MCP73861T [MICROCHIP]

Advanced Single or Dual Cell, Fully Integrated Li-Ion/Li-Polymer Charge Management; 先进的单或双电池,完全集成的锂离子/锂聚合物充电管理
MCP73861T
型号: MCP73861T
厂家: MICROCHIP    MICROCHIP
描述:

Advanced Single or Dual Cell, Fully Integrated Li-Ion/Li-Polymer Charge Management
先进的单或双电池,完全集成的锂离子/锂聚合物充电管理

电池
文件: 总34页 (文件大小:478K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP73861/2/3/4  
Advanced Single or Dual Cell, Fully Integrated Li-Ion/Li-Polymer  
Charge Management Controllers  
Features  
Description  
• Linear Charge Management Controllers  
- Integrated Pass Transistor  
The MCP7386X family of devices features highly  
advanced linear charge management controllers for  
use in space-limited, cost-sensitive applications. The  
devices combine high-accuracy, constant voltage and  
current regulation, cell preconditioning, cell tempera-  
ture monitoring, advanced safety timers, automatic  
charge termination, internal current sensing, reverse-  
blocking protection, charge status and fault indication  
in either a space-saving 16-pin 4 x 4 QFN package, or  
a 16-pin SOIC package. The MCP7386X provides a  
complete, fully functional, stand-alone charge manage-  
ment solution with a minimum number of external  
components.  
- Integrated Current Sense  
- Reverse-Blocking Protection  
• High-Accuracy Preset Voltage Regulation: + 0.5%  
• Four Selectable Voltage Regulation Options:  
- 4.1V, 4.2V – MCP73861/3  
- 8.2V, 8.4V – MCP73862/4  
• Programmable Charge Current: 1.2A Maximum  
• Programmable Safety Charge Timers  
• Preconditioning of Deeply Depleted Cells  
• Automatic End-of-Charge Control  
• Optional Continuous Cell Temperature Monitoring  
• Charge Status Output for Direct LED Drive  
• Fault Output for Direct LED Drive  
• Automatic Power-Down  
The MCP73861/3 is intended for applications utilizing  
single-cell Lithium-Ion or Lithium-Polymer battery  
packs, while the MCP73862/4 is intended for dual  
series cell Lithium-Ion or Lithium-Polymer battery  
packs. The MCP73861/3 has two selectable  
voltage-regulation options available (4.1V and 4.2V),  
for use with either coke or graphite anodes and operate  
with an input voltage range of 4.5V to 12V. The  
MCP73862/4 has two selectable voltage-regulation  
options available (8.2V and 8.4V), for use with coke or  
graphite anodes, and operate with an input voltage  
range of 8.7V to 12V.  
• Thermal Regulation  
Temperature Range: -40°C to +85°C  
• Packaging: 16-Pin, 4 x 4 QFN  
16-Pin SOIC  
Applications  
• Lithium-Ion/Lithium-Polymer Battery Chargers  
• Personal Data Assistants (PDAs)  
• Cellular Telephones  
The MCP73861/2 and MCP73863/4 differ only in the  
function of the charge status output (STAT1) when a  
charge cycle has been completed. The MCP73861/2  
flashes the output, while the MCP73863/4 turns the  
output off. Refer to Section 5.2.1 “Charge Status  
Outputs (STAT1, STAT2)”.  
• Hand-Held Instruments  
• Cradle Chargers  
• Digital Cameras  
The MCP7386X family of devices are fully specified  
over the ambient temperature range of -40°C to +85°C.  
• MP3 Players  
Package Types  
16-Pin QFN  
16-Pin SOIC  
STAT2  
STAT1  
1
2
3
4
5
6
7
8
EN  
V
16  
15  
14  
13  
12  
11  
10  
9
SS2  
16 15 14 13  
V
V
V
V
V
SET  
V
V
V
V
V
V
BAT3  
BAT2  
BAT1  
SS3  
1
12  
11  
10  
9
SET  
BAT3  
BAT2  
BAT1  
SS3  
V
DD1  
2
3
4
DD2  
DD2  
EP  
17  
V
DD2  
V
V
SS1  
V
SS1  
PROG  
TIMER  
5
6
7
8
THREF  
THERM  
2011 Microchip Technology Inc.  
DS21893E-page 1  
MCP73861/2/3/4  
Typical Application  
1.2A Lithium-Ion Battery Charger  
2, 3  
1
12  
5V  
4.7µF  
V
V
V
BAT3  
DD  
4.7 µF  
10, 11  
6
V
SET  
BAT  
14  
16  
15  
5
THREF  
THERM  
TIMER  
EN  
6.19 k  
7
8
STAT1  
STAT2  
PROG  
Single  
+
7.32 kΩ  
0.1  
Lithium-Ion  
Cell  
4, 9, 13  
µF  
Note: Pin numbers shown are for QFN  
package. Please refer to Section 6.0  
“Applications” for details.  
V
SS  
MCP73861/3  
Functional Block Diagram  
Direction  
Control  
VDD1  
VBAT1  
VBAT2  
VDD2  
VDD  
G = 0.001  
4 kΩ  
VREF  
Charge Current  
Control Amplifier  
90  
1 kΩ  
k
PROG  
+
Voltage Control  
Amplifier  
+
11 kΩ  
Charge  
Termination  
Comparator  
VREF  
10 kΩ  
VREF  
VBAT3  
110 k Ω  
+
Precondition  
Charge_OK  
Precon  
600 kΩ  
Precondition  
Control  
IREG/12  
+
Comp.  
)
(1.65 M  
10 kΩ  
UVLO  
COMPARATOR  
+
148.42 kΩ  
Values in ( )  
reflect the  
MCP73862/4  
devices  
Constant-Voltage/  
Recharge Comp.  
VUVLO  
+
1.58 kΩ  
EN  
Power-On  
Delay  
VREF  
300.04 kΩ  
VUVLO  
VREF (1.2V)  
Bias and  
Reference  
Generator  
VSET  
10.3 kΩ  
(8.58 k)  
VSS1  
VSS2  
VSS3  
THREF  
THERM  
Temperature  
Comparators  
100 kΩ  
50 kΩ  
50 kΩ  
STAT1  
+
Drv Stat 1  
Charge Control,  
Charge Timers  
And Status Logic  
IREG/12  
STAT2  
+
Drv Stat 2  
Oscillator  
TIMER  
Charge_OK  
DS21893E-page 2  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
V
..............................................................................13.5V  
DDN  
V
, V , EN, STAT1, STAT2 w.r.t. V  
SS  
BATN  
SET  
.................................................................-0.3 to (V + 0.3)V  
DD  
PROG, THREF, THERM, TIMER w.r.t. V ..............-0.3 to 6V  
SS  
Maximum Junction Temperature, T ............Internally Limited  
J
Storage temperature .....................................-65°C to +150°C  
ESD protection on all pins:  
Human Body Model (1.5 kin series with 100 pF)4 kV  
Machine Model (200 pF, No series resistance) ...........300V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typ.) + 0.3V] to 12V,  
DD  
REG  
T = -40°C to +85°C. Typical values are at +25°C, V = [V (typ.) + 1.0V]  
REG  
A
DD  
Unit  
s
Parameters  
Sym  
Min  
Typ  
Max  
Conditions  
Supply Input  
Supply Voltage  
V
4.5  
8.7  
12  
12  
V
V
MCP73861/3  
MCP73862/4  
DD  
Supply Current  
I
0.17  
0.53  
4.5  
8.8  
4
µA Disabled  
mA Operating  
SS  
4
UVLO Start Threshold  
V
4.25  
8.45  
4.65  
9.05  
V
V
MCP73861/3  
MCP73862/4  
START  
V
Low-to-High  
DD  
UVLO Stop Threshold  
V
4.20  
8.40  
4.4  
8.7  
4.55  
8.95  
V
V
MCP73861/3  
MCP73862/4  
STOP  
V
High-to-Low  
DD  
Voltage Regulation (Constant-Voltage Mode)  
Regulated Output Voltage  
