MCP1700-1802E/MB [MICROCHIP]

1.8 V FIXED POSITIVE LDO REGULATOR, 0.35 V DROPOUT, PSSO3, PLASTIC, TO-243, SOT-89, 3 PIN;
MCP1700-1802E/MB
型号: MCP1700-1802E/MB
厂家: MICROCHIP    MICROCHIP
描述:

1.8 V FIXED POSITIVE LDO REGULATOR, 0.35 V DROPOUT, PSSO3, PLASTIC, TO-243, SOT-89, 3 PIN

输出元件 调节器
文件: 总22页 (文件大小:425K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1700  
M
Low Quiescent Current LDO  
Features  
Description  
• 1.6 µA Typical Quiescent Current  
• Input Operating Voltage Range: 2.3V to 6.0V  
• Output Voltage Range: 1.2V to 5.0V  
• 250 mA Output Current for output voltages 2.5V  
• 200 mA Output Current for output voltages < 2.5V  
• Low Dropout (LDO) voltage  
The MCP1700 is a family of CMOS low dropout (LDO)  
voltage regulators that can deliver up to 250 mA of  
current while consuming only 1.6 µA of quiescent  
current (typical). The input operating range is specified  
from 2.3V to 6.0V, making it an ideal choice for two and  
three primary cell battery-powered applications, as well  
as single cell Li-Ion-powered applications.  
- 178 mV typical @ 250 mA for V  
= 2.8V  
OUT  
The MCP1700 is capable of delivering 250 mA with  
only 178 mV of input to output voltage differential  
• 0.4% Typical Output Voltage Tolerance  
• Standard Output Voltage Options:  
- 1.2V, 1.8V, 2.5V, 3.0V, 3.3V, 5.0V  
• Stable with 1.0 µF Ceramic Output capacitor  
• Short-Circuit Protection  
(V  
= 2.8V). The output voltage tolerance of the  
OUT  
MCP1700 is typically ±0.4% at +25°C and ±3%  
maximum over the operating junction temperature  
range of -40°C to +125°C.  
Output voltages available for the MCP1700 range from  
1.2V to 5.0V. The LDO output is stable when using only  
1 µF output capacitance. Ceramic, tantalum or  
aluminum electrolytic capacitors can all be used for  
input and output. Overcurrent limit and overtemperature  
shutdown provide a robust solution for any application.  
• Overtemperature Protection  
Applications  
• Battery-powered Devices  
• Battery-powered Alarm Circuits  
• Smoke Detectors  
Package options include the SOT23, SOT89-3 and  
TO92.  
2
• CO Detectors  
• Pagers and Cellular Phones  
• Smart Battery Packs  
• Low Quiescent Current Voltage Reference  
• PDAs  
Package Types  
3-Pin SOT23-A 3-Pin SOT-89  
3-Pin TO-92  
VIN  
VIN  
• Digital Cameras  
• Microcontroller Power  
MCP1700  
3
1
2 3  
MCP1700  
MCP1700  
Related Literature  
• AN765, “Using Microchip’s Micropower LDOs”,  
DS00765, Microchip Technology Inc., 2002  
2
1
3
1
2
GNDVIN VOUT  
GND VOUT  
GND VIN VOUT  
• AN766, “Pin-Compatible CMOS Upgrades to  
BiPolar LDOs”, DS00766,  
Microchip Technology Inc., 2002  
• AN792, “A Method to Determine How Much  
Power a SOT23 Can Dissipate in an Application”,  
DS00792, Microchip Technology Inc., 2001  
2003 Microchip Technology Inc.  
DS21826A-page 1  
MCP1700  
Functional Block Diagrams  
MCP1700  
V
V
OUT  
IN  
Error Amplifier  
+V  
IN  
Voltage  
-
+
Reference  
Over Current  
Over Temperature  
GND  
GND  
Typical Application Circuits  
MCP1700  
V
IN  
(2.3V to 3.2V)  
V
V
OUT  
IN  
1.8V  
C
V
IN  
OUT  
1 µF Ceramic  
I
OUT  
C
OUT  
150 mA  
1 µF Ceramic  
DS21826A-page 2  
2003 Microchip Technology Inc.  
MCP1700  
† Notice: Stresses above those listed under “Maximum Rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
............................................................................................+6.5V  
DD  
All inputs and outputs w.r.t. .............(VSS-0.3V) to (VIN+0.3V)  
Peak Output Current....................................Internally Limited  
Storage temperature .....................................-65°C to +150°C  
Maximum Junction Temperature................................... 150°C  
Operating Junction Temperature...................-40°C to +125°C  
ESD protection on all pins (HBM;MM)............... ≥ 4 kV; 400V  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN = VR + 1, ILOAD = 100 µA, COUT = 1 µF  
(X5R), CIN = 1 µF (X5R), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 6) of -40°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input / Output Characteristics  
Input Operating Voltage  
Input Quiescent Current  
Maximum Output Current  
VIN  
Iq  
IOUT_mA  
2.3  
1.6  
6.0  
4
V
µA  
mA  
Note 1  
IL = 0 mA, VIN = VR +1V  
For VR 2.5V  
For VR < 2.5V  
250  
200  
Output Short Circuit Current  
Output Voltage Regulation  
IOUT_SC  
408  
mA  
V
VIN = VR +1V, VOUT = GND,  
Current (peak current) measured  
10 ms after short is applied.  
VOUT  
VR-3.0% VR±0.4 VR+3.0%  
Note 2  
VR-2.0%  
%
50  
±0.75  
VR+2.0%  
+1.0  
VOUT Temperature Coefficient  
Line Regulation  
TCVOUT  
ppm/°C  
%/V  
Note 3  
(VR+1)V VIN 6V  
VOUT  
/
-1.0  
(VOUTXVIN  
)
Load Regulation  
VOUT/VOUT  
-1.5  
±1.0  
+1.5  
%
IL = 0.1 mA to 250 mA for VR 2.5V  
IL = 0.1 mA to 200 mA for VR < 2.5V  
Note 4  
Dropout Voltage  
VIN-VOUT  
VIN-VOUT  
TR  
178  
150  
500  
350  
350  
mV  
mV  
µs  
IL = 250 mA, (Note 1, Note 5)  
VR > 2.5V  
Dropout Voltage  
VR < 2.5V  
Output Rise Time  
IL = 200 mA, (Note 1, Note 5)  
10% VR to 90% VR VIN = 0V to 6V,  
RL = 50resistive  
Note 1: The minimum VIN must meet two conditions: VIN 2.3V and VIN ≥ (VR + 3.0%) +VDROPOUT  
.
2: R is the nominal regulator output voltage. For example: VR = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V. The  
V
input voltage (VIN = VR + 1.0V); IOUT = 100 µA.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * Temperature), VOUT-HIGH = highest voltage measured over the  
temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with a VR + 1V differential applied.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
2003 Microchip Technology Inc.  
DS21826A-page 3  
 
 
 
 
 
 
MCP1700  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN = VR + 1, ILOAD = 100 µA, COUT = 1 µF  
(X5R), CIN = 1 µF (X5R), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 6) of -40°C to +125°C.  
Parameters  
Output Noise  
Power Supply Ripple  
Rejection Ratio  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
eN  
PSRR  
3
44  
µV/(Hz)1/2 IL = 100 mA, f = 1 kHz, COUT = 1 µF  
dB  
°C  
f = 100 Hz, COUT = 1 µF, IL = 50 mA,  
VINAC = 100 mV pk-pk, CIN = 0 µF,  
VR = 1.2V  
Thermal Shutdown Protection  
TSD  
140  
VIN = VR + 1, IL = 100 µA  
Note 1: The minimum VIN must meet two conditions: VIN 2.3V and VIN ≥ (VR + 3.0%) +VDROPOUT  
.
2: R is the nominal regulator output voltage. For example: VR = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V. The  
V
input voltage (VIN = VR + 1.0V); IOUT = 100 µA.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * Temperature), VOUT-HIGH = highest voltage measured over the  
temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with a VR + 1V differential applied.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN = VR + 1, ILOAD = 100 µA,  
C
OUT = 1 µF (X5R), CIN = 1 µF (X5R), TA = +25°C.  
Boldface type applies for junction temperatures, TJ (Note 1) of -40°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistance  
Thermal Resistance, SOT23-A  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
Minimum Trace Width Single Layer  
Board  
θJA  
335  
°C/W  
230  
52  
°C/W Typical FR4 4-layer Application  
°C/W Typical, 1 square inch of copper  
Thermal Resistance, SOT89  
Thermal Resistance, TO-92  
θJA  
θJA  
EIA/JEDEC JESD51-751-7  
131.9  
°C/W  
4-Layer Board  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
DS21826A-page 4  
2003 Microchip Technology Inc.  
 
MCP1700  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated: V = 1.8V, C  
= 1 µF Ceramic (X5R), C = 1 µF Ceramic (X5R), I = 100 µA,  
IN L  
R
OUT  
T = +25°C, V = V +1V.  
A
IN  
R
Note: Junction Temperature (T ) is approximated by soaking the device under test to an ambient temperature equal to the desired junction  
J
temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
1.206  
1.204  
1.202  
1.200  
1.198  
1.196  
1.194  
1.192  
1.190  
VR = 1.2V  
OUT = 0 µA  
VR = 1.2V  
TJ = +125°C  
TJ = +25°C  
I
TJ = +125°C  
TJ = +25°C  
IOUT = 0.1 mA  
TJ = - 40°C  
TJ = - 40°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6
6
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-1:  
Input Quiescent Current vs.  
FIGURE 2-4:  
Output Voltage vs. Input  
Input Voltage.  
Voltage (V = 1.2V).  
R
1.8  
50  
45  
VR = 1.8V  
IOUT = 0.1 mA  
VR = 2.8V  
TJ = +125°C  
1.795  
40  
35  
30  
25  
20  
15  
10  
5
TJ = +25°C  
1.79  
TJ = - 40°C  
TJ = - 40°C  
TJ = +125°C  
TJ = +25°C  
1.785  
1.78  
1.775  
1.77  
0
0
25  
50  
75  
100 125 150 175 200 225 250  
Load Current (mA)  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
FIGURE 2-2:  
Ground Current vs. Load  
FIGURE 2-5:  
Output Voltage vs. Input  
Current.  
Voltage (V = 1.8V).  
R
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
2.800  
2.798  
2.796  
2.794  
2.792  
2.790  
2.788  
2.786  
2.784  
2.782  
2.780  
2.778  
VIN = VR + 1V  
IOUT = 0 µA  
VR = 2.8V  
IOUT = 0.1 mA  
TJ = +25°C  
VR = 5.0V  
TJ = - 40°C  
VR = 1.2V  
VR = 2.8V  
TJ = +125°C  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
5.7  
Junction Temperature (°C)  
Input Voltage (V)  
FIGURE 2-3:  
Quiescent Current vs.  
FIGURE 2-6:  
Voltage (V = 2.8V).  
Output Voltage vs. Input  
Junction Temperature.  
R
2003 Microchip Technology Inc.  
DS21826A-page 5  
MCP1700  
Note: Unless otherwise indicated: V = 1.8V, C  
= 1 µF Ceramic (X5R), C = 1 µF Ceramic (X5R), I = 100 µA,  
IN L  
R
OUT  
T = +25°C, V = V +1V.  
A
IN  
R
TJ = +25°C  
5.000  
4.995  
4.990  
4.985  
4.980  
4.975  
4.970  
4.965  
4.960  
4.955  
2.798  
2.796  
2.794  
2.792  
2.790  
2.788  
2.786  
2.784  
2.782  
2.780  
2.778  
TJ = +25°C  
TJ = - 40°C  
VR = 5.0V  
IOUT = 0.1 mA  
VR = 2.8V  
VIN = VR + 1V  
TJ = - 40°C  
TJ = +125°C  
TJ = +125°C  
5
5.2  
5.4  
5.6  
5.8  
6
0
50  
100  
150  
200  
250  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-7:  
Output Voltage vs. Input  
FIGURE 2-10:  
Output Voltage vs. Load  
Voltage (V = 5.0V).  
Current (V = 2.8V).  
R
R
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
5.000  
TJ = - 40°C  
TJ = +25°C  
TJ = +125°C  
VR = 1.2V  
TJ = +25°C  
4.995  
4.990  
4.985  
4.980  
4.975  
4.970  
4.965  
4.960  
4.955  
VIN = VR + 1V  
TJ = - 40°C  
VR = 5.0V  
V
IN = VR + 1V  
TJ = +125°C  
0
25  
50  
75  
100  
125  
150  
175  
200  
0
50  
100  
150  
200  
250  
Load Curent (mA)  
Load Current (mA)  
FIGURE 2-8:  
Output Voltage vs. Load  
FIGURE 2-11:  
Output Voltage vs. Load  
Current (V = 1.2V).  
Current (V = 5.0V).  
R
R
0.25  
1.792  
1.790  
VR = 2.8V  
0.2  
0.15  
0.1  
TJ = +125°C  
TJ = +25°C  
TJ = +25°C  
1.788  
1.786  
1.784  
1.782  
1.780  
1.778  
TJ = - 40°C  
TJ = +125°C  
TJ = - 40°C  
0.05  
0
VR = 1.8V  
VIN = VR + 1V  
0
25  
50  
75  
100  
125  
150  
175  
200  
0
25  
50  
75  
100  
125  
150  
175  
200  
225  
250  
Load Current (mA)  
Load Current (mA)  
FIGURE 2-9:  
Output Voltage vs. Load  
FIGURE 2-12:  
Current (V = 2.8V).  
Dropout Voltage vs. Load  
Current (V = 1.8V).  
R
R
DS21826A-page 6  
2003 Microchip Technology Inc.  
MCP1700  
Note: Unless otherwise indicated: V = 1.8V, C  
= 1 µF Ceramic (X5R), C = 1 µF Ceramic (X5R), I = 100 µA,  
R
OUT  
IN  
L
T = +25°C, V = V +1V.  
A
IN  
R
10  
VIN = 3.8V  
0.16  
0.14  
0.12  
0.1  
VR = 2.8V  
VR = 5.0V  
IOUT = 50mA  
TJ = +125°C  
TJ = - 40°C  
VIN = 2.5V  
VIN = 2.8V  
R = 1.8V  
OUT = 50mA  
1
VR = 1.2V  
V
I
TJ = +25°C  
IOUT = 50mA  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.01  
0
25  
50  
75  
100  
125  
150  
175  
200  
225  
250  
0.01  
0.1  
1
10  
100  
1000  
Load Current (mA)  
Frequency (KHz)  
FIGURE 2-13:  
Dropout Voltage vs. Load  
FIGURE 2-16:  
Noise vs. Frequency.  
Dynamic Load Step  
Dynamic Load Step  
Current (V = 5.0V).  
R
FIGURE 2-17:  
FIGURE 2-14:  
Power Supply Ripple  
(V = 1.2V).  
Rejection vs. Frequency (V = 1.2V).  
R
R
FIGURE 2-18:  
FIGURE 2-15:  
Power Supply Ripple  
(V = 1.8V).  
Rejection vs. Frequency (V = 2.8V).  
R
R
2003 Microchip Technology Inc.  
DS21826A-page 7  
MCP1700  
Note: Unless otherwise indicated: V = 1.8V, C  
= 1 µF Ceramic (X5R), C = 1 µF Ceramic (X5R), I = 100 µA,  
R
OUT  
IN  
L
T = +25°C, V = V +1V.  
A
IN  
R
FIGURE 2-19:  
Dynamic Load Step  
Dynamic Load Step  
Dynamic Load Step  
FIGURE 2-22:  
Dynamic Load Step  
(V = 2.8V).  
(V = 5.0V).  
R
R
FIGURE 2-20:  
FIGURE 2-23:  
Dynamic Line Step  
(V = 1.8V).  
(V = 2.8V).  
R
R
FIGURE 2-21:  
FIGURE 2-24:  
Startup From V  
IN  
(V = 2.8V).  
(V = 1.2V).  
R
R
DS21826A-page 8  
2003 Microchip Technology Inc.  
MCP1700  
Note: Unless otherwise indicated: V = 1.8V, C  
= 1 µF Ceramic (X5R), C = 1 µF Ceramic (X5R), I = 100 µA,  
R
OUT  
IN  
L
T = +25°C, V = V +1V.  
A
IN  
R
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
VR = 2.8V  
V
IN= 5.0V  
I
OUT = 0 to 250 mA  
V
IN = 4.3V  
VIN= 3.3V  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Junction Temperature (°C)  
FIGURE 2-25:  
Start-up From V  
FIGURE 2-28:  
Load Regulation vs.  
IN  
(V = 1.8V).  
Junction Temperature (V = 2.8V).  
R
R
0.1  
VR = 5.0V  
IOUT = 0 to 250 mA  
0.05  
0
VIN= 6.0V  
-0.05  
-0.1  
-0.15  
-0.2  
V
IN = 5.5V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
FIGURE 2-26:  
Start-up From V  
FIGURE 2-29:  
Load Regulation vs.  
IN  
(V = 2.8V).  
Junction Temperature (V = 5.0V).  
R
R
0.1  
0.3  
VR = 1.8V  
IOUT = 0 to 200 mA  
0.05  
0.2  
0.1  
0
VIN = 5.0V  
0
VR = 2.8V  
VIN = 3.5V  
-0.05  
-0.1  
VR = 1.8V  
-0.1  
-0.2  
-0.3  
-0.4  
-0.15  
-0.2  
V
IN= 2.2V  
VR = 1.2V  
-0.25  
-0.3  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-27:  
Load Regulation vs.  
FIGURE 2-30:  
Line Regulation vs.  
Junction Temperature (V = 1.8V).  
Temperature (V = 1.2V, 1.8V, 2.8V).  
R
R
2003 Microchip Technology Inc.  
DS21826A-page 9  
MCP1700  
3.0  
MCP1700 PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP1700 PIN FUNCTION TABLE  
Pin No.  
Pin No.  
SOT89  
Pin No.  
TO-92  
Name  
Function  
SOT23-A  
1
2
3
1
3
2
1
3
2
GND  
Ground Terminal  
Regulated Voltage Output  
Unregulated Supply Voltage  
V
OUT  
V
IN  
3.1  
Ground Terminal (GND)  
3.3  
Unregulated Input Voltage Pin  
(V )  
IN  
Regulator ground. Tie GND to the negative side of the  
output and the negative side of the input capacitor.  
Only the LDO bias current (1.6 µA typical) flows out of  
this pin; there is no high current. The LDO output  
regulation is referenced to this pin. Minimize voltage  
drops between this pin and the negative side of the  
load.  
Connect V to the input unregulated source voltage.  
IN  
Like all low dropout linear regulators, low source  
impedance is necessary for the stable operation of the  
LDO. The amount of capacitance required to ensure  
low source impedance will depend on the proximity of  
the input source capacitors or battery type. For most  
applications, 1 µF of capacitance will ensure stable  
operation of the LDO circuit. For applications that have  
load currents below 100 mA, the input capacitance  
requirement can be lowered. The type of capacitor  
used can be ceramic, tantalum or aluminum electro-  
lytic. The low ESR characteristics of the ceramic will  
yield better noise and PSRR performance at high-  
frequency.  
3.2  
Connect V  
Regulated Output Voltage (V  
)
OUT  
to the positive side of the load and the  
OUT  
positive terminal of the output capacitor. The positive  
side of the output capacitor should be physically  
located as close to the LDO V  
pin as is practical.  
OUT  
The current flowing out of this pin is equal to the DC  
load current.  
DS21826A-page 10  
2003 Microchip Technology Inc.  
 
MCP1700  
4.0  
4.1  
DETAILED DESCRIPTION  
Output Regulation  
4.3  
Overtemperature  
A portion of the LDO output voltage is fed back to the  
internal error amplifier and compared with the precision  
internal bandgap reference. The error amplifier output  
will adjust the amount of current that flows through the  
P-Channel pass transistor, thus regulating the output  
voltage to the desired value. Any changes in input  
voltage or output current will cause the error amplifier  
to respond and adjust the output voltage to the target  
voltage (refer to Figure 4-1).  
The internal power dissipation within the LDO is a  
function of input-to-output voltage differential and load  
current. If the power dissipation within the LDO is  
excessive, the internal junction temperature will rise  
above the typical shutdown threshold of 140°C. At that  
point, the LDO will shut down and begin to cool to the  
typical turn-on junction temperature of 130°C. If the  
power dissipation is low enough, the device will  
continue to cool and operate normally. If the power  
dissipation remains high, the thermal shutdown  
protection circuitry will again turn off the LDO,  
protecting it from catastrophic failure.  
4.2  
Overcurrent  
The MCP1700 internal circuitry monitors the amount of  
current flowing through the P-Channel pass transistor.  
In the event of a short-circuit or excessive output  
current, the MCP1700 will turn off the P-Channel  
device for a short period, after which the LDO will  
attempt to restart. If the excessive current remains, the  
cycle will repeat itself.  
MCP1700  
V
V
OUT  
IN  
Error Amplifier  
+V  
IN  
Voltage  
-
Reference  
+
Overcurrent  
Overtemperature  
GND  
FIGURE 4-1:  
Block Diagram.  
2003 Microchip Technology Inc.  
DS21826A-page 11  
 
MCP1700  
5.2  
Output  
5.0  
FUNCTIONAL DESCRIPTION  
The maximum rated continuous output current for the  
The MCP1700 CMOS low dropout linear regulator is  
intended for applications that need the lowest current  
consumption while maintaining output voltage  
regulation. The operating continuous load range of the  
MCP1700 is 250 mA (V 2.5V). For applications  
R
where V < 2.5V, the maximum output current is  
R
200 mA.  
MCP1700 is from 0 mA to 250 mA (V 2.5V). The  
R
A minimum output capacitance of 1.0 µF is required for  
small signal stability in applications that have up to  
250 mA output current capability. The capacitor type  
can be ceramic, tantalum or aluminum electrolytic. The  
esr range on the output capacitor can range from 0 Ω  
to 2.0 .  
input operating voltage range is from 2.3V to 6.0V,  
making it capable of operating from two, three or four  
alkaline cells or a single Li-Ion cell battery input.  
5.1  
Input  
The input of the MCP1700 is connected to the source  
of the P-Channel PMOS pass transistor. As with all  
LDO circuits, a relatively low source impedance (10)  
is needed to prevent the input impedance from causing  
the LDO to become unstable. The size and type of the  
capacitor needed depends heavily on the input source  
type (battery, power supply) and the output current  
range of the application. For most applications (up to  
100 mA), a 1 µF ceramic capacitor will be sufficient to  
ensure circuit stability. Larger values can be used to  
improve circuit AC performance.  
5.3  
Output Rise time  
When powering up the internal reference output, the  
typical output rise time of 500 µs is controlled to  
prevent overshoot of the output voltage.  
DS21826A-page 12  
2003 Microchip Technology Inc.  
MCP1700  
EQUATION  
TJ(MAX) = PTOTAL × RθJA + TAMAX  
= Maximum continuous junction  
6.0  
6.1  
APPLICATION CIRCUITS &  
ISSUES  
T
Typical Application  
J(MAX)  
temperature.  
= Total device power dissipation.  
The MCP1700 is most commonly used as a voltage  
regulator. It’s low quiescent current and low dropout  
voltage make it ideal for many battery-powered  
applications.  
P
TOTAL  
Rθ = Thermal resistance from junction to ambient.  
JA  
T
= Maximum ambient temperature.  
AMAX  
MCP1700  
The maximum power dissipation capability for a  
package can be calculated given the junction-to-  
ambient thermal resistance and the maximum ambient  
temperature for the application. The following equation  
can be used to determine the package maximum  
internal power dissipation.  
V
IN  
GND  
(2.3V to 3.2V)  
V
OUT  
V
IN  
1.8V  
C
IN  
VOUT  
1 µF Ceramic  
I
OUT  
C
OUT  
150 mA  
1 µF Ceramic  
EQUATION  
FIGURE 6-1:  
Typical Application Circuit.  
(TJ(MAX) TA(MAX)  
)
---------------------------------------------------  
=
PD(MAX)  
RθJA  
6.1.1  
APPLICATION INPUT CONDITIONS  
Package Type = SOT23  
P
= Maximum device power dissipation.  
= Maximum continuous junction  
temperature.  
D(MAX)  
T
J(MAX)  
Input Voltage Range = 2.3V to 3.2V  
maximum = 3.2V  
V
IN  
T
= Maximum ambient temperature.  
A(MAX)  
V
typical = 1.8V  
OUT  
Rθ = Thermal resistance from junction to ambient.  
JA  
I
= 150 mA maximum  
OUT  
6.2  
Power Calculations  
EQUATION  
6.2.1  
POWER DISSIPATION  
TJ(RISE) = PD(MAX) × RθJA  
The internal power dissipation of the MCP1700 is a  
function of input voltage, output voltage and output  
current. The power dissipation, as a result of the  
quiescent current draw, is so low, it is insignificant  
T
= Rise in device junction temperature over  
the ambient temperature.  
= Maximum device power dissipation.  
J(RISE)  
P
TOTAL  
(1.6 µA x V ). The following equation can be used to  
Rθ = Thermal resistance from junction to ambient.  
IN  
JA  
calculate the internal power dissipation of the LDO.  
EQUATION  
EQUATION  
TJ = TJ(RISE) + TA  
PLDO = (VIN(MAX)) VOUT(MIN)) × IOUT(MAX ))  
T = Junction Temperature.  
J
T
= Rise in device junction temperature over  
P
V
V
= LDO Pass device internal power dissipation  
J(RISE)  
LDO  
the ambient temperature.  
T = Ambient temperature.  
= Maximum input voltage  
IN(MAX)  
OUT(MIN)  
A
= LDO minimum output voltage  
The maximum continuous operating junction  
temperature specified for the MCP1700 is +125°C. To  
estimate the internal junction temperature of the  
MCP1700, the total internal power dissipation is  
multiplied by the thermal resistance from junction to  
ambient (Rθ ). The thermal resistance from junction to  
JA  
ambient for the SOT23 pin package is estimated at  
230 °C/W.  
2003 Microchip Technology Inc.  
DS21826A-page 13  
MCP1700  
6.3  
Voltage Regulator  
T = T  
+ T  
A(MAX)  
J
JRISE  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
are calculated in the following example. The power  
dissipation, as a result of ground current, is small  
enough to be neglected.  
T = 90.2°C  
J
Maximum Package Power Dissipation at +40°C  
Ambient Temperature  
SOT23 (230.0°C/Watt = Rθ  
)
JA  
P
P
= (125°C - 40°C) / 230°C/W  
= 369.6 milli-Watts  
D(MAX)  
6.3.1  
POWER DISSIPATION EXAMPLE  
D(MAX)  
Package  
Package Type = SOT23  
Input Voltage  
SOT89 (52°C/Watt = Rθ  
)
JA  
P
P
= (125°C - 40°C) / 52°C/W  
= 1.635 Watts  
D(MAX)  
D(MAX)  
V
= 2.3V to 3.2V  
IN  
TO92 (131.9°C/Watt = Rθ  
)
JA  
LDO Output Voltages and Currents  
P
P
= (125°C - 40°C) / 131.9°C/W  
= 644 milli-Watts  
D(MAX)  
D(MAX)  
V
I
= 1.8V  
OUT  
= 150 mA  
OUT  
Maximum Ambient Temperature  
= +40°C  
Internal Power Dissipation  
6.4  
Voltage Reference  
T
A(MAX)  
The MCP1700 can be used not only as a regulator, but  
also as a low quiescent current voltage reference. In  
many microcontroller applications, the initial accuracy  
of the reference can be calibrated using production test  
equipment or by using a ratio measurement. When the  
initial accuracy is calibrated, the thermal stability and  
line regulation tolerance are the only errors introduced  
by the MCP1700 LDO. The low cost, low quiescent  
current and small ceramic output capacitor are all  
advantages when using the MCP1700 as a voltage  
reference.  
Internal Power dissipation is the product of the LDO  
output current times the voltage across the LDO  
(V to V  
).  
IN  
OUT  
LDO(MAX)  
P
= (V  
- V  
) x I  
OUT(MIN) OUT(MAX)  
IN(MAX)  
P
P
= (3.2V - (0.97 x 1.8V)) x 150 mA  
= 218.1 milli-Watts  
LDO  
LDO  
Device Junction Temperature Rise  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction to ambient for the application. The thermal  
Ratio Metric Reference  
PICmicro®  
1 µA Bias  
MCP1700  
Microcontroller  
resistance from junction to ambient (Rθ ) is derived  
JA  
VIN  
from an EIA/JEDEC standard for measuring thermal  
resistance for small surface mount packages. The EIA/  
JEDEC specification is JESD51-7, “High Effective  
Thermal Conductivity Test Board for Leaded Surface  
Mount Packages”. The standard describes the test  
method and board specifications for measuring the  
thermal resistance from junction to ambient. The actual  
thermal resistance for a particular application can vary  
depending on many factors, such as copper area and  
thickness. Refer to AN792, “A Method to Determine  
How Much Power a SOT23 Can Dissipate in an  
Application”, (DS00792), for more information regarding  
this subject.  
CIN  
VREF  
VOUT  
COUT  
1 µF  
1 µF  
GND  
ADO  
AD1  
Bridge Sensor  
FIGURE 6-2:  
Using the MCP1700 as a  
voltage reference.  
6.5  
Pulsed Load Applications  
T
= P  
x Rq  
TOTAL JA  
J(RISE)  
For some applications, there are pulsed load current  
events that may exceed the specified 250 mA  
maximum specification of the MCP1700. The internal  
current limit of the MCP1700 will prevent high peak  
load demands from causing non-recoverable damage.  
The 250 mA rating is a maximum average continuous  
rating. As long as the average current does not exceed  
250 mA, pulsed higher load currents can be applied to  
the MCP1700. The typical current limit for the  
T
T
= 218.1 milli-Watts x 230.0°C/Watt  
= 50.2°C  
JRISE  
JRISE  
Junction Temperature Estimate  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated below.  
MCP1700 is 550 mA (T +25°C).  
A
DS21826A-page 14  
2003 Microchip Technology Inc.  
MCP1700  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Pin SOT-23A  
Standard  
CKNN  
Extended Temp  
Symbol  
CK  
Voltage *  
1.2  
CM  
CP  
CR  
CS  
CU  
1.8  
2.5  
3.0  
3.3  
5.0  
3-Pin SOT-89  
CUYYWW  
NNN  
* Custom output voltages available upon request.  
Contact your local Microchip sales office for more  
information.  
Example:  
3-Pin TO-92  
1700  
1202E  
313256  
XXXXXX  
XXXXXX  
YWWNNN  
Legend: XX...X Customer specific information*  
Y
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
YY  
WW  
NNN  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard device marking consists of Microchip part number, year code, week code, and traceability  
code.  
2003 Microchip Technology Inc.  
DS21826A-page 15  
MCP1700  
3-Lead Plastic Small Outline Transistor (TT) (SOT-23)  
E
E1  
2
B
p1  
D
n
p
1
α
c
A
A2  
A1  
φ
β
L
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
3
MAX  
n
p
p1  
A
A2  
A1  
E
E1  
D
L
φ
Number of Pins  
Pitch  
3
.038  
.076  
.040  
.037  
.002  
.093  
.051  
.115  
.018  
5
0.96  
1.92  
Outside lead pitch (basic)  
Overall Height  
Molded Package Thickness  
.035  
.044  
0.89  
0.88  
1.01  
0.95  
0.06  
2.37  
1.30  
2.92  
0.45  
5
1.12  
1.02  
0.10  
2.64  
1.40  
3.04  
0.55  
10  
.035  
.000  
.083  
.047  
.110  
.014  
0
.040  
.004  
.104  
.055  
.120  
.022  
10  
Standoff  
§
0.01  
2.10  
1.20  
2.80  
0.35  
0
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
c
.004  
.015  
0
.006  
.017  
5
.007  
.020  
10  
0.09  
0.37  
0
0.14  
0.44  
5
0.18  
0.51  
10  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: TO-236  
Drawing No. C04-104  
DS21826A-page 16  
2003 Microchip Technology Inc.  
MCP1700  
3-Lead Plastic Small Outline Transistor Header (MB) (SOT-89)  
H
E
B1  
3
B
D1  
D
p1  
2
1
p
B1  
L
E1  
A
C
Units  
INCHES  
MILLIMETERS*  
MIN MAX  
1.50 BSC  
Dimension Limits  
p
MIN  
MAX  
Pitch  
.059 BSC  
.118 BSC  
.055  
p1  
A
Outside lead pitch (basic)  
Overall Height  
3.00 BSC  
1.40  
.063  
.167  
.102  
.090  
.181  
.072  
.047  
.017  
.022  
.019  
1.60  
4.25  
2.60  
2.29  
4.60  
1.83  
1.20  
0.44  
0.56  
0.48  
Overall Width  
H
.155  
3.94  
Molded Package Width at Base  
Molded Package Width at Top  
Overall Length  
E
E1  
D
.090  
2.29  
.084  
2.13  
.173  
4.40  
Tab Length  
D1  
L
.064  
1.62  
Foot Length  
.035  
0.89  
c
Lead Thickness  
.014  
0.35  
Lead 2 Width  
B
.017  
0.44  
Leads 1 & 3 Width  
B1  
.014  
0.36  
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .005" (0.127mm) per side.  
JEDEC Equivalent: TO-243  
Drawing No. C04-29  
2003 Microchip Technology Inc.  
DS21826A-page 17  
MCP1700  
3-Lead Plastic Transistor Outline (TO) (TO-92)  
E1  
D
n
1
L
1
2
3
α
B
p
c
A
R
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
3
MAX  
n
p
Number of Pins  
Pitch  
Bottom to Package Flat  
Overall Width  
Overall Length  
Molded Package Radius  
Tip to Seating Plane  
Lead Thickness  
Lead Width  
3
.050  
.143  
.186  
.183  
.090  
.555  
.017  
.019  
5
1.27  
A
E1  
D
R
L
.130  
.155  
.195  
.195  
.095  
.610  
.020  
.022  
6
3.30  
4.45  
3.62  
4.71  
4.64  
2.29  
14.10  
0.43  
0.48  
5
3.94  
.175  
.170  
.085  
.500  
.014  
.016  
4
4.95  
4.95  
2.41  
15.49  
0.51  
0.56  
6
4.32  
2.16  
12.70  
0.36  
0.41  
4
c
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
2
3
4
2
3
4
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: TO-92  
Drawing No. C04-101  
DS21826A-page 18  
2003 Microchip Technology Inc.  
MCP1700  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
X-  
XXX  
X
X
XX  
Examples:  
TO-92 Package:  
MCP1700  
Tape & Voltage Tolerance Temp. Package  
Output  
Reel  
Range  
a) MCP1700-1202E/TO:  
b) MCP1700-1802E/TO:  
c) MCP1700-2502E/TO:  
d) MCP1700-3002E/TO:  
e) MCP1700-3302E/TO:  
1.2V VOUT  
1.8V VOUT  
2.5V VOUT  
3.0V VOUT  
3.3V VOUT  
5.0V VOUT  
Device:  
MCP1700: Low Quiescent Current LDO  
f)  
MCP1700-5002E/TO:  
Tape and Reel:  
Tape and Reel only applies to SOT-23 and SOT-89 devices  
SOT89 Package:  
Standard Output  
Voltage: *  
120 = 1.2V  
180 = 1.8V  
250 = 2.5V  
300 = 3.0V  
330 = 3.3V  
500 = 5.0V  
a) MCP1700T-1202E/MB: 1.2V VOUT  
b) MCP1700T-1802E/MB: 1.8V VOUT  
c) MCP1700T-2502E/MB: 2.5V VOUT  
d) MCP1700T-3002E/MB: 3.0V VOUT  
e) MCP1700T-3302E/MB: 3.3V VOUT  
* Custom output voltages available upon request. Contact  
your local Microchip sales office for more information  
f)  
MCP1700T-5002E/MB: 5.0V VOUT  
SOT23 Package:  
a) MCP1700T-1202E/TT: 1.2V VOUT  
b) MCP1700T-1802E/TT: 1.8V VOUT  
c) MCP1700T-2502E/TT: 2.5V VOUT  
d) MCP1700T-3002E/TT: 3.0V VOUT  
e) MCP1700T-3302E/TT: 3.3V VOUT  
Tolerance:  
2
=
=
2%  
Temperature Range:  
Package:  
E
-40°C to +125°C (Extended)  
TO  
MB  
TT  
=
=
=
3-lead TO-92  
3-lead SOT89  
3-lead SOT23  
f)  
MCP1700T-5002E/TT: 5.0V VOUT  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2003 Microchip Technology Inc.  
DS21826A-page 19  
MCP1700  
NOTES:  
DS21826A-page 20  
2003 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical  
components in life support systems is not authorized except  
with express written approval by Microchip. No licenses are  
conveyed, implicitly or otherwise, under any intellectual  
property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE and PowerSmart are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,  
SEEVAL and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Application Maestro, dsPICDEM, dsPICDEM.net, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo,  
PowerMate, PowerTool, rfLAB, rfPIC, Select Mode,  
SmartSensor, SmartShunt, SmartTel and Total Endurance are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2003, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
®
PICmicro 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2003 Microchip Technology Inc.  
DS21826A-page 21  
M
WORLDWIDE SALES AND SERVICE  
Korea  
AMERICAS  
ASIA/PACIFIC  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or  
82-2-558-5934  
Fax: 480-792-7277  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Singapore  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
200 Middle Road  
China - Beijing  
#07-02 Prime Centre  
Singapore, 188980  
Unit 915  
Atlanta  
Bei Hai Wan Tai Bldg.  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100  
Fax: 86-10-85282104  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Kaohsiung Branch  
30F - 1 No. 8  
Boston  
Min Chuan 2nd Road  
Kaohsiung 806, Taiwan  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
China - Chengdu  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848  
Fax: 978-692-3821  
Rm. 2401-2402, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Taiwan  
Chengdu 610016, China  
Tel: 86-28-86766200  
Taiwan Branch  
Chicago  
11F-3, No. 207  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Fax: 86-28-86766599  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
China - Fuzhou  
Tel: 630-285-0071  
Fax: 630-285-0075  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Dallas  
Fuzhou 350001, China  
Tel: 86-591-7503506  
Fax: 86-591-7503521  
EUROPE  
Austria  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423  
Fax: 972-818-2924  
Durisolstrasse 2  
China - Hong Kong SAR  
A-4600 Wels  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Austria  
Detroit  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250  
Fax: 852-2401-3431  
Regus Business Centre  
Lautrup hoj 1-3  
China - Shanghai  
Fax: 248-538-2260  
Room 701, Bldg. B  
Ballerup DK-2750 Denmark  
Tel: 45-4420-9895 Fax: 45-4420-9910  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, IN 46902  
Tel: 765-864-8360  
Fax: 765-864-8387  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Tel: 86-21-6275-5700  
Fax: 86-21-6275-5060  
China - Shenzhen  
Los Angeles  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Tel: 86-755-82901380  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Germany  
Tel: 949-263-1888  
Steinheilstrasse 10  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Fax: 949-263-1338  
Fax: 86-755-8295-1393  
Phoenix  
China - Shunde  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966  
Fax: 480-792-4338  
Room 401, Hongjian Building  
No. 2 Fengxiangnan Road, Ronggui Town  
Shunde City, Guangdong 528303, China  
Tel: 86-765-8395507 Fax: 86-765-8395571  
Italy  
Via Quasimodo, 12  
20025 Legnano (MI)  
Milan, Italy  
China - Qingdao  
San Jose  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Netherlands  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950  
Rm. B505A, Fullhope Plaza,  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
Fax: 408-436-7955  
Tel: 86-532-5027355 Fax: 86-532-5027205  
P. A. De Biesbosch 14  
NL-5152 SC Drunen, Netherlands  
Tel: 31-416-690399  
India  
Toronto  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Japan  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699  
Fax: 31-416-690340  
United Kingdom  
505 Eskdale Road  
Fax: 905-673-6509  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
07/28/03  
DS21826A-page 22  
2003 Microchip Technology Inc.  

相关型号:

MCP1700-1802E/TO

1.8 V FIXED POSITIVE LDO REGULATOR, 0.35 V DROPOUT, PBCY3, LEAD FREE, TO-92, 3 PIN
MICROCHIP

MCP1700-1802E/TT

1.8 V FIXED POSITIVE LDO REGULATOR, 0.35 V DROPOUT, PDSO3, PLASTIC, TO-236, SOT-23, 3 PIN
MICROCHIP

MCP1700-1802EMB

Low Quiescent Current LDO
MICROCHIP

MCP1700-1802ETO

Low Quiescent Current LDO
MICROCHIP

MCP1700-1802ETT

Low Quiescent Current LDO
MICROCHIP

MCP1700-2002E/TO

250MA CMOS LDO, ISUPPLY 1UA &amp; 2% VOUT ACCURACY, -40C to +125C, 3-TO-92, BAG
MICROCHIP

MCP1700-2102E/TO

250MA CMOS LDO, ISUPPLY 1UA &amp; 2% VOUT ACCURACY, -40C to +125C, 3-TO-92, BAG
MICROCHIP

MCP1700-2302E/TO

250MA CMOS LDO, ISUPPLY 1UA &amp; 2% VOUT ACCURACY, -40C to +125C, 3-TO-92, BAG
MICROCHIP

MCP1700-2502E

Low Quiescent Current LDO
MICROCHIP

MCP1700-2502E/MAY

FIXED POSITIVE LDO REGULATOR
MICROCHIP

MCP1700-2502E/MB

2.5 V FIXED POSITIVE LDO REGULATOR, 0.35 V DROPOUT, PSSO3, PLASTIC, TO-243, SOT-89, 3 PIN
MICROCHIP

MCP1700-2502E/TO

暂无描述
MICROCHIP