anywhere  
s
in the 4096-byte data space (000h to  
FFFh) and location of destination ‘f ’  
can also be anywhere from 000h to  
FFFh.  
d
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write literal  
‘k’ to BSR  
Either source or destination can be W  
(a useful special situation).  
MOVFFis particularly useful for  
transferring a data memory location to a  
peripheral register (such as the transmit  
buffer or an I/O port).  
Example:  
MOVLB  
5
Before Instruction  
BSR Register =  
After Instruction  
BSR Register =  
02h  
05h  
The MOVFFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
No dummy  
read  
Example:  
MOVFF  
REG1, REG2  
Before Instruction  
REG1  
REG2  
=
=
33h  
11h  
After Instruction  
REG1  
REG2  
=
=
33h  
33h  
DS39663F-page 318  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
MOVLW  
Move Literal to W  
MOVLW  
MOVWF  
Move W to f  
Syntax:  
k
Syntax:  
MOVWF f {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
0 k 255  
k W  
None  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(W) f  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
The eight-bit literal ‘k’ is loaded into W.  
Description:  
Move data from W to register ‘f’.  
Location ‘f’ can be anywhere in the  
256-byte bank.  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
MOVLW  
5Ah  
After Instruction  
W
=
5Ah  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
MOVWF  
REG, 0  
Before Instruction  
W
REG  
=
=
4Fh  
FFh  
After Instruction  
W
REG  
=
=
4Fh  
4Fh  
© 2009 Microchip Technology Inc.  
DS39663F-page 319  
PIC18F87J10 FAMILY  
MULLW  
Multiply Literal with W  
MULWF  
Multiply W with f  
Syntax:  
MULLW  
k
Syntax:  
MULWF f {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
a [0,1]  
(W) x k PRODH:PRODL  
Operation:  
(W) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
An unsigned multiplication is carried  
out between the contents of W and the  
8-bit literal ‘k’. The 16-bit result is  
placed in PRODH:PRODL register pair.  
PRODH contains the high byte.  
Description:  
An unsigned multiplication is carried out  
between the contents of W and the  
register file location ‘f’. The 16-bit result is  
stored in the PRODH:PRODL register  
pair. PRODH contains the high byte. Both  
W and ‘f’ are unchanged.  
W is unchanged.  
None of the Status flags are affected.  
None of the Status flags are affected.  
Note that neither Overflow nor Carry is  
possible in this operation. A Zero result  
is possible but not detected.  
Note that neither Overflow nor Carry is  
possible in this operation. A Zero result is  
possible but not detected.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’ and the extended instruction set  
is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
Example:  
MULLW  
0C4h  
E2h  
Words:  
Cycles:  
1
1
Before Instruction  
W
PRODH  
PRODL  
=
=
=
?
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
W
PRODH  
PRODL  
=
=
=
E2h  
ADh  
08h  
registers  
PRODH:  
PRODL  
Example:  
MULWF  
REG, 1  
Before Instruction  
W
=
=
=
=
C4h  
REG  
B5h  
?
PRODH  
PRODL  
?
After Instruction  
W
=
=
=
=
C4h  
B5h  
8Ah  
94h  
REG  
PRODH  
PRODL  
DS39663F-page 320  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
NEGF f {,a}  
Syntax:  
NOP  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
None  
No operation  
None  
Operation:  
(f) + 1f  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Location ‘f’ is negated using two’s  
complement. The result is placed in the  
data memory location ‘f’.  
Description:  
Words:  
No operation.  
1
1
Cycles:  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
No  
operation  
Q4  
Decode  
No  
operation  
No  
operation  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
None.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
NEGF  
REG, 1  
Before Instruction  
REG  
After Instruction  
REG  
=
0011 1010 [3Ah]  
1100 0110 [C6h]  
=
© 2009 Microchip Technology Inc.  
DS39663F-page 321  
PIC18F87J10 FAMILY  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
POP  
Syntax:  
PUSH  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
None  
(TOS) bit bucket  
(PC + 2) TOS  
None  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
The TOS value is pulled off the return  
stack and is discarded. The TOS value  
then becomes the previous value that  
was pushed onto the return stack.  
This instruction is provided to enable  
the user to properly manage the return  
stack to incorporate a software stack.  
The PC + 2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows implementing a  
software stack by modifying TOS and  
then pushing it onto the return stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
PUSH  
No  
No  
Decode  
No  
operation  
POP TOS  
value  
No  
operation  
PC + 2 onto  
return stack  
operation  
operation  
Example:  
POP  
Example:  
PUSH  
GOTO  
NEW  
Before Instruction  
Before Instruction  
TOS  
Stack (1 level down)  
TOS  
PC  
=
=
345Ah  
0124h  
=
=
0031A2h  
014332h  
After Instruction  
After Instruction  
PC  
=
=
=
0126h  
0126h  
345Ah  
TOS  
TOS  
PC  
=
=
014332h  
NEW  
Stack (1 level down)  
DS39663F-page 322  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
RCALL  
Relative Call  
RCALL  
RESET  
Reset  
Syntax:  
n
Syntax:  
RESET  
None  
Operands:  
Operation:  
-1024 n 1023  
Operands:  
Operation:  
(PC) + 2 TOS,  
(PC) + 2 + 2n PC  
Reset all registers and flags that are  
affected by a MCLR Reset.  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to 1K  
from the current location. First, return  
address (PC + 2) is pushed onto the  
stack. Then, add the 2’s complement  
number ‘2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
reset  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
2
Example:  
RESET  
Q Cycle Activity:  
Q1  
After Instruction  
Registers =  
Q2  
Q3  
Q4  
Reset Value  
Reset Value  
Flags*  
=
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
PUSH PC  
to stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
RCALL Jump  
Before Instruction  
PC  
After Instruction  
PC  
TOS =  
=
Address (HERE)  
=
Address (Jump)  
Address (HERE + 2)  
© 2009 Microchip Technology Inc.  
DS39663F-page 323  
PIC18F87J10 FAMILY  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to W  
RETLW  
Syntax:  
RETFIE {s}  
Syntax:  
k
Operands:  
Operation:  
s [0,1]  
Operands:  
Operation:  
0 k 255  
(TOS) PC,  
k W,  
1GIE/GIEH or PEIE/GIEL;  
if s = 1,  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged  
Description:  
W is loaded with the eight-bit literal ‘k’.  
The program counter is loaded from the  
top of the stack (the return address).  
The high address latch (PCLATH)  
remains unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from interrupt. Stack is popped  
and Top-of-Stack (TOS) is loaded into  
the PC. Interrupts are enabled by  
setting either the high or low-priority  
global interrupt enable bit. If ‘s’ = 1, the  
contents of the shadow registers WS,  
STATUSS and BSRS are loaded into  
their corresponding registers W,  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
POP PC  
from stack,  
write to W  
STATUS and BSR. If ‘s’ = 0, no update  
of these registers occurs.  
No  
operation  
No  
No  
No  
Words:  
Cycles:  
1
2
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
Example:  
Q2  
Q3  
Q4  
CALL TABLE ; W contains table  
; offset value  
Decode  
No  
operation  
No  
operation  
POP PC  
from stack  
; W now has  
; table value  
Set GIEH or  
GIEL  
:
No  
operation  
No  
operation  
No  
operation  
No  
operation  
TABLE  
ADDWF PCL ; W = offset  
RETLW k0  
RETLW k1  
:
; Begin table  
;
Example:  
RETFIE  
1
After Interrupt  
:
PC  
=
=
=
=
=
TOS  
WS  
RETLW kn  
; End of table  
W
BSR  
STATUS  
BSRS  
STATUSS  
1
Before Instruction  
GIE/GIEH, PEIE/GIEL  
W
=
07h  
After Instruction  
W
=
value of kn  
DS39663F-page 324  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
RETURN {s}  
Syntax:  
RLCF f {,d {,a}}  
Operands:  
Operation:  
s [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC;  
if s = 1,  
(WS) W,  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) C,  
(C) dest<0>  
(STATUSS) STATUS,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
Status Affected:  
Encoding:  
C, N, Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left through the Carry flag.  
If ‘d’ is ‘0’, the result is placed in W. If ‘d’  
is ‘1’, the result is stored back in register  
‘f’.  
Description:  
Return from subroutine. The stack is  
popped and the top of the stack (TOS)  
is loaded into the program counter. If  
‘s’= 1, the contents of the shadow  
registers WS, STATUSS and BSRS are  
loaded into their corresponding  
registers W, STATUS and BSR. If  
‘s’ = 0, no update of these registers  
occurs.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
POP PC  
register f  
C
from stack  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Example:  
RETURN  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction:  
PC = TOS  
Example:  
RLCF  
REG, 0, 0  
Before Instruction  
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
W
C
=
=
=
1110 0110  
1100 1100  
1
© 2009 Microchip Technology Inc.  
DS39663F-page 325  
PIC18F87J10 FAMILY  
RLNCF  
Rotate Left f (No Carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
RLNCF f {,d {,a}}  
Syntax:  
RRCF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in W.  
If ‘d’ is ‘1’, the result is placed back in  
register ‘f’.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
register f  
register f  
C
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
RLNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
Example:  
RRCF  
REG, 0, 0  
=
1010 1011  
0101 0111  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
W
C
=
=
=
1110 0110  
0111 0011  
0
DS39663F-page 326  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
RRNCF  
Rotate Right f (No Carry)  
SETF  
Set f  
Syntax:  
RRNCF f {,d {,a}}  
Syntax:  
SETF f {,a}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of the specified register  
are set to FFh.  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If ‘a’  
is ‘1’, then the bank will be selected as  
per the BSR value.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Words:  
Cycles:  
1
1
Example:  
SETF  
REG,1  
Q Cycle Activity:  
Q1  
Before Instruction  
REG  
After Instruction  
REG  
=
=
5Ah  
FFh  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
RRNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, 0, 0  
=
Example 2:  
Before Instruction  
W
REG  
=
=
?
1101 0111  
After Instruction  
W
REG  
=
=
1110 1011  
1101 0111  
© 2009 Microchip Technology Inc.  
DS39663F-page 327  
PIC18F87J10 FAMILY  
SLEEP  
Enter Sleep Mode  
SUBFWB  
Subtract f from W with Borrow  
Syntax:  
SLEEP  
None  
Syntax:  
SUBFWB f {,d {,a}}  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0WDT postscaler,  
1TO,  
Operation:  
(W) – (f) – (C) dest  
0PD  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register ‘f’ and Carry flag  
(borrow) from W (2’s complement  
method). If ‘d’ is ‘0’, the result is stored in  
W. If ‘d’ is ‘1’, the result is stored in  
register ‘f’.  
Description:  
The Power-Down status bit (PD) is  
cleared. The Time-out status bit (TO)  
is set. The Watchdog Timer and its  
postscaler are cleared.  
The processor is put into Sleep mode  
with the oscillator stopped.  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Decode  
No  
operation  
Process  
Data  
Go to  
Sleep  
Words:  
Cycles:  
1
1
Example:  
SLEEP  
Before Instruction  
TO  
PD  
=
=
?
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
TO  
PD  
=
=
1 †  
0
Example 1:  
SUBFWB  
REG, 1, 0  
If WDT causes wake-up, this bit is cleared.  
Before Instruction  
REG  
W
C
=
=
=
3
2
1
After Instruction  
REG  
W
C
=
FF  
2
=
=
=
=
0
Z
0
1
N
; result is negative  
Example 2:  
Before Instruction  
SUBFWB  
REG, 0, 0  
REG  
W
C
=
=
=
2
5
1
After Instruction  
REG  
W
C
=
2
3
1
0
=
=
=
=
Z
N
0
; result is positive  
Example 3:  
Before Instruction  
SUBFWB  
REG, 1, 0  
REG  
W
C
=
=
=
1
2
0
After Instruction  
REG  
W
C
=
0
2
1
1
0
=
=
=
=
Z
; result is zero  
N
DS39663F-page 328  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
SUBLW  
Subtract W from Literal  
SUBLW  
SUBWF  
Subtract W from f  
Syntax:  
k
Syntax:  
SUBWF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
k – (W) W  
N, OV, C, DC, Z  
Operation:  
(f) – (W) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
W is subtracted from the eight-bit  
literal ‘k’. The result is placed in W.  
0101  
11da  
ffff  
ffff  
Description:  
Subtract W from register ‘f’ (2’s  
Words:  
Cycles:  
1
1
complement method). If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the result  
is stored back in register ‘f’.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example 1:  
SUBLW 02h  
Before Instruction  
W
C
=
=
01h  
?
After Instruction  
W
C
Z
=
01h  
=
=
=
1
0
0
; result is positive  
Words:  
Cycles:  
1
1
N
Example 2:  
SUBLW 02h  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
W
C
=
=
02h  
?
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
C
Z
=
00h  
Example 1:  
SUBWF  
REG, 1, 0  
=
=
=
1
1
0
; result is zero  
Before Instruction  
N
REG  
W
C
=
=
=
3
2
?
Example 3:  
SUBLW 02h  
Before Instruction  
After Instruction  
W
C
=
=
03h  
?
REG  
W
C
=
1
2
1
0
0
=
=
=
=
; result is positive  
After Instruction  
Z
W
C
Z
=
FFh ; (2’s complement)  
N
=
=
=
0
0
1
; result is negative  
Example 2:  
Before Instruction  
SUBWF  
REG, 0, 0  
N
REG  
W
C
=
=
=
2
2
?
After Instruction  
REG  
W
C
=
2
0
1
1
0
=
=
=
=
; result is zero  
Z
N
Example 3:  
Before Instruction  
SUBWF  
REG, 1, 0  
REG  
W
C
=
=
=
1
2
?
After Instruction  
REG  
W
C
=
FFh ;(2’s complement)  
2
0
0
1
=
=
=
=
; result is negative  
Z
N
© 2009 Microchip Technology Inc.  
DS39663F-page 329  
PIC18F87J10 FAMILY  
SUBWFB  
Subtract W from f with Borrow  
SWAPF  
Swap f  
Syntax:  
SUBWFB f {,d {,a}}  
Syntax:  
SWAPF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – (W) – (C) dest  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0101  
10da  
ffff  
ffff  
Status Affected:  
Encoding:  
None  
Description:  
Subtract W and the Carry flag (borrow)  
from register ‘f’ (2’s complement  
method). If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
0011  
10da  
ffff  
ffff  
Description:  
The upper and lower nibbles of register  
‘f’ are exchanged. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
Decode  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
SUBWFB REG, 1, 0  
Before Instruction  
REG  
W
C
=
=
=
19h  
0Dh  
1
(0001 1001)  
(0000 1101)  
Example:  
SWAPF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
=
53h  
35h  
After Instruction  
REG  
W
=
0Ch  
0Dh  
1
(0000 1011)  
(0000 1101)  
=
=
=
=
REG  
=
C
Z
0
N
0
; result is positive  
Example 2:  
Before Instruction  
SUBWFB REG, 0, 0  
REG  
W
C
=
=
=
1Bh  
1Ah  
0
(0001 1011)  
(0001 1010)  
After Instruction  
REG  
W
C
=
1Bh  
00h  
1
(0001 1011)  
=
=
=
=
Z
1
; result is zero  
N
0
Example 3:  
Before Instruction  
SUBWFB REG, 1, 0  
REG  
W
C
=
=
=
03h  
0Eh  
1
(0000 0011)  
(0000 1101)  
After Instruction  
REG  
=
F5h  
(1111 0100)  
; [2’s comp]  
W
=
=
=
=
0Eh  
0
0
1
(0000 1101)  
C
Z
N
; result is negative  
DS39663F-page 330  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TBLRD  
Table Read  
TBLRD  
Table Read (Continued)  
Syntax:  
TBLRD ( *; *+; *-; +*)  
None  
Example 1:  
TBLRD *+ ;  
Operands:  
Operation:  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(00A356h)  
=
=
=
55h  
00A356h  
34h  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT,  
TBLPTR – No Change;  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT,  
(TBLPTR) + 1TBLPTR;  
if TBLRD *-,  
(Prog Mem (TBLPTR)) TABLAT,  
(TBLPTR) – 1TBLPTR;  
if TBLRD +*,  
(TBLPTR) + 1TBLPTR,  
(Prog Mem (TBLPTR)) TABLAT  
After Instruction  
TABLAT  
TBLPTR  
=
=
34h  
00A357h  
Example 2:  
TBLRD +* ;  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(01A357h)  
MEMORY(01A358h)  
After Instruction  
=
=
=
=
AAh  
01A357h  
12h  
34h  
TABLAT  
TBLPTR  
=
=
34h  
01A358h  
Status Affected: None  
Encoding:  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Description:  
This instruction is used to read the contents  
of Program Memory (P.M.). To address the  
program memory, a pointer called Table  
Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory. TBLPTR  
has a 2-Mbyte address range.  
TBLPTR[0] = 0: Least Significant Byte of  
Program Memory Word  
TBLPTR[0] = 1: Most Significant Byte of  
Program Memory Word  
The TBLRDinstruction can modify the value  
of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
No  
No operation  
No  
No operation  
(Write  
TABLAT)  
operation (Read Program operation  
Memory)  
© 2009 Microchip Technology Inc.  
DS39663F-page 331  
PIC18F87J10 FAMILY  
TBLWT  
Table Write  
TBLWT  
Table Write (Continued)  
Syntax:  
TBLWT ( *; *+; *-; +*)  
None  
Example 1:  
TBLWT *+;  
Operands:  
Operation:  
Before Instruction  
if TBLWT*,  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(00A356h)  
=
=
55h  
00A356h  
(TABLAT) Holding Register,  
TBLPTR – No Change;  
if TBLWT*+,  
(TABLAT) Holding Register,  
(TBLPTR) + 1TBLPTR;  
if TBLWT*-,  
(TABLAT) Holding Register,  
(TBLPTR) – 1TBLPTR;  
if TBLWT+*,  
(TBLPTR) + 1TBLPTR,  
(TABLAT) Holding Register  
=
FFh  
After Instructions (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(00A356h)  
=
=
55h  
00A357h  
=
55h  
Example 2:  
TBLWT +*;  
Before Instruction  
TABLAT  
TBLPTR  
=
=
34h  
01389Ah  
HOLDING REGISTER  
(01389Ah)  
Status Affected: None  
=
=
FFh  
FFh  
Encoding:  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
HOLDING REGISTER  
(01389Bh)  
After Instruction (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(01389Ah)  
HOLDING REGISTER  
(01389Bh)  
=
=
34h  
01389Bh  
Description:  
This instruction uses the 3 LSBs of  
TBLPTR to determine which of the  
8 holding registers the TABLAT is written  
to. The holding registers are used to  
program the contents of Program Memory  
(P.M.). (Refer to Section 6.0 “Memory  
Organization” for additional details on  
programming Flash memory.)  
=
=
FFh  
34h  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory.  
TBLPTR has a 2-Mbyte address range.  
The LSb of the TBLPTR selects which  
byte of the program memory location to  
access.  
TBLPTR[0] = 0: Least Significant Byte  
of Program Memory  
Word  
TBLPTR[0] = 1: Most Significant Byte  
of Program Memory  
Word  
The TBLWT instruction can modify the  
value of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
1
2
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
No  
Decode  
operation operation operation  
No  
No No No  
operation operation operation operation  
(Read  
TABLAT)  
(Write to  
Holding  
Register)  
DS39663F-page 332  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TSTFSZ  
Test f, Skip if 0  
XORLW  
Exclusive OR Literal with W  
XORLW  
Syntax:  
TSTFSZ f {,a}  
Syntax:  
k
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .XOR. k W  
N, Z  
Operation:  
skip if f = 0  
Status Affected:  
Encoding:  
None  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
The contents of W are XORed with  
the 8-bit literal ‘k’. The result is placed  
in W.  
Description:  
If ‘f’ = 0, the next instruction fetched  
during the current instruction execution  
is discarded and a NOPis executed,  
making this a two-cycle instruction.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
XORLW  
0AFh  
Before Instruction  
W
=
B5h  
1Ah  
After Instruction  
Words:  
Cycles:  
1
W
=
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
TSTFSZ CNT, 1  
:
:
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
If CNT  
PC  
If CNT  
PC  
=
=
=
00h,  
Address (ZERO)  
00h,  
Address (NZERO)  
© 2009 Microchip Technology Inc.  
DS39663F-page 333  
PIC18F87J10 FAMILY  
XORWF  
Exclusive OR W with f  
Syntax:  
XORWF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in the register ‘f’.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 25.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
XORWF  
REG, 1, 0  
Before Instruction  
REG  
W
=
=
AFh  
B5h  
After Instruction  
REG  
W
=
=
1Ah  
B5h  
DS39663F-page 334  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
A summary of the instructions in the extended instruc-  
tion set is provided in Table 25-3. Detailed descriptions  
are provided in Section 25.2.2 “Extended Instruction  
Set”. The opcode field descriptions in Table 25-1 (page  
294) apply to both the standard and extended PIC18  
instruction sets.  
25.2 Extended Instruction Set  
In addition to the standard 75 instructions of the PIC18  
instruction set, the PIC18F87J10 family of devices also  
provide an optional extension to the core CPU function-  
ality. The added features include eight additional  
instructions that augment Indirect and Indexed  
Addressing operations and the implementation of  
Indexed Literal Offset Addressing for many of the  
standard PIC18 instructions.  
Note:  
The instruction set extension and the  
Indexed Literal Offset Addressing mode  
were designed for optimizing applications  
written in C; the user may likely never use  
these instructions directly in assembler.  
The syntax for these commands is  
provided as a reference for users who may  
be reviewing code that has been  
generated by a compiler.  
The additional features of the extended instruction set  
are disabled by default on unprogrammed devices.  
Users must properly set or clear the XINST Configura-  
tion bit during programming to enable or disable these  
features.  
The instructions in the extended set can all be  
classified as literal operations, which either manipulate  
the File Select Registers, or use them for Indexed  
Addressing. Two of the instructions, ADDFSR and  
SUBFSR, each have an additional special instantiation  
for using FSR2. These versions (ADDULNK and  
SUBULNK) allow for automatic return after execution.  
25.2.1  
EXTENDED INSTRUCTION SYNTAX  
Most of the extended instructions use indexed argu-  
ments, using one of the File Select Registers and some  
offset to specify a source or destination register. When  
an argument for an instruction serves as part of  
Indexed Addressing, it is enclosed in square brackets  
(“[ ]”). This is done to indicate that the argument is used  
as an index or offset. The MPASM™ Assembler will  
flag an error if it determines that an index or offset value  
is not bracketed.  
The extended instructions are specifically implemented  
to optimize re-entrant program code (that is, code that  
is recursive or that uses a software stack) written in  
high-level languages, particularly C. Among other  
things, they allow users working in high-level  
languages to perform certain operations on data  
structures more efficiently. These include:  
When the extended instruction set is enabled, brackets  
are also used to indicate index arguments in  
byte-oriented and bit-oriented instructions. This is in  
addition to other changes in their syntax. For more  
details, see Section 25.2.3.1 “Extended Instruction  
Syntax with Standard PIC18 Commands”.  
• dynamic allocation and deallocation of software  
stack space when entering and leaving  
subroutines  
• function pointer invocation  
Note:  
In the past, square brackets have been  
used to denote optional arguments in the  
PIC18 and earlier instruction sets. In this  
text and going forward, optional  
arguments are denoted by braces (“{ }”).  
• software Stack Pointer manipulation  
• manipulation of variables located in a software  
stack  
TABLE 25-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
ADDFSR  
ADDULNK  
CALLW  
f, k  
k
Add Literal to FSR  
Add Literal to FSR2 and Return  
Call Subroutine using WREG  
1
2
2
2
1110 1000 ffkk kkkk  
1110 1000 11kk kkkk  
0000 0000 0001 0100  
1110 1011 0zzz zzzz  
1111 ffff ffff ffff  
1110 1011 1zzz zzzz  
1111 xxxx xzzz zzzz  
1110 1010 kkkk kkkk  
None  
None  
None  
None  
MOVSF  
zs, fd Move zs (source) to 1st word  
fd (destination) 2nd word  
zs, zd Move zs (source) to 1st word  
zd (destination) 2nd word  
MOVSS  
PUSHL  
2
1
None  
None  
k
Store Literal at FSR2,  
Decrement FSR2  
SUBFSR  
SUBULNK  
f, k  
k
Subtract Literal from FSR  
Subtract Literal from FSR2 and  
Return  
1
2
1110 1001 ffkk kkkk  
1110 1001 11kk kkkk  
None  
None  
© 2009 Microchip Technology Inc.  
DS39663F-page 335  
PIC18F87J10 FAMILY  
25.2.2  
EXTENDED INSTRUCTION SET  
ADDFSR  
Add Literal to FSR  
ADDULNK  
Add Literal to FSR2 and Return  
Syntax:  
ADDFSR f, k  
Syntax:  
ADDULNK k  
Operands:  
0 k 63  
f [ 0, 1, 2 ]  
Operands:  
Operation:  
0 k 63  
FSR2 + k FSR2,  
(TOS) PC  
None  
Operation:  
FSR(f) + k FSR(f)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
1110  
1000  
ffkk  
kkkk  
1110  
1000  
11kk  
kkkk  
Description:  
The 6-bit literal ‘k’ is added to the  
contents of the FSR specified by ‘f’.  
Description:  
The 6-bit literal ‘k’ is added to the  
contents of FSR2. A RETURNis then  
executed by loading the PC with the  
TOS.  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
The instruction takes two cycles to  
execute; a NOPis performed during  
the second cycle.  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
FSR  
This may be thought of as a special  
case of the ADDFSRinstruction,  
where f = 3 (binary ‘11’); it operates  
only on FSR2.  
Example:  
ADDFSR 2, 23h  
Words:  
1
2
Before Instruction  
FSR2  
After Instruction  
FSR2  
Cycles:  
=
03FFh  
0422h  
Q Cycle Activity:  
Q1  
=
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
FSR  
No  
No  
No  
No  
Operation  
Operation  
Operation  
Operation  
Example:  
ADDULNK 23h  
Before Instruction  
FSR2  
PC  
=
=
03FFh  
0100h  
After Instruction  
FSR2  
PC  
=
=
0422h  
(TOS)  
Note:  
All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in  
symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).  
DS39663F-page 336  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
CALLW  
Subroutine Call using WREG  
MOVSF  
Move Indexed to f  
Syntax:  
CALLW  
None  
Syntax:  
MOVSF [z ], f  
s
d
Operands:  
Operation:  
Operands:  
0 z 127  
s
0 f 4095  
d
(PC + 2) TOS,  
(W) PCL,  
Operation:  
((FSR2) + z ) f  
s
d
(PCLATH) PCH,  
(PCLATU) PCU  
Status Affected:  
None  
Encoding:  
1st word (source)  
2nd word (destin.)  
Status Affected:  
Encoding:  
None  
1110  
1111  
1011  
ffff  
0zzz  
ffff  
zzzz  
ffff  
s
d
0000  
0000  
0001  
0100  
Description  
First, the return address (PC + 2) is  
pushed onto the return stack. Next, the  
contents of W are written to PCL; the  
existing value is discarded. Then, the  
contents of PCLATH and PCLATU are  
latched into PCH and PCU,  
respectively. The second cycle is  
executed as a NOPinstruction while the  
new next instruction is fetched.  
Description:  
The contents of the source register are  
moved to destination register ‘f ’. The  
d
actual address of the source register is  
determined by adding the 7-bit literal  
offset ‘z ’, in the first word, to the value  
s
of FSR2. The address of the destination  
register is specified by the 12-bit literal  
‘f ’ in the second word. Both addresses  
d
can be anywhere in the 4096-byte data  
space (000h to FFFh).  
Unlike CALL, there is no option to  
update W, STATUS or BSR.  
The MOVSFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
Words:  
Cycles:  
1
2
If the resultant source address points to  
an Indirect Addressing register, the  
value returned will be 00h.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
WREG  
Push PC to  
stack  
No  
operation  
Words:  
Cycles:  
2
2
No  
No  
No  
No  
Q Cycle Activity:  
Q1  
operation  
operation  
operation  
operation  
Q2  
Q3  
Q4  
Decode  
Determine  
source addr source addr source reg  
Determine  
Read  
Example:  
HERE  
CALLW  
Before Instruction  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
PC  
=
address (HERE)  
PCLATH =  
PCLATU =  
10h  
00h  
06h  
No dummy  
read  
W
=
After Instruction  
PC  
=
001006h  
TOS  
=
address (HERE + 2)  
Example:  
MOVSF  
[05h], REG2  
PCLATH =  
PCLATU =  
W
10h  
00h  
06h  
Before Instruction  
=
FSR2  
=
80h  
33h  
Contents  
of 85h  
REG2  
=
=
11h  
After Instruction  
FSR2  
=
80h  
Contents  
of 85h  
REG2  
=
=
33h  
33h  
© 2009 Microchip Technology Inc.  
DS39663F-page 337  
PIC18F87J10 FAMILY  
MOVSS  
Move Indexed to Indexed  
PUSHL  
Store Literal at FSR2, Decrement FSR2  
Syntax:  
MOVSS [z ], [z ]  
Syntax:  
PUSHL k  
s
d
Operands:  
0 z 127  
s
Operands:  
Operation:  
0 k 255  
0 z 127  
d
k (FSR2),  
FSR2 – 1FSR2  
Operation:  
((FSR2) + z ) ((FSR2) + z )  
s d  
Status Affected:  
None  
Status Affected:  
Encoding:  
None  
Encoding:  
1st word (source)  
2nd word (dest.)  
1111  
1010  
kkkk  
kkkk  
1110  
1111  
1011  
xxxx  
1zzz  
xzzz  
zzzz  
zzzz  
s
d
Description:  
The 8-bit literal ‘k’ is written to the data  
memory address specified by FSR2.  
FSR2 is decremented by 1 after the  
operation.  
Description  
The contents of the source register are  
moved to the destination register. The  
addresses of the source and destination  
registers are determined by adding the  
This instruction allows users to push  
values onto a software stack.  
7-bit literal offsets ‘z ’ or ‘z ’,  
s
d
respectively, to the value of FSR2. Both  
registers can be located anywhere in  
the 4096-byte data memory space  
(000h to FFFh).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
The MOVSSinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
Q2  
Q3  
Q4  
Decode  
Read ‘k’  
Process  
data  
Write to  
destination  
If the resultant source address points to  
an Indirect Addressing register, the  
value returned will be 00h. If the  
Example:  
PUSHL 08h  
resultant destination address points to  
an Indirect Addressing register, the  
instruction will execute as a NOP.  
Before Instruction  
FSR2H:FSR2L  
Memory (01ECh)  
=
=
01ECh  
00h  
Words:  
2
2
After Instruction  
Cycles:  
FSR2H:FSR2L  
Memory (01ECh)  
=
=
01EBh  
08h  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Determine  
Determine  
Read  
source addr source addr source reg  
Decode  
Determine  
dest addr  
Determine  
dest addr  
Write  
to dest reg  
Example:  
MOVSS [05h], [06h]  
Before Instruction  
FSR2  
=
=
=
80h  
33h  
11h  
Contents  
of 85h  
Contents  
of 86h  
After Instruction  
FSR2  
=
=
=
80h  
33h  
33h  
Contents  
of 85h  
Contents  
of 86h  
DS39663F-page 338  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
SUBFSR  
Subtract Literal from FSR  
SUBULNK  
Subtract Literal from FSR2 and Return  
Syntax:  
SUBFSR f, k  
0 k 63  
Syntax:  
SUBULNK k  
Operands:  
Operands:  
Operation:  
0 k 63  
f [ 0, 1, 2 ]  
FSRf – k FSRf  
None  
FSR2 – k FSR2,  
(TOS) PC  
Operation:  
Status Affected:  
Encoding:  
Status Affected: None  
1110  
1001  
ffkk  
kkkk  
Encoding:  
1110  
1001  
11kk  
kkkk  
Description:  
The 6-bit literal ‘k’ is subtracted from  
the contents of the FSR specified  
by ‘f’.  
Description:  
The 6-bit literal ‘k’ is subtracted from the  
contents of the FSR2. A RETURNis then  
executed by loading the PC with the  
TOS.  
Words:  
1
1
Cycles:  
The instruction takes two cycles to  
execute; a NOPis performed during the  
second cycle.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
This may be thought of as a special case  
of the SUBFSRinstruction, where f = 3  
(binary ‘11’); it operates only on FSR2.  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Words:  
1
2
Example:  
SUBFSR 2, 23h  
03FFh  
Cycles:  
Before Instruction  
FSR2  
After Instruction  
FSR2  
Q Cycle Activity:  
Q1  
=
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
=
03DCh  
No  
No  
No  
No  
Operation  
Operation  
Operation  
Operation  
Example:  
SUBULNK 23h  
Before Instruction  
FSR2  
PC  
=
=
03FFh  
0100h  
After Instruction  
FSR2  
PC  
=
=
03DCh  
(TOS)  
© 2009 Microchip Technology Inc.  
DS39663F-page 339  
PIC18F87J10 FAMILY  
25.2.3  
BYTE-ORIENTED AND  
BIT-ORIENTED INSTRUCTIONS IN  
INDEXED LITERAL OFFSET MODE  
25.2.3.1  
Extended Instruction Syntax with  
Standard PIC18 Commands  
When the extended instruction set is enabled, the file  
register argument ‘f’ in the standard byte-oriented and  
bit-oriented commands is replaced with the literal offset  
value ‘k’. As already noted, this occurs only when ‘f’ is  
less than or equal to 5Fh. When an offset value is used,  
it must be indicated by square brackets (“[ ]”). As with  
the extended instructions, the use of brackets indicates  
to the compiler that the value is to be interpreted as an  
index or an offset. Omitting the brackets, or using a  
value greater than 5Fh within the brackets, will  
generate an error in the MPASM Assembler.  
Note: Enabling the PIC18 instruction set exten-  
sion may cause legacy applications to  
behave erratically or fail entirely.  
In addition to eight new commands in the extended set,  
enabling the extended instruction set also enables  
Indexed Literal Offset Addressing (Section 6.6.1  
“Indexed Addressing with Literal Offset”). This has  
a significant impact on the way that many commands of  
the standard PIC18 instruction set are interpreted.  
When the extended set is disabled, addresses embed-  
ded in opcodes are treated as literal memory locations:  
either as a location in the Access Bank (a = 0) or in a  
GPR bank designated by the BSR (a = 1). When the  
extended instruction set is enabled and a = 0, however,  
a file register argument of 5Fh or less is interpreted as  
an offset from the pointer value in FSR2 and not as a  
literal address. For practical purposes, this means that  
all instructions that use the Access RAM bit as an  
argument – that is, all byte-oriented and bit-oriented  
instructions, or almost half of the core PIC18 instruc-  
tions – may behave differently when the extended  
instruction set is enabled.  
If the index argument is properly bracketed for Indexed  
Literal Offset Addressing, the Access RAM argument is  
never specified; it will automatically be assumed to be  
0’. This is in contrast to standard operation (extended  
instruction set disabled), when ‘a’ is set on the basis of  
the target address. Declaring the Access RAM bit in  
this mode will also generate an error in the MPASM  
Assembler.  
The destination argument ‘d’ functions as before.  
In the latest versions of the MPASM Assembler,  
language support for the extended instruction set must  
be explicitly invoked. This is done with either the  
command line option, /y, or the PE directive in the  
source listing.  
When the content of FSR2 is 00h, the boundaries of the  
Access RAM are essentially remapped to their original  
values. This may be useful in creating  
backward-compatible code. If this technique is used, it  
may be necessary to save the value of FSR2 and  
restore it when moving back and forth between C and  
assembly routines in order to preserve the Stack  
Pointer. Users must also keep in mind the syntax  
requirements of the extended instruction set (see  
Section 25.2.3.1 “Extended Instruction Syntax with  
Standard PIC18 Commands”).  
25.2.4  
CONSIDERATIONS WHEN  
ENABLING THE EXTENDED  
INSTRUCTION SET  
It is important to note that the extensions to the instruc-  
tion set may not be beneficial to all users. In particular,  
users who are not writing code that uses a software  
stack may not benefit from using the extensions to the  
instruction set.  
Although the Indexed Literal Offset mode can be very  
useful for dynamic stack and pointer manipulation, it  
can also be very annoying if a simple arithmetic opera-  
tion is carried out on the wrong register. Users who are  
accustomed to the PIC18 programming must keep in  
mind that, when the extended instruction set is  
enabled, register addresses of 5Fh or less are used for  
Indexed Literal Offset Addressing.  
Additionally, the Indexed Literal Offset Addressing  
mode may create issues with legacy applications  
written to the PIC18 assembler. This is because  
instructions in the legacy code may attempt to address  
registers in the Access Bank below 5Fh. Since these  
addresses are interpreted as literal offsets to FSR2  
when the instruction set extension is enabled, the  
application may read or write to the wrong data  
addresses.  
Representative examples of typical byte-oriented and  
bit-oriented instructions in the Indexed Literal Offset  
mode are provided on the following page to show how  
execution is affected. The operand conditions shown in  
the examples are applicable to all instructions of these  
types.  
When porting an application to the PIC18F87J10  
family, it is very important to consider the type of code.  
A large, re-entrant application that is written in C and  
would benefit from efficient compilation will do well  
when using the instruction set extensions. Legacy  
applications that heavily use the Access Bank will most  
likely not benefit from using the extended instruction  
set.  
DS39663F-page 340  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
ADD W to Indexed  
(Indexed Literal Offset mode)  
Bit Set Indexed  
BSF  
ADDWF  
(Indexed Literal Offset mode)  
Syntax:  
ADDWF  
[k] {,d}  
Syntax:  
BSF [k], b  
Operands:  
0 k 95  
d [0,1]  
Operands:  
0 f 95  
0 b 7  
Operation:  
(W) + ((FSR2) + k) dest  
Operation:  
1((FSR2) + k)<b>  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
None  
0010  
01d0  
kkkk  
kkkk  
1000  
bbb0  
kkkk  
kkkk  
Description:  
The contents of W are added to the  
contents of the register indicated by  
FSR2, offset by the value ‘k’.  
Description:  
Bit ‘b’ of the register indicated by FSR2,  
offset by the value ‘k’, is set.  
Words:  
Cycles:  
1
1
If ‘d’ is ‘0’, the result is stored in W. If ‘d’  
is ‘1’, the result is stored back in  
register ‘f’.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q Cycle Activity:  
Q1  
Example:  
BSF  
[FLAG_OFST], 7  
Q2  
Q3  
Q4  
Decode  
Read ‘k’  
Process  
Data  
Write to  
destination  
Before Instruction  
FLAG_OFST  
FSR2  
=
=
0Ah  
0A00h  
Contents  
of 0A0Ah  
After Instruction  
Example:  
ADDWF  
[OFST],0  
=
55h  
D5h  
Before Instruction  
W
OFST  
FSR2  
=
=
=
17h  
Contents  
of 0A0Ah  
2Ch  
=
0A00h  
Contents  
of 0A2Ch  
=
20h  
After Instruction  
Set Indexed  
(Indexed Literal Offset mode)  
SETF  
W
=
=
37h  
20h  
Contents  
of 0A2Ch  
Syntax:  
SETF [k]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 95  
FFh ((FSR2) + k)  
None  
0110  
1000  
kkkk  
kkkk  
The contents of the register indicated by  
FSR2, offset by ‘k’, are set to FFh.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read ‘k’  
Process  
Data  
Write  
register  
Example:  
SETF  
[OFST]  
2Ch  
Before Instruction  
OFST  
FSR2  
=
=
0A00h  
Contents  
of 0A2Ch  
=
00h  
After Instruction  
Contents  
of 0A2Ch  
=
FFh  
© 2009 Microchip Technology Inc.  
DS39663F-page 341  
PIC18F87J10 FAMILY  
To develop software for the extended instruction set,  
the user must enable support for the instructions and  
the Indexed Addressing mode in their language tool(s).  
Depending on the environment being used, this may be  
done in several ways:  
25.2.5  
SPECIAL CONSIDERATIONS WITH  
MICROCHIP MPLAB® IDE TOOLS  
The latest versions of Microchip’s software tools have  
been designed to fully support the extended instruction  
set for the PIC18F87J10 family. This includes the  
MPLAB C18 C Compiler, MPASM assembly language  
and MPLAB Integrated Development Environment  
(IDE).  
• A menu option or dialog box within the  
environment that allows the user to configure the  
language tool and its settings for the project  
• A command line option  
When selecting  
a
target device for software  
• A directive in the source code  
development, MPLAB IDE will automatically set default  
Configuration bits for that device. The default setting for  
the XINST Configuration bit is ‘0’, disabling the  
extended instruction set and Indexed Literal Offset  
Addressing. For proper execution of applications  
developed to take advantage of the extended instruc-  
tion set, XINST must be set during programming.  
These options vary between different compilers,  
assemblers and development environments. Users are  
encouraged to review the documentation accompany-  
ing their development systems for the appropriate  
information.  
DS39663F-page 342  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
26.1 MPLAB Integrated Development  
Environment Software  
26.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2009 Microchip Technology Inc.  
DS39663F-page 343  
PIC18F87J10 FAMILY  
26.2 MPASM Assembler  
26.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
26.6 MPLAB SIM Software Simulator  
26.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcon-  
trollers and the dsPIC30 and dsPIC33 family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
26.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS39663F-page 344  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
26.7 MPLAB ICE 2000  
High-Performance  
26.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
26.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
26.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high-speed, noise tolerant, Low-  
Voltage Differential Signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2009 Microchip Technology Inc.  
DS39663F-page 345  
PIC18F87J10 FAMILY  
26.11 PICSTART Plus Development  
Programmer  
26.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
26.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS39663F-page 346  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
27.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any digital only I/O pin or MCLR with respect to VSS (except VDD) ........................................... -0.3V to 6.0V  
Voltage on any combined digital and analog pin with respect to VSS (except VDD)........................ -0.3V to (VDD + 0.3V)  
Voltage on VDDCORE with respect to VSS................................................................................................... -0.3V to 2.75V  
Voltage on VDD with respect to VSS ........................................................................................................... -0.3V to 3.6V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Maximum output current sunk by any PORTB and PORTC I/O pin........................................................................25 mA  
Maximum output current sunk by any PORTD, PORTE and PORTJ I/O pin............................................................8 mA  
Maximum output current sunk by any PORTA, PORTF, PORTG and PORTH I/O pin .............................................4 mA  
Maximum output current sourced by any PORTB and PORTC I/O pin ..................................................................25 mA  
Maximum output current sourced by any PORTD, PORTE and PORTJ I/O pin.......................................................8 mA  
Maximum output current sourced by any PORTA, PORTF, PORTG and PORTH I/O pin ........................................4 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
© 2009 Microchip Technology Inc.  
DS39663F-page 347  
PIC18F87J10 FAMILY  
FIGURE 27-1:  
PIC18F87J10 FAMILY VOLTAGE-FREQUENCY GRAPH,  
REGULATOR DISABLED (INDUSTRIAL)  
3.00V  
2.75V  
2.50V  
2.7V  
PIC18F6XJ10/6XJ15/8XJ10/8XJ15  
2.35V  
2.25V  
2.00V  
4 MHz  
40 MHz  
Frequency  
For VDDCORE values, 2V to 2.35V, FMAX = (102.85 MHz/V) * (VDDCORE – 2V) + 4 MHz  
Note 1: For devices without the voltage regulator, VDD and VDDCORE must be maintained so  
that VDDCORE VDD 3.6V.  
DS39663F-page 348  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 27-2:  
PIC18F87J10 FAMILY VOLTAGE-FREQUENCY GRAPH,  
REGULATOR ENABLED (INDUSTRIAL)  
4.0V  
3.5V  
3.6V  
2.7V  
PIC18F6XJ10/6XJ15/8XJ10/8XJ15  
3.0V  
2.5V  
40 MHz  
4 MHz  
Frequency  
• FMAX = 25 MHz in 8-bit External Memory mode.  
• FMAX = 40 MHz in all other modes for VDD > 2.35V.  
© 2009 Microchip Technology Inc.  
DS39663F-page 349  
PIC18F87J10 FAMILY  
27.1 DC Characteristics: Supply Voltage, PIC18F87J10 Family (Industrial)  
PIC18F87J10 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
Symbol  
No.  
Characteristic  
Supply Voltage  
Min  
Typ  
Max  
Units  
Conditions  
ENVREG = 0  
D001  
VDD  
VDDCORE  
3.6  
3.6  
V
V
2.7  
ENVREG = 1  
D001B  
VDDCORE External Supply for  
2.0  
2.7  
V
ENVREG = 0  
Microcontroller Core  
D001C  
D001D  
D002  
AVDD  
AVSS  
VDR  
Analog Supply Voltage  
Analog Ground Voltage  
VDD – 0.3  
VSS – 0.3  
1.5  
VDD + 0.3  
VSS + 0.3  
V
V
V
RAM Data Retention  
Voltage(1)  
D003  
D004  
D005  
VPOR  
SVDD  
VBOR  
VDD Start Voltage  
to ensure Internal  
Power-on Reset Signal  
0.15  
V
See Section 5.3 “Power-on  
Reset (POR)” for details  
VDD Rise Rate  
to Ensure Internal  
Power-on Reset Signal  
0.05  
2.35  
V/ms See Section 5.3 “Power-on  
Reset (POR)” for details  
Brown-out Reset (BOR)  
Voltage  
2.5  
2.7  
V
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM  
data.  
DS39663F-page 350  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
27.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J10 Family (Industrial)  
PIC18F87J10 Family  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Power-Down Current (IPD)  
Typ  
Max Units  
Conditions  
(1)  
All devices  
All devices  
All devices  
27  
43  
69  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
(5)  
VDD = 2.0V  
69  
(Sleep mode)  
121  
49  
149  
104  
104  
184  
203  
203  
289  
(5)  
VDD = 2.5V  
69  
(Sleep mode)  
166  
75  
(6)  
VDD = 3.3V  
100  
140  
(Sleep mode)  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
5: ENVREG tied to VSS, voltage regulator disabled.  
6: ENVREG tied to VDD, voltage regulator enabled.  
© 2009 Microchip Technology Inc.  
DS39663F-page 351  
PIC18F87J10 FAMILY  
27.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J10 Family (Industrial) (Continued)  
PIC18F87J10 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
(2,3)  
All devices 1.8  
3.27  
3.27  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
1.8  
VDD = 2.0V  
VDD = 2.5V  
VDD = 3.3V  
VDD = 2.0V  
VDD = 2.5V  
VDD = 3.3V  
1.9  
3.27  
5.57  
5.57  
5.57  
5.97  
5.97  
5.97  
3.27  
3.27  
3.27  
5.57  
5.57  
5.57  
5.97  
5.97  
5.97  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
All devices 4.0  
FOSC = 31 kHz  
(RC_RUN mode,  
internal oscillator source)  
3.7  
3.5  
All devices 4.0  
3.8  
3.7  
All devices 1.8  
1.8  
1.9  
All devices 4.0  
FOSC = 31 kHz  
(RC_IDLE mode,  
internal oscillator source)  
3.7  
3.5  
All devices 4.0  
3.8  
3.7  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
5: ENVREG tied to VSS, voltage regulator disabled.  
6: ENVREG tied to VDD, voltage regulator enabled.  
DS39663F-page 352  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
27.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J10 Family (Industrial) (Continued)  
PIC18F87J10 Family  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Supply Current (IDD)  
Typ Max Units  
Conditions  
(2,3)  
All devices 1.8  
3.27  
3.27  
3.27  
5.57  
5.57  
5.57  
5.97  
5.97  
5.97  
4.47  
4.47  
4.47  
6.97  
6.97  
6.97  
7.47  
7.47  
7.47  
18.7  
18.7  
18.7  
19.7  
19.7  
19.7  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
(5)  
1.8  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V  
VDD = 2.5V  
VDD = 3.3V  
VDD = 2.0V  
VDD = 2.5V  
VDD = 3.3V  
VDD = 2.5V  
VDD = 3.3V  
1.9  
All devices 4.0  
FOSC = 1 MHZ  
(PRI_RUN mode,  
EC oscillator)  
(5)  
(6)  
(5)  
(5)  
(6)  
(5)  
(6)  
3.7  
3.5  
All devices 4.0  
3.8  
3.7  
All devices 2.4  
2.4  
2.5  
All devices 4.7  
FOSC = 4 MHz  
(PRI_RUN mode,  
EC oscillator)  
4.4  
4.3  
All devices 5.1  
4.9  
4.7  
All devices 13.4  
13.0  
FOSC = 40 MHZ  
(PRI_RUN mode,  
EC oscillator)  
13.0  
All devices 14.5  
14.4  
14.5  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
5: ENVREG tied to VSS, voltage regulator disabled.  
6: ENVREG tied to VDD, voltage regulator enabled.  
© 2009 Microchip Technology Inc.  
DS39663F-page 353  
PIC18F87J10 FAMILY  
27.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J10 Family (Industrial) (Continued)  
PIC18F87J10 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
(2)  
All devices 7.2  
12.1  
12.1  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
FOSC = 4 MHZ,  
16 MHz internal  
(PRI_RUN HSPLL mode)  
(5)  
(6)  
(5)  
(6)  
6.8  
VDD = 2.5V  
VDD = 3.3V  
VDD = 2.5V  
VDD = 3.3V  
6.9  
12.1  
13.1  
13.1  
13.1  
18.7  
18.7  
18.7  
19.7  
19.7  
19.7  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
All devices 7.6  
FOSC = 4 MHZ,  
16 MHz internal  
(PRI_RUN HSPLL mode)  
7.5  
7.3  
All devices 10.9  
FOSC = 10 MHZ,  
40 MHz internal  
(PRI_RUN HSPLL mode)  
10.6  
10.3  
All devices 11.9  
11.8  
FOSC = 10 MHZ,  
40 MHz internal  
(PRI_RUN HSPLL mode)  
11.7  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
5: ENVREG tied to VSS, voltage regulator disabled.  
6: ENVREG tied to VDD, voltage regulator enabled.  
DS39663F-page 354  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
27.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J10 Family (Industrial) (Continued)  
PIC18F87J10 Family  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Supply Current (IDD)  
Typ Max Units  
Conditions  
(2,3)  
All devices 1.8  
3.27  
3.27  
3.27  
5.57  
5.57  
5.57  
5.97  
5.97  
5.97  
4.47  
4.47  
4.47  
6.97  
6.97  
6.97  
7.47  
7.47  
7.47  
18.7  
18.7  
18.7  
19.7  
19.7  
19.7  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
(5)  
1.8  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V  
VDD = 2.5V  
VDD = 3.3V  
VDD = 2.0V  
VDD = 2.5V  
VDD = 3.3V  
VDD = 2.5V  
VDD = 3.3V  
1.9  
All devices 4.0  
FOSC = 1 MHz  
(PRI_IDLE mode,  
EC oscillator)  
(5)  
(6)  
(5)  
(5)  
(6)  
(5)  
(6)  
3.7  
3.5  
All devices 4.2  
4.0  
3.8  
All devices 2.4  
2.4  
2.5  
All devices 4.7  
FOSC = 4 MHz  
(PRI_IDLE mode,  
EC oscillator)  
4.4  
4.8  
All devices 5.1  
4.9  
4.8  
All devices 13.4  
13.0  
FOSC = 40 MHz  
(PRI_IDLE mode,  
EC oscillator)  
13.0  
All devices 14.8  
14.4  
14.5  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
5: ENVREG tied to VSS, voltage regulator disabled.  
6: ENVREG tied to VDD, voltage regulator enabled.  
© 2009 Microchip Technology Inc.  
DS39663F-page 355  
PIC18F87J10 FAMILY  
27.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J10 Family (Industrial) (Continued)  
PIC18F87J10 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
(2,3)  
All devices 1.8  
3.27  
3.27  
mA  
mA  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
(5)  
(5)  
(6)  
(5)  
(5)  
(6)  
1.8  
VDD = 2.0V  
VDD = 2.5V  
VDD = 3.3V  
VDD = 2.0V  
VDD = 2.5V  
VDD = 3.3V  
1.9  
3.27  
5.57  
5.57  
5.57  
5.97  
5.97  
5.97  
3.27  
3.27  
3.27  
5.57  
5.57  
5.57  
5.97  
5.97  
5.97  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
All devices 4.0  
(4)  
FOSC = 32 kHz  
3.7  
(SEC_RUN mode,  
Timer1 as clock)  
3.5  
All devices 4.2  
4.0  
3.8  
All devices 1.8  
1.8  
1.9  
All devices 4.0  
(4)  
FOSC = 32 kHz  
3.7  
(SEC_IDLE mode,  
Timer1 as clock)  
3.5  
All devices 4.2  
4.0  
3.8  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
5: ENVREG tied to VSS, voltage regulator disabled.  
6: ENVREG tied to VDD, voltage regulator enabled.  
DS39663F-page 356  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
27.2 DC Characteristics: Power-Down and Supply Current  
PIC18F87J10 Family (Industrial) (Continued)  
PIC18F87J10 Family  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
Typ Max Units  
Module Differential Currents (ΔIWDT, ΔIOSCB, ΔIAD)  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Conditions  
D022  
Watchdog Timer 1.9  
4.5  
5.1  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
(ΔIWDT)  
VDD = 2.0V  
VDD = 2.5V  
VDD = 3.3V  
VDD = 2.0V  
VDD = 2.5V  
VDD = 3.3V  
1.9  
+25°C  
+85°C  
1.3  
5.1  
2.7  
5.4  
-40°C  
2.75  
6.0  
+25°C  
1.7  
6.0  
+85°C  
1.3  
10.5  
10.5  
10.5  
18.5  
19.1  
19.1  
18.5  
19.1  
19.1  
19.1  
19.1  
19.1  
10.9  
11.4  
11.9  
-40°C  
2.1  
+25°C  
2.0  
+85°C  
D025  
(ΔIOSCB)  
Timer1 Oscillator 8.1  
-40°C  
(3)  
(3)  
(3)  
32 kHz on Timer1  
32 kHz on Timer1  
32 kHz on Timer1  
10.8  
+25°C  
13.9  
+85°C  
8.2  
-40°C  
11.0  
+25°C  
13.9  
+85°C  
7.9  
-40°C  
10.7  
+25°C  
13.5  
+85°C  
A/D Converter 1.2  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
VDD = 2.0V  
VDD = 2.5V  
VDD = 3.3V  
D026  
A/D on, not converting  
(ΔIAD)  
1.2  
1.2  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta  
current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
5: ENVREG tied to VSS, voltage regulator disabled.  
6: ENVREG tied to VDD, voltage regulator enabled.  
© 2009 Microchip Technology Inc.  
DS39663F-page 357  
PIC18F87J10 FAMILY  
27.3 DC Characteristics: PIC18F87J10 Family (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
All I/O Ports:  
with TTL buffer  
D030  
VSS  
0.15 VDD  
0.8  
V
V
V
V
V
V
V
V
VDD < 3.3V  
D030A  
D031  
3.3V VDD 3.6V  
with Schmitt Trigger Buffer  
RC3 and RC4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
0.8  
D031A  
D031B  
D032  
I2C™ enabled  
SMBus enabled  
MCLR  
OSC1  
OSC1  
0.2 VDD  
0.3 VDD  
0.2 VDD  
D033  
HS, HSPLL modes  
EC, ECPLL modes(1)  
D033A  
D034  
T1CKI  
VSS  
0.3  
V
VIH  
Input High Voltage  
I/O Ports with non 5.5V  
Tolerance:(4)  
D040  
D040A  
D041  
with TTL Buffer  
0.25 VDD + 0.8V  
2.0  
VDD  
VDD  
VDD  
V
V
V
VDD < 3.3V  
3.3V VDD 3.6V  
with Schmitt Trigger Buffer  
0.8 VDD  
I/O Ports with 5.5V  
Tolerance:(4)  
D041A  
D041B  
Dxxx  
RC3 and RC4  
0.7 VDD  
2.1  
VDD  
VDD  
5.5  
V
V
V
V
V
V
V
V
I2C enabled  
SMBus enabled  
VDD < 3.3V  
with TTL Buffer  
0.25 VDD + 0.8V  
2.0  
DxxxA  
Dxxx  
5.5  
3.3V VDD 3.6V  
with Schmitt Trigger Buffer  
0.8 VDD  
0.8 VDD  
0.7 VDD  
0.8 VDD  
5.5  
D042  
MCLR  
OSC1  
OSC1  
VDD  
VDD  
VDD  
D043  
HS, HSPLL modes  
EC, ECPLL modes  
D043A  
D044  
T1CKI  
1.6  
VDD  
V
IIL  
Input Leakage Current(2,3)  
D060  
I/O Ports with non 5.5V  
Tolerance:(4)  
±1  
±1  
μA VSS VPIN VDD,  
Pin at high-impedance  
D060A  
I/O Ports with 5.5V  
Tolerance:(4)  
μA Vss VPIN 5.5V.  
Pin at high-impedance  
D061  
D063  
MCLR  
OSC1  
±1  
±5  
μA Vss VPIN VDD  
μA Vss VPIN VDD  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC® device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Refer to Table 11-2 for the pins that have corresponding tolerance limits.  
DS39663F-page 358  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
27.3 DC Characteristics: PIC18F87J10 Family (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
IPU  
Weak Pull-up Current  
D070  
D080  
IPURB  
VOL  
PORTB Weak Pull-up Current  
Output Low Voltage  
30  
240  
μA VDD = 3.3V, VPIN = VSS  
I/O Ports (PORTB, PORTC)  
0.4  
0.4  
V
V
IOL = 8.5 mA, VDD 3.3V  
IOL = 3.4 mA, VDD 3.3V  
I/O Ports (PORTD, PORTE,  
PORTJ)  
I/O Ports (PORTA, PORTF,  
PORTG, PORTH)  
0.4  
0.4  
V
V
IOL = 3.4 mA, VDD 3.3V  
IOL = 1.0 mA, VDD 3.3V  
D083  
D090  
OSC2/CLKO  
(EC, ECIO modes)  
Output High Voltage(3)  
VOH  
I/O Ports (PORTB, PORTC)  
2.4  
2.4  
V
V
IOL = -6 mA, VDD 3.3V  
IOL = -2 mA, VDD 3.3V  
I/O Ports (PORTD, PORTE,  
PORTJ)  
I/O Ports (PORTA, PORTF,  
PORTG, PORTH)  
2.4  
2.4  
V
V
IOL = -2 mA, VDD 3.3V  
IOL = 1 mA, VDD 3.3V  
D092  
OSC2/CLKO  
(EC, ECIO modes)  
Capacitive Loading Specs  
on Output Pins  
D100(4) COSC2 OSC2 Pin  
15  
pF In HS mode when  
external clock is used to drive  
OSC1  
D101  
D102  
CIO  
CB  
All I/O Pins  
50  
pF To meet the AC Timing  
Specifications  
pF I2C™ Specification  
SCLx, SDAx  
400  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC® device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Refer to Table 11-2 for the pins that have corresponding tolerance limits.  
© 2009 Microchip Technology Inc.  
DS39663F-page 359  
PIC18F87J10 FAMILY  
TABLE 27-1: MEMORY PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
100  
1K  
E/W -40°C to +85°C  
VPR  
VDD for Read  
VMIN  
3.6  
V
VMIN = Minimum operating  
voltage  
D132 VPEW Voltage for Self-Timed Erase or  
Write  
VDD  
2.35  
2.25  
3.6  
2.7  
V
V
ENVREG = 0  
ENVREG = 1  
VDDCORE  
D133A TIW  
D133B TIE  
Self-Timed Write Cycle Time  
2.8  
33.0  
ms  
ms  
Self-Timed Page Erase Cycle  
Time  
D134 TRETD Characteristic Retention  
20  
10  
1
Year Provided no other  
specifications are violated  
D135  
D140  
IDDP  
Supply Current during  
Programming  
mA  
TWE  
Writes per Erase Cycle  
For each physical address  
Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
DS39663F-page 360  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 27-2: COMPARATOR SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Input Offset Voltage  
Min  
Typ  
Max  
Units  
Comments  
D300  
VIOFF  
0
±5.0  
±25  
VDD – 1.5  
mV  
V
D301  
D302  
D303  
D304  
VICM  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time(1)  
CMRR  
TRESP  
55  
dB  
ns  
μs  
150  
400  
TMC2OV Comparator Mode Change to  
Output Valid  
10  
D305  
VIRV  
Internal Reference Voltage  
1.2  
V
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions  
from VSS to VDD.  
TABLE 27-3: VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Resolution  
Min  
Typ  
Max  
Units  
Comments  
D310  
VRES  
VDD/24  
2k  
VDD/32  
1/2  
LSb  
LSb  
Ω
D311  
D312  
D313  
VRAA  
VRUR  
TSET  
Absolute Accuracy  
Unit Resistor Value (R)  
Settling Time(1)  
10  
μs  
Note 1: Settling time measured while CVRR = 1and CVR<3:0> transitions from ‘0000’ to ‘1111’.  
TABLE 27-4: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
VRGOUT Regulator Output Voltage  
External Filter Capacitor Value  
2.5  
10  
V
CEFC  
4.7  
μF  
Capacitor must be low  
series resistance  
(<5 Ohms)  
© 2009 Microchip Technology Inc.  
DS39663F-page 361  
PIC18F87J10 FAMILY  
27.4 AC (Timing) Characteristics  
27.4.1  
TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T13CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
Fall  
P
R
V
Z
Period  
H
High  
Rise  
I
L
Invalid (High-impedance)  
Low  
Valid  
High-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
Start condition  
STO  
Stop condition  
DS39663F-page 362  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
27.4.2  
TIMING CONDITIONS  
The temperature and voltages specified in Table 27-5  
apply to all timing specifications unless otherwise  
noted. Figure 27-3 specifies the load conditions for the  
timing specifications.  
TABLE 27-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
Operating voltage VDD range as described in DC spec Section 27.1 and  
-40°C TA +85°C for industrial  
AC CHARACTERISTICS  
Section 27.3.  
FIGURE 27-3:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 Load Condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKO  
and including D and E outputs as ports  
VSS  
© 2009 Microchip Technology Inc.  
DS39663F-page 363  
PIC18F87J10 FAMILY  
27.4.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 27-4:  
EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)  
Q4  
Q1  
1
Q2  
Q3  
Q4  
Q1  
OSC1  
CLKO  
3
4
3
4
2
TABLE 27-6: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
1A  
FOSC  
External CLKI Frequency(1)  
DC  
DC  
DC  
4
25  
40  
10  
25  
10  
MHz HS Oscillator mode  
MHz EC Oscillator mode  
MHz HSPLL, ECPLL Oscillator modes  
MHz HS Oscillator mode  
Oscillator Frequency(1)  
External CLKI Period(1)  
4
MHz HS/EC + PLL Oscillator mode  
1
TOSC  
TCY  
40  
25  
40  
100  
100  
10  
ns  
ns  
ns  
ns  
ns  
ns  
HS Oscillator mode  
EC Oscillator mode  
Oscillator Period(1)  
250  
250  
HS Oscillator mode  
HS/EC + PLL Oscillator mode  
TCY = 4/FOSC, Industrial  
HS Oscillator mode  
2
3
Instruction Cycle Time(1)  
TOSL,  
TOSH  
External Clock in (OSC1)  
High or Low Time  
4
TOSR,  
TOSF  
External Clock in (OSC1)  
Rise or Fall Time  
7.5  
ns  
HS Oscillator mode  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations  
except PLL. All specified values are based on characterization data for that particular oscillator type under  
standard operating conditions with the device executing code. Exceeding these specified limits may result  
in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested  
to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock  
input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.  
DS39663F-page 364  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 27-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.7V TO 3.6V)  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
F10  
F11  
F12  
F13  
FOSC Oscillator Frequency Range  
4
10  
40  
2
MHz  
MHz  
ms  
FSYS On-Chip VCO System Frequency  
16  
-2  
trc  
PLL Start-up Time (Lock Time)  
ΔCLK CLKO Stability (Jitter)  
+2  
%
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
TABLE 27-8: AC CHARACTERISTICS: INTERNAL RC ACCURACY  
PIC18F87J10 FAMILY (INDUSTRIAL)  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
INTRC Accuracy @ Freq = 31 kHz(1) 21.88  
40.63  
kHz -40°C to +85°C, VDD = 2.0-3.3V  
Note 1: INTRC frequency after calibration. Change of INTRC frequency as VDD changes.  
© 2009 Microchip Technology Inc.  
DS39663F-page 365  
PIC18F87J10 FAMILY  
FIGURE 27-5:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKO  
13  
14  
12  
19  
18  
16  
I/O pin  
(Input)  
15  
17  
I/O pin  
(Output)  
New Value  
Old Value  
20, 21  
Refer to Figure 27-3 for load conditions.  
Note:  
TABLE 27-9: CLKO AND I/O TIMING REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
No.  
10  
TOSH2CKL OSC1 to CLKO ↓  
TOSH2CKH OSC1 to CLKO ↑  
75  
75  
15  
15  
50  
200  
200  
30  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
11  
12  
13  
14  
15  
16  
17  
18  
18A  
19  
TCKR  
TCKF  
CLKO Rise Time  
CLKO Fall Time  
30  
TCKL2IOV CLKO to Port Out Valid  
TIOV2CKH Port In Valid before CLKO ↑  
TCKH2IOI Port In Hold after CLKO ↑  
TOSH2IOV OSC1 (Q1 cycle) to Port Out Valid  
0.5 TCY + 20 ns  
0.25 TCY + 25  
ns  
0
ns  
150  
ns  
TOSH2IOI OSC1 (Q2 cycle) to Port Input Invalid  
100  
200  
0
ns  
(I/O in hold time)  
ns VDD = 2.0V  
ns  
TIOV2OSH Port Input Valid to OSC1 ↑  
(I/O in setup time)  
20  
TIOR  
TIOF  
Port Output Rise Time  
Port Output Fall Time  
6
ns  
ns  
ns  
ns  
20A  
21  
5
21A  
22†  
23†  
TINP  
INTx Pin High or Low Time  
TCY  
TCY  
TRBP  
RB<7:4> Change INTx High or Low Time  
Legend: TBD = To Be Determined  
These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode, where CLKO output is 4 x TOSC.  
DS39663F-page 366  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 27-6:  
PROGRAM MEMORY FETCH TIMING DIAGRAM (8-BIT)  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
OSC1  
Address  
Address  
A<19:8>  
167  
166  
150  
151  
161  
Data  
AD<7:0>  
Data  
Address  
Address  
162  
153  
162A  
154  
163  
170  
155  
BA0  
ALE  
170A  
168  
CE  
OE  
TABLE 27-7: PROGRAM MEMORY FETCH TIMING REQUIREMENTS (8-BIT)  
Param  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
No  
150  
TadV2aIL Address Out Valid to ALE (address setup time)  
0.25 TCY – 10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
151  
153  
154  
155  
161  
162  
TaIL2adl  
BA01  
ALE to Address Out Invalid (address hold time)  
BA0 to Most Significant Data Valid  
0.125 TCY  
0.125 TCY  
0.125 TCY  
0.125 TCY – 5  
20  
BA02  
BA0 to Least Significant Data Valid  
TaIL2oeL ALE to OE ↓  
ToeH2adD OE to A/D Driven  
TadV2oeH Least Significant Data Valid Before OE ↑  
(data setup time  
162A TadV2oeH Most Significant Data Valid Before OE ↑  
0.25 TCY + 20  
ns  
(data setup time)  
163  
166  
167  
168  
170  
ToeH2adI OE to Data in Invalid (data Hold Time)  
TaIH2aIH ALE to ALE (cycle time)  
0
TCY  
ns  
ns  
ns  
TACC  
Toe  
Address Valid to Data Valid  
0.5 TCY – 10  
OE to Data Valid  
0.125 TCY + 5 ns  
TubH2oeH BA0 = 0Valid Before OE ↑  
0.25 TCY  
0.5 TCY  
ns  
ns  
170A TubL2oeH BA0 = 1Valid Before OE ↑  
© 2009 Microchip Technology Inc.  
DS39663F-page 367  
PIC18F87J10 FAMILY  
FIGURE 27-8:  
PROGRAM MEMORY READ TIMING DIAGRAM  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
OSC1  
A<19:16>  
BA0  
Address  
Address  
Address  
Data from External  
Address  
AD<15:0>  
163  
162  
150  
151  
160  
155  
161  
166  
167  
168  
ALE  
CE  
164  
169  
171  
171A  
OE  
165  
Operating Conditions: 2.0V < VCC < 3.6V, -40°C < TA < +125°C unless otherwise stated.  
TABLE 27-10: CLKO AND I/O TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
No  
150  
TadV2alL Address Out Valid to ALE ↓  
0.25 TCY – 10  
ns  
(address setup time)  
151  
TalL2adl  
ALE to Address Out Invalid  
5
ns  
(address hold time)  
155  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
171  
171A  
TalL2oeL ALE to OE ↓  
10  
0.125 TCY  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TadZ2oeL AD High-Z to OE (bus release to OE)  
ToeH2adD OE to AD Driven  
0
0.125 TCY – 5  
TadV2oeH LS Data Valid before OE (data setup time)  
ToeH2adl OE to Data In Invalid (data hold time)  
20  
0
TalH2alL  
ALE Pulse Width  
0.25 TCY  
0.5 TCY  
TCY  
ToeL2oeH OE Pulse Width  
0.5 TCY – 5  
TalH2alH ALE to ALE (cycle time)  
Tacc  
Toe  
Address Valid to Data Valid  
0.75 TCY – 25  
0.5 TCY – 25  
0.625 TCY + 10  
OE to Data Valid  
TalL2oeH ALE to OE ↑  
0.625 TCY – 10  
0.25 TCY – 20  
TalH2csL Chip Enable Active to ALE ↓  
TubL2oeH AD Valid to Chip Enable Active  
10  
DS39663F-page 368  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 27-9:  
PROGRAM MEMORY WRITE TIMING DIAGRAM  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
OSC1  
A<19:16>  
BA0  
Address  
Address  
166  
Data  
Address  
Address  
AD<15:0>  
153  
150  
151  
156  
ALE  
CE  
171  
171A  
154  
WRH or  
WRL  
157A  
157  
UB or  
LB  
Operating Conditions: 2.0V < VCC < 3.6V, -40°C < TA < +125°C unless otherwise stated.  
TABLE 27-11: PROGRAM MEMORY WRITE TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
No  
150  
TadV2alL Address Out Valid to ALE (address setup time)  
TalL2adl ALE to Address Out Invalid (address hold time)  
TwrH2adl WRn to Data Out Invalid (data hold time)  
TwrL WRn Pulse Width  
0.25 TCY – 10  
5
ns  
ns  
ns  
ns  
ns  
ns  
151  
153  
154  
156  
157  
5
0.5 TCY – 5  
0.5 TCY – 10  
0.25 TCY  
0.5 TCY  
TadV2wrH Data Valid before WRn (data setup time)  
TbsV2wrL Byte Select Valid before WRn ↓  
(byte select setup time)  
157A  
166  
TwrH2bsI WRn to Byte Select Invalid (byte select hold time)  
TalH2alH ALE to ALE (cycle time)  
0.125 TCY – 5  
TCY  
10  
ns  
ns  
ns  
ns  
0.25 TCY – 20  
171  
TalH2csL Chip Enable Active to ALE ↓  
171A  
TubL2oeH AD Valid to Chip Enable Active  
© 2009 Microchip Technology Inc.  
DS39663F-page 369  
PIC18F87J10 FAMILY  
FIGURE 27-10:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
Oscillator  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O pins  
Note:  
Refer to Figure 27-3 for load conditions.  
TABLE 27-12: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TMCL  
TWDT  
MCLR Pulse Width (low)  
2
μs  
31  
Watchdog Timer Time-out Period  
(no postscaler)  
3.5  
4.1  
4.9  
ms  
32  
33  
34  
TOST  
Oscillation Start-up Timer Period  
1024 TOSC  
57.4  
66  
2
1024 TOSC  
77.7  
ms  
μs  
TOSC = OSC1 period  
TPWRT Power-up Timer Period  
TIOZ  
I/O High-Impedance from MCLR  
Low or Watchdog Timer Reset  
38  
TCSD  
CPU Start-up Time  
200  
μs  
DS39663F-page 370  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 27-11:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T13CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note:  
Refer to Figure 27-3 for load conditions.  
TABLE 27-13: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
40  
TT0H  
T0CKI High Pulse Width  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
TCY + 10  
Greater of:  
20 ns or  
ns N = prescale  
value  
(TCY + 40)/N  
(1, 2, 4,..., 256)  
45  
46  
47  
TT1H  
TT1L  
TT1P  
T13CKI High Synchronous, no prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
Time  
Synchronous, with prescaler  
10  
Asynchronous  
30  
0.5 TCY + 5  
10  
T13CKI Low Synchronous, no prescaler  
Time  
Synchronous, with prescaler  
Asynchronous  
30  
T13CKI Input Synchronous  
Period  
Greater of:  
20 ns or  
ns N = prescale  
value  
(TCY + 40)/N  
(1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
FT1  
T13CKI Oscillator Input Frequency Range  
48  
TCKE2TMRI Delay from External T13CKI Clock Edge to  
Timer Increment  
2 TOSC  
7 TOSC  
© 2009 Microchip Technology Inc.  
DS39663F-page 371  
PIC18F87J10 FAMILY  
FIGURE 27-12:  
CAPTURE/COMPARE/PWM TIMINGS (INCLUDING ECCP MODULES)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Refer to Figure 27-3 for load conditions.  
Note:  
TABLE 27-14: CAPTURE/COMPARE/PWM REQUIREMENTS (INCLUDING ECCP MODULES)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TCCL  
CCPx Input Low No prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
Time  
With prescaler  
10  
0.5 TCY + 20  
10  
51  
52  
TCCH  
TCCP  
CCPx Input  
High Time  
No prescaler  
With prescaler  
CCPx Input Period  
3 TCY + 40  
N
N = prescale  
value (1, 4 or 16)  
53  
54  
TCCR  
TCCF  
CCPx Output Fall Time  
CCPx Output Fall Time  
25  
25  
ns  
ns  
TABLE 27-15: PARALLEL SLAVE PORT REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
62  
TdtV2wrH  
TwrH2dtI  
TrdL2dtV  
TrdH2dtI  
TibfINH  
Data In Valid before WR or CS (setup time)  
WR or CS to Data–In Invalid (hold time)  
RD and CS to Data–Out Valid  
20  
20  
10  
ns  
ns  
ns  
ns  
63  
64  
65  
66  
80  
RD or CS to Data–Out Invalid  
30  
Inhibit of the IBF Flag bit being Cleared from  
3 TCY  
WR or CS ↑  
DS39663F-page 372  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 27-13:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SSx  
70  
SCKx  
(CKP = 0)  
71  
72  
78  
79  
79  
SCKx  
(CKP = 1)  
78  
80  
MSb  
bit 6 - - - - - - 1  
LSb  
SDOx  
SDIx  
75, 76  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
73  
Note: Refer to Figure 27-3 for load conditions.  
TABLE 27-16: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SSx to SCKx or SCKx Input  
TSSL2SCL  
TCY  
ns  
73  
TDIV2SCH, Setup Time of SDIx Data Input to SCKx Edge  
TDIV2SCL  
20  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 1)  
TSCH2DIL, Hold Time of SDIx Data Input to SCKx Edge  
TSCL2DIL  
40  
ns  
75  
76  
78  
79  
80  
TDOR  
TDOF  
TSCR  
TSCF  
SDOx Data Output Rise Time  
25  
25  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
SDOx Data Output Fall Time  
SCKx Output Rise Time (Master mode)  
SCKx Output Fall Time (Master mode)  
TSCH2DOV, SDOx Data Output Valid after SCKx Edge  
TSCL2DOV  
Note 1: Only if Parameter #71A and #72A are used.  
© 2009 Microchip Technology Inc.  
DS39663F-page 373  
PIC18F87J10 FAMILY  
FIGURE 27-14:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SSx  
81  
SCKx  
(CKP = 0)  
71  
72  
79  
78  
73  
SCKx  
(CKP = 1)  
80  
LSb  
MSb  
bit 6 - - - - - - 1  
SDOx  
SDIx  
75, 76  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
Note: Refer to Figure 27-3 for load conditions.  
TABLE 27-17: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
73  
TDIV2SCH, Setup Time of SDIx Data Input to SCKx Edge  
TDIV2SCL  
20  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 1)  
TSCH2DIL, Hold Time of SDIx Data Input to SCKx Edge  
TSCL2DIL  
40  
ns  
75  
76  
78  
79  
80  
TDOR  
TDOF  
TSCR  
TSCF  
SDOx Data Output Rise Time  
25  
25  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
SDOx Data Output Fall Time  
SCKx Output Rise Time (Master mode)  
SCKx Output Fall Time (Master mode)  
TSCH2DOV, SDOx Data Output Valid after SCKx Edge  
TSCL2DOV  
81  
TDOV2SCH, SDOx Data Output Setup to SCKx Edge  
TDOV2SCL  
TCY  
ns  
Note 1: Only if Parameter #71A and #72A are used.  
DS39663F-page 374  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 27-15:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SSx  
70  
SCKx  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
78  
SCKx  
(CKP = 1)  
80  
MSb  
LSb  
SDOx  
SDIx  
bit 6 - - - - - - 1  
75, 76  
77  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
73  
Note:  
Refer to Figure 27-3 for load conditions.  
TABLE 27-18: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SSx to SCKx or SCKx Input  
TCY  
ns  
TSSL2SCL  
71  
TSCH  
SCKx Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
ns (Note 1)  
TSCL  
SCKx Input Low Time  
(Slave mode)  
1.25 TCY + 30  
ns  
72A  
73  
40  
20  
ns (Note 1)  
TDIV2SCH, Setup Time of SDIx Data Input to SCKx Edge  
TDIV2SCL  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
ns (Note 2)  
TSCH2DIL, Hold Time of SDIx Data Input to SCKx Edge  
TSCL2DIL  
40  
ns  
75  
76  
77  
80  
TDOR  
TDOF  
SDOx Data Output Rise Time  
SDOx Data Output Fall Time  
10  
25  
25  
50  
50  
ns  
ns  
ns  
ns  
TSSH2DOZ SSx to SDOx Output High-Impedance  
TSCH2DOV, SDOx Data Output Valid after SCKx Edge  
TSCL2DOV  
83  
TSCH2SSH, SSx after SCKx Edge  
1.5 TCY + 40  
ns  
TSCL2SSH  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
© 2009 Microchip Technology Inc.  
DS39663F-page 375  
PIC18F87J10 FAMILY  
FIGURE 27-16:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SSx  
70  
SCKx  
83  
(CKP = 0)  
71  
72  
SCKx  
(CKP = 1)  
80  
MSb  
bit 6 - - - - - - 1  
LSb  
SDOx  
SDIx  
75, 76  
77  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
Note: Refer to Figure 27-3 for load conditions.  
TABLE 27-19: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SSx to SCKx or SCKx Input  
TCY  
ns  
TSSL2SCL  
71  
TSCH  
TSCL  
TB2B  
SCKx Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
ns  
SCKx Input Low Time  
(Slave mode)  
72A  
73A  
74  
ns (Note 1)  
ns (Note 2)  
ns  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
TSCH2DIL, Hold Time of SDIx Data Input to SCKx Edge  
TSCL2DIL  
20  
75  
76  
77  
80  
TDOR  
TDOF  
SDOx Data Output Rise Time  
SDOx Data Output Fall Time  
10  
25  
25  
50  
50  
ns  
ns  
ns  
ns  
TSSH2DOZ SSx to SDOx Output High-Impedance  
TSCH2DOV, SDOx Data Output Valid after SCKx Edge  
TSCL2DOV  
82  
83  
TSSL2DOV SDOx Data Output Valid after SSx Edge  
50  
ns  
ns  
TSCH2SSH, SSx after SCKx Edge  
1.5 TCY + 40  
TSCL2SSH  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
DS39663F-page 376  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 27-17:  
SCLx  
I2C™ BUS START/STOP BITS TIMING  
91  
93  
90  
92  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 27-3 for load conditions.  
TABLE 27-20: I2C™ BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
Only relevant for Repeated  
Start condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
4000  
600  
ns  
ns  
ns  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
4700  
600  
THD:STO Stop Condition  
Hold Time  
4000  
600  
FIGURE 27-18:  
I2C™ BUS DATA TIMING  
103  
102  
100  
101  
SCLx  
90  
106  
107  
91  
92  
SDAx  
In  
110  
109  
109  
SDAx  
Out  
Note: Refer to Figure 27-3 for load conditions.  
© 2009 Microchip Technology Inc.  
DS39663F-page 377  
PIC18F87J10 FAMILY  
TABLE 27-21: I2C™ BUS DATA REQUIREMENTS (SLAVE MODE)  
Param.  
No.  
Symbol  
Characteristic  
100 kHz mode  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock High Time  
Clock Low Time  
4.0  
0.6  
μs  
μs  
400 kHz mode  
MSSP Module  
100 kHz mode  
400 kHz mode  
MSSP Module  
1.5 TCY  
4.7  
101  
TLOW  
μs  
μs  
1.3  
1.5 TCY  
102  
103  
TR  
SDAx and SCLx Rise Time 100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1 CB  
CB is specified to be from  
10 to 400 pF  
TF  
SDAx and SCLx Fall Time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1 CB  
CB is specified to be from  
10 to 400 pF  
90  
TSU:STA  
Start Condition Setup Time 100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
μs  
μs  
μs  
μs  
ns  
μs  
ns  
ns  
μs  
μs  
ns  
ns  
μs  
μs  
Only relevant for Repeated  
Start condition  
91  
THD:STA Start Condition Hold Time 100 kHz mode  
400 kHz mode  
After this period, the first clock  
pulse is generated  
106  
107  
92  
THD:DAT Data Input Hold Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
0.9  
TSU:DAT Data Input Setup Time  
250  
(Note 2)  
TSU:STO Stop Condition Setup Time 100 kHz mode  
400 kHz mode  
4.7  
0.6  
109  
110  
TAA  
Output Valid from Clock  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
3500  
(Note 1)  
TBUF  
Bus Free Time  
4.7  
Time the bus must be free  
before a new transmission can  
start  
D102  
CB  
Bus Capacitive Loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns)  
of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.  
2
2
2: A Fast mode I C™ bus device can be used in a Standard mode I C bus system, but the requirement, TSU:DAT 250 ns,  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal.  
If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line,  
2
TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I C bus specification), before the SCLx  
line is released.  
DS39663F-page 378  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 27-19:  
SCLx  
MASTER SSP I2C™ BUS START/STOP BITS TIMING WAVEFORMS  
93  
91  
90  
92  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 27-3 for load conditions.  
TABLE 27-22: MASTER SSP I2C™ BUS START/STOP BITS REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns Only relevant for  
Repeated Start  
condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns After this period, the  
first clock pulse is  
generated  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
TSU:STO Stop Condition  
Setup Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns  
400 kHz mode  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins.  
FIGURE 27-20:  
MASTER SSP I2C™ BUS DATA TIMING  
103  
102  
100  
101  
109  
SCLx  
90  
106  
91  
92  
107  
SDAx  
In  
110  
109  
SDAx  
Out  
Note: Refer to Figure 27-3 for load conditions.  
© 2009 Microchip Technology Inc.  
DS39663F-page 379  
PIC18F87J10 FAMILY  
TABLE 27-23: MASTER SSP I2C™ BUS DATA REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock High Time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ms  
ms  
ms  
ns  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
101  
102  
103  
90  
TLOW  
TR  
Clock Low Time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
SDAx and SCLx 100 kHz mode  
1000  
300  
300  
300  
300  
100  
CB is specified to be from  
10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
ns  
ns  
TF  
SDAx and SCLx 100 kHz mode  
ns  
CB is specified to be from  
10 to 400 pF  
Fall Time  
400 kHz mode  
20 + 0.1 CB  
ns  
1 MHz mode(1)  
ns  
TSU:STA Start Condition 100 kHz mode  
2(TOSC)(BRG + 1)  
ms Only relevant for  
Setup Time  
Repeated Start  
condition  
ms  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
91  
THD:STA Start Condition 100 kHz mode  
2(TOSC)(BRG + 1)  
ms After this period, the first  
Hold Time  
clock pulse is generated  
400 kHz mode  
2(TOSC)(BRG + 1)  
ms  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
ns  
106  
107  
92  
THD:DAT Data Input  
Hold Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
0
0
0.9  
ms  
ns  
TSU:DAT Data Input  
Setup Time  
250  
100  
ns  
ns  
(Note 2)  
ns  
TSU:STO Stop Condition  
Setup Time  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ns  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
109  
110  
D102  
TAA  
TBUF  
CB  
Output Valid  
from Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
3500  
1000  
ns  
ns  
Bus Free Time  
4.7  
1.3  
ms Time the bus must be free  
before a new transmission  
ms  
can start  
ms  
Bus Capacitive Loading  
400  
pF  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins.  
2: A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but parameter #107 250 ns  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the  
SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data  
bit to the SDAx line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before  
the SCLx line is released.  
DS39663F-page 380  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
FIGURE 27-21:  
EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
TXx/CKx  
pin  
121  
121  
RXx/DTx  
pin  
120  
Note: Refer to Figure 27-3 for load conditions.  
122  
TABLE 27-24: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TCKH2DTV SYNC XMIT (MASTER and SLAVE)  
Clock High to Data Out Valid  
40  
20  
20  
ns  
ns  
ns  
121  
122  
TCKRF  
TDTRF  
Clock Out Rise Time and Fall Time (Master mode)  
Data Out Rise Time and Fall Time  
FIGURE 27-22:  
EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
TXx/CKx  
pin  
125  
RXx/DTx  
pin  
126  
Note: Refer to Figure 27-3 for load conditions.  
TABLE 27-25: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TDTV2CKL SYNC RCV (MASTER and SLAVE)  
Data Hold before CKx (DTx hold time)  
10  
15  
ns  
ns  
126  
TCKL2DTL Data Hold after CKx (DTx hold time)  
© 2009 Microchip Technology Inc.  
DS39663F-page 381  
PIC18F87J10 FAMILY  
TABLE 27-26: A/D CONVERTER CHARACTERISTICS: PIC18F87J10 FAMILY (INDUSTRIAL)  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
No.  
A01  
NR  
Resolution  
10  
bit ΔVREF 3.0V  
A03  
A04  
A06  
A07  
A10  
A20  
EIL  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
<±1  
<±1  
<±3  
<±3  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
EDL  
EOFF  
EGN  
Gain Error  
Monotonicity  
Guaranteed(1)  
VSS VAIN VREF  
ΔVREF Reference Voltage Range  
2.0  
3
V
V
VDD < 3.0V  
VDD 3.0V  
(VREFH – VREFL)  
A21  
A22  
A25  
A30  
VREFH Reference Voltage High  
VSS  
VREFH  
VDD – 3.0V  
VREFH  
V
V
VREFL  
VAIN  
Reference Voltage Low  
Analog Input Voltage  
VSS – 0.3V  
VREFL  
V
ZAIN  
Recommended Impedance of  
Analog Voltage Source  
2.5  
kΩ  
A50  
IREF  
VREF Input Current(2)  
5
150  
μA During VAIN acquisition.  
μA During A/D conversion  
cycle.  
Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
2: VREFH current is from RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source.  
VREFL current is from RA2/AN2/VREF- pin or VSS, whichever is selected as the VREFL source.  
FIGURE 27-23:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
TCY  
OLD_DATA  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts.  
This allows the SLEEPinstruction to be executed.  
2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.  
DS39663F-page 382  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
TABLE 27-27: A/D CONVERSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
25.0(1)  
12  
μs TOSC based, VREF 3.0V  
130  
TAD  
A/D Clock Period  
0.7  
11  
131  
TCNV  
Conversion Time  
TAD  
(not including acquisition time) (Note 2)  
132  
135  
136  
TACQ  
TSWC  
TDIS  
Acquisition Time (Note 3)  
Switching Time from Convert Sample  
Discharge Time  
1.4  
(Note 4)  
μs -40°C to +85°C  
0.2  
μs  
Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
2: ADRES registers may be read on the following TCY cycle.  
3: The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale  
after the conversion (VDD to VSS or VSS to VDD). The source impedance (RS) on the input channels is 50Ω.  
4: On the following cycle of the device clock.  
© 2009 Microchip Technology Inc.  
DS39663F-page 383  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 384  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
28.0 PACKAGING INFORMATION  
28.1 Package Marking Information  
64-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
18F67J10  
-I/PT  
0910017  
e
3
80-Lead TQFP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC18F87J10  
-I/PT  
0910017  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS39663F-page 385  
PIC18F87J10 FAMILY  
28.2 Package Details  
The following sections give the technical details of the  
packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
1 2 3  
NOTE 1  
c
NOTE 2  
α
A
φ
A2  
A1  
β
L
L1  
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
89ꢒ  
;ꢔ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓ@/1  
DS39663F-page 386  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
© 2009 Microchip Technology Inc.  
DS39663F-page 387  
PIC18F87J10 FAMILY  
)ꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
NOTE 1  
12 3  
α
NOTE 2  
A
c
φ
A2  
β
A1  
L1  
L
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
M
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
89ꢒ  
@ꢓ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓꢛꢎ1  
DS39663F-page 388  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
)ꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
© 2009 Microchip Technology Inc.  
DS39663F-page 389  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 390  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
APPENDIX A: MIGRATION  
BETWEEN HIGH-END  
DEVICE FAMILIES  
Devices in the PIC18F87J10 and PIC18F8722 families  
are very similar in their functions and feature sets.  
However, there are some potentially important differ-  
ences which should be considered when migrating an  
application across device families to achieve a new  
design goal. These are summarized in Table A-1. The  
areas of difference which could be a major impact on  
migration are discussed in greater detail later in this  
section.  
TABLE A-1:  
NOTABLE DIFFERENCES BETWEEN PIC18F8722 AND PIC18F87J10 FAMILIES  
Characteristic  
PIC18F87J10 Family  
PIC18F8722 Family  
Operating Frequency  
Supply Voltage  
40 MHz @ 2.7V  
2.0V-3.6V, dual voltage requirement  
Low  
40 MHz @ 4.2V  
2.0V-5.5V  
Operating Current  
Lower  
Program Memory Endurance  
I/O Sink/Source at 25 mA  
Input Voltage Tolerance on I/O pins  
I/O  
1,000 write/erase cycles (typical)  
PORTB and PORTC only  
5.5V on digital only pins  
100,000 write/erase cycles (typical)  
All ports  
VDD on all I/O pins  
70  
66 (RA7, RA6, RE3 and RF0  
not available)  
Pull-ups  
PORTB, PORTD, PORTE  
and PORTJ  
PORTB  
Oscillator Options  
Limited options (EC, HS, PLL,  
fixed 32 kHz INTRC)  
More options (EC, HS, XT, LP, RC,  
PLL, flexible INTRC)  
Program Memory Retention  
20 years (minimum)  
40 years (minimum)  
Programming Time (Normalized)  
2.8 ms/byte (2.8 ms/64-byte block)  
64  
15.6 μs/byte (1 ms/64-byte block)  
Programming Entry  
Code Protection  
Low Voltage, Key Sequence  
Single block, all or nothing  
VPP and LVP  
Multiple code protection blocks  
Configuration Words  
Stored in last 4 words of  
Program Memory space  
Stored in Configuration Space,  
starting at 300000h  
Start-up Time from Sleep  
Power-up Timer  
Data EEPROM  
200 µs (typical)  
Always on  
10 µs (typical)  
Configurable  
Available  
Not available  
BOR  
Simple BOR with Voltage Regulator  
Not available  
Programmable BOR  
Available  
LVD  
A/D Channels  
15  
16  
A/D Calibration  
Required  
Not required  
Available  
Microprocessor mode (EMB)  
External Memory Addressing  
In-Circuit Emulation  
Not available  
Address shifting available  
Not available  
Address shifting not available  
Available  
© 2009 Microchip Technology Inc.  
DS39663F-page 391  
PIC18F87J10 FAMILY  
A.1  
Power Requirement Differences  
A.3  
Oscillator Differences  
The most significant difference between the  
PIC18F87J10 and PIC18F8722 device families is the  
power requirements. PIC18F87J10 devices are  
designed on a smaller process; this results in lower  
maximum voltage and higher leakage current.  
PIC18F8722 devices have a greater range of oscillator  
options than PIC18F87J10 devices. The latter family is  
limited primarily to operating modes that support HS  
and EC oscillators.  
In addition, the PIC18F87J10 has an internal RC  
oscillator with only a fixed 32 kHz output. The higher  
frequency RC modes of the PIC18F8722 family are not  
available.  
The operating voltage range for PIC18F87J10 devices  
is 2.0V to 3.6V. In addition, these devices have split  
power requirements: one for the core logic and one for  
the I/O. One of the VDD pins is separated for the core  
logic supply (VDDCORE). This pin has specific voltage  
and capacitor requirements as described in  
Section 27.0 “Electrical Characteristics”.  
Both device families have an internal PLL. For the  
PIC18F87J10 family, however, the PLL must be  
enabled in software.  
The clocking differences should be considered when  
making a conversion between the PIC18F8722 and  
PIC18F87J10 device families.  
A.2  
Pin Differences  
There are several differences in the pinouts between  
the PIC18F87J10 and the PIC18F8722 families:  
A.4  
Peripherals  
• Input voltage tolerance  
• Output current capabilities  
• Available I/O  
Peripherals must also be considered when making a  
conversion between the PIC18F87J10 and the  
PIC18F8722 families:  
Pins on the PIC18F87J10 that have digital only input  
capability will tolerate voltages up to 5.5V and are thus  
tolerant to voltages above VDD. Table 11-1 in  
Section 11.0 “I/O Ports” contains the complete list.  
External Memory Bus: The external memory bus  
on the PIC18F87J10 does not support Micro-  
controller mode; however, it does support external  
address offset.  
A/D Converter: There are only 15 channels on  
PIC18F87J10 devices. The converters for these  
devices also require a calibration step prior to  
normal operation.  
In addition to input differences, there are output differ-  
ences as well. PIC18F87J10 devices have three  
classes of pin output current capability: high, medium  
and low. Not all I/O pins can source or sink equal levels  
of current. Only PORTB and PORTC support the  
25 mA source/sink capability that is supported by all  
output pins on the PIC18F8722. Table 11-2 in  
Section 11.0 “I/O Ports” contains the complete list of  
output capabilities.  
Data EEPROM: PIC18F87J10 devices do not  
have this module.  
BOR: PIC18F87J10 devices do not have a  
programmable BOR. Simple brown-out capability  
is provided through the use of the internal voltage  
regulator.  
There are additional differences in how some pin func-  
tions are implemented on PIC18F87J10 devices. First,  
the OSC1/OSC2 oscillator pins are strictly dedicated to  
the external oscillator function; there is no option to  
re-allocate these pins to I/O (RA6 or RA7) as on  
PIC18F8722 devices. Second, the MCLR pin is  
dedicated only to MCLR and cannot be configured as  
an input (RG5). Finally, RF0 does not exist on  
PIC18F87J10 devices.  
LVD: PIC18F87J10 devices do not have this  
module.  
All of these pin differences (including power pin  
differences) should be accounted for when making a  
conversion between PIC18F8722 and PIC18F87J10  
devices.  
DS39663F-page 392  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
APPENDIX B: REVISION HISTORY  
Revision A (December 2004)  
Original data sheet for PIC18F87J10 family devices.  
Revision B (July 2005)  
Packaging diagrams have been updated. Document  
updated from Advanced to Preliminary. Updated all  
TBDs in Section 27.0 “Electrical Characteristics”.  
Edits to text throughout document.  
Revision C (December 2005)  
Packaging diagrams have been updated. Minor edits to  
text throughout document.  
Revision D (June 2006)  
Electrical characteristics and packaging diagrams have  
been updated. Minor edits to text throughout  
document.  
Revision E (June 2009)  
Pin diagrams have been edited to indicate 5.5V tolerant  
input pins. Packaging diagrams have been updated.  
Section 2.0 “Guidelines for Getting Started with  
PIC18FJ Microcontrollers” has been added. Minor text  
edits throughout the document.  
Revision F (September 2009)  
Added Appendix B: “Revision History”.  
© 2009 Microchip Technology Inc.  
DS39663F-page 393  
PIC18F87J10 FAMILY  
NOTES:  
DS39663F-page 394  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
Block Diagrams  
INDEX  
16-Bit Byte Select Mode .......................................... 101  
16-Bit Byte Write Mode .............................................. 99  
16-Bit Word Write Mode .......................................... 100  
8-Bit Multiplexed Modes .......................................... 103  
A/D ........................................................................... 264  
Analog Input Model .................................................. 265  
Baud Rate Generator .............................................. 225  
Capture Mode Operation ......................................... 171  
Comparator Analog Input Model .............................. 275  
Comparator I/O Operating Modes ........................... 272  
Comparator Output .................................................. 274  
Comparator Voltage Reference ............................... 278  
Comparator Voltage Reference Output  
Buffer Example ................................................ 279  
Compare Mode Operation ....................................... 172  
Connections for On-Chip Voltage Regulator ........... 288  
Device Clock .............................................................. 34  
Enhanced PWM Simplified ...................................... 181  
EUSART Receive .................................................... 251  
EUSART Transmit ................................................... 249  
External Power-on Reset Circuit  
A
A/D ................................................................................... 261  
A/D Converter Interrupt, Configuring ....................... 265  
Acquisition Requirements ........................................ 266  
ADCAL Bit ................................................................ 269  
ADCON0 Register .................................................... 261  
ADCON1 Register .................................................... 261  
ADCON2 Register .................................................... 261  
ADRESH Register ............................................ 261, 264  
ADRESL Register .................................................... 261  
Analog Port Pins ...................................................... 148  
Analog Port Pins, Configuring .................................. 267  
Associated Registers ............................................... 269  
Automatic Acquisition Time ...................................... 267  
Calculating the Minimum Required  
Acquisition Time .............................................. 266  
Calibration ................................................................ 269  
Configuring the Module ............................................ 265  
Conversion Clock (TAD) ........................................... 267  
Conversion Requirements ....................................... 383  
Conversion Status (GO/DONE Bit) .......................... 264  
Conversions ............................................................. 268  
Converter Characteristics ........................................ 382  
Operation in Power-Managed Modes ...................... 269  
Special Event Trigger (ECCP) ......................... 180, 268  
Use of the ECCP2 Trigger ....................................... 268  
Absolute Maximum Ratings ............................................. 347  
AC (Timing) Characteristics ............................................. 362  
Load Conditions for Device Timing  
Specifications ................................................... 363  
Parameter Symbology ............................................. 362  
Temperature and Voltage Specifications ................. 363  
Timing Conditions .................................................... 363  
ACKSTAT ........................................................................ 229  
ACKSTAT Status Flag ..................................................... 229  
ADCAL Bit ........................................................................ 269  
ADCON0 Register ............................................................ 261  
GO/DONE Bit ........................................................... 264  
ADCON1 Register ............................................................ 261  
ADCON2 Register ............................................................ 261  
ADDFSR .......................................................................... 336  
ADDLW ............................................................................ 299  
ADDULNK ........................................................................ 336  
ADDWF ............................................................................ 299  
ADDWFC ......................................................................... 300  
ADRESH Register ............................................................ 261  
ADRESL Register .................................................... 261, 264  
Analog-to-Digital Converter. See A/D.  
(Slow VDD Power-up) ........................................ 49  
Fail-Safe Clock Monitor ........................................... 290  
Generic I/O Port Operation ...................................... 125  
Interrupt Logic .......................................................... 110  
2
MSSP (I C Master Mode) ........................................ 223  
2
MSSP (I C Mode) .................................................... 203  
MSSP (SPI Mode) ................................................... 193  
On-Chip Reset Circuit ................................................ 47  
PIC18F6XJ10/6XJ15 ................................................... 8  
PIC18F8XJ10/8XJ15 ................................................... 9  
PLL ............................................................................ 33  
PORTD and PORTE (Parallel Slave Port) ............... 148  
PWM Operation (Simplified) .................................... 174  
Reads from Flash Program Memory ......................... 89  
Recommended Minimum Connections ...................... 27  
Single Comparator ................................................... 273  
Table Read Operation ............................................... 85  
Table Write Operation ............................................... 86  
Table Writes to Flash Program Memory .................... 91  
Timer0 in 16-Bit Mode ............................................. 152  
Timer0 in 8-Bit Mode ............................................... 152  
Timer1 ..................................................................... 156  
Timer1 (16-Bit Read/Write Mode) ............................ 156  
Timer2 ..................................................................... 162  
Timer3 ..................................................................... 164  
Timer3 (16-Bit Read/Write Mode) ............................ 164  
Timer4 ..................................................................... 168  
Watchdog Timer ...................................................... 287  
BN .................................................................................... 302  
BNC ................................................................................. 303  
BNN ................................................................................. 303  
BNOV .............................................................................. 304  
BNZ ................................................................................. 304  
BOR. See Brown-out Reset.  
ANDLW ............................................................................ 300  
ANDWF ............................................................................ 301  
Assembler  
MPASM Assembler .................................................. 344  
Auto-Wake-up on Sync Break Character ......................... 252  
BOV ................................................................................. 307  
BRA ................................................................................. 305  
Break Character (12-Bit) Transmit and Receive .............. 254  
BRG. See Baud Rate Generator.  
Brown-out Reset (BOR) ..................................................... 49  
and On-Chip Voltage Regulator .............................. 288  
Detecting ................................................................... 49  
B
Basic Connection Requirements ........................................ 27  
Baud Rate Generator ....................................................... 225  
BC .................................................................................... 301  
BCF .................................................................................. 302  
BF .................................................................................... 229  
BF Status Flag ................................................................. 229  
© 2009 Microchip Technology Inc.  
DS39663F-page 395  
PIC18F87J10 FAMILY  
BSF ..................................................................................305  
BTFSC .............................................................................306  
BTFSS ..............................................................................306  
BTG ..................................................................................307  
BZ .....................................................................................308  
Comparator ...................................................................... 271  
Analog Input Connection Considerations ................ 275  
Associated Registers ............................................... 275  
Configuration ........................................................... 272  
Effects of a Reset .................................................... 274  
Interrupts ................................................................. 274  
Operation ................................................................. 273  
Operation During Sleep ........................................... 274  
Outputs .................................................................... 273  
Reference ................................................................ 273  
External Signal ................................................ 273  
C
C Compilers  
MPLAB C18 .............................................................344  
MPLAB C30 .............................................................344  
Calibration (A/D Converter) ..............................................269  
CALL ................................................................................308  
CALLW .............................................................................337  
Capture (CCP Module) .....................................................171  
Associated Registers ...............................................173  
CCP Pin Configuration .............................................171  
CCPRxH:CCPRxL Registers ...................................171  
Prescaler ..................................................................171  
Software Interrupt ....................................................171  
Timer1/Timer3 Mode Selection ................................171  
Capture (ECCP Module) ..................................................180  
Capture/Compare/PWM (CCP) ........................................169  
Capture Mode. See Capture.  
Internal Signal .................................................. 273  
Response Time ........................................................ 273  
Comparator Specifications ............................................... 361  
Comparator Voltage Reference ....................................... 277  
Accuracy and Error .................................................. 278  
Associated Registers ............................................... 279  
Configuring .............................................................. 277  
Connection Considerations ...................................... 278  
Effects of a Reset .................................................... 278  
Operation During Sleep ........................................... 278  
Compare (CCP Module) .................................................. 172  
Associated Registers ............................................... 173  
CCPRx Register ...................................................... 172  
Pin Configuration ..................................................... 172  
Software Interrupt .................................................... 172  
Timer1/Timer3 Mode Selection ................................ 172  
Compare (ECCP Module) ................................................ 180  
Special Event Trigger .............................. 165, 180, 268  
Computed GOTO ............................................................... 65  
Configuration Bits ............................................................ 281  
Configuration Register Protection .................................... 292  
Core Features  
Easy Migration ............................................................. 6  
Expanded Memory ....................................................... 5  
Extended Instruction Set ............................................. 5  
External Memory Bus .................................................. 5  
nanoWatt Technology .................................................. 5  
Oscillator Options and Features .................................. 5  
CPFSEQ .......................................................................... 310  
CPFSGT .......................................................................... 311  
CPFSLT ........................................................................... 311  
Crystal Oscillator/Ceramic Resonator ................................ 31  
Customer Change Notification Service ............................ 405  
Customer Notification Service ......................................... 405  
Customer Support ............................................................ 405  
CCP Mode and Timer Resources ............................170  
CCPRxH Register ....................................................170  
CCPRxL Register .....................................................170  
Compare Mode. See Compare.  
Module Configuration ...............................................170  
Timer Interconnect Configurations ...........................170  
Clock Sources ....................................................................34  
Selection and the FOSC2 Configuration Bit ...............35  
Selection Using OSCCON Register ...........................35  
CLRF ................................................................................309  
CLRWDT ..........................................................................309  
Code Examples  
16 x 16 Signed Multiply Routine ..............................108  
16 x 16 Unsigned Multiply Routine ..........................108  
8 x 8 Signed Multiply Routine ..................................107  
8 x 8 Unsigned Multiply Routine ..............................107  
Changing Between Capture Prescalers ...................171  
Computed GOTO Using an Offset Value ...................65  
Erasing Flash Program Memory ................................90  
Fast Register Stack ....................................................65  
How to Clear RAM (Bank 1) Using  
Indirect Addressing ............................................78  
Implementing a Real-Time Clock Using a  
Timer1 Interrupt Service ..................................159  
Initializing PORTA ....................................................126  
Initializing PORTB ....................................................128  
Initializing PORTC ....................................................131  
Initializing PORTD ....................................................134  
Initializing PORTE ....................................................137  
Initializing PORTF ....................................................140  
Initializing PORTG ...................................................142  
Initializing PORTH ....................................................144  
Initializing PORTJ ....................................................146  
Loading the SSP1BUF (SSP1SR) Register .............196  
Reading a Flash Program Memory Word ..................89  
Saving STATUS, WREG and BSR  
D
Data Addressing Modes .................................................... 78  
Comparing Addressing Modes with  
the Extended Instruction Set Enabled ............... 82  
Direct ......................................................................... 78  
Indexed Literal Offset ................................................ 81  
BSR ................................................................... 83  
Instructions Affected .......................................... 81  
Mapping Access Bank ....................................... 83  
Indirect ....................................................................... 78  
Inherent and Literal .................................................... 78  
Data Memory ..................................................................... 68  
Access Bank .............................................................. 71  
Bank Select Register (BSR) ...................................... 68  
Extended Instruction Set ........................................... 81  
General Purpose Registers ....................................... 71  
Registers in RAM .............................................124  
Writing to Flash Program Memory .............................92  
Code Protection ...............................................................281  
COMF ...............................................................................310  
DS39663F-page 396  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
Memory Maps  
PIC18FX5J10/X5J15/X6J10 Devices ................ 69  
Baud Rate Generator (BRG) ................................... 243  
Associated Registers ....................................... 244  
Auto-Baud Rate Detect .................................... 247  
Baud Rate Error, Calculating ........................... 244  
Baud Rates, Asynchronous Modes ................. 245  
High Baud Rate Select (BRGH Bit) ................. 243  
Sampling ......................................................... 243  
Synchronous Master Mode ...................................... 255  
Associated Registers, Receive ........................ 257  
Associated Registers, Transmit ....................... 256  
Reception ........................................................ 257  
Transmission ................................................... 255  
Synchronous Slave Mode ........................................ 258  
Associated Registers, Receive ........................ 259  
Associated Registers, Transmit ....................... 258  
Reception ........................................................ 259  
Transmission ................................................... 258  
Extended Instruction Set  
PIC18FX6J15/X7J10 Devices ........................... 70  
Special Function Registers ................................ 72  
Special Function Registers ........................................ 72  
DAW ................................................................................. 312  
DC Characteristics ........................................................... 358  
Power-Down and Supply Current ............................ 351  
Supply Voltage ......................................................... 350  
DCFSNZ .......................................................................... 313  
DECF ............................................................................... 312  
DECFSZ ........................................................................... 313  
Development Support ...................................................... 343  
Device Overview .................................................................. 5  
Details on Individual Family Members ......................... 6  
Features (64-Pin Devices) ........................................... 7  
Features (80-Pin Devices) ........................................... 7  
Direct Addressing ............................................................... 79  
ADDFSR .................................................................. 336  
ADDULNK ............................................................... 336  
CALLW .................................................................... 337  
MOVSF .................................................................... 337  
MOVSS .................................................................... 338  
PUSHL ..................................................................... 338  
SUBFSR .................................................................. 339  
SUBULNK ................................................................ 339  
External Clock Input (EC Modes) ...................................... 32  
External Memory Bus ........................................................ 95  
16-Bit Byte Select Mode .......................................... 101  
16-Bit Byte Write Mode .............................................. 99  
16-Bit Data Width Modes ........................................... 98  
16-Bit Mode Timing ................................................. 102  
16-Bit Word Write Mode .......................................... 100  
8-Bit Mode ............................................................... 103  
8-Bit Mode Timing ................................................... 104  
Address and Data Line Usage (table) ....................... 97  
Address and Data Width ............................................ 97  
Address Shifting ........................................................ 97  
Control ....................................................................... 96  
I/O Port Functions ...................................................... 95  
Operation in Power-Managed Modes ...................... 105  
Program Memory Modes ........................................... 98  
Extended Microcontroller ................................... 98  
Microcontroller ................................................... 98  
Wait States ................................................................ 98  
Weak Pull-ups on Port Pins ....................................... 98  
E
ECCP  
Associated Registers ............................................... 192  
Capture and Compare Modes .................................. 180  
Enhanced PWM Mode ............................................. 181  
Standard PWM Mode ............................................... 180  
Effect on Standard PIC MCU Instructions ........................ 340  
Effects of Power-Managed Modes on  
Various Clock Sources ............................................... 37  
Electrical Characteristics .................................................. 347  
Enhanced Capture/Compare/PWM (ECCP) .................... 177  
Capture Mode. See Capture (ECCP Module).  
ECCP1/ECCP3 Outputs and  
Program Memory Mode ................................... 178  
ECCP2 Outputs and Program  
Memory Modes ................................................ 178  
Outputs and Configuration ....................................... 178  
Pin Configurations for ECCP1 ................................. 179  
Pin Configurations for ECCP2 ................................. 179  
Pin Configurations for ECCP3 ................................. 180  
PWM Mode. See PWM (ECCP Module).  
Timer Resources ...................................................... 178  
Use of CCP4/CCP5 with ECCP1/ECCP3 ................ 178  
Enhanced Universal Synchronous Asynchronous Receiver  
Transmitter (EUSART). See EUSART.  
ENVREG Pin .................................................................... 288  
Equations  
A/D Acquisition Time ................................................ 266  
A/D Minimum Charging Time ................................... 266  
Errata ................................................................................... 4  
EUSART  
F
Fail-Safe Clock Monitor ........................................... 281, 290  
Interrupts in Power-Managed Modes ...................... 291  
POR or Wake-up from Sleep ................................... 291  
WDT During Oscillator Failure ................................. 290  
Fast Register Stack ........................................................... 65  
Firmware Instructions ...................................................... 293  
Flash Configuration Words .............................................. 281  
Flash Program Memory ..................................................... 85  
Associated Registers ................................................. 93  
Control Registers ....................................................... 86  
EECON1 and EECON2 ..................................... 86  
Asynchronous Mode ................................................ 249  
12-Bit Break Transmit and Receive ................. 254  
Associated Registers, Receive ........................ 252  
Associated Registers, Transmit ....................... 250  
Auto-Wake-up on Sync Break ......................... 252  
Receiver ........................................................... 251  
Setting Up 9-Bit Mode with Address Detect ..... 251  
Transmitter ....................................................... 249  
Baud Rate Generator  
Operation in Power-Managed Mode ................ 243  
TABLAT (Table Latch) Register ........................ 88  
TBLPTR (Table Pointer) Register ...................... 88  
© 2009 Microchip Technology Inc.  
DS39663F-page 397  
PIC18F87J10 FAMILY  
Erase Sequence ........................................................90  
Erasing .......................................................................90  
Operation During Code-Protect .................................93  
Reading ......................................................................89  
Table Pointer  
In-Circuit Serial Programming (ICSP) ...................... 281, 292  
Indexed Literal Offset Addressing  
and Standard PIC18 Instructions ............................. 340  
Indexed Literal Offset Mode ............................................. 340  
Indirect Addressing ............................................................ 79  
INFSNZ ............................................................................ 315  
Initialization Conditions for all Registers ...................... 53–57  
Instruction Cycle ................................................................ 66  
Clocking Scheme ....................................................... 66  
Flow/Pipelining ........................................................... 66  
Instruction Set .................................................................. 293  
ADDLW .................................................................... 299  
ADDWF .................................................................... 299  
ADDWF (Indexed Literal Offset Mode) .................... 341  
ADDWFC ................................................................. 300  
ANDLW .................................................................... 300  
ANDWF .................................................................... 301  
BC ............................................................................ 301  
BCF ......................................................................... 302  
BN ............................................................................ 302  
BNC ......................................................................... 303  
BNN ......................................................................... 303  
BNOV ...................................................................... 304  
BNZ ......................................................................... 304  
BOV ......................................................................... 307  
BRA ......................................................................... 305  
BSF .......................................................................... 305  
BSF (Indexed Literal Offset Mode) .......................... 341  
BTFSC ..................................................................... 306  
BTFSS ..................................................................... 306  
BTG ......................................................................... 307  
BZ ............................................................................ 308  
CALL ........................................................................ 308  
CLRF ....................................................................... 309  
CLRWDT ................................................................. 309  
COMF ...................................................................... 310  
CPFSEQ .................................................................. 310  
CPFSGT .................................................................. 311  
CPFSLT ................................................................... 311  
DAW ........................................................................ 312  
DCFSNZ .................................................................. 313  
DECF ....................................................................... 312  
DECFSZ .................................................................. 313  
Extended Instructions .............................................. 335  
Considerations when Enabling ........................ 340  
Syntax .............................................................. 335  
Use with MPLAB IDE Tools ............................. 342  
General Format ........................................................ 295  
GOTO ...................................................................... 314  
INCF ........................................................................ 314  
INCFSZ .................................................................... 315  
INFSNZ .................................................................... 315  
IORLW ..................................................................... 316  
IORWF ..................................................................... 316  
LFSR ....................................................................... 317  
MOVF ...................................................................... 317  
MOVFF .................................................................... 318  
MOVLB .................................................................... 318  
MOVLW ................................................................... 319  
MOVWF ................................................................... 319  
MULLW .................................................................... 320  
MULWF .................................................................... 320  
NEGF ....................................................................... 321  
NOP ......................................................................... 321  
Opcode Field Descriptions ....................................... 294  
Boundaries Based on Operation ........................88  
Table Pointer Boundaries ..........................................88  
Table Reads and Table Writes ..................................85  
Write Sequence .........................................................91  
Writing ........................................................................91  
Unexpected Termination ....................................93  
Write Verify ........................................................93  
FSCM. See Fail-Safe Clock Monitor.  
G
GOTO ...............................................................................314  
H
Hardware Multiplier ..........................................................107  
Introduction ..............................................................107  
Operation .................................................................107  
Hardware Various Multiply  
Performance Comparisons ......................................107  
I
I/O Ports ...........................................................................125  
Pin Capabilities ........................................................125  
I C Mode (MSSP)  
2
Acknowledge Sequence Timing ...............................232  
Associated Registers ...............................................238  
Baud Rate Generator ...............................................225  
Bus Collision  
During a Repeated Start Condition ..................236  
During a Stop Condition ...................................237  
Clock Arbitration .......................................................226  
Clock Stretching .......................................................218  
10-Bit Slave Receive Mode (SEN = 1) .............218  
10-Bit Slave Transmit Mode .............................218  
7-Bit Slave Receive Mode (SEN = 1) ...............218  
7-Bit Slave Transmit Mode ...............................218  
Clock Synchronization and the CKP bit ...................219  
Effects of a Reset .....................................................233  
General Call Address Support .................................222  
2
I C Clock Rate w/BRG .............................................225  
Master Mode ............................................................223  
Operation .........................................................224  
Reception .........................................................229  
Repeated Start Condition Timing .....................228  
Start Condition Timing .....................................227  
Transmission ....................................................229  
Multi-Master Communication, Bus Collision  
and Arbitration ..................................................233  
Multi-Master Mode ...................................................233  
Operation .................................................................209  
Read/Write Bit Information (R/W Bit) ............... 209, 211  
Registers ..................................................................203  
Serial Clock (RC3/SCKx/SCLx) ...............................211  
Slave Mode ..............................................................209  
Addressing .......................................................209  
Reception .........................................................211  
Transmission ....................................................211  
Sleep Operation .......................................................233  
Stop Condition Timing ..............................................232  
INCF .................................................................................314  
INCFSZ ............................................................................315  
In-Circuit Debugger ..........................................................292  
DS39663F-page 398  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
POP ......................................................................... 322  
PUSH ....................................................................... 322  
RCALL ..................................................................... 323  
RESET ..................................................................... 323  
RETFIE .................................................................... 324  
RETLW .................................................................... 324  
RETURN .................................................................. 325  
RLCF ........................................................................ 325  
RLNCF ..................................................................... 326  
RRCF ....................................................................... 326  
RRNCF .................................................................... 327  
SETF ........................................................................ 327  
SETF (Indexed Literal Offset Mode) ........................ 341  
SLEEP ..................................................................... 328  
Standard Instructions ............................................... 293  
SUBFWB .................................................................. 328  
SUBLW .................................................................... 329  
SUBWF .................................................................... 329  
SUBWFB .................................................................. 330  
SWAPF .................................................................... 330  
TBLRD ..................................................................... 331  
TBLWT ..................................................................... 332  
TSTFSZ ................................................................... 333  
XORLW .................................................................... 333  
XORWF .................................................................... 334  
Microchip Internet Web Site ............................................. 405  
MOVF .............................................................................. 317  
MOVFF ............................................................................ 318  
MOVLB ............................................................................ 318  
MOVLW ........................................................................... 319  
MOVSF ............................................................................ 337  
MOVSS ............................................................................ 338  
MOVWF ........................................................................... 319  
MPLAB ASM30 Assembler, Linker, Librarian .................. 344  
MPLAB ICD 2 In-Circuit Debugger .................................. 345  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator ................................................... 345  
MPLAB Integrated Development  
Environment Software ............................................. 343  
MPLAB PM3 Device Programmer ................................... 345  
MPLAB REAL ICE In-Circuit Emulator System ............... 345  
MPLINK Object Linker/MPLIB Object Librarian ............... 344  
MSSP  
ACK Pulse ....................................................... 209, 211  
Control Registers (general) ..................................... 193  
2
2
I C Mode. See I C Mode.  
Module Overview ..................................................... 193  
SPI Master/Slave Connection .................................. 197  
TMR4 Output for Clock Shift .................................... 168  
MULLW ............................................................................ 320  
MULWF ............................................................................ 320  
INTCON Register  
RBIF Bit .................................................................... 128  
INTCON Registers ........................................................... 111  
Inter-Integrated Circuit. See I C.  
N
2
NEGF ............................................................................... 321  
NOP ................................................................................. 321  
Notable Differences Between PIC18F8722  
Internal Oscillator Block ..................................................... 34  
Internal RC Oscillator  
and PIC18F87J10 Families ..................................... 391  
Oscillator Options .................................................... 392  
Peripherals .............................................................. 392  
Power Requirements ............................................... 392  
Use with WDT .......................................................... 287  
Internal Voltage Reference Specifications ....................... 361  
Internet Address ............................................................... 405  
Interrupt Sources ............................................................. 281  
A/D Conversion Complete ....................................... 265  
Capture Complete (CCP) ......................................... 171  
Compare Complete (CCP) ....................................... 172  
Interrupt-on-Change (RB7:RB4) .............................. 128  
TMR0 Overflow ........................................................ 153  
TMR1 Overflow ........................................................ 155  
TMR2 to PR2 Match (PWM) .................................... 181  
TMR3 Overflow ................................................ 163, 165  
TMR4 to PR4 Match ................................................ 168  
TMR4 to PR4 Match (PWM) .................................... 167  
Interrupts .......................................................................... 109  
During Context Saving ............................................. 124  
INTx Pin ................................................................... 124  
PORTB, Interrupt-on-Change .................................. 124  
TMR0 ....................................................................... 124  
Interrupts, Flag Bits  
O
Oscillator Configuration ..................................................... 31  
EC .............................................................................. 31  
ECPLL ....................................................................... 31  
HS .............................................................................. 31  
HS Modes .................................................................. 31  
HSPLL ....................................................................... 31  
INTRC ........................................................................ 31  
Oscillator Selection .......................................................... 281  
Oscillator Start-up Timer (OST) ......................................... 37  
Oscillator Switching ........................................................... 34  
Oscillator Transitions ......................................................... 35  
Oscillator, Timer1 ..................................................... 155, 165  
Oscillator, Timer3 ............................................................. 163  
P
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit) ..... 128  
IORLW ............................................................................. 316  
IORWF ............................................................................. 316  
IPR Registers ................................................................... 120  
Packaging ........................................................................ 385  
Details ...................................................................... 386  
Marking .................................................................... 385  
Parallel Slave Port (PSP) ................................................. 148  
Associated Registers ............................................... 150  
PORTD .................................................................... 148  
RE0/RD Pin ............................................................. 148  
RE1/WR Pin ............................................................ 148  
RE2/CS Pin ............................................................. 148  
Select (PSPMODE Bit) ............................................ 148  
PICSTART Plus Development Programmer .................... 346  
PIE Registers ................................................................... 117  
L
LFSR ................................................................................ 317  
M
Master Clear (MCLR) ......................................................... 49  
Master Synchronous Serial Port (MSSP). See MSSP.  
Memory Organization ......................................................... 59  
Data Memory ............................................................. 68  
Program Memory ....................................................... 59  
Memory Programming Requirements .............................. 360  
© 2009 Microchip Technology Inc.  
DS39663F-page 399  
PIC18F87J10 FAMILY  
Pin Functions  
RF2/AN7/C1OUT ................................................. 15, 22  
RF3/AN8 .............................................................. 15, 22  
RF4/AN9 .............................................................. 15, 22  
RF5/AN10/CVREF ................................................ 15, 22  
RF6/AN11 ............................................................ 15, 22  
RF7/SS1 .............................................................. 15, 22  
RG0/ECCP3/P3A ................................................. 16, 23  
RG1/TX2/CK2 ...................................................... 16, 23  
RG2/RX2/DT2 ...................................................... 16, 23  
RG3/CCP4/P3D ................................................... 16, 23  
RG4/CCP5/P1D ................................................... 16, 23  
RH0/A16 .................................................................... 24  
RH1/A17 .................................................................... 24  
RH2/A18 .................................................................... 24  
RH3/A19 .................................................................... 24  
RH4/AN12/P3C .......................................................... 24  
RH5/AN13/P3B .......................................................... 24  
RH6/AN14/P1C .......................................................... 24  
RH7/AN15/P1B .......................................................... 24  
RJ0/ALE .................................................................... 25  
RJ1/OE ...................................................................... 25  
RJ2/WRL ................................................................... 25  
RJ3/WRH ................................................................... 25  
RJ4/BA0 .................................................................... 25  
RJ5/CE ...................................................................... 25  
RJ6/LB ....................................................................... 25  
RJ7/UB ...................................................................... 25  
VDD ............................................................................ 16  
VDD ............................................................................ 25  
VDDCORE/VCAP ..................................................... 16, 25  
VSS ............................................................................ 16  
VSS ............................................................................ 25  
Pinout I/O Descriptions  
AVDD ..........................................................................16  
AVDD ..........................................................................25  
AVSS ..........................................................................16  
AVSS ..........................................................................25  
ENVREG .............................................................. 16, 25  
MCLR ................................................................... 10, 17  
OSC1/CLKI .......................................................... 10, 17  
OSC2/CLKO ........................................................ 10, 17  
RA0/AN0 .............................................................. 10, 17  
RA1/AN1 .............................................................. 10, 17  
RA2/AN2/VREF- .................................................... 10, 17  
RA3/AN3/VREF+ ................................................... 10, 17  
RA4/T0CKI ........................................................... 10, 17  
RA5/AN4 .............................................................. 10, 17  
RB0/INT0/FLT0 .................................................... 11, 18  
RB1/INT1 ............................................................. 11, 18  
RB2/INT2 ............................................................. 11, 18  
RB3/INT3 ...................................................................11  
RB3/INT3/ECCP2/P2A ..............................................18  
RB4/KBI0 ............................................................. 11, 18  
RB5/KBI1 ............................................................. 11, 18  
RB6/KBI2/PGC .................................................... 11, 18  
RB7/KBI3/PGD .................................................... 11, 18  
RC0/T1OSO/T13CKI ...........................................12, 19  
RC1/T1OSI/ECCP2/P2A ...................................... 12, 19  
RC2/ECCP1/P1A ................................................. 12, 19  
RC3/SCK1/SCL1 ................................................. 12, 19  
RC4/SDI1/SDA1 .................................................. 12, 19  
RC5/SDO1 ........................................................... 12, 19  
RC6/TX1/CK1 ...................................................... 12, 19  
RC7/RX1/DT1 ...................................................... 12, 19  
RD0/AD0/PSP0 ..........................................................20  
RD0/PSP0 ..................................................................13  
RD1/AD1/PSP1 ..........................................................20  
RD1/PSP1 ..................................................................13  
RD2/AD2/PSP2 ..........................................................20  
RD2/PSP2 ..................................................................13  
RD3/AD3/PSP3 ..........................................................20  
RD3/PSP3 ..................................................................13  
RD4/AD4/PSP4/SDO2 ...............................................20  
RD4/PSP4/SDO2 .......................................................13  
RD5/AD5/PSP5/SDI2/SDA2 ......................................20  
RD5/PSP5/SDI2/SDA2 ..............................................13  
RD6/AD6/PSP6/SCK2/SCL2 .....................................20  
RD6/PSP6/SCK2/SCL2 .............................................13  
RD7/AD7/PSP7/SS2 ..................................................20  
RD7/PSP7/SS2 ..........................................................13  
RE0/AD8/RD/P2D ......................................................21  
RE0/RD/P2D ..............................................................14  
RE1/AD9/WR/P2C .....................................................21  
RE1/WR/P2C .............................................................14  
RE2/AD10/CS/P2B ....................................................21  
RE2/CS/P2D ..............................................................14  
RE3/AD11/P3C ..........................................................21  
RE3/P3C ....................................................................14  
RE4/AD12/P3B ..........................................................21  
RE4/P3B ....................................................................14  
RE5/AD13/P1C ..........................................................21  
RE5/P1C ....................................................................14  
RE6/AD14/P1B ..........................................................21  
RE6/P1B ....................................................................14  
RE7/AD15/ECCP2/P2A .............................................21  
RE7/ECCP2/P2A .......................................................14  
RF1/AN6/C2OUT ................................................. 15, 22  
PIC18F6XJ10/6XJ15 ................................................. 10  
PIC18F8XJ10/8XJ15 ................................................. 17  
Pins  
ENVREG ................................................................... 29  
External Oscillator ...................................................... 30  
ICSP .......................................................................... 29  
Master Clear (MCLR .................................................. 28  
Power Supply ............................................................ 28  
VCAP/VDDCORE ........................................................... 29  
PIR Registers ................................................................... 114  
PLL .................................................................................... 33  
ECPLL Oscillator Mode ............................................. 33  
HSPLL Oscillator Mode ............................................. 33  
POP ................................................................................. 322  
POR. See Power-on Reset.  
PORTA  
Associated Registers ............................................... 127  
LATA Register ......................................................... 126  
PORTA Register ...................................................... 126  
TRISA Register ........................................................ 126  
PORTB  
Associated Registers ............................................... 130  
LATB Register ......................................................... 128  
PORTB Register ...................................................... 128  
RB7:RB4 Interrupt-on-Change Flag (RBIF Bit) ........ 128  
TRISB Register ........................................................ 128  
PORTC  
Associated Registers ............................................... 133  
LATC Register ......................................................... 131  
PORTC Register ...................................................... 131  
RC3/SCKx/SCLx Pin ............................................... 211  
TRISC Register ........................................................ 131  
DS39663F-page 400  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
PORTD  
Associated Registers ............................................... 136  
PRI_RUN Mode ................................................................. 40  
Program Counter ............................................................... 63  
PCL, PCH and PCU Registers .................................. 63  
PCLATH and PCLATU Registers .............................. 63  
Program Memory  
LATD Register ......................................................... 134  
PORTD Register ...................................................... 134  
TRISD Register ........................................................ 134  
PORTE  
Extended Instruction Set ........................................... 81  
Flash Configuration Words ........................................ 60  
Hard Memory Vectors ................................................ 60  
Instructions ................................................................ 67  
Two-Word .......................................................... 67  
Interrupt Vector .......................................................... 60  
Look-up Tables .......................................................... 65  
Memory Maps ............................................................ 59  
Hard Vectors and Configuration Words ............. 60  
Modes  
Analog Port Pins ...................................................... 148  
Associated Registers ............................................... 139  
LATE Register .......................................................... 137  
PORTE Register ...................................................... 137  
PSP Mode Select (PSPMODE Bit) .......................... 148  
RE0/RD Pin .............................................................. 148  
RE1/WR Pin ............................................................. 148  
RE2/CS Pin .............................................................. 148  
TRISE Register ........................................................ 137  
PORTF  
Extended Microcontroller ................................... 61  
Extended Microcontroller (Address Shifting) ..... 62  
Memory Access (table) ...................................... 62  
Microcontroller ................................................... 61  
Modes (PIC18F8XJ10/8XJ15) ................................... 61  
Reset Vector .............................................................. 60  
Program Verification and Code Protection ...................... 292  
Programming, Device Instructions ................................... 293  
PSP.See Parallel Slave Port.  
Associated Registers ............................................... 141  
LATF Register .......................................................... 140  
PORTF Register ...................................................... 140  
TRISF Register ........................................................ 140  
PORTG  
Associated Registers ............................................... 143  
LATG Register ......................................................... 142  
PORTG Register ...................................................... 142  
TRISG Register ........................................................ 142  
Pulse-Width Modulation. See PWM (CCP Module)  
and PWM (ECCP Module).  
PORTH  
Associated Registers ............................................... 145  
LATH Register ......................................................... 144  
PORTH Register ...................................................... 144  
TRISH Register ........................................................ 144  
PUSH ............................................................................... 322  
PUSH and POP Instructions .............................................. 64  
PUSHL ............................................................................. 338  
PWM (CCP Module)  
PORTJ  
Associated Registers ............................................... 176  
Duty Cycle ............................................................... 174  
Example Frequencies/Resolutions .......................... 175  
Operation Setup ...................................................... 175  
Period ...................................................................... 174  
PR2/PR4 Registers ................................................. 174  
TMR2 (TMR4) to PR2 (PR4) Match ........................ 174  
TMR2 to PR2 Match ................................................ 181  
TMR4 to PR4 Match ................................................ 167  
PWM (ECCP Module) ...................................................... 181  
CCPR1H:CCPR1L Registers .................................. 181  
Direction Change in Full-Bridge Output Mode ......... 186  
Duty Cycle ............................................................... 182  
Effects of a Reset .................................................... 191  
Enhanced PWM Auto-Shutdown ............................. 188  
Example Frequencies/Resolutions .......................... 182  
Full-Bridge Application Example .............................. 186  
Full-Bridge Mode ..................................................... 185  
Half-Bridge Mode ..................................................... 184  
Half-Bridge Output Mode Applications Example ..... 184  
Output Configurations .............................................. 182  
Output Relationships (Active-High) ......................... 183  
Output Relationships (Active-Low) .......................... 183  
Period ...................................................................... 181  
Programmable Dead-Band Delay ............................ 188  
Setup for PWM Operation ....................................... 191  
Start-up Considerations ........................................... 189  
Associated Registers ............................................... 147  
LATJ Register .......................................................... 146  
PORTJ Register ....................................................... 146  
TRISJ Register ......................................................... 146  
Power-Managed Modes ..................................................... 39  
and EUSART Operation ........................................... 243  
and SPI Operation ................................................... 201  
Clock Transitions and Status Indicators ..................... 40  
Entering ...................................................................... 39  
Exiting Idle and Sleep Modes .................................... 45  
By Interrupt ........................................................ 45  
By Reset ............................................................ 45  
By WDT Time-out .............................................. 45  
Without an Oscillator Start-up Delay .................. 45  
Idle Modes ................................................................. 43  
PRI_IDLE ........................................................... 44  
RC_IDLE ............................................................ 45  
SEC_IDLE ......................................................... 44  
Multiple Sleep Commands ......................................... 40  
Run Modes ................................................................. 40  
PRI_RUN ........................................................... 40  
RC_RUN ............................................................ 42  
SEC_RUN .......................................................... 40  
Selecting .................................................................... 39  
Sleep Mode ................................................................ 43  
Summary (table) ........................................................ 39  
Power-on Reset (POR) ...................................................... 49  
Power-up Delays ................................................................ 37  
Power-up Timer (PWRT) ............................................. 37, 50  
Time-out Sequence .................................................... 50  
Prescaler  
Q
Q Clock .................................................................... 175, 182  
R
RAM. See Data Memory.  
Timer2 ...................................................................... 182  
Prescaler, Timer0 ............................................................. 153  
Prescaler, Timer2 (Timer4) .............................................. 175  
PRI_IDLE Mode ................................................................. 44  
RC_IDLE Mode .................................................................. 45  
RC_RUN Mode .................................................................. 42  
RCALL ............................................................................. 323  
© 2009 Microchip Technology Inc.  
DS39663F-page 401  
PIC18F87J10 FAMILY  
RCON Register  
Reset ................................................................................. 47  
Brown-out Reset (BOR) ............................................. 47  
MCLR Reset, During Power-Managed Modes .......... 47  
MCLR Reset, Normal Operation ................................ 47  
Power-on Reset (POR) .............................................. 47  
RESET Instruction ..................................................... 47  
Stack Full Reset ......................................................... 47  
Stack Underflow Reset .............................................. 47  
Watchdog Timer (WDT) Reset .................................. 47  
Resets .............................................................................. 281  
Brown-out Reset (BOR) ........................................... 281  
Oscillator Start-up Timer (OST) ............................... 281  
Power-on Reset (POR) ............................................ 281  
Power-up Timer (PWRT) ......................................... 281  
RETFIE ............................................................................ 324  
RETLW ............................................................................ 324  
RETURN .......................................................................... 325  
Return Address Stack ........................................................ 63  
Return Stack Pointer (STKPTR) ........................................ 64  
RLCF ............................................................................... 325  
RLNCF ............................................................................. 326  
RRCF ............................................................................... 326  
RRNCF ............................................................................ 327  
Bit Status During Initialization ....................................52  
Reader Response ............................................................406  
Register File .......................................................................71  
Register File Summary ................................................. 73–76  
Registers  
ADCON0 (A/D Control 0) .........................................261  
ADCON1 (A/D Control 1) .........................................262  
ADCON2 (A/D Control 2) .........................................263  
BAUDCONx (Baud Rate Control) ............................242  
CCPxCON (CCPx Control) ......................................169  
CCPxCON (ECCPx Control) ....................................177  
CMCON (Comparator Control) ................................271  
CONFIG1H (Configuration 1 High) ..........................283  
CONFIG1L (Configuration 1 Low) ............................283  
CONFIG2H (Configuration 2 High) ..........................284  
CONFIG2L (Configuration 2 Low) ............................284  
CONFIG3H (Configuration 3 High) ..........................285  
CONFIG3L (Configuration 3 Low) ......................61, 285  
CVRCON (Comparator Voltage  
Reference Control) ...........................................277  
DEVID1 (Device ID 1) ..............................................286  
DEVID2 (Device ID 2) ..............................................286  
ECCPxAS (Enhanced CCPx Auto-Shutdown  
S
Control) ............................................................189  
ECCPxDEL (PWM Dead-Band Delay) .....................188  
EECON1 (EEPROM Control 1) ..................................87  
INTCON (Interrupt Control) ......................................111  
INTCON2 (Interrupt Control 2) .................................112  
INTCON3 (Interrupt Control 3) .................................113  
IPR1 (Peripheral Interrupt Priority 1) ........................120  
IPR2 (Peripheral Interrupt Priority 2) ........................121  
IPR3 (Peripheral Interrupt Priority 3) ........................122  
MEMCON (External Memory Bus Control) ................96  
OSCCON (Oscillator Control) ....................................36  
OSCTUNE (PLL Control) ...........................................33  
PIE1 (Peripheral Interrupt Enable 1) ........................117  
PIE2 (Peripheral Interrupt Enable 2) ........................118  
PIE3 (Peripheral Interrupt Enable 3) ........................119  
PIR1 (Peripheral Interrupt Request (Flag) 1) ...........114  
PIR2 (Peripheral Interrupt Request (Flag) 2) ...........115  
PIR3 (Peripheral Interrupt Request (Flag) 3) ...........116  
PSPCON (Parallel Slave Port Control) ....................149  
RCON (Reset Control) ....................................... 48, 123  
RCSTAx (Receive Status and Control) ....................241  
SSPxADD (MSSP1 and MSSP2 Address) ..............208  
SCKx ................................................................................ 193  
SDIx ................................................................................. 193  
SDOx ............................................................................... 193  
SEC_IDLE Mode ............................................................... 44  
SEC_RUN Mode ................................................................ 40  
Serial Clock, SCKx .......................................................... 193  
Serial Data In (SDIx) ........................................................ 193  
Serial Data Out (SDOx) ................................................... 193  
Serial Peripheral Interface. See SPI Mode.  
SETF ................................................................................ 327  
Slave Select (SSx) ........................................................... 193  
SLEEP ............................................................................. 328  
Sleep  
OSC1 and OSC2 Pin States ...................................... 37  
Software Simulator (MPLAB SIM) ................................... 344  
Special Event Trigger. See Compare (ECCP Module).  
Special Features of the CPU ........................................... 281  
SPI Mode (MSSP) ........................................................... 193  
Associated Registers ............................................... 202  
Bus Mode Compatibility ........................................... 201  
Clock Speed, Interactions ........................................ 201  
Effects of a Reset .................................................... 201  
Enabling SPI I/O ...................................................... 197  
Master Mode ............................................................ 198  
Master/Slave Connection ......................................... 197  
Operation ................................................................. 196  
Operation in Power-Managed Modes ...................... 201  
Serial Clock .............................................................. 193  
Serial Data In ........................................................... 193  
Serial Data Out ........................................................ 193  
Slave Mode .............................................................. 199  
Slave Select ............................................................. 193  
Slave Select Synchronization .................................. 199  
SPI Clock ................................................................. 198  
SSPxBUF Register .................................................. 198  
SSPxSR Register .................................................... 198  
Typical Connection .................................................. 197  
SSPOV ............................................................................ 229  
2
SSPxCON1 (MSSPx Control 1, I C Mode) ..............205  
SSPxCON1 (MSSPx Control 1, SPI Mode) .............195  
SSPxCON2 (MSSPx Control 2,  
2
I C Master Mode) .............................................206  
2
SSPxSTAT (MSSPx Status, I C Mode) ...................204  
SSPxSTAT (MSSPx Status, SPI Mode) ..................194  
STATUS .....................................................................77  
STKPTR (Stack Pointer) ............................................64  
T0CON (Timer0 Control) ..........................................151  
T1CON (Timer1 Control) ..........................................155  
T2CON (Timer2 Control) ..........................................161  
T3CON (Timer3 Control) ..........................................163  
T4CON (Timer4 Control) ..........................................167  
TXSTAx (Transmit Status and Control) ...................240  
WDTCON (Watchdog Timer Control) .......................287  
RESET .............................................................................323  
DS39663F-page 402  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
SSPOV Status Flag ......................................................... 229  
SSPxSTAT Register  
Timer4 ............................................................................. 167  
Associated Registers ............................................... 168  
MSSP Clock Shift .................................................... 168  
Operation ................................................................. 167  
Postscaler. See Postscaler, Timer4.  
PR4 Register ........................................................... 167  
Prescaler. See Prescaler, Timer4.  
TMR4 Register ........................................................ 167  
TMR4 to PR4 Match Interrupt .......................... 167, 168  
Timing Diagrams  
R/W Bit ............................................................. 209, 211  
SSx .................................................................................. 193  
Stack Full/Underflow Resets .............................................. 65  
SUBFSR .......................................................................... 339  
SUBFWB .......................................................................... 328  
SUBLW ............................................................................ 329  
SUBULNK ........................................................................ 339  
SUBWF ............................................................................ 329  
SUBWFB .......................................................................... 330  
SWAPF ............................................................................ 330  
A/D Conversion ....................................................... 382  
Asynchronous Reception ......................................... 252  
Asynchronous Transmission ................................... 250  
Asynchronous Transmission (Back to Back) ........... 250  
Automatic Baud Rate Calculation ............................ 248  
Auto-Wake-up Bit (WUE) During  
Normal Operation ............................................ 253  
Auto-Wake-up Bit (WUE) During Sleep ................... 253  
Baud Rate Generator with Clock Arbitration ............ 226  
BRG Overflow Sequence ........................................ 248  
BRG Reset Due to SDAx Arbitration During  
Start Condition ................................................. 235  
Bus Collision During a Repeated Start  
Condition (Case 1) ........................................... 236  
Bus Collision During a Repeated Start  
Condition (Case 2) ........................................... 236  
Bus Collision During a Start Condition  
T
Table Pointer Operations (table) ........................................ 88  
Table Reads/Table Writes ................................................. 65  
TBLRD ............................................................................. 331  
TBLWT ............................................................................. 332  
Timer0 .............................................................................. 151  
Associated Registers ............................................... 153  
Operation ................................................................. 152  
Overflow Interrupt .................................................... 153  
Prescaler .................................................................. 153  
Switching Assignment ...................................... 153  
Prescaler Assignment (PSA Bit) .............................. 153  
Prescaler Select (T0PS2:T0PS0 Bits) ..................... 153  
Prescaler. See Prescaler, Timer0.  
Reads and Writes in 16-Bit Mode ............................ 152  
Source Edge Select (T0SE Bit) ................................ 152  
Source Select (T0CS Bit) ......................................... 152  
Timer1 .............................................................................. 155  
16-Bit Read/Write Mode ........................................... 157  
Associated Registers ............................................... 159  
Interrupt .................................................................... 158  
Low-Power Option ................................................... 157  
Operation ................................................................. 156  
Oscillator .......................................................... 155, 157  
Layout Considerations ..................................... 158  
Oscillator, as Secondary Clock .................................. 34  
Overflow Interrupt .................................................... 155  
Resetting, Using the ECCP  
(SCLx = 0) ....................................................... 235  
Bus Collision During a Stop  
Condition (Case 1) ........................................... 237  
Bus Collision During a Stop  
Condition (Case 2) ........................................... 237  
Bus Collision During Start Condition  
(SDAx Only) ..................................................... 234  
Bus Collision for Transmit and Acknowledge .......... 233  
Capture/Compare/PWM (Including  
ECCP Modules) ............................................... 372  
CLKO and I/O .......................................................... 366  
Clock Synchronization ............................................. 219  
Clock/Instruction Cycle .............................................. 66  
EUSART Synchronous Receive  
Special Event Trigger ...................................... 158  
Special Event Trigger (ECCP) ................................. 180  
TMR1H Register ...................................................... 155  
TMR1L Register ....................................................... 155  
Use as a Clock Source ............................................ 157  
Use as a Real-Time Clock ....................................... 158  
Timer2 .............................................................................. 161  
Associated Registers ............................................... 162  
Interrupt .................................................................... 162  
Operation ................................................................. 161  
Output ...................................................................... 162  
PR2 Register ............................................................ 181  
TMR2 to PR2 Match Interrupt .................................. 181  
Timer3 .............................................................................. 163  
16-Bit Read/Write Mode ........................................... 165  
Associated Registers ............................................... 165  
Operation ................................................................. 164  
Oscillator .......................................................... 163, 165  
Overflow Interrupt ............................................ 163, 165  
Special Event Trigger (ECCP) ................................. 165  
TMR3H Register ...................................................... 163  
TMR3L Register ....................................................... 163  
(Master/Slave) ................................................. 381  
EUSART Synchronous Transmission  
(Master/Slave) ................................................. 381  
Example SPI Master Mode (CKE = 0) ..................... 373  
Example SPI Master Mode (CKE = 1) ..................... 374  
Example SPI Slave Mode (CKE = 0) ....................... 375  
Example SPI Slave Mode (CKE = 1) ....................... 376  
External Clock (All Modes Except PLL) ................... 364  
External Memory Bus for Sleep  
(Extended Microcontroller Mode) ............ 102, 104  
External Memory Bus for TBLRD  
(Extended Microcontroller Mode) ............ 102, 104  
Fail-Safe Clock Monitor ........................................... 291  
First Start Bit Timing ................................................ 227  
Full-Bridge PWM Output .......................................... 185  
Half-Bridge PWM Output ......................................... 184  
2
I C Acknowledge Sequence .................................... 232  
2
I C Bus Data ............................................................ 377  
2
I C Bus Start/Stop Bits ............................................ 377  
2
I C Master Mode (7 or 10-Bit Transmission) ........... 230  
2
I C Master Mode (7-Bit Reception) ......................... 231  
© 2009 Microchip Technology Inc.  
DS39663F-page 403  
PIC18F87J10 FAMILY  
2
I C Slave Mode (10-Bit Reception, SEN = 0,  
Capture/Compare/PWM Requirements  
ADMSK = 01001) .............................................215  
I C Slave Mode (10-Bit Reception, SEN = 0) ..........216  
I C Slave Mode (10-Bit Reception, SEN = 1) ..........221  
I C Slave Mode (10-Bit Transmission) .....................217  
(Including ECCP Modules) .............................. 372  
CLKO and I/O Requirements ........................... 366, 368  
EUSART Synchronous Receive  
Requirements .................................................. 381  
EUSART Synchronous Transmission  
2
2
2
2
I C Slave Mode (7-Bit Reception, SEN = 0,  
ADMSK = 01011) .............................................213  
I C Slave Mode (7-Bit Reception, SEN = 0) ............212  
I C Slave Mode (7-Bit Reception, SEN = 1) ............220  
I C Slave Mode (7-Bit Transmission) .......................214  
Requirements .................................................. 381  
Example SPI Mode Requirements  
(Master Mode, CKE = 0) .................................. 373  
Example SPI Mode Requirements  
(Master Mode, CKE = 1) .................................. 374  
Example SPI Mode Requirements  
(Slave Mode, CKE = 0) .................................... 375  
Example SPI Slave Mode Requirements  
2
2
2
2
I C Slave Mode General Call Address Sequence  
(7 or 10-Bit Addressing Mode) .........................222  
2
I C Stop Condition Receive or Transmit Mode ........232  
2
Master SSP I C Bus Data ........................................379  
2
Master SSP I C Bus Start/Stop Bits ........................379  
(CKE = 1) ......................................................... 376  
External Clock Requirements .................................. 364  
Parallel Slave Port (PSP) Read ...............................150  
Parallel Slave Port (PSP) Write ...............................149  
Program Memory Read ............................................368  
Program Memory Write ............................................369  
PWM Auto-Shutdown (P1RSEN = 0,  
Auto-Restart Disabled) .....................................190  
PWM Auto-Shutdown (P1RSEN = 1,  
Auto-Restart Enabled) .....................................190  
PWM Direction Change ...........................................187  
PWM Direction Change at Near  
100% Duty Cycle .............................................187  
PWM Output ............................................................174  
Repeated Start Condition .........................................228  
Reset, Watchdog Timer (WDT), Oscillator Start-up  
Timer (OST) and Power-up Timer (PWRT) .....370  
Send Break Character Sequence ............................254  
Slave Synchronization .............................................199  
Slow Rise Time (MCLR Tied to VDD,  
VDD Rise > TPWRT) ............................................51  
SPI Mode (Master Mode) .........................................198  
SPI Mode (Slave Mode, CKE = 0) ...........................200  
SPI Mode (Slave Mode, CKE = 1) ...........................200  
Synchronous Reception (Master Mode, SREN) ......257  
Synchronous Transmission ......................................255  
Synchronous Transmission (Through TXEN) ..........256  
Time-out Sequence on Power-up  
2
I C Bus Data Requirements (Slave Mode) .............. 378  
2
I C Bus Start/Stop Bits Requirements  
(Slave Mode) ................................................... 377  
2
Master SSP I C Bus Data Requirements ................ 380  
2
Master SSP I C Bus Start/Stop Bits  
Requirements .................................................. 379  
Parallel Slave Port Requirements ............................ 372  
PLL Clock ................................................................ 365  
Program Memory Write Requirements .................... 369  
Reset, Watchdog Timer, Oscillator Start-up  
Timer, Power-up Timer and Brown-out  
Reset Requirements ........................................ 370  
Timer0 and Timer1 External Clock  
Requirements .................................................. 371  
Top-of-Stack Access .......................................................... 63  
TRISE Register  
PSPMODE Bit .......................................................... 148  
TSTFSZ ........................................................................... 333  
Two-Speed Start-up ................................................. 281, 289  
Two-Word Instructions  
Example Cases .......................................................... 67  
TXSTAx Register  
BRGH Bit ................................................................. 243  
U
Unused I/Os ....................................................................... 30  
(MCLR Not Tied to VDD), Case 1 .......................50  
Time-out Sequence on Power-up  
(MCLR Not Tied to VDD), Case 2 .......................51  
Time-out Sequence on Power-up  
V
VDDCORE/VCAP Pin .......................................................... 288  
Voltage Reference Specifications .................................... 361  
Voltage Regulator (On-Chip) ........................................... 288  
(MCLR Tied to VDD, VDD Rise < TPWRT) ...........50  
Timer0 and Timer1 External Clock ..........................371  
Transition for Entry to Idle Mode ................................44  
Transition for Entry to SEC_RUN Mode ....................41  
Transition for Entry to Sleep Mode ............................43  
Transition for Two-Speed Start-up  
(INTRC to HSPLL) ...........................................289  
Transition for Wake From Idle to Run Mode ..............44  
Transition for Wake From Sleep (HSPLL) .................43  
Transition From RC_RUN Mode to  
W
Watchdog Timer (WDT) ........................................... 281, 287  
Associated Registers ............................................... 287  
Control Register ....................................................... 287  
During Oscillator Failure .......................................... 290  
Programming Considerations .................................. 287  
WCOL ...................................................... 227, 228, 229, 232  
WCOL Status Flag ................................... 227, 228, 229, 232  
WWW Address ................................................................ 405  
WWW, On-Line Support ...................................................... 4  
PRI_RUN Mode .................................................42  
Transition from SEC_RUN Mode to  
PRI_RUN Mode (HSPLL) ..................................41  
Transition to RC_RUN Mode .....................................42  
Timing Diagrams and Specifications  
X
XORLW ............................................................................ 333  
XORWF ........................................................................... 334  
AC Characteristics  
Internal RC Accuracy .......................................365  
DS39663F-page 404  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2009 Microchip Technology Inc.  
DS39663F-page 405  
PIC18F87J10 FAMILY  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC18F87J10 Family  
DS39663F  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39663F-page 406  
© 2009 Microchip Technology Inc.  
PIC18F87J10 FAMILY  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
b)  
PIC18F86J10-I/PT 301 = Industrial temp.,  
TQFP package, QTP pattern #301.  
PIC18F65J15T-I/PT = Tape and reel, Industrial  
temp., TQFP package.  
Device  
PIC18F65J10/65J15/66J10/66J15/67J10(1)  
PIC18F85J10/85J15/86J10/86J15/87J10(1)  
,
,
PIC18F65J10/65J15/66J10/66J15/67J10T(2)  
PIC18F85J10/85J15/86J10/86J15/87J10T(2)  
,
Temperature Range  
Package  
I
= -40°C to +85°C (Industrial)  
PT = TQFP (Thin Quad Flatpack)  
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
Note 1:  
2:  
F
T
=
=
Standard Voltage Range  
in tape and reel  
© 2009 Microchip Technology Inc.  
DS39663F-page 407  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS39663F-page 408  
© 2009 Microchip Technology Inc.  

相关型号:

PIC18F66J11

64/80-Pin High-Performance,1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F66J11F-I/PT

8-BIT, FLASH, 48 MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, PLASTIC, TQFP-64
MICROCHIP

PIC18F66J11T-1

64/80-Pin, High-Performance, 1-Mbit Flash Microcontrollers
MICROCHIP

PIC18F66J11T-I/PT

8-BIT, FLASH, 48 MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, PLASTIC, TQFP-64
MICROCHIP

PIC18F66J15

64/80-Pin, High-Performance 1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F66J15-I/PTQTP

64/80-Pin, High-Performance 1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F66J15-I/PTSQTP

64/80-Pin, High-Performance 1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F66J15I/PTQTP

64/80-Pin High-Performance, 1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F66J15I/PTSQTP

64/80-Pin High-Performance, 1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F66J15T-I/PT

8-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, PLASTIC, LEAD FREE, TQFP-64
MICROCHIP

PIC18F66J15T-I/PTQTP

64/80-Pin, High-Performance 1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F66J15T-I/PTSQTP

64/80-Pin, High-Performance 1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP