MCP1700-1502E [MICROCHIP]

Low Quiescent Current LDO; 低静态电流LDO
MCP1700-1502E
型号: MCP1700-1502E
厂家: MICROCHIP    MICROCHIP
描述:

Low Quiescent Current LDO
低静态电流LDO

文件: 总24页 (文件大小:654K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1700  
Low Quiescent Current LDO  
Features  
General Description  
• 1.6 µA Typical Quiescent Current  
The MCP1700 is a family of CMOS low dropout (LDO)  
voltage regulators that can deliver up to 250 mA of  
current while consuming only 1.6 µA of quiescent  
current (typical). The input operating range is specified  
from 2.3V to 6.0V, making it an ideal choice for two and  
three primary cell battery-powered applications, as well  
as single cell Li-Ion-powered applications.  
• Input Operating Voltage Range: 2.3V to 6.0V  
• Output Voltage Range: 1.2V to 5.0V  
• 250 mA Output Current for output voltages 2.5V  
• 200 mA Output Current for output voltages < 2.5V  
• Low Dropout (LDO) voltage  
- 178 mV typical @ 250 mA for VOUT = 2.8V  
• 0.4% Typical Output Voltage Tolerance  
• Standard Output Voltage Options:  
The MCP1700 is capable of delivering 250 mA with  
only 178 mV of input to output voltage differential  
(VOUT = 2.8V). The output voltage tolerance of the  
MCP1700 is typically ±0.4% at +25°C and ±3%  
maximum over the operating junction temperature  
range of -40°C to +125°C.  
- 1.2V, 1.8V, 2.5V, 3.0V, 3.3V, 5.0V  
• Stable with 1.0 µF Ceramic Output capacitor  
• Short Circuit Protection  
Output voltages available for the MCP1700 range from  
1.2V to 5.0V. The LDO output is stable when using only  
1 µF output capacitance. Ceramic, tantalum or  
aluminum electrolytic capacitors can all be used for  
input and output. Overcurrent limit and overtemperature  
shutdown provide a robust solution for any application.  
• Overtemperature Protection  
Applications  
• Battery-powered Devices  
• Battery-powered Alarm Circuits  
• Smoke Detectors  
Package options include the SOT-23, SOT-89 and  
TO-92.  
• CO2 Detectors  
• Pagers and Cellular Phones  
• Smart Battery Packs  
• Low Quiescent Current Voltage Reference  
• PDAs  
Package Types  
3-Pin SOT-23  
3-Pin SOT-89  
3-Pin TO-92  
VIN  
3
VIN  
• Digital Cameras  
MCP1700  
• Microcontroller Power  
1
2 3  
MCP1700  
MCP1700  
Related Literature  
2
1
3
1
2
GNDVIN VOUT  
• AN765, “Using Microchip’s Micropower LDOs”,  
DS00765, Microchip Technology Inc., 2002  
GND VOUT  
GND VIN VOUT  
• AN766, “Pin-Compatible CMOS Upgrades to  
BiPolar LDOs”, DS00766,  
Microchip Technology Inc., 2002  
• AN792, “A Method to Determine How Much  
Power a SOT23 Can Dissipate in an Application”,  
DS00792, Microchip Technology Inc., 2001  
© 2007 Microchip Technology Inc.  
DS21826B-page 1  
MCP1700  
Functional Block Diagrams  
MCP1700  
VOUT  
VIN  
Error Amplifier  
+VIN  
Voltage  
Reference  
-
+
Over Current  
Over Temperature  
GND  
Typical Application Circuits  
MCP1700  
VIN  
GND  
(2.3V to 3.2V)  
VOUT  
1.8V  
VIN  
CIN  
VOUT  
1 µF Ceramic  
IOUT  
150 mA  
COUT  
1 µF Ceramic  
DS21826B-page 2  
© 2007 Microchip Technology Inc.  
MCP1700  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
............................................................................................+6.5V  
DD  
All inputs and outputs w.r.t. .............(VSS-0.3V) to (VIN+0.3V)  
Peak Output Current....................................Internally Limited  
Storage temperature .....................................-65°C to +150°C  
Maximum Junction Temperature................................... 150°C  
Operating Junction Temperature...................-40°C to +125°C  
ESD protection on all pins (HBM;MM)............... ≥ 4 kV; 400V  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN = VR + 1, ILOAD = 100 µA,  
OUT = 1 µF (X7R), CIN = 1 µF (X7R), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 6) of -40°C to +125°C.  
C
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input / Output Characteristics  
Input Operating Voltage  
VIN  
Iq  
2.3  
6.0  
4
V
Note 1  
Input Quiescent Current  
Maximum Output Current  
1.6  
µA  
mA  
IL = 0 mA, VIN = VR +1V  
IOUT_mA  
250  
200  
For VR 2.5V  
For VR < 2.5V  
Output Short Circuit Current  
Output Voltage Regulation  
IOUT_SC  
408  
mA  
V
VIN = VR + V, VOUT = GND,  
Current (peak current) measured  
10 ms after short is applied.  
VOUT  
VR-3.0% VR±0.4 VR+3.0%  
Note 2  
VR-2.0%  
%
VR+2.0%  
VOUT Temperature Coefficient  
Line Regulation  
TCVOUT  
50  
ppm/°C  
%/V  
Note 3  
ΔVOUT  
/
-1.0  
±0.75  
+1.0  
(VR+1)V VIN 6V  
(VOUTXΔVIN  
)
Load Regulation  
ΔVOUT/VOUT  
-1.5  
±1.0  
+1.5  
%
IL = 0.1 mA to 250 mA for VR 2.5V  
IL = 0.1 mA to 200 mA for VR < 2.5V  
Note 4  
Dropout Voltage  
VR > 2.5V  
VIN-VOUT  
VIN-VOUT  
TR  
178  
150  
500  
3
350  
350  
mV  
mV  
µs  
IL = 250 mA, (Note 1, Note 5)  
Dropout Voltage  
VR < 2.5V  
IL = 200 mA, (Note 1, Note 5)  
Output Rise Time  
10% VR to 90% VR VIN = 0V to 6V,  
RL = 50Ω resistive  
Output Noise  
eN  
µV/(Hz)1/2 IL = 100 mA, f = 1 kHz, COUT = 1 µF  
Note 1: The minimum VIN must meet two conditions: VIN 2.3V and VIN ≥ (VR + 3.0%) +VDROPOUT  
.
2: R is the nominal regulator output voltage. For example: VR = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V. The  
V
input voltage (VIN = VR + 1.0V); IOUT = 100 µA.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured over the  
temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with a VR + 1V differential applied.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
© 2007 Microchip Technology Inc.  
DS21826B-page 3  
MCP1700  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN = VR + 1, ILOAD = 100 µA,  
COUT = 1 µF (X7R), CIN = 1 µF (X7R), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 6) of -40°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Power Supply Ripple  
Rejection Ratio  
PSRR  
44  
dB  
f = 100 Hz, COUT = 1 µF, IL = 50 mA,  
V
V
INAC = 100 mV pk-pk, CIN = 0 µF,  
R = 1.2V  
Thermal Shutdown Protection  
TSD  
140  
°C  
VIN = VR + 1, IL = 100 µA  
Note 1: The minimum VIN must meet two conditions: VIN 2.3V and VIN ≥ (VR + 3.0%) +VDROPOUT  
.
2: R is the nominal regulator output voltage. For example: VR = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V. The  
V
input voltage (VIN = VR + 1.0V); IOUT = 100 µA.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured over the  
temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with a VR + 1V differential applied.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN = VR + 1, ILOAD = 100 µA,  
COUT = 1 µF (X7R), CIN = 1 µF (X7R), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 1) of -40°C to +125°C.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistance  
Thermal Resistance, SOT-23  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
Minimum Trace Width Single Layer  
Board  
θJA  
336  
°C/W  
230  
52  
°C/W Typical FR4 4-layer Application  
°C/W Typical, 1 square inch of copper  
Thermal Resistance, SOT-89  
Thermal Resistance, TO-92  
θJA  
θJA  
EIA/JEDEC JESD51-751-7  
131.9  
°C/W  
4-Layer Board  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
DS21826B-page 4  
© 2007 Microchip Technology Inc.  
MCP1700  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR + V.  
Note: Junction Temperature (T ) is approximated by soaking the device under test to an ambient temperature equal to the desired junction  
J
temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
1.206  
1.204  
1.202  
1.200  
1.198  
1.196  
1.194  
1.192  
1.190  
VR = 1.2V  
OUT = 0 µA  
VR = 1.2V  
IOUT = 0.1 mA  
TJ = +125°C  
TJ = +25°C  
I
TJ = +125°C  
TJ = - 40°C  
TJ = +25°C  
TJ = - 40°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6
6
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-1:  
Input Voltage.  
Input Quiescent Current vs.  
FIGURE 2-4:  
Voltage (V = 1.2V).  
Output Voltage vs. Input  
R
1.8  
50  
VR = 1.8V  
VR = 2.8V  
TJ = +125°C  
45  
I
OUT = 0.1 mA  
1.795  
40  
35  
30  
25  
20  
15  
10  
5
TJ = +25°C  
1.79  
TJ = - 40°C  
TJ = - 40°C  
TJ = +125°C  
1.785  
1.78  
TJ = +25°C  
1.775  
1.77  
0
0
25  
50  
75  
100 125 150 175 200 225 250  
Load Current (mA)  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
FIGURE 2-2:  
Current.  
Ground Current vs. Load  
FIGURE 2-5:  
Voltage (V = 1.8V).  
Output Voltage vs. Input  
R
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
2.800  
2.798  
2.796  
2.794  
2.792  
2.790  
VIN = VR + 1V  
I
VR = 2.8V  
IOUT = 0.1 mA  
OUT = 0 µA  
TJ = +25°C  
VR = 5.0V  
TJ = - 40°C  
VR = 1.2V  
2.788  
2.786  
2.784  
2.782  
2.780  
2.778  
VR = 2.8V  
TJ = +125°C  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
5.7  
Junction Temperature (°C)  
Input Voltage (V)  
FIGURE 2-3:  
Quiescent Current vs.  
FIGURE 2-6:  
Output Voltage vs. Input  
Junction Temperature.  
Voltage (V = 2.8V).  
R
© 2007 Microchip Technology Inc.  
DS21826B-page 5  
MCP1700  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR +1V.  
TJ = +25°C  
5.000  
4.995  
4.990  
4.985  
4.980  
4.975  
4.970  
4.965  
4.960  
4.955  
2.798  
2.796  
2.794  
2.792  
2.790  
2.788  
2.786  
2.784  
2.782  
2.780  
2.778  
TJ = +25°C  
TJ = - 40°C  
VR = 5.0V  
OUT = 0.1 mA  
I
VR = 2.8V  
IN = VR + 1V  
V
TJ = - 40°C  
TJ = +125°C  
TJ = +125°C  
5
5.2  
5.4  
5.6  
5.8  
6
0
50  
100  
150  
200  
250  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-7:  
Output Voltage vs. Input  
FIGURE 2-10:  
Output Voltage vs. Load  
Voltage (V = 5.0V).  
Current (V = 2.8V).  
R
R
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
5.000  
TJ = - 40°C  
TJ = +25°C  
TJ = +125°C  
VR = 1.2V  
VIN = VR + 1V  
TJ = +25°C  
4.995  
4.990  
4.985  
4.980  
4.975  
4.970  
4.965  
4.960  
4.955  
TJ = - 40°C  
VR = 5.0V  
VIN = VR + 1V  
TJ = +125°C  
0
25  
50  
75  
100  
125  
150  
175  
200  
0
50  
100  
150  
200  
250  
Load Curent (mA)  
Load Current (mA)  
FIGURE 2-8:  
Output Voltage vs. Load  
FIGURE 2-11:  
Output Voltage vs. Load  
Current (V = 1.2V).  
Current (V = 5.0V).  
R
R
0.25  
1.792  
1.790  
VR = 2.8V  
0.2  
0.15  
0.1  
TJ = +125°C  
TJ = +25°C  
TJ = +25°C  
1.788  
1.786  
1.784  
1.782  
TJ = - 40°C  
TJ = +125°C  
TJ = - 40°C  
0.05  
0
VR = 1.8V  
1.780  
VIN = VR + 1V  
1.778  
0
25  
50  
75  
100  
125  
150  
175  
200  
0
25  
50  
75  
100  
125  
150  
175  
200  
225  
250  
Load Current (mA)  
Load Current (mA)  
FIGURE 2-9:  
Output Voltage vs. Load  
FIGURE 2-12:  
Current (V = 2.8V).  
Dropout Voltage vs. Load  
Current (V = 1.8V).  
R
R
DS21826B-page 6  
© 2007 Microchip Technology Inc.  
MCP1700  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR +1V.  
0.16  
0.14  
0.12  
0.1  
10  
1
VIN = 3.8V  
R = 2.8V  
OUT = 50ma  
VR = 5.0V  
V
I
TJ = +125°C  
VIN = 2.5V  
R = 1.2V  
OUT = 50ma  
VIN = 2.8V  
R = 1.8V  
OUT = 50ma  
TJ = +25°C  
V
I
V
I
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.01  
TJ = - 40°C  
0.01  
0.1  
1
10  
100  
1000  
0
25  
50  
75  
100  
125  
150  
175  
200  
225  
250  
Load Current (mA)  
Frequency (KHz)  
FIGURE 2-13:  
Dropout Voltage vs. Load  
FIGURE 2-16:  
Noise vs. Frequency.  
Dynamic Load Step  
Dynamic Load Step  
Current (V = 5.0V).  
R
FIGURE 2-17:  
FIGURE 2-14:  
Rejection vs. Frequency (V = 1.2V).  
Power Supply Ripple  
(V = 1.2V).  
R
R
FIGURE 2-18:  
FIGURE 2-15:  
Power Supply Ripple  
(V = 1.8V).  
Rejection vs. Frequency (V = 2.8V).  
R
R
© 2007 Microchip Technology Inc.  
DS21826B-page 7  
MCP1700  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR +1V.  
FIGURE 2-19:  
Dynamic Load Step  
Dynamic Load Step  
Dynamic Load Step  
FIGURE 2-22:  
Dynamic Load Step  
(V = 2.8V).  
(V = 5.0V).  
R
R
FIGURE 2-20:  
FIGURE 2-23:  
Dynamic Line Step  
(V = 1.8V).  
(V = 2.8V).  
R
R
FIGURE 2-21:  
FIGURE 2-24:  
Startup From V  
IN  
(V = 2.8V).  
(V = 1.2V).  
R
R
DS21826B-page 8  
© 2007 Microchip Technology Inc.  
MCP1700  
Note: Unless otherwise indicated: VR = 1.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VR +1V.  
0
VR = 2.8V  
V
IN= 5.0V  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
IOUT = 0 to 250 mA  
VIN = 4.3V  
VIN = 3.3V  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Junction Temperature (°C)  
FIGURE 2-25:  
Start-up From V  
FIGURE 2-28:  
Load Regulation vs.  
IN  
(V = 1.8V).  
Junction Temperature (V = 2.8V).  
R
R
0.1  
VR = 5.0V  
OUT = 0 to 250 mA  
I
0.05  
0
VIN = 6.0V  
-0.05  
-0.1  
-0.15  
-0.2  
VIN= 5.5V  
-40 -25 -10  
5
20  
35  
50  
65 80 95 110 125  
Junction Temperature (°C)  
FIGURE 2-26:  
Start-up From V  
FIGURE 2-29:  
Load Regulation vs.  
IN  
(V = 2.8V).  
Junction Temperature (V = 5.0V).  
R
R
0.1  
0.3  
VR = 1.8V  
0.05  
IOUT = 0 to 200 mA  
0.2  
0.1  
0
VIN= 5.0V  
0
VR = 2.8V  
VIN = 3.5V  
-0.05  
-0.1  
VR = 1.8V  
-0.1  
-0.2  
-0.3  
-0.4  
-0.15  
-0.2  
VIN = 2.2V  
VR = 1.2V  
-0.25  
-0.3  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-27:  
Load Regulation vs.  
FIGURE 2-30:  
Line Regulation vs.  
Junction Temperature (V = 1.8V).  
Temperature (V = 1.2V, 1.8V, 2.8V).  
R
R
© 2007 Microchip Technology Inc.  
DS21826B-page 9  
MCP1700  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin No.  
SOT-23  
Pin No.  
SOT-89  
Pin No.  
TO-92  
Name  
Function  
1
2
3
1
3
2
1
3
2
GND  
VOUT  
VIN  
Ground Terminal  
Regulated Voltage Output  
Unregulated Supply Voltage  
3.1  
Ground Terminal (GND)  
3.3  
Unregulated Input Voltage Pin  
(VIN)  
Regulator ground. Tie GND to the negative side of the  
output and the negative side of the input capacitor.  
Only the LDO bias current (1.6 µA typical) flows out of  
this pin; there is no high current. The LDO output  
regulation is referenced to this pin. Minimize voltage  
drops between this pin and the negative side of the  
load.  
Connect VIN to the input unregulated source voltage.  
Like all low dropout linear regulators, low source  
impedance is necessary for the stable operation of the  
LDO. The amount of capacitance required to ensure  
low source impedance will depend on the proximity of  
the input source capacitors or battery type. For most  
applications, 1 µF of capacitance will ensure stable  
operation of the LDO circuit. For applications that have  
load currents below 100 mA, the input capacitance  
requirement can be lowered. The type of capacitor  
used can be ceramic, tantalum or aluminum  
electrolytic. The low ESR characteristics of the ceramic  
will yield better noise and PSRR performance at high  
frequency.  
3.2  
Regulated Output Voltage (VOUT)  
Connect VOUT to the positive side of the load and the  
positive terminal of the output capacitor. The positive  
side of the output capacitor should be physically  
located as close to the LDO VOUT pin as is practical.  
The current flowing out of this pin is equal to the DC  
load current.  
DS21826B-page 10  
© 2007 Microchip Technology Inc.  
MCP1700  
4.0  
4.1  
DETAILED DESCRIPTION  
Output Regulation  
4.3  
Overtemperature  
A portion of the LDO output voltage is fed back to the  
internal error amplifier and compared with the precision  
internal bandgap reference. The error amplifier output  
will adjust the amount of current that flows through the  
P-Channel pass transistor, thus regulating the output  
voltage to the desired value. Any changes in input  
voltage or output current will cause the error amplifier  
to respond and adjust the output voltage to the target  
voltage (refer to Figure 4-1).  
The internal power dissipation within the LDO is a  
function of input-to-output voltage differential and load  
current. If the power dissipation within the LDO is  
excessive, the internal junction temperature will rise  
above the typical shutdown threshold of 140°C. At that  
point, the LDO will shut down and begin to cool to the  
typical turn-on junction temperature of 130°C. If the  
power dissipation is low enough, the device will  
continue to cool and operate normally. If the power  
dissipation remains high, the thermal shutdown  
protection circuitry will again turn off the LDO,  
protecting it from catastrophic failure.  
4.2  
Overcurrent  
The MCP1700 internal circuitry monitors the amount of  
current flowing through the P-Channel pass transistor.  
In the event of a short-circuit or excessive output  
current, the MCP1700 will turn off the P-Channel  
device for a short period, after which the LDO will  
attempt to restart. If the excessive current remains, the  
cycle will repeat itself.  
MCP1700  
VOUT  
VIN  
Error Amplifier  
+VIN  
Voltage  
Reference  
-
+
Overcurrent  
Overtemperature  
GND  
FIGURE 4-1:  
Block Diagram.  
© 2007 Microchip Technology Inc.  
DS21826B-page 11  
MCP1700  
5.2  
Output  
5.0  
FUNCTIONAL DESCRIPTION  
The maximum rated continuous output current for the  
MCP1700 is 250 mA (VR 2.5V). For applications  
where VR < 2.5V, the maximum output current is  
200 mA.  
The MCP1700 CMOS low dropout linear regulator is  
intended for applications that need the lowest current  
consumption while maintaining output voltage  
regulation. The operating continuous load range of the  
MCP1700 is from 0 mA to 250 mA (VR 2.5V). The  
input operating voltage range is from 2.3V to 6.0V,  
making it capable of operating from two, three or four  
alkaline cells or a single Li-Ion cell battery input.  
A minimum output capacitance of 1.0 µF is required for  
small signal stability in applications that have up to  
250 mA output current capability. The capacitor type  
can be ceramic, tantalum or aluminum electrolytic. The  
esr range on the output capacitor can range from 0Ω to  
2.0Ω.  
5.1  
Input  
The input of the MCP1700 is connected to the source  
of the P-Channel PMOS pass transistor. As with all  
LDO circuits, a relatively low source impedance (10Ω)  
is needed to prevent the input impedance from causing  
the LDO to become unstable. The size and type of the  
capacitor needed depends heavily on the input source  
type (battery, power supply) and the output current  
range of the application. For most applications (up to  
100 mA), a 1 µF ceramic capacitor will be sufficient to  
ensure circuit stability. Larger values can be used to  
improve circuit AC performance.  
5.3  
Output Rise time  
When powering up the internal reference output, the  
typical output rise time of 500 µs is controlled to  
prevent overshoot of the output voltage.  
DS21826B-page 12  
© 2007 Microchip Technology Inc.  
MCP1700  
EQUATION 6-2:  
TJ(MAX) = PTOTAL × RθJA + TAMAX  
6.0  
6.1  
APPLICATION CIRCUITS &  
ISSUES  
T
J(MAX) = Maximum continuous junction  
Typical Application  
temperature.  
The MCP1700 is most commonly used as a voltage  
regulator. It’s low quiescent current and low dropout  
voltage make it ideal for many battery-powered  
applications.  
PTOTAL = Total device power dissipation.  
RθJA = Thermal resistance from junction to ambient.  
TAMAX = Maximum ambient temperature.  
MCP1700  
The maximum power dissipation capability for a  
package can be calculated given the junction-to-  
ambient thermal resistance and the maximum ambient  
temperature for the application. The following equation  
can be used to determine the package maximum  
internal power dissipation.  
VIN  
GND  
(2.3V to 3.2V)  
VOUT  
1.8V  
VIN  
CIN  
V
OUT  
1 µF Ceramic  
IOUT  
150 mA  
COUT  
1 µF Ceramic  
EQUATION 6-3:  
FIGURE 6-1:  
Typical Application Circuit.  
(TJ(MAX) TA(MAX)  
)
PD(MAX) = ---------------------------------------------------  
RθJA  
6.1.1  
APPLICATION INPUT CONDITIONS  
Package Type = SOT-23  
PD(MAX) = Maximum device power dissipation.  
TJ(MAX) = Maximum continuous junction  
temperature.  
Input Voltage Range = 2.3V to 3.2V  
IN maximum = 3.2V  
OUT typical = 1.8V  
IOUT = 150 mA maximum  
V
TA(MAX) = Maximum ambient temperature.  
V
RθJA = Thermal resistance from junction to ambient.  
6.2  
Power Calculations  
EQUATION 6-4:  
6.2.1  
POWER DISSIPATION  
TJ(RISE) = PD(MAX) × RθJA  
The internal power dissipation of the MCP1700 is a  
function of input voltage, output voltage and output  
current. The power dissipation, as a result of the  
quiescent current draw, is so low, it is insignificant  
(1.6 µA x VIN). The following equation can be used to  
calculate the internal power dissipation of the LDO.  
TJ(RISE) = Rise in device junction temperature over  
the ambient temperature.  
PTOTAL = Maximum device power dissipation.  
RθJA = Thermal resistance from junction to ambient.  
EQUATION 6-5:  
EQUATION 6-1:  
TJ = TJ(RISE) + TA  
PLDO = (VIN(MAX)) VOUT(MIN)) × IOUT(MAX))  
TJ = Junction Temperature.  
PLDO = LDO Pass device internal power dissipation  
VIN(MAX) = Maximum input voltage  
TJ(RISE) = Rise in device junction temperature over  
the ambient temperature.  
TA = Ambient temperature.  
VOUT(MIN) = LDO minimum output voltage  
The maximum continuous operating junction  
temperature specified for the MCP1700 is +125°C. To  
estimate the internal junction temperature of the  
MCP1700, the total internal power dissipation is  
multiplied by the thermal resistance from junction to  
ambient (RθJA). The thermal resistance from junction to  
ambient for the SOT-23 pin package is estimated at  
230°C/W.  
© 2007 Microchip Technology Inc.  
DS21826B-page 13  
MCP1700  
6.3  
Voltage Regulator  
TJ = TJRISE + TA(MAX)  
TJ = 90.2°C  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
are calculated in the following example. The power  
dissipation, as a result of ground current, is small  
enough to be neglected.  
Maximum Package Power Dissipation at +40°C  
Ambient Temperature  
SOT-23 (230.0°C/Watt = RθJA  
)
P
D(MAX) = (125°C - 40°C) / 230°C/W  
D(MAX) = 369.6 milli-Watts  
6.3.1  
POWER DISSIPATION EXAMPLE  
P
Package  
SOT-89 (52°C/Watt = RθJA  
)
Package Type = SOT-23  
Input Voltage  
P
D(MAX) = (125°C - 40°C) / 52°C/W  
D(MAX) = 1.635 Watts  
P
V
IN = 2.3V to 3.2V  
TO-92 (131.9°C/Watt = RθJA  
)
LDO Output Voltages and Currents  
PD(MAX) = (125°C - 40°C) / 131.9°C/W  
VOUT = 1.8V  
PD(MAX) = 644 milli-Watts  
IOUT = 150 mA  
Maximum Ambient Temperature  
A(MAX) = +40°C  
6.4  
Voltage Reference  
T
The MCP1700 can be used not only as a regulator, but  
also as a low quiescent current voltage reference. In  
many microcontroller applications, the initial accuracy  
of the reference can be calibrated using production test  
equipment or by using a ratio measurement. When the  
initial accuracy is calibrated, the thermal stability and  
line regulation tolerance are the only errors introduced  
by the MCP1700 LDO. The low cost, low quiescent  
current and small ceramic output capacitor are all  
advantages when using the MCP1700 as a voltage  
reference.  
Internal Power Dissipation  
Internal Power dissipation is the product of the LDO  
output current times the voltage across the LDO  
(VIN to VOUT).  
PLDO(MAX) = (VIN(MAX) - VOUT(MIN)) x IOUT(MAX)  
PLDO = (3.2V - (0.97 x 1.8V)) x 150 mA  
PLDO = 218.1 milli-Watts  
Device Junction Temperature Rise  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction to ambient for the application. The thermal  
resistance from junction to ambient (RθJA) is derived  
from an EIA/JEDEC standard for measuring thermal  
resistance for small surface mount packages. The EIA/  
JEDEC specification is JESD51-7, “High Effective  
Thermal Conductivity Test Board for Leaded Surface  
Mount Packages”. The standard describes the test  
method and board specifications for measuring the  
thermal resistance from junction to ambient. The actual  
thermal resistance for a particular application can vary  
depending on many factors, such as copper area and  
thickness. Refer to AN792, “A Method to Determine  
How Much Power a SOT-23 Can Dissipate in an  
Application”, (DS00792), for more information regarding  
this subject.  
Ratio Metric Reference  
PIC®  
Microcontroller  
1 µA Bias  
MCP1700  
VIN  
CIN  
VREF  
VOUT  
COUT  
1 µF  
1 µF  
GND  
ADO  
AD1  
Bridge Sensor  
FIGURE 6-2:  
Using the MCP1700 as a  
voltage reference.  
6.5  
Pulsed Load Applications  
TJ(RISE) = PTOTAL x RqJA  
For some applications, there are pulsed load current  
events that may exceed the specified 250 mA  
maximum specification of the MCP1700. The internal  
current limit of the MCP1700 will prevent high peak  
load demands from causing non-recoverable damage.  
The 250 mA rating is a maximum average continuous  
rating. As long as the average current does not exceed  
250 mA, pulsed higher load currents can be applied to  
the MCP1700. The typical current limit for the  
MCP1700 is 550 mA (TA +25°C).  
TJRISE = 218.1 milli-Watts x 230.0°C/Watt  
T
JRISE = 50.2°C  
Junction Temperature Estimate  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated below.  
DS21826B-page 14  
© 2007 Microchip Technology Inc.  
MCP1700  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Pin SOT-23  
Standard  
CKNN  
Extended Temp  
Symbol  
CK  
Voltage *  
1.2  
CM  
CP  
CR  
CS  
CU  
1.8  
2.5  
3.0  
3.3  
5.0  
3-Pin SOT-89  
CUYYWW  
NNN  
* Custom output voltages available upon request.  
Contact your local Microchip sales office for more  
information.  
Example:  
3-Pin TO-92  
1700  
XXXXXX  
XXXXXX  
XXXXXX  
YWWNNN  
1202E  
e
3
TO^
313256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2007 Microchip Technology Inc.  
DS21826B-page 15  
MCP1700  
3-Lead Plastic Small Outline Transistor (TT or NB) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
b
N
E
E1  
2
1
e
e1  
D
c
A
A2  
φ
A1  
L
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Lead Pitch  
N
e
3
0.95 BSC  
Outside Lead Pitch  
Overall Height  
e1  
A
1.90 BSC  
0.89  
0.79  
0.01  
2.10  
1.16  
2.67  
0.13  
0°  
0.95  
1.12  
1.02  
0.10  
2.64  
1.40  
3.05  
0.60  
10°  
Molded Package Thickness  
Standoff  
A2  
A1  
E
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
1.30  
2.90  
0.50  
L
Foot Angle  
φ
Lead Thickness  
Lead Width  
c
0.08  
0.30  
0.20  
0.54  
b
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-104B  
DS21826B-page 16  
© 2007 Microchip Technology Inc.  
MCP1700  
3-Lead Plastic Small Outline Transistor Header (MB) [SOT-89]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
H
L
N
1
2
b
b1  
b1  
e
E1  
e1  
A
C
Units  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
Number of Leads  
Pitch  
N
e
3
1.50 BSC  
3.00 BSC  
Outside Lead Pitch  
Overall Height  
Overall Width  
e1  
A
1.40  
3.94  
2.29  
2.13  
4.39  
1.40  
0.79  
0.35  
0.41  
0.36  
1.60  
4.25  
2.60  
2.29  
4.60  
1.83  
1.20  
0.44  
0.56  
0.48  
H
Molded Package Width at Base  
Molded Package Width at Top  
Overall Length  
E
E1  
D
Tab Length  
D1  
L
Foot Length  
Lead Thickness  
c
Lead 2 Width  
b
Leads 1 & 3 Width  
b1  
Notes:  
1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-029B  
© 2007 Microchip Technology Inc.  
DS21826B-page 17  
MCP1700  
3-Lead Plastic Transistor Outline (TO or ZB) [TO-92]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
A
N
1
L
1
2
3
b
e
c
D
R
Units  
INCHES  
Dimension Limits  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
3
.050 BSC  
Bottom to Package Flat  
Overall Width  
Overall Length  
D
E
A
R
L
.125  
.175  
.170  
.080  
.500  
.014  
.014  
.165  
.205  
.210  
.105  
Molded Package Radius  
Tip to Seating Plane  
Lead Thickness  
c
.021  
.022  
Lead Width  
b
Notes:  
1. Dimensions A and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-101B  
DS21826B-page 18  
© 2007 Microchip Technology Inc.  
MCP1700  
APPENDIX A: REVISION HISTORY  
Revision B (February 2007)  
• Updated Packaging Information.  
• Corrected Section “Product Identification  
System”.  
• Changed X5R to X7R in Notes to “DC  
Characteristics”, “Temperature  
Specifications”, and “Typical Performance  
Curves” .  
Revision A (November 2005)  
• Original Release of this Document.  
© 2007 Microchip Technology Inc.  
DS21826B-page 19  
MCP1700  
NOTES:  
DS21826B-page 20  
© 2007 Microchip Technology Inc.  
MCP1700  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
MCP1700  
X-  
XXX  
X
X
/XX  
Examples:  
SOT-89 Package:  
Tape & Voltage Tolerance Temp. Package  
Output  
Reel  
Range  
a) MCP1700T-1202E/MB: 1.2V VOUT  
b) MCP1700T-1802E/MB: 1.8V VOUT  
c) MCP1700T-2502E/MB: 2.5V VOUT  
d) MCP1700T-3002E/MB: 3.0V VOUT  
e) MCP1700T-3302E/MB: 3.3V VOUT  
Device:  
MCP1700: Low Quiescent Current LDO  
f)  
MCP1700T-5002E/MB: 5.0V VOUT  
Tape and Reel:  
T:  
Tape and Reel only applies to SOT-23 and SOT-89  
devices  
TO-92 Package:  
g) MCP1700-1202E/TO:  
h) MCP1700-1802E/TO:  
1.2V VOUT  
1.8V VOUT  
2.5V VOUT  
3.0V VOUT  
3.3V VOUT  
5.0V VOUT  
Standard Output  
Voltage: *  
120 = 1.2V  
180 = 1.8V  
250 = 2.5V  
300 = 3.0V  
330 = 3.3V  
500 = 5.0V  
i)  
j)  
MCP1700-2502E/TO:  
MCP1700-3002E/TO:  
k) MCP1700-3302E/TO:  
l) MCP1700-5002E/TO:  
SOT-23 Package:  
* Custom output voltages available upon request. Contact  
your local Microchip sales office for more information  
a) MCP1700T-1202E/TT: 1.2V VOUT  
b) MCP1700T-1802E/TT: 1.8V VOUT  
c) MCP1700T-2502E/TT: 2.5V VOUT  
d) MCP1700T-3002E/TT: 3.0V VOUT  
e) MCP1700T-3302E/TT: 3.3V VOUT  
Tolerance:  
2
=
=
2%  
Temperature Range:  
Package:  
E
-40°C to +125°C (Extended)  
f)  
MCP1700T-5002E/TT: 5.0V VOUT  
MB  
TO  
TT  
=
=
=
Plastic Small Outline Transistor (SOT-89), 3-lead  
Plastic Small Outline Transistor (TO-92), 3-lead  
Plastic Small Outline Transistor SOT-23), 3-lead  
© 2007 Microchip Technology Inc.  
DS21826B-page 21  
MCP1700  
NOTES:  
DS21826B-page 22  
© 2007 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2007 Microchip Technology Inc.  
DS21826B-page 23  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS21826B-page 24  
© 2007 Microchip Technology Inc.  

相关型号:

MCP1700-1502E/TO

Low Quiescent Current LDO, -40C to +125C, 3-TO-92, BAG
MICROCHIP

MCP1700-1702E/TO

250mA CMOS LDO, lsupply 1uA and 2% Vout Accuracy, -40C to +125C, 3-TO-92, BAG
MICROCHIP

MCP1700-1802E

Low Quiescent Current LDO
MICROCHIP

MCP1700-1802E/MAY

FIXED POSITIVE LDO REGULATOR
MICROCHIP

MCP1700-1802E/MB

1.8 V FIXED POSITIVE LDO REGULATOR, 0.35 V DROPOUT, PSSO3, PLASTIC, TO-243, SOT-89, 3 PIN
MICROCHIP

MCP1700-1802E/TO

1.8 V FIXED POSITIVE LDO REGULATOR, 0.35 V DROPOUT, PBCY3, LEAD FREE, TO-92, 3 PIN
MICROCHIP

MCP1700-1802E/TT

1.8 V FIXED POSITIVE LDO REGULATOR, 0.35 V DROPOUT, PDSO3, PLASTIC, TO-236, SOT-23, 3 PIN
MICROCHIP

MCP1700-1802EMB

Low Quiescent Current LDO
MICROCHIP

MCP1700-1802ETO

Low Quiescent Current LDO
MICROCHIP

MCP1700-1802ETT

Low Quiescent Current LDO
MICROCHIP

MCP1700-2002E/TO

250MA CMOS LDO, ISUPPLY 1UA &amp; 2% VOUT ACCURACY, -40C to +125C, 3-TO-92, BAG
MICROCHIP

MCP1700-2102E/TO

250MA CMOS LDO, ISUPPLY 1UA &amp; 2% VOUT ACCURACY, -40C to +125C, 3-TO-92, BAG
MICROCHIP