MCP6024T-E/OT [MICROCHIP]

Rail-to-Rail Input/Output, 10 MHz Op Amps; 轨至轨输入/输出, 10 MHz的运算放大器
MCP6024T-E/OT
型号: MCP6024T-E/OT
厂家: MICROCHIP    MICROCHIP
描述:

Rail-to-Rail Input/Output, 10 MHz Op Amps
轨至轨输入/输出, 10 MHz的运算放大器

运算放大器
文件: 总34页 (文件大小:468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6021/1R/2/3/4  
Rail-to-Rail Input/Output, 10 MHz Op Amps  
Features  
Description  
• Rail-to-Rail Input/Output  
The MCP6021, MCP6021R, MCP6022, MCP6023 and  
MCP6024 from Microchip Technology Inc. are rail-to-  
rail input and output op amps with high performance.  
Key specifications include: wide bandwidth (10 MHz),  
low noise (8.7 nV/Hz), low input offset voltage and low  
distortion (0.00053% THD+N). The MCP6023 also  
offers a Chip Select pin (CS) that gives power savings  
when the part is not in use.  
• Wide Bandwidth: 10 MHz (typ.)  
• Low Noise: 8.7 nV/Hz, at 10 kHz (typ.)  
• Low Offset Voltage:  
- Industrial Temperature: ±500 µV (max.)  
- Extended Temperature: ±250 µV (max.)  
• Mid-Supply VREF: MCP6021 and MCP6023  
• Low Supply Current: 1 mA (typ.)  
Total Harmonic Distortion: 0.00053% (typ., G = 1)  
• Unity Gain Stable  
The single MCP6021 and MCP6021R are available in  
SOT-23-5. The single MCP6021, single MCP6023 and  
dual MCP6022 are available in 8-lead PDIP, SOIC and  
TSSOP. The Extended Temperature single MCP6021  
is available in 8-lead MSOP. The quad MCP6024 is  
offered in 14-lead PDIP, SOIC and TSSOP packages.  
• Power Supply Range: 2.5V to 5.5V  
Temperature Range:  
- Industrial: -40°C to +85°C  
The MCP6021/1R/2/3/4 family is available in Industrial  
and Extended temperature ranges. It has a power  
supply range of 2.5V to 5.5V.  
- Extended: -40°C to +125°C  
Typical Applications  
Package Types  
• Automotive  
• Driving A/D Converters  
• Multi-Pole Active Filters  
• Barcode Scanners  
• Audio Processing  
• Communications  
• DAC Buffer  
MCP6021  
SOT-23-5  
MCP6022  
PDIP SOIC, TSSOP  
VOUTA  
VDD  
VDD  
VOUT  
VSS  
1
1
2
3
4
8
7
6
5
5
VINA  
+
VOUTB  
2
3
VINA  
VINB  
+
VIN+  
4 VIN–  
VSS  
VINB  
MCP6021R  
Test Equipment  
SOT-23-5  
MCP6023  
PDIP SOIC, TSSOP  
• Medical Instrumentation  
VOUT  
VDD  
1
2
3
VSS  
5
Available Tools  
NC  
VIN–  
VIN+  
VSS  
1
2
3
4
8 CS  
VDD  
• SPICE Macro Model (at www.microchip.com)  
• FilterLab® software (at www.microchip.com)  
VIN+  
7
6
5
4 VIN–  
VOUT  
VREF  
MCP6021  
PDIP SOIC,  
MSOP, TSSOP  
Typical Application  
MCP6024  
PDIP SOIC, TSSOP  
5.6 pF  
Photo  
Detector  
NC  
NC  
1
2
3
4
8
7
6
5
VOUTA  
V
V
V
V
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUTD  
VDD  
VIN–  
VIN+  
VSS  
100 kΩ  
VINA  
+
IND  
VOUT  
VREF  
VINA  
+
IND  
100 pF  
VDD  
SS  
VINB  
+
+
MCP6021  
INC  
VINB  
VINC  
VDD/2  
VOUTB  
VOUTC  
8
Transimpedance Amplifier  
© 2006 Microchip Technology Inc.  
DS21685C-page 1  
MCP6021/1R/2/3/4  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
– V ........................................................................7.0V  
SS  
DD  
All Inputs and Outputs.................... V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input Voltage ...................................... |V – V  
|
DD  
SS  
Output Short Circuit Current ..................................continuous  
Current at Input Pins ....................................................±2 mA  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature.....................................-65°C to +150°C  
Junction Temperature..................................................+150°C  
ESD Protection on all pins (HBM; MM)................ ≥ 2 kV; 200V  
DC ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, V  
V /2  
OUT DD  
A
DD  
SS  
CM  
DD  
and R = 10 kΩ to V /2.  
L
DD  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset  
Input Offset Voltage:  
Industrial Temperature Parts  
Extended Temperature Parts  
Extended Temperature Parts  
V
V
V
-500  
-250  
-2.5  
+500  
+250  
+2.5  
µV  
µV  
V
V
V
= 0V  
OS  
OS  
OS  
CM  
CM  
CM  
= 0V, V = 5.0V  
DD  
mV  
= 0V, V = 5.0V  
DD  
T = -40°C to +125°C  
A
Input Offset Voltage Temperature Drift ΔV /ΔT  
±3.5  
90  
µV/°C T = -40°C to +125°C  
A
OS  
A
Power Supply Rejection Ratio  
Input Current and Impedance  
Input Bias Current  
PSRR  
74  
dB  
V
= 0V  
CM  
I
I
I
1
150  
5,000  
pA  
pA  
B
B
B
Industrial Temperature Parts  
Extended Temperature Parts  
Input Offset Current  
30  
T = +85°C  
A
640  
±1  
pA  
T = +125°C  
A
I
pA  
OS  
13  
Common-Mode Input Impedance  
Differential Input Impedance  
Common-Mode  
Z
10 ||6  
Ω||pF  
Ω||pF  
CM  
13  
Z
10 ||3  
DIFF  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
V
V
-0.3  
90  
85  
90  
V
+0.3  
DD  
V
CMR  
SS  
CMRR  
CMRR  
CMRR  
74  
dB  
dB  
dB  
V
V
V
= 5V, V  
= 5V, V  
= 5V, V  
= -0.3V to 5.3V  
DD  
DD  
DD  
CM  
CM  
CM  
70  
74  
= 3.0V to 5.3V  
= -0.3V to 3.0V  
Voltage Reference (MCP6021 and MCP6023 only)  
V
V
Accuracy (V  
– V /2)  
V
REF_ACC  
-50  
+50  
mV  
REF  
REF  
REF  
DD  
Temperature Drift  
ΔV  
/ΔT  
±100  
µV/°C T = -40°C to +125°C  
A
REF  
A
Open-Loop Gain  
DC Open-Loop Gain (Large Signal)  
A
90  
110  
dB  
V
V
= 0V,  
CM  
OL  
= V +0.3V to V -0.3V  
OUT  
SS  
DD  
Output  
Maximum Output Voltage Swing  
Output Short Circuit Current  
V
, V  
V
+15  
V -20  
DD  
mV  
mA  
mA  
0.5V output overdrive  
OL  
OH  
SS  
I
I
±30  
±22  
V
V
= 2.5V  
= 5.5V  
SC  
SC  
DD  
DD  
Power Supply  
Supply Voltage  
V
2.5  
0.5  
5.5  
V
S
Quiescent Current per Amplifier  
I
1.0  
1.35  
mA  
I = 0  
O
Q
DS21685C-page 2  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
AC ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2,  
DD  
A
DD  
SS  
CM  
V
V /2, R = 10 kΩ to V /2 and C = 60 pF.  
DD L DD L  
OUT  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin at Unity-Gain  
Settling Time, 0.2%  
Slew Rate  
GBWP  
PM  
10  
65  
MHz  
°
G = +1  
G = +1, V  
t
250  
7.0  
ns  
= 100 mV  
OUT p-p  
SETTLE  
SR  
V/µs  
Total Harmonic Distortion Plus Noise  
f = 1 kHz, G = +1 V/V  
THD+N  
0.00053  
0.00064  
%
%
V
V
= 0.25V to 3.25V (1.75V ± 1.50V ),  
OUT PK  
= 5.0V, BW = 22 kHz  
DD  
f = 1 kHz, G = +1 V/V, R = 600Ω  
THD+N  
V
V
= 0.25V to 3.25V (1.75V ± 1.50V ),  
L
OUT  
PK  
= 5.0V, BW = 22 kHz  
DD  
f = 1 kHz, G = +1 V/V  
f = 1 kHz, G = +10 V/V  
f = 1 kHz, G = +100 V/V  
Noise  
THD+N  
THD+N  
THD+N  
0.0014  
0.0009  
0.005  
%
%
%
V
V
V
= 4V , V = 5.0V, BW = 22 kHz  
P-P DD  
OUT  
OUT  
OUT  
= 4V , V = 5.0V, BW = 22 kHz  
P-P DD  
= 4V , V = 5.0V, BW = 22 kHz  
P-P DD  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
E
e
2.9  
8.7  
3
µVp-p f = 0.1 Hz to 10 Hz  
nV/Hz f = 10 kHz  
ni  
ni  
i
fA/Hz f = 1 kHz  
ni  
MCP6023 CHIP SELECT (CS) ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2,  
DD  
A
DD  
SS  
CM  
V
V /2, R = 10 kΩ to V /2 and C = 60 pF.  
OUT  
DD  
L
DD  
L
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
CS Input Current, Low  
CS High Specifications  
CS Logic Threshold, High  
CS Input Current, High  
GND Current  
V
V
0.2 V  
DD  
V
IL  
SS  
I
-1.0  
0.01  
µA CS = V  
CSL  
SS  
V
0.8 V  
V
DD  
V
IH  
DD  
I
0.01  
-0.05  
0.01  
2.0  
µA CS = V  
µA CS = V  
µA CS = V  
CSH  
DD  
DD  
DD  
I
-2  
SS  
O(LEAK)  
Amplifier Output Leakage  
CS Dynamic Specifications  
I
CS Low to Amplifier Output Turn-on Time  
CS High to Amplifier Output High-Z Time  
Hysteresis  
t
2
10  
µs  
µs  
V
G = +1, V = V  
SS  
,
ON  
IN  
CS = 0.2V to V  
= 0.45V time  
DD  
DD  
OUT  
t
0.01  
0.6  
G = +1, V = V  
SS  
,
OFF  
IN  
CS = 0.8V to V  
= 0.05V time  
DD  
DD  
OUT  
V
V
= 5.0V, Internal Switch  
HYST  
DD  
© 2006 Microchip Technology Inc.  
DS21685C-page 3  
MCP6021/1R/2/3/4  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, V = +2.5V to +5.5V and V = GND.  
DD  
SS  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Industrial Temperature Range  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-TSSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
T
-40  
-40  
-40  
-65  
+85  
°C  
°C  
°C  
°C  
A
T
+125  
+125  
+150  
A
T
Note 1  
A
T
A
θ
θ
θ
θ
θ
θ
θ
θ
256  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
163  
206  
124  
70  
120  
100  
Note 1: The industrial temperature devices operate over this extended temperature range, but with reduced performance. In any  
case, the internal junction temperature (T ) must not exceed the absolute maximum specification of 150°C.  
J
CS  
tON  
tOFF  
High-Z  
Amplifier On  
-1 mA (typ.)  
10 nA (typ.)  
High-Z  
VOUT  
ISS  
-50 nA (typ.)  
10 nA (typ.)  
-50 nA (typ.)  
10 nA (typ.)  
ICS  
FIGURE 1-1:  
Timing diagram for the CS  
pin on the MCP6023.  
DS21685C-page 4  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
16%  
14%  
12%  
10%  
8%  
24%  
22%  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
I-Temp  
Parts  
1192 Samples  
VCM = 0V  
I-Temp  
Parts  
1192 Samples  
VCM = 0V  
TA = +25°C  
T
A = -40°C to +85°C  
6%  
4%  
6%  
4%  
2%  
2%  
0%  
0%  
Input Offset Voltage (µV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-1:  
Input Offset Voltage,  
FIGURE 2-4:  
Input Offset Voltage Drift,  
(Industrial Temperature Parts).  
(Industrial Temperature Parts).  
24%  
24%  
E-Temp  
22%  
438 Samples  
DD = 5.0V  
VCM = 0V  
A = +25°C  
E-Temp  
Parts  
438 Samples  
CM = 0V  
A = -40°C to +125°C  
22%  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
0%  
Parts  
V
V
T
20%  
18%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
0%  
T
Input Offset Voltage (µV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage,  
FIGURE 2-5:  
Input Offset Voltage Drift,  
(Extended Temperature Parts).  
(Extended Temperature Parts).  
500  
500  
-40°C  
VDD = 5.5V  
VDD = 2.5V  
400  
400  
+25°C  
+85°C  
+125°C  
-40°C  
300  
200  
100  
0
300  
200  
100  
0
+25°C  
+85°C  
+125°C  
-100  
-200  
-300  
-400  
-500  
-100  
-200  
-300  
-400  
-500  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
Input Offset Voltage vs.  
Common Mode Input Voltage with VDD = 2.5V.  
Common Mode Input Voltage with VDD = 5.5V.  
© 2006 Microchip Technology Inc.  
DS21685C-page 5  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
100  
50  
200  
150  
100  
50  
VCM = VDD/2  
0
VDD = 5.5V  
-50  
0
-100  
-150  
-200  
-250  
-300  
VDD = 2.5V  
-50  
-100  
-150  
-200  
VDD = 5.0V  
V
CM = 0V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
Input Offset Voltage vs.  
Temperature.  
Output Voltage.  
1,000  
100  
10  
24  
VDD = 5.0V  
22  
20  
18  
16  
14  
12  
10  
8
f = 1 kHz  
f = 10 kHz  
6
4
2
0
1.E-01  
1.E+00  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1
0.1  
1
10  
100  
1k  
10k 100k 1M  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-8:  
Input Noise Voltage Density  
FIGURE 2-11:  
Input Noise Voltage Density  
vs. Frequency.  
vs. Common Mode Input Voltage.  
100  
90  
80  
70  
60  
50  
40  
30  
110  
105  
PSRR+  
PSRR-  
CMRR  
100  
95  
90  
85  
80  
75  
70  
PSRR (VCM = 0V)  
CMRR  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
20  
100  
1k  
10k  
100k  
1M  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-9:  
CMRR, PSRR vs.  
FIGURE 2-12:  
CMRR, PSRR vs.  
Frequency.  
Temperature.  
DS21685C-page 6  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
10,000  
1,000  
100  
10  
10,000  
1,000  
100  
10  
VCM = VDD  
VDD = 5.5V  
IB, TA = +125°C  
VDD = 5.5V  
IOS, TA = +125°C  
IB, TA = +85°C  
IB  
IOS  
IOS, TA = +85°C  
1
1
25 35 45 55 65 75 85 95 105 115 125  
Ambient Temperature (°C)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
FIGURE 2-13:  
Input Bias, Offset Currents  
FIGURE 2-16:  
Input Bias, Offset Currents  
vs. Common Mode Input Voltage.  
vs. Temperature.  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.2  
1.1  
VDD = 5.5V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VDD = 2.5V  
+125°C  
+85°C  
+25°C  
-40°C  
VCM = VDD - 0.5V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
FIGURE 2-14:  
Quiescent Current vs.  
FIGURE 2-17:  
Quiescent Current vs.  
Supply Voltage.  
Temperature.  
35  
30  
25  
20  
15  
10  
5
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-15  
-30  
-45  
-60  
-75  
-90  
Phase  
-105  
-120  
-135  
-150  
-165  
-180  
-195  
-210  
+125°C  
+85°C  
+25°C  
-40°C  
Gain  
-10  
-20  
0
1.E+00  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
1.E+08  
1
10 100 1k 10k 100k 1M 10M 100M  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Supply Voltage (V)  
Frequency (Hz)  
FIGURE 2-15:  
vs. Supply Voltage.  
Output Short-Circuit Current  
FIGURE 2-18:  
Frequency.  
Open-Loop Gain, Phase vs.  
© 2006 Microchip Technology Inc.  
DS21685C-page 7  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
130  
120  
110  
100  
90  
120  
115  
110  
105  
100  
95  
VDD = 5.5V  
VDD = 5.5V  
VDD = 2.5V  
VDD = 2.5V  
90  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
80  
-50  
-25  
0
25  
50  
75  
100  
125  
100  
1k  
10k  
100k  
Load Resistance (Ω)  
Ambient Temperature (°C)  
FIGURE 2-19:  
DC Open-Loop Gain vs.  
FIGURE 2-22:  
DC Open-Loop Gain vs.  
Load Resistance.  
Temperature.  
120  
14  
105  
90  
VCM = VDD/2  
110  
Gain Bandwidth Product  
12  
10  
8
VDD = 5.5V  
75  
100  
90  
60  
Phase Margin, G = +1  
45  
6
VDD = 2.5V  
80  
4
30  
15  
0
2
70  
VDD = 5.0V  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Common Mode Input Voltage (V)  
Output Voltage Headroom (V);  
VDD - VOH or VOL - VSS  
FIGURE 2-20:  
Small Signal DC Open-Loop  
FIGURE 2-23:  
Gain Bandwidth Product,  
Gain vs. Output Voltage Headroom.  
Phase Margin vs. Common Mode Input Voltage.  
10  
9
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
14  
12  
10  
8
105  
90  
75  
60  
45  
30  
15  
0
Gain Bandwidth Product  
8
7
6
Phase Margin, G = +1  
5
4
3
2
1
0
GBWP, VDD = 5.5V  
GBWP, VDD = 2.5V  
6
PM,  
PM,  
V
DD = 2.5V  
4
VDD = 5.5V  
VDD = 5.0V  
VCM = VDD/2  
2
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Output Voltage (V)  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature (°C)  
FIGURE 2-21:  
Gain Bandwidth Product,  
FIGURE 2-24:  
Gain Bandwidth Product,  
Phase Margin vs. Temperature.  
Phase Margin vs. Output Voltage.  
DS21685C-page 8  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
10  
11  
10  
9
Falling, VDD = 5.5V  
Rising, VDD = 5.5V  
VDD = 5.5V  
VDD = 2.5V  
8
7
6
5
4
3
1
Falling, VDD = 2.5V  
Rising, VDD = 2.5V  
2
1
0
0.1 1.E+04  
1.E+05  
1.E+06  
1.E+07  
-50  
-25  
0
25  
50  
75  
100  
125  
10k  
100k  
Frequency (Hz)  
1M  
10M  
Ambient Temperature (°C)  
FIGURE 2-25:  
Slew Rate vs. Temperature.  
FIGURE 2-28:  
Maximum Output Voltage  
Swing vs. Frequency.  
0.1000%  
0.0100%  
0.1000%  
f = 1 kHz  
BWMeas = 22 kHz  
G = +100 V/V  
VDD = 5.0V  
G = +10 V/V  
G = +1 V/V  
G = +100 V/V  
0.0100%  
0.0010%  
0.0001%  
G = +10 V/V  
G = +1 V/V  
0.0010%  
0.0001%  
f = 20 kHz  
BWMeas = 80 kHz  
V
DD = 5.0V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Output Voltage (VP-P  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Output Voltage (VP-P  
)
)
FIGURE 2-26:  
Total Harmonic Distortion  
FIGURE 2-29:  
Total Harmonic Distortion  
plus Noise vs. Output Voltage with f = 1 kHz.  
plus Noise vs. Output Voltage with f = 20 kHz.  
135  
130  
125  
120  
115  
6
VDD = 5.0V  
G = +2 V/V  
5
VOUT  
4
VIN  
3
2
1
0
110  
G = +1 V/V  
-1  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
105  
0
10 20 30 40 50 60 70 80 90 100  
Time (10 µs/div)  
1k  
10k  
100k  
1M  
Frequency (Hz)  
FIGURE 2-27:  
The MCP6021/1R/2/3/4  
FIGURE 2-30:  
Channel-to-Channel  
family shows no phase reversal under overdrive.  
Separation vs. Frequency (MCP6022 and  
MCP6024 only).  
© 2006 Microchip Technology Inc.  
DS21685C-page 9  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
1,000  
100  
10  
10  
9
8
7
6
5
4
3
2
1
0
VOL - VSS  
VDD - VOH  
VOL - VSS  
VDD - VOH  
1
-50  
-25  
0
25  
50  
75  
100 125  
0.01  
0.1  
1
10  
Output Current Magnitude (mA)  
Ambient Temperature (°C)  
FIGURE 2-31:  
Output Voltage Headroom  
FIGURE 2-34:  
Output Voltage Headroom  
vs. Output Current.  
vs. Temperature.  
6.E-02  
5.E-02  
4.E-02  
3.E-02  
2.E-02  
1.E-02  
0.E+00  
-1.E-02  
-2.E-02  
-3.E-02  
-4.E-02  
-5.E-02  
-6.E-02  
6.E-02  
5.E-02  
4.E-02  
3.E-02  
2.E-02  
1.E-02  
0.E+00  
-1.E-02  
-2.E-02  
-3.E-02  
-4.E-02  
-5.E-02  
-6.E-02  
G = -1 V/V  
RF = 1 kΩ  
G = +1 V/V  
0.E+00  
2.E-07  
4.E-07  
6.E-07  
8.E-07  
1.E-06  
1.E-06  
1.E-06  
2.E-06  
2.E-06  
2.E-06  
0.E+00  
2.E-07  
4.E-07  
6.E-07  
8.E-07  
1.E-06  
1.E-06  
1.E-06  
2.E-06  
2.E-06  
2.E-06  
Time (200 ns/div)  
Time (200 ns/div)  
FIGURE 2-32:  
Small-Signal Non-inverting  
FIGURE 2-35:  
Small-Signal Inverting Pulse  
Pulse Response.  
Response.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
G = +1 V/V  
G = -1 V/V  
RF = 1 kΩ  
0.E+00  
5.E-07  
1.E-06  
2.E-06  
2.E-06  
3.E-06  
3.E-06  
4.E-06  
4.E-06  
5.E-06  
5.E-06  
0.0  
0.E+00  
5.E-07  
1.E-06  
2.E-06  
2.E-06  
3.E-06  
3.E-06  
4.E-06  
4.E-06  
5.E-06  
5.E-06  
0.0  
Time (500 ns/div)  
Time (500 ns/div)  
FIGURE 2-33:  
Large-Signal Non-inverting  
FIGURE 2-36:  
Large-Signal Inverting Pulse  
Pulse Response.  
Response.  
DS21685C-page 10  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
50  
40  
50  
40  
Representative Part  
30  
30  
20  
20  
VDD = 5.5V  
VDD = 2.5V  
10  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
FIGURE 2-37:  
VREF Accuracy vs. Supply  
FIGURE 2-40:  
VREF Accuracy vs.  
Voltage (MCP6021 and MCP6023 only).  
Temperature (MCP6021 and MCP6023 only).  
1.6  
1.6  
Op Amp  
turns on here  
Op Amp  
shuts off here  
Op Amp  
turns on here  
Op Amp  
shuts off here  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Hysteresis  
CS swept  
high to low  
CS swept  
high to low  
Hysteresis  
CS swept  
low to high  
CS swept  
low to high  
VDD = 5.5V  
G = +1 V/V  
VDD = 2.5V  
G = +1 V/V  
IN = 1.25V  
VIN = 2.75V  
V
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Chip Select Voltage (V)  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Chip Select Voltage (V)  
FIGURE 2-38:  
Chip Select (CS) Hysteresis  
FIGURE 2-41:  
Chip Select (CS) Hysteresis  
(MCP6023 only) with VDD = 2.5V.  
(MCP6023 only) with VDD = 5.5V.  
5.5  
5.0  
4.5  
4.0  
3.5  
VDD = 5.0V  
G = +1 V/V  
CS Voltage  
VIN = VSS  
3.0  
2.5  
VOUT  
2.0  
1.5  
1.0  
0.5  
Output  
on  
Output  
on  
Output High-Z  
0.0  
-0.5 0.0E+00  
5.0E-06  
1.0E-05  
1.5E-05  
2.0E-05  
2.5E-05  
3.0E-05  
3.5E-05  
Time (5 µs/div)  
FIGURE 2-39:  
Chip Select (CS) to  
Amplifier Output Response Time (MCP6023  
only).  
© 2006 Microchip Technology Inc.  
DS21685C-page 11  
MCP6021/1R/2/3/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP6021  
(PDIP,  
SOIC,  
MSOP,  
TSSOP)  
(Note 1)  
MCP6021 MCP6021R  
(SOT-23-5) (SOT-23-5) MCP6022 MCP6023 MCP6024  
Symbol  
Description  
(Note 1)  
(Note 2)  
6
2
1
1
1
2
6
2
1
2
V
, V  
Analog Output (op amp A)  
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
OUT OUTA  
4
4
V
–, V  
+, V  
+
IN  
IN  
INA  
INA  
3
3
3
3
3
3
V
7
5
2
8
7
4
V
DD  
4
2
5
5
4
5
V
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
INB  
INB  
6
6
V
7
7
V
V
OUTB  
OUTC  
4
8
9
V
V
+
INC  
INC  
10  
11  
12  
13  
14  
V
SS  
5
5
V
V
+
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
Reference Voltage  
IND  
IND  
V
OUTD  
V
REF  
8
1
CS  
Chip Select  
1, 8  
NC  
No Internal Connection  
Note 1: The MCP6021 in the 8-pin MSOP package is only available for E-temp (Extended Temperature) parts. The MCP6021  
in the 8-pin TSSOP package is only available for I-temp (Industrial Temperature) parts.  
2: The MCP6021R is only available in the 5-pin SOT-23 package, and for E-temp (Extended Temperature) parts.  
3.1  
Analog Outputs  
3.5  
Power Supply (V and V  
)
DD  
SS  
The op amp output pins are low-impedance voltage  
sources.  
The positive power supply pin (VDD) is 2.5V to 5.5V  
higher than the negative power supply pin (VSS). For  
normal operation, the other pins are at voltages  
between VSS and VDD  
.
3.2  
Analog Inputs  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need a local bypass capacitor (typically 0.01 µF to  
0.1 µF) within 2 mm of the VDD pin. These parts need  
to use a bulk capacitor (typically 1 µF or larger) within  
100 mm of the VDD pin; it can be shared with nearby  
analog parts.  
The op amp non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
3.3  
V
Output (MCP6021 and  
REF  
MCP6023)  
Mid-supply reference voltage provided by the single op  
amps (except in SOT-23-5 package). This is an  
unbuffered, resistor voltage divider internal to the part.  
3.4  
CS Digital Input  
This is a CMOS, Schmitt-triggered input that places the  
part into a low power mode of operation.  
DS21685C-page 12  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
4.2  
Rail-to-Rail Output  
4.0  
APPLICATIONS INFORMATION  
The Maximum Output Voltage Swing is the maximum  
swing possible under particular output load.  
According to the specification table, the output can  
reach within 20 mV of either supply rail when  
RL = 10 kΩ. See Figure 2-31 and Figure 2-34 for more  
information concerning typical performance.  
The MCP6021/1R/2/3/4 family of operational amplifiers  
are fabricated on Microchip’s state-of-the-art CMOS  
process. They are unity-gain stable and suitable for a  
wide range of general-purpose applications.  
a
4.1  
Rail-to-Rail Input  
The MCP6021/1R/2/3/4 amplifier family is designed to  
not exhibit phase inversion when the input pins exceed  
the supply voltages. Figure 2-27 shows an input volt-  
age exceeding both supplies with no resulting phase  
inversion.  
4.3  
Capacitive Loads  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases, and the closed loop bandwidth is  
reduced. This produces gain-peaking in the frequency  
response, with overshoot and ringing in the step  
response.  
The input stage of the MCP6021/1R/2/3/4 family of  
devices uses two differential input stages in parallel;  
one operates at low common-mode input voltage  
(VCM), while the other operates at high VCM. With this  
topology, the device operates with VCM up to 0.3V past  
either supply rail (VSS – 0.3V to VDD + 0.3V) at +25°C.  
The amplifier input behaves linearly as long as VCM is  
kept within the specified VCMR limits. The input offset  
voltage is measured at both VCM = VSS – 0.3V and  
When driving large capacitive loads with these op  
amps (e.g., > 60 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-2) improves the  
feedback loop’s phase margin (stability) by making the  
load resistive at higher frequencies. The bandwidth will  
be generally lower than the bandwidth with no  
capacitive load.  
VDD + 0.3V to ensure proper operation.  
Input voltages that exceed the input voltage range  
(VCMR) can cause excessive current to flow in or out of  
the input pins. Current beyond ±2 mA introduces  
possible reliability problems. Thus, applications that  
exceed this rating must externally limit the input current  
with an input resistor (RIN), as shown in Figure 4-1.  
VIN  
RISO  
VOUT  
MCP602X  
CL  
FIGURE 4-2:  
Output resistor RISO  
stabilizes large capacitive loads.  
MCP602X  
VOUT  
RIN  
Figure 4-3 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
VIN  
(Maximum expected VIN) - VDD  
RIN  
RIN  
2 mA  
VSS - (Minimum expected VIN)  
2 mA  
1,000  
GN +1  
FIGURE 4-1:  
RIN limits the current flow  
into an input pin.  
Total Harmonic Distortion Plus Noise (THD+N) can be  
affected by the common mode input voltage (VCM). As  
shown in Figure 2-3 and Figure 2-6, the input offset  
voltage (VOS) is affected by the change from the NMOS  
to the PMOS input differential pairs. This change in VOS  
will increase the distortion if the input voltage includes  
this transition region. This transition occurs between  
VDD – 1.0V and VDD – 2.0V, depending on VDD and  
temperature.  
100  
10  
10  
100  
1,000  
10,000  
Normalized Capacitance; CL/GN (pF)  
FIGURE 4-3:  
Recommended RISO values  
for capacitive loads.  
© 2006 Microchip Technology Inc.  
DS21685C-page 13  
MCP6021/1R/2/3/4  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Evaluation on the bench and  
simulations with the MCP6021/1R/2/3/4 Spice macro  
model are helpful.  
4.5  
MCP6023 Chip Select (CS)  
The MCP6023 is a single amplifier with chip select  
(CS). When CS is high, the supply current is less than  
10 nA (typ) and travels from the CS pin to VSS, with the  
amplifier output being put into a high-impedance state.  
When CS is low, the amplifier is enabled. If CS is left  
floating, the amplifier may not operate properly.  
Figure 1-1 and Figure 2-39 show the output voltage  
and supply current response to a CS pulse.  
4.4  
Gain Peaking  
Figure 2-35 and Figure 2-36 use RF = 1 kΩ to avoid  
(frequency response) gain peaking and (step  
response) overshoot. The capacitance to ground at the  
inverting input (CG) is the op amp’s common mode  
input capacitance plus board parasitic capacitance. CG  
is in parallel with RG, which causes an increase in gain  
at high frequencies for non-inverting gains greater than  
1 V/V (unity gain). CG also reduces the phase margin  
of the feedback loop for both non-inverting and  
inverting gains.  
4.6  
MCP6021 and MCP6023 Reference  
Voltage  
The single op amps (MCP6021 and MCP6023), not in  
the SOT-23-5 package, have an internal mid-supply  
reference voltage connected to the VREF pin (see  
Figure 4-6). The MCP6021 has CS internally tied to  
VSS, which always keeps the op amp on and always  
provides a mid-supply reference. With the MCP6023,  
taking the CS pin high conserves power by shutting  
down both the op amp and the VREF circuitry. Taking  
the CS pin low turns on the op amp and VREF circuitry.  
VIN  
VOUT  
VDD  
RF  
CG  
RG  
50 kΩ  
VREF  
FIGURE 4-4:  
with parasitic capacitance.  
Non-inverting gain circuit  
50 kΩ  
The largest value of RF in Figure 4-4 that should be  
used is a function of noise gain (see GN in Section 4.3  
“Capacitive Loads”) and CG. Figure 4-5 shows results  
for various conditions. Other compensation techniques  
may be used, but they tend to be more complicated to  
the design.  
CS  
VSS  
(CS tied internally to VSS for MCP6021)  
FIGURE 4-6:  
circuit (MCP6021 and MCP6023 only).  
Simplified internal VREF  
1.E+05  
100k  
GN > +1 V/V  
See Figure 4-7 for a non-inverting gain circuit using the  
internal mid-supply reference. The DC-blocking  
capacitor (CB) also reduces noise by coupling the op  
amp input to the source.  
CG = 7 pF  
CG = 20 pF  
1.E1+00k4  
1k  
1.E+03  
RG  
RF  
CG = 50 pF  
G = 100 pF  
C
100  
1.E+02  
1
10  
VOUT  
Noise Gain; GN (V/V)  
CB  
VREF  
FIGURE 4-5:  
with parasitic capacitance.  
Non-inverting gain circuit  
VIN  
FIGURE 4-7:  
Non-inverting gain circuit  
using VREF (MCP6021 and MCP6023 only).  
DS21685C-page 14  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
To use the internal mid-supply reference for an  
inverting gain circuit, connect the VREF pin to the  
non-inverting input, as shown in Figure 4-8. The  
capacitor CB helps reduce power supply noise on the  
output.  
4.9  
PCB Surface Leakage  
In applications where low input bias current is critical,  
PCB (printed circuit board) surface-leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP6021/1R/2/3/4 family’s bias current at +25°C  
(1 pA, typ).  
RG  
RF  
VIN  
VOUT  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
Figure 4-10 shows an example of this type of layout.  
VREF  
CB  
Guard Ring  
VIN– VIN+  
FIGURE 4-8:  
Inverting gain circuit using  
VREF (MCP6021 and MCP6023 only).  
If you don’t need the mid-supply reference, leave the  
VREF pin open.  
4.7  
Supply Bypass  
FIGURE 4-10:  
Layout.  
Example Guard Ring  
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good, high-frequency performance. It also needs a  
bulk capacitor (i.e., 1 µF or larger) within 100 mm to  
provide large, slow currents. This bulk capacitor can be  
shared with nearby analog parts.  
1. Non-inverting Gain and Unity-Gain Buffer.  
a) Connect the guard ring to the inverting input  
pin (VIN–); this biases the guard ring to the  
common mode input voltage.  
b) Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
4.8  
Unused Op Amps  
2. Inverting (Figure 4-10) and Transimpedance  
Gain Amplifiers (convert current to voltage, such  
as photo detectors).  
An unused op amp in a quad package (MCP6024)  
should be configured as shown in Figure 4-9. These  
circuits prevent the output from toggling and causing  
crosstalk. Circuit A can use any reference voltage  
between the supplies, provides a buffered DC voltage,  
and minimizes the supply current draw of the unused  
op amp. Circuit B uses the minimum number of compo-  
nents and operates as a comparator; it may draw more  
current.  
a) Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp’s input (e.g., VDD/2 or ground).  
b) Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
¼ MCP6144 (A)  
VDD  
¼ MCP6144 (B)  
4.10 High Speed PCB Layout  
VDD  
Due to their speed capabilities, a little extra care in the  
PCB (Printed Circuit Board) layout can make a  
significant difference in the performance of these op  
amps. Good PC board layout techniques will help you  
achieve the performance shown in Section 1.0 “Elec-  
trical Characteristics” and Section 2.0 “Typical Per-  
formance Curves”, while also helping you minimize  
EMC (Electro-Magnetic Compatibility) issues.  
VDD  
R
R
FIGURE 4-9:  
Unused Op Amps.  
Use a solid ground plane and connect the bypass local  
capacitor(s) to this plane with minimal length traces.  
This cuts down inductive and capacitive crosstalk.  
© 2006 Microchip Technology Inc.  
DS21685C-page 15  
MCP6021/1R/2/3/4  
Separate digital from analog, low speed from high  
speed and low power from high power. This will reduce  
interference.  
4.11.2  
OPTICAL DETECTOR AMPLIFIER  
Figure 4-12 shows the MCP6021 op amp used as a  
transimpedance amplifier in a photo detector circuit.  
The photo detector looks like a capacitive current  
source, so the 100 kΩ resistor gains the input signal to  
a reasonable level. The 5.6 pF capacitor stabilizes this  
circuit and produces a flat frequency response with a  
bandwidth of 370 kHz.  
Keep sensitive traces short and straight. Separating  
them from interfering components and traces. This is  
especially important for high-frequency (low rise-time)  
signals.  
Sometimes it helps to place guard traces next to victim  
traces. They should be on both sides of the victim  
trace, and as close as possible. Connect the guard  
trace to ground plane at both ends, and in the middle  
for long traces.  
5.6 pF  
Photo  
Detector  
100 kΩ  
Use coax cables (or low inductance wiring) to route  
signal and power to and from the PCB.  
100 pF  
4.11 Typical Applications  
MCP6021  
4.11.1  
A/D CONVERTER DRIVER AND  
ANTI-ALIASING FILTER  
VDD/2  
Figure 4-11 shows a third-order Butterworth filter that  
can be used as an A/D converter driver. It has a band-  
width of 20 kHz and a reasonable step response. It will  
work well for conversion rates of 80 ksps and greater (it  
has 29 dB attenuation at 60 kHz).  
FIGURE 4-12:  
for an Optical Detector.  
Transimpedance Amplifier  
1.0 nF  
MCP602X  
14.7 kΩ 33.2 kΩ  
8.45 kΩ  
100 pF  
1.2 nF  
FIGURE 4-11:  
A/D converter driver and  
anti-aliasing filter with a 20 kHz cutoff frequency.  
This filter can easily be adjusted to another bandwidth  
by multiplying all capacitors by the same factor.  
Alternatively, the resistors can all be scaled by another  
common factor to adjust the bandwidth.  
DS21685C-page 16  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
®
5.2  
FilterLab Software  
5.0  
DESIGN TOOLS  
Microchip’s FilterLab® software is an innovative tool  
that simplifies analog active filter (using op amps)  
design. It is available free of charge from our web site  
at www.microchip.com. The FilterLab software tool  
provides full schematic diagrams of the filter circuit with  
component values. It also outputs the filter circuit in  
SPICE format, which can be used with the macro  
model to simulate actual filter performance.  
Microchip provides the basic design tools needed for  
the MCP6021/1R/2/3/4 family of op amps.  
5.1  
SPICE Macro Model  
The latest SPICE macro model available for the  
MCP6021/1R/2/3/4 op amps is on Microchip’s web site  
at www.microchip.com. This model is intended as an  
initial design tool that works well in the op amp’s linear  
region of operation at room temperature. Within the  
macro model file is information on its capabilities.  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
© 2006 Microchip Technology Inc.  
DS21685C-page 17  
MCP6021/1R/2/3/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example: (E-temp)  
5-Lead SOT-23 (MCP6021/MCP6021R)  
Device  
E-Temp Code  
MCP6021  
XXNN  
EYNN  
EZNN  
EY25  
MCP6021R  
Note: Applies to 5-Lead SOT-23  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP6021  
I/P256  
MCP6021  
E/P^256  
e
3
OR  
YYWW  
0331  
0549  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6021  
I/SN0331  
MCP6021E  
SN^  
e
3
0549  
OR  
NNN  
256  
256  
Example:  
8-Lead MSOP  
6021E  
549256  
XXXXXX  
YWWNNN  
Example:  
8-Lead TSSOP  
6021  
XXXX  
YYWW  
NNN  
E549  
256  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS21685C-page 18  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP6024)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP6024-I/P  
XXXXXXXXXXXXXX  
YYWWNNN  
0331256  
MCP6024  
E/P^
3
e
OR  
0549256  
14-Lead SOIC (150 mil) (MCP6024)  
Example:  
MCP6024ISL  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
0331256  
MCP6024  
e
3
E/SL^
OR  
0549256  
Example:  
14-Lead TSSOP (MCP6024)  
XXXXXX  
YYWW  
6024E  
0331  
NNN  
256  
© 2006 Microchip Technology Inc.  
DS21685C-page 19  
MCP6021/1R/2/3/4  
5-Lead Plastic Small Outline Transistor (OT) (SOT-23)  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
L
A1  
β
Units  
INCHES  
*
MILLIMETERS  
NOM  
5
Dimension Limits  
MIN  
NOM  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
5
.038  
0.95  
p1  
Outside lead pitch (basic)  
Overall Height  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
1.90  
A
A2  
A1  
E
.035  
.057  
0.90  
1.18  
1.45  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
Molded Package Thickness  
Standoff  
.035  
.000  
.102  
.059  
.110  
.014  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
1.10  
0.08  
Overall Width  
2.80  
Molded Package Width  
Overall Length  
E1  
D
1.63  
2.95  
Foot Length  
L
f
0.45  
Foot Angle  
0
5
0
5
10  
c
Lead Thickness  
Lead Width  
.004  
.014  
.006  
.017  
.008  
.020  
10  
0.09  
0.35  
0.15  
0.43  
0.20  
0.50  
B
a
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
0
5
5
0
5
5
10  
10  
10  
0
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
EIAJ Equivalent: SC-74A  
Revised 09-12-05  
Drawing No. C04-091  
DS21685C-page 20  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.100  
.155  
.130  
2.54  
3.94  
3.30  
Top to Seating Plane  
A
.140  
.170  
3.56  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
.145  
2.92  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.68  
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
© 2006 Microchip Technology Inc.  
DS21685C-page 21  
MCP6021/1R/2/3/4  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
Overall Height  
A
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
DS21685C-page 22  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
8-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
E
E1  
p
D
2
1
n
B
A
α
c
β
A2  
A1  
φ
L
Units  
INCHES  
NOM  
MILLIMETERS  
NOM  
*
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.026  
0.65  
1.05  
0.90  
0.10  
6.38  
4.40  
3.00  
0.60  
Overall Height  
A
A2  
A1  
E
.039  
.041  
.035  
.004  
.251  
.173  
.118  
.024  
.043  
.037  
.006  
.256  
.177  
.122  
.028  
1.00  
1.10  
Molded Package Thickness  
Standoff  
.033  
.002  
.246  
.169  
.114  
.020  
0.85  
0.05  
6.25  
4.30  
2.90  
0.50  
0.95  
0.15  
6.50  
4.50  
3.10  
0.70  
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
E1  
D
L
φ
Foot Angle  
0°  
4°  
8°  
0°  
4°  
8°  
c
Lead Thickness  
.004  
.007  
.006  
.010  
.008  
.012  
0.09  
0.19  
0.15  
0.25  
0.20  
0.30  
Lead Width  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
Controlling Parameter  
0°  
0°  
5°  
5°  
10°  
10°  
0°  
0°  
5°  
5°  
10°  
10°  
β
*
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
JEDEC Equivalent: MO-153  
Drawing No. C04-086  
Revised 07-21-05  
© 2006 Microchip Technology Inc.  
DS21685C-page 23  
MCP6021/1R/2/3/4  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
E
E1  
p
D
2
n
1
B
α
c
φ
A2  
A
L
F
A1  
β
Units  
INCHES  
NOM  
MILLIMETERS  
*
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.026 BSC  
0.65 BSC  
Overall Height  
A
A2  
A1  
E
-
-
.043  
-
-
1.10  
0.95  
0.15  
Molded Package Thickness  
Standoff  
.030  
.033  
.037  
.006  
0.75  
0.85  
.000  
-
0.00  
-
Overall Width  
.193 BSC  
4.90 BSC  
Molded Package Width  
Overall Length  
E1  
D
.118 BSC  
.118 BSC  
3.00 BSC  
3.00 BSC  
Foot Length  
L
.016  
.024  
.037 REF  
.031  
0.40  
0.60  
0.95 REF  
0.80  
Footprint (Reference)  
Foot Angle  
F
φ
0°  
-
8°  
0°  
-
-
-
-
-
8°  
c
Lead Thickness  
Lead Width  
.003  
.009  
.006  
.012  
.009  
.016  
0.08  
0.22  
0.23  
0.40  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
5°  
5°  
-
15°  
15°  
5°  
5°  
15°  
15°  
β
-
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MO-187  
Drawing No. C04-111  
Revised 07-21-05  
DS21685C-page 24  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
B1  
β
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
14  
14  
.100  
.155  
.130  
2.54  
3.94  
3.30  
Top to Seating Plane  
A
.140  
.170  
3.56  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
.145  
2.92  
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.68  
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-005  
© 2006 Microchip Technology Inc.  
DS21685C-page 25  
MCP6021/1R/2/3/4  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
14  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
Overall Height  
A
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
§
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
DS21685C-page 26  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
E
E1  
p
D
2
1
n
B
α
A
c
φ
β
L
A1  
A2  
Units  
INCHES  
NOM  
MILLIMETERS  
NOM  
14  
*
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
14  
.026 BSC  
.041  
0.65 BSC  
1.05  
Overall Height  
A
A2  
A1  
E
.039  
.033  
.002  
.246  
.169  
.193  
.020  
.043  
1.00  
1.10  
Molded Package Thickness  
Standoff  
.035  
.004  
.251  
.173  
.197  
.024  
.037  
.006  
.256  
.177  
.201  
.028  
0.85  
0.05  
6.25  
4.30  
4.90  
0.50  
0.90  
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
0.10  
Overall Width  
6.38  
Molded Package Width  
Molded Package Length  
Foot Length  
E1  
D
4.40  
5.00  
L
0.60  
φ
Foot Angle  
0°  
4°  
8°  
0°  
4°  
0.15  
0.25  
12° REF  
12° REF  
8°  
c
Lead Thickness  
.004  
.007  
.006  
.010  
.008  
.012  
0.09  
0.19  
0.20  
0.30  
Lead Width  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
12° REF  
12° REF  
β
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold fla sh or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tole rance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MO-153 AB-1  
Drawing No. C04-087  
Revised: 08-17-05  
© 2006 Microchip Technology Inc.  
DS21685C-page 27  
MCP6021/1R/2/3/4  
NOTES:  
DS21685C-page 28  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
APPENDIX A: REVISION HISTORY  
Revision C (March 2006)  
The following is the list of modifications:  
1. Added SOT-23-5 package option for single op  
amps MCP6021 and MCP6021R (E-temp only).  
2. Added MSOP-8 package option for E-temp  
single op amp (MCP6021).  
3. Corrected package drawing on front page for  
dual op amp (MCP6022).  
4. Clarified spec conditions (ISC, PM and THD+N)  
in  
Section 2.0  
“Typical  
Performance  
Curves”.  
5. Added Section 3.0 “Pin Descriptions”.  
6. Updated Section 4.0 “Applications informa-  
tion” for THD+N, unused op amps, and gain  
peaking discussions.  
7. Corrected and updated package marking infor-  
mation in Section 6.0 “Packaging Informa-  
tion”.  
8. Added Appendix A: “REVISION HISTORY”.  
Revision B (November 2003)  
• Second Release of this Document  
Revision A (November 2001)  
• Original Release of this Document  
© 2006 Microchip Technology Inc.  
DS21685C-page 29  
MCP6021/1R/2/3/4  
NOTES:  
DS21685C-page 30  
© 2006 Microchip Technology Inc.  
MCP6021/1R/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a)  
MCP6021T-E/OT: Tape and Reel,  
Extended temperature,  
Temperature  
Range  
Package  
5LD SOT-23.  
Extended temperature,  
8LD PDIP.  
b)  
c)  
MCP6021-E/P:  
MCP6021-E/SN: Extended temperature,  
8LD SOIC.  
Device:  
MCP6021  
Single Op Amp  
MCP6021T Single Op Amp  
(Tape and Reel for SOT-23, SOIC, TSSOP,  
a)  
MCP6021RT-E/OT:Tape and Reel,  
Extended temperature,  
5LD SOT-23.  
MSOP)  
MCP6021R Single Op Amp  
MCP6021RT Single Op Amp  
(Tape and Reel for SOT-23)  
Dual Op Amp  
MCP6022T Dual Op Amp  
(Tape and Reel for SOIC and TSSOP)  
Single Op Amp w/ CS  
MCP6023T Single Op Amp w/ CS  
(Tape and Reel for SOIC and TSSOP)  
Quad Op Amp  
MCP6024T Quad Op Amp  
(Tape and Reel for SOIC and TSSOP)  
a)  
b)  
c)  
MCP6022-I/P:  
MCP6022-E/P:  
Industrial temperature,  
8LD PDIP.  
Extended temperature,  
8LD PDIP.  
MCP6022  
MCP6023  
MCP6022T-E/ST: Tape and Reel,  
Extended temperature,  
8LD TSSOP.  
MCP6024  
a)  
b)  
c)  
MCP6023-I/P:  
MCP6023-E/P:  
Industrial temperature,  
8LD PDIP.  
Extended temperature,  
8LD PDIP.  
Temperature Range:  
Package:  
I
=
=
-40°C to +85°C  
E
-40°C to +125°C  
MCP6023-E/SN: Extended temperature,  
8LD SOIC.  
a)  
b)  
c)  
MCP6024-I/SL: Industrial temperature,  
14LD SOIC.  
MCP6024-E/SL: Extended temperature,  
14LD SOIC.  
MCP6024T-E/ST: Tape and Reel,  
Extended temperature,  
14LD TSSOP.  
OT  
MS  
=
=
Plastic Small Outline Transistor (SOT-23), 5-lead  
(MCP6021, E-Temp; MCP6021R, E-Temp)  
Plastic MSOP, 8-lead  
(MCP6021, E-Temp)  
P
=
=
=
=
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic SOIC (150mil Body), 8-lead  
Plastic SOIC (150 mil Body), 14-lead  
Plastic TSSOP, 8-lead  
SN  
SL  
ST  
(MCP6021,I-Temp; MCP6022, I-Temp, E-Temp;  
MCP6023, I-Temp, E-Temp;)  
ST  
=
Plastic TSSOP, 14-lead  
© 2006 Microchip Technology Inc.  
DS21685C-page 31  
MCP6021/1R/2/3/4  
NOTES:  
DS21685C-page 32  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip devices in life support and/or safety  
applications is entirely at the buyer’s risk, and the buyer agrees  
to defend, indemnify and hold harmless Microchip from any and  
all damages, claims, suits, or expenses resulting from such  
use. No licenses are conveyed, implicitly or otherwise, under  
any Microchip intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Linear Active Thermistor,  
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,  
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,  
PowerMate, PowerTool, Real ICE, rfLAB, rfPICDEM, Select  
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,  
WiperLock and ZENA are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS21685C-page 33  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenzhen  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
02/16/06  
DS21685C-page 34  
© 2006 Microchip Technology Inc.  

相关型号:

MCP6024T-E/P

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-E/SL

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-E/SLVAO

Operational Amplifier, 4 Func, 2500uV Offset-Max, CMOS, PDSO14
MICROCHIP

MCP6024T-E/SN

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-E/ST

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-E/STVAO

Operational Amplifier, 4 Func, 2500uV Offset-Max, CMOS, PDSO14
MICROCHIP

MCP6024T-I/MS

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-I/OT

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-I/P

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-I/SL

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6024T-I/SLVAO

Operational Amplifier, 4 Func, 2500uV Offset-Max, CMOS, PDSO14
MICROCHIP

MCP6024T-I/SN

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP