MCP624 [MICROCHIP]

Input Range incl. Negative Rail;
MCP624
型号: MCP624
厂家: MICROCHIP    MICROCHIP
描述:

Input Range incl. Negative Rail

文件: 总62页 (文件大小:1842K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP621/1S/2/3/4/5/9  
20 MHz, 200 µV Op Amps with mCal  
Features:  
Description:  
• Gain-Bandwidth Product: 20 MHz (typical)  
• Slew Rate: 30 V/µs  
The Microchip Technology Inc. MCP621/1S/2/3/4/5/9  
family of high bandwidth and high slew rate operational  
amplifiers features low offset. At power-up, these op  
amps are self-calibrated using mCal. Some package  
options also provide a Calibration/Chip Select pin  
• Low Input Offset: ±200 µV (maximum)  
• Low Input Bias Current: 5 pA (typical)  
• Noise: 13 nV/Hz, at 1 MHz  
• Ease-of-Use:  
(CAL/CS) that supports  
a Low-Power mode of  
operation, with offset calibration at the time normal  
operation is re-started. These amplifiers are optimized  
for high speed, low noise and distortion, single-supply  
operation with rail-to-rail output and an input that  
includes the negative rail.  
- Unity-Gain Stable  
- Rail-to-Rail Output  
- Input Range incl. Negative Rail  
- No Phase Reversal  
This family is offered in single (MCP621 and  
MCP621S), single with CAL/CS pin (MCP623), dual  
(MCP622), dual with CAL/CS pins (MCP625), quad  
(MCP624) and quad with CAL/CS pins (MCP629). All  
devices are fully specified from -40°C to +125°C.  
• Supply Voltage Range: +2.5V to +5.5V  
• High Output Current: ±70 mA  
• Supply Current: 2.5 mA/Ch (typical)  
• Low-Power Mode: 5 µA/Ch  
• Small Packages: SOT23-5, DFN  
• Extended Temperature Range: -40°C to +125°C  
Typical Application Circuit  
Detector Amplifier with 350kHz  
2nd-order MFB Low pass Filter  
CF 3 pF  
Typical Applications:  
• Optical Detector Amplifier  
• Barcode Scanners  
RF  
Photo Detector  
• Multi-Pole Active Filter  
• Driving A/D Converters  
• Fast Low-Side Current Sensing  
• Power Amplifier Control Loops  
• Consumer Audio  
100 k  
ID  
100 nA  
CD  
30 pF  
A
VREF  
Design Aids:  
• SPICE Macro Models  
• FilterLab® Software  
2.61 k  
270 pF  
26.1 k  
100 pF  
B
VOUT  
294  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
MCP622  
VREF  
High Gain-Bandwidth Op Amp Portfolio  
Model Family  
Channels/Package Gain Bandwidth  
VOS (max.)  
IQ/Ch (typ.)  
MCP621/1S/2/3/4/5/9  
MCP631/2/3/4/5/9  
1, 2, 4  
1, 2, 4  
20 MHz  
0.2 mV  
8.0 mV  
0.2 mV  
8.0 mV  
2.5 mA  
2.5 mA  
6.0 mA  
6.0 mA  
24 MHz  
50 MHz  
60 MHz  
MCP651/1S/2/3/4/5/9  
MCP660/1/2/3/4/5/9  
1, 2, 4  
1, 2, 3, 4  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 1  
MCP621/1S/2/3/4/5/9  
Package Types  
MCP621S  
SOT-23-5  
MCP621  
2x3 TDFN *  
MCP624  
SOIC, TSSOP  
MCP621  
SOIC  
1
8
7
6
5
NC  
CAL/CS  
V
14 OUTD  
1
2
8
7
V
OUTA  
NC  
CAL/CS  
V
V
1
2
3
4
5
6
7
V
1
2
3
5
4
DD  
OUT  
2
3
4
V
-
V
V
V
-
V
+
V
13  
12  
11  
10  
9
V
V
INA  
IND  
IN  
IN  
DD  
EP  
9
IN  
DD  
V
SS  
V
+
+
V
V
INA  
V
+
V
IND  
SS  
OUT  
3
4
6
5
IN  
OUT  
V
DD  
V
V
V
V
-
SS  
CAL  
V
+
SS  
CAL  
IN  
IN  
V
+
V
V
V
+
-
INB  
INC  
INC  
V
-
INB  
V
8
OUTB  
OUTC  
MCP623  
SOT-23-6  
MCP622  
SOIC  
MCP622  
3x3 DFN *  
MCP629  
4x4 QFN*  
V
V
1
2
3
4
8
DD  
V
V
V
1
8
V
OUTA  
6
5
4
OUTA  
DD  
V
OUT  
1
DD  
V
7
6
5
V
OUTB  
INA  
V
2
7
EP  
9
INA  
OUTB  
CAL/CS  
V
2
3
V
V
+
V
+
SS  
INB  
INB  
INA  
V
+
V
V
3
4
6
5
INA  
INB  
V
SS  
V
+
V -  
IN  
SS  
INB  
V
+
IN  
16 15 14 13  
V
-
V
V
V
V
+
IND  
1
12  
INA  
V
+
11  
10  
9
2
3
4
INA  
SS  
EP  
17  
MCP625  
3x3 DFN *  
MCP625  
MSOP  
+
-
V
INC  
INC  
DD  
V
+
INB  
V
V
V
V
V
V
1
2
10  
V
1
2
3
10  
DD  
OUTA  
DD  
OUTA  
5
6
7
8
V
+
9
V
+
V
V
V
INA  
OUTB  
9
8
7
6
OUTB  
INA  
EP  
11  
V
3
4
5
8
7
6
V
INA  
INB  
INA  
INB  
V
+
V
+
SS  
INB  
SS 4  
INB  
CALA/CSA  
CALB/CSB  
CALA/CSA  
CALB/CSB  
5
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
DS20002188D-page 2  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
1.0  
1.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to  
the device. This is a stress rating only and functional  
operation of the device at those or any other  
conditions above those indicated in the operational  
listings of this specification is not implied. Exposure to  
maximum rating conditions for extended periods may  
affect device reliability.  
V
– V  
.......................................................................6.5V  
SS  
DD  
Current at Input Pins ....................................................±2 mA  
Analog Inputs (V + and V –) †† . V – 1.0V to V + 1.0V  
IN  
IN  
SS  
DD  
All Other Inputs and Outputs ......... V – 0.3V to V + 0.3V  
SS  
DD  
Output Short Circuit Current ................................Continuous  
Current at Output and Supply Pins ..........................±150 mA  
Storage Temperature ...................................-65°C to +150°C  
Max. Junction Temperature ........................................+150°C  
ESD protection on all pins (HBM, MM)  1 kV, 200V  
†† See Section 4.2.2, Input Voltage and Current  
Limits.  
1.2  
Specifications  
DC ELECTRICAL SPECIFICATIONS  
TABLE 1-1:  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND,  
VCM = VDD/3, VOUT VDD/2, VL = VDD/2, RL = 2 kto VL and CAL/CS = VSS (refer to Figure 1-2).  
Parameters  
Input Offset  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input Offset Voltage  
VOS  
-200  
+200  
200  
µV  
µV  
After calibration (Note 1)  
Input Offset Voltage Trim Step  
Size  
VOSTRM  
37  
(Note 2)  
Input Offset Voltage Drift  
Power Supply Rejection Ratio  
Input Current and Impedance  
Input Bias Current  
VOS/TA  
±2.0  
76  
µV/°C TA = -40°C to +125°C  
dB  
PSRR  
61  
IB  
IB  
5
pA  
Across Temperature  
100  
pA  
pA  
TA = +85°C  
Across Temperature  
IB  
1700  
5,000  
TA = +125°C  
Input Offset Current  
IOS  
ZCM  
±10  
1013||9  
pA  
Common Mode Input  
Impedance  
||pF  
Differential Input Impedance  
ZDIFF  
1013||2  
||pF  
Common Mode  
Common Mode Input Voltage  
Range  
VCMR  
CMRR  
CMRR  
VSS 0.3  
81  
84  
VDD 1.3  
V
(Note 3)  
Common Mode Rejection Ratio  
65  
68  
dB  
dB  
VDD = 2.5V, VCM = -0.3 to  
1.2V  
V
DD = 5.5V, VCM = -0.3 to  
4.2V  
Open-Loop Gain  
DC Open-Loop Gain  
(large signal)  
AOL  
AOL  
88  
94  
117  
126  
dB  
dB  
VDD = 2.5V,  
VOUT = 0.3V to 2.2V  
VDD = 5.5V,  
VOUT = 0.3V to 5.2V  
Note 1: Describes the offset (under the specified conditions) right after power-up, or just after the CAL/CS pin is  
toggled. Thus, 1/f noise effects (an apparent wander in VOS; see Figure 2-35) are not included.  
2: Increment between adjacent VOS trim points; Figure 2-3 shows how this affects the VOS repeatability.  
3: See Figure 2-6 and Figure 2-7 for temperature effects.  
4: The ISC specifications are for design guidance only; they are not tested.  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 3  
MCP621/1S/2/3/4/5/9  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND,  
VCM = VDD/3, VOUT VDD/2, VL = VDD/2, RL = 2 kto VL and CAL/CS = VSS (refer to Figure 1-2).  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Output  
Maximum Output Voltage Swing VOL, VOH VSS + 20  
VDD 20  
VDD 40  
mV VDD = 2.5V, G = +2,  
0.5V Input Overdrive  
VOL, VOH VSS + 40  
mV VDD = 5.5V, G = +2,  
0.5V Input Overdrive  
Output Short Circuit Current  
ISC  
ISC  
±40  
±35  
±85  
±70  
±130  
±110  
mA VDD = 2.5V (Note 4)  
mA VDD = 5.5V (Note 4)  
Calibration Input  
Calibration Input Voltage Range VCALRNG VSS + 0.1  
VDD – 1.4 mV VCAL pin externally driven  
VCAL pin open  
Internal Calibration Voltage  
Input Impedance  
VCAL  
ZCAL  
0.323VDD 0.333VDD 0.343VDD  
100 || 5  
k||pF  
Power Supply  
Supply Voltage  
VDD  
IQ  
2.5  
1.2  
2.5  
5.5  
3.6  
V
Quiescent Current per Amplifier  
POR Input Threshold, Low  
mA IO = 0  
VPRL  
1.15  
1.40  
V
V
POR Input Threshold, High  
VPRH  
1.40  
1.65  
Note 1: Describes the offset (under the specified conditions) right after power-up, or just after the CAL/CS pin is  
toggled. Thus, 1/f noise effects (an apparent wander in VOS; see Figure 2-35) are not included.  
2: Increment between adjacent VOS trim points; Figure 2-3 shows how this affects the VOS repeatability.  
3: See Figure 2-6 and Figure 2-7 for temperature effects.  
4: The ISC specifications are for design guidance only; they are not tested.  
TABLE 1-2:  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND,  
VCM = VDD/2, VOUT VDD/2, VL = VDD/2, RL = 2 kto VL, CL = 50 pF and CAL/CS = VSS (refer to Figure 1-2).  
Parameters  
AC Response  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
20  
60  
15  
MHz  
°
G = +1  
Open-Loop Output Impedance  
AC Distortion  
ROUT  
Total Harmonic Distortion plus  
Noise  
THD+N  
0.0018  
%
G = +1, VOUT = 2VP-P, f = 1 kHz,  
DD = 5.5V, BW = 80 kHz  
V
Step Response  
Rise Time, 10% to 90%  
Slew Rate  
tr  
13  
10  
ns  
G = +1, VOUT = 100 mVP-P  
SR  
V/µs G = +1  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
20  
13  
4
µVP-P f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 MHz  
fA/Hz f = 1 kHz  
DS20002188D-page 4  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
TABLE 1-3:  
DIGITAL ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 2 kto VL, CL = 50 pF and CAL/CS = VSS (refer to Figure 1-1 and Figure 1-2).  
Parameters  
Sym.  
Min. Typ. Max. Units  
Conditions  
CAL/CS Low Specifications  
CAL/CS Logic Threshold, Low  
CAL/CS Input Current, Low  
CAL/CS High Specifications  
CAL/CS Logic Threshold, High  
CAL/CS Input Current, High  
GND Current  
VIL  
VSS  
0
0.2VDD  
V
ICSL  
nA CAL/CS = 0V  
VIH  
ICSH  
ISS  
0.8VDD  
VDD  
V
0.7  
-1.8  
-4  
µA CAL/CS = VDD  
-3.5  
-8  
µA Single, CAL/CS = VDD = 2.5V  
µA Single, CAL/CS = VDD = 5.5V  
µA Dual, CAL/CS = VDD = 2.5V  
µA Dual, CAL/CS = VDD = 5.5V  
M  
ISS  
ISS  
-5  
-2.5  
-5  
ISS  
-10  
CAL/CS Internal Pull-Down  
Resistor  
RPD  
5
Amplifier Output Leakage  
IO(LEAK)  
tPOFF  
50  
nA CAL/CS = VDD, TA = 125°C  
POR Dynamic Specifications  
VDD Low to Amplifier Off Time  
(output goes High Z)  
200  
ns G = +1 V/V, VL = VSS,  
VDD = 2.5V to 0V step to VOUT = 0.1  
(2.5V)  
VDD High to Amplifier On Time  
(including calibration)  
tPON  
100  
200  
300  
ms G = +1 V/V, VL = VSS,  
VDD = 0V to 2.5V step to VOUT = 0.9  
(2.5V)  
CAL/CS Dynamic Specifications  
1
CAL/CS Input Hysteresis  
VHYST  
tCSU  
0.25  
V
CAL/CS Setup Time  
(between CAL/CS edges)  
µs G = +1 V/V, VL = VSS (Notes 2, 3, 4)  
CAL/CS = 0.8VDD to VOUT = 0.1  
(VDD/2)  
CAL/CS High to Amplifier Off Time tCOFF  
(output goes High Z)  
200  
ns G = +1 V/V, VL = VSS,  
CAL/CS = 0.8VDD to VOUT = 0.1  
(VDD/2)  
CAL/CS Low to Amplifier On Time  
(including calibration)  
G = +1 V/V, VL = VSS, MCP621 and  
MCP625, CAL/CS = 0.2VDD to  
VOUT = 0.9 (VDD/2)  
tCON  
3
6
4
8
ms  
ms  
G = +1 V/V, VL = VSS, MCP629,  
CAL/CS = 0.2VDD to  
tCON  
VOUT = 0.9 (VDD/2)  
Note 1: The MCP622 single, MCP625 dual and MCP629 quad have their CAL/CS inputs internally pulled down to V (0V).  
SS  
2: This time ensures that the internal logic recognizes the edge. However, for the rising edge case, if CAL/CS is raised  
before the calibration is complete, the calibration will be aborted and the part will return to Low-Power mode.  
3: For the MCP625 dual, there is an additional constraint. CALA/CSA and CALB/CSB can be toggled simultaneously  
(within a time much smaller than t  
) to make both op amps perform the same function simultaneously. If they are  
CSU  
toggled independently, then CALA/CSA (CALB/CSB) cannot be allowed to toggle while op amp B (op amp A) is in  
Calibration mode; allow more than the maximum t time (4 ms) before the other side is toggled.  
CON  
4: For the MCP629 quad, there is an additional constraint. CALAD/CSAD and CALBC/CSBC can be toggled simultaneously  
(within a time much smaller than t ) to make all four op amps perform the same function simultaneously, and the  
CSU  
maximum t  
time is approximately doubled (8 ms). If they are toggled independently, then CALAD/CSAD  
CON  
(CALBC/CSBC) cannot be allowed to toggle while op amps B and C (op amps A and D) are in Calibration mode; allow  
more than the maximum t time (8 ms) before the other side is toggled.  
CON  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 5  
MCP621/1S/2/3/4/5/9  
TABLE 1-4:  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VDD = +2.5V to +5.5V,VSS = GND.  
Parameters  
Temperature Ranges  
Sym. Min.  
Typ.  
Max. Units  
Conditions  
Specified Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
Operating Temperature Range  
Storage Temperature Range  
(Note 1)  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 6L-SOT-23  
Thermal Resistance, 8L-2x3 TDFN  
Thermal Resistance, 8L-3x3 DFN  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 10L-3x3 DFN  
Thermal Resistance, 10L-MSOP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
Thermal Resistance, 16L-4x4-QFN  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
220.7  
190.5  
52.5  
56.7  
149.5  
53.3  
202  
°C/W  
°C/W  
°C/W  
°C/W (Note 2)  
°C/W  
°C/W (Note 2)  
°C/W  
95.3  
100  
°C/W  
°C/W  
45.7  
°C/W (Note 2)  
Note 1: Operation must not cause TJ to exceed the Maximum Junction Temperature specification (150°C).  
2: Measured on a standard JC51-7, four-layer printed circuit board with ground plane and vias.  
1.3  
Timing Diagram  
CAL/CS  
VIH  
VIL  
VDD  
VPRH  
VPRL  
tPOFF  
tCSU  
tPON  
High Z  
tCOFF  
tCON  
VOUT  
High Z  
High Z  
On  
-2.5 mA (typical)  
On  
-2.5 mA (typical)  
ISS  
-3 µA (typical)  
0.7 µA (typical)  
-3 µA (typical)  
0 nA (typical)  
-3 µA (typical)  
0 nA (typical)  
ICS  
Note:  
For the MCP625 dual and the MCP629 quad, there is an additional constraint on toggling the two  
CAL/CS pins close together; see the TCON specification in Table 1-3.  
FIGURE 1-1:  
Timing Diagram.  
DS20002188D-page 6  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
1.4  
Test Circuits  
CF  
6.8 pF  
The circuit used for most DC and AC tests is shown in  
Figure 1-2. This circuit can independently set VCM and  
VOUT; see Equation 1-1. Note that VCM is not the  
circuit’s Common mode voltage ((VP + VM)/2), and that  
VOST includes VOS plus the effects (on the input offset  
RG  
10 k  
RF  
10 k  
VDD/2  
VP  
error, VOST) of temperature, CMRR, PSRR and AOL  
.
VDD  
VIN+  
EQUATION 1-1:  
CB1  
100 nF  
CB2  
2.2 µF  
GDM = RF RG  
MCP62X  
VCM = VP + VDD 22  
VOST = VIN– VIN+  
VIN–  
VOUT = VDD 2+ VP VM+ VOST1 + GDM  
VOUT  
VM  
RL  
CL  
RG  
RF  
Where:  
2 k  
50 pF  
10 k  
10 k  
GDM = Differential Mode Gain  
(V/V)  
(V)  
VCM = Op Amp’s Common Mode  
CF  
6.8 pF  
Input Voltage  
VL  
VOST = Op Amp’s Total Input Offset (mV)  
FIGURE 1-2:  
AC and DC Test Circuit for  
Voltage  
Most Specifications.  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 7  
MCP621/1S/2/3/4/5/9  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF, and CAL/CS = VSS  
.
2.1  
DC Signal Inputs  
300  
200  
100  
0
22%  
20%  
18%  
Representative Part  
Calibrated at VDD = 6.5V  
80 Samples  
T
A = +25°C  
V
DD = 2.5V and 5.5V  
+125°C  
+85°C  
+25°C  
-40°C  
16% Calibrated at +25°C  
14%  
12%  
10%  
8%  
6%  
4%  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
2%  
0%  
-80 -60 -40 -20  
0
20  
40  
60  
80  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
Power Supply Voltage (V)  
Input Offset Voltage (µV)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage vs.  
Power Supply Voltage.  
50  
24%  
Representative Part  
80 Samples  
DD = 2.5V and 5.5V  
A = -40°C to +125°C  
22%  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
40  
V
T
30  
20  
10  
0
Calibrated at +25°C  
VDD = 5.5V  
-10  
-20  
6%  
VDD = 2.5V  
-30  
-40  
-50  
4%  
2%  
0%  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Input Offset Voltage vs.  
Output Voltage.  
50%  
0.0  
1 Lot  
Low (VCMR_L – VSS  
200 Samples  
TA = +25°C  
VDD = 2.5V and 5.5V  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
)
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
No Change  
(includes noise)  
VDD = 2.5V  
Calibration  
Changed  
(-1 step)  
Calibration  
Changed  
(+1 step)  
VDD = 5.5V  
0%  
-60 -50 -40 -30 -20 -10  
0
10 20 30 40 50 60  
-50  
-25  
0
25  
50  
75  
100 125  
Input Offset Voltage Calibration Repeatability  
(µV)  
Ambient Temperature (°C)  
FIGURE 2-3:  
Input Offset Voltage  
FIGURE 2-6:  
Low Input Common Mode  
Repeatability (repeated calibration).  
Voltage Headroom vs. Ambient Temperature.  
DS20002188D-page 8  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF, and CAL/CS = VSS  
.
1.4  
110  
105  
100  
95  
1 Lot  
High (VDD – VCMR_H  
)
1.3  
1.2  
1.1  
1.0  
PSRR  
VDD = 2.5V  
90  
CMRR, VDD = 5.5V  
85  
80  
CMRR, VDD = 2.5V  
75  
70  
VDD = 5.5V  
65  
60  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-7:  
High Input Common Mode  
FIGURE 2-10:  
CMRR and PSRR vs.  
Voltage Headroom vs. Ambient Temperature.  
Ambient Temperature.  
1000  
130  
125  
VDD = 2.5V  
Representative Part  
800  
600  
400  
200  
0
VDD = 5.5V  
120  
115  
110  
105  
100  
VDD = 2.5V  
-200  
+125°C  
+85°C  
+25°C  
-40°C  
-400  
-600  
-800  
-1000  
-50  
-25  
0
25  
50  
75  
100  
125  
Input Common Mode Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-8:  
Input Offset Voltage vs.  
FIGURE 2-11:  
DC Open-Loop Gain vs.  
Common Mode Voltage with VDD = 2.5V.  
Ambient Temperature.  
1000  
10,000  
VDD = 5.5V  
VDD = 5.5V  
Representative Part  
800  
V
CM = VCMR_H  
600  
400  
200  
0
1,000  
100  
10  
IB  
-200  
-400  
-600  
+125°C  
+85°C  
+25°C  
-40°C  
| IOS  
|
-800  
-1000  
1
25  
45  
65  
85  
105  
125  
Input Common Mode Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-9:  
Input Offset Voltage vs.  
FIGURE 2-12:  
Input Bias and Offset  
Common Mode Voltage with VDD = 5.5V.  
Currents vs. Ambient Temperature with  
DD = +5.5V.  
V
2009-2014 Microchip Technology Inc.  
DS20002188D-page 9  
MCP621/1S/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF, and CAL/CS = VSS  
.
120  
1.E-10m3  
100µ  
IOS  
100  
1.E-04  
80  
10µ  
1.E-05  
60  
1µ  
1.E-06  
Representative Part  
T
V
A = +85°C  
DD = 5.5V  
40  
20  
100n  
1.E-07  
10n  
1.E- 8  
0
1n  
1.E-09  
+125°C  
+85°C  
+25°C  
-40°C  
-20  
-40  
-60  
100p  
1.E-10  
IB  
10p  
1.E-11  
1p  
1.E-12  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-13:  
Input Bias and Offset  
FIGURE 2-15:  
Input Bias Current vs. Input  
Currents vs. Common Mode Input Voltage with  
TA = +85°C.  
Voltage (below VSS).  
1500  
IOS  
1000  
Representative Part  
T
A = +125°C  
500  
0
VDD = 5.5V  
IB  
-500  
-1000  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
FIGURE 2-14:  
Input Bias and Offset  
Currents vs. Common Mode Input Voltage with  
TA = +125°C.  
DS20002188D-page 10  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF, and CAL/CS = VSS  
.
2.2  
Other DC Voltages and Currents  
14  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.5V  
VOL – VSS  
-IOUT  
12  
10  
8
6
VDD – VOH  
IOUT  
+125°C  
+85°C  
+25°C  
-40°C  
4
VDD = 2.5V  
2
0
1
10  
100  
Output Current Magnitude (mA)  
Power Supply Voltage (V)  
FIGURE 2-16:  
Ratio of Output Voltage  
FIGURE 2-19:  
Supply Current vs. Power  
Headroom to Output Current.  
Supply Voltage.  
20  
3.0  
2.5  
2.0  
RL = 2 k  
VDD = 5.5V  
VOL – VSS  
18  
16  
14  
12  
10  
8
VDD = 5.5V  
VDD = 2.5V  
1.5  
1.0  
0.5  
0.0  
6
4
2
VDD – VOH  
VDD = 2.5V  
0
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Common Mode Input Voltage (V)  
FIGURE 2-17:  
Output Voltage Headroom  
FIGURE 2-20:  
Supply Current vs. Common  
vs. Ambient Temperature.  
Mode Input Voltage.  
100  
80  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VPRH  
60  
+125°C  
+85°C  
+25°C  
-40°C  
40  
20  
0
VPRL  
-20  
-40  
-60  
-80  
-100  
-50  
-25  
0
25  
50  
75  
100  
125  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-18:  
Output Short-Circuit Current  
FIGURE 2-21:  
Power-On Reset Voltages  
vs. Power Supply Voltage.  
vs. Ambient Temperature.  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 11  
MCP621/1S/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF, and CAL/CS = VSS  
.
30%  
140  
120  
100  
80  
144 Samples  
V
DD = 2.5V and 5.5V  
25%  
20%  
15%  
10%  
5%  
60  
40  
0%  
20  
0
Normalized Internal Calibration Voltage;  
VCAL/VDD  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-22:  
Normalized Internal  
FIGURE 2-23:  
VCAL Input Resistance vs.  
Calibration Voltage.  
Temperature.  
DS20002188D-page 12  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF, and CAL/CS = VSS  
.
2.3  
Frequency Response  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
45  
40  
35  
30  
25  
20  
15  
70  
65  
60  
55  
50  
45  
40  
CMRR  
PM  
VDD = 5.5V  
DD = 2.5V  
V
PSRR+  
PSRR-  
GBWP  
1.0E0+2  
1.1Ek+3  
11.E0+k4  
110.E0+k5  
11.EM+6  
11.0EM+7  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-24:  
CMRR and PSRR vs.  
FIGURE 2-27:  
Gain Bandwidth Product  
Frequency.  
and Phase Margin vs. Common Mode Input  
Voltage.  
140  
120  
100  
80  
0
45  
40  
35  
30  
25  
20  
15  
70  
65  
60  
55  
50  
45  
40  
-30  
-60  
-90  
PM  
AOL  
VDD = 5.5V  
DD = 2.5V  
V
60  
-120  
-150  
-180  
-210  
-240  
40  
| AOL  
|
GBWP  
20  
0
-20  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 1.E+7 1.E+8  
1
10 100 1k 10k 100k 1M 10M 100M  
Frequency (Hz)  
FIGURE 2-25:  
Open-Loop Gain vs.  
FIGURE 2-28:  
Gain Bandwidth Product  
Frequency.  
and Phase Margin vs. Output Voltage.  
100  
45  
40  
70  
65  
60  
55  
50  
45  
40  
PM  
35  
30  
25  
20  
15  
10  
G = 101 V/V  
G = 11 V/V  
G = 1 V/V  
VDD = 5.5V  
V
DD = 2.5V  
1
GBWP  
0.1  
-50 -25  
0
25  
50  
75 100 125  
1k  
10k  
100k  
1M  
10M  
100M  
1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-26:  
Gain Bandwidth Product  
FIGURE 2-29:  
Closed-Loop Output  
and Phase Margin vs. Ambient Temperature.  
Impedance vs. Frequency.  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 13  
MCP621/1S/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF, and CAL/CS = VSS  
.
10  
9
150  
140  
130  
120  
110  
100  
90  
RS = 0  
S = 1 kΩ  
RTI  
VCM = VDD/2  
G = +1 V/V  
R
8
7
6
GN = 1 V/V  
GN = 2 V/V  
5
4
GN 4 V/V  
3
2
1
0
80  
70  
RS = 10 kΩ  
RS = 100 kΩ  
60  
50  
10p  
100p  
1n  
1.0E-09  
10k  
1.E+04  
100k  
1.E+05  
1M  
1.E+06  
1.0E-11  
1.0E-10  
1k  
10M  
1.E+07  
1.E+03  
Normalized Capacitive Load; CL/GN (F)  
Frequency (Hz)  
FIGURE 2-30:  
Gain Peaking vs.  
FIGURE 2-31:  
Channel-to-Channel  
Normalized Capacitive Load.  
Separation vs. Frequency.  
DS20002188D-page 14  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF, and CAL/CS = VSS  
.
2.4  
Input Noise and Distortion  
1.E+4  
10µ  
20  
15  
10  
5
Representative Part  
Analog NPBW = 0.1 Hz  
Sample Rate = 2 SPS  
1.E1+µ3  
0
-5  
1.E+2  
100n  
-10  
-15  
-20  
11.E0+n1  
0
5
10 15 20 25 30 35 40 45  
0.1  
1
10  
100 1k 10k 100k 11.EM+6 10M  
Frequency (Hz)  
1.E-1 1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+7  
Time (min)  
FIGURE 2-32:  
Input Noise Voltage Density  
FIGURE 2-35:  
Input Noise plus Offset vs.  
vs. Frequency.  
Time with 0.1 Hz Filter.  
300  
250  
200  
1
0.1  
G = 1 V/V  
G = 11 V/V  
VDD = 2.5V  
BW = 22 Hz to > 500 kHz  
150  
100  
50  
0.01  
VDD = 5.5V  
0.001  
BW = 22 Hz to 80 kHz  
VDD = 5.0V  
f = 100 Hz  
V
OUT = 2 VP-P  
0
0.0001  
100  
1.E+2  
1k  
1.E+3  
10k  
1.E+4  
100k  
1.E+5  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-33:  
Input Noise Voltage Density  
FIGURE 2-36:  
THD+N vs. Frequency.  
vs. Input Common Mode Voltage with f = 100 Hz.  
30  
25  
20  
VDD = 2.5V  
VDD = 5.5V  
15  
10  
5
f = 1 MHz  
0
Common Mode Input Voltage (V)  
FIGURE 2-34:  
Input Noise Voltage Density  
vs. Input Common Mode Voltage with f = 1 MHz.  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 15  
MCP621/1S/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF, and CAL/CS = VSS  
.
2.5  
Time Response  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.5V  
G = 1  
VDD = 5.5V  
G = -1  
RF = 1 k  
VIN  
VIN  
VOUT  
VOUT  
0
20 40 60 80 100 120 140 160 180 200  
Time (ns)  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Time (µs)  
FIGURE 2-37:  
Non-Inverting Small Signal  
FIGURE 2-40:  
Inverting Large Signal Step  
Step Response.  
Response.  
5.5  
7
VDD = 5.5V  
G = 2  
VDD = 5.5V  
G = 1  
5.0  
6
VIN  
4.5  
4.0  
3.5  
3.0  
5
4
VOUT  
3
2.5  
VIN  
VOUT  
2
2.0  
1.5  
1.0  
0.5  
0.0  
1
0
-1  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Time (µs)  
0
1
2
3
4
5
6
7
8
9
10  
Time (ms)  
FIGURE 2-38:  
Step Response.  
Non-Inverting Large Signal  
FIGURE 2-41:  
Family Shows No Input Phase Reversal with  
Overdrive.  
The MCP621/1S/2/3/4/5/9  
24  
22  
Falling Edge  
VIN  
20  
18  
16  
VDD = 5.5V  
G = -1  
VDD = 2.5V  
14  
12  
10  
8
RF = 1 kΩ  
VDD = 5.5V  
6
4
2
Rising  
VOUT  
0
0
100 200 300 400 500 600 700 800  
Time (ns)  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-39:  
Inverting Small Signal Step  
FIGURE 2-42:  
Slew Rate vs. Ambient  
Response.  
Temperature.  
DS20002188D-page 16  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF, and CAL/CS = VSS  
.
10  
VDD = 5.5V  
VDD = 2.5V  
1
0.1  
100k  
1M  
1.E+06  
10M  
1.E+07  
100M  
1.E+08  
1.E+05  
Frequency (Hz)  
FIGURE 2-43:  
Maximum Output Voltage  
Swing vs. Frequency.  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 17  
MCP621/1S/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF, and CAL/CS = VSS  
.
2.6  
Calibration and Chip Select Response  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
CAL/CS = VDD  
VDD = 5.5V  
VDD = 2.5V  
-50  
-25  
0
25  
50  
75  
100  
125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-44:  
CAL/CS Current vs. Power  
FIGURE 2-47:  
CAL/CS Hysteresis vs.  
Supply Voltage.  
Ambient Temperature.  
6
8
7
6
5
4
3
2
1
0
VDD = 2.5V  
G = 1  
VL = 0V  
4
IDD  
2
0
-2  
Calibration  
starts  
Op Amp Op Amp  
turns on turns off  
3
2
CAL/CS  
VOUT  
1
0
-1  
-50  
-25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10 12 14 16  
Time (ms)  
Ambient Temperature (°C)  
FIGURE 2-45:  
CAL/CS Voltage, Output  
FIGURE 2-48:  
CAL/CS Turn-On Time vs.  
Voltage and Supply Current (for Side A) vs. Time  
with VDD = 2.5V.  
Ambient Temperature.  
6
8
VDD = 5.5V  
G = 1  
Representative Part  
4
7
6
5
4
3
2
1
0
V
L = 0V  
2
IDD  
0
-2  
Op Amp Op Amp  
turns on turns off  
Calibration  
starts  
6
4
CAL/CS  
VOUT  
2
0
-2  
-50  
-25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10 12 14 16  
Time (ms)  
Ambient Temperature (°C)  
FIGURE 2-46:  
CAL/CS Voltage, Output  
FIGURE 2-49:  
CAL/CS’s Pull-Down  
Voltage and Supply Current (for Side A) vs. Time  
with VDD = 5.5V.  
Resistor (RPD) vs. Ambient Temperature.  
DS20002188D-page 18  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kto VL, CL = 50 pF, and CAL/CS = VSS  
.
0
1.E-06  
1.E-07  
1.E-08  
1.E-09  
1.E-10  
1.E-11  
CAL/CS = VDD = 5.5V  
CAL/CS = VDD  
-1  
-2  
-3  
+125°C  
+85°C  
-4  
+125°C  
+85°C  
+25°C  
-40°C  
-5  
-6  
+25°C  
-7  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Output Voltage (V)  
Power Supply Voltage (V)  
FIGURE 2-50:  
Quiescent Current in  
FIGURE 2-51:  
Output Leakage Current vs.  
Shutdown vs. Power Supply Voltage.  
Output Voltage.  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 19  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP621  
PIN FUNCTION TABLE  
MCP621S  
MCP622  
MCP623  
MCP624  
MCP625  
MCP629  
Symbol  
Description  
Inverting Input (op amp A)  
SOIC TDFN  
SOT-23  
SOIC DFN SOT-23 SOIC TSSOP MSOP DFN  
QFN  
2
3
2
3
4
3
2
3
8
5
2
3
8
5
4
3
2
3
4
5
2
3
4
5
2
3
2
3
1
2
3
4
VIN–, VINA  
VIN+, VINA  
VDD  
+
Non-inverting Input (op amp A)  
Positive Power Supply  
7
7
5
6
10  
7
10  
7
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
VINB  
6
6
6
6
8
8
5
6
7
VOUTB  
Output (op amp B)  
7
7
7
7
9
9
CALBC/CSBC  
Calibrate/Chip Select Digital Input  
(op amps B and C)  
4
4
2
4
4
4
4
VOUTC  
Output (op amp C)  
8
8
8
VINC  
+
Inverting Input (op amp C)  
Non-inverting input (op amp C)  
Negative Power Supply  
Non-inverting input (op amp D)  
Inverting Input (op amp D)  
Output (op amp D)  
9
9
9
VINC  
10  
11  
12  
13  
10  
11  
12  
13  
10  
11  
12  
13  
14  
15  
VSS  
2
VIND+  
VINDD–  
VOUTD  
14  
14  
CALAD/CSAD  
Calibrate/Chip Select Digital Input  
(op amps A and D)  
6
6
9
1
1
1
9
1
1
1
1
1
VOUT, VOUTA Output (op amp A)  
16  
17  
11  
EP  
Exposed Thermal Pad (EP);  
must be connected to VSS  
8
8
5
5
5
CAL/CS,  
Calibrate/Chip Select Digital Input (op amp A)  
CALA/CSA  
6
6
CALB/CSB  
VCAL  
Calibrate/Chip Select Digital Input (op amp B)  
Calibration Common Mode Voltage Input  
No Internal Connection  
5
1
5
1
NC  
MCP621/1S/2/3/4/5/9  
3.1  
Analog Outputs  
3.5  
Calibrate/Chip Select Digital Input  
The analog output pins (VOUT) are low-impedance  
voltage sources.  
This input (CAL/CS, …) is a CMOS, Schmitt-triggered  
input that affects the Calibration and Low-Power  
modes of operation. When this pin goes high, the part  
is placed into a Low-Power mode and the output is  
High Z. When this pin goes low, a calibration sequence  
is started (which corrects VOS). At the end of the cali-  
bration sequence, the output becomes low-impedance  
and the part resumes normal operation.  
3.2  
Analog Inputs  
The non-inverting and inverting inputs (VIN+, VIN–, …)  
are high-impedance CMOS inputs with low bias  
currents.  
An internal POR triggers a calibration event when the  
part is powered-on, or when the supply voltage drops  
too low. Thus, the MCP622 parts are calibrated, even  
though they do not have a CAL/CS pin.  
3.3  
Power Supply Pins  
The positive power supply (VDD) is 2.5V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
3.6  
Exposed Thermal Pad (EP)  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
There is an internal connection between the Exposed  
Thermal Pad (EP) and the VSS pin; they must be  
connected to the same potential on the Printed Circuit  
Board (PCB).  
3.4  
Calibration Common Mode  
Voltage Input  
This pad can be connected to a PCB ground plane to  
provide a larger heat sink. This improves the package  
thermal resistance (JA).  
A low-impedance voltage placed at this input (VCAL  
)
will set the op amps’ Common mode input voltage  
during calibration. If this pin is left open, the Common  
mode input voltage during calibration is approximately  
VDD/3. The internal resistor divider is disconnected  
from the supplies whenever the part is not in  
calibration.  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 21  
MCP621/1S/2/3/4/5/9  
For the MCP625 dual and the MCP629 quad, there is  
an additional constraint on toggling the two CAL/CS  
pins close together; see the tCON specification in  
Table 1-3. If the two pins are toggled simultaneously, or  
if they are toggled separately with an adequate delay  
between them (greater than tCON), then the CAL/CS  
inputs are accepted as valid. If one of the two pins  
toggles, while the other pin’s calibration routine is in  
progress, then an invalid input occurs and the result is  
unpredictable.  
4.0  
APPLICATIONS  
The MCP621/1S/2/3/4/5/9 family of self-zeroed op  
amps is manufactured using Microchip’s state-of-the-  
art CMOS process. It is designed for low-cost, low-  
power and high-precision applications. Its low supply  
voltage, low quiescent current and wide bandwidth  
makes the MCP621/1S/2/3/4/5/9 ideal for battery-  
powered applications.  
4.1  
Calibration and Chip Select  
4.1.3  
INTERNAL POR  
These op amps include circuitry for dynamic calibration  
of the offset voltage (VOS).  
This part includes an internal Power-on Reset (POR) to  
protect the internal calibration memory cells. The POR  
monitors the power supply voltage (VDD). When the  
POR detects a low VDD event, it places the part into the  
Low-Power mode of operation. When the POR detects  
a normal VDD event, it starts a delay counter, then  
triggers a calibration event. The additional delay gives  
a total POR turn-on time of 200 ms (typical); this is also  
the power-up time (since the POR is triggered at power  
up).  
4.1.1  
mCal CALIBRATION CIRCUITRY  
The internal mCal circuitry, when activated, starts a  
delay timer (to wait for the op amp to settle to its new  
bias point), then calibrates the input offset voltage  
(VOS). The mCal circuitry is triggered at power-up (and  
after some power brown-out events) by the internal  
POR, and by the memory’s parity detector. The  
power-up time, when the mCal circuitry triggers the  
calibration sequence, is 200 ms (typical).  
4.1.4  
PARITY DETECTOR  
A parity error detector monitors the memory contents  
for any corruption. In the rare event that a parity error is  
detected (e.g., corruption from an alpha particle), a  
POR event is automatically triggered. This will cause  
the input offset voltage to be recorrected, and the op  
amp will not return to normal operation for a period of  
time (the POR turn-on time, tPON).  
4.1.2  
CAL/CS PIN  
The CAL/CS pin gives the user a means to externally  
demand a Low-Power mode of operation, then to  
calibrate VOS. Using the CAL/CS pin makes it possible  
to correct VOS as it drifts over time (1/f noise and aging;  
see Figure 2-35) and across temperature.  
The CAL/CS pin performs two functions: it places the  
op amp(s) in a Low-Power mode when it is held high,  
and starts a calibration event (correction of VOS) after a  
rising edge.  
4.1.5  
CALIBRATION INPUT PIN  
A VCAL pin is available in some options (e.g., the single  
MCP621) for those applications that need the  
calibration to occur at an internally driven Common  
mode voltage other than VDD/3.  
While in the Low-Power mode, the quiescent current is  
quite small (ISS = -3 µA, typical). The output is also in a  
High Z state.  
Figure 4-1 shows the reference circuit that internally  
sets the op amp’s Common mode reference voltage  
(VCM_INT  
disconnected from the supplies at other times). The  
5 kresistor provides overcurrent protection for the  
buffer.  
During the calibration event, the quiescent current is  
near, but smaller than, the specified quiescent current  
(2.5 mA, typical). The output continues in the High Z  
state, and the inputs are disconnected from the  
external circuit, to prevent internal signals from  
affecting circuit operation. The op amp inputs are  
internally connected to a Common mode voltage buffer  
and feedback resistors. The offset is corrected (using a  
digital state machine, logic and memory), and the  
calibration constants are stored in memory.  
)
during calibration (the resistors are  
To op amp during  
VDD  
calibration  
VCM_INT  
300 k  
5 k  
Once the calibration event is completed, the amplifier is  
reconnected to the external circuitry. The turn-on time,  
when calibration is started with the CAL/CS pin, is 5 ms  
(typical).  
VCAL  
BUFFER  
150 k  
There is an internal 5 Mpull-down resistor tied to the  
CAL/CS pin. If the CAL/CS pin is left floating, the  
amplifier operates normally.  
VSS  
FIGURE 4-1:  
Common-Mode Reference’s  
Input Circuitry.  
DS20002188D-page 22  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
When the VCAL pin is left open, the internal resistor  
divider generates a VCM_INT of approximately VDD/3,  
which is near the center of the input Common mode  
voltage range. It is recommended that an external  
capacitor from VCAL to ground be added to improve  
noise immunity.  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass  
quick ESD events within the specified limits.  
Bond  
VDD  
Pad  
When the VCAL pin is driven by an external voltage  
source, which is within its specified range, the op amp  
will have its input offset voltage calibrated at that  
Common mode input voltage. Make sure that VCAL is  
within its specified range.  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
It is possible to use an external resistor voltage divider  
to modify VCM_INT; see Figure 4-2. The internal circuitry  
at the VCAL pin looks like 100 ktied to VDD/3. The  
parallel equivalent of R1 and R2 should be much  
smaller than 100 kto minimize differences in match-  
ing and temperature drift between the internal and  
external resistors. Again, make sure that VCAL is within  
its specified range.  
Bond  
Pad  
VSS  
FIGURE 4-3:  
Structures.  
Simplified Analog Input ESD  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
(and voltages) at the input pins (see Section 1.1  
“Absolute Maximum Ratings †”). Figure 4-4 shows  
the recommended approach to protecting these inputs.  
The internal ESD diodes prevent the input pins (VIN+  
and VIN–) from going too far below ground, and the  
resistors R1 and R2 limit the possible current drawn out  
of the input pins. Diodes D1 and D2 prevent the input  
pins (VIN+ and VIN–) from going too far above VDD, and  
dump any currents onto VDD. When implemented as  
shown, resistors R1 and R2 also limit the current  
through D1 and D2.  
VDD  
MCP62X  
R1  
VCAL  
C1  
R2  
VSS  
FIGURE 4-2:  
Setting VCM with External  
VDD  
Resistors.  
For instance, a design goal to set VCM_INT = 0.1V when  
VDD = 2.5V could be met with: R1 = 24.3 k,  
R2 = 1.00 kand C1 = 100 nF. This will keep VCAL  
within its range for any VDD, and should be close  
enough to 0V for ground-based applications.  
D1  
R1  
D2  
MCP62X  
V1  
V2  
VOUT  
R2  
4.2  
Input  
PHASE REVERSAL  
VSS – (minimum expected V1)  
R1 >  
R2 >  
2 mA  
VSS – (minimum expected V2)  
2 mA  
4.2.1  
The input devices are designed to not exhibit phase  
inversion when the input pins exceed the supply  
voltages. Figure 2-41 shows an input voltage  
exceeding both supplies with no phase inversion.  
FIGURE 4-4:  
Protecting the Analog  
Inputs.  
It is also possible to connect the diodes to the left of the  
resistor R1 and R2. In this case, the currents through  
the diodes D1 and D2 need to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
4.2.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-3. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 23  
MCP621/1S/2/3/4/5/9  
A significant amount of current can flow out of the  
inputs (through the ESD diodes) when the Common  
mode voltage (VCM) is below ground (VSS); see  
Figure 2-15. Applications that are high-impedance may  
need to limit the usable voltage range.  
4.3.2.1  
Power Dissipation  
Since the output short-circuit current (ISC) is specified  
at ±70 mA (typical), these op amps are capable of both  
delivering and dissipating significant power.  
Two common loads, and their impact on the op amp’s  
power dissipation, will be discussed.  
4.2.3  
NORMAL OPERATION  
Figure 4-7 shows a resistive load (RL) with a DC output  
voltage (VOUT). VL is RL’s ground point, VSS is usually  
ground (0V) and IOUT is the output current. The input  
currents are assumed to be negligible.  
The input stage of the MCP621/1S/2/3/4/5/9 op amps  
use a differential PMOS input stage. It operates at low  
Common mode input voltage (VCM), with VCM up to  
VDD – 1.3V and down to VSS – 0.3V. The input offset  
voltage (VOS) is measured at VCM = VSS – 0.3V and  
VDD – 1.3V to ensure proper operation. See Figure 2-6  
and Figure 2-7 for temperature effects.  
VDD  
IDD  
IOUT  
When operating at very low non-inverting gains, the  
output voltage is limited at the top by the VCM range  
(< VDD – 1.3V); see Figure 4-5.  
VOUT  
MCP62X  
RL  
ISS  
VDD  
VSS  
MCP62X  
VIN  
VL  
VOUT  
FIGURE 4-7:  
Diagram for Resistive Load  
Power Calculations.  
VSS VINVOUT VDD 1.3V  
The DC currents are:  
FIGURE 4-5:  
Limitations for Linear Operation.  
Unity Gain Voltage  
EQUATION 4-1:  
VOUT VL  
IOUT = -------------------------  
4.3  
Rail-to-Rail Output  
RL  
IDD IQ + max0, IOUT  
ISS IQ + min0, IOUT  
4.3.1  
MAXIMUM OUTPUT VOLTAGE  
The Maximum Output Voltage (see Figure 2-16 and  
Figure 2-17) describes the output range for a given  
load. For instance, the output voltage swings to within  
40 mV of the negative rail with a 2 kload tied to  
VDD/2.  
Where:  
IQ = Quiescent supply current for one op  
amp (mA/amplifier)  
VOUT = A DC value (V)  
4.3.2  
OUTPUT CURRENT  
Figure 4-6 shows the possible combinations of output  
voltage (VOUT) and output current (IOUT). IOUT is  
positive when it flows out of the op amp into the  
external circuit.  
The DC op amp power is:  
EQUATION 4-2:  
POA = IDDVDD VOUT+ ISSVSS VOUT  
6.0  
5.5  
5.0  
VOH Limited  
The maximum op amp power, for resistive loads at DC,  
occurs when VOUT is halfway between VDD and VL, or  
halfway between VSS and VL:  
(VDD = 5.5V)  
4.5  
RL = 2 k  
RL = 100  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
RL = 10Ω  
EQUATION 4-3:  
maxPOA= IDDVDD VSS  
max2VDD VLVL VSS  
VOL Limited  
+ -----------------------------------------------------------------  
4RL  
IOUT (mA)  
FIGURE 4-6:  
Output Current.  
DS20002188D-page 24  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Figure 4-7 shows a capacitive load (CL), which is  
driven by a sine wave with DC offset. The capacitive  
load causes the op amp to output higher currents at  
The power dissipated in a package depends on the  
powers dissipated by each op amp in that package:  
higher frequencies. Because the output rectifies IOUT  
the op amp’s dissipated power increases (even though  
the capacitor does not dissipate power).  
,
EQUATION 4-7:  
n
PPKG  
=
P  
OA  
k = 1  
VDD  
Where:  
IDD  
n = Number of op amps in package (1 or 2)  
IOUT  
MCP62X  
VOUT  
The maximum ambient-to-junction temperature rise  
(TJA) and junction temperature (TJ) can be calculated  
using the maximum expected package power (PPKG),  
ambient temperature (TA) and the package thermal  
resistance (JA) found in Table 1-4:  
CL  
ISS  
VSS  
FIGURE 4-8:  
Power Calculations.  
Diagram for Capacitive Load  
EQUATION 4-8:  
TJA = PPKGJA  
TJ = TA + TJA  
The output voltage is assumed to be:  
EQUATION 4-4:  
VOUT = VDC + VAC sint  
Where:  
The worst-case power derating for the op amps in a  
particular package can be easily calculated:  
VDC = DC offset (V)  
EQUATION 4-9:  
VAC = Peak output swing (VPK  
)
TJmax TA  
= Radian frequency (2f) (rad/s)  
PPKG --------------------------  
JA  
Where:  
The op amp’s currents are:  
EQUATION 4-5:  
TJmax = Absolute maximum junction  
temperature (°C)  
dVOUT  
IOUT = CL ---------------- = VACCL cost  
dt  
TA = Ambient temperature (°C)  
Several techniques are available to reduce TJA for a  
given package:  
IDD IQ + max0, IOUT  
ISS IQ + min0, IOUT  
• Reduce JA  
- Use another package  
Where:  
IQ = Quiescent supply current for one op  
- Improve the PCB layout (ground plane, etc.)  
- Add heat sinks and air flow  
amp (mA/amplifier)  
• Reduce max (PPKG  
- Increase RL  
)
The op amp’s instantaneous power, average power  
and peak power are:  
- Decrease CL  
- Limit IOUT using RISO (see Figure 4-9)  
- Decrease VDD  
EQUATION 4-6:  
POA = IDDVDD VOUT+ ISSVSS VOUT  
4VAC fCL  
avePOA= VDD VSSIQ + -----------------------  
maxPOA= VDD VSSIQ + 2VAC fCL  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 25  
MCP621/1S/2/3/4/5/9  
4.4.2  
GAIN PEAKING  
4.4  
Improving Stability  
Figure 4-11 shows an op amp circuit that represents  
non-inverting amplifiers (VM is a DC voltage and VP is  
the input) or inverting amplifiers (VP is a DC voltage  
and VM is the input). The capacitances CN and CG  
represent the total capacitance at the input pins; they  
include the op amp’s Common mode input capacitance  
(CCM), board parasitic capacitance and any capacitor  
placed in parallel.  
4.4.1  
CAPACITIVE LOADS  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. See Figure 2-30. A unity gain buffer (G = +1)  
is the most sensitive to capacitive loads, though all  
gains show the same general behavior.  
CN  
RN  
MCP62X  
When driving large capacitive loads with these op  
amps (e.g., > 10 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-9) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
VP  
VOUT  
VM  
RG  
RF  
CG  
FIGURE 4-11:  
Amplifier with Parasitic  
Capacitance.  
RISO  
CL  
RG  
RF  
VOUT  
CG acts in parallel with RG (except for a gain of +1 V/V),  
which causes an increase in gain at high frequencies.  
CG also reduces the phase margin of the feedback  
loop, which becomes less stable. This effect can be  
reduced by either reducing CG or RF.  
MCP62X  
RN  
FIGURE 4-9:  
Output Resistor, RISO  
CN and RN form a low-pass filter that affects the signal  
Stabilizes Large Capacitive Loads.  
at VP. This filter has a single real pole at 1/(2RNCN).  
The largest value of RF that should be used depends  
on noise gain (see GN in Section 4.4.1 “Capacitive  
Loads”) and CG. Figure 4-12 shows the maximum  
recommended RF for several CG values.  
Figure 4-10 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
1.E+05  
100k  
CG = 10 pF  
CG = 32 pF  
CG = 100 pF  
CG = 320 pF  
CG = 1 nF  
1,000  
100  
10  
1.E+1004k  
1k  
1.E+03  
GN > +1 V/V  
100  
1.E+02  
GN = +1  
1
10  
100  
GN +2  
Noise Gain; GN (V/V)  
1
1p  
10p  
1.E-11  
100p  
1.E-10  
1n  
1.E-09  
10n  
1.E-08  
1.E-12  
FIGURE 4-12:  
Maximum Recommended  
Normalized Capacitance; CL/GN (F)  
RF vs. Gain.  
FIGURE 4-10:  
Recommended RISO Values  
Figures 2-37 and 2-38 show the small signal and large  
signal step responses at G = +1 V/V. The unity gain  
buffer usually has RF = 0and RG open.  
for Capacitive Loads.  
After selecting RISO, double check the resulting fre-  
quency response peaking and step response over-  
shoot. Modify RISO’s value until the response is  
reasonable. Bench evaluation and simulations with the  
MCP621/1S/2/3/4/5/9 SPICE macro model are helpful.  
Figures 2-39 and 2-40 show the small signal and large  
signal step responses at G = -1 V/V. Since the noise  
gain is 2 V/V and CG 10 pF, the resistors were  
chosen to be RF = RG = 1kand RN = 500.  
DS20002188D-page 26  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
It is also possible to add a capacitor (CF) in parallel with  
RF to compensate for the destabilizing effect of CG.  
This makes it possible to use larger values of RF.  
The conditions for stability are summarized in  
Equation 4-10.  
Use coax cables, or low-inductance wiring, to route the  
signal and power to and from the PCB. Mutual and self-  
inductance of power wires is often a cause of crosstalk  
and unusual behavior.  
4.7  
Typical Applications  
EQUATION 4-10:  
4.7.1  
POWER DRIVER WITH HIGH GAIN  
Given:  
GN1 = 1 + RF RG  
Figure 4-13 shows a power driver with high gain  
(1 + R2/R1). The MCP621/1S/2/3/4/5/9 op amp’s short-  
circuit current makes it possible to drive significant  
loads. The calibrated input offset voltage supports  
accurate response at high gains. R3 should be small,  
and equal to R1||R2, in order to minimize the bias  
current induced offset.  
GN2 = 1 + CG CF  
fF = 1 2RFCF  
fZ = fFGN1 GN2  
We need:  
fF fGBWP 2GN2, GN1 < GN2  
fF fGBWP 4GN1, GN1 > GN2  
R1  
R3  
R2  
VDD/2  
VOUT  
RL  
4.5  
Power Supply  
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high-frequency performance. Surface mount,  
multilayer ceramic capacitors, or their equivalent,  
should be used.  
VIN  
MCP62X  
FIGURE 4-13:  
Power Driver.  
4.7.2  
OPTICAL DETECTOR AMPLIFIER  
Figure 4-14 shows a transimpedance amplifier, using  
the MCP621 op amp, in a photo detector circuit. The  
photo detector is a capacitive current source. The op  
amp’s input Common mode capacitance (9 pF, typical)  
and Differential capacitance (2 pF, typical) act in paral-  
lel with CD. RF provides enough gain to produce 10 mV  
These op amps require a bulk capacitor (i.e., 2.2 µF or  
larger) within 50 mm to provide large, slow currents.  
Tantalum capacitors, or their equivalent, may be a good  
choice. This bulk capacitor can be shared with other  
nearby analog parts as long as crosstalk through the  
supplies does not prove to be a problem.  
at VOUT  
.
CF stabilizes the gain and limits  
the transimpedance bandwidth to about 0.51 MHz.  
4.6  
High Speed PCB Layout  
RF’s parasitic capacitance (e.g., 0.15 pF for  
0603 SMD) acts in parallel with CF.  
a
These op amps are fast enough that a little extra care  
in the PCB (Printed Circuit Board) layout can make a  
significant difference in performance. Good PC board  
layout techniques will help you achieve the  
performance shown in the specifications and Typical  
Performance Curves; it will also help you minimize  
EMC (Electro-Magnetic Compatibility) issues.  
CF  
3 pF  
Photo  
Detector  
RF  
100 k  
Use a solid ground plane. Connect the bypass local  
capacitor(s) to this plane with minimal length traces.  
This cuts down inductive and capacitive crosstalk.  
VOUT  
ID  
CD  
100 nA  
30pF  
Separate digital from analog, low-speed from high-  
speed, and low-power from high-power. This will  
reduce interference.  
MCP621  
VDD/2  
Keep sensitive traces short and straight. Separate  
them from interfering components and traces. This is  
especially important for high-frequency (low rise time)  
signals.  
FIGURE 4-14:  
for an Optical Detector.  
Transimpedance Amplifier  
Sometimes, it helps to place guard traces next to victim  
traces. They should be on both sides of the victim  
trace, and as close as possible. Connect guard traces  
to ground plane at both ends, and in the middle for long  
traces.  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 27  
MCP621/1S/2/3/4/5/9  
4.7.3  
H-BRIDGE DRIVER  
Figure 4-15 shows the MCP622 dual op amp used as  
a H-bridge driver. The load could be a speaker or a DC  
motor.  
½ MCP622  
VIN  
VOT  
RF  
RF  
RF  
RL  
RGT  
RGB  
VOB  
VDD/2  
½ MCP622  
H-Bridge Driver.  
FIGURE 4-15:  
This circuit automatically makes the noise gains (GN)  
equal, when the gains are set properly, so that the  
frequency responses match well (in magnitude and in  
phase). Equation 4-11 shows how to calculate RGT and  
RGB so that both op amps have the same DC gains;  
GDM needs to be selected first.  
EQUATION 4-11:  
VOT VOB  
GDM -------------------------------- 2 V / V  
V
IN VDD 2  
RF  
RGT = --------------------------------  
GDM 21  
RF  
RGB = ------------------  
GDM 2  
Equation 4-12 gives the resulting Common mode and  
Differential mode output voltages.  
EQUATION 4-12:  
VOT + VOB  
--------------------------- = ----------  
VDD  
2
2
VDD  
V
OT VOB = GDM  
V
IN ----------  
2
DS20002188D-page 28  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
5.4  
Analog Demonstration and  
Evaluation Boards  
5.0  
DESIGN AIDS  
Microchip provides the basic design aids needed for  
the MCP621/1S/2/3/4/5/9 family of op amps.  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help customers achieve faster time to  
market. For a complete listing of these boards and their  
corresponding user’s guides and technical information,  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the  
MCP621/1S/2/3/4/5/9 op amps is available on the  
Microchip web site at www.microchip.com. This model  
is intended to be an initial design tool that works well in  
the op amp’s linear region of operation over the  
temperature range. See the model file for information  
on its capabilities.  
visit  
the  
Microchip  
web  
site  
at  
www.microchip.com/analog tools.  
Some boards that are especially useful are:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N SOIC8EV  
®
5.2  
FilterLab Software  
5.5  
Application Notes  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
Filter-Lab design tool provides full schematic diagrams  
of the filter circuit with component values. It also  
outputs the filter circuit in SPICE format, which can be  
used with the macro model to simulate actual filter  
performance.  
The following Microchip Application Notes are  
available on the Microchip web site at www.microchip.  
com/appnotes and are recommended as supplemental  
reference resources.  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits” (DS21821)  
AN722: “Operational Amplifier Topologies and DC  
Specifications” (DS00722)  
AN723: “Operational Amplifier AC Specifications  
and Applications” (DS00723)  
5.3  
Microchip Advanced Part Selector  
(MAPS)  
AN884: “Driving Capacitive Loads With Op Amps”  
(DS00884)  
MAPS is a software tool that helps efficiently identify  
Microchip devices that fit particular design  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview” (DS00990)  
a
requirement. Available at no cost from the Microchip  
web site at www.microchip.com/maps, the MAPS is an  
overall selection tool for Microchip’s product portfolio  
that includes Analog, Memory, MCUs and DSCs. Using  
this tool, a customer can define a filter to sort features  
for a parametric search of devices and export  
side-by-side technical comparison reports. Helpful links  
are also provided for data sheets, purchase and  
sampling of Microchip parts.  
AN1177: “Op Amp Precision Design: DC Errors”  
(DS01177)  
AN1228: “Op Amp Precision Design: Random  
Noise” (DS01228)  
AN1332: “Current Sensing Circuit Concepts and  
Fundamentals” (DS01332)  
Some of these application notes, and others, are listed  
in the design guide:  
“Signal Chain Design Guide” (DS21825)  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 29  
MCP621/1S/2/3/4/5/9  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SOT-23 (MCP621S)  
Example:  
YU25  
XXNN  
Example  
JB25  
6-Lead SOT-23 (MCP623)  
XXNN  
Example:  
8-Lead TDFN (2 x 3) (MCP621)  
AAY  
129  
25  
8-Lead DFN (3x3) (MCP622)  
Example  
DABL  
1129  
256  
Device  
MCP622T-E/MF  
Code  
DABL  
Note: Applies to 8-Lead 3x3 DFN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS20002188D-page 30  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Package Marking Information (Continued)  
8-Lead SOIC (150 mil) (MCP621, MCP622)  
Example:  
MCP621E  
SN 1129  
e
3
256  
NNN  
Example  
10-Lead DFN (3x3) (MCP625)  
BAFA  
1129  
256  
Device  
Code  
MCP625T-E/MF  
BAFA  
Note: Applies to 10-Lead 3x3 DFN  
Example:  
10-Lead MSOP (MCP625)  
625EUN  
129256  
Example  
14-Lead SOIC (.150”) (MCP624)  
MCP624  
e
3
E/SL
1129256  
14-Lead TSSOP (MCP624)  
Example  
XXXXXXXX  
YYWW  
624E/ST  
1129  
256  
NNN  
16-Lead QFN (4x4) (MCP629)  
Example  
629  
E/ML
129256  
PIN 1  
PIN 1  
e
3
2009-2014 Microchip Technology Inc.  
DS20002188D-page 31  
MCP621/1S/2/3/4/5/9  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢗꢁꢴꢟꢉꢠꢜꢡ  
ꢱꢐꢍꢇꢃꢋꢅꢉꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢔꢓꢃꢆꢍ  
ꢧꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢀꢁꢴꢗꢉꢠꢜꢡ  
ꢗꢁꢴꢗ  
ꢗꢁꢷꢴ  
ꢗꢁꢗꢗ  
ꢘꢁꢘꢗ  
ꢀꢁꢸꢗ  
ꢘꢁꢙꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢸꢟ  
ꢗꢻ  
ꢀꢁꢞꢟ  
ꢀꢁꢸꢗ  
ꢗꢁꢀꢟ  
ꢸꢁꢘꢗ  
ꢀꢁꢷꢗ  
ꢸꢁꢀꢗ  
ꢗꢁꢺꢗ  
ꢗꢁꢷꢗ  
ꢸꢗꢻ  
ꢮꢀ  
ꢗꢁꢗꢷ  
ꢗꢁꢘꢗ  
ꢗꢁꢘꢺ  
ꢗꢁꢟꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢗꢴꢀꢠ  
DS20002188D-page 32  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 33  
MCP621/1S/2/3/4/5/9  
6-Lead Plastic Small Outline Transistor (CHY) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
b
4
N
E
E1  
PIN 1 ID BY  
LASER MARK  
1
2
3
e
e1  
D
c
A
φ
A2  
L
A1  
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
6
0.95 BSC  
Outside Lead Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
e1  
A
A2  
A1  
E
E1  
D
L
1.90 BSC  
0.90  
0.89  
0.00  
2.20  
1.30  
2.70  
0.10  
0.35  
0°  
1.45  
1.30  
0.15  
3.20  
1.80  
3.10  
0.60  
0.80  
30°  
L1  
I
c
b
0.08  
0.20  
0.26  
0.51  
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-028B  
DS20002188D-page 34  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
6-Lead Plastic Small Outline Transistor (CHY) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 35  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002188D-page 36  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 37  
MCP621/1S/2/3/4/5/9  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ!ꢐꢄꢈꢆ"ꢈꢄꢊ#ꢆꢛꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ$ꢄ%ꢃꢆꢕ&ꢛꢖꢆMꢆꢘ*ꢙ*+,.ꢀꢆꢎꢎꢆ/ꢔꢅ0ꢆꢗꢒ!"ꢛꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
DS20002188D-page 38  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 39  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002188D-page 40  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 41  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002188D-page 42  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 43  
MCP621/1S/2/3/4/5/9  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢛꢖꢆMꢆꢛꢄꢓꢓꢔ1#ꢆꢙ,4+ꢆꢎꢎꢆ/ꢔꢅ0ꢆꢗꢍꢏ57ꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
DS20002188D-page 44  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 45  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002188D-page 46  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 47  
MCP621/1S/2/3/4/5/9  
UN  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002188D-page 48  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
UN  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 49  
MCP621/1S/2/3/4/5/9  
10-Lead Plastic Micro Small Outline Package (UN) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002188D-page 50  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 51  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002188D-page 52  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 53  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002188D-page 54  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 55  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002188D-page 56  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
89ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ;ꢐꢄꢅꢆ"ꢈꢄꢊ#ꢆꢛꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ$ꢄ%ꢃꢆꢕ&ꢂꢖꢆMꢆ<*<*+,4ꢆꢎꢎꢆ/ꢔꢅ0ꢆꢗ;"ꢛꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
D
D2  
EXPOSED  
PAD  
e
E
E2  
2
1
2
b
1
K
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A3  
A
A1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢜꢍꢊꢆꢋꢈꢑꢑꢉ  
ꢡꢈꢆꢍꢊꢎꢍꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢌꢖꢔꢈꢇꢅꢋꢉꢪꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢌꢖꢔꢈꢇꢅꢋꢉꢪꢊꢋꢉꢮꢅꢆꢚꢍꢒ  
ꢡꢈꢆꢍꢊꢎꢍꢉꢹꢃꢋꢍꢒ  
ꢡꢈꢆꢍꢊꢎꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢀꢺ  
ꢗꢁꢺꢟꢉꢠꢜꢡ  
ꢗꢁꢴꢗ  
ꢗꢁꢗꢘ  
ꢗꢁꢘꢗꢉꢯꢌꢧ  
ꢞꢁꢗꢗꢉꢠꢜꢡ  
ꢘꢁꢺꢟ  
ꢞꢁꢗꢗꢉꢠꢜꢡ  
ꢘꢁꢺꢟ  
ꢗꢁꢷꢗ  
ꢗꢁꢗꢗ  
ꢀꢁꢗꢗ  
ꢗꢁꢗꢟ  
ꢛꢀ  
ꢛꢸ  
ꢌꢘ  
ꢂꢘ  
ꢘꢁꢟꢗ  
ꢘꢁꢷꢗ  
ꢘꢁꢟꢗ  
ꢗꢁꢘꢟ  
ꢗꢁꢸꢗ  
ꢗꢁꢘꢗ  
ꢘꢁꢷꢗ  
ꢗꢁꢸꢟ  
ꢗꢁꢟꢗ  
ꢗꢁꢸꢗ  
ꢗꢁꢞꢗ  
ꢡꢈꢆꢍꢊꢎꢍꢼꢍꢈꢼꢌꢖꢔꢈꢇꢅꢋꢉꢪꢊꢋ  
{
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢪꢃꢆꢉꢀꢉꢥꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊꢤꢉꢥꢊꢓꢤꢩꢉꢳꢐꢍꢉꢄꢐꢇꢍꢉꢳꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉꢦꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢪꢊꢎꢨꢊꢚꢅꢉꢃꢇꢉꢇꢊꢦꢉꢇꢃꢆꢚꢐꢏꢊꢍꢅꢋꢁ  
ꢸꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢯꢌꢧꢢ ꢯꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢩꢉꢐꢇꢐꢊꢏꢏꢤꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢩꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏꢤꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢀꢘꢙꢠ  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 57  
MCP621/1S/2/3/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002188D-page 58  
2009-2014 Microchip Technology Inc.  
MCP621/1S/2/3/4/5/9  
APPENDIX A: REVISION HISTORY  
Revision D (July 2014)  
The following is the list of modifications:  
1. Updated the title of the document.  
2. Added the High Gain-Bandwidth Op Amp  
Portfolio table and updated all sections on  
page 1.  
Revision C (August 2011)  
The following is the list of modifications:  
1. Added the MCP621S and MCP623 amplifiers to  
the product family and the related information  
throughout the document.  
2. Added the 2x3 TDFN (8L) package option for  
MCP621, SOT-23 (5L) package for MCP621S  
and SOT-23 (6L) package option for MCP623  
and the related information throughout the  
document.  
3. Updated Section 6.0 “Packaging Informa-  
tion” with markings for the new additions.  
Added the corresponding SOT-23 (5L), SOT-23  
(6L) and 2x3 TDFN (8L) package options and  
related information.  
4. Updated table description and examples in  
Product Identification System.  
Revision B (June 2011)  
The following is the list of modifications:  
1. Added the MCP624 and MCP629 amplifiers to  
the product family and the related information  
throughout the document.  
2. Added the corresponding SOIC (14L), TSSOP  
(14L) and QFN (16L) package options and  
related information.  
Revision A (June 2009)  
• Original Release of this Document.  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 59  
MCP621/1S/2/3/4/5/9  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
-X  
/XX  
Examples:  
a)  
MCP621T-E/SN:  
Tape and Reel,  
Extended temperature,  
8LD SOIC package  
Temperature  
Range  
Package  
b)  
c)  
d)  
e)  
f)  
MCP621T-E/MNY: Tape and Reel,  
Device:  
MCP621:  
MCP621T:  
Single Op Amp  
Single Op Amp (Tape and Reel)  
(SOIC)  
Single Op Amp (SOT-23)  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(DFN and SOIC)  
Single Op Amp (Tape and Reel) (SOT-23)  
Quad Op Amp  
Quad Op Amp (Tape and Reel)  
(TSSOP and SOIC)  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(DFN and MSOP)  
Quad Op Amp  
Extended temperature,  
8LD TDFN package  
MCP621ST-E/OT: Tape and Reel,  
MCP621S:  
MCP622:  
MCP622T:  
Extended temperature,  
5LD SOT-23 package  
MCP622T-E/MF:  
MCP622T-E/SN:  
Tape and Reel,  
Extended temperature,  
8LD DFN package  
MCP623T:  
MCP624:  
MCP624T:  
Tape and Reel,  
Extended temperature,  
8LD SOIC package  
MCP623T-E/CHY: Tape and Reel,  
Extended temperature,  
MCP625:  
MCP625T:  
6LD SOT-23 package  
MCP629:  
MCP629T:  
g)  
h)  
i)  
MCP624T-E/SL:  
MCP624T-E/ST:  
Tape and Reel,  
Extended temperature,  
14LD SOIC package  
Quad Op Amp (Tape and Reel)  
(QFN)  
Tape and Reel,  
Extended temperature,  
14LD TSSOP package  
MCP625T-E/MF: Tape and Reel,  
Extended temperature,  
Temperature  
Range:  
E
= -40°C to +125°C  
Package:  
CHY = Plastic Small Outline (SOT-23), 6-lead  
MF = Plastic Dual Flat, No Lead (3x3 DFN),  
8-lead, 10-lead  
ML = Plastic Quad Flat, No Lead Package (4x4 QFN),  
(4x4x0.9 mm), 16-lead  
MNY = Plastic Dual Flat, No Lead (2x3 TDFN),  
8-lead  
OT = Plastic Small Outline (SOT-23), 5-lead  
SN = Plastic Small Outline, (3.90 mm), 8-lead  
ST = Plastic Thin Shrink Small Outline, (4.4 mm TSSOP),  
14-lead  
10LD DFN package  
Tape and Reel,  
Extended temperature,  
10LD MSOP package  
Tape and Reel,  
j)  
MCP625T-E/UN:  
MCP629T-E/ML:  
k)  
Extended temperature,  
16LD QFN package  
SL = Plastic Small Outline, Narrow, (3.90 mm SOIC),  
14-lead  
UN = Plastic Micro Small Outline, (MSOP), 10-lead  
* Y = Nickel palladium gold manufacturing designator.  
Only available on the TDFN package.  
DS20002188D-page 60  
2009-2014 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,  
LANCheck, MediaLB, MOST, MOST logo, MPLAB,  
32  
OptoLyzer, PIC, PICSTART, PIC logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
The Embedded Control Solutions Company and mTouch are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit  
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,  
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,  
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009-2014, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-63276-381-5  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2009-2014 Microchip Technology Inc.  
DS20002188D-page 61  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-3019-1500  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Austin, TX  
Tel: 512-257-3370  
Germany - Pforzheim  
Tel: 49-7231-424750  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Poland - Warsaw  
Tel: 48-22-3325737  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
03/25/14  
DS20002188D-page 62  
2009-2014 Microchip Technology Inc.  

相关型号:

MCP624-E/SL

QUAD OP-AMP, 200 uV OFFSET-MAX, 20 MHz BAND WIDTH, PDSO14, 3.90 MM, LEAD FREE, PLASTIC, SOIC-14
MICROCHIP

MCP6241

50 uA, 650 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241-E/LT

50 uA, 650 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241-E/MC

50 μA, 550 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241-E/MS

50 uA, 650 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241-E/OT

50 uA, 650 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241-E/P

50 uA, 650 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241-E/SL

50 μA, 550 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241-E/SN

50 uA, 650 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241-E/ST

50 μA, 550 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241R

50 uA, 550 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241RT

50 μA, 550 kHz Rail-to-Rail Op Amp
MICROCHIP