MCP6241-E/ST [MICROCHIP]

50 μA, 550 kHz Rail-to-Rail Op Amp; 50 μA , 550 kHz的轨至轨运算放大器
MCP6241-E/ST
型号: MCP6241-E/ST
厂家: MICROCHIP    MICROCHIP
描述:

50 μA, 550 kHz Rail-to-Rail Op Amp
50 μA , 550 kHz的轨至轨运算放大器

运算放大器
文件: 总38页 (文件大小:666K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6241/1R/1U/2/4  
50 µA, 550 kHz Rail-to-Rail Op Amp  
Description  
Features  
• Gain Bandwidth Product: 550 kHz (typical)  
• Supply Current: IQ = 50 µA (typical)  
• Supply Voltage: 1.8V to 5.5V  
The Microchip Technology Inc. MCP6241/1R/1U/2/4  
operational amplifiers (op amps) provide wide  
bandwidth for the quiescent current. The MCP6241/1R/  
1U/2/4 has a 550 kHz gain bandwidth product and 68°  
(typical) phase margin. This family operates from a  
single supply voltage as low as 1.8V, while drawing  
50 µA (typical) quiescent current. In addition, the  
MCP6241/1R/1U/2/4 family supports rail-to-rail input  
and output swing, with a common mode input voltage  
range of VDD + 300 mV to VSS – 300 mV. These op  
amps are designed in one of Microchip’s advanced  
CMOS processes.  
• Rail-to-Rail Input/Output  
• Extended Temperature Range: -40°C to +125°C  
• Available in 5-pin SC-70 and SOT-23 packages  
Applications  
• Automotive  
• Portable Equipment  
• Photodiode (Transimpedance) Amplifier  
• Analog Filters  
Package Types  
MCP6241  
MCP6241  
PDIP, SOIC, MSOP  
• Notebooks and PDAs  
• Battery-Powered Systems  
SOT-23-5  
1
2
3
4
8
7
6
5
NC  
NC  
V
V
V
1
2
3
5
4
DD  
OUT  
Design Aids  
V
+
+
DD  
IN  
V
SS  
+
V
V
OUT  
IN  
• SPICE Macro Models  
V
V
IN  
IN  
V
NC  
SS  
• Mindi™ Circuit Designer & Simulator  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
MCP6241R  
MCP6242  
PDIP, SOIC, MSOP  
SOT-23-5  
VOUTA  
V
V
VDD  
1
5
4
1
2
8
7
6
5
SS  
OUT  
_
V
2
3
VINA  
DD  
-
VOUTB  
+
Typical Application  
_
V
+
V –  
IN  
VINA+ 3  
VSS  
IN  
+
-
VINB  
4
VINB  
+
RG2  
VIN2  
VIN1  
RG1  
MCP6241U  
SC-70-5, SOT-23-5  
MCP6244  
PDIP, SOIC, TSSOP  
RF  
V
V
+
VOUTA  
14 VOUTD  
1
2
3
4
1
2
3
5
DD  
IN  
VDD  
+
V
- + + 13 VIND  
-
+
VINA  
+
SS  
RX  
RY  
VOUT  
MCP6241  
+
VINA  
12 VIND  
V
V
OUT  
4
IN  
VDD  
V
SS  
11  
RZ  
MCP6241  
2x3 DFN*  
VINB  
+
10 VINC  
-
9 VINC  
+
5
6
7
- +  
+
VINB  
VOUTB  
8 VOUTC  
NC  
NC  
1
8
VIN  
VIN  
VSS  
VDD  
2
7
6
5
EP  
9
Summing Amplifier Circuit  
+
VOUT  
NC  
3
4
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
© 2008 Microchip Technology Inc.  
DS21882D-page 1  
MCP6241/1R/1U/2/4  
NOTES:  
DS21882D-page 2  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS ........................................................................7.0V  
Current at Analog Input Pins (VIN+, VIN).....................±2 mA  
Analog Inputs (VIN+, VIN–) †........ VSS – 1.0V to VDD + 1.0V  
All Other Inputs and Outputs ......... VSS – 0.3V to VDD + 0.3V  
†† See Section 4.1.2 “Input Voltage and Current Limits”.  
Difference Input Voltage ...................................... |VDD – VSS  
|
Output Short Circuit Current ................................Continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature ..................................65° C to +150°C  
Maximum Junction Temperature (TJ)..........................+150°C  
ESD Protection On All Pins (HBM; MM) .............. ≥ 4 kV; 300V  
DC ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND,  
VCM = VDD/2, RL = 100 kΩ to VDD/2 and VOUT VDD/2.  
Parameters  
Input Offset  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset Voltage  
VOS  
VOS  
-5.0  
-7.0  
+5.0  
+7.0  
mV VCM = VSS  
Extended Temperature  
mV TA= -40°C to +125°C,  
VCM = VSS (Note 1)  
Input Offset Drift with  
Temperature  
ΔVOS/ΔTA  
±3.0  
83  
µV/°C TA= -40°C to +125°C,  
VCM = VSS  
Power Supply Rejection  
PSRR  
dB VCM = VSS  
Input Bias Current and Impedance  
Input Bias Current:  
IB  
IB  
±1.0  
20  
pA  
At Temperature  
pA TA = +85°C  
At Temperature  
IB  
1100  
pA TA = +125°C  
Input Offset Current  
IOS  
ZCM  
ZDIFF  
±1.0  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
1013||6  
1013||3  
Ω||pF  
Ω||pF  
Common Mode Input Range  
Common Mode Rejection Ratio  
Open-Loop Gain  
VCMR  
VSS – 0.3  
60  
VDD + 0.3  
V
CMRR  
75  
dB  
VCM = -0.3V to 5.3V, VDD = 5V  
DC Open-Loop Gain  
(large signal)  
AOL  
90  
110  
dB VOUT = 0.3V to VDD – 0.3V,  
VCM = VSS  
Output  
Maximum Output Voltage Swing  
V
OL, VOH VSS + 35  
VDD – 35 mV RL = 10 kΩ, 0.5V Input  
Overdrive  
Output Short-Circuit Current  
ISC  
ISC  
±6  
mA VDD = 1.8V  
mA VDD = 5.5V  
±23  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
30  
5.5  
70  
V
Quiescent Current per Amplifier  
50  
µA IO = 0, VCM = VDD – 0.5V  
Note 1: The SC-70 package is only tested at +25°C.  
© 2008 Microchip Technology Inc.  
DS21882D-page 3  
MCP6241/1R/1U/2/4  
AC ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8 to 5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, RL = 10 kΩ to VDD/2 and CL = 60 pF.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
550  
68  
kHz  
°
G = +1 V/V  
Slew Rate  
SR  
0.30  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
10  
45  
µVP-P f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
0.6  
fA/Hz f = 1 kHz  
TEMPERATURE CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
(Note)  
Thermal Package Resistances  
Thermal Resistance, 5L-SC70  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-DFN (2x3)  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
331  
256  
84.5  
206  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
163  
70  
120  
100  
Note:  
The internal Junction Temperature (TJ) must not exceed the Absolute Maximum specification of +150°C.  
1.1  
Test Circuits  
The test circuits used for the DC and AC tests are  
shown in Figure 1-1 and Figure 1-2. The bypass  
capacitors are laid out according to the rules discussed  
in Section 4.6 “PCB Surface Leakage”.  
VDD  
1 µF  
0.1 µF  
VDD/2  
VOUT  
RL  
RN  
RG  
MCP624X  
VDD  
1 µF  
CL  
0.1 µF  
VIN  
RF  
VIN  
VOUT  
RL  
RN  
RG  
VL  
MCP624X  
CL  
FIGURE 1-2:  
AC and DC Test Circuit for  
Most Inverting Gain Conditions.  
RF  
VDD/2  
VL  
FIGURE 1-1:  
AC and DC Test Circuit for  
Most Non-Inverting Gain Conditions.  
DS21882D-page 4  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
90  
85  
80  
75  
70  
630 Samples  
VCM = VSS  
PSRR (VCM = VSS  
)
6%  
4%  
CMRR (VCM = -0.3V to +5.3V,  
2%  
V
DD = 5.0V)  
0%  
-50  
-25  
0
25  
50  
75  
100  
125  
Input Offset Voltage (mV)  
Ambient Temperature (°C)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
CMRR, PSRR vs. Ambient  
Temperature.  
110  
100  
90  
120  
100  
80  
0
RL = 10.0 k  
-30  
VCM = VDD/2  
PSRR-  
Gain  
-60  
CMRR  
80  
60  
-90  
70  
PSRR+  
Phase  
60  
40  
20  
0
-120  
-150  
-180  
-210  
50  
40  
30  
-20  
20  
0.1  
1
10 100 1k 10k 100k 1M 10M  
10  
100  
1.E+02  
1k  
10k  
1.E+04  
100k  
1.E+05  
1.E- 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+  
1.E+01  
1.E+03  
Frequency (Hz)  
Frequency (Hz)  
01 00 01 02 03 04 05 06 07  
FIGURE 2-2:  
PSRR, CMRR vs.  
FIGURE 2-5:  
Open-Loop Gain, Phase vs.  
Frequency.  
Frequency.  
25%  
30%  
180 Samples  
VCM = VDD/2  
180 Samples  
VCM = VDD/2  
TA = +125°C  
25%  
20%  
15%  
10%  
5%  
20%  
15%  
10%  
5%  
TA = +85°C  
0%  
0%  
Input Bias Current (pA)  
Input Bias Current (nA)  
FIGURE 2-3:  
Input Bias Current at +85°C.  
FIGURE 2-6:  
Input Bias Current at  
+125°C.  
© 2008 Microchip Technology Inc.  
DS21882D-page 5  
MCP6241/1R/1U/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
10,000  
20%  
628 Samples  
18%  
VCM = VSS  
16%  
14%  
TA = -40°C to +125°C  
1,000  
12%  
10%  
8%  
6%  
4%  
2%  
0%  
100  
10  
0.1  
1
10  
100  
1k  
10k 100k  
1.E-01 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0  
Frequency (Hz)  
Input Offset Voltage Drift (µV/°C)  
0
1
2
3
4
5
FIGURE 2-7:  
Input Noise Voltage Density  
FIGURE 2-10:  
Input Offset Voltage Drift.  
vs. Frequency.  
700  
650  
600  
550  
500  
450  
300  
200  
100  
0
VCM = VSS  
VDD = 1.8V  
VDD = 5.5V  
TA = -40°C  
TA = +25°C  
-100  
-200  
-300  
VDD = 1.8V  
400  
350  
300  
TA = +85°C  
TA = +125°C  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-11:  
Input Offset Voltage vs.  
FIGURE 2-8:  
Input Offset Voltage vs.  
Output Voltage.  
Common Mode Input Voltage at V = 1.8V.  
DD  
35  
30  
25  
20  
15  
10  
5
400  
+ISC  
VDD = 5.5V  
300  
200  
TA = +125°C  
T
A = +85°C  
TA = +25°C  
A = -40°C  
0
100  
-5  
TA = -40°C  
-10  
-15  
-20  
-25  
-30  
-35  
T
0
TA = +25°C  
TA = +85°C  
-100  
TA = +125°C  
-200  
-ISC  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-12:  
Output Short-Circuit Current  
FIGURE 2-9:  
Input Offset Voltage vs.  
vs. Ambient Temperature.  
Common Mode Input Voltage at V = 5.5V.  
DD  
DS21882D-page 6  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
0.50  
G = +1 V/V  
VDD = 5.5V  
RL = 10 k  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
Falling Edge  
VDD = 1.8V  
Rising Edge  
-50  
-25  
0
25  
50  
75  
100 125  
Time (1 µs/div)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Slew Rate vs. Ambient  
FIGURE 2-16:  
Small-Signal, Non-Inverting  
Temperature.  
Pulse Response.  
1,000  
100  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.0V  
G = +1 V/V  
VDD – VOH  
VOL – VSS  
1
10µ  
100µ  
1.E-01  
1m  
1.E+00  
10m  
1.E+01  
1.E-02  
Time (10 µs/div)  
Output Current Magnitude (A)  
FIGURE 2-14:  
Output Voltage Headroom  
FIGURE 2-17:  
Large-Signal, Non-Inverting  
vs. Output Current Magnitude.  
Pulse Response.  
80  
10  
VCM = 0.9VDD  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 5.5V  
VDD = 1.8V  
1
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0.1  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
1k  
10k  
1.E+04  
Frequency (Hz)  
100k  
1M  
1.E+06  
1.E+03  
1.E+05  
FIGURE 2-15:  
Maximum Output Voltage  
FIGURE 2-18:  
Quiescent Current vs.  
Swing vs. Frequency.  
Power Supply Voltage.  
© 2008 Microchip Technology Inc.  
DS21882D-page 7  
MCP6241/1R/1U/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
1.E-02  
10m  
1.E-03  
1m  
1.E- 4  
100µ  
1.E1-05µ  
1.E-016µ  
100n  
1.E- 7  
10n  
1.E- 8  
1n  
1.E-09  
100p  
1.E-10  
10p  
1.E-11  
+125°C  
+85°C  
+25°C  
-40°C  
1p  
1.E-12  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
FIGURE 2-19:  
Measured Input Current vs.  
Input Voltage (below V ).  
SS  
DS21882D-page 8  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).  
TABLE 3-1:  
PIN FUNCTION TABLE FOR SINGLE OP AMPS  
MCP6241  
MCP6241R  
MCP6241U  
Symbol  
Description  
MSOP, PDIP,  
SOIC  
SOT-23-5,  
SC-70  
DFN  
SOT-23-5  
SOT-23-5  
6
6
1
4
1
4
4
3
VOUT  
VIN–  
VIN+  
VDD  
VSS  
NC  
Analog Output  
2
2
Inverting Input  
3
3
7
3
3
1
Non-inverting Input  
7
5
2
5
Positive Power Supply  
Negative Power Supply  
No Internal Connection  
Exposed Thermal Pad (EP);  
4
1, 5, 8  
9
4
2
5
2
1, 5, 8  
EP  
must be connected to VSS  
.
TABLE 3-2:  
PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS  
MCP6242  
MCP6244  
Symbol  
Description  
MSOP, PDIP, SOIC PDIP, SOIC, TSSOP  
1
2
1
2
VOUTA  
Analog Output (op amp A)  
VINA  
+
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
3
3
VINA  
8
4
VDD  
5
5
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
6
6
VINB  
7
7
VOUTB  
VOUTC  
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
VSS  
VIND  
+
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
VIND  
VOUTD  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
3.1  
Analog Outputs  
The output pins are low-impedance voltage sources.  
3.2  
Analog Inputs  
3.4  
Exposed Thermal Pad (EP)  
The non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
There is an internal electrical connection between the  
Exposed Thermal Pad (EP) and the VSS pin; they must  
be connected to the same potential on the Printed  
Circuit Board (PCB).  
3.3  
Power Supply (VSS and VDD)  
The positive power supply (VDD) is 1.8V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
© 2008 Microchip Technology Inc.  
DS21882D-page 9  
MCP6241/1R/1U/2/4  
NOTES:  
DS21882D-page 10  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
4.0  
APPLICATION INFORMATION  
Bond  
VDD  
The MCP6241/1R/1U/2/4 family of op amps is manu-  
factured using Microchip’s state-of-the-art CMOS  
process and is specifically designed for low-power and  
general-purpose applications. The low supply voltage,  
low quiescent current and wide bandwidth makes the  
MCP6241/1R/1U/2/4 ideal for battery-powered  
applications.  
Pad  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
4.1  
Rail-to-Rail Inputs  
Bond  
Pad  
VSS  
4.1.1  
PHASE REVERSAL  
The MCP6241/1R/1U/2/4 op amp is designed to  
prevent phase reversal when the input pins exceed the  
supply voltages. Figure 4-1 shows the input voltage  
exceeding the supply voltage without any phase  
reversal.  
FIGURE 4-2:  
Structures.  
Simplified Analog Input ESD  
In order to prevent damage and/or improper operation  
of these op amps, the circuit they are in must limit the  
currents and voltages at the VIN+ and VIN– pins (see  
Absolute Maximum Ratings † at the beginning of  
Section 1.0 “Electrical Characteristics”). Figure 4-3  
shows the recommended approach to protecting these  
inputs. The internal ESD diodes prevent the input pins  
(VIN+ and VIN–) from going too far below ground, and  
the resistors R1 and R2 limit the possible current drawn  
out of the input pins. Diodes D1 and D2 prevent the  
input pins (VIN+ and VIN–) from going too far above  
VDD, and dump any currents onto VDD. When  
implemented as shown, resistors R1 and R2 also limit  
the current through D1 and D2.  
6
VDD = 5.0V  
G = +2 V/V  
VOUT  
5
4
VIN  
3
2
1
0
-1  
Time (1 ms/div)  
VDD  
FIGURE 4-1:  
The MCP6241/1R/1U/2/4  
Show No Phase Reversal.  
D1 D2  
4.1.2 INPUT VOLTAGE AND CURRENT  
V1  
LIMITS  
R1  
MCP624X  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-2. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass  
quick ESD events within the specified limits.  
V2  
R2  
R3  
VSS – (minimum expected V1)  
R1 >  
2 mA  
VSS – (minimum expected V2)  
R2 >  
2 mA  
FIGURE 4-3:  
Protecting the Analog  
Inputs.  
It is also possible to connect the diodes to the left of  
resistors R1 and R2. In this case, current through the  
diodes D1 and D2 needs to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
© 2008 Microchip Technology Inc.  
DS21882D-page 11  
MCP6241/1R/1U/2/4  
A significant amount of current can flow out of the  
inputs when the common mode voltage (VCM) is below  
ground (VSS); see Figure 2-19. Applications that are  
high impedance may need to limit the useable voltage  
range.  
1.E+04  
10k  
1.E+03  
1k  
4.1.3  
NORMAL OPERATION  
The input stage of the MCP6241/1R/1U/2/4 op amps  
use two differential CMOS input stages in parallel. One  
operates at low common mode input voltage (VCM),  
while the other operates at high VCM. WIth this topol-  
ogy, the device operates with VCM up to 0.3V above  
GN = +1 V/V  
GN +2 V/V  
1.E+10020  
10p  
100p  
1.E+02  
1n  
10n  
1.E+01  
1.E+03  
1.E+04  
Normalized Load Capacitance; CL/GN (F)  
VDD and 0.3V below VSS  
.
FIGURE 4-5:  
for Capacitive Loads.  
Recommended R  
Values  
ISO  
4.2  
Rail-to-Rail Output  
The output voltage range of the MCP6241/1R/1U/2/4  
op amps is VDD – 35 mV (maximum) and VSS + 35 mV  
(minimum) when RL = 10 kΩ is connected to VDD/2 and  
VDD = 5.5V. Refer to Figure 2-14 for more information.  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Evaluation on the bench and  
simulations with the MCP6241/1R/1U/2/4 SPICE  
macro model are very helpful. Modify RISO’s value until  
the response is reasonable.  
4.3  
Capacitive Loads  
Driving large capacitive loads can cause stability  
problems for voltage-feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. A unity-gain buffer (G = +1) is the most  
sensitive to capacitive loads, but all gains show the  
same general behavior.  
4.4  
Supply Bypass  
With this op amp, the power supply pin (VDD for  
single-supply) should have a local bypass capacitor  
(i.e., 0.01 µF to 0.1 µF) within 2 mm for good high-  
frequency performance. It can use a bulk capacitor  
(i.e., 1 µF or larger) within 100 mm to provide large,  
slow currents. This bulk capacitor can be shared with  
other nearby analog parts.  
When driving large capacitive loads with these op  
amps (e.g., > 70 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-4) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
4.5  
Unused Op Amps  
An unused op amp in a quad package (MCP6244)  
should be configured as shown in Figure 4-6. Both  
circuits prevent the output from toggling and causing  
crosstalk. Circuit A can use any reference voltage  
between the supplies, provides a buffered DC voltage,  
and minimizes the supply current draw of the unused  
op amp. Circuit  
B
minimizes the number of  
components, but may draw a little more supply current  
for the unused op amp.  
RISO  
VOUT  
MCP624X  
+
VIN  
CL  
¼ MCP6244 (A)  
VDD  
¼ MCP6244 (B)  
VDD  
FIGURE 4-4:  
stabilizes large capacitive loads.  
Output Resistor, R  
ISO  
VDD  
R1  
R2  
Figure 4-5 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
signal gain are equal. For inverting gains, GN is  
1 + |Signal Gain| (e.g., –1 V/V gives GN = +2 V/V).  
VREF  
R2  
------------------  
VREF = VDD  
R1 + R2  
FIGURE 4-6:  
Unused Op Amps.  
DS21882D-page 12  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
4.6  
PCB Surface Leakage  
4.7  
Application Circuits  
In applications where low input bias current is critical,  
PCB (printed circuit board) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP6241/1R/1U/2/4 family’s bias current at 25°C  
(1 pA, typical).  
4.7.1  
MATCHING THE IMPEDANCE AT  
THE INPUTS  
To minimize the effect of offset voltage in an amplifier  
circuit, the impedances at the inverting and non-  
inverting inputs need to be matched. This is done by  
choosing the circuit resistor values so that the total  
resistance at each input is the same. Figure 4-8 shows  
a summing amplifier circuit.  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-7.  
RG2  
VIN2  
VIN1  
RG1  
RF  
VDD  
VIN-  
VIN+  
VSS  
RX  
RY  
VOUT  
MCP6241  
+
RZ  
FIGURE 4-8:  
Summing Amplifier Circuit.  
Guard Ring  
Example Guard Ring Layout  
To match the inputs, set all voltage sources to ground  
and calculate the total resistance at the input nodes. In  
this summing amplifier circuit, the resistance at the  
inverting input is calculated by setting VIN1, VIN2 and  
VOUT to ground. In this case, RG1, RG2 and RF are in  
parallel. The total resistance at the inverting input is:  
FIGURE 4-7:  
for Inverting Gain.  
1. Non-inverting Gain and Unity-Gain Buffer:  
a. Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
1
RVIN – = ---------------------------------------------  
1
1
1
b. Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
--------- + --------- + ------  
RG1 RG2 RF  
Where:  
2. Inverting Gain and Transimpedance Amplifiers  
(convert current to voltage, such as photo  
detectors):  
RVIN = total resistance at the inverting input  
At the non-inverting input, VDD is the only voltage  
source. When VDD is set to ground, both RX and RY are  
in parallel. The total resistance at the non-inverting  
input is:  
a. Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
1
b. Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
RVIN = ------------------------- + RZ  
+
1
1
------ + -----  
RX RY  
Where:  
+
RVIN = total resistance at the inverting  
input  
To minimize offset voltage and increase circuit  
accuracy, the resistor values need to meet the  
condition:  
RVIN = RVIN  
+
© 2008 Microchip Technology Inc.  
DS21882D-page 13  
MCP6241/1R/1U/2/4  
4.7.2  
COMPENSATING FOR THE  
PARASITIC CAPACITANCE  
In analog circuit design, the PCB parasitic capacitance  
can compromise the circuit behavior; Figure 4-9 shows  
a typical scenario. If the input of an amplifier sees  
parasitic capacitance of several picofarad (CPARA  
,
which includes the common mode capacitance of 6 pF,  
typical) and large RF and RG,the frequency response  
of the circuit will include a zero. This parasitic zero  
introduces gain peaking and can cause circuit  
instability.  
VAC  
+
VOUT  
MCP624X  
RG  
RF  
VDC  
CPARA  
CF  
RG  
------  
RF  
CF = CPARA  
FIGURE 4-9:  
Effect of Parasitic  
Capacitance at the Input.  
One solution is to use smaller resistor values to push  
the zero to a higher frequency. Another solution is to  
compensate by introducing a pole at the point at which  
the zero occurs. This can be done by adding CF in  
parallel with the feedback resistor (RF). CF needs to be  
selected so that the ratio CPARA:CF is equal to the ratio  
of RF:RG.  
DS21882D-page 14  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
5.4  
Analog Demonstration and  
Evaluation Boards  
5.0  
DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP6241/1R/1U/2/4 family of op amps.  
Microchip offers a broad spectrum of Analog Demon-  
stration and Evaluation Boards that are designed to  
help you achieve faster time to market. For a complete  
listing of these boards and their corresponding user’s  
guides and technical information, visit the Microchip  
web site at www.microchip.com/analogtools.  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP6241/1R/  
1U/2/4 op amps is available on the Microchip web site  
at www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation over the temperature range. See  
the model file for information on its capabilities.  
Two of our boards that are especially useful are:  
P/N SOIC8EV: 8-Pin SOIC/MSOP/TSSOP/DIP  
Evaluation Board  
P/N SOIC14EV: 14-Pin SOIC/TSSOP/DIP  
Evaluation Board  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
5.5  
Application Notes  
The following Microchip Application Notes are avail-  
able on the Microchip web site at www.microchip. com/  
appnotes and are recommended as supplemental ref-  
erence resources.  
5.2  
Mindi™ Circuit Designer &  
Simulator  
Microchip’s Mindi™ Circuit Designer & Simulator aids  
in the design of various circuits useful for active filter,  
amplifier and power-management applications. It is a  
free online circuit designer & simulator available from  
the Microchip web site at www.microchip.com/mindi.  
This interactive circuit designer & simulator enables  
designers to quickly generate circuit diagrams, simu-  
late circuits. Circuits developed using the Mindi Circuit  
Designer & Simulator can be downloaded to a personal  
computer or workstation.  
ADN003: “Select the Right Operational Amplifier for  
your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications and  
Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op Amps”,  
DS00884  
AN990: “Analog Sensor Conditioning Circuits – An  
Overview”, DS00990  
5.3  
Microchip Advanced Part Selector  
(MAPS)  
These application notes and others are listed in the  
design guide:  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
from the Microchip web site at www.microchip.com/  
maps, the MAPS is an overall selection tool for  
Microchip’s product portfolio that includes Analog,  
Memory, MCUs and DSCs. Using this tool you can  
define a filter to sort features for a parametric search of  
devices and export side-by-side technical comparison  
reports. Helpful links are also provided for Data sheets,  
Purchase, and Sampling of Microchip parts.  
“Signal Chain Design Guide”, DS21825  
© 2008 Microchip Technology Inc.  
DS21882D-page 15  
MCP6241/1R/1U/2/4  
NOTES:  
DS21882D-page 16  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC-70 (MCP6241U Only)  
Example:  
AT25  
XXNN  
Example:  
5-Lead SOT-23 (MCP6241, MCP6241R, MCP6241U)  
5
4
5
4
3
Device  
MCP6241  
Code  
BQNN  
BRNN  
BSNN  
BQ25  
XXNN  
MCP6241R  
MCP6241U  
1
2
3
1
2
Note:  
Applies to 5-Lead SOT-23.  
Example:  
8-Lead DFN (2x3) (MCP6241 Only)  
XXX  
YWW  
NN  
AER  
834  
25  
Example:  
8-Lead MSOP  
XXXXXX  
6242E  
834256  
YWWNNN  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP6242  
3
MCP6242  
e
E/P 256  
0834  
E/P256  
OR  
YYWW  
0818  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2008 Microchip Technology Inc.  
DS21882D-page 17  
MCP6241/1R/1U/2/4  
Package Marking Information (Continued)  
8-Lead SOIC (150 mil)  
Example:  
MCP6242  
XXXXXXXX  
MCP6242E  
E/SN0818  
XXXXYYWW  
SN^  
e
3
0834  
OR  
256  
NNN  
256  
14-Lead PDIP (300 mil) (MCP6244)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP6244  
e
3
E/P^
YYWWNNN  
0546256  
14-Lead SOIC (150 mil) (MCP6244)  
Example:  
MCP6244  
XXXXXXXXXX  
XXXXXXXXXX  
e
3
E/SL^
YYWWNNN  
0546256  
Example:  
14-Lead TSSOP (MCP6244)  
6244E  
0546  
XXXXXXXX  
YYWW  
256  
NNN  
DS21882D-page 18  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢂꢒꢖꢆꢗꢍꢘꢙꢚꢛ  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
D
b
1
3
2
E1  
E
4
5
e
e
A
A2  
c
A1  
L
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
2
!
ꢗꢁ6!ꢉ"ꢜ#  
3'ꢅꢓꢊꢏꢏꢉ7ꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢗꢁ8ꢗ  
ꢗꢁ8ꢗ  
ꢗꢁꢗꢗ  
ꢀꢁ8ꢗ  
ꢀꢁꢀ!  
ꢀꢁ8ꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢗ8  
ꢗꢁꢀ!  
M
M
M
ꢘꢁꢀꢗ  
ꢀꢁꢘ!  
ꢘꢁꢗꢗ  
ꢗꢁꢘꢗ  
M
ꢀꢁꢀꢗ  
ꢀꢁꢗꢗ  
ꢗꢁꢀꢗ  
ꢘꢁ ꢗ  
ꢀꢁ;!  
ꢘꢁꢘ!  
ꢗꢁ 6  
ꢗꢁꢘ6  
ꢗꢁ ꢗ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
0
5
3'ꢅꢓꢊꢏꢏꢉ:ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ:ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ:ꢃꢋꢍꢒ  
M
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ <ꢗ6ꢀ"  
© 2008 Microchip Technology Inc.  
DS21882D-page 19  
MCP6241/1R/1U/2/4  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
DS21882D-page 20  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁ !ꢛ  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
0ꢅꢊꢋꢉ,ꢃꢍꢎꢒ  
2
!
ꢗꢁ=!ꢉ"ꢜ#  
3ꢐꢍꢇꢃꢋꢅꢉ0ꢅꢊꢋꢉ,ꢃꢍꢎꢒ  
3'ꢅꢓꢊꢏꢏꢉ7ꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
3'ꢅꢓꢊꢏꢏꢉ:ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ:ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
)ꢈꢈꢍꢔꢓꢃꢆꢍ  
)ꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ:ꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
0
ꢀꢁ=ꢗꢉ"ꢜ#  
ꢗꢁ=ꢗ  
ꢗꢁ8=  
ꢗꢁꢗꢗ  
ꢘꢁꢘꢗ  
ꢀꢁ;ꢗ  
ꢘꢁꢙꢗ  
ꢗꢁꢀꢗ  
ꢗꢁ;!  
ꢗꢞ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁ !  
ꢀꢁ;ꢗ  
ꢗꢁꢀ!  
;ꢁꢘꢗ  
ꢀꢁ8ꢗ  
;ꢁꢀꢗ  
ꢗꢁ6ꢗ  
ꢗꢁ8ꢗ  
;ꢗꢞ  
0ꢀ  
5
ꢗꢁꢗ8  
ꢗꢁꢘꢗ  
ꢗꢁꢘ6  
ꢗꢁ!ꢀ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ <ꢗ=ꢀ"  
© 2008 Microchip Technology Inc.  
DS21882D-page 21  
MCP6241/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ$ꢈꢄꢊ%ꢆꢜꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ&ꢄ'ꢃꢆꢕ(ꢘꢖꢆMꢆ *!*ꢚ+,ꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗ#$ꢜꢛ  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
8
ꢗꢁ!ꢗꢉ"ꢜ#  
ꢗꢁ=ꢗ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
3'ꢅꢓꢊꢏꢏꢉ7ꢅꢃꢚꢒꢍ  
ꢜꢍꢊꢆꢋꢈꢑꢑꢉ  
#ꢈꢆꢍꢊꢎꢍꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ:ꢃꢋꢍꢒ  
2
ꢛꢀ  
ꢛ;  
ꢗꢁ8ꢗ  
ꢗꢁꢗꢗ  
ꢀꢁꢗꢗ  
ꢗꢁꢗ!  
ꢗꢁꢗꢘ  
ꢗꢁꢘꢗꢉ1ꢌ)  
ꢘꢁꢗꢗꢉ"ꢜ#  
;ꢁꢗꢗꢉ"ꢜ#  
M
M
ꢗꢁꢘ!  
ꢌꢖꢔꢈꢇꢅꢋꢉ,ꢊꢋꢉ0ꢅꢆꢚꢍꢒ  
ꢌꢖꢔꢈꢇꢅꢋꢉ,ꢊꢋꢉ:ꢃꢋꢍꢒ  
#ꢈꢆꢍꢊꢎꢍꢉ:ꢃꢋꢍꢒ  
#ꢈꢆꢍꢊꢎꢍꢉ0ꢅꢆꢚꢍꢒ  
#ꢈꢆꢍꢊꢎꢍ<ꢍꢈ<ꢌꢖꢔꢈꢇꢅꢋꢉ,ꢊꢋ  
ꢂꢘ  
ꢌꢘ  
5
0
?
ꢀꢁ;ꢗ  
ꢀꢁ!ꢗ  
ꢗꢁꢘꢗ  
ꢗꢁ;ꢗ  
ꢗꢁꢘꢗ  
ꢀꢁ!!  
ꢀꢁꢙ!  
ꢗꢁ;ꢗ  
ꢗꢁ!ꢗ  
M
ꢗꢁ ꢗ  
M
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ,ꢃꢆꢉꢀꢉ'ꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊ&ꢉ'ꢊꢓ&+ꢉ5ꢐꢍꢉꢄꢐꢇꢍꢉ5ꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉ(ꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ,ꢊꢎ*ꢊꢚꢅꢉꢄꢊ&ꢉꢒꢊ'ꢅꢉꢈꢆꢅꢉꢈꢓꢉꢄꢈꢓꢅꢉꢅꢖꢔꢈꢇꢅꢋꢉꢍꢃꢅꢉ5ꢊꢓꢇꢉꢊꢍꢉꢅꢆꢋꢇꢁ  
;ꢁ ,ꢊꢎ*ꢊꢚꢅꢉꢃꢇꢉꢇꢊ(ꢉꢇꢃꢆꢚꢐꢏꢊꢍꢅꢋꢁ  
 ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
1ꢌ)$ 1ꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆ+ꢉꢐꢇꢐꢊꢏꢏ&ꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅ+ꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏ&ꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ <ꢀꢘ;#  
DS21882D-page 22  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ$ꢈꢄꢊ%ꢆꢜꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ&ꢄ'ꢃꢆꢕ(ꢘꢖꢆMꢆ *!*ꢚ+,ꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗ#$ꢜꢛ  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
© 2008 Microchip Technology Inc.  
DS21882D-page 23  
MCP6241/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ(ꢋꢌꢓꢔꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢇꢄꢌ&ꢄ'ꢃꢆꢕ(ꢍꢖꢆꢗ(ꢍꢏꢇꢛ  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
2
8
ꢗꢁ6!ꢉ"ꢜ#  
3'ꢅꢓꢊꢏꢏꢉ7ꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑꢉ  
3'ꢅꢓꢊꢏꢏꢉ:ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ:ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
M
ꢗꢁꢙ!  
ꢗꢁꢗꢗ  
M
ꢗꢁ8!  
ꢀꢁꢀꢗ  
ꢗꢁ=!  
ꢗꢁꢀ!  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
M
 ꢁ=ꢗꢉ"ꢜ#  
;ꢁꢗꢗꢉ"ꢜ#  
;ꢁꢗꢗꢉ"ꢜ#  
ꢗꢁ6ꢗ  
0
ꢗꢁ ꢗ  
ꢗꢁ8ꢗ  
)ꢈꢈꢍꢔꢓꢃꢆꢍ  
)ꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
0ꢀ  
ꢗꢁ=!ꢉ1ꢌ)  
M
ꢗꢞ  
8ꢞ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ:ꢃꢋꢍꢒ  
5
ꢗꢁꢗ8  
ꢗꢁꢘꢘ  
M
M
ꢗꢁꢘ;  
ꢗꢁ ꢗ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ,ꢃꢆꢉꢀꢉ'ꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊ&ꢉ'ꢊꢓ&+ꢉ5ꢐꢍꢉꢄꢐꢇꢍꢉ5ꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉ(ꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀ!ꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
;ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
1ꢌ)$ 1ꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆ+ꢉꢐꢇꢐꢊꢏꢏ&ꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅ+ꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏ&ꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ <ꢀꢀꢀ"  
DS21882D-page 24  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ/ꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆMꢆ!ꢚꢚꢆꢎꢋꢈꢆ-ꢔꢅ.ꢆꢗꢇ#/ꢇꢛ  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
.ꢆꢃꢍꢇ  
/2#7ꢌꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
8
ꢁꢀꢗꢗꢉ"ꢜ#  
M
ꢁꢀ;ꢗ  
M
ꢁ;ꢀꢗ  
ꢁꢘ!ꢗ  
ꢁ;6!  
ꢁꢀ;ꢗ  
ꢁꢗꢀꢗ  
ꢁꢗ6ꢗ  
ꢁꢗꢀ8  
M
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
%ꢔꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉ,ꢏꢊꢆꢅ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
"ꢊꢇꢅꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉ,ꢏꢊꢆꢅ  
ꢜꢒꢈꢐꢏꢋꢅꢓꢉꢍꢈꢉꢜꢒꢈꢐꢏꢋꢅꢓꢉ:ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ:ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
2
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
0
5ꢀ  
5
ꢅ"  
M
ꢁꢘꢀꢗ  
ꢁꢀ=!  
M
ꢁꢀꢀ!  
ꢁꢗꢀ!  
ꢁꢘ=ꢗ  
ꢁꢘ ꢗ  
ꢁ; 8  
ꢁꢀꢀ!  
ꢁꢗꢗ8  
ꢁꢗ ꢗ  
ꢁꢗꢀ  
M
ꢁ;ꢘ!  
ꢁꢘ8ꢗ  
ꢁ ꢗꢗ  
ꢁꢀ!ꢗ  
ꢁꢗꢀ!  
ꢁꢗꢙꢗ  
ꢁꢗꢘꢘ  
ꢁ ;ꢗ  
%ꢃꢔꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉ,ꢏꢊꢆꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
.ꢔꢔꢅꢓꢉ0ꢅꢊꢋꢉ:ꢃꢋꢍꢒ  
0ꢈ(ꢅꢓꢉ0ꢅꢊꢋꢉ:ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ1ꢈ(ꢉꢜꢔꢊꢎꢃꢆꢚꢉꢉꢟ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ,ꢃꢆꢉꢀꢉ'ꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊ&ꢉ'ꢊꢓ&+ꢉ5ꢐꢍꢉꢄꢐꢇꢍꢉ5ꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉ(ꢃꢍꢒꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢟꢉꢜꢃꢚꢆꢃꢑꢃꢎꢊꢆꢍꢉ#ꢒꢊꢓꢊꢎꢍꢅꢓꢃꢇꢍꢃꢎꢁ  
;ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢁꢗꢀꢗAꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
 ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ꢉ"ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ <ꢗꢀ8"  
© 2008 Microchip Technology Inc.  
DS21882D-page 25  
MCP6241/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢜꢖꢆMꢆꢜꢄꢓꢓꢔ0%ꢆ!+,ꢚꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗꢍꢏ/ꢘꢛ  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
2
8
ꢀꢁꢘꢙꢉ"ꢜ#  
3'ꢅꢓꢊꢏꢏꢉ7ꢅꢃꢚꢒꢍ  
M
ꢀꢁꢘ!  
ꢗꢁꢀꢗ  
M
M
M
ꢀꢁꢙ!  
M
ꢗꢁꢘ!  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑꢉꢉ  
ꢛꢘ  
ꢛꢀ  
3'ꢅꢓꢊꢏꢏꢉ:ꢃꢋꢍꢒ  
6ꢁꢗꢗꢉ"ꢜ#  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ:ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
#ꢒꢊꢄꢑꢅꢓꢉBꢈꢔꢍꢃꢈꢆꢊꢏC  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
ꢌꢀ  
;ꢁ=ꢗꢉ"ꢜ#  
 ꢁ=ꢗꢉ"ꢜ#  
ꢗꢁꢘ!  
ꢗꢁ ꢗ  
M
M
ꢗꢁ!ꢗ  
ꢀꢁꢘꢙ  
0
)ꢈꢈꢍꢔꢓꢃꢆꢍ  
)ꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ:ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢉꢂꢓꢊꢑꢍꢉꢛꢆꢚꢏꢅꢉ%  
ꢕꢈꢏꢋꢉꢂꢓꢊꢑꢍꢉꢛꢆꢚꢏꢅꢉ"ꢈꢍꢍꢈꢄ  
0ꢀ  
ꢀꢁꢗ ꢉ1ꢌ)  
ꢗꢞ  
ꢗꢁꢀꢙ  
ꢗꢁ;ꢀ  
!ꢞ  
M
M
M
M
M
8ꢞ  
5
ꢗꢁꢘ!  
ꢗꢁ!ꢀ  
ꢀ!ꢞ  
!ꢞ  
ꢀ!ꢞ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ,ꢃꢆꢉꢀꢉ'ꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊ&ꢉ'ꢊꢓ&+ꢉ5ꢐꢍꢉꢄꢐꢇꢍꢉ5ꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉ(ꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢟꢉꢜꢃꢚꢆꢃꢑꢃꢎꢊꢆꢍꢉ#ꢒꢊꢓꢊꢎꢍꢅꢓꢃꢇꢍꢃꢎꢁ  
;ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀ!ꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
 ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
1ꢌ)$ 1ꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆ+ꢉꢐꢇꢐꢊꢏꢏ&ꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅ+ꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏ&ꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ <ꢗ!ꢙ"  
DS21882D-page 26  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢜꢖꢆMꢆꢜꢄꢓꢓꢔ0%ꢆ!+,ꢚꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗꢍꢏ/ꢘꢛ  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
© 2008 Microchip Technology Inc.  
DS21882D-page 27  
MCP6241/1R/1U/2/4  
12ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ/ꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆMꢆ!ꢚꢚꢆꢎꢋꢈꢆ-ꢔꢅ.ꢆꢗꢇ#/ꢇꢛ  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
.ꢆꢃꢍꢇ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
/2#7ꢌꢜ  
23ꢕ  
 
ꢁꢀꢗꢗꢉ"ꢜ#  
M
ꢕ/2  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
2
%ꢔꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉ,ꢏꢊꢆꢅ  
M
ꢁꢘꢀꢗ  
ꢁꢀ=!  
M
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
"ꢊꢇꢅꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉ,ꢏꢊꢆꢅ  
ꢜꢒꢈꢐꢏꢋꢅꢓꢉꢍꢈꢉꢜꢒꢈꢐꢏꢋꢅꢓꢉ:ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ:ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
%ꢃꢔꢉꢍꢈꢉꢜꢅꢊꢍꢃꢆꢚꢉ,ꢏꢊꢆꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
.ꢔꢔꢅꢓꢉ0ꢅꢊꢋꢉ:ꢃꢋꢍꢒ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
0
5ꢀ  
5
ꢅ"  
ꢁꢀꢀ!  
ꢁꢗꢀ!  
ꢁꢘ=ꢗ  
ꢁꢘ ꢗ  
ꢁꢙ;!  
ꢁꢀꢀ!  
ꢁꢗꢗ8  
ꢁꢗ !  
ꢁꢗꢀ  
M
ꢁꢀ;ꢗ  
M
ꢁ;ꢀꢗ  
ꢁꢘ!ꢗ  
ꢁꢙ!ꢗ  
ꢁꢀ;ꢗ  
ꢁꢗꢀꢗ  
ꢁꢗ6ꢗ  
ꢁꢗꢀ8  
M
ꢁ;ꢘ!  
ꢁꢘ8ꢗ  
ꢁꢙꢙ!  
ꢁꢀ!ꢗ  
ꢁꢗꢀ!  
ꢁꢗꢙꢗ  
ꢁꢗꢘꢘ  
ꢁ ;ꢗ  
0ꢈ(ꢅꢓꢉ0ꢅꢊꢋꢉ:ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ1ꢈ(ꢉꢜꢔꢊꢎꢃꢆꢚꢉꢉꢟ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ,ꢃꢆꢉꢀꢉ'ꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊ&ꢉ'ꢊꢓ&+ꢉ5ꢐꢍꢉꢄꢐꢇꢍꢉ5ꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉ(ꢃꢍꢒꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢟꢉꢜꢃꢚꢆꢃꢑꢃꢎꢊꢆꢍꢉ#ꢒꢊꢓꢊꢎꢍꢅꢓꢃꢇꢍꢃꢎꢁ  
;ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢁꢗꢀꢗAꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
 ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ꢉ"ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ <ꢗꢗ!"  
DS21882D-page 28  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
12ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢂꢖꢆMꢆꢜꢄꢓꢓꢔ0%ꢆ!+,ꢚꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗꢍꢏ/ꢘꢛ  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
2
 
ꢀꢁꢘꢙꢉ"ꢜ#  
3'ꢅꢓꢊꢏꢏꢉ7ꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑꢉꢉꢟ  
M
ꢀꢁꢘ!  
ꢗꢁꢀꢗ  
M
M
M
ꢀꢁꢙ!  
M
ꢗꢁꢘ!  
ꢛꢘ  
ꢛꢀ  
3'ꢅꢓꢊꢏꢏꢉ:ꢃꢋꢍꢒ  
6ꢁꢗꢗꢉ"ꢜ#  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ:ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
#ꢒꢊꢄꢑꢅꢓꢉBꢈꢔꢍꢃꢈꢆꢊꢏC  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
ꢌꢀ  
;ꢁ=ꢗꢉ"ꢜ#  
8ꢁ6!ꢉ"ꢜ#  
ꢗꢁꢘ!  
ꢗꢁ ꢗ  
M
M
ꢗꢁ!ꢗ  
ꢀꢁꢘꢙ  
0
)ꢈꢈꢍꢔꢓꢃꢆꢍ  
)ꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ:ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢉꢂꢓꢊꢑꢍꢉꢛꢆꢚꢏꢅꢉ%  
ꢕꢈꢏꢋꢉꢂꢓꢊꢑꢍꢉꢛꢆꢚꢏꢅꢉ"ꢈꢍꢍꢈꢄ  
0ꢀ  
ꢀꢁꢗ ꢉ1ꢌ)  
ꢗꢞ  
ꢗꢁꢀꢙ  
ꢗꢁ;ꢀ  
!ꢞ  
M
M
M
M
M
8ꢞ  
5
ꢗꢁꢘ!  
ꢗꢁ!ꢀ  
ꢀ!ꢞ  
!ꢞ  
ꢀ!ꢞ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ,ꢃꢆꢉꢀꢉ'ꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊ&ꢉ'ꢊꢓ&+ꢉ5ꢐꢍꢉꢄꢐꢇꢍꢉ5ꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉ(ꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢟꢉꢜꢃꢚꢆꢃꢑꢃꢎꢊꢆꢍꢉ#ꢒꢊꢓꢊꢎꢍꢅꢓꢃꢇꢍꢃꢎꢁ  
;ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀ!ꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
 ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
1ꢌ)$ 1ꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆ+ꢉꢐꢇꢐꢊꢏꢏ&ꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅ+ꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏ&ꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ <ꢗ6!"  
© 2008 Microchip Technology Inc.  
DS21882D-page 29  
MCP6241/1R/1U/2/4  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
DS21882D-page 30  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
12ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒ3ꢋꢑꢆꢍ3ꢓꢋꢑ&ꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢒꢖꢆMꢆ2+2ꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗꢒꢍꢍꢏꢇꢛ  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
,ꢃꢍꢎꢒ  
2
 
ꢗꢁ6!ꢉ"ꢜ#  
3'ꢅꢓꢊꢏꢏꢉ7ꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑꢉ  
3'ꢅꢓꢊꢏꢏꢉ:ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ:ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ0ꢅꢆꢚꢍꢒ  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
M
ꢗꢁ8ꢗ  
ꢗꢁꢗ!  
M
ꢀꢁꢗꢗ  
M
6ꢁ ꢗꢉ"ꢜ#  
 ꢁ ꢗ  
!ꢁꢗꢗ  
ꢗꢁ6ꢗ  
ꢀꢁꢘꢗ  
ꢀꢁꢗ!  
ꢗꢁꢀ!  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
 ꢁ;ꢗ  
 ꢁ=ꢗ  
ꢗꢁ !  
 ꢁ!ꢗ  
!ꢁꢀꢗ  
ꢗꢁꢙ!  
0
)ꢈꢈꢍꢔꢓꢃꢆꢍ  
)ꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ:ꢃꢋꢍꢒ  
0ꢀ  
ꢀꢁꢗꢗꢉ1ꢌ)  
ꢗꢞ  
ꢗꢁꢗ=  
ꢗꢁꢀ=  
M
M
M
8ꢞ  
5
ꢗꢁꢘꢗ  
ꢗꢁ;ꢗ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ,ꢃꢆꢉꢀꢉ'ꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊ&ꢉ'ꢊꢓ&+ꢉ5ꢐꢍꢉꢄꢐꢇꢍꢉ5ꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉ(ꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀ!ꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
;ꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
1ꢌ)$ 1ꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆ+ꢉꢐꢇꢐꢊꢏꢏ&ꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅ+ꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏ&ꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ <ꢗ8ꢙ"  
© 2008 Microchip Technology Inc.  
DS21882D-page 31  
MCP6241/1R/1U/2/4  
NOTES:  
DS21882D-page 32  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
APPENDIX A: REVISION HISTORY  
Revision D (October 2008)  
The following is the list of modifications:  
1. Changed Heading “Available Tools” to “Design  
Aids”.  
2. Design Aids: Name change for Mindi Simulator  
Tool.  
3. Package Types: Added DFN to MCP6231  
Device.  
4. Absolute Maximum Ratings: Numerous  
changes in this section.  
5. Updated notes to Section 1.0 “Electrical Char-  
acteristics”.  
6. Added Figure 2-19.  
7. Numerous changes to Section 3.0 “Pin  
Descriptions”.  
8. Added Section 4.1.1 “Phase Reversal”,  
Section 4.1.2 “Input Voltage and Current  
Limits”, and Section 4.1.3 “Normal Opera-  
tion”.  
9. Replaced Section 5.0 “Design Aids” with  
additional information.  
10. Added 2x3 DFN package to Section 6.0 “Pack-  
aging Information” and updated Package Out-  
line Drawings.  
11. Added 2x3 DFN package to Product Identifica-  
tion System section.  
Revision C (March 2005)  
The following is the list of modifications:  
1. Added the MCP6244 quad op amp.  
2. Re-compensated parts. Specifications that  
change are: Gain Bandwidth Product (BWP)  
and Phase Margin (PM) in AC Electrical  
Characteristics table.  
3. Corrected plots in Section 2.0 “Typical Perfor-  
mance Curves”.  
4. Added Section 3.0 “Pin Descriptions”.  
5. Added new SC-70 package markings. Added  
PDIP-14, SOIC-14, and TSSOP-14 packages  
and corrected package marking information  
(Section 6.0 “Packaging Information”).  
6. Added Appendix A: “Revision History”.  
Revision B (August 2004)  
Undocumented changes.  
Revision A (March 2004)  
• Original Release of this Document.  
© 2008 Microchip Technology Inc.  
DS21882D-page 33  
MCP6241/1R/1U/2/4  
NOTES:  
DS21882D-page 34  
© 2008 Microchip Technology Inc.  
MCP6241/1R/1U/2/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
-X  
/XX  
a) MCP6241-E/SN:  
Extended Temp.,  
8LD SOIC package.  
Tape and Reel  
and/or  
Alternate Pinout  
Temperature Package  
Range  
b) MCP6241-E/MS: Extended Temp.,  
8LD MSOP package.  
c) MCP6241-E/P:  
Extended Temp.,  
8LD PDIP package.  
Device:  
MCP6241:  
MCP6241T:  
Single Op Amp (MSOP, PDIP, SOIC)  
Single Op Amp (Tape and Reel)  
(MSOP, SOIC, SOT-23)  
Single Op Amp (Tape and Reel)  
(SOT-23)  
d) MCP6241-E/MC: Extended Temp.,  
8LD DFN package.  
MCP6241RT:  
e) MCP6241RT-E/OT: Tape and Reel,  
Extended Temp.,  
MCP6241UT: Single Op Amp (Tape and Reel)  
(SC-70, SOT-23)  
MCP6242:  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(MSOP, SOIC)  
Quad Op Amp  
Quad Op Amp (Tape and Reel)  
(SOIC, TSSOP)  
5LD SOT-23 package  
MCP6242T:  
f)  
MCP6241UT-E/OT: Tape and Reel,  
Extended Temp.,  
MCP6244:  
MCP6244T:  
5LD SOT-23 package.  
g) MCP6241UT-E/LT: Tape and Reel,  
Extended Temp.,  
Temperature Range:  
Package:  
E
=
-40° C to +125° C  
5LD SC-70 package.  
a) MCP6242-E/SN:  
Extended Temp.,  
8LD SOIC package.  
LT  
MC  
=
=
Plastic Package (SC-70), 5-lead (MCP6241U only)  
Plastic Dual Flat, No Lead (DFN), 8-lead,  
(MCP6241 only)  
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic Small Outline Transistor (SOT-23), 5-lead  
(MCP6241, MCP6241R, MCP6241U)  
Plastic SOIC (150 mil Body), 8-lead  
Plastic SOIC (150 mil Body), 14-lead  
Plastic TSSOP (4.4 mil Body), 14-lead  
b) MCP6242-E/MS: Extended Temp.,  
8LD MSOP package.  
MS  
P
OT  
=
=
=
c) MCP6242-E/P:  
Extended Temp.,  
8LD PDIP package.  
SN  
SL  
ST  
=
=
=
d) MCP6242T-E/SN: Tape and Reel,  
Extended Temp.,  
8LD SOIC package.  
a) MCP6244-E/P:  
b) MCP6244-E/SL:  
c) MCP6244-E/ST:  
Extended Temp.,  
14LD PDIP package.  
Extended Temp.,  
14LD SOIC package.  
Extended Temp.,  
14LD TSSOP  
package.  
d) MCP6244T-E/SL: Tape and Reel,  
Extended Temp.,  
14LD SOIC package.  
e) MCP6244T-E/ST: Tape and Reel,  
Extended Temp.,  
14LD TSSOP  
package.  
© 2008 Microchip Technology Inc.  
DS21882D-page 35  
MCP6241/1R/1U/2/4  
NOTES:  
DS21882D-page 36  
© 2008 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2008 Microchip Technology Inc.  
DS21882D-page 37  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS21882D-page 38  
© 2008 Microchip Technology Inc.  

相关型号:

MCP6241R

50 uA, 550 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241RT

50 μA, 550 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241RT-E/LT

50 uA, 650 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241RT-E/MC

50 μA, 550 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241RT-E/MS

50 uA, 650 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241RT-E/OT

50 uA, 650 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241RT-E/P

50 uA, 650 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241RT-E/SL

50 μA, 550 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241RT-E/SN

50 uA, 650 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241RT-E/ST

50 μA, 550 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241T

50 μA, 550 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6241T-E/LT

50 uA, 650 kHz Rail-to-Rail Op Amp
MICROCHIP