MCP6234T [MICROCHIP]

20 μA, 300 kHz Rail-to-Rail Op Amp; 20 μA , 300 kHz的轨至轨运算放大器
MCP6234T
型号: MCP6234T
厂家: MICROCHIP    MICROCHIP
描述:

20 μA, 300 kHz Rail-to-Rail Op Amp
20 μA , 300 kHz的轨至轨运算放大器

运算放大器
文件: 总40页 (文件大小:821K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6231/1R/1U/2/4  
20 µA, 300 kHz Rail-to-Rail Op Amp  
Description  
Features  
The Microchip Technology Inc. MCP6231/1R/1U/2/4  
operational amplifiers (op amps) provide wide  
bandwidth for the quiescent current. The MCP6231/1R/  
1U/2/4 family has a 300 kHz gain bandwidth product  
and 65°C (typical) phase margin. This family operates  
from a single supply voltage as low as 1.8V, while  
drawing 20 µA (typical) quiescent current. In addition,  
the MCP6231/1R/1U/2/4 family supports rail-to-rail  
input and output swing, with a common mode input  
voltage range of VDD + 300 mV to VSS – 300 mV.  
These op amps are designed in one of Microchip’s  
advanced CMOS processes.  
• Gain Bandwidth Product: 300 kHz (typical)  
• Supply Current: IQ = 20 µA (typical)  
• Supply Voltage: 1.8V to 6.0V  
• Rail-to-Rail Input/Output  
• Extended Temperature Range: -40°C to +125°C  
• Available in 5-Pin SC70 and SOT-23 packages  
Applications  
• Automotive  
• Portable Equipment  
• Transimpedance amplifiers  
• Analog Filters  
Package Types  
MCP6231  
MCP6231  
• Notebooks and PDAs  
• Battery-Powered Systems  
MSOP, PDIP, SOIC  
SOT-23-5  
1
2
3
4
8
7
6
5
NC  
NC  
V
V
V
1
2
3
5
4
DD  
OUT  
V
+
+
DD  
IN  
V
Design Aids  
SS  
+
V
V
OUT  
IN  
V
V
IN  
IN  
• SPICE Macro Models  
• FilterLab® Software  
V
NC  
SS  
MCP6232  
MSOP, PDIP, SOIC  
MCP6231R  
• Mindi™ Circuit Designer & Simulator  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
SOT-23-5  
VOUTA  
V
V
VDD  
8
7
6
5
1
2
1
5
4
SS  
OUT  
_
V
VINA  
2
3
-
VOUTB  
DD  
+
+
_
V
V –  
IN  
VINA+ 3  
+
-
IN  
VINB  
Typical Application  
VSS  
4
VINB  
+
RG2  
MCP6232  
MCP6231U  
SC70-5, SOT-23-5  
VIN2  
VIN1  
2x3 TDFN *  
RG1  
VDD  
VOUTA  
1
2
8
7
V
V
+
1
2
3
5
DD  
IN  
+
RF  
_
VINA  
VOUTB  
EP  
9
V
SS  
_
VDD  
VINA+  
VINB  
3
4
6
5
V
V
OUT  
4
IN  
VSS  
VINB+  
RX  
RY  
VOUT  
MCP6231  
+
MCP6231  
DFN *  
MCP6234  
PDIP, SOIC, TSSOP  
RZ  
NC  
1
2
8
NC  
VOUTA  
14 VOUTD  
1
2
3
4
VINA  
+
- + + 13 VIND  
-
+
V
V
7
EP  
9
IN  
DD  
VINA  
12 VIND  
V
+
V
3
4
6
5
IN  
OUT  
VDD  
VSS  
11  
VSS  
NC  
Summing Amplifier Circuit  
VINB  
+
10 VINC  
-
9 VINC  
+
5
6
7
-
+ +  
VINB  
VOUTB  
8 VOUTC  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
© 2009 Microchip Technology Inc.  
DS21881E-page 1  
MCP6231/1R/1U/2/4  
NOTES:  
DS21881E-page 2  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS ........................................................................7.0V  
Current at Analog Input Pins (VIN+, VIN).....................±2 mA  
Analog Inputs (VIN+, VIN–) †........ VSS – 1.0V to VDD + 1.0V  
All Other Inputs and Outputs ......... VSS – 0.3V to VDD + 0.3V  
†† See Section 4.1.2 “Input Voltage and Current Limits”.  
Difference Input Voltage ...................................... |VDD – VSS  
|
Output Short Circuit Current ................................Continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature ...................................65°C to +150°C  
Maximum Junction Temperature (TJ)..........................+150°C  
ESD Protection On All Pins (HBM; MM) .............. ≥ 4 kV; 300V  
DC ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2,  
RL = 100 kΩ to VDD/2 and VOUT VDD/2.  
Sym  
Min  
Typ  
Max  
Units Conditions  
Parameters  
Input Offset  
Input Offset Voltage  
VOS  
VOS  
-5.0  
-7.0  
+5.0  
+7.0  
mV  
mV  
VCM = VSS  
Extended Temperature  
TA = -40°C to +125°C,  
V
CM = VSS (Note 1)  
µV/°C TA= -40°C to +125°C,  
CM = VSS  
Input Offset Drift with Temperature  
ΔVOS/ΔTA  
±3.0  
83  
V
Power Supply Rejection Ratio  
Input Bias Current and Impedance  
Input Bias Current:  
PSRR  
dB  
VCM = VSS  
IB  
IB  
±1.0  
20  
pA  
pA  
At Temperature  
TA = +85°C  
At Temperature  
IB  
1100  
±1.0  
1013||6  
1013||3  
pA  
TA = +125°C  
Input Offset Current  
IOS  
ZCM  
ZDIFF  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
Ω||pF  
Ω||pF  
Common Mode Input Range  
Common Mode Rejection Ratio  
VCMR  
VSS – 0.3  
61  
VDD + 0.3  
V
CMRR  
75  
dB  
VCM = -0.3V to 5.3V,  
V
DD = 5V  
Open-Loop Gain  
DC Open-Loop Gain (large signal)  
AOL  
90  
110  
dB  
VOUT = 0.3V to VDD – 0.3V,  
CM = VSS  
V
Output  
Maximum Output Voltage Swing  
VOL, VOH  
VSS + 35  
VDD – 35  
mV  
RL =10 kΩ, 0.5V Input  
Overdrive  
Output Short-Circuit Current  
ISC  
ISC  
±6  
mA  
mA  
VDD = 1.8V  
VDD = 5.5V  
±23  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
10  
6.0  
30  
V
Quiescent Current per Amplifier  
20  
µA  
IO = 0, VCM = VDD – 0.5V  
Note 1: The SC70 package is only tested at +25°C.  
2: All parts with date codes February 2007 and later have been screened to ensure operation at VDD = 6.0V. However, the  
other minimum and maximum specifications are measured at 1.8V and 5.5V  
© 2009 Microchip Technology Inc.  
DS21881E-page 3  
MCP6231/1R/1U/2/4  
AC ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8 to 5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, RL = 100 kΩ to VDD/2 and CL = 60 pF.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
300  
65  
kHz  
°
G = +1 V/V  
Slew Rate  
SR  
0.15  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
6.0  
52  
µVP-P f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
0.6  
fA/Hz f = 1 kHz  
TEMPERATURE CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SC70  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-DFN  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-TDFN  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
Note  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
331  
256  
84.5  
206  
41  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
85  
163  
70  
120  
100  
Note:  
The internal Junction Temperature (TJ) must not exceed the Absolute Maximum specification of +150°C.  
1.1  
Test Circuits  
VDD  
1 µF  
The test circuits used for the DC and AC tests are  
shown in Figure 1-1 and Figure 1-1. The bypass  
capacitors are laid out according to the rules discussed  
in Section 4.6 “PCB Surface Leakage”.  
0.1 µF  
VDD/2  
VOUT  
RL  
RN  
RG  
MCP623X  
CL  
VDD  
RF  
1 µF  
VIN  
0.1 µF  
VIN  
VL  
VOUT  
RL  
RN  
MCP623X  
FIGURE 1-2:  
Most Inverting Gain Conditions.  
AC and DC Test Circuit for  
CL  
RG  
RF  
VDD/2  
VL  
FIGURE 1-1:  
AC and DC Test Circuit for  
Most Non-Inverting Gain Conditions.  
DS21881E-page 4  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
90  
85  
80  
75  
70  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
630 Samples  
CM = VSS  
V
PSRR (VCM = VSS  
)
6%  
CMRR (VCM = -0.3V to +5.3V,  
VDD = 5.0V)  
4%  
2%  
0%  
-50  
-25  
0
25  
50  
75  
100  
125  
Input Offset Voltage (mV)  
Ambient Temperature (°C)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
CMRR, PSRR vs. Ambient  
Temperature.  
100  
90  
80  
70  
60  
50  
40  
30  
120  
100  
80  
0
RL = 10 k  
PSRR-  
-30  
VCM = VDD/2  
Gain  
-60  
CMRR  
60  
-90  
Phase  
PSRR+  
40  
20  
0
-120  
-150  
-180  
-210  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
20  
-20  
10  
100  
1k  
10k  
100k  
0.1  
1
10 100 1k 10k 100k 1M 10M  
1.E- 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+  
01 00 01 Fr0e2que0n3cy (0H4z) 05 06 07  
Frequency (Hz)  
FIGURE 2-2:  
PSRR, CMRR vs.  
FIGURE 2-5:  
Open-Loop Gain, Phase vs.  
Frequency.  
Frequency.  
20%  
30%  
632 Samples  
CM = VDD/2  
TA = +125°C  
630 Samples  
CM = VDD/2  
TA = +85°C  
18%  
16%  
14%  
12%  
10%  
8%  
V
V
25%  
20%  
15%  
10%  
5%  
6%  
4%  
2%  
0%  
0%  
Input Bias Current (pA)  
Input Bias Current (nA)  
FIGURE 2-3:  
Input Bias Current at +85°C.  
FIGURE 2-6:  
Input Bias Current at  
+125°C.  
© 2009 Microchip Technology Inc.  
DS21881E-page 5  
MCP6231/1R/1U/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
1,000  
20%  
628 Samples  
18%  
VCM = VSS  
16%  
14%  
12%  
10%  
8%  
TA = -40°C to +125°C  
100  
10  
6%  
4%  
2%  
0%  
0.1  
1
10  
100  
1k  
10k 100k  
1.E-01 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0  
0
1Freque2ncy (Hz3)  
4
5
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-7:  
Input Noise Voltage Density  
FIGURE 2-10:  
Input Offset Voltage Drift.  
vs. Frequency.  
100  
50  
550  
VCM = VSS  
VDD = 1.8V  
TA = -40°C  
A = +25°C  
TA = +85°C  
A = +125°C  
T
450  
350  
250  
150  
0
-50  
-100  
-150  
-200  
T
VDD = 5.5V  
VDD = 1.8V  
-250  
-300  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-11:  
Input Offset Voltage vs.  
FIGURE 2-8:  
Input Offset Voltage vs.  
Output Voltage.  
Common Mode Input Voltage at V = 1.8V.  
DD  
30  
25  
20  
15  
10  
5
200  
+ISC  
VDD = 5.5 V  
150  
TA = +125°C  
100  
TA = +85°C  
A = +25°C  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
50  
T
0
-5  
0
-50  
TA = -40°C  
-10  
-15  
-20  
-25  
-30  
-100  
-150  
-200  
-ISC  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-12:  
Output Short-Circuit Current  
FIGURE 2-9:  
Input Offset Voltage vs.  
vs. Ambient Temperature.  
Common Mode Input Voltage at V = 5.5V.  
DD  
DS21881E-page 6  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
G = +1 V/V  
RL = 10 k  
VDD = 5.5V  
Falling Edge  
VDD = 1.8V  
50  
Rising Edge  
-50 -25  
0
25  
75  
100  
125  
Time (2 µs/div)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Slew Rate vs. Ambient  
FIGURE 2-16:  
Small-Signal, Non-Inverting  
Temperature.  
Pulse Response.  
1,000  
100  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.0V  
G = +1 V/V  
VDD – VOH  
VOL – VSS  
1
10µ  
100µ  
11  
1m  
1.0  
10m  
11  
12  
Output Current Magnitude (A)  
Time (20 µs/div)  
FIGURE 2-14:  
Output Voltage Headroom  
FIGURE 2-17:  
Large-Signal, Non-Inverting  
vs. Output Current Magnitude.  
Pulse Response.  
30  
10  
VCM = 0.9VDD  
25  
20  
15  
10  
5
VDD = 5.5V  
VDD = 1.8V  
1
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0
0.1  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
1k  
10k  
1.E+04  
100k  
1.E+05  
1M  
1.E+06  
1.E+03  
Frequency (Hz)  
FIGURE 2-15:  
Maximum Output Voltage  
FIGURE 2-18:  
Quiescent Current vs.  
Swing vs. Frequency.  
Power Supply Voltage.  
© 2009 Microchip Technology Inc.  
DS21881E-page 7  
MCP6231/1R/1U/2/4  
1.E-02  
10m  
1.E-03  
1m  
1.E- 4  
100µ  
1.E1-05µ  
1.E-016µ  
100n  
1.E- 7  
10n  
1.E- 8  
1n  
1.E-09  
100p  
1.E-10  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
VDD = 5.0V  
G = +2 V/V  
VOUT  
VIN  
+125°C  
+85°C  
+25°C  
-40°C  
10p  
1.E-11  
1p  
1.E-12  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
Time (1 ms/div)  
FIGURE 2-19:  
Measured Input Current vs.  
FIGURE 2-20:  
The MCP6231/1R/1U/2/4  
Input Voltage (below V ).  
Show No Phase Reversal.  
SS  
DS21881E-page 8  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).  
TABLE 3-1:  
PIN FUNCTION TABLE FOR SINGLE OP AMPS  
MCP6231  
MCP6231R  
MCP6231U  
Symbol  
Description  
DFN, MSOP,  
PDIP, SOIC  
SOT-23-5  
SC70  
SOT-23-5  
SOT-23-5  
6
1
4
1
4
4
3
VOUT  
VIN–  
VIN+  
VDD  
VSS  
NC  
Analog Output  
2
Inverting Input  
3
3
3
1
Non-inverting Input  
7
5
2
5
Positive Power Supply  
Negative Power Supply  
No Internal Connection  
Exposed Thermal Pad (EP); must be  
4
1, 5, 8  
9
2
5
2
EP  
connected to VSS  
.
TABLE 3-2:  
MCP6232  
PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS  
MCP6234  
Symbol  
Description  
MSOP, PDIP,  
SOIC, TDFN  
PDIP, SOIC, TSSOP  
1
2
1
2
VOUTA  
Analog Output (op amp A)  
VINA  
+
Inverting Input (op amp A)  
3
3
VINA  
Non-inverting Input (op amp A)  
Positive Power Supply  
8
4
VDD  
5
5
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
6
6
VINB  
7
7
VOUTB  
VOUTC  
Analog Output (op amp B)  
4
8
Analog Output (op amp C)  
9
VINC  
+
Inverting Input (op amp C)  
10  
11  
12  
13  
14  
VINC  
Non-inverting Input (op amp C)  
Negative Power Supply  
VSS  
9
VIND  
+
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
VIND  
VOUTD  
Analog Output (op amp D)  
Exposed Thermal Pad (EP); must be connected to VSS  
.
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
3.1  
Analog Outputs  
The output pins are low-impedance voltage sources.  
3.2  
Analog Inputs  
3.4  
Exposed Thermal Pad (EP)  
The non-inverting and inverting inputs are  
high-impedance CMOS inputs with low bias currents.  
There is an internal electrical connection between the  
Exposed Thermal Pad (EP) and the VSS pin; they must  
be connected to the same potential on the Printed  
Circuit Board (PCB).  
3.3  
Power Supply (VSS and VDD)  
The positive power supply (VDD) is 1.8V to 6.0V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
© 2009 Microchip Technology Inc.  
DS21881E-page 9  
MCP6231/1R/1U/2/4  
NOTES:  
DS21881E-page 10  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
4.0  
APPLICATION INFORMATION  
Bond  
VDD  
The MCP6231/1R/1U/2/4 family of op amps is  
manufactured using Microchip’s state-of-the-art CMOS  
process and is specifically designed for low-cost,  
low-power and general-purpose applications. The low  
supply voltage, low quiescent current and wide  
bandwidth makes the MCP6231/1R/1U/2/4 ideal for  
battery-powered applications.  
Pad  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
4.1  
Rail-to-Rail Inputs  
Bond  
Pad  
VSS  
4.1.1  
PHASE REVERSAL  
The MCP6231/1R/1U/2/4 op amp is designed to  
prevent phase reversal when the input pins exceed the  
supply voltages. Figure 4-1 shows the input voltage  
exceeding the supply voltage without any phase  
reversal.  
FIGURE 4-2:  
Structures.  
Simplified Analog Input ESD  
In order to prevent damage and/or improper operation  
of these op amps, the circuit they are in must limit the  
currents and voltages at the VIN+ and VIN– pins (see  
Absolute Maximum Ratings † at the beginning of  
Section 1.0 “Electrical Characteristics”). Figure 4-3  
shows the recommended approach to protecting these  
inputs. The internal ESD diodes prevent the input pins  
(VIN+ and VIN–) from going too far below ground, and  
the resistors R1 and R2 limit the possible current drawn  
out of the input pins. Diodes D1 and D2 prevent the  
input pins (VIN+ and VIN–) from going too far above  
VDD, and dump any currents onto VDD. When  
implemented as shown, resistors R1 and R2 also limit  
the current through D1 and D2.  
6.0  
VDD = 5.0V  
VOUT  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
G = +2 V/V  
VIN  
Time (1 ms/div)  
VDD  
FIGURE 4-1:  
The MCP6231/1R/1U/2/4  
Show No Phase Reversal.  
D1 D2  
4.1.2 INPUT VOLTAGE AND CURRENT  
V1  
LIMITS  
R1  
MCP623X  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-2. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass  
quick ESD events within the specified limits.  
V2  
R2  
R3  
VSS – (minimum expected V1)  
R1 >  
2 mA  
VSS – (minimum expected V2)  
R2 >  
2 mA  
FIGURE 4-3:  
Protecting the Analog  
Inputs.  
It is also possible to connect the diodes to the left of  
resistors R1 and R2. In this case, current through the  
diodes D1 and D2 needs to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
© 2009 Microchip Technology Inc.  
DS21881E-page 11  
MCP6231/1R/1U/2/4  
A significant amount of current can flow out of the  
inputs when the common mode voltage (VCM) is below  
ground (VSS); see Figure 2-19. Applications that are  
high impedance may need to limit the usable voltage  
range.  
10,01000k  
1k  
1,000  
4.1.3  
NORMAL OPERATION  
GN = 1 V/V  
GN = 2 V/V  
GN 4 V/V  
The input stage of the MCP6231/1R/1U/2/4 op amps  
use two differential CMOS input stages in parallel. One  
operates at low common mode input voltage (VCM),  
while the other operates at high VCM. WIth this  
topology, the device operates with VCM up to 0.3V  
100  
100  
10p  
100p  
100  
1n  
10n  
10  
1000  
10000  
Normalized Load Capacitance; CL/GN (F)  
above VDD and 0.3V below VSS  
.
FIGURE 4-5:  
for Capacitive Loads.  
Recommended R  
Values  
ISO  
4.2  
Rail-to-Rail Output  
The output voltage range of the MCP6231/1R/1U/2/4  
op amps is VDD – 35 mV (maximum) and VSS + 35 mV  
(minimum) when RL = 10 kΩ is connected to VDD/2 and  
VDD = 5.5V. Refer to Figure 2-14 for more information.  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Evaluation on the bench and  
simulations with the MCP6231/1R/1U/2/4 SPICE  
macro model are very helpful. Modify RISO’s value until  
the response is reasonable.  
4.3  
Capacitive Loads  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. A unity-gain buffer (G = +1) is the most  
sensitive to capacitive loads, but all gains show the  
same general behavior.  
4.4  
Supply Bypass  
With this op amp, the power supply pin (VDD for  
single-supply) should have a local bypass capacitor  
(i.e., 0.01 µF to 0.1 µF) within 2 mm for good  
high-frequency performance. It can use a bulk  
capacitor (i.e., 1 µF or larger) within 100 mm to  
provide large, slow currents. This bulk capacitor can  
be shared with other nearby analog parts.  
When driving large capacitive loads with these op  
amps (e.g., > 60 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-4) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
4.5  
Unused Op Amps  
An unused op amp in a quad package (MCP6234)  
should be configured as shown in Figure 4-6. Both  
circuits prevent the output from toggling and causing  
crosstalk. Circuit A can use any reference voltage  
between the supplies, provides a buffered DC voltage  
and minimizes the supply current draw of the unused  
op amp. Circuit  
B
minimizes the number of  
components, but may draw a little more supply current  
for the unused op amp.  
RISO  
VOUT  
MCP623X  
+
VIN  
CL  
¼ MCP6234 (A)  
VDD  
¼ MCP6234 (B)  
VDD  
VDD  
FIGURE 4-4:  
stabilizes large capacitive loads.  
Output resistor, R  
ISO  
R1  
R2  
VREF  
Figure 4-5 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
signal gain are equal. For inverting gains, GN is  
1 + |Signal Gain| (e.g., –1 V/V gives GN = +2 V/V).  
R
2
--------------------  
V
= V  
REF  
DD  
R + R  
1
2
FIGURE 4-6:  
Unused Op Amps.  
DS21881E-page 12  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
4.6  
PCB Surface Leakage  
4.7  
Application Circuits  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP6231/1R/1U/2/4 family’s bias current at +25°C  
(1 pA, typical).  
4.7.1  
MATCHING THE IMPEDANCE AT  
THE INPUTS  
To minimize the effect of input bias current in an ampli-  
fier circuit (this is important for very high source-  
impedance applications, such as pH meters and  
transimpedance amplifiers), the impedances at the  
inverting and non-inverting inputs need to be  
matched. This is done by choosing the circuit resistor  
values so that the total resistance at each input is the  
same. Figure 4-8 shows a summing amplifier circuit.  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-7.  
RG2  
VIN2  
VIN1  
RG1  
RF  
VIN–  
VIN+  
VSS  
VDD  
RX  
RY  
VOUT  
MCP623X  
+
RZ  
Guard Ring  
Example Guard Ring Layout  
FIGURE 4-8:  
Summing Amplifier Circuit.  
FIGURE 4-7:  
for Inverting Gain.  
To match the inputs, set all voltage sources to ground  
and calculate the total resistance at the input nodes. In  
this summing amplifier circuit, the resistance at the  
inverting input is calculated by setting VIN1, VIN2 and  
VOUT to ground. In this case, RG1, RG2 and RF are in  
parallel. The total resistance at the inverting input is:  
1. Non-inverting Gain and Unity-Gain Buffer:  
a. Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
b. Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
EQUATION 4-1:  
1
1
RVIN – = ----------------------------------------------  
1
1
2. Inverting Gain and Transimpedance Amplifiers  
(convert current to voltage, such as photo  
detectors):  
--------- + --------- + ------  
RG1 RG2 RF  
Where:  
RVIN  
a. Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
=
total resistance at the inverting  
input  
At the non-inverting input, VDD is the only voltage  
source. When VDD is set to ground, both Rx and Ry are  
in parallel. The total resistance at the non-inverting  
input is:  
b. Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
EQUATION 4-2:  
1
RVIN = ------------------------- + RZ  
+
1
1
------ + -----  
RX RY  
Where:  
RVIN  
+
=
total resistance at the inverting  
input  
© 2009 Microchip Technology Inc.  
DS21881E-page 13  
MCP6231/1R/1U/2/4  
To minimize output offset voltage and increase circuit  
accuracy, the resistor values need to meet the  
conditions:  
EQUATION 4-3:  
RVIN = RVIN  
+
4.7.2  
COMPENSATING FOR THE  
PARASITIC CAPACITANCE  
In analog circuit design, the PCB parasitic capacitance  
can compromise the circuit behavior; Figure 4-9 shows  
a typical scenario. If the input of an amplifier sees  
parasitic capacitance of several picofarad (CPARA  
,
which includes the common mode capacitance of 6 pF,  
typical), and large RF and RG, the frequency response  
of the circuit will include a zero. This parasitic zero  
introduces gain-peaking and can cause circuit  
instability.  
VAC  
+
VOUT  
MCP623X  
RG  
RF  
VDC  
CPARA  
CF  
RG  
------  
RF  
CF = CPARA  
FIGURE 4-9:  
Effect of Parasitic  
Capacitance at the Input.  
One solution is to use smaller resistor values to push  
the zero to a higher frequency. Another solution is to  
compensate by introducing a pole at the point at which  
the zero occurs. This can be done by adding CF in  
parallel with the feedback resistor (RF). CF needs to be  
selected so that the ratio CPARA:CF is equal to the ratio  
of RF:RG.  
DS21881E-page 14  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
5.5  
Analog Demonstration and  
Evaluation Boards  
5.0  
DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP6231/1R/1U/2/4 family of op amps.  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market. For  
5.1  
SPICE Macro Model  
a
complete listing of these boards and their  
The latest SPICE macro model for the MCP6231/1R/  
1U/2/4 op amps is available on the Microchip web site  
at www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation over the temperature range. See  
the model file for information on its capabilities.  
corresponding user’s guides and technical information,  
visit the Microchip web site at:  
www.microchip.com/analogtools  
Two of our boards that are especially useful are:  
P/N SOIC8EV: 8-Pin SOIC/MSOP/TSSOP/DIP  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
Evaluation Board  
P/N SOIC14EV: 14-Pin SOIC/TSSOP/DIP  
Evaluation Board  
5.6  
Application Notes  
FilterLab® Software  
The following Microchip Application Notes are  
available on the Microchip web site at www.microchip.  
com/appnotes and are recommended as supplemental  
reference resources.  
5.2  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
FilterLab design tool provides full schematic diagrams  
of the filter circuit with component values. It also  
outputs the filter circuit in SPICE format, which can be  
used with the macro model to simulate actual filter  
performance.  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications  
and Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
5.3  
Mindi™ Circuit Designer &  
Simulator  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
Microchip’s Mindi™ Circuit Designer & Simulator aids  
in the design of various circuits useful for active filter,  
amplifier and power-management applications. It is a  
free online circuit designer & simulator available from  
the Microchip web site at www.microchip.com/mindi.  
This interactive circuit designer & simulator enables  
designers to quickly generate circuit diagrams,  
simulate circuits. Circuits developed using the Mindi  
Circuit Designer & Simulator can be downloaded to a  
personal computer or workstation.  
These application notes and others are listed in the  
design guide:  
“Signal Chain Design Guide”, DS21825  
5.4  
Microchip Advanced Part Selector  
(MAPS)  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
from the Microchip web site at www.microchip.com/  
maps, the MAPS is an overall selection tool for  
Microchip’s product portfolio that includes Analog,  
Memory, MCUs and DSCs. Using this tool you can  
define a filter to sort features for a parametric search of  
devices and export side-by-side technical comparison  
reports. Helpful links are also provided for Data sheets,  
Purchase, and Sampling of Microchip parts.  
© 2009 Microchip Technology Inc.  
DS21881E-page 15  
MCP6231/1R/1U/2/4  
NOTES:  
DS21881E-page 16  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC70 (MCP6231U Only)  
Example:  
AS25  
XXNN  
Example:  
5-Lead SOT-23  
5
4
3
5
4
3
Device  
MCP6231  
Code  
BJNN  
BKNN  
BLNN  
BJ25  
XXNN  
MCP6231R  
MCP6231U  
1
2
1
2
Note:  
Applies to 5-Lead SOT-23.  
Example:  
8-Lead DFN (2 x 3) (MCP6231)  
XXX  
YWW  
NNN  
AER  
929  
256  
Example:  
8-Lead TDFN (2 x 3) (MCP6232)  
AAE  
929  
256  
XXX  
YWW  
NNN  
Example:  
8-Lead MSOP  
XXXXXX  
YWWNNN  
6232E  
929256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS21881E-page 17  
MCP6231/1R/1U/2/4  
Package Marking Information (Continued)  
8-Lead PDIP (300 mil)  
Example:  
MCP6232  
XXXXXXXX  
XXXXXNNN  
MCP6232  
e
3
E/P256  
0929  
E/P 256  
0929  
OR  
YYWW  
8-Lead SOIC (150 mil)  
Example:  
MCP6232E  
XXXXXXXX  
XXXXYYWW  
MCP6232  
E/SN0929  
OR  
e
3
SN 0929  
256  
NNN  
256  
14-Lead PDIP (300 mil) (MCP6234)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP6234  
e
3
E/P^^  
YYWWNNN  
0929256  
14-Lead SOIC (150 mil) (MCP6234)  
Example:  
MCP6234  
E/SL^
XXXXXXXXXX  
XXXXXXXXXX  
e
3
YYWWNNN  
0929256  
Example:  
14-Lead TSSOP (MCP6234)  
6234E  
0929  
XXXXXXXX  
YYWW  
256  
NNN  
DS21881E-page 18  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢂꢒꢖꢆꢗꢍꢘꢙꢚꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
b
1
3
2
E1  
E
4
5
e
e
A
A2  
c
A1  
L
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
(
ꢐꢁ9(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
ꢐꢁ;ꢐ  
ꢐꢁ;ꢐ  
ꢐꢁꢐꢐ  
ꢀꢁ;ꢐ  
ꢀꢁꢀ(  
ꢀꢁ;ꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢐ;  
ꢐꢁꢀ(  
M
M
M
ꢑꢁꢀꢐ  
ꢀꢁꢑ(  
ꢑꢁꢐꢐ  
ꢐꢁꢑꢐ  
M
ꢀꢁꢀꢐ  
ꢀꢁꢐꢐ  
ꢐꢁꢀꢐ  
ꢑꢁꢖꢐ  
ꢀꢁꢛ(  
ꢑꢁꢑ(  
ꢐꢁꢖ9  
ꢐꢁꢑ9  
ꢐꢁꢖꢐ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
M
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ9ꢀ)  
© 2009 Microchip Technology Inc.  
DS21881E-page 19  
MCP6231/1R/1U/2/4  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS21881E-page 20  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁ !ꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
(
ꢐꢁꢝ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢝꢐꢈ)ꢕ*  
ꢐꢁꢝꢐ  
ꢐꢁ;ꢝ  
ꢐꢁꢐꢐ  
ꢑꢁꢑꢐ  
ꢀꢁꢛꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢛ(  
ꢐꢞ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢛꢐ  
ꢐꢁꢀ(  
ꢛꢁꢑꢐ  
ꢀꢁ;ꢐ  
ꢛꢁꢀꢐ  
ꢐꢁ9ꢐ  
ꢐꢁ;ꢐ  
ꢛꢐꢞ  
4ꢀ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢐ  
ꢐꢁꢑ9  
ꢐꢁ(ꢀ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐꢝꢀ)  
© 2009 Microchip Technology Inc.  
DS21881E-page 21  
MCP6231/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ$ꢈꢄꢊ%ꢆꢜꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ&ꢄ'ꢃꢆꢕ(ꢘꢖꢆMꢆ *!*ꢚ+,ꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗ#$ꢜꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
;
ꢐꢁ(ꢐꢈ)ꢕ*  
ꢐꢁꢝꢐ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
*ꢇꢆ#ꢉꢊ#ꢈꢗꢌꢃꢊ/ꢆꢅ    
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
5
ꢔꢀ  
ꢔꢛ  
ꢐꢁ;ꢐ  
ꢐꢁꢐꢐ  
ꢀꢁꢐꢐ  
ꢐꢁꢐ(  
ꢐꢁꢐꢑ  
ꢐꢁꢑꢐꢈꢚ".  
ꢑꢁꢐꢐꢈ)ꢕ*  
ꢛꢁꢐꢐꢈ)ꢕ*  
M
M
ꢐꢁꢑ(  
"
"&ꢎꢇ ꢅ!ꢈ1ꢉ!ꢈ4ꢅꢆꢓ#ꢌ  
"&ꢎꢇ ꢅ!ꢈ1ꢉ!ꢈ=ꢃ!#ꢌ  
*ꢇꢆ#ꢉꢊ#ꢈ=ꢃ!#ꢌ  
*ꢇꢆ#ꢉꢊ#ꢈ4ꢅꢆꢓ#ꢌ  
*ꢇꢆ#ꢉꢊ#ꢜ#ꢇꢜ"&ꢎꢇ ꢅ!ꢈ1ꢉ!  
ꢂꢑ  
"ꢑ  
8
4
?
ꢀꢁꢛꢐ  
ꢀꢁ(ꢐ  
ꢐꢁꢑꢐ  
ꢐꢁꢛꢐ  
ꢐꢁꢑꢐ  
ꢀꢁ((  
ꢀꢁꢒ(  
ꢐꢁꢛꢐ  
ꢐꢁ(ꢐ  
M
ꢐꢁꢖꢐ  
M
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ 1ꢉꢊ/ꢉꢓꢅꢈꢄꢉꢘꢈꢌꢉ,ꢅꢈꢇꢆꢅꢈꢇꢍꢈꢄꢇꢍꢅꢈꢅ&ꢎꢇ ꢅ!ꢈ#ꢃꢅꢈ8ꢉꢍ ꢈꢉ#ꢈꢅꢆ! ꢁ  
ꢛꢁ 1ꢉꢊ/ꢉꢓꢅꢈꢃ ꢈ ꢉ-ꢈ ꢃꢆꢓ$ꢋꢉ#ꢅ!ꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢀꢑꢛ*  
DS21881E-page 22  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ$ꢈꢄꢊ%ꢆꢜꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ&ꢄ'ꢃꢆꢕ(ꢘꢖꢆMꢆ *!*ꢚ+,ꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗ#$ꢜꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
© 2009 Microchip Technology Inc.  
DS21881E-page 23  
MCP6231/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ$ꢈꢄꢊ%ꢆꢜꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ&ꢄ'ꢃꢆꢕ(ꢜꢖꢆMꢆ *!*ꢚ+ꢙꢀꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗꢒ#$ꢜꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS21881E-page 24  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ$ꢈꢄꢊ%ꢆꢜꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ&ꢄ'ꢃꢆꢕ(ꢜꢖꢆMꢆ *!*ꢚ+ꢙꢀꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗꢒ#$ꢜꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
© 2009 Microchip Technology Inc.  
DS21881E-page 25  
MCP6231/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ(ꢋꢌꢓꢔꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢇꢄꢌ&ꢄ'ꢃꢆꢕ(ꢍꢖꢆꢗ(ꢍꢏꢇꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢐꢁ9(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
M
ꢐꢁꢒ(  
ꢐꢁꢐꢐ  
M
ꢐꢁ;(  
ꢀꢁꢀꢐ  
ꢐꢁꢝ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
M
ꢖꢁꢝꢐꢈ)ꢕ*  
ꢛꢁꢐꢐꢈ)ꢕ*  
ꢛꢁꢐꢐꢈ)ꢕ*  
ꢐꢁ9ꢐ  
4
ꢐꢁꢖꢐ  
ꢐꢁ;ꢐ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢀ  
ꢐꢁꢝ(ꢈꢚ".  
M
ꢐꢞ  
;ꢞ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢑ  
M
M
ꢐꢁꢑꢛ  
ꢐꢁꢖꢐ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢀꢀꢀ)  
DS21881E-page 26  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009 Microchip Technology Inc.  
DS21881E-page 27  
MCP6231/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ/ꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆMꢆ!ꢚꢚꢆꢎꢋꢈꢆ-ꢔꢅ.ꢆꢗꢇ#/ꢇꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
3ꢆꢃ#  
ꢙ5*:"ꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
;
ꢁꢀꢐꢐꢈ)ꢕ*  
M
ꢁꢀꢛꢐ  
M
ꢁꢛꢀꢐ  
ꢁꢑ(ꢐ  
ꢁꢛ9(  
ꢁꢀꢛꢐ  
ꢁꢐꢀꢐ  
ꢁꢐ9ꢐ  
ꢁꢐꢀ;  
M
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
ꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
)ꢉ ꢅꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢕꢌꢇ$ꢋ!ꢅꢍꢈ#ꢇꢈꢕꢌꢇ$ꢋ!ꢅꢍꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
5
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8ꢀ  
8
ꢅ)  
M
ꢁꢑꢀꢐ  
ꢁꢀꢝ(  
M
ꢁꢀꢀ(  
ꢁꢐꢀ(  
ꢁꢑꢝꢐ  
ꢁꢑꢖꢐ  
ꢁꢛꢖ;  
ꢁꢀꢀ(  
ꢁꢐꢐ;  
ꢁꢐꢖꢐ  
ꢁꢐꢀꢖ  
M
ꢁꢛꢑ(  
ꢁꢑ;ꢐ  
ꢁꢖꢐꢐ  
ꢁꢀ(ꢐ  
ꢁꢐꢀ(  
ꢁꢐꢒꢐ  
ꢁꢐꢑꢑ  
ꢁꢖꢛꢐ  
ꢗꢃꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
3ꢎꢎꢅꢍꢈ4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
4ꢇ-ꢅꢍꢈ4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈꢚꢇ-ꢈꢕꢎꢉꢊꢃꢆꢓꢈꢈꢟ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢁꢐꢀꢐAꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ꢈ)ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐꢀ;)  
DS21881E-page 28  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢜꢖꢆMꢆꢜꢄꢓꢓꢔ0%ꢆ!+,ꢚꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗꢍꢏ/ꢘꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈ  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
9ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈBꢇꢎ#ꢃꢇꢆꢉꢋC  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢛꢁꢝꢐꢈ)ꢕ*  
ꢖꢁꢝꢐꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢞ  
ꢐꢁꢀꢒ  
ꢐꢁꢛꢀ  
(ꢞ  
M
M
M
M
M
;ꢞ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢞ  
(ꢞ  
ꢀ(ꢞ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ(ꢒ)  
© 2009 Microchip Technology Inc.  
DS21881E-page 29  
MCP6231/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢜꢖꢆMꢆꢜꢄꢓꢓꢔ0%ꢆ!+,ꢚꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗꢍꢏ/ꢘꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS21881E-page 30  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
12ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ/ꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆMꢆ!ꢚꢚꢆꢎꢋꢈꢆ-ꢔꢅ.ꢆꢗꢇ#/ꢇꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
3ꢆꢃ#  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢙ5*:"ꢕ  
56ꢏ  
ꢀꢖ  
ꢁꢀꢐꢐꢈ)ꢕ*  
M
ꢏꢙ5  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
M
ꢁꢑꢀꢐ  
ꢁꢀꢝ(  
M
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
)ꢉ ꢅꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢕꢌꢇ$ꢋ!ꢅꢍꢈ#ꢇꢈꢕꢌꢇ$ꢋ!ꢅꢍꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
ꢗꢃꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
3ꢎꢎꢅꢍꢈ4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8ꢀ  
8
ꢅ)  
ꢁꢀꢀ(  
ꢁꢐꢀ(  
ꢁꢑꢝꢐ  
ꢁꢑꢖꢐ  
ꢁꢒꢛ(  
ꢁꢀꢀ(  
ꢁꢐꢐ;  
ꢁꢐꢖ(  
ꢁꢐꢀꢖ  
M
ꢁꢀꢛꢐ  
M
ꢁꢛꢀꢐ  
ꢁꢑ(ꢐ  
ꢁꢒ(ꢐ  
ꢁꢀꢛꢐ  
ꢁꢐꢀꢐ  
ꢁꢐ9ꢐ  
ꢁꢐꢀ;  
M
ꢁꢛꢑ(  
ꢁꢑ;ꢐ  
ꢁꢒꢒ(  
ꢁꢀ(ꢐ  
ꢁꢐꢀ(  
ꢁꢐꢒꢐ  
ꢁꢐꢑꢑ  
ꢁꢖꢛꢐ  
4ꢇ-ꢅꢍꢈ4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈꢚꢇ-ꢈꢕꢎꢉꢊꢃꢆꢓꢈꢈꢟ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢁꢐꢀꢐAꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ꢈ)ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐꢐ()  
© 2009 Microchip Technology Inc.  
DS21881E-page 31  
MCP6231/1R/1U/2/4  
12ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢂꢖꢆMꢆꢜꢄꢓꢓꢔ0%ꢆ!+,ꢚꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗꢍꢏ/ꢘꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈꢟ  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
9ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈBꢇꢎ#ꢃꢇꢆꢉꢋC  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢛꢁꢝꢐꢈ)ꢕ*  
;ꢁ9(ꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢞ  
ꢐꢁꢀꢒ  
ꢐꢁꢛꢀ  
(ꢞ  
M
M
M
M
M
;ꢞ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢞ  
(ꢞ  
ꢀ(ꢞ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ9()  
DS21881E-page 32  
© 2009 Microchip Technology Inc.  
MCP6231/1R/1U/2/4  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
© 2009 Microchip Technology Inc.  
DS21881E-page 33  
MCP6231/1R/1U/2/4  
12ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒ3ꢋꢑꢆꢍ3ꢓꢋꢑ&ꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢒꢖꢆMꢆ2+2ꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗꢒꢍꢍꢏꢇꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢐꢁ9(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
M
ꢐꢁ;ꢐ  
ꢐꢁꢐ(  
M
ꢀꢁꢐꢐ  
M
9ꢁꢖꢐꢈ)ꢕ*  
ꢖꢁꢖꢐ  
(ꢁꢐꢐ  
ꢐꢁ9ꢐ  
ꢀꢁꢑꢐ  
ꢀꢁꢐ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
ꢖꢁꢛꢐ  
ꢖꢁꢝꢐ  
ꢐꢁꢖ(  
ꢖꢁ(ꢐ  
(ꢁꢀꢐ  
ꢐꢁꢒ(  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
4ꢀ  
ꢀꢁꢐꢐꢈꢚ".  
ꢐꢞ  
ꢐꢁꢐꢝ  
ꢐꢁꢀꢝ  
M
M
M
;ꢞ  
8
ꢐꢁꢑꢐ  
ꢐꢁꢛꢐ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ;ꢒ)  
DS21881E-page 34  
© 2009 Microchip Technology Inc.  
MCP6231/2/4  
Revision C (March 2005)  
APPENDIX A: REVISION HISTORY  
Revision E (August 2009)  
The following is the list of modifications:  
1. Added the MCP6234 quad op amp.  
The following is the list of modifications:  
2. Corrected plots in Section 2.0 “Typical  
Performance Curves”.  
1. Added the 2x3 TDFN package for MCP6232.  
3. Added Section 3.0 “Pin Descriptions”.  
2. Updated the 2x3 DFN package information for  
MCP6231.  
4. Added new SC-70 package markings. Added  
PDIP-14, SOIC-14, and TSSOP-14 packages  
and corrected package marking information  
(Section 6.0 “Packaging Information”).  
3. Updated the “Temperature Characteristics”  
table.  
4. Updated Section 3.0 “Pin Descriptions”.  
5. Added Appendix A: “Revision History”.  
5. Updated the Package Outline Drawings in  
Section 6.0 “Packaging Information”.  
Revision B (August 2004)  
6. Updated the Product Identification Systems  
section.  
• Undocumented changes.  
Revision D (May 2008)  
Revision A (March 2004)  
The following is the list of modifications:  
• Original Release of this Document.  
1. Changed Heading “Available Tools” to “Design  
Aids”.  
2. Design Aids: Name change for Mindi Simulator  
Tool.  
3. Package Types: Added DFN to MCP6231  
Device.  
4. Absolute Maximum Ratings: Numerous  
changes in this section.  
5. Updated notes to Section 1.0 “Electrical  
Characteristics”.  
6. Added Test Circuits to Section 1.0 “Electrical  
Characteristics”.  
7. Corrected Figure 2-7.  
8. Added Figure 2-19.  
9. Numerous changes to Section 3.0 “Pin  
Descriptions”.  
10. Added Section 4.1.1 “Phase Reversal”,  
Section 4.1.2 “Input Voltage and Current  
Limits”,  
and  
Section 4.1.3  
“Normal  
Operation”.  
11. Replaced Section 5.0 “Design Aids” with  
additional information.  
12. Updated  
Section 6.0  
“Packaging  
Information” with updated Package Outline  
Drawings.  
© 2009 Microchip Technology Inc.  
DS21881E-page 35  
MCP6231/2/4  
NOTES:  
DS21881E-page 36  
© 2009 Microchip Technology Inc.  
MCP6231/2/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
-X  
/XX  
a) MCP6231-E/MC:  
Extended Temperature  
8LD DFN package.  
Tape and Reel  
and/or  
Alternate Pinout  
Temperature Package  
Range  
b) MCP6231-E/MS:  
Extended Temperature  
8LD MSOP package.  
c) MCP6231UT-E/LT: Tape and Reel,  
Extended Temperature  
Device:  
MCP6231:  
MCP6231T:  
Single Op Amp (MSOP, PDIP, SOIC)  
Single Op Amp (Tape and Reel)  
(MSOP, SOIC, SOT-23)  
Single Op Amp (Tape and Reel)  
(SOT-23)  
5LD SC70 package.  
Extended Temperature  
8LD PDIP package.  
MCP6231RT:  
d) MCP6231-E/P:  
MCP6231UT: Single Op Amp (Tape and Reel)  
(SC70, SOT-23, TDFN)  
MCP6232:  
e) MCP6231RT-E/OT: Tape and Reel,  
Extended Temperature  
5LD SOT-23 package  
f) MCP6231UT-E/OT: Tape and Reel,  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(MSOP, SOIC)  
MCP6232T:  
MCP6234:  
Quad Op Amp  
MCP6234T:  
Quad Op Amp (Tape and Reel)  
(TSSOP, SOIC)  
Extended Temperature  
5LD SOT-23.  
g) MCP6231-E/SN:  
Extended Temperature  
8LD SOIC package.  
Temperature Range:  
Package:  
E
=
-40° C to +125° C  
a) MCP6232-E/SN:  
b) MCP6232-E/MS:  
c) MCP6232-E/P:  
Extended Temperature  
8LD SOIC package.  
Extended Temperature  
8LD MSOP package.  
Extended Temperature  
8LD PDIP package.  
LT  
MC  
=
=
Plastic Package (SC70), 5-lead (MCP6231U only)  
Plastic Dual Flat No-Lead (DFN) 2x3, 8-lead  
(MCP6231 only)  
MNY= Plastic Dual Flat No-Lead (TDFN) 2x3, 8-lead  
(MCP6232 only)  
MS  
P
=
=
=
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic Small Outline Transistor (SOT-23), 5-lead  
(MCP6231, MCP6231R, MCP6231U)  
Plastic SOIC (150 mil Body), 8-lead  
OT  
d) MCP6232T-E/SN: Tape and Reel,  
Extended Temperature  
8LD SOIC package.  
e) MCP6232T-E/MNY: Tape and Reel,  
Extended Temperature  
SN  
SL  
ST  
=
=
=
Plastic SOIC (150 mil Body), 14-lead  
Plastic TSSOP (4.4 mil Body), 14-lead  
8LD TDFN package.  
a) MCP6234-E/P:  
b) MCP6234-E/SL:  
c) MCP6234-E/ST:  
Extended Temperature  
14LD PDIP package.  
Extended Temperature  
14LD SOIC package.  
Extended Temperature,  
14LD TSSOP package  
d) MCP6234T-E/SL: Tape and Reel,  
Extended Temperature  
14LD SOIC package.  
e) MCP6234T-E/ST: Tape and Reel,  
Extended Temperature  
14LD TSSOP package.  
© 2009 Microchip Technology Inc.  
DS21881E-page 37  
MCP6231/2/4  
NOTES:  
DS21881E-page 38  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS21881E-page 39  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS21881E-page 40  
© 2009 Microchip Technology Inc.  

相关型号:

MCP6234T-E/LT

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6234T-E/MC

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6234T-E/MNY

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6234T-E/MS

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6234T-E/OT

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6234T-E/P

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6234T-E/SL

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6234T-E/SN

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6234T-E/ST

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP623T-E/CHY

OP-AMP, 200 uV OFFSET-MAX, 20 MHz BAND WIDTH, PDSO6, PLASTIC, SOT-23, 6 PIN
MICROCHIP

MCP624

Input Range incl. Negative Rail
MICROCHIP

MCP624-E/SL

QUAD OP-AMP, 200 uV OFFSET-MAX, 20 MHz BAND WIDTH, PDSO14, 3.90 MM, LEAD FREE, PLASTIC, SOIC-14
MICROCHIP