MCP6024T [MICROCHIP]

Rail-to-Rail Input/Output, 10 MHz Op Amps; 轨至轨输入/输出, 10 MHz的运算放大器
MCP6024T
型号: MCP6024T
厂家: MICROCHIP    MICROCHIP
描述:

Rail-to-Rail Input/Output, 10 MHz Op Amps
轨至轨输入/输出, 10 MHz的运算放大器

运算放大器
文件: 总42页 (文件大小:635K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6021/1R/2/3/4  
Rail-to-Rail Input/Output, 10 MHz Op Amps  
Description  
Features  
• Rail-to-Rail Input/Output  
The MCP6021, MCP6021R, MCP6022, MCP6023 and  
MCP6024 from Microchip Technology Inc. are rail-to-  
rail input and output op amps with high performance.  
Key specifications include: wide bandwidth (10 MHz),  
low noise (8.7 nV/Hz), low input offset voltage and low  
distortion (0.00053% THD+N). The MCP6023 also  
offers a Chip Select pin (CS) that gives power savings  
when the part is not in use.  
• Wide Bandwidth: 10 MHz (typical)  
• Low Noise: 8.7 nV/Hz, at 10 kHz (typical)  
• Low Offset Voltage:  
- Industrial Temperature: ±500 µV (maximum)  
- Extended Temperature: ±250 µV (maximum)  
• Mid-Supply VREF: MCP6021 and MCP6023  
• Low Supply Current: 1 mA (typical)  
Total Harmonic Distortion:  
The single MCP6021 and MCP6021R are available in  
SOT-23-5. The single MCP6021, single MCP6023 and  
dual MCP6022 are available in 8-lead PDIP, SOIC and  
TSSOP. The Extended Temperature single MCP6021  
is available in 8-lead MSOP. The quad MCP6024 is  
offered in 14-lead PDIP, SOIC and TSSOP packages.  
-
0.00053% (typical, G = 1 V/V)  
• Unity Gain Stable  
• Power Supply Range: 2.5V to 5.5V  
Temperature Range:  
The MCP6021/1R/2/3/4 family is available in Industrial  
and Extended temperature ranges. It has a power  
supply range of 2.5V to 5.5V.  
- Industrial: -40°C to +85°C  
- Extended: -40°C to +125°C  
Applications  
Package Types  
• Automotive  
MCP6021  
SOT-23-5  
MCP6022  
PDIP SOIC, TSSOP  
• Multi-Pole Active Filters  
• Audio Processing  
• DAC Buffer  
VOUTA  
VDD  
VDD  
VOUT  
VSS  
1
2
3
4
8
7
6
5
1
5
4
VINA  
VINA  
VSS  
VOUTB  
2
3
Test Equipment  
• Medical Instrumentation  
+
VINB  
VINB  
+
VIN  
+
VIN–  
MCP6021R  
SOT-23-5  
Design Aids  
MCP6023  
PDIP SOIC, TSSOP  
• SPICE Macro Models  
• FilterLab® Software  
VOUT  
VDD  
1
2
3
VSS  
5
4
NC  
1
2
3
4
8 CS  
• Mindi™ Circuit Designer & Simulator  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
VIN  
+
VDD  
VIN  
+
7
6
5
VIN–  
VIN  
VOUT  
VREF  
MCP6021  
PDIP SOIC,  
MSOP, TSSOP  
VSS  
MCP6024  
PDIP SOIC, TSSOP  
Typical Application  
5.6 pF  
Photo  
Detector  
NC  
NC  
1
2
3
4
8
7
6
5
VOUTA  
V
V
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUTD  
VDD  
VIN  
+
VINA  
+
100 kΩ  
IND  
VOUT  
VREF  
VIN  
VINA  
+
IND  
VSS  
100 pF  
VDD  
VSS  
VINB  
+
V
+
INC  
MCP6021  
VDD/2  
VINB  
VINC  
VOUTB  
VOUTC  
8
Transimpedance Amplifier  
© 2009 Microchip Technology Inc.  
DS21685D-page 1  
MCP6021/1R/2/3/4  
NOTES:  
DS21685D-page 2  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS ........................................................................7.0V  
Current at Analog Input Pins (VIN+, VIN).....................±2 mA  
Analog Inputs (VIN+, VIN–) †........ VSS – 1.0V to VDD + 1.0V  
All Other Inputs and Outputs ......... VSS – 0.3V to VDD + 0.3V  
†† See Section 4.1.2 “ Input Voltage and Current Limits”.  
Difference Input Voltage ...................................... |VDD – VSS  
|
Output Short Circuit Current ................................Continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature .................................65° C to +150° C  
Maximum Junction Temperature (TJ).........................+150° C  
ESD Protection On All Pins (HBM; MM) .............. ≥ 2 kV; 200V  
DC ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2 and RL = 10 kΩ to VDD/2.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset  
Input Offset Voltage:  
Industrial Temperature Parts  
Extended Temperature Parts  
Extended Temperature Parts  
VOS  
VOS  
VOS  
-500  
-250  
-2.5  
+500  
+250  
+2.5  
µV  
µV  
VCM = 0V  
VCM = 0V, VDD = 5.0V  
mV  
VCM = 0V, VDD = 5.0V  
TA = -40°C to +125°C  
Input Offset Voltage Temperature Drift ΔVOS/ΔTA  
±3.5  
90  
µV/°C TA = -40°C to +125°C  
Power Supply Rejection Ratio  
Input Current and Impedance  
Input Bias Current  
PSRR  
74  
dB  
VCM = 0V  
IB  
IB  
1
30  
150  
5,000  
pA  
pA  
Industrial Temperature Parts  
Extended Temperature Parts  
Input Offset Current  
TA = +85°C  
IB  
640  
pA  
TA = +125°C  
IOS  
ZCM  
ZDIFF  
±1  
pA  
Common-Mode Input Impedance  
Differential Input Impedance  
Common-Mode  
1013||6  
1013||3  
Ω||pF  
Ω||pF  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
VCMR  
CMRR  
CMRR  
CMRR  
VSS-0.3  
74  
90  
85  
90  
VDD+0.3  
V
dB  
dB  
dB  
VDD = 5V, VCM = -0.3V to 5.3V  
VDD = 5V, VCM = 3.0V to 5.3V  
VDD = 5V, VCM = -0.3V to 3.0V  
70  
74  
Voltage Reference (MCP6021 and MCP6023 only)  
VREF Accuracy (VREF – VDD/2)  
VREF Temperature Drift  
VREF_ACC  
ΔVREF/ΔT  
A
-50  
+50  
mV  
±100  
µV/°C TA = -40°C to +125°C  
Open-Loop Gain  
DC Open-Loop Gain (Large Signal)  
AOL  
90  
110  
dB  
VCM = 0V,  
OUT = VSS+0.3V to VDD-0.3V  
V
Output  
Maximum Output Voltage Swing  
Output Short Circuit Current  
VOL, VOH  
ISC  
VSS+15  
VDD-20  
mV  
mA  
mA  
0.5V input overdrive  
VDD = 2.5V  
±30  
±22  
ISC  
VDD = 5.5V  
© 2009 Microchip Technology Inc.  
DS21685D-page 3  
MCP6021/1R/2/3/4  
AC ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, RL = 10 kΩ to VDD/2 and CL = 60 pF.  
Parameters  
Power Supply  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Supply Voltage  
VDD  
IQ  
2.5  
0.5  
5.5  
V
Quiescent Current per Amplifier  
AC Response  
1.0  
1.35  
mA  
IO = 0  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
10  
65  
MHz  
°
G = +1 V/V  
Settling Time, 0.2%  
Slew Rate  
tSETTLE  
SR  
250  
7.0  
ns  
G = +1 V/V, VOUT = 100 mVp-p  
V/µs  
Total Harmonic Distortion Plus Noise  
f = 1 kHz, G = +1 V/V  
THD+N  
0.00053  
0.00064  
%
%
VOUT = 0.25V to 3.25V (1.75V ± 1.50VPK),  
V
DD = 5.0V, BW = 22 kHz  
VOUT = 0.25V to 3.25V (1.75V ± 1.50VPK),  
DD = 5.0V, BW = 22 kHz  
f = 1 kHz, G = +1 V/V, RL = 600Ω  
THD+N  
V
f = 1 kHz, G = +1 V/V  
f = 1 kHz, G = +10 V/V  
f = 1 kHz, G = +100 V/V  
Noise  
THD+N  
THD+N  
THD+N  
0.0014  
0.0009  
0.005  
%
%
%
VOUT = 4VP-P, VDD = 5.0V, BW = 22 kHz  
VOUT = 4VP-P, VDD = 5.0V, BW = 22 kHz  
VOUT = 4VP-P, VDD = 5.0V, BW = 22 kHz  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
2.9  
8.7  
3
µVp-p f = 0.1 Hz to 10 Hz  
nV/Hz f = 10 kHz  
fA/Hz f = 1 kHz  
MCP6023 CHIP SELECT (CS) ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, RL = 10 kΩ to VDD/2 and CL = 60 pF.  
Parameters  
CS Low Specifications  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
CS Logic Threshold, Low  
CS Input Current, Low  
VIL  
VSS  
-1.0  
0.2 VDD  
V
ICSL  
0.01  
µA CS = VSS  
CS High Specifications  
CS Logic Threshold, High  
CS Input Current, High  
VIH  
ICSH  
0.8 VDD  
VDD  
2.0  
V
-2  
0.01  
-0.05  
0.01  
µA CS = VDD  
µA CS = VDD  
µA CS = VDD  
GND Current  
ISS  
Amplifier Output Leakage  
CS Dynamic Specifications  
CS Low to Amplifier Output Turn-on Time  
IO(LEAK)  
tON  
tOFF  
2
10  
µs  
G = +1, VIN = VSS  
CS = 0.2VDD to VOUT = 0.45VDD time  
,
CS High to Amplifier Output High-Z Time  
Hysteresis  
0.01  
0.6  
µs  
V
G = +1, VIN = VSS,  
CS = 0.8VDD to VOUT = 0.05VDD time  
VHYST  
VDD = 5.0V, Internal Switch  
DS21685D-page 4  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.5V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Industrial Temperature Range  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-TSSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
TA  
TA  
TA  
TA  
-40  
-40  
-40  
-65  
+85  
°C  
°C  
°C  
°C  
+125  
+125  
+150  
Note 1  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
256  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
163  
206  
124  
70  
120  
100  
Note 1: The industrial temperature devices operate over this extended temperature range, but with reduced performance. In any  
case, the internal junction temperature (TJ) must not exceed the absolute maximum specification of 150°C.  
1.1  
Test Circuits  
CS  
The test circuits used for the DC and AC tests are  
shown in Figure 1-2 and Figure 1-3. The bypass  
capacitors are laid out according to the rules discussed  
in Section 4.7 “Supply Bypass”.  
tON  
tOFF  
High-Z  
Amplifier On  
High-Z  
VOUT  
-1 mA  
(typical)  
VDD  
1 µF  
0.1 µF  
CB1 CB2  
RN  
ISS  
ICS  
-50 nA  
(typical)  
-50 nA  
(typical)  
VIN  
VOUT  
1 kΩ  
MCP6021  
10 nA  
10 nA  
10 nA  
(typical)  
CL  
60 pF  
RL  
10 kΩ  
(typical)  
(typical)  
RG  
RF  
VDD/2  
FIGURE 1-1:  
pin on the MCP6023.  
Timing diagram for the CS  
VL  
2 kΩ  
2 kΩ  
FIGURE 1-2:  
AC and DC Test Circuit for  
Most Non-Inverting Gain Conditions.  
VDD  
1 µF  
0.1 µF  
CB1CB2  
RN  
VDD/2  
VOUT  
1 kΩ  
MCP6021  
CL  
60 pF  
RL  
10 kΩ  
RG  
RF  
VIN  
VL  
2 kΩ  
2 kΩ  
FIGURE 1-3:  
AC and DC Test Circuit for  
Most Inverting Gain Conditions.  
© 2009 Microchip Technology Inc.  
DS21685D-page 5  
MCP6021/1R/2/3/4  
NOTES:  
DS21685D-page 6  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
16%  
14%  
12%  
10%  
8%  
24%  
22%  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
I-Temp  
Parts  
1192 Samples  
CM = 0V  
TA = +25°C  
I-Temp  
Parts  
1192 Samples  
CM = 0V  
A = -40°C to +85°C  
V
V
T
6%  
4%  
6%  
4%  
2%  
2%  
0%  
0%  
Input Offset Voltage (µV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-1:  
Input Offset Voltage,  
FIGURE 2-4:  
Input Offset Voltage Drift,  
(Industrial Temperature Parts).  
(Industrial Temperature Parts).  
24%  
24%  
E-Temp  
22%  
438 Samples  
E-Temp  
Parts  
438 Samples  
VCM = 0V  
TA = -40°C to +125°C  
22%  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
0%  
Parts  
VDD = 5.0V  
20%  
VCM = 0V  
18%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
0%  
TA = +25°C  
Input Offset Voltage (µV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage,  
FIGURE 2-5:  
Input Offset Voltage Drift,  
(Extended Temperature Parts).  
(Extended Temperature Parts).  
500  
500  
-40°C  
VDD = 5.5V  
VDD = 2.5V  
400  
400  
+25°C  
+85°C  
+125°C  
-40°C  
300  
200  
100  
0
300  
200  
100  
0
+25°C  
+85°C  
+125°C  
-100  
-200  
-300  
-400  
-500  
-100  
-200  
-300  
-400  
-500  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
Input Offset Voltage vs.  
Common Mode Input Voltage with V = 2.5V.  
Common Mode Input Voltage with V = 5.5V.  
DD  
DD  
© 2009 Microchip Technology Inc.  
DS21685D-page 7  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
100  
50  
200  
150  
100  
50  
VCM = VDD/2  
0
VDD = 5.5V  
-50  
0
-100  
-150  
-200  
-250  
-300  
VDD = 2.5V  
-50  
-100  
-150  
-200  
VDD = 5.0V  
VCM = 0V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
Input Offset Voltage vs.  
Temperature.  
Output Voltage.  
1,000  
100  
10  
24  
VDD = 5.0V  
22  
20  
18  
16  
14  
12  
10  
8
f = 1 kHz  
f = 10 kHz  
6
4
2
0
1.E-01  
1.E+00  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1
0.1  
1
10  
100  
1k  
10k 100k 1M  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-8:  
Input Noise Voltage Density  
FIGURE 2-11:  
Input Noise Voltage Density  
vs. Frequency.  
vs. Common Mode Input Voltage.  
100  
90  
80  
70  
60  
50  
40  
30  
110  
105  
PSRR+  
PSRR-  
CMRR  
100  
95  
90  
85  
80  
75  
70  
PSRR (VCM = 0V)  
CMRR  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
20  
100  
1k  
10k  
100k  
1M  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-9:  
CMRR, PSRR vs.  
FIGURE 2-12:  
CMRR, PSRR vs.  
Frequency.  
Temperature.  
DS21685D-page 8  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
10,000  
10,000  
IB, TA = +125°C  
VDD = 5.5V  
VCM = VDD  
VDD = 5.5V  
1,000  
100  
10  
1,000  
100  
10  
IOS, TA = +125°C  
IB, TA = +85°C  
IB  
IOS  
IOS, TA = +85°C  
1
1
25 35 45 55 65 75 85 95 105 115 125  
Ambient Temperature (°C)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
FIGURE 2-16:  
Input Bias, Offset Currents  
FIGURE 2-13:  
Input Bias, Offset Currents  
vs. Temperature.  
vs. Common Mode Input Voltage.  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.2  
1.1  
VDD = 5.5V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VDD = 2.5V  
+125°C  
+85°C  
+25°C  
-40°C  
VCM = VDD - 0.5V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
FIGURE 2-17:  
Temperature.  
Quiescent Current vs.  
FIGURE 2-14:  
Supply Voltage.  
Quiescent Current vs.  
35  
30  
25  
20  
15  
10  
5
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-15  
-30  
-45  
-60  
-75  
-90  
Phase  
-105  
-120  
-135  
-150  
-165  
-180  
-195  
-210  
+125°C  
+85°C  
+25°C  
-40°C  
Gain  
-10  
-20  
0
1.E+00  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
1.E+08  
1
10 100 1k 10k 100k 1M 10M 100M  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Supply Voltage (V)  
Frequency (Hz)  
FIGURE 2-18:  
Frequency.  
Open-Loop Gain, Phase vs.  
FIGURE 2-15:  
vs. Supply Voltage.  
Output Short-Circuit Current  
© 2009 Microchip Technology Inc.  
DS21685D-page 9  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
130  
120  
110  
100  
90  
120  
115  
110  
105  
100  
95  
VDD = 5.5V  
VDD = 5.5V  
VDD = 2.5V  
VDD = 2.5V  
90  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
80  
-50  
-25  
0
25  
50  
75  
100  
125  
100  
1k  
10k  
100k  
Load Resistance (Ω)  
Ambient Temperature (°C)  
FIGURE 2-19:  
DC Open-Loop Gain vs.  
FIGURE 2-22:  
DC Open-Loop Gain vs.  
Load Resistance.  
Temperature.  
120  
14  
105  
90  
VCM = VDD/2  
110  
Gain Bandwidth Product  
12  
10  
8
VDD = 5.5V  
75  
100  
90  
60  
Phase Margin, G = +1  
45  
6
VDD = 2.5V  
80  
4
30  
15  
0
2
70  
VDD = 5.0V  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Common Mode Input Voltage (V)  
Output Voltage Headroom (V);  
VDD - VOH or VOL - VSS  
FIGURE 2-20:  
Small Signal DC Open-Loop  
FIGURE 2-23:  
Gain Bandwidth Product,  
Gain vs. Output Voltage Headroom.  
Phase Margin vs. Common Mode Input Voltage.  
10  
9
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
14  
12  
10  
8
105  
90  
75  
60  
45  
30  
15  
0
Gain Bandwidth Product  
8
7
6
Phase Margin, G = +1  
5
4
3
2
1
0
GBWP, VDD = 5.5V  
GBWP, VDD = 2.5V  
6
PM,  
PM,  
V
DD = 2.5V  
4
VDD = 5.5V  
VDD = 5.0V  
CM = VDD/2  
2
V
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Output Voltage (V)  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature (°C)  
FIGURE 2-21:  
Gain Bandwidth Product,  
FIGURE 2-24:  
Gain Bandwidth Product,  
Phase Margin vs. Temperature.  
Phase Margin vs. Output Voltage.  
DS21685D-page 10  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
10  
11  
10  
9
Falling, VDD = 5.5V  
Rising, VDD = 5.5V  
VDD = 5.5V  
VDD = 2.5V  
8
7
6
5
4
3
1
Falling, VDD = 2.5V  
Rising, VDD = 2.5V  
2
1
0
1.E+04  
1.E+05  
1.E+06  
1.E+07  
0.1  
-50  
-25  
0
25  
50  
75  
100  
125  
10k  
100k  
Frequency (Hz)  
1M  
10M  
Ambient Temperature (°C)  
FIGURE 2-25:  
Slew Rate vs. Temperature.  
FIGURE 2-28:  
Maximum Output Voltage  
Swing vs. Frequency.  
0.1000%  
0.0100%  
0.1000%  
f = 1 kHz  
BWMeas = 22 kHz  
VDD = 5.0V  
G = +100 V/V  
G = +10 V/V  
G = +1 V/V  
G = +100 V/V  
0.0100%  
0.0010%  
0.0001%  
G = +10 V/V  
0.0010%  
0.0001%  
f = 20 kHz  
BWMeas = 80 kHz  
VDD = 5.0V  
G = +1 V/V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Output Voltage (VP-P  
Output Voltage (VP-P  
)
)
FIGURE 2-26:  
Total Harmonic Distortion  
FIGURE 2-29:  
Total Harmonic Distortion  
plus Noise vs. Output Voltage with f = 1 kHz.  
plus Noise vs. Output Voltage with f = 20 kHz.  
135  
130  
125  
120  
115  
6
VDD = 5.0V  
G = +2 V/V  
5
VOUT  
4
VIN  
3
2
1
0
110  
G = +1 V/V  
-1  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
105  
0
10 20 30 40 50 60 70 80 90 100  
Time (10 µs/div)  
1k  
10k  
100k  
1M  
Frequency (Hz)  
FIGURE 2-27:  
The MCP6021/1R/2/3/4  
FIGURE 2-30:  
Channel-to-Channel  
family shows no phase reversal under overdrive.  
Separation vs. Frequency (MCP6022 and  
MCP6024 only).  
© 2009 Microchip Technology Inc.  
DS21685D-page 11  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
1,000  
100  
10  
10  
9
8
7
6
5
4
3
2
1
0
VOL - VSS  
VDD - VOH  
VOL - VSS  
VDD - VOH  
1
-50  
-25  
0
25  
50  
75  
100 125  
0.01  
0.1  
1
10  
Output Current Magnitude (mA)  
Ambient Temperature (°C)  
FIGURE 2-31:  
Output Voltage Headroom  
FIGURE 2-34:  
Output Voltage Headroom  
vs. Output Current.  
vs. Temperature.  
6.E-02  
5.E-02  
4.E-02  
3.E-02  
2.E-02  
1.E-02  
0.E+00  
-1.E-02  
-2.E-02  
-3.E-02  
-4.E-02  
-5.E-02  
-6.E-02  
6.E-02  
5.E-02  
4.E-02  
3.E-02  
2.E-02  
1.E-02  
0.E+00  
-1.E-02  
-2.E-02  
-3.E-02  
-4.E-02  
-5.E-02  
-6.E-02  
G = -1 V/V  
RF = 1 kΩ  
G = +1 V/V  
0.E+00  
2.E-07  
4.E-07  
6.E-07  
8.E-07  
1.E-06  
1.E-06  
1.E-06  
2.E-06  
2.E-06  
2.E-06  
0.E+00  
2.E-07  
4.E-07  
6.E-07  
8.E-07  
1.E-06  
1.E-06  
1.E-06  
2.E-06  
2.E-06  
2.E-06  
Time (200 ns/div)  
Time (200 ns/div)  
FIGURE 2-32:  
Small-Signal Non-inverting  
FIGURE 2-35:  
Small-Signal Inverting Pulse  
Pulse Response.  
Response.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
G = +1 V/V  
G = -1 V/V  
RF = 1 kΩ  
0.E+00  
5.E-07  
1.E-06  
2.E-06  
2.E-06  
3.E-06  
3.E-06  
4.E-06  
4.E-06  
5.E-06  
5.E-06  
0.E+00  
5.E-07  
1.E-06  
2.E-06  
2.E-06  
3.E-06  
3.E-06  
4.E-06  
4.E-06  
5.E-06  
5.E-06  
0.0  
0.0  
Time (500 ns/div)  
Time (500 ns/div)  
FIGURE 2-33:  
Large-Signal Non-inverting  
FIGURE 2-36:  
Large-Signal Inverting Pulse  
Pulse Response.  
Response.  
DS21685D-page 12  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
50  
40  
50  
40  
Representative Part  
30  
30  
20  
20  
VDD = 5.5V  
VDD = 2.5V  
10  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
FIGURE 2-37:  
V
Accuracy vs. Supply  
FIGURE 2-40:  
V
Accuracy vs.  
REF  
REF  
Voltage (MCP6021 and MCP6023 only).  
Temperature (MCP6021 and MCP6023 only).  
1.6  
1.6  
Op Amp  
turns on here  
Op Amp  
shuts off here  
Op Amp  
turns on here  
Op Amp  
shuts off here  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Hysteresis  
CS swept  
high to low  
CS swept  
high to low  
Hysteresis  
CS swept  
low to high  
CS swept  
low to high  
VDD = 5.5V  
G = +1 V/V  
VIN = 2.75V  
VDD = 2.5V  
G = +1 V/V  
VIN = 1.25V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Chip Select Voltage (V)  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Chip Select Voltage (V)  
FIGURE 2-38:  
Chip Select (CS) Hysteresis  
FIGURE 2-41:  
Chip Select (CS) Hysteresis  
(MCP6023 only) with V = 2.5V.  
(MCP6023 only) with V = 5.5V.  
DD  
DD  
5.5  
5.0  
4.5  
4.0  
3.5  
1.E-02  
10m  
1.E-03  
1m  
1.E- 4  
100µ  
1.E1-05µ  
VDD = 5.0V  
G = +1 V/V  
VIN = VSS  
CS Voltage  
1.E-06  
1µ  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
VOUT  
100n  
1.E- 7  
10n  
1.E- 8  
1n  
1.E-09  
100p  
1.E-10  
10p  
1.E-11  
1p  
1.E-12  
+125°C  
+85°C  
+25°C  
-40°C  
Output  
on  
Output  
on  
Output High-Z  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
0.0E+00  
5.0E-06  
1.0E-05  
1.5E-05  
2.0E-05  
2.5E-05  
3.0E-05  
3.5E-05  
Time (5 µs/div)  
FIGURE 2-39:  
Chip Select (CS) to  
FIGURE 2-42:  
Measured Input Current vs.  
Amplifier Output Response Time (MCP6023  
only).  
Input Voltage (below V ).  
SS  
© 2009 Microchip Technology Inc.  
DS21685D-page 13  
MCP6021/1R/2/3/4  
NOTES:  
DS21685D-page 14  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP6021  
PIN FUNCTION TABLE  
MCP6021R MCP6022 MCP6023 MCP6024  
Symbol  
Description  
PDIP,  
SOIC,  
SOT-23-5  
SOT-23-5  
(Note 2)  
PDIP,  
SOIC,  
PDIP,  
SOIC,  
PDIP,  
SOIC,  
MSOP,  
TSSOP  
(Note 1)  
TSSOP  
TSSOP  
TSSOP  
6
2
1
1
1
2
6
2
1
2
VOUT, VOUTA Analog Output (op amp A)  
4
4
VIN–, VINA  
VIN+, VINA  
VDD  
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
3
3
3
3
3
3
+
7
5
2
8
7
4
4
2
5
5
4
5
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
6
6
VINB  
7
7
VOUTB  
VOUTC  
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
VSS  
5
5
VIND  
+
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
Reference Voltage  
VIND  
VOUTD  
VREF  
1, 8  
8
1
CS  
NC  
Chip Select  
No Internal Connection  
Note 1:  
The MCP6021 in the 8-pin TSSOP package is only available for I-temp (Industrial Temperature) parts.  
2: The MCP6021R is only available in the 5-pin SOT-23 package, and for E-temp (Extended Temperature) parts.  
3.1  
Analog Outputs  
3.4  
Chip Select Digital Input (CS)  
The op amp output pins are low-impedance voltage  
sources.  
This is a CMOS, Schmitt-triggered input that places the  
part into a low power mode of operation.  
3.2  
Analog Inputs  
3.5  
Power Supply (VSS and VDD)  
The op amp non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
The positive power supply pin (VDD) is 2.5V to 6.0V  
higher than the negative power supply pin (VSS). For  
normal operation, the other pins are at voltages  
between VSS and VDD  
.
3.3  
Reference Voltage (VREF,  
MCP6021 and MCP6023  
)
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need a bypass capacitor.  
Mid-supply reference voltage provided by the single op  
amps (except in SOT-23-5 package). This is an  
unbuffered, resistor voltage divider internal to the part.  
© 2009 Microchip Technology Inc.  
DS21685D-page 15  
MCP6021/1R/2/3/4  
NOTES:  
DS21685D-page 16  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
4.0  
APPLICATIONS INFORMATION  
VDD  
The MCP6021/1R/2/3/4 family of operational amplifiers  
are fabricated on Microchip’s state-of-the-art CMOS  
process. They are unity-gain stable and suitable for a  
wide range of general-purpose applications.  
D1 D2  
V1  
R1  
R2  
MCP602X  
4.1  
Rail-to-Rail Input  
V2  
4.1.1  
PHASE REVERSAL  
The MCP6021/1R/2/3/4 op amp is designed to prevent  
phase reversal when the input pins exceed the supply  
voltages. Figure 2-42 shows the input voltage exceed-  
ing the supply voltage without any phase reversal.  
R3  
VSS – (minimum expected V1)  
R1 >  
R2 >  
2 mA  
VSS – (minimum expected V2)  
2 mA  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass  
quick ESD events within the specified limits.  
FIGURE 4-2:  
Inputs.  
Protecting the Analog  
It is also possible to connect the diodes to the left of  
resistors R1 and R2. In this case, current through the  
diodes D1 and D2 needs to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
A significant amount of current can flow out of the  
inputs when the common mode voltage (VCM) is below  
ground (VSS); see Figure 2-42. Applications that are  
high impedance may need to limit the useable voltage  
range.  
Bond  
VDD  
Pad  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
4.1.3  
NORMAL OPERATION  
VIN+  
VIN–  
The input stage of the MCP6021/1R/2/3/4 op amps use  
two differential CMOS input stages in parallel. One  
operates at low common mode input voltage (VCM),  
while the other operates at high VCM. WIth this topol-  
ogy, the device operates with Vcm up to 0.3V above  
Bond  
Pad  
VSS  
VDD and 0.3V below VSS  
.
FIGURE 4-1:  
Simplified Analog Input ESD  
Structures.  
4.2  
Rail-to-Rail Output  
In order to prevent damage and/or improper operation  
of these op amps, the circuit they are in must limit the  
currents and voltages at the VIN+ and VIN– pins (see  
Absolute Maximum Ratings † at the beginning of  
Section 1.0 “Electrical Characteristics”). Figure 4-2  
shows the recommended approach to protecting these  
inputs. The internal ESD diodes prevent the input pins  
(VIN+ and VIN–) from going too far below ground, and  
the resistors R1 and R2 limit the possible current drawn  
out of the input pins. Diodes D1 and D2 prevent the  
input pins (VIN+ and VIN–) from going too far above  
VDD, and dump any currents onto VDD. When  
implemented as shown, resistors R1 and R2 also limit  
the current through D1 and D2.  
The Maximum Output Voltage Swing is the maximum  
swing possible under particular output load.  
According to the specification table, the output can  
reach within 20 mV of either supply rail when  
RL = 10 kΩ. See Figure 2-31 and Figure 2-34 for more  
information concerning typical performance.  
a
4.3  
Capacitive Loads  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases, and the closed loop bandwidth is  
reduced. This produces gain-peaking in the frequency  
response, with overshoot and ringing in the step  
response.  
© 2009 Microchip Technology Inc.  
DS21685D-page 17  
MCP6021/1R/2/3/4  
When driving large capacitive loads with these op  
amps (e.g., > 60 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-3) improves the  
feedback loop’s phase margin (stability) by making the  
load resistive at higher frequencies. The bandwidth will  
be generally lower than the bandwidth with no  
capacitive load.  
1 V/V (unity gain). CG also reduces the phase margin  
of the feedback loop for both non-inverting and  
inverting gains.  
VIN  
VOUT  
VIN  
RISO  
RF  
CG  
RG  
VOUT  
CL  
MCP602X  
FIGURE 4-5:  
Non-inverting Gain Circuit  
with Parasitic Capacitance.  
FIGURE 4-3:  
Output Resistor R  
ISO  
Stabilizes Large Capacitive Loads.  
The largest value of RF in Figure 4-5 that should be  
used is a function of noise gain (see GN in Section 4.3  
“Capacitive Loads”) and CG. Figure 4-6 shows results  
for various conditions. Other compensation techniques  
may be used, but they tend to be more complicated to  
the design.  
Figure 4-4 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
1.E+05  
100k  
GN > +1 V/V  
1,000  
GN +1  
CG = 7 pF  
CG = 20 pF  
1.E1+00k4  
100  
10  
1k  
1.E+03  
CG = 50 pF  
G = 100 pF  
C
100  
1.E+02  
1
10  
Noise Gain; GN (V/V)  
10  
100  
1,000  
10,000  
Normalized Capacitance; CL/GN (pF)  
FIGURE 4-6:  
Non-inverting gain circuit  
with parasitic capacitance.  
FIGURE 4-4:  
Recommended R  
values  
ISO  
for capacitive loads.  
4.5  
MCP6023 Chip Select (CS)  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Evaluation on the bench and  
simulations with the MCP6021/1R/2/3/4 Spice macro  
model are helpful.  
The MCP6023 is a single amplifier with chip select  
(CS). When CS is pulled high, the supply current drops  
to 10 nA (typical) and flows through the CS pin to VSS  
When this happens, the amplifier output is put into a  
high-impedance state. By pulling CS low, the amplifier  
is enabled. The CS pin has an internal 5 MΩ (typical)  
pulldown resistor connected to VSS, so it will go low if  
the CS pin is left floating. Figure 1-1 and Figure 2-39  
show the output voltage and supply current response to  
a CS pulse.  
.
4.4  
Gain Peaking  
Figure 2-35 and Figure 2-36 use RF = 1 kΩ to avoid  
(frequency response) gain peaking and (step  
response) overshoot. The capacitance to ground at the  
inverting input (CG) is the op amp’s common mode  
input capacitance plus board parasitic capacitance. CG  
is in parallel with RG, which causes an increase in gain  
at high frequencies for non-inverting gains greater than  
DS21685D-page 18  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
4.6  
MCP6021 and MCP6023 Reference  
Voltage  
RG  
RF  
VIN  
VOUT  
The single op amps (MCP6021 and MCP6023), not in  
the SOT-23-5 package, have an internal mid-supply  
reference voltage connected to the VREF pin (see  
Figure 4-7). The MCP6021 has CS internally tied to  
VSS, which always keeps the op amp on and always  
provides a mid-supply reference. With the MCP6023,  
taking the CS pin high conserves power by shutting  
down both the op amp and the VREF circuitry. Taking  
the CS pin low turns on the op amp and VREF circuitry.  
VREF  
CB  
FIGURE 4-9:  
Inverting gain circuit using  
V
(MCP6021 and MCP6023 only).  
VDD  
REF  
If you don’t need the mid-supply reference, leave the  
VREF pin open.  
50 kΩ  
4.7  
Supply Bypass  
VREF  
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good, high-frequency performance. It also needs a  
bulk capacitor (i.e., 1 µF or larger) within 100 mm to  
provide large, slow currents. This bulk capacitor can be  
shared with nearby analog parts.  
50 kΩ  
CS  
5 MΩ  
4.8  
Unused Op Amps  
VSS  
An unused op amp in a quad package (MCP6024)  
should be configured as shown in Figure 4-10. These  
circuits prevent the output from toggling and causing  
crosstalk. Circuits A sets the op amp at its minimum  
noise gain. The resistor divider produces any desired  
reference voltage within the output voltage range of the  
op amp; the op amp buffers that reference voltage.  
Circuit B uses the minimum number of components  
and operates as a comparator, but it may draw more  
current.  
(CS tied internally to VSS for MCP6021)  
FIGURE 4-7:  
Simplified internal V  
REF  
circuit (MCP6021 and MCP6023 only).  
See Figure 4-8 for a non-inverting gain circuit using the  
internal mid-supply reference. The DC-blocking  
capacitor (CB) also reduces noise by coupling the op  
amp input to the source.  
RG  
RF  
¼ MCP6024 (A)  
VDD  
¼ MCP6024 (B)  
VDD  
VOUT  
VDD  
R1  
R2  
CB  
VREF  
VIN  
VREF  
FIGURE 4-8:  
Non-inverting gain circuit  
using V  
(MCP6021 and MCP6023 only).  
REF  
To use the internal mid-supply reference for an  
inverting gain circuit, connect the VREF pin to the  
non-inverting input, as shown in Figure 4-9. The  
capacitor CB helps reduce power supply noise on the  
output.  
R2  
------------------  
×
VREF = VDD  
R1 + R2  
FIGURE 4-10:  
Unused Op Amps.  
© 2009 Microchip Technology Inc.  
DS21685D-page 19  
MCP6021/1R/2/3/4  
Separate digital from analog, low speed from high  
speed and low power from high power. This will reduce  
interference.  
4.9  
PCB Surface Leakage  
In applications where low input bias current is critical,  
PCB (printed circuit board) surface-leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP6021/1R/2/3/4 family’s bias current at +25°C  
(1 pA, typical).  
Keep sensitive traces short and straight. Separating  
them from interfering components and traces. This is  
especially important for high-frequency (low rise-time)  
signals.  
Sometimes it helps to place guard traces next to victim  
traces. They should be on both sides of the victim  
trace, and as close as possible. Connect the guard  
trace to ground plane at both ends, and in the middle  
for long traces.  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
Figure 4-11 shows an example of this type of layout.  
Use coax cables (or low inductance wiring) to route  
signal and power to and from the PCB.  
4.11 Typical Applications  
Guard Ring  
VIN– VIN+  
4.11.1  
A/D CONVERTER DRIVER AND  
ANTI-ALIASING FILTER  
Figure 4-12 shows a third-order Butterworth filter that  
can be used as an A/D converter driver. It has a band-  
width of 20 kHz and a reasonable step response. It will  
work well for conversion rates of 80 ksps and greater (it  
has 29 dB attenuation at 60 kHz).  
FIGURE 4-11:  
Layout.  
Example Guard Ring  
1. Non-inverting Gain and Unity-Gain Buffer.  
a) Connect the guard ring to the inverting input  
pin (VIN–); this biases the guard ring to the  
common mode input voltage.  
1.0 nF  
MCP602X  
14.7 kΩ 33.2 kΩ  
8.45 kΩ  
b) Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
100 pF  
1.2 nF  
2. Inverting (Figure 4-11) and Transimpedance  
Gain Amplifiers (convert current to voltage, such  
as photo detectors).  
FIGURE 4-12:  
Anti-aliasing Filter with a 20 kHz Cutoff  
Frequency.  
A/D Converter Driver and  
a) Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp’s input (e.g., VDD/2 or ground).  
This filter can easily be adjusted to another bandwidth  
by multiplying all capacitors by the same factor.  
Alternatively, the resistors can all be scaled by another  
common factor to adjust the bandwidth.  
b) Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
4.10 High Speed PCB Layout  
Due to their speed capabilities, a little extra care in the  
PCB (Printed Circuit Board) layout can make a  
significant difference in the performance of these op  
amps. Good PC board layout techniques will help you  
achieve the performance shown in Section 1.0 “Elec-  
trical Characteristics” and Section 2.0 “Typical Per-  
formance Curves”, while also helping you minimize  
EMC (Electro-Magnetic Compatibility) issues.  
Use a solid ground plane and connect the bypass local  
capacitor(s) to this plane with minimal length traces.  
This cuts down inductive and capacitive crosstalk.  
DS21685D-page 20  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
4.11.2  
OPTICAL DETECTOR AMPLIFIER  
Figure 4-13 shows the MCP6021 op amp used as a  
transimpedance amplifier in a photo detector circuit.  
The photo detector looks like a capacitive current  
source, so the 100 kΩ resistor gains the input signal to  
a reasonable level. The 5.6 pF capacitor stabilizes this  
circuit and produces a flat frequency response with a  
bandwidth of 370 kHz.  
5.6 pF  
Photo  
Detector  
100 kΩ  
100 pF  
MCP6021  
VDD/2  
FIGURE 4-13:  
Transimpedance Amplifier  
for an Optical Detector.  
© 2009 Microchip Technology Inc.  
DS21685D-page 21  
MCP6021/1R/2/3/4  
NOTES:  
DS21685D-page 22  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
5.5  
Analog Demonstration and  
Evaluation Boards  
5.0  
DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP6021/1R/2/3/4 family of op amps.  
Microchip offers a broad spectrum of Analog Demon-  
stration and Evaluation Boards that are designed to  
help you achieve faster time to market. For a complete  
listing of these boards and their corresponding user’s  
guides and technical information, visit the Microchip  
web site at www.microchip.com/analogtools.  
5.1  
SPICE Macro Model  
The latest SPICE macro model available for the  
MCP6021/1R/2/3/4 op amps is on Microchip’s web site  
at www.microchip.com. This model is intended as an  
initial design tool that works well in the op amp’s linear  
region of operation at room temperature. Within the  
macro model file is information on its capabilities.  
Some boards that are especially useful are:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N: SOIC8EV  
14-Pin SOIC/TSSOP/DIP Evaluation Board,  
P/N: SOIC14EV  
5.2  
FilterLab® Software  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
FilterLab design tool provides full schematic diagrams  
of the filter circuit with component values. It also  
outputs the filter circuit in SPICE format, which can be  
used with the macro model to simulate actual filter  
performance.  
5.6  
Application Notes  
The following Microchip Application Notes are avail-  
able on the Microchip web site at www.microchip. com/  
appnotes and are recommended as supplemental ref-  
erence resources.  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
5.3  
Mindi™ Circuit Designer &  
Simulator  
AN723: “Operational Amplifier AC Specifications  
and Applications”, DS00723  
Microchip’s Mindi™ Circuit Designer & Simulator aids  
in the design of various circuits useful for active filter,  
amplifier and power-management applications. It is a  
free online circuit designer & simulator available from  
the Microchip web site at www.microchip.com/mindi.  
This interactive circuit designer & simulator enables  
designers to quickly generate circuit diagrams,  
simulate circuits. Circuits developed using the Mindi  
Circuit Designer & Simulator can be downloaded to a  
personal computer or workstation.  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
AN1177: “Op Amp Precision Design: DC Errors”,  
DS01177  
AN1228: “Op Amp Precision Design: Random  
Noise”, DS01228  
These application notes and others are listed in the  
design guide:  
5.4  
Microchip Advanced Part Selector  
(MAPS)  
“Signal Chain Design Guide”, DS21825  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
from the Microchip web site at www.microchip.com/  
maps, the MAPS is an overall selection tool for  
Microchip’s product portfolio that includes Analog,  
Memory, MCUs and DSCs. Using this tool you can  
define a filter to sort features for a parametric search of  
devices and export side-by-side technical comparison  
reports. Helpful links are also provided for Data sheets,  
Purchase, and Sampling of Microchip parts.  
© 2009 Microchip Technology Inc.  
DS21685D-page 23  
MCP6021/1R/2/3/4  
NOTES:  
DS21685D-page 24  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example: (E-temp)  
5-Lead SOT-23 (MCP6021/MCP6021R)  
Device  
E-Temp Code  
MCP6021  
XXNN  
EYNN  
EZNN  
EY25  
MCP6021R  
Note: Applies to 5-Lead SOT-23  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP6021  
MCP6021  
E/P^^256  
0903  
e
3
I/P256  
OR  
YYWW  
0903  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6021  
I/SN0903  
MCP6021E  
SN^
e
3
0903  
OR  
NNN  
256  
256  
Example:  
8-Lead MSOP  
6021E  
903256  
XXXXXX  
YWWNNN  
Example:  
8-Lead TSSOP  
6021  
XXXX  
YYWW  
NNN  
E903  
256  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS21685D-page 25  
MCP6021/1R/2/3/4  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP6024)  
Example:  
MCP6024-I/P  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
YYWWNNN  
0903256  
MCP6024  
E/P^
3
e
OR  
0903256  
14-Lead SOIC (150 mil) (MCP6024)  
Example:  
MCP6024ISL  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
0903256  
MCP6024  
e
3
E/SL^
OR  
0903256  
Example:  
14-Lead TSSOP (MCP6024)  
XXXXXX  
YYWW  
6024E  
0903  
NNN  
256  
DS21685D-page 26  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
(
ꢐꢁꢛ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢛꢐꢈ)ꢕ*  
ꢐꢁꢛꢐ  
ꢐꢁ;ꢛ  
ꢐꢁꢐꢐ  
ꢑꢁꢑꢐ  
ꢀꢁꢜꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢜ(  
ꢐꢝ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢜꢐ  
ꢐꢁꢀ(  
ꢜꢁꢑꢐ  
ꢀꢁ;ꢐ  
ꢜꢁꢀꢐ  
ꢐꢁ=ꢐ  
ꢐꢁ;ꢐ  
ꢜꢐꢝ  
4ꢀ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢐ  
ꢐꢁꢑ=  
ꢐꢁ(ꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢛꢀ)  
© 2009 Microchip Technology Inc.  
DS21685D-page 27  
MCP6021/1R/2/3/4  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ ꢐꢄꢈꢆ!ꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆMꢆꢙ##ꢆꢎꢋꢈꢆ$ꢔꢅ%ꢆꢗꢇ !ꢇꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
3ꢆꢃ#  
ꢙ5*9"ꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
;
ꢁꢀꢐꢐꢈ)ꢕ*  
M
ꢁꢀꢜꢐ  
M
ꢁꢜꢀꢐ  
ꢁꢑ(ꢐ  
ꢁꢜ=(  
ꢁꢀꢜꢐ  
ꢁꢐꢀꢐ  
ꢁꢐ=ꢐ  
ꢁꢐꢀ;  
M
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
ꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
)ꢉ ꢅꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢕꢌꢇ$ꢋ!ꢅꢍꢈ#ꢇꢈꢕꢌꢇ$ꢋ!ꢅꢍꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
5
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8ꢀ  
8
ꢅ)  
M
ꢁꢑꢀꢐ  
ꢁꢀꢛ(  
M
ꢁꢀꢀ(  
ꢁꢐꢀ(  
ꢁꢑꢛꢐ  
ꢁꢑꢖꢐ  
ꢁꢜꢖ;  
ꢁꢀꢀ(  
ꢁꢐꢐ;  
ꢁꢐꢖꢐ  
ꢁꢐꢀꢖ  
M
ꢁꢜꢑ(  
ꢁꢑ;ꢐ  
ꢁꢖꢐꢐ  
ꢁꢀ(ꢐ  
ꢁꢐꢀ(  
ꢁꢐꢒꢐ  
ꢁꢐꢑꢑ  
ꢁꢖꢜꢐ  
ꢗꢃꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
3ꢎꢎꢅꢍꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
4ꢇ-ꢅꢍꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈꢚꢇ-ꢈꢕꢎꢉꢊꢃꢆꢓꢈꢈꢟ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢁꢐꢀꢐ@ꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ꢈ)ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢀ;)  
DS21685D-page 28  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢛꢖꢆMꢆꢛꢄꢓꢓꢔ&'ꢆꢙ()#ꢆꢎꢎꢆ$ꢔꢅ%ꢆꢗꢍꢏ!*ꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈ  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
=ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈAꢇꢎ#ꢃꢇꢆꢉꢋB  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢜꢁꢛꢐꢈ)ꢕ*  
ꢖꢁꢛꢐꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢝ  
ꢐꢁꢀꢒ  
ꢐꢁꢜꢀ  
(ꢝ  
M
M
M
M
M
;ꢝ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢝ  
(ꢝ  
ꢀ(ꢝ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐ(ꢒ)  
© 2009 Microchip Technology Inc.  
DS21685D-page 29  
MCP6021/1R/2/3/4  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢛꢖꢆMꢆꢛꢄꢓꢓꢔ&'ꢆꢙ()#ꢆꢎꢎꢆ$ꢔꢅ%ꢆꢗꢍꢏ!*ꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS21685D-page 30  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ+ꢋꢌꢓꢔꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢇꢄꢌ,ꢄ-ꢃꢆꢕ+ꢍꢖꢆꢗ+ꢍꢏꢇꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢐꢁ=(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
M
ꢐꢁꢒ(  
ꢐꢁꢐꢐ  
M
ꢐꢁ;(  
ꢀꢁꢀꢐ  
ꢐꢁꢛ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
M
ꢖꢁꢛꢐꢈ)ꢕ*  
ꢜꢁꢐꢐꢈ)ꢕ*  
ꢜꢁꢐꢐꢈ)ꢕ*  
ꢐꢁ=ꢐ  
4
ꢐꢁꢖꢐ  
ꢐꢁ;ꢐ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢀ  
ꢐꢁꢛ(ꢈꢚ".  
M
ꢐꢝ  
;ꢝ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢑ  
M
M
ꢐꢁꢑꢜ  
ꢐꢁꢖꢐ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢀꢀꢀ)  
© 2009 Microchip Technology Inc.  
DS21685D-page 31  
MCP6021/1R/2/3/4  
./ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ ꢐꢄꢈꢆ!ꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆMꢆꢙ##ꢆꢎꢋꢈꢆ$ꢔꢅ%ꢆꢗꢇ !ꢇꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
3ꢆꢃ#  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢙ5*9"ꢕ  
56ꢏ  
ꢀꢖ  
ꢁꢀꢐꢐꢈ)ꢕ*  
M
ꢏꢙ5  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
M
ꢁꢑꢀꢐ  
ꢁꢀꢛ(  
M
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
)ꢉ ꢅꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢕꢌꢇ$ꢋ!ꢅꢍꢈ#ꢇꢈꢕꢌꢇ$ꢋ!ꢅꢍꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
ꢗꢃꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
3ꢎꢎꢅꢍꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8ꢀ  
8
ꢅ)  
ꢁꢀꢀ(  
ꢁꢐꢀ(  
ꢁꢑꢛꢐ  
ꢁꢑꢖꢐ  
ꢁꢒꢜ(  
ꢁꢀꢀ(  
ꢁꢐꢐ;  
ꢁꢐꢖ(  
ꢁꢐꢀꢖ  
M
ꢁꢀꢜꢐ  
M
ꢁꢜꢀꢐ  
ꢁꢑ(ꢐ  
ꢁꢒ(ꢐ  
ꢁꢀꢜꢐ  
ꢁꢐꢀꢐ  
ꢁꢐ=ꢐ  
ꢁꢐꢀ;  
M
ꢁꢜꢑ(  
ꢁꢑ;ꢐ  
ꢁꢒꢒ(  
ꢁꢀ(ꢐ  
ꢁꢐꢀ(  
ꢁꢐꢒꢐ  
ꢁꢐꢑꢑ  
ꢁꢖꢜꢐ  
4ꢇ-ꢅꢍꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈꢚꢇ-ꢈꢕꢎꢉꢊꢃꢆꢓꢈꢈꢟ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢁꢐꢀꢐ@ꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ꢈ)ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢐ()  
DS21685D-page 32  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
./ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢂꢖꢆMꢆꢛꢄꢓꢓꢔ&'ꢆꢙ()#ꢆꢎꢎꢆ$ꢔꢅ%ꢆꢗꢍꢏ!*ꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈꢟ  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
=ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈAꢇꢎ#ꢃꢇꢆꢉꢋB  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢜꢁꢛꢐꢈ)ꢕ*  
;ꢁ=(ꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢝ  
ꢐꢁꢀꢒ  
ꢐꢁꢜꢀ  
(ꢝ  
M
M
M
M
M
;ꢝ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢝ  
(ꢝ  
ꢀ(ꢝ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐ=()  
© 2009 Microchip Technology Inc.  
DS21685D-page 33  
MCP6021/1R/2/3/4  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS21685D-page 34  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
./ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒ0ꢋꢑꢆꢍ0ꢓꢋꢑ,ꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢒꢖꢆMꢆ/(/ꢆꢎꢎꢆ$ꢔꢅ%ꢆꢗꢒꢍꢍꢏꢇꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢐꢁ=(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
M
ꢐꢁ;ꢐ  
ꢐꢁꢐ(  
M
ꢀꢁꢐꢐ  
M
=ꢁꢖꢐꢈ)ꢕ*  
ꢖꢁꢖꢐ  
(ꢁꢐꢐ  
ꢐꢁ=ꢐ  
ꢀꢁꢑꢐ  
ꢀꢁꢐ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
ꢖꢁꢜꢐ  
ꢖꢁꢛꢐ  
ꢐꢁꢖ(  
ꢖꢁ(ꢐ  
(ꢁꢀꢐ  
ꢐꢁꢒ(  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
4ꢀ  
ꢀꢁꢐꢐꢈꢚ".  
ꢐꢝ  
ꢐꢁꢐꢛ  
ꢐꢁꢀꢛ  
M
M
M
;ꢝ  
8
ꢐꢁꢑꢐ  
ꢐꢁꢜꢐ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐ;ꢒ)  
© 2009 Microchip Technology Inc.  
DS21685D-page 35  
MCP6021/1R/2/3/4  
NOTES:  
DS21685D-page 36  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Revision B (November 2003)  
APPENDIX A: REVISION HISTORY  
• Second Release of this Document  
Revision D (February 2009)  
Revision A (November 2001)  
The following is the list of modifications:  
1. Changed all references to 6.0V back to 5.5V  
throughout document.  
• Original Release of this Document.  
2. Design Aids: Name change for Mindi Simula-  
tion Tool.  
3. Section 1.0 “Electrical Characteristics”, DC  
Electrical Specifications: Corrected “Maxi-  
mum Output Voltage Swing” condition from 0.9V  
Input Overdrive to 0.5V Input Overdrive.  
4. Section 1.0 “Electrical Characteristics”, AC  
Electrical Specifications: Changed Phase  
Margin condition from G = +1 to G= +1 V/V.  
5. Section 1.0 “Electrical Characteristics”, AC  
Electrical Specifications: Changed Settling  
Time, 0.2% condition from G = +1 to G = +1 V/V.  
6. Section 1.0 “Electrical Characteristics”:  
Added Section 1.1 Test Circuits.  
7. Section 5.0 “Design AIDS”: Name change for  
Mindi Simulation Tool. Added new boards to  
Section 5.5 “Analog Demonstration and  
Evaluation Boards” and new application notes  
to Section 5.6 “Application Notes”.  
8. Updates Appendix A: “Revision History”  
Revision C (March 2006)  
The following is the list of modifications:  
1. Added SOT-23-5 package option for single op  
amps MCP6021 and MCP6021R (E-temp only).  
2. Added MSOP-8 package option for E-temp  
single op amp (MCP6021).  
3. Corrected package drawing on front page for  
dual op amp (MCP6022).  
4. Clarified spec conditions (ISC, PM and THD+N)  
in  
Section 2.0  
“Typical  
Performance  
Curves”.  
5. Added Section 3.0 “Pin Descriptions”.  
6. Updated Section 4.0 “Applications informa-  
tion” for THD+N, unused op amps, and gain  
peaking discussions.  
7. Corrected and updated package marking infor-  
mation in Section 6.0 “Packaging Informa-  
tion”.  
8. Added Appendix A: “Revision History”.  
© 2009 Microchip Technology Inc.  
DS21685D-page 37  
MCP6021/1R/2/3/4  
NOTES:  
DS21685D-page 38  
© 2009 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a)  
MCP6021T-E/OT: Tape and Reel,  
Extended temperature,  
Temperature  
Range  
Package  
5LD SOT-23.  
Extended temperature,  
8LD PDIP.  
b)  
c)  
MCP6021-E/P:  
MCP6021-E/SN: Extended temperature,  
8LD SOIC.  
Device:  
MCP6021  
Single Op Amp  
MCP6021T Single Op Amp  
(Tape and Reel for SOT-23, SOIC, TSSOP,  
a)  
MCP6021RT-E/OT:Tape and Reel,  
Extended temperature,  
5LD SOT-23.  
MSOP)  
MCP6021R Single Op Amp  
MCP6021RT Single Op Amp  
(Tape and Reel for SOT-23)  
Dual Op Amp  
MCP6022T Dual Op Amp  
(Tape and Reel for SOIC and TSSOP)  
Single Op Amp w/ CS  
MCP6023T Single Op Amp w/ CS  
(Tape and Reel for SOIC and TSSOP)  
Quad Op Amp  
MCP6024T Quad Op Amp  
(Tape and Reel for SOIC and TSSOP)  
a)  
b)  
c)  
MCP6022-I/P:  
MCP6022-E/P:  
Industrial temperature,  
8LD PDIP.  
Extended temperature,  
8LD PDIP.  
MCP6022  
MCP6023  
MCP6022T-E/ST: Tape and Reel,  
Extended temperature,  
8LD TSSOP.  
MCP6024  
a)  
b)  
c)  
MCP6023-I/P:  
MCP6023-E/P:  
Industrial temperature,  
8LD PDIP.  
Extended temperature,  
8LD PDIP.  
Temperature Range:  
Package:  
I
=
=
-40°C to +85°C  
MCP6023-E/SN: Extended temperature,  
8LD SOIC.  
E
-40°C to +125°C  
a)  
b)  
c)  
MCP6024-I/SL: Industrial temperature,  
14LD SOIC.  
MCP6024-E/SL: Extended temperature,  
14LD SOIC.  
MCP6024T-E/ST: Tape and Reel,  
Extended temperature,  
OT  
MS  
=
=
Plastic Small Outline Transistor (SOT-23), 5-lead  
(MCP6021, E-Temp; MCP6021R, E-Temp)  
Plastic MSOP, 8-lead  
(MCP6021, E-Temp)  
P
=
=
=
=
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic SOIC (150mil Body), 8-lead  
Plastic SOIC (150 mil Body), 14-lead  
Plastic TSSOP, 8-lead  
SN  
SL  
ST  
14LD TSSOP.  
(MCP6021,I-Temp; MCP6022, I-Temp, E-Temp;  
MCP6023, I-Temp, E-Temp;)  
ST  
=
Plastic TSSOP, 14-lead  
© 2009 Microchip Technology Inc.  
DS21685D-page 39  
MCP6021/1R/2/3/4  
NOTES:  
DS21685D-page 40  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS21685D-page 41  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
02/04/09  
DS21685D-page 42  
© 2009 Microchip Technology Inc.  

相关型号:

MCP6024T-E/MS

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-E/OT

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-E/P

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-E/SL

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-E/SLVAO

Operational Amplifier, 4 Func, 2500uV Offset-Max, CMOS, PDSO14
MICROCHIP

MCP6024T-E/SN

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-E/ST

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-E/STVAO

Operational Amplifier, 4 Func, 2500uV Offset-Max, CMOS, PDSO14
MICROCHIP

MCP6024T-I/MS

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-I/OT

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-I/P

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-I/SL

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP