MCP73861-I/SLG [MICROCHIP]

暂无描述;
MCP73861-I/SLG
型号: MCP73861-I/SLG
厂家: MICROCHIP    MICROCHIP
描述:

暂无描述

电池 控制器
文件: 总26页 (文件大小:388K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP73861/2  
Advanced Single or Dual Cell, Fully Integrated Li-Ion /  
Li-Polymer Charge Management Controllers  
Features  
Description  
• Linear Charge Management Controllers  
- Integrated Pass Transistor  
The MCP7386X family of devices are highly advanced  
linear charge management controllers for use in space-  
limited, cost-sensitive applications. The MCP73861 and  
MCP73862 combine high-accuracy constant voltage,  
constant current regulation, cell preconditioning, cell  
temperature monitoring, advanced safety timers, auto-  
matic charge termination, internal current sensing,  
reverse-blocking protection, and charge status and fault  
indication in a space-saving 16-pin, 4 x 4 QFN package.  
The MCP7386X provides a complete, fully-functional,  
stand-alone charge management solution with a  
minimum number of external components.  
- Integrated Current Sense  
- Reverse-Blocking Protection  
• High-Accuracy Preset Voltage Regulation: + 0.5%  
• Four Selectable Voltage Regulation Options:  
- 4.1V, 4.2V - MCP73861  
- 8.2V, 8.4V - MCP73862  
• Programmable Charge Current: 1.2A Maximum  
• Programmable Safety Charge Timers  
• Preconditioning of Deeply Depleted Cells  
• Automatic End-of-Charge Control  
• Optional Continuous Cell Temperature Monitoring  
• Charge Status Output for Direct LED Drive  
• Fault Output for Direct LED Drive  
• Automatic Power-Down  
The MCP73861 is targeted for applicatioins utilizing  
single-cell Lithium-Ion or Lithium-Polymer battery  
packs, while the MCP73862 is targeted for dual series  
cell Lithium-Ion or Lithium-Polymer battery packs. The  
MCP73861 has two selectable voltage-regulation  
options available (4.1V and 4.2V), for use with either  
coke or graphite anodes, and operates with an input  
voltage range of 4.5V to 12V. The MCP73862 has two  
selectable voltage-regulation options available (8.2V  
and 8.4V), for use with coke or graphite anodes, and  
operates with an input voltage range of 8.7V to 12V.  
• Thermal Regulation  
Temperature Range: -40°C to 85°C  
• Packaging: 16-Pin, 4 x 4 QFN  
Applications  
The MCP7386X family of devices are fully specified  
over the ambient temperature range of -40°C to +85°C.  
• Lithium-Ion/Lithium-Polymer Battery Chargers  
• Personal Data Assistants  
• Cellular Telephones  
Package Type  
• Hand Held Instruments  
• Cradle Chargers  
STAT1 STAT2 EN VSS2  
16  
15  
14  
13  
• Digital Cameras  
• MP3 Players  
VSET  
VDD1  
VDD2  
VSS1  
VBAT3  
VBAT2  
VBAT1  
VSS3  
1
2
3
4
12  
11  
10  
9
MCP73861  
MCP73862  
5
6
7
8
PROG THREF THERM TIMER  
2004 Microchip Technology Inc.  
DS21893A-page 1  
MCP73861/2  
Typical Application  
1.2A Lithium-Ion Battery Charger  
2, 3  
1
12  
5V  
VDD  
VBAT3  
4.7 µF  
4.7µF  
10, 11  
6
VSET  
EN  
VBAT  
14  
16  
15  
5
THREF  
THERM  
TIMER  
VSS  
6.19 kΩ  
7
8
STAT1  
STAT2  
PROG  
Single  
Lithium-Ion  
Cell  
+
-
7.32 kΩ  
0.1  
µF  
4, 9, 13  
MCP73861  
Functional Block Diagram  
Direction  
Control  
VBAT1  
VBAT2  
VDD1  
VDD2  
VDD  
G=0.001  
4kΩ  
VREF  
Charge Current  
Control Amplifier  
90  
kΩ  
1kΩ  
PROG  
+
Voltage Control  
+
Amplifier  
11kΩ  
Charge  
VREF  
10kΩ  
VREF  
Termination  
Comparator  
VBAT3  
110kΩ  
+
-
Precondition  
Charge_OK  
Precon  
600kΩ  
(1.65M)  
I
REG/12  
Precondition  
Control  
+
Comp.  
-
10kΩ  
UVLO  
COMPARATOR  
+
-
148.42kΩ  
Values in ( )  
reflect the  
MCP73862  
device  
Constant Voltage/  
Recharge Comp.  
VUVLO  
+
-
1.58kΩ  
EN  
Power-On  
Delay  
VREF  
300.04kΩ  
VUVLO  
VREF(1.2V)  
Bias and  
Reference  
Generator  
VSET  
10.3kΩ  
(8.58k)  
VSS1  
VSS2  
VSS3  
THREF  
THERM  
Temperature  
Comparators  
100kΩ  
50kΩ  
50kΩ  
STAT1  
+
Drv Stat 1  
-
Charge Control,  
Charge Timers,  
And  
IREG/12  
Oscillator  
STAT2  
+
-
Status Logic  
Drv Stat 2  
TIMER  
Charge_OK  
DS21893A-page 2  
2004 Microchip Technology Inc.  
MCP73861/2  
† Notice: Stresses above those listed under “Maximum Rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
V
DDN...............................................................................13.5V  
, V , EN, STAT1, STAT2 w.r.t. V  
V
BATN  
SET  
SS  
.................................................................. -0.3 to (V +0.3)V  
DD  
PROG, THREF, THERM, TIMER w.r.t. V ..............-0.3 to 6V  
SS  
Maximum Junction Temperature, T ............Internally Limited  
J
Storage temperature .....................................-65°C to +150°C  
ESD protection on all pins:  
Human Body Model (1.5 kin series with 100 pF)....4 kV  
Machine Model (200 pF, No series resistance) ...........300V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(Typ) + 0.3V] to 12V,  
TA = -40°C to 85°C. Typical values are at +25°C, VDD = [VREG (typ.) + 1.0V]  
Parameters  
Supply Input  
Sym  
Min  
Typ  
Max Units  
Conditions  
Supply Voltage  
VDD  
ISS  
4.5  
8.7  
12  
12  
V
V
MCP73861  
MCP73862  
Supply Current  
0.17  
0.53  
4.5  
4
µA Disabled  
mA Operating  
4
UVLO Start Threshold  
VSTART  
4.25  
8.45  
4.65  
9.05  
V
V
MCP73861  
MCP73862  
8.8  
VDD Low-to-High  
MCP73861  
UVLO Stop Threshold  
VSTOP  
4.20  
8.40  
4.4  
8.7  
4.55  
8.95  
V
V
MCP73862  
VDD High-to-Low  
Voltage Regulation (Constant Voltage Mode)  
Regulated Output Voltage  
VREG  
4.079  
4.179  
8.159  
8.358  
4.1  
4.2  
8.2  
8.4  
4.121  
4.221  
8.241  
8.442  
V
V
V
V
MCP73861, VSET = VSS  
MCP73861, VSET = VDD  
MCP73862, VSET = VSS  
MCP73862, VSET = VDD  
VDD = [VREG(Typ) + 1V], IOUT=10 mA  
TA = -5°C to +55°C  
Line Regulation  
|(∆VBAT  
VBAT)| /VDD  
/
0.025  
0.01  
0.25  
0.25  
%/V VDD = [VREG(Typ)+1V] to 12V  
IOUT = 10 mA  
Load Regulation  
|∆VBAT/VBAT  
|
%
IOUT = 10 mA to 150 mA  
DD = [VREG(Typ)+1V]  
dB IOUT = 10 mA, 10Hz to 1 kHz  
dB OUT = 10 mA, 10Hz to 10 kHz  
dB IOUT = 10 mA, 10Hz to 1 MHz  
V
Supply Ripple Attenuation  
PSRR  
60  
42  
1
I
28  
0.23  
µA  
Output Reverse-Leakage  
Current  
I
VDD < VBAT = VREG(Typ)  
DISCHARGE  
Current Regulation (Fast Charge Constant Current Mode)  
Fast Charge Current  
Regulation  
IREG  
85  
100  
1200  
500  
115  
1380  
575  
mA PROG = OPEN  
mA PROG = VSS  
mA PROG = 1.6 kΩ  
TA= -5°C to +55°C  
1020  
425  
2004 Microchip Technology Inc.  
DS21893A-page 3  
MCP73861/2  
DC CHARACTERISTICS (Continued)  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(Typ) + 0.3V] to 12V,  
TA = -40°C to 85°C. Typical values are at +25°C, VDD = [VREG (typ.) + 1.0V]  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
Preconditioning Current Regulation (Trickle Charge Constant Current Mode)  
Precondition Current  
Regulation  
IPREG  
5
10  
120  
50  
15  
180  
75  
mA PROG = OPEN  
60  
25  
mA PROG = VSS  
mA PROG = 1.6 kΩ  
TA=-5°C to +55°C  
Precondition Threshold  
Voltage  
VPTH  
2.70  
2.75  
5.40  
5.50  
2.80  
2.85  
5.60  
5.70  
2.90  
2.95  
5.80  
5.90  
V
V
V
V
MCP73861, VSET = VSS  
MCP73861, VSET = VDD  
MCP73862, VSET = VSS  
MCP73862, VSET = VDD  
VBAT Low-to-High  
Charge Termination  
Charge Termination Current  
ITERM  
6
8.5  
90  
41  
11  
120  
50  
mA PROG = OPEN  
mA PROG = VSS  
mA PROG = 1.6 kΩ  
TA=-5°C to +55°C  
70  
32  
Automatic Recharge  
Recharge Threshold  
Voltage  
VRTH  
VREG  
-
VREG  
-
VREG  
-
V
V
MCP73861  
MCP73862  
300mV 200mV 100mV  
VREG VREG VREG  
600mV 400mV 200mV  
-
-
-
VBAT High-to-Low  
Thermistor Reference  
Thermistor Reference  
Output Voltage  
VTHREF  
ITHREF  
2.475  
200  
-
2.55  
2.625  
V
TA = 25°C, VDD = VREG(typ.) + 1V,  
ITHREF = 0 mA  
Thermistor Reference  
Source Current  
µA  
Thermistor Reference Line  
Regulation  
|(∆VTHREF  
/
0.1  
0.01  
0.25  
0.10  
%/V VDD = [VREG(Typ) + 1V] to 12V  
V
THREF)|/VDD  
|∆V  
/
%
Thermistor Reference Load  
Regulation  
ITHREF = 0 mA to 0.20 mA  
THREF  
V
THREF|  
Thermistor Comparator  
Upper Trip Threshold  
VT1  
VT1HYS  
VT2  
1.18  
1.25  
-50  
0.62  
80  
1.32  
V
mV  
V
Upper Trip Point Hysteresis  
Lower Trip Threshold  
0.59  
0.66  
Lower Trip Point Hysteresis  
Input Bias Current  
VT2HYS  
IBIAS  
mV  
µA  
2
Status Indicator - STAT1, STAT2  
Sink Current  
ISINK  
VOL  
ILK  
4
8
12  
400  
1
mA  
Low Output Voltage  
Input Leakage Current  
Enable Input  
200  
0.01  
mV ISINK = 1 mA  
µA ISINK = 0 mA, VSTAT1,2 = 12V  
Input High Voltage Level  
Input Low Voltage Level  
Input Leakage Current  
VIH  
VIL  
ILK  
1.4  
0.8  
1
V
V
0.01  
µA VENABLE = 12V  
DS21893A-page 4  
2004 Microchip Technology Inc.  
MCP73861/2  
DC CHARACTERISTICS (Continued)  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD= [VREG(Typ) + 0.3V] to 12V,  
TA = -40°C to 85°C. Typical values are at +25°C, VDD = [VREG (typ.) + 1.0V]  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
Thermal Shutdown  
Die Temperature  
TSD  
155  
10  
°C  
°C  
Die Temperature Hysteresis  
TSDHYS  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD = [VREG (typ.) + 0.3V] to 12V,  
TA = -40°C to 85°C. Typical values are at +25°C, VDD = [VREG (typ.) + 1.0V]  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
VDD Low to High  
UVLO Start Delay  
tSTART  
5
ms  
Current Regulation  
Transition Time Out of  
Preconditioning  
tDELAY  
tRISE  
1
1
ms  
ms  
VBAT < VPTH to VBAT > VPTH  
IOUT Rising to 90% of IREG  
Current Rise Time Out of  
Preconditioning  
Fast Charge Safety Timer  
Period  
tFAST  
1.1  
1.5  
1.9  
Hours CTIMER = 0.1 µF  
Minutes CTIMER = 0.1 µF  
Hours CTIMER = 0.1 µF  
Preconditioning Current Regulation  
Preconditioning Charge  
Safety Timer Period  
tPRECON  
45  
60  
3
75  
Charge Termination  
Elapsed Time Termination  
Period  
tTERM  
2.2  
3.8  
Status Indicators  
Status Output turn-off  
Status Output turn-on  
tOFF  
tON  
200  
200  
µs  
µs  
ISINK = 1 mA to 0 mA  
ISINK = 0 mA to 1 mA  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD = [VREG (typ.) + 0.3V] to 12V.  
Typical values are at +25°C, VDD = [VREG (typ.) + 1.0V]  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
T
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
A
T
J
T
A
Thermal Package Resistances  
4-Layer JC51-7 Standard  
Board, Natural Convection  
Thermal Resistance, 16-L, 4mm x 4mm QFN  
θ
37  
°C/W  
JA  
2004 Microchip Technology Inc.  
DS21893A-page 5  
MCP73861/2  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
NOTE: Unless otherwise indicated, VDD = [VREG(Typ) + 1V], IOUT = 10 mA and TA= +25°C, Constant Voltage mode.  
4.207  
4.205  
4.203  
4.201  
4.199  
4.197  
4.195  
4.193  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
MCP73861  
VSET = VDD  
VDD = 5.2V  
MCP73861  
VSET = VDD  
VDD = 5.2V  
10  
100  
1000  
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
FIGURE 2-1:  
Battery Regulation Voltage  
FIGURE 2-4:  
Supply Current (ISS) vs.  
(VBAT) vs. Charge Current (IOUT).  
Charge Current (IOUT).  
4.40  
4.30  
4.20  
4.10  
4.00  
3.90  
3.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
MCP73861  
VSET = VDD  
IOUT = 1000 mA  
MCP73861  
VSET = VDD  
IOUT = 1000 mA  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
VDD (V)  
VDD (V)  
FIGURE 2-2:  
Battery Regulation Voltage  
FIGURE 2-5:  
Supply Current (ISS) vs.  
(VBAT) vs. Supply Voltage (VDD).  
Supply Voltage (VDD).  
4.207  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
MCP73861  
MCP73861  
VSET = VDD  
IOUT = 10 mA  
VSET = VDD  
4.205  
IOUT = 10 mA  
4.203  
4.201  
4.199  
4.197  
4.195  
4.193  
4.5  
6.0  
7.5  
9.0  
DD (V)  
10.5  
12.0  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
V
VDD (V)  
FIGURE 2-3:  
Battery Regulation Voltage  
FIGURE 2-6:  
Supply Current (ISS) vs.  
(VBAT) vs. Supply Voltage (VDD).  
Supply Voltage (VDD).  
DS21893A-page 6  
2004 Microchip Technology Inc.  
MCP73861/2  
NOTE: Unless otherwise indicated, VDD = [VREG(Typ) + 1V], IOUT = 10 mA and TA= +25°C, Constant Voltage mode.  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
MCP73861  
VSET = VDD  
VDD = VSS  
MCP73861  
VSET = VDD  
IOUT = 10 mA  
+85°C  
+25°C  
-40°C  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
4.4  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
A (°C)  
V
BAT (V)  
T
FIGURE 2-7:  
Output Leakage Current  
FIGURE 2-10:  
Supply Current (ISS) vs.  
(IDISCHARGE) vs. Battery Voltage (VBAT).  
Ambient Temperature (TA).  
2.550  
4.207  
MCP73861  
VSET = VDD  
IOUT = 10 mA  
MCP73861  
VSET = VDD  
ITHREF = 100 µA  
4.205  
4.203  
4.201  
4.199  
4.197  
4.195  
4.193  
2.540  
2.530  
2.520  
2.510  
2.500  
4.5  
6.0  
7.5  
9.0  
DD (V)  
10.5  
12.0  
V
TA (°C)  
FIGURE 2-8:  
Thermistor Reference  
FIGURE 2-11:  
Battery Regulation Voltage  
Voltage (VTHREF) vs. Supply Voltage (VDD).  
(VBAT) vs. Ambient Temperature (TA).  
2.520  
2.520  
MCP73861  
MCP73861  
VSET = VDD  
VSET = VDD  
ITHREF = 100 µA  
2.515  
2.515  
2.510  
2.505  
2.500  
2.510  
2.505  
2.500  
0
25  
50  
75 100 125 150 175 200  
THREF (µA)  
TA (°C)  
I
FIGURE 2-9:  
Thermistor Reference  
FIGURE 2-12:  
Thermistor Reference  
Voltage (VTHREF) vs. Thermistor Bias Current  
(ITHREF).  
Voltage (VTHREF) vs. Ambient Temperature (TA).  
2004 Microchip Technology Inc.  
DS21893A-page 7  
MCP73861/2  
NOTE: Unless otherwise indicated, VDD = [VREG(Typ) + 1V], IOUT = 10 mA and TA= +25°C, Constant Voltage mode.  
8.407  
8.405  
8.403  
8.401  
8.399  
8.397  
8.395  
8.393  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
MCP73862  
VSET = VDD  
VDD = 9.4V  
MCP73862  
VSET = VDD  
VDD = 9.4V  
10  
100  
1000  
10  
100  
1000  
IOUT (mA)  
I
OUT (mA)  
FIGURE 2-13:  
Battery Regulation Voltage  
FIGURE 2-16:  
Supply Current (ISS) vs.  
(VBAT) vs. Charge Current (IOUT).  
Charge Current (IOUT).  
8.407  
1.60  
MCP73862  
8.405  
VSET = VDD  
1.40  
MCP73862  
VSET = VDD  
IOUT = 1000 mA  
1.20  
8.403  
IOUT = 1000 mA  
8.401  
1.00  
0.80  
0.60  
0.40  
8.399  
8.397  
8.395  
8.393  
9.0  
9.5  
10.0  
10.5  
11.0  
11.5  
12.0  
10.0  
10.4  
10.8  
11.2  
11.6  
12.0  
VDD (V)  
VDD (V)  
FIGURE 2-14:  
Battery Regulation Voltage  
FIGURE 2-17:  
Supply Current (ISS) vs.  
(VBAT) vs. Supply Voltage (VDD).  
Supply Voltage (VDD).  
8.412  
1.00  
MCP73862  
MCP73862  
VSET = VDD  
IOUT = 10 mA  
8.408  
VSET = VDD  
8.410  
0.90  
IOUT = 10 mA  
0.80  
8.406  
8.404  
8.402  
8.400  
8.398  
0.70  
0.60  
0.50  
0.40  
9.0  
9.5  
10.0  
10.5  
11.0  
11.5  
12.0  
9.0  
9.5  
10.0  
10.5  
11.0  
11.5  
12.0  
VDD (V)  
V
DD (V)  
FIGURE 2-15:  
Battery Regulation Voltage  
FIGURE 2-18:  
Supply Current (ISS) vs.  
(VBAT) vs. Supply Voltage (VDD).  
Supply Voltage (VDD).  
DS21893A-page 8  
2004 Microchip Technology Inc.  
MCP73861/2  
NOTE: Unless otherwise indicated, VDD = [VREG(Typ) + 1V], IOUT = 10 mA and TA= +25°C, Constant Voltage mode.  
0.45  
0.40  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
MCP73862  
VSET = VDD  
MCP73862  
VSET = VDD  
IOUT = 10 mA  
+85°C  
0.35 VDD = VSS  
0.30  
+25°C  
-40°C  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
4.0  
4.8  
5.6  
6.4  
7.2  
8.0  
8.8  
V
BAT (V)  
TA (°C)  
FIGURE 2-19:  
Output Leakage Current  
FIGURE 2-22:  
Supply Current (ISS) vs.  
(IDISCHARGE) vs. Battery Voltage (VBAT).  
Ambient Temperature (TA).  
2.570  
8.414  
8.410  
8.406  
8.402  
8.398  
8.394  
8.390  
8.386  
MCP73862  
VSET = VDD  
IOUT = 10 mA  
MCP73862  
VSET = VDD  
ITHREF = 100 µA  
2.560  
2.550  
2.540  
2.530  
9.0  
9.5  
10.0  
10.5  
11.0  
11.5  
12.0  
V
DD (V)  
TA (°C)  
FIGURE 2-20:  
Thermistor Reference  
FIGURE 2-23:  
Battery Regulation Voltage  
Voltage (VTHREF) vs. Supply Voltage (VDD).  
(VBAT) vs. Ambient Temperature (TA).  
2.550  
2.550  
MCP73862  
MCP73862  
VSET = VDD  
2.548  
VSET = VDD  
2.546  
2.542  
2.538  
2.534  
2.530  
ITHREF = 100 µA  
2.546  
2.544  
2.542  
2.540  
0
25  
50  
75 100 125 150 175 200  
ITHREF (µA)  
TA (°C)  
FIGURE 2-21:  
Thermistor Reference  
FIGURE 2-24:  
Thermistor Reference  
Voltage (VTHREF) vs. Thermistor Bias Current  
(ITHREF).  
Voltage (VTHREF) vs. Ambient Temperature (TA).  
2004 Microchip Technology Inc.  
DS21893A-page 9  
MCP73861/2  
NOTE: Unless otherwise indicated, VDD = [VREG(Typ) + 1V], IOUT = 10 mA and TA= +25°C, Constant Voltage mode.  
FIGURE 2-25:  
Line Transient Response.  
FIGURE 2-28:  
Line Transient Response.  
FIGURE 2-26:  
Load Transient Response.  
FIGURE 2-29:  
Load Transient Response.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
MCP73861  
-10 VDD = 5.2V  
V
AC = 100 mVp-p  
-20  
IOUT = 10 mA  
-30 COUT = 10 µF, Ceramic  
-40  
-50  
-60  
-70  
-80  
MCP73861  
VDD = 5.2V  
VAC = 100 mVp-p  
IOUT = 100 mA  
COUT = 10 µF, X7R, Ceramic  
-80  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-27:  
Power Supply Ripple  
FIGURE 2-30:  
Power Supply Ripple  
Rejection.  
Rejection.  
DS21893A-page 10  
2004 Microchip Technology Inc.  
MCP73861/2  
NOTE: Unless otherwise indicated, VDD = [VREG(Typ) + 1V], IOUT = 10 mA and TA= +25°C, Constant Voltage mode.  
1200  
1000  
800  
600  
400  
200  
0
505  
503  
501  
499  
497  
495  
493  
MCP73861/2  
VSET = VDD  
MCP73861/2  
VSET = VDD  
RPROG = 1.6 kΩ  
OPEN  
4.8K  
1.6K  
536  
0
TA (°C)  
RPROG ()  
FIGURE 2-31:  
Charge Current (IOUT) vs.  
FIGURE 2-32:  
Charge Current (IOUT) vs.  
Programming Resistor (RPROG).  
Ambient Temperature (TA).  
2004 Microchip Technology Inc.  
DS21893A-page 11  
MCP73861/2  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLES  
Pin No.  
Symbol  
Function  
1
2
V
V
V
V
Voltage Regulation Selection  
Battery Management Input Supply  
Battery Management Input Supply  
Battery Management 0V Reference  
Current Regulation Set  
SET  
DD1  
DD2  
SS1  
3
4
5
PROG  
THREF  
THERM  
TIMER  
6
Cell Temperature Sensor Bias  
Cell Temperature Sensor Input  
Timer Set  
7
8
9
V
Battery Management 0V Reference  
Battery Charge Control Output  
Battery Charge Control Output  
Battery Voltage Sense  
SS3  
10  
11  
12  
13  
14  
15  
16  
V
V
V
BAT1  
BAT2  
BAT3  
V
Battery Management 0V Reference  
Logic Enable  
SS2  
EN  
STAT2  
STAT1  
Fault Status Output  
Charge Status Output  
3.1  
Voltage Regulation Selection  
(V  
3.7  
Timer Set  
)
SET  
All safety timers are scaled by CTIMER/0.1 µF.  
MCP73861: Connect to VSS for 4.1V regulation  
voltage, connect to VDD for 4.2V regulation voltage.  
MCP73862: Connect to VSS for 8.2V regulation  
voltage, connect to VDD for 8.4V regulation voltage.  
3.8  
Battery Charge Control Output  
(V , V  
)
BAT2  
BAT1  
Connect to positive terminal of battery. Drain terminal  
of internal P-channel MOSFET pass transistor. Bypass  
to VSS with a minimum of 4.7 µF to ensure loop stability  
when the battery is disconnected.  
3.2  
Battery Management Input Supply  
(V , V  
)
DD1  
DD2  
A supply voltage of [VREG(Typ) + 0.3V] to 12V is  
recommended. Bypass to VSS with a minimum of  
4.7 µF.  
3.9  
Battery Voltage Sense (V  
)
BAT3  
Voltage sense input. Connect to positive terminal of  
battery. A precision internal resistor divider regulates  
3.3  
Battery Management 0V Reference  
(V , V , V  
the final voltage on this pin to VREG  
.
)
SS3  
SS1  
SS2  
3.10 Logic Enable (EN)  
Connect to negative terminal of battery and input  
supply.  
Input to force charge termination, initiate charge, clear  
faults or disable automatic recharge.  
3.11 Fault Status Output (STAT2)  
3.4  
Current Regulation Set (PROG)  
Current-limited, open-drain drive for direct connection  
to a LED for charge status indication. Alternatively, a  
pull-up resistor can be applied for interfacing to a host  
microcontroller.  
Preconditioning, fast and termination currents are  
scaled by placing a resistor from PROG to VSS  
.
3.5  
Cell Temperature Sensor Bias  
(THREF)  
3.12 Charge Status Output (STAT1)  
Voltage reference to bias external thermistor for contin-  
uous cell-temperature monitoring and pre-qualification.  
Current limited, open-drain drive for direct connection  
to an LED for charge status indication. Alternatively, a  
pull-up resistor can be applied for interfacing to a host  
microcontroller.  
3.6  
Cell Temperature Sensor Input  
(THERM)  
Input for an external thermistor for continuous cell-  
temperature monitoring and pre-qualification. Connect  
to THREF/3 to disable temperature sensing.  
DS21893A-page 12  
2004 Microchip Technology Inc.  
MCP73861/2  
4.0  
DEVICE OVERVIEW  
The MCP7386X family of devices are highly advanced  
linear charge management controllers. Refer to the  
functional block diagram. Figure 4-2 depicts the opera-  
tional flow algorithm from charge initiation to  
completion and automatic recharge.  
4.1V and 8.2V, respectively. With VSET tied to VDD, the  
MCP73861 and MCP73862 regulate to 4.2V and 8.4V,  
respectively.  
4.4  
Charge Cycle Completion and  
Automatic Re-Charge  
4.1  
Charge Qualification and  
Preconditioning  
The MCP7386X monitors the charging current during  
the constant voltage regulation phase. The charge cycle  
is considered complete when the charge current has  
diminished below approximately 8% of the regulation  
current (IREG) or the elapsed timer has expired.  
Upon insertion of a battery or application of an external  
supply, the MCP7386X family of devices automatically  
performs a series of safety checks to qualify the  
charge. The input source voltage must be above the  
undervoltage lockout threshold, the enable pin must be  
above the logic-high level and the cell temperature  
must be within the upper and lower thresholds. The  
qualification parameters are continuously monitored.  
Deviation beyond the limits automatically suspends or  
terminates the charge cycle. The input voltage must  
deviate below the undervoltage lockout stop threshold  
for at least one clock period to be considered valid.  
The MCP7386X automatically begins a new charge  
cycle when the battery voltage falls below the recharge  
threshold (VRTH  
)
assuming all the qualification  
parameters are met.  
4.5  
Thermal Regulation  
The MCP7386X family limits the charge current based  
on the die temperature. Thermal regulation optimizes  
the charge cycle time while maintaining device reliabil-  
ity. If thermal regulation is entered, the timer is automat-  
ically slowed down to ensure that a charge cycle will  
not terminate prematurely. Figure 4-1 depicts the  
thermal regulation profile.  
After the qualification parameters have been met, the  
MCP7386X initiates a charge cycle. The charge status  
output is pulled low throughout the charge cycle (see  
Table 5-1 for charge status outputs). If the battery volt-  
age is below the preconditioning threshold (VPTH) the  
MCP7386X preconditions the battery with a trickle-  
charge. The preconditioning current is set to approxi-  
mately 10% of the fast charge regulation current. The  
preconditioning trickle-charge safely replenishes  
deeply depleted cells and minimizes heat dissipation  
during the initial charge cycle. If the battery voltage has  
not exceeded the preconditioning threshold before the  
preconditioning timer has expired, a fault is indicated  
and the charge cycle is terminated.  
1400  
1200  
1000  
800  
Maximum  
Minimum  
600  
400  
200  
0
4.2  
Constant Current Regulation -  
Fast Charge  
0
20  
40  
60  
80  
100  
120  
140  
Die Temperature (° C)  
Preconditioning ends, and fast charging begins, when  
the battery voltage exceeds the preconditioning thresh-  
old. Fast charge regulates to a constant current (IREG),  
which is set via an external resistor connected to the  
PROG pin. Fast charge continues until the battery volt-  
age reaches the regulation voltage (VREG), or the fast  
charge timer expires; in which case, a fault is indicated  
and the charge cycle is terminated.  
FIGURE 4-1:  
Current vs. Die Temperature.  
Typical Maximum Charge  
4.6  
Thermal Shutdown  
The MCP7386X family suspends charge if the die tem-  
perature exceeds 155°C. Charging will resume when  
the die temperature has cooled by approximately 10°C.  
The thermal shutdown is a secondary safety feature in  
the event that there is a failure within the thermal  
regulation circuitry.  
4.3  
Constant Voltage Regulation  
When the battery voltage reaches the regulation volt-  
age (VREG) constant voltage regulation begins. The  
MCP7386X monitors the battery voltage at the VBAT  
pin. This input is tied directly to the positive terminal of  
the battery. The MCP7386X selects the voltage regula-  
tion value based on the state of the VSET. With VSET  
tied to VSS, the MCP73861 and MCP73862 regulate to  
2004 Microchip Technology Inc.  
DS21893A-page 13  
Initialize  
Note 1:  
Note 2:  
The qualification parameters are continuously  
monitored throughout the charge cycle. Refer to  
Section 4.1, “Charge Qualification and  
Preconditioning”, for details.  
V
DD > VUVLO  
EN High  
NOTE 1  
NOTE 1  
No  
The charge current will be scaled based on the  
die temperature during thermal regulation. Refer  
to Section 4.5, “Thermal Regulation”, for  
details.  
STAT1 = Off  
STAT2 = Off  
Yes  
Temperature OK  
Yes  
No  
STAT1 = Off  
STAT2 = Flashing  
Charge Current = 0  
Preconditioning Phase  
Charge Current = IPREG  
Reset Safety Timer  
No  
STAT1 = On  
STAT2 = Off  
VBAT > VPTH  
Yes  
Constant Current  
Phase  
Charge Current = IREG  
Constant Voltage Phase  
Output Voltage = VREG  
NOTE 2  
Yes  
VBAT > VPTH  
Reset Safety Timer  
Charge Termination  
Charge Current = 0  
Reset Safety Timer  
Yes  
IOUT < ITERM  
Yes  
VBAT = VREG  
Elapsed Timer  
Expired  
No  
No  
No  
Fault  
Charge Current = 0  
Reset Safety Timer  
Yes  
V
V
DD < VUVLO  
BAT < VRTH  
Yes  
Yes  
Yes  
Safety Timer  
Expired  
Safety Timer  
Expired  
Temperature OK  
or EN Low  
No  
No  
No  
Yes  
STAT1 = Flashing  
Safety Timer Suspended  
Charge Current = 0  
No  
Yes  
STAT1 = Flashing  
STAT2 = Off  
VDD < VUVLO  
or EN Low  
Temperature OK  
No  
Temperature OK  
No  
No  
Yes  
STAT1 = Off  
STAT1 = Off  
STAT2 = On  
STAT1 = Off  
STAT2 = Flashing  
STAT2 = Flashing  
Safety Timer Suspended  
Charge Current = 0  
Safety Timer Suspended  
Charge Current = 0  
FIGURE 4-2:  
Operational Flow Algorithm.  
MCP73861/2  
Figure 6-1 depicts a typical application circuit with  
connection of the THERM input. The resistor values of  
RT1 and RT2 are calculated with the following  
equations.  
5.0  
DETAILED DESCRIPTION  
5.1  
Analog Circuitry  
For NTC thermistors:  
5.1.1  
BATTERY MANAGEMENT INPUT  
SUPPLY (VDD1, VDD2  
)
2 × RCOLD × RHOT  
----------------------------------------------  
RT1  
=
=
The VDD input is the input supply to the MCP7386X.  
The MCP7386X automatically enters a Power-down  
mode if the voltage on the VDD input falls below the  
undervoltage lockout voltage (VSTOP). This feature  
prevents draining the battery pack when the VDD  
supply is not present.  
R
COLD RHOT  
2 × RCOLD × RHOT  
----------------------------------------------  
COLD 3 × RHOT  
RT2  
R
For PTC thermistors:  
2 × RCOLD × RHOT  
----------------------------------------------  
5.1.2  
PROG INPUT  
RT1  
=
=
R
HOT RCOLD  
Fast charge current regulation can be scaled by placing  
a programming resistor (RPROG) from the PROG input  
to VSS. Connecting the PROG input to VSS allows for a  
maximum fast charge current of 1.2A, typically. The  
minimum fast charge current is 100 mA, set by letting  
the PROG input float. The following formula calculates  
2 × RCOLD × RHOT  
----------------------------------------------  
HOT 3 × RCOLD  
RT2  
R
Where:  
RCOLD and RHOT are the thermistor  
resistance values at the temperature window  
of interest.  
the value for RPROG  
:
13.2 11 × IREG  
----------------------------------------  
12 × IREG 1.2  
RPROG  
=
Applying a voltage equal to VTHREF/3 to the THERM  
input disables temperature monitoring.  
where:  
5.1.5  
TIMER SET INPUT (TIMER)  
IREG is the desired fast charge current in  
amps  
The TIMER input programs the period of the safety  
timers by placing a timing capacitor (CTIMER), between  
the TIMER input pin and VSS. Three safety timers are  
programmed via the timing capacitor.  
RPROG is in k.  
The preconditioning trickle-charge current and the  
charge termination current are scaled to approximately  
10% and 8% of IREG, respectively.  
The preconditioning safety timer period:  
CTIMER  
------------------  
× 1.0Hours  
tPRECON  
=
0.1µF  
5.1.3  
CELL TEMPERATURE SENSOR  
BIAS (THREF)  
The fast charge safety timer period:  
A 2.5V voltage reference is provided to bias an external  
thermistor for continuous cell temperature monitoring  
and pre-qualification. A ratio metric window compari-  
son is performed at threshold levels of VTHREF/2 and  
CTIMER  
------------------  
× 1.5Hours  
tFAST  
=
0.1µF  
VTHREF/4.  
And, the elapsed time termination period:  
CTIMER  
5.1.4  
CELL TEMPERATURE SENSOR  
INPUT (THERM)  
------------------  
× 3.0Hours  
tTERM  
=
0.1µF  
The MCP73861 and MCP73862 continuously monitor  
temperature by comparing the voltage between the  
THERM input and VSS with the upper and lower  
temperature thresholds. A negative or positive temper-  
ature coefficient, NTC or PTC, thermistor and an exter-  
nal voltage-divider typically develop this voltage. The  
temperature sensing circuit has its own reference to  
which it performs a ratio metric comparison. Therefore,  
it is immune to fluctuations in the supply input (VDD).  
The temperature-sensing circuit is removed from the  
system when VDD is not applied, eliminating additional  
discharge of the battery pack.  
The preconditioning timer starts after qualification and  
resets when the charge cycle transitions to the con-  
stant current, fast charge phase. The fast charge timer  
and the elapsed timer start after the MCP7386X transi-  
tions from preconditioning. The fast charge timer resets  
when the charge cycle transitions to the constant volt-  
age phase. The elapsed timer will expire and terminate  
the charge if the sensed current does not diminish  
below the termination threshold.  
During thermal regulation, the timer is slowed down  
proportional to the charge current.  
2004 Microchip Technology Inc.  
DS21893A-page 15  
MCP73861/2  
The flashing rate (1 Hz) is based off a timer capacitor  
(CTIMER) of 0.1 µF. The rate will vary based on the  
value of the timer capacitor.  
5.1.6  
BATTERY VOLTAGE SENSE (VBAT3)  
The MCP7386X monitors the battery voltage at the  
VBAT3 pin. This input is tied directly to the positive  
terminal of the battery pack.  
During a FAULT condition, the STAT1 status output will  
be off and the STAT2 status output will be on. To  
recover from a FAULT condition, the input voltage must  
be removed and then reapplied, or the enable input  
(EN) must be de-asserted to a logic-low, then asserted  
to a logic-high.  
5.1.7  
BATTERY CHARGE CONTROL  
OUTPUT (VBAT1, VBAT2  
)
The battery charge control output is the drain terminal  
of an internal P-channel MOSFET. The MCP7386X  
provides constant current, constant voltage regulation  
to the battery pack by controlling this MOSFET in the  
linear region. The battery charge control output should  
be connected to the positive terminal of the battery  
pack.  
When the voltage on the THERM input is outside the  
preset window, the charge cycle will not start, or will be  
suspended. The charge cycle is not terminated and  
recovery is automatic. The charge cycle will resume or  
start once the THERM input is valid and all other qual-  
ification parameters are met. During an invalid THERM  
condition, the STAT1 status output will be off and the  
STAT2 status output will flash.  
5.2  
Digital Circuitry  
5.2.1  
CHARGE STATUS OUTPUTS  
(STAT1,STAT2)  
5.2.2  
VSET INPUT  
The VSET input selects the regulated output voltage of  
the MCP7386X. With VSET tied to VSS, the MCP73861  
and MCP73862 regulate to 4.1V and 8.2V, respec-  
tively. With VSET tied to VDD, the MCP73861 and  
MCP73862 regulate to 4.2V and 8.4V, respectively.  
Two status outputs provide information on the state of  
charge. The current-limited, open-drain outputs can be  
used to illuminate external LEDs. Optionally, a pull-up  
resistor can be used on the output for communication  
with a host microcontroller. Table 5-1 summarizes the  
state of the status outputs during a charge cycle.  
5.2.3  
LOGIC ENABLE (EN)  
TABLE 5-1:  
STATUS OUTPUTS  
STAT1  
The logic enable input pin (EN) can be used to  
terminate a charge at any time during the charge cycle,  
as well as to initiate a charge cycle or initiate a recharge  
cycle.  
CHARGE  
CYCLE STAT1  
STAT2  
Qualification  
Off  
On  
On  
Off  
Off  
Off  
Applying a logic-high input signal to the EN pin, or tying  
it to the input source, enables the device. Applying a  
logic-low input signal disables the device and termi-  
nates a charge cycle. When disabled, the device’s  
supply current is reduced to 0.17 µA, typically.  
Preconditioning  
Constant  
Current Fast  
Charge  
Constant  
Voltage  
On  
Off  
Off  
On  
Charge  
Complete  
Flashing (1Hz,  
50% duty cycle)  
Fault  
Off  
THERM Invalid  
Off  
Off  
Off  
Flashing (1Hz,  
50% duty cycle)  
Disabled - Sleep  
mode  
Off  
Input Voltage  
Disconnected  
Off  
Note: Off state: open-drain is high-impedance;  
On state: open-drain can sink current,  
typically 7 mA;  
Flashing: toggles between off state and  
on state.  
DS21893A-page 16  
2004 Microchip Technology Inc.  
MCP73861/2  
cells, constant current followed by constant voltage.  
Figure 6-1 depicts a typical stand-alone application  
circuit and Figures 6-2 and 6-3 depict the  
accompanying charge profile.  
6.0  
APPLICATIONS  
The MCP7386X are designed to operate in conjunc-  
tion with a host microcontroller or in stand-alone appli-  
cations. The MCP7386X provides the preferred  
charge algorithm for Lithium-Ion and Lithium-Polymer  
Unregulated  
STAT1  
EN VSS2  
Wall Cube  
16 15 14 13  
VSET  
1
VBAT3  
VBAT2  
VBAT1  
VSS3  
12  
11  
10  
9
+
-
Single  
Lithium-Ion  
Cell  
VDD1  
2
MCP73861  
VDD2  
3
4
VSS1  
5
6
7
8
PROG  
RPROG  
TIMER  
CTIMER  
RT1  
RT2  
FIGURE 6-1:  
Typical Application Circuit.  
Preconditioning  
Mode  
Constant Current  
Mode  
Constant Voltage  
Mode  
Regulation  
Voltage  
(V  
)
REG  
Regulation  
Current  
(I  
)
REG  
Charge  
Voltage  
Transition  
Threshold  
(V  
)
PTH  
Precondition  
Current  
Charge  
Current  
(I  
)
PREG  
Termination  
Current  
(I  
)
TERM  
Precondition  
Safety Timer  
Fast Charge  
Safety Timer  
Elapsed Time  
Termination Timer  
FIGURE 6-2:  
Typical Charge Profile.  
2004 Microchip Technology Inc.  
DS21893A-page 17  
MCP73861/2  
Preconditioning  
Mode  
Constant Current  
Mode  
Constant Voltage  
Mode  
Regulation  
Voltage  
(V  
)
REG  
Regulation  
Current  
(I  
)
REG  
Charge  
Voltage  
Transition  
Threshold  
(V  
)
PTH  
Precondition  
Current  
Charge  
Current  
(I  
)
PREG  
Termination  
Current  
(I  
)
TERM  
Precondition  
Safety Timer  
Fast Charge  
Safety Timer  
Elapsed Time  
Termination Timer  
FIGURE 6-3:  
Typical Charge Profile in Thermal Regulation.  
1200 mA is the maximum charge current obtainable  
from the MCP7386X. For this situation, the PROG input  
6.1 Application Circuit Design  
Due to the low efficiency of linear charging, the most  
important factors are thermal design and cost, which  
are a direct function of the input voltage, output current  
and thermal impedance between the battery charger  
and the ambient cooling air. The worst-case situation is  
when the device has transitioned from the precondi-  
tioning phase to the constant current phase. In this  
situation, the battery charger has to dissipate the  
maximum power. A trade-off must be made between  
the charge current, cost and thermal requirements of  
the charger.  
should be connected directly to VSS  
.
6.1.1.2 Thermal Considerations  
The worst-case power dissipation in the battery  
charger occurs when the input voltage is at the  
maximum and the device has transitioned from the  
preconditioning phase to the constant current phase. In  
this case, the power dissipation is:  
PowerDissipation = (V  
V  
) × I  
DDMAX  
PTHMIN  
REGMAX  
Where:  
6.1.1  
COMPONENT SELECTION  
VDDMAX is the maximum input voltage  
Selection of the external components in Figure 6-1 is  
crucial to the integrity and reliability of the charging  
system. The following discussion is intended as a guide  
for the component selection process.  
IREGMAX is the maximum fast charge current  
VPTHMIN is the minimum transition threshold  
voltage.  
6.1.1.1  
Current Programming Resistor  
(RPROG  
)
The preferred fast charge current for Lithium-Ion cells  
is at the 1C rate, with an absolute maximum current at  
the 2C rate. For example, a 500 mAh battery pack has  
a preferred fast charge current of 500 mA. Charging at  
this rate provides the shortest charge cycle times with-  
out degradation to the battery pack performance or life.  
DS21893A-page 18  
2004 Microchip Technology Inc.  
MCP73861/2  
Power dissipation with a 5V, ±10% input voltage source  
is:  
6.2  
PCB Layout Issues  
For optimum voltage regulation, place the battery pack  
as close as possible to the device’s VBAT and VSS pins.  
It is recommended to minimize voltage drops along the  
high current carrying PCB traces.  
PowerDissipation = (5.5V 2.7V) × 575mA = 1.61W  
With the battery charger mounted on a 1 in2 pad of  
1 oz. copper, the junction temperature rise is 60°C,  
approximately. This would allow for a maximum operat-  
ing ambient temperature of 50°C before thermal  
regulation is entered.  
If the PCB layout is used as a heatsink, adding many  
vias in the heatsink pad can help conduct more heat to  
the back-plane of the PCB, thus reducing the maximum  
junction temperature.  
6.1.1.3  
External Capacitors  
The MCP7386X is stable with or without a battery load.  
In order to maintain good AC stability in the Constant  
Voltage mode, a minimum capacitance of 4.7 µF is  
recommended to bypass the VBAT pin to VSS. This  
capacitance provides compensation when there is no  
battery load. In addition, the battery and interconnec-  
tions appear inductive at high frequencies. These  
elements are in the control feedback loop during  
constant voltage mode. Therefore, the bypass capaci-  
tance may be necessary to compensate for the  
inductive nature of the battery pack.  
Virtually any good quality output filter capacitor can be  
used, independent of the capacitor’s minimum Effec-  
tive Series Resistance (ESR) value. The actual value of  
the capacitor and its associated ESR depends on the  
output load current. A 4.7 µF ceramic, tantalum or alu-  
minum electrolytic capacitor at the output is usually  
sufficient to ensure stability for up to a 1A output  
current.  
6.1.1.4  
Reverse-Blocking Protection  
The MCP7386X provides protection from a faulted or  
shorted input, or from a reversed-polarity input source.  
Without the protection, a faulted or shorted input would  
discharge the battery pack through the body diode of  
the internal pass transistor.  
6.1.1.5  
Enable Interface  
In the stand-alone configuration, the enable pin is gen-  
erally tied to the input voltage. The MCP7386X auto-  
matically enters a low-power mode when voltage on  
the VDD input falls below the undervoltage lockout  
voltage (VSTOP) reducing the battery drain current to  
0.23 µA, typically.  
6.1.1.6  
Charge Status Interface  
Two status outputs provide information on the state of  
charge. The current-limited, open-drain outputs can be  
used to illuminate external LEDs. Refer to Table 5-1 for  
a summary of the state of the status outputs during a  
charge cycle.  
2004 Microchip Technology Inc.  
DS21893A-page 19  
MCP73861/2  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
16-Lead QFN  
16  
15  
14  
13  
16  
15  
14  
13  
1
2
3
4
12  
11  
10  
9
1
2
3
4
12  
11  
10  
9
XXXXXXXX  
XXXXXXXX  
YYWW  
G3861  
I/ML  
0412  
256  
NNN  
5
6
7
8
5
6
7
8
Legend: XX...X Customer specific information*  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.  
DS21893A-page 20  
2004 Microchip Technology Inc.  
MCP73861/2  
16-Lead Plastic Quad Flat No Lead Package (ML) 4x4x0.9 mm Body (QFN) – Saw Singulated  
D
D1  
EXPOSED  
METAL  
PAD  
e
E1  
E
2
1
b
n
OPTIONAL  
INDEX  
L
TOP VIEW  
BOTTOM VIEW  
AREA  
A3  
A
A1  
Units  
Dimension Limits  
INCHES  
MILLIMETERS*  
MIN  
NOM  
16  
MAX  
MIN  
NOM  
16  
MAX  
n
e
Number of Pins  
Pitch  
.026 BSC  
0.65 BSC  
0.90  
Overall Height  
Standoff  
A
.031  
.035  
.001  
.008 REF  
.039  
0.80  
1.00  
A1  
A3  
E
.000  
.002  
0.00  
0.02  
0.05  
Contact Thickness  
Overall Width  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
0.20 REF  
4.00  
.152  
.100  
.152  
.100  
.010  
.012  
.157  
.106  
.157  
.106  
.012  
.016  
.163  
.110  
.163  
.110  
.014  
.020  
3.85  
2.55  
3.85  
2.55  
0.25  
0.30  
4.15  
2.80  
4.15  
2.80  
0.35  
0.50  
E2  
D
2.70  
4.00  
D2  
b
2.70  
0.30  
L
0.40  
*Controlling Parameter  
Notes:  
JEDEC equivalent: MO-220  
Drawing No. C04-127  
Revised 04-24-05  
2004 Microchip Technology Inc.  
DS21893A-page 21  
MCP73861/2  
NOTES:  
DS21893A-page 22  
2004 Microchip Technology Inc.  
MCP73861/2  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
XX  
a)  
b)  
MCP73861T-I/MLG:Tape and Reel,  
Temperature Package  
Range  
Single Cell Controller  
MCP73861-I/MLG: Single Cell Controller  
a)  
b)  
MCP73862T-I/MLG:Tape and Reel,  
Dual Series Controller  
MCP73862-I/MLG: Dual Series Controller  
Device  
MCP73861:  
Single-cell charge controller with temperature  
monitor  
MCP73861T: Single-cell charge controller with temperature  
monitor, Tape and Reel  
MCP73862:  
Dual series cells charge controller with  
temperature monitor  
MCP73862T: Dual series cells charge controller with  
temperature monitor, Tape and Reel  
Temperature Range  
I
= -40°C to +85°C (Industrial)  
Package  
ML  
G
=
Plastic Quad Flat No Lead, 4x4 mm Body (QFN),  
16-lead  
Lead Finish  
=
Matte Tin (Pure Sn)  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2004 Microchip Technology Inc.  
DS21893A-page 23  
MCP73861/2  
NOTES:  
DS21893A-page 24  
2004 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical  
components in life support systems is not authorized except  
with express written approval by Microchip. No licenses are  
conveyed, implicitly or otherwise, under any intellectual  
property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL,  
SmartSensor and The Embedded Control Solutions Company  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Migratable Memory, MPASM,  
MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net,  
PICLAB, PICtail, PowerCal, PowerInfo, PowerMate,  
PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial,  
SmartTel and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2004, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2004 Microchip Technology Inc.  
DS21893A-page 25  
WORLDWIDE SALES AND SERVICE  
China - Beijing  
Korea  
AMERICAS  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: www.microchip.com  
Unit 706B  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Wan Tai Bei Hai Bldg.  
No. 6 Chaoyangmen Bei Str.  
Beijing, 100027, China  
Tel: 86-10-85282100  
Fax: 86-10-85282104  
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or  
82-2-558-5934  
Singapore  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
China - Chengdu  
Rm. 2401-2402, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Chengdu 610016, China  
Tel: 86-28-86766200  
Atlanta  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Tel: 770-640-0034  
Fax: 770-640-0307  
Taiwan  
Kaohsiung Branch  
30F - 1 No. 8  
Fax: 86-28-86766599  
Boston  
Min Chuan 2nd Road  
Kaohsiung 806, Taiwan  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
China - Fuzhou  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
Tel: 86-591-7503506  
Fax: 86-591-7503521  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848  
Fax: 978-692-3821  
Taiwan  
Taiwan Branch  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Hong Kong SAR  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Dallas  
EUROPE  
Austria  
Durisolstrasse 2  
A-4600 Wels  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Regus Business Centre  
Lautrup hoj 1-3  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250  
Tel: 86-21-6275-5700  
Fax: 86-21-6275-5060  
China - Shenzhen  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Tel: 86-755-82901380  
Fax: 86-755-8295-1393  
China - Shunde  
Fax: 248-538-2260  
Ballerup DK-2750 Denmark  
Tel: 45-4420-9895 Fax: 45-4420-9910  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, IN 46902  
Tel: 765-864-8360  
Fax: 765-864-8387  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Room 401, Hongjian Building, No. 2  
Los Angeles  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888  
Fax: 949-263-1338  
Fengxiangnan Road, Ronggui Town, Shunde  
District, Foshan City, Guangdong 528303, China  
Tel: 86-757-28395507 Fax: 86-757-28395571  
Germany  
China - Qingdao  
Rm. B505A, Fullhope Plaza,  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
Tel: 86-532-5027355 Fax: 86-532-5027205  
Steinheilstrasse 10  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
San Jose  
1300 Terra Bella Avenue  
Mountain View, CA 94043  
Tel: 650-215-1444  
Italy  
India  
Via Quasimodo, 12  
20025 Legnano (MI)  
Milan, Italy  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-22290061 Fax: 91-80-22290062  
Japan  
Fax: 650-961-0286  
Toronto  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Netherlands  
Waegenburghtplein 4  
NL-5152 JR, Drunen, Netherlands  
Tel: 31-416-690399  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
ASIA/PACIFIC  
Australia  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Fax: 31-416-690340  
United Kingdom  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
05/28/04  
DS21893A-page 26  
2004 Microchip Technology Inc.  

相关型号:

MCP73861T

Advanced Single or Dual Cell, Fully Integrated Li-Ion/Li-Polymer Charge Management
MICROCHIP

MCP73861T-I/ML

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861T-I/MLG

暂无描述
MICROCHIP

MCP73861T-I/SL

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861T-I/SLG

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO16, 0.150 INCH, LEAD FREE, PLASTIC, MS-012, SOIC-16
MICROCHIP

MCP73861_05

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861_08

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861_11

Advanced Single or Dual Cell, Fully Integrated Li-Ion/Li-Polymer Charge Management
MICROCHIP

MCP73861_13

Advanced Single or Dual Cell, Fully Integrated Li-Ion/Li-Polymer Charge Management Controllers
MICROCHIP

MCP73862

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73862-I/ML

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73862-I/MLG

1-CHANNEL POWER SUPPLY SUPPORT CKT, PQCC16, 4 X 4 MM, 0.90 MM HEIGHT, LEAD FREE, PLASTIC, MO-220, QFN-16
MICROCHIP