V
4.079  
4.179  
8.159  
8.358  
4.1  
4.2  
8.2  
8.4  
4.121  
4.221  
8.241  
8.442  
V
V
V
V
MCP73861/3, V  
= V  
REG  
SET  
SS  
MCP73861/3,V  
= V  
SET  
DD  
MCP73862/4, V  
MCP73862/4, V  
= V  
= V  
SET  
SET  
SS  
DD  
V
= [V  
(typ.) + 1V],  
REG  
DD  
I
= 10 mA  
OUT  
T = -5°C to +55°C  
A
Line Regulation  
ΔV  
/
0.025  
0.01  
0.25  
0.25  
%/V  
%
V
= [V  
= 10 mA  
(typ.)+1V] to 12V  
REG  
BAT  
DD  
V
)| /ΔV  
I
BAT  
DD  
OUT  
Load Regulation  
ΔV  
/V  
|
I
= 10 mA to 150 mA  
BAT BAT  
OUT  
V
= [V  
(typ.)+1V]  
REG  
DD  
OUT  
OUT  
Supply Ripple Attenuation  
PSRR  
60  
42  
dB  
dB  
I
I
= 10 mA, 10 Hz to 1 kHz  
= 10 mA, 10 Hz to  
10 kHz  
28  
1
dB  
µA  
I
OUT  
= 10 mA, 10 Hz to 1 MHz  
Output Reverse-Leakage  
Current  
I
0.23  
V
< V  
= V  
(typ.)  
DISCHARGE  
DD  
BAT  
REG  
Current Regulation (Fast Charge Constant-Current Mode)  
Fast Charge Current  
Regulation  
I
85  
100  
1200  
500  
115  
1380  
575  
mA PROG = OPEN  
mA PROG = V  
REG  
1020  
425  
SS  
mA PROG = 1.6 kΩ  
T = -5°C to +55°C  
A
2011 Microchip Technology Inc.  
DS21893E-page 3  
MCP73861/2/3/4  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typ.) + 0.3V] to 12V,  
DD  
REG  
T = -40°C to +85°C. Typical values are at +25°C, V = [V (typ.) + 1.0V]  
A
DD  
REG  
Unit  
s
Parameters  
Sym  
Min  
Typ  
Max  
Conditions  
Preconditioning Current Regulation (Trickle Charge Constant-Current Mode)  
Precondition Current  
Regulation  
I
5
10  
120  
50  
15  
180  
75  
mA PROG = OPEN  
mA PROG = V  
PREG  
60  
25  
SS  
mA PROG = 1.6 kΩ  
T =-5°C to +55°C  
A
Precondition Threshold  
Voltage  
V
2.70  
2.75  
5.40  
5.50  
2.80  
2.85  
5.60  
5.70  
2.90  
2.95  
5.80  
5.90  
V
V
V
V
MCP73861/3, V  
MCP73861/3, V  
MCP73862/4, V  
MCP73862/4, V  
= V  
= V  
= V  
= V  
PTH  
SET  
SET  
SET  
SET  
SS  
DD  
SS  
DD  
V
Low-to-High  
BAT  
Charge Termination  
Charge Termination  
Current  
I
6
8.5  
90  
41  
11  
120  
50  
mA PROG = OPEN  
mA PROG = V  
TERM  
70  
32  
SS  
mA PROG = 1.6 kΩ  
T =-5°C to +55°C  
A
Automatic Recharge  
Recharge Threshold  
Voltage  
V
V
-
V
-
V
-100 mV  
V
V
MCP73861/3  
MCP73862/4  
RTH  
REG  
REG  
REG  
300 mV  
200 mV  
V
-
V
-
V
-
REG  
REG  
REG  
600 mV  
400 mV  
200 mV  
2.625  
V
High-to-Low  
BAT  
Thermistor Reference  
Thermistor Reference  
Output Voltage  
V
2.475  
2.55  
V
T = 25°C,  
A
THREF  
V
= V  
(typ.) + 1V,  
DD  
REG  
I
= 0 mA  
THREF  
Thermistor Reference  
Source Current  
I
200  
µA  
THREF  
Thermistor Reference Line  
Regulation  
ΔV  
/
0.1  
0.25  
%/V  
V
= [V  
(typ.) + 1V] to  
REG  
THREF  
DD  
V
)|/  
12V  
THREF  
ΔV  
DD  
Thermistor Reference Load  
Regulation  
ΔV  
V
/
0.01  
0.10  
%
I
= 0 mA to 0.20 mA  
THREF  
THREF|  
THREF  
Thermistor Comparator  
Upper Trip Threshold  
V
1.18  
1.25  
-50  
0.62  
80  
1.32  
V
T1  
Upper Trip Point Hysteresis  
Lower Trip Threshold  
V
V
mV  
V
T1HYS  
V
0.59  
0.66  
T2  
Lower Trip Point Hysteresis  
Input Bias Current  
mV  
µA  
T2HYS  
I
2
BIAS  
Status Indicator – STAT1, STAT2  
Sink Current  
I
4
8
12  
400  
1
mA  
mV  
µA  
SINK  
Low Output Voltage  
Input Leakage Current  
Enable Input  
V
200  
0.01  
I
I
= 1 mA  
OL  
SINK  
I
= 0 mA, V  
= 12V  
STAT1,2  
LK  
SINK  
Input High Voltage Level  
Input Low Voltage Level  
Input Leakage Current  
V
1.4  
0.8  
1
V
V
IH  
V
IL  
I
0.01  
µA  
V
= 12V  
LK  
ENABLE  
DS21893E-page 4  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typ.) + 0.3V] to 12V,  
DD  
REG  
T = -40°C to +85°C. Typical values are at +25°C, V = [V (typ.) + 1.0V]  
A
DD  
REG  
Unit  
s
Parameters  
Sym  
Min  
Typ  
Max  
Conditions  
Thermal Shutdown  
Die Temperature  
T
155  
10  
°C  
°C  
SD  
Die Temperature  
Hysteresis  
T
SDHYS  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typ.) + 0.3V] to 12V,  
REG  
DD  
T = -40°C to +85°C. Typical values are at +25°C, V = [V (typ.) + 1.0V]  
REG  
A
DD  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Low-to-High  
UVLO Start Delay  
t
t
5
ms  
V
V
START  
DD  
Current Regulation  
Transition Time Out of  
Preconditioning  
1
1
ms  
ms  
< V  
to V  
> V  
BAT PTH  
DELAY  
BAT  
PTH  
Current Rise Time Out of  
Preconditioning  
t
I
Rising to 90% of I  
OUT REG  
RISE  
Fast Charge Safety Timer  
Period  
t
1.1  
1.5  
1.9  
Hours  
C
C
C
= 0.1 µF  
= 0.1 µF  
= 0.1 µF  
FAST  
TIMER  
TIMER  
TIMER  
Preconditioning Current Regulation  
Preconditioning Charge Safety  
Timer Period  
t
45  
60  
3
75  
Minutes  
Hours  
PRECON  
Charge Termination  
Elapsed Time Termination  
Period  
t
2.2  
3.8  
TERM  
Status Indicators  
Status Output turn-off  
Status Output turn-on  
t
200  
200  
µs  
µs  
I
I
= 1 mA to 0 mA  
= 0 mA to 1 mA  
OFF  
SINK  
SINK  
t
ON  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typ.) + 0.3V] to 12V.  
REG  
DD  
Typical values are at +25°C, V = [V  
(typ.) + 1.0V]  
DD  
REG  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
T
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
A
T
J
T
A
Thermal Resistance, 16-lead,  
4 mm x 4 mm QFN  
47  
°C/W  
°C/W  
4-Layer JC51-7 Standard Board,  
Natural Convection  
JA  
JA  
Thermal Resistance, 16-lead SOIC  
86.1  
4-Layer JC51-7 Standard Board,  
Natural Convection  
2011 Microchip Technology Inc.  
DS21893E-page 5  
MCP73861/2/3/4  
NOTES:  
DS21893E-page 6  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
4.207  
4.205  
4.203  
4.201  
4.199  
4.197  
4.195  
4.193  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
MCP73861/3  
VSET = VDD  
VDD = 5.2V  
MCP73861/3  
VSET = VDD  
VDD = 5.2V  
10  
100  
1000  
10  
100  
1000  
Charge Current (mA)  
Charge Current (mA)  
FIGURE 2-1:  
Battery Regulation Voltage  
FIGURE 2-4:  
Supply Current (ISS) vs.  
(VBAT) vs. Charge Current (IOUT).  
Charge Current (IOUT).  
4.40  
4.30  
4.20  
4.10  
4.00  
3.90  
3.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
MCP73861/3  
VSET = VDD  
IOUT = 1000 mA  
MCP73861/3  
VSET = VDD  
IOUT = 1000 mA  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-2:  
Battery Regulation Voltage  
FIGURE 2-5:  
Supply Current (ISS) vs.  
(VBAT) vs. Supply Voltage (VDD).  
Supply Voltage (VDD).  
4.207  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
MCP73861/3  
MCP73861/3  
SET = VDD  
IOUT = 10 mA  
VSET = VDD  
4.205  
IOUT = 10 mA  
4.203  
V
4.201  
4.199  
4.197  
4.195  
4.193  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-3:  
Battery Regulation Voltage  
FIGURE 2-6:  
Supply Current (ISS) vs.  
(VBAT) vs. Supply Voltage (VDD).  
Supply Voltage (VDD).  
2011 Microchip Technology Inc.  
DS21893E-page 7  
MCP73861/2/3/4  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
MCP73861/3  
VSET = VDD  
VDD = VSS  
MCP73861/3  
SET = VDD  
IOUT = 10 mA  
V
+85°C  
+25°C  
-40°C  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
4.4  
Battery Regulation Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-7:  
Output Leakage Current  
FIGURE 2-10:  
Supply Current (ISS) vs.  
(IDISCHARGE) vs. Battery Regulation Voltage  
(VBAT).  
Ambient Temperature (TA).  
4.207  
2.550  
MCP73861/3  
MCP73861/3  
V
SET = VDD  
4.205  
4.203  
4.201  
4.199  
4.197  
4.195  
4.193  
V
SET = VDD  
2.540  
2.530  
2.520  
2.510  
2.500  
IOUT = 10 mA  
ITHREF = 100 µA  
4.5  
6.0  
7.5  
9.0  
10.5  
12.0  
Ambient Temperature (°C)  
Supply Voltage (V)  
FIGURE 2-11:  
Battery Regulation Voltage  
FIGURE 2-8:  
Thermistor Reference  
(VBAT) vs. Ambient Temperature (TA).  
Voltage (VTHREF) vs. Supply Voltage (VDD).  
2.520  
2.520  
MCP73861/3  
MCP73861/3  
V
SET = VDD  
VSET = VDD  
2.515  
ITHREF = 100 µA  
2.515  
2.510  
2.505  
2.500  
2.510  
2.505  
2.500  
0
25 50 75 100 125 150 175 200  
Therm. Bias Current (µA)  
Ambient Temperature (°C)  
FIGURE 2-12:  
Thermistor Reference  
FIGURE 2-9:  
Thermistor Reference  
Voltage (VTHREF) vs. Ambient Temperature (TA).  
Voltage (VTHREF) vs. Thermistor Bias Current  
(ITHREF).  
DS21893E-page 8  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
8.407  
8.405  
8.403  
8.401  
8.399  
8.397  
8.395  
8.393  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
MCP73862/4  
VSET = VDD  
VDD = 9.4V  
MCP73862/4  
SET = VDD  
VDD = 9.4V  
V
10  
100  
1000  
10  
100  
1000  
Charge Current (mA)  
Charge Current (mA)  
FIGURE 2-13:  
Battery Regulation Voltage  
FIGURE 2-16:  
Supply Current (ISS) vs.  
(VBAT) vs. Charge Current (IOUT).  
Charge Current (IOUT).  
8.407  
1.60  
MCP73862/4  
V
SET = VDD  
8.405  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
MCP73862/4  
8.403 VSET = VDD  
IOUT = 1000 mA  
IOUT = 1000 mA  
8.401  
8.399  
8.397  
8.395  
8.393  
10.0  
10.4  
10.8  
11.2  
11.6  
12.0  
9.0  
9.5  
10.0  
10.5  
11.0  
11.5  
12.0  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-14:  
Battery Regulation Voltage  
FIGURE 2-17:  
Supply Current (ISS) vs.  
(VBAT) vs. Supply Voltage (VDD).  
Supply Voltage (VDD).  
8.412  
1.00  
MCP73862/4  
MCP73862/4  
VSET = VDD  
IOUT = 10 mA  
8.408  
VSET = VDD  
IOUT = 10 mA  
8.410  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
8.406  
8.404  
8.402  
8.400  
8.398  
9.0  
9.5  
10.0  
10.5  
11.0  
11.5  
12.0  
9.0  
9.5  
10.0 10.5 11.0 11.5 12.0  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-15:  
Battery Regulation Voltage  
FIGURE 2-18:  
Supply Current (ISS) vs.  
(VBAT) vs. Supply Voltage (VDD).  
Supply Voltage (VDD).  
2011 Microchip Technology Inc.  
DS21893E-page 9  
MCP73861/2/3/4  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
MCP73862/4  
VSET = VDD  
VDD = VSS  
MCP73862/4  
VSET = VDD  
IOUT = 10 mA  
+85°C  
+25°C  
-40°C  
4.0  
4.8  
5.6  
6.4  
7.2  
8.0  
8.8  
Ambient Temperature (°C)  
Battery Regulation Voltage (V)  
FIGURE 2-19:  
Output Leakage Current  
FIGURE 2-22:  
Supply Current (ISS) vs.  
(IDISCHARGE) vs. Battery Regulation Voltage  
(VBAT).  
Ambient Temperature (TA).  
8.414  
8.410  
8.406  
8.402  
8.398  
8.394  
8.390  
8.386  
2.570  
MCP73862/4  
VSET = VDD  
IOUT = 10 mA  
MCP73862/4  
VSET = VDD  
ITHREF = 100 µA  
2.560  
2.550  
2.540  
2.530  
9.0  
9.5  
10.0  
10.5  
11.0  
11.5  
12.0  
Ambient Temperature (°C)  
Supply Voltage (V)  
FIGURE 2-23:  
Battery Regulation Voltage  
FIGURE 2-20:  
Thermistor Reference  
(VBAT) vs. Ambient Temperature (TA).  
Voltage (VTHREF) vs. Supply Voltage (VDD).  
2.550  
2.550  
MCP73862/4  
MCP73862/4  
VSET = VDD  
ITHREF = 100 µA  
VSET = VDD  
2.548  
2.546  
2.542  
2.538  
2.534  
2.530  
2.546  
2.544  
2.542  
2.540  
0
25  
50  
75 100 125 150 175 200  
Thermistor Bias Current (µA)  
Ambient Temperature (°C)  
FIGURE 2-24:  
Thermistor Reference  
FIGURE 2-21:  
Thermistor Reference  
Voltage (VTHREF) vs. Ambient Temperature (TA).  
Voltage (VTHREF) vs. Thermistor Bias Current  
(ITHREF).  
DS21893E-page 10  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
VDD  
VDD  
VBAT  
VBAT  
MCP73861  
MCP73861  
V
I
Stepped from 5.2V to 6.2V  
= 500 mA  
V
I
Stepped from 5.2V to 6.2V  
= 10 mA  
DD  
DD  
OUT  
OUT  
C
= 10 µF, X7R, Ceramic  
C
= 10 µF, X7R, Ceramic  
OUT  
OUT  
FIGURE 2-25:  
Line Transient Response.  
FIGURE 2-28:  
Line Transient Response.  
MCP73861  
MCP73861  
V
5.2V  
V
5.2V  
DD  
DD  
C
= 10 µF, X7R, Ceramic  
C
= 10 µF, X7R, Ceramic  
VBAT  
OUT  
OUT  
VBAT  
100 mA  
10 mA  
500 mA  
10 mA  
IOUT  
IOUT  
FIGURE 2-26:  
Load Transient Response.  
FIGURE 2-29:  
Load Transient Response.  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
MCP73861  
V
DD = 5.2V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
AC = 100 mVp-p  
IOUT = 10 mA  
COUT = 10 μF, Ceramic  
MCP73861  
VDD = 5.2V  
VAC = 100 mVp-p  
IOUT = 100 mA  
COUT = 10 μF, X7R, Ceramic  
-80  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-27:  
Power Supply Ripple  
FIGURE 2-30:  
Power Supply Ripple  
Rejection.  
Rejection.  
2011 Microchip Technology Inc.  
DS21893E-page 11  
MCP73861/2/3/4  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
1200  
1000  
800  
600  
400  
200  
0
505  
503  
501  
499  
497  
495  
493  
MCP73861/2/3/4  
VSET = VDD  
MCP73861/2/3/4  
VSET = VDD  
RPROG = 1.6 kꢀ  
OPEN  
4.8k  
1.6k  
536  
0
Programming Resistor (ꢀ)  
Ambient Temperature (°C)  
FIGURE 2-31:  
Charge Current (IOUT) vs.  
FIGURE 2-32:  
Charge Current (IOUT) vs.  
Programming Resistor (RPROG).  
Ambient Temperature (TA).  
DS21893E-page 12  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3.1.  
TABLE 3-1: PIN FUNCTION TABLE  
MCP73861/2/3/4  
Symbol  
Function  
QFN  
SOIC  
1
2
3
4
VSET  
VDD1  
Voltage Regulation Selection  
Battery Management Input Supply  
Battery Management Input Supply  
3
5
VDD2  
4
6
VSS1  
Battery Management 0V Reference  
Current Regulation Set  
5
7
PROG  
THREF  
THERM  
TIMER  
VSS3  
6
8
Cell Temperature Sensor Bias  
Cell Temperature Sensor Input  
Timer Set  
7
9
8
10  
11  
12  
13  
14  
15  
16  
1
9
Battery Management 0V Reference  
Battery Charge Control Output  
Battery Charge Control Output  
Battery Voltage Sense  
10  
11  
12  
13  
14  
15  
16  
17  
VBAT1  
VBAT2  
VBAT3  
VSS2  
Battery Management 0V Reference  
Logic Enable  
EN  
STAT2  
STAT1  
EP  
Fault Status Output  
2
Charge Status Output  
Exposed Pad; Battery Management 0V Reference  
3.1  
Voltage Regulation Selection  
(V  
3.6  
Cell Temperature Sensor Input  
(THERM)  
)
SET  
THERM is an input for an external thermistor for contin-  
uous cell-temperature monitoring and prequalification.  
Connect to THREF/3 to disable temperature sensing.  
MCP73861/3: Connect VSET to VSS for 4.1V regulation  
voltage, connect to VDD for 4.2V regulation voltage.  
MCP73862/4: Connect VSET to VSS for 8.2V regulation  
voltage, connect to VDD for 8.4V regulation voltage.  
3.7  
Timer Set  
3.2  
Battery Management Input Supply  
(V , V  
All safety timers are scaled by CTIMER/0.1 µF.  
)
DD1  
DD2  
3.8  
Battery Charge Control Output  
(V , V  
A supply voltage of [VREG (typ.) + 0.3V] to 12V is rec-  
ommended. Bypass to VSS with a minimum of 4.7 µF.  
)
BAT2  
BAT1  
Connect to positive terminal of battery. Drain terminal  
of internal P-channel MOSFET pass transistor. Bypass  
to VSS with a minimum of 4.7 µF to ensure loop stability  
when the battery is disconnected.  
3.3  
Battery Management 0V Reference  
(V , V , V  
)
SS3  
SS1  
SS2  
Connect to negative terminal of battery and input  
supply.  
3.9  
Battery Voltage Sense (V  
)
BAT3  
3.4  
Current Regulation Set (PROG)  
VBAT3 is a voltage sense input. Connect to positive ter-  
minal of battery. A precision internal resistor divider  
Preconditioning, fast and termination currents are  
scaled by placing a resistor from PROG to VSS  
regulates the final voltage on this pin to VREG  
.
.
3.10 Logic Enable (EN)  
3.5  
Cell Temperature Sensor Bias  
(THREF)  
EN is an input to force charge termination, initiate  
charge, clear faults or disable automatic recharge.  
THREF is a voltage reference to bias external thermis-  
tor for continuous cell temperature monitoring and  
prequalification.  
2011 Microchip Technology Inc.  
DS21893E-page 13  
MCP73861/2/3/4  
3.11 Fault Status Output (STAT2)  
STAT2 is a current-limited, open-drain drive for direct  
connection to a LED for charge status indication. Alter-  
natively, a pull-up resistor can be applied for interfacing  
to a host microcontroller.  
3.12 Charge Status Output (STAT1)  
STAT1 is a current-limited, open-drain drive for direct  
connection to a LED for charge status indication. Alter-  
natively, a pull-up resistor can be applied for interfacing  
to a host microcontroller.  
3.13 Exposed Pad (EP)  
There is an internal electrical connection between the  
exposed thermal pad and VSS. The EP must be con-  
nected to the same potential as the VSS pin on the  
Printed Circuit Board (PCB).  
DS21893E-page 14  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
The MCP7386X selects the voltage regulation value  
based on the state of VSET. With VSET tied to VSS, the  
MCP73861/3 and MCP73862/4 regulate to 4.1V and  
4.0  
DEVICE OVERVIEW  
The MCP7386X family of devices are highly advanced  
linear charge management controllers. Refer to the  
functional block diagram. Figure 4-2 depicts the opera-  
tional flow algorithm from charge initiation to  
completion and automatic recharge.  
8.2V, respectively. With VSET tied to VDD  
, the  
MCP73861/3 and MCP73862/4 regulate to 4.2V and  
8.4V, respectively.  
4.4  
Charge Cycle Completion and  
Automatic Re-Charge  
4.1  
Charge Qualification and  
Preconditioning  
The MCP7386X monitors the charging current during  
the Constant-voltage regulation mode. The charge  
cycle is considered complete when the charge current  
has diminished below approximately 8% of the  
regulation current (IREG), or the elapsed timer has  
expired.  
Upon insertion of a battery, or application of an external  
supply, the MCP7386X family of devices automatically  
performs a series of safety checks to qualify the  
charge. The input source voltage must be above the  
Undervoltage Lockout (UVLO) threshold, the enable  
pin must be above the logic-high level and the cell tem-  
perature must be within the upper and lower thresh-  
olds. The qualification parameters are continuously  
monitored. Deviation beyond the limits automatically  
suspends or terminates the charge cycle. The input  
voltage must deviate below the UVLO stop threshold  
for at least one clock period to be considered valid.  
The MCP7386X automatically begins a new charge  
cycle when the battery voltage falls below the recharge  
threshold (VRTH), assuming all the qualification  
parameters are met.  
4.5  
Thermal Regulation  
Once the qualification parameters have been met, the  
MCP7386X initiates a charge cycle. The charge status  
output is pulled low throughout the charge cycle (see  
Table 5-1 for charge status outputs). If the battery volt-  
age is below the preconditioning threshold (VPTH), the  
The MCP7386X family limits the charge current based  
on the die temperature. Thermal regulation optimizes  
the charge cycle time while maintaining device reliabil-  
ity. If thermal regulation is entered, the timer is automat-  
ically slowed down to ensure that a charge cycle will  
not terminate prematurely. Figure 4-1 depicts the  
thermal regulation profile.  
MCP7386X preconditions the battery with  
a
trickle-charge. The preconditioning current is set to  
approximately 10% of the fast charge regulation cur-  
rent. The preconditioning trickle-charge safely replen-  
ishes deeply depleted cells and minimizes heat  
dissipation during the initial charge cycle. If the battery  
voltage has not exceeded the preconditioning thresh-  
old before the preconditioning timer has expired, a fault  
is indicated and the charge cycle is terminated.  
1400  
1200  
1000  
800  
Minimum  
Maximum  
600  
400  
200  
0
4.2  
Constant Current Regulation –  
Fast Charge  
Preconditioning ends, and fast charging begins, when  
the battery voltage exceeds the preconditioning  
threshold. Fast charge regulates to a constant current  
(IREG), which is set via an external resistor connected  
to the PROG pin. Fast charge continues until the bat-  
tery voltage reaches the regulation voltage (VREG), or  
the fast charge timer expires; in which case, a fault is  
indicated and the charge cycle is terminated.  
0
20  
40  
60  
80  
100  
120  
140  
Die Temperature (° C)  
FIGURE 4-1:  
Current vs. Die Temperature.  
Typical Maximum Charge  
4.6  
Thermal Shutdown  
The MCP7386X family suspends charge if the die tem-  
perature exceeds 155°C. Charging will resume when  
the die temperature has cooled by approximately 10°C.  
The thermal shutdown is a secondary safety feature in  
the event that there is a failure within the thermal regu-  
lation circuitry.  
4.3  
Constant Voltage Regulation  
When the battery voltage reaches the regulation volt-  
age (VREG), constant voltage regulation begins. The  
MCP7386X monitors the battery voltage at the VBAT  
pin. This input is tied directly to the positive terminal of  
the battery.  
2011 Microchip Technology Inc.  
DS21893E-page 15  
MCP73861/2/3/4  
FIGURE 4-2:  
Operational Flow Algorithm.  
DS21893E-page 16  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
Figure 6-1 depicts a typical application circuit with con-  
nection of the THERM input. The resistor values of RT1  
and RT2 are calculated with the following equations.  
5.0  
DETAILED DESCRIPTION  
5.1  
Analog Circuitry  
For NTC thermistors:  
5.1.1  
BATTERY MANAGEMENT INPUT  
2 RCOLD RHOT  
RT1 = ----------------------------------------------  
SUPPLY (VDD1, VDD2  
)
RCOLD RHOT  
The VDD input is the input supply to the MCP7386X.  
The MCP7386X automatically enters a Power-down  
mode if the voltage on the VDD input falls below the  
UVLO voltage (VSTOP). This feature prevents draining  
the battery pack when the VDD supply is not present.  
2 RCOLD RHOT  
RT2 = ----------------------------------------------  
RCOLD 3 RHOT  
For PTC thermistors:  
2 RCOLD RHOT  
5.1.2  
PROG INPUT  
RT1 = ----------------------------------------------  
RHOT RCOLD  
Fast charge current regulation can be scaled by placing  
a programming resistor (RPROG) from the PROG input  
to VSS. Connecting the PROG input to VSS allows for a  
maximum fast charge current of 1.2A, typically. The  
minimum fast charge current is 100 mA, set by letting  
the PROG input float. The following formula calculates  
2 RCOLD RHOT  
RT2 = ----------------------------------------------  
RHOT 3 RCOLD  
Where:  
RCOLD and RHOT are the thermistor resis-  
tance values at the temperature window of  
interest.  
the value for RPROG  
:
13.2 11 IREG  
RPROG = ------------------------------------------  
12 IREG 1.2  
Applying a voltage equal to VTHREF/3 to the THERM  
input disables temperature monitoring.  
Where:  
5.1.5  
TIMER SET INPUT (TIMER)  
IREG = the desired fast charge current in amps.  
The TIMER input programs the period of the safety tim-  
ers by placing a timing capacitor (CTIMER) between the  
TIMER input pin and VSS. Three safety timers are  
programmed via the timing capacitor.  
RPROG = measured in k  
The preconditioning trickle-charge current and the  
charge termination current are scaled to approximately  
10% and 8% of IREG, respectively.  
The preconditioning safety timer period:  
CTIMER  
5.1.3  
CELL TEMPERATURE SENSOR  
BIAS (THREF)  
tPRECON = ------------------ 1.0Hours  
0.1F  
A 2.5V voltage reference is provided to bias an external  
thermistor for continuous cell temperature monitoring  
and prequalification. A ratio metric window comparison  
is performed at threshold levels of VTHREF/2 and  
The fast charge safety timer period:  
CTIMER  
tFAST = ------------------ 1.5Hours  
0.1F  
VTHREF/4.  
The elapsed time termination period:  
5.1.4  
CELL TEMPERATURE SENSOR  
INPUT (THERM)  
CTIMER  
tTERM = ------------------ 3.0Hours  
0.1F  
The MCP73861/2/3/4 continuously monitors tempera-  
ture by comparing the voltage between the THERM  
input and VSS with the upper and lower temperature  
thresholds. A negative or positive temperature coeffi-  
cient, NTC or PTC thermistor and an external voltage-  
divider typically develop this voltage. The temperature  
sensing circuit has its own reference to which it per-  
forms a ratio metric comparison. Therefore, it is  
immune to fluctuations in the supply input (VDD). The  
temperature-sensing circuit is removed from the sys-  
tem when VDD is not applied, eliminating additional  
discharge of the battery pack.  
The preconditioning timer starts after qualification and  
resets when the charge cycle transitions to the fast  
charge, Constant-current mode. The fast charge timer  
and the elapsed timer start once the MCP7386X  
transitions from preconditioning. The fast charge timer  
resets when the charge cycle transitions to the Con-  
stant-voltage mode. The elapsed timer will expire and  
terminate the charge if the sensed current does not  
diminish below the termination threshold.  
During thermal regulation, the timer is slowed down  
proportional to the charge current.  
2011 Microchip Technology Inc.  
DS21893E-page 17  
MCP73861/2/3/4  
The flashing rate (1 Hz) is based off a timer capacitor  
(CTIMER) of 0.1 µF. The rate will vary based on the  
value of the timer capacitor.  
5.1.6  
BATTERY VOLTAGE SENSE (VBAT3)  
The MCP7386X monitors the battery voltage at the  
VBAT3 pin. This input is tied directly to the positive  
terminal of the battery pack.  
During a fault condition, the STAT1 status output will be  
off and the STAT2 status output will be on. To recover  
from a fault condition, the input voltage must be  
removed and then reapplied, or the enable input (EN)  
must be de-asserted to a logic-low, then asserted to a  
logic-high.  
5.1.7  
BATTERY CHARGE CONTROL  
OUTPUT (VBAT1, VBAT2  
)
The battery charge control output is the drain terminal  
of an internal P-channel MOSFET. The MCP7386X  
provides constant current and voltage regulation to the  
battery pack by controlling this MOSFET in the linear  
region. The battery charge control output should be  
connected to the positive terminal of the battery pack.  
When the voltage on the THERM input is outside the  
preset window, the charge cycle will not start, or will be  
suspended. The charge cycle is not terminated and  
recovery is automatic. The charge cycle will resume (or  
start) once the THERM input is valid and all other  
qualification parameters are met. During an invalid  
THERM condition, the STAT1 status output will be off  
and the STAT2 status output will flash.  
5.2  
Digital Circuitry  
5.2.1  
CHARGE STATUS OUTPUTS  
(STAT1, STAT2)  
5.2.2  
VSET INPUT  
Two status outputs provide information on the state of  
charge. The current-limited, open-drain outputs can be  
used to illuminate external LEDs. Optionally, a pull-up  
resistor can be used on the output for communication  
with a host microcontroller. Table 5-1 summarizes the  
state of the status outputs during a charge cycle.  
The VSET input selects the regulated output voltage of  
the MCP7386X. With VSET tied to VSS, the MCP73861/  
3 and MCP73862/4 regulate to 4.1V and 8.2V, respec-  
tively. With VSET tied to VDD, the MCP73861/3 and  
MCP73862/4 regulate to 4.2V and 8.4V, respectively.  
5.2.3  
LOGIC ENABLE (EN)  
TABLE 5-1:  
STATUS OUTPUTS  
STAT1  
The logic enable input pin (EN) can be used to termi-  
nate a charge at any time during the charge cycle, as  
well as to initiate a charge cycle or initiate a recharge  
cycle.  
CHARGE  
CYCLE STAT1  
STAT2  
Qualification  
Off  
On  
On  
Off  
Off  
Off  
Preconditioning  
Applying a logic-high input signal to the EN pin, or tying  
it to the input source, enables the device. Applying a  
logic-low input signal disables the device and termi-  
nates a charge cycle. When disabled, the device’s  
supply current is reduced to 0.17 µA, typically.  
Constant-  
Current Fast  
Charge  
Constant-  
Voltage  
On  
Off  
Off  
Charge  
Complete  
Flashing (1 Hz,  
50% duty cycle)  
(MCP73861/2)  
(All Devices)  
Off  
(MCP73863/4)  
Fault  
Off  
Off  
On  
THERM Invalid  
Flashing (1 Hz,  
50% duty cycle)  
Disabled –  
Sleep mode  
Off  
Off  
Off  
Input Voltage  
Disconnected  
Off  
Legend: Off state: Open-drain is high-impedance  
On state:Open-drain can sink current  
typically 7 mA  
Flashing:Toggles between off state and  
on state  
DS21893E-page 18  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
Figure 6-1 illustrates a typical stand-alone application  
circuit, while Figures 6-2 and 6-3 illustrate the  
accompanying charge profile  
6.0  
APPLICATIONS  
The MCP7386X is designed to operate in conjunction  
with a host microcontroller or in stand-alone applica-  
tions. The MCP7386X provides the preferred charge  
algorithm for Lithium-Ion and Lithium-Polymer cells  
Constant-current followed by Constant-voltage.  
.
Unregulated  
STAT1  
EN  
V
SS2  
Wall Cube  
16 15 14 13  
V
V
V
V
V
V
V
V
SET  
DD1  
DD2  
SS1  
BAT3  
BAT2  
BAT1  
SS3  
1
2
3
4
12  
11  
10  
9
+
Single  
Lithium-Ion  
Cell  
MCP73861  
5
6
7
8
PROG  
TIMER  
C
R
PROG  
TIMER  
R
R
T1  
T2  
FIGURE 6-1:  
Typical Application Circuit.  
Preconditioning  
Mode  
Constant-Current  
Mode  
Constant-Voltage  
Mode  
Regulation  
Voltage  
(V  
)
REG  
Regulation  
Current  
(I  
)
REG  
Charge  
Voltage  
Transition  
Threshold  
(V  
)
PTH  
Precondition  
Current  
Charge  
Current  
(I  
)
PREG  
Termination  
Current  
(I  
)
TERM  
Precondition  
Safety Timer  
Fast Charge  
Safety Timer  
Elapsed Time  
Termination Timer  
FIGURE 6-2:  
Typical Charge Profile.  
2011 Microchip Technology Inc.  
DS21893E-page 19  
MCP73861/2/3/4  
Preconditioning  
Mode  
Constant-Current  
Mode  
Constant-Voltage  
Mode  
Regulation  
Voltage  
(V  
)
REG  
Regulation  
Current  
(I  
)
REG  
Charge  
Voltage  
Transition  
Threshold  
(V  
)
PTH  
Precondition  
Current  
Charge  
Current  
(I  
)
PREG  
Termination  
Current  
(I  
)
TERM  
Precondition  
Safety Timer  
Fast Charge  
Safety Timer  
Elapsed Time  
Termination Timer  
FIGURE 6-3:  
Typical Charge Profile in Thermal Regulation.  
1200 mA is the maximum charge current obtainable  
from the MCP7386X. For this situation, the PROG input  
6.1 Application Circuit Design  
Due to the low efficiency of linear charging, the most  
important factors are thermal design and cost, which  
are a direct function of the input voltage, output current  
and thermal impedance between the battery charger  
and the ambient cooling air. The worst-case situation is  
when the device has transitioned from the  
Preconditioning mode to the Constant-current mode. In  
this situation, the battery charger has to dissipate the  
maximum power. A trade-off must be made between  
the charge current, cost and thermal requirements of  
the charger.  
should be connected directly to VSS  
.
6.1.1.2 Thermal Considerations  
The worst-case power dissipation in the battery char-  
ger occurs when the input voltage is at the maximum  
and the device has transitioned from the Precondition-  
ing mode to the Constant-current mode. In this case,  
the power dissipation is:  
PowerDissipation = V  
V  
I  
PTHMIN REGMAX  
DDMAX  
6.1.1  
COMPONENT SELECTION  
Where:  
VDDMAX  
IREGMAX  
VPTHMIN  
Selection of the external components in Figure 6-1 is  
crucial to the integrity and reliability of the charging  
system. The following discussion is intended as a guide  
for the component selection process.  
=
=
=
the maximum input voltage  
the maximum fast charge current  
the minimum transition threshold  
voltage  
6.1.1.1  
Current Programming Resistor  
(RPROG  
)
The preferred fast charge current for Lithium-Ion cells  
is at the 1C rate, with an absolute maximum current at  
the 2C rate. For example, a 500 mAh battery pack has  
a preferred fast charge current of 500 mA. Charging at  
this rate provides the shortest charge cycle times with-  
out degradation to the battery pack performance or life.  
DS21893E-page 20  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
Power dissipation with a 5V, ±10% input voltage source  
is:  
6.2  
PCB Layout Issues  
For optimum voltage regulation, place the battery pack  
as close as possible to the device’s VBAT and VSS pins,  
recommended to minimize voltage drops along the  
high current-carrying PCB traces.  
PowerDissipation = 5.5V 2.7V575mA = 1.61W  
With the battery charger mounted on a 1 in2 pad of  
1 oz. copper, the junction temperature rise is 60°C,  
approximately. This would allow for a maximum operat-  
ing ambient temperature of 50°C before thermal  
regulation is entered.  
If the PCB layout is used as a heatsink, adding many  
vias in the heatsink pad can help conduct more heat to  
the backplane of the PCB, thus reducing the maximum  
junction temperature.  
6.1.1.3  
External Capacitors  
The MCP7386X is stable with or without a battery load.  
In order to maintain good AC stability in the Constant-  
voltage mode, a minimum capacitance of 4.7 µF is rec-  
ommended to bypass the VBAT pin to VSS. This capac-  
itance provides compensation when there is no battery  
load. In addition, the battery and interconnections  
appear inductive at high frequencies. These elements  
are in the control feedback loop during Constant-volt-  
age mode. Therefore, the bypass capacitance may be  
necessary to compensate for the inductive nature of  
the battery pack.  
Virtually any good quality output filter capacitor can be  
used, independent of the capacitor’s minimum Effec-  
tive Series Resistance (ESR) value. The actual value of  
the capacitor (and its associated ESR) depends on the  
output load current. A 4.7 µF ceramic, tantalum or alu-  
minum electrolytic capacitor at the output is usually suf-  
ficient to ensure stability for up to a 1A output current.  
6.1.1.4  
Reverse-Blocking Protection  
The MCP7386X provides protection from a faulted or  
shorted input, or from a reversed-polarity input source.  
Without the protection, a faulted or shorted input would  
discharge the battery pack through the body diode of  
the internal pass transistor.  
6.1.1.5  
Enable Interface  
In the stand-alone configuration, the enable pin is gen-  
erally tied to the input voltage. The MCP7386X auto-  
matically enters a Low-power mode when voltage on  
the VDD input falls below the UVLO voltage (VSTOP),  
reducing the battery drain current to 0.23 µA,typically.  
6.1.1.6  
Charge Status Interface  
Two status outputs provide information on the state of  
charge. The current-limited, open-drain outputs can be  
used to illuminate external LEDs. Refer to Table 5-1 for  
a summary of the state of the status outputs during a  
charge cycle.  
2011 Microchip Technology Inc.  
DS21893E-page 21  
MCP73861/2/3/4  
NOTES:  
DS21893E-page 22  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
16-Lead QFN  
73861  
I/ML  
1108  
256  
XXXXX  
XXXXXX  
XXXXXX  
YWWNNN  
16-Lead SOIC (150 mil)  
Example:  
MCP73861  
I/SL^
XXXXXXXXXXXXX  
XXXXXXXXXXXXX  
e
3
YYWWNNN  
1108256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2011 Microchip Technology Inc.  
DS21893E-page 23  
MCP73861/2/3/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢆꢇꢐꢉꢅꢋꢑꢇꢒꢓꢇꢃꢄꢅꢆꢇꢈꢅꢍꢔꢅꢕꢄꢇꢖꢗꢃꢘꢇMꢇꢙꢚꢙꢚꢛꢜ ꢇ!!ꢇ"ꢓꢆ#ꢇ$ꢎꢐꢒ%  
ꢒꢓꢋꢄ& 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢑꢆꢌ+ꢆꢏꢈꢅ#ꢉꢆ*ꢃꢄꢏ!(ꢅꢑꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢑꢅꢂꢆꢌ+ꢆꢏꢃꢄꢏꢅꢓꢑꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢑ244***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢑꢁꢌꢋ'4ꢑꢆꢌ+ꢆꢏꢃꢄꢏ  
D
D2  
EXPOSED  
PAD  
e
E
E2  
2
1
2
b
1
K
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A3  
A
A1  
5ꢄꢃ&!  
ꢔꢘ66ꢘꢔ-ꢖ-ꢗꢓ  
ꢐꢃ'ꢈꢄ!ꢃꢋꢄꢅ6ꢃ'ꢃ&!  
ꢔꢘ7  
78ꢔ  
ꢀ:  
ꢙꢁ:/ꢅ0ꢓ1  
ꢙꢁꢛꢙ  
ꢔꢒ9  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
8 ꢈꢉꢆꢇꢇꢅ;ꢈꢃꢏꢍ&  
ꢓ&ꢆꢄ#ꢋ%%ꢅ  
1ꢋꢄ&ꢆꢌ&ꢅꢖꢍꢃꢌ+ꢄꢈ!!  
8 ꢈꢉꢆꢇꢇꢅ<ꢃ#&ꢍ  
-$ꢑꢋ!ꢈ#ꢅꢂꢆ#ꢅ<ꢃ#&ꢍ  
8 ꢈꢉꢆꢇꢇꢅ6ꢈꢄꢏ&ꢍ  
-$ꢑꢋ!ꢈ#ꢅꢂꢆ#ꢅ6ꢈꢄꢏ&ꢍ  
1ꢋꢄ&ꢆꢌ&ꢅ<ꢃ#&ꢍ  
1ꢋꢄ&ꢆꢌ&ꢅ6ꢈꢄꢏ&ꢍ  
7
ꢒꢀ  
ꢒ,  
-
-ꢎ  
ꢙꢁꢚꢙ  
ꢙꢁꢙꢙ  
ꢀꢁꢙꢙ  
ꢙꢁꢙ/  
ꢙꢁꢙꢎ  
ꢙꢁꢎꢙꢅꢗ-3  
ꢕꢁꢙꢙꢅ0ꢓ1  
ꢎꢁ:/  
ꢕꢁꢙꢙꢅ0ꢓ1  
ꢎꢁ:/  
ꢙꢁ,ꢙ  
ꢙꢁꢕꢙ  
M
ꢎꢁ/ꢙ  
ꢎꢁꢚꢙ  
ꢐꢎ  
)
6
ꢎꢁ/ꢙ  
ꢙꢁꢎ/  
ꢙꢁ,ꢙ  
ꢙꢁꢎꢙ  
ꢎꢁꢚꢙ  
ꢙꢁ,/  
ꢙꢁ/ꢙ  
M
1ꢋꢄ&ꢆꢌ&ꢜ&ꢋꢜ-$ꢑꢋ!ꢈ#ꢅꢂꢆ#  
=
ꢒꢓꢋꢄꢊ&  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ+ꢆꢏꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢏ"ꢇꢆ&ꢈ#ꢁ  
,ꢁ ꢐꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢏꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢏꢅꢑꢈꢉꢅꢒꢓꢔ-ꢅ.ꢀꢕꢁ/ꢔꢁ  
0ꢓ12 0ꢆ!ꢃꢌꢅꢐꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢖꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢗ-32 ꢗꢈ%ꢈꢉꢈꢄꢌꢈꢅꢐꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢑ"ꢉꢑꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢑ ꢌꢍꢄꢋꢇꢋꢏꢊ ꢐꢉꢆ*ꢃꢄꢏ 1ꢙꢕꢜꢀꢎꢝ0  
DS21893E-page 24  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
ꢒꢓꢋꢄ& 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢑꢆꢌ+ꢆꢏꢈꢅ#ꢉꢆ*ꢃꢄꢏ!(ꢅꢑꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢑꢅꢂꢆꢌ+ꢆꢏꢃꢄꢏꢅꢓꢑꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢑ244***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢑꢁꢌꢋ'4ꢑꢆꢌ+ꢆꢏꢃꢄꢏ  
2011 Microchip Technology Inc.  
DS21893E-page 25  
MCP73861/2/3/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ'!ꢅꢉꢉꢇ(ꢏꢋꢉꢌ)ꢄꢇꢖ'ꢃꢘꢇMꢇꢒꢅ**ꢓ+ꢑꢇ,ꢜ ꢛꢇ!!ꢇ"ꢓꢆ#ꢇ$'(-.%  
ꢒꢓꢋꢄ& 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢑꢆꢌ+ꢆꢏꢈꢅ#ꢉꢆ*ꢃꢄꢏ!(ꢅꢑꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢑꢅꢂꢆꢌ+ꢆꢏꢃꢄꢏꢅꢓꢑꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢑ244***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢑꢁꢌꢋ'4ꢑꢆꢌ+ꢆꢏꢃꢄꢏ  
D
N
E
E1  
NOTE 1  
3
1
2
e
b
h
α
h
c
φ
A2  
A
L
β
A1  
L1  
5ꢄꢃ&!  
ꢔꢘ66ꢘꢔ-ꢖ-ꢗꢓ  
ꢐꢃ'ꢈꢄ!ꢃꢋꢄꢅ6ꢃ'ꢃ&!  
ꢔꢘ7  
78ꢔ  
ꢔꢒ9  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢀ:  
ꢀꢁꢎꢝꢅ0ꢓ1  
8 ꢈꢉꢆꢇꢇꢅ;ꢈꢃꢏꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ+ꢆꢏꢈꢅꢖꢍꢃꢌ+ꢄꢈ!!  
ꢓ&ꢆꢄ#ꢋ%%ꢅꢅꢞ  
M
ꢀꢁꢎ/  
ꢙꢁꢀꢙ  
M
M
M
ꢀꢁꢝ/  
M
ꢙꢁꢎ/  
ꢒꢎ  
ꢒꢀ  
-
8 ꢈꢉꢆꢇꢇꢅ<ꢃ#&ꢍ  
:ꢁꢙꢙꢅ0ꢓ1  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ+ꢆꢏꢈꢅ<ꢃ#&ꢍ  
8 ꢈꢉꢆꢇꢇꢅ6ꢈꢄꢏ&ꢍ  
1ꢍꢆ'%ꢈꢉꢅ@ꢋꢑ&ꢃꢋꢄꢆꢇA  
3ꢋꢋ&ꢅ6ꢈꢄꢏ&ꢍ  
-ꢀ  
,ꢁꢛꢙꢅ0ꢓ1  
ꢛꢁꢛꢙꢅ0ꢓ1  
ꢙꢁꢎ/  
ꢙꢁꢕꢙ  
M
M
ꢙꢁ/ꢙ  
ꢀꢁꢎꢝ  
6
3ꢋꢋ&ꢑꢉꢃꢄ&  
3ꢋꢋ&ꢅꢒꢄꢏꢇꢈ  
6ꢈꢆ#ꢅꢖꢍꢃꢌ+ꢄꢈ!!  
6ꢈꢆ#ꢅ<ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢐꢉꢆ%&ꢅꢒꢄꢏꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢐꢉꢆ%&ꢅꢒꢄꢏꢇꢈꢅ0ꢋ&&ꢋ'  
6ꢀ  
ꢀꢁꢙꢕꢅꢗ-3  
ꢙꢟ  
ꢙꢁꢀꢝ  
ꢙꢁ,ꢀ  
/ꢟ  
M
M
M
M
M
ꢚꢟ  
)
ꢙꢁꢎ/  
ꢙꢁ/ꢀ  
ꢀ/ꢟ  
/ꢟ  
ꢀ/ꢟ  
ꢒꢓꢋꢄꢊ&  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢞꢅꢓꢃꢏꢄꢃ%ꢃꢌꢆꢄ&ꢅ1ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
,ꢁ ꢐꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢐꢅꢆꢄ#ꢅ-ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢑꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢑꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢙꢁꢀ/ꢅ''ꢅꢑꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢕꢁ ꢐꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢏꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢏꢅꢑꢈꢉꢅꢒꢓꢔ-ꢅ.ꢀꢕꢁ/ꢔꢁ  
0ꢓ12 0ꢆ!ꢃꢌꢅꢐꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢖꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢗ-32 ꢗꢈ%ꢈꢉꢈꢄꢌꢈꢅꢐꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢑ"ꢉꢑꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢑ ꢌꢍꢄꢋꢇꢋꢏꢊ ꢐꢉꢆ*ꢃꢄꢏ 1ꢙꢕꢜꢀꢙꢚ0  
DS21893E-page 26  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
ꢒꢓꢋꢄ& 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢑꢆꢌ+ꢆꢏꢈꢅ#ꢉꢆ*ꢃꢄꢏ!(ꢅꢑꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢑꢅꢂꢆꢌ+ꢆꢏꢃꢄꢏꢅꢓꢑꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢑ244***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢑꢁꢌꢋ'4ꢑꢆꢌ+ꢆꢏꢃꢄꢏ  
2011 Microchip Technology Inc.  
DS21893E-page 27  
MCP73861/2/3/4  
NOTES:  
DS21893E-page 28  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
APPENDIX A: REVISION HISTORY  
Revision E (April 2011)  
The following is the list of modifications:  
Updated Figure 2-4.  
Revision D (December 2008)  
The following is the list of modifications:  
Updated package outline diagrams.  
Revision C (August 2005)  
The following is the list of modifications:  
1. Added MCP73863 and MCP73864 devices  
throughout data sheet.  
2. Added Appendix A: Revision History.  
3. Updated QFN and SOIC package diagrams.  
Revision B (December 2004)  
The following is the list of modifications:  
Added SOIC package throughout data sheet.  
Revision A (June 2004)  
Original Release of this Document.  
2011 Microchip Technology Inc.  
DS21893E-page 29  
MCP73861/2/3/4  
NOTES:  
DS21893E-page 30  
2011 Microchip Technology Inc.  
MCP73861/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact the Microchip sales office.  
PART NO.  
Device  
X
/XX  
Examples:  
Temperature  
Range  
Package  
a)  
b)  
MCP73861-I/ML: Single-Cell Controller  
16LD-QFN package.  
MCP73861T-I/ML: Tape and Reel,  
Single-Cell Controller  
16LD-QFN package.  
Single-Cell Controller  
16LD-SOIC package.  
Device  
MCP73861:  
Single-Cell Charge Controller with  
Temperature Monitor  
c)  
d)  
MCP73861-I/SL:  
MCP73861T: Single-Cell Charge Controller with  
Temperature Monitor, Tape and Reel  
MCP73862:  
MCP73861T-I/SL: Tape and Reel,  
Single-Cell Controller  
Dual Series Cells Charge Controller with  
Temperature Monitor  
16LD-SOIC package.  
MCP73862T: Dual Series Cells Charge Controller with  
Temperature Monitor, Tape and Reel  
a)  
b)  
MCP73862-I/ML: Dual-Cell Controller  
16LD-QFN package.  
MCP73862T-I/ML: Tape and Reel,  
Dual-Cell Controller  
MCP73863:  
Single-cell Charge Controller with  
Temperature Monitor  
MCP73863T: Single-Cell Charge Controller with  
Temperature Monitor, Tape and Reel  
16LD-QFN package.  
MCP73864:  
Dual Series Cells Charge Controller with  
Temperature Monitor  
c)  
d)  
MCP73862-I/SL:  
Dual-Cell Controller  
16LD-SOIC package.  
MCP73864T: Dual Series Cells Charge Controller with  
Temperature Monitor, Tape and Reel  
MCP73862T-I/SL: Tape and Reel,  
Dual-Cell Controller  
16LD-SOIC package.  
Temperature Range  
Package  
I
=
-40C to +85C (Industrial)  
a)  
b)  
MCP73863-I/ML: Single-Cell Controller  
16LD-QFN package.  
MCP73863T-I/ML: Tape and Reel,  
Single-Cell Controller  
ML  
SL  
=
=
Plastic Quad Flat No Lead, 4x4 mm Body (QFN),  
16-lead  
Plastic Small Outline, 150 mm Body (SOIC),  
16-lead  
16LD-QFN package.  
c)  
d)  
MCP73863-I/SL:  
Single-Cell Controller  
16LD-SOIC package.  
MCP73863T-I/SL: Tape and Reel,  
Single-Cell Controller  
16LD-SOIC package.  
a)  
b)  
MCP73864-I/ML: Dual-Cell Controller  
16LD-QFN package.  
MCP73864T-I/ML: Tape and Reel,  
Dual-Cell Controller  
16LD-QFN package.  
c)  
d)  
MCP73864-I/SL:  
Dual-Cell Controller  
16LD-SOIC package.  
MCP73864T-I/SL: Tape and Reel,  
Dual-Cell Controller  
16LD-SOIC package.  
2011 Microchip Technology Inc.  
DS21893E-page 31  
MCP73861/2/3/4  
NOTES:  
DS21893E-page 32  
2011 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2011, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-61341-001-1  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2011 Microchip Technology Inc.  
DS21893E-page 33  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
China - Zhuhai  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
02/18/11  
DS21893E-page 34  
2011 Microchip Technology Inc.  

相关型号:

MCP73861T-I/ML

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861T-I/MLG

暂无描述
MICROCHIP

MCP73861T-I/SL

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861T-I/SLG

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO16, 0.150 INCH, LEAD FREE, PLASTIC, MS-012, SOIC-16
MICROCHIP

MCP73861_05

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861_08

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861_11

Advanced Single or Dual Cell, Fully Integrated Li-Ion/Li-Polymer Charge Management
MICROCHIP

MCP73861_13

Advanced Single or Dual Cell, Fully Integrated Li-Ion/Li-Polymer Charge Management Controllers
MICROCHIP

MCP73862

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73862-I/ML

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73862-I/MLG

1-CHANNEL POWER SUPPLY SUPPORT CKT, PQCC16, 4 X 4 MM, 0.90 MM HEIGHT, LEAD FREE, PLASTIC, MO-220, QFN-16
MICROCHIP

MCP73862-I/SL

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP