MCP1257-EUN [MICROCHIP]

Regulated 3.3V, Low-Ripple Charge Pump with Low- Operating Current SLEEP Mode or BYPASS Mode; 调节3.3V,低纹波充电泵与低收入工作电流睡眠模式或旁路模式
MCP1257-EUN
型号: MCP1257-EUN
厂家: MICROCHIP    MICROCHIP
描述:

Regulated 3.3V, Low-Ripple Charge Pump with Low- Operating Current SLEEP Mode or BYPASS Mode
调节3.3V,低纹波充电泵与低收入工作电流睡眠模式或旁路模式

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管 泵
文件: 总24页 (文件大小:1287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1256/7/8/9  
Regulated 3.3V, Low-Ripple Charge Pump with Low-  
Operating Current SLEEP Mode or BYPASS Mode  
Features  
Description  
The MCP1256, MCP1257, MCP1258 and MCP1259  
are inductorless, positive regulated charge pump  
DC/DC converters. The devices generate a regulated  
3.3V output voltage from a 1.8V to 3.6V input. The  
devices are specifically designed for applications  
operating from 2-cell alkaline, Ni-Cd, or Ni-MH  
batteries or by one primary lithium MnO2 (or similar)  
coin cell battery.  
• Inductorless 1.5x, 2x Boost DC/DC Converter  
• Output Voltage: 3.3V  
• High Output Voltage Accuracy:  
- ±3.0% (VOUT Fixed)  
• Output Current Up To 100 mA  
• 20 mVPP Output Voltage Ripple  
• Thermal Shutdown and Short Circuit Protection  
• Uses Small Ceramic Capacitors  
• Switching Frequency: 650 kHz  
• Low-Power SLEEP Mode: MCP1256/7  
• BYPASS Mode: MCP1258/9  
The MCP1256, MCP1257, MCP1258 and MCP1259  
provide high efficiency by automatically switching  
between 1.5x and 2x boost operation. In addition, at  
light output loads, the MCP1256 and MCP1257 can be  
placed in a SLEEP mode, lowering the quiescent  
current while maintaining the regulated output voltage.  
Alternatively, the MCP1258 and MCP1259 provide a  
BYPASS feature connecting the input voltage to the  
• Low-Power Shutdown Mode: 0.1 μA (Typical)  
• Shutdown Input Compatible with 1.8V Logic  
• VIN Range: 1.8V to 3.6V  
output.  
This  
allows  
for  
real-time  
clocks,  
• Soft-Start Circuitry to Minimize Inrush Current  
Temperature Range: -40°C to +125°C  
• Packaging:  
microcontrollers or other system devices to remain  
biased with virtually no current being consumed by the  
MCP1258 or MPC1259.  
- 10-Pin, 3 mm x 3 mm DFN  
In normal operation, the output voltage ripple is below  
20 mVPP at load currents up to 100 mA. Normal opera-  
tion occurs at a fixed switching frequency of 650 kHz,  
avoiding interference with sensitive IF bands.  
- 10-Pin, MSOP  
Applications  
The MCP1256 and MCP1258 feature a power-good  
output that can be used to detect out-of-regulation  
conditions. The MCP1257 and MCP1259 feature a low-  
battery indication that issues a warning if the input  
voltage drops below a preset voltage threshold.  
Extremely low supply current and few external parts (4  
capacitors) make these devices ideal for small, battery-  
powered applications. A Shutdown mode is also  
provided for further power reduction.  
• Pagers  
• Portable Measurement Instruments  
• Home Automation Products  
• PICmicro® MCU Bias  
Typical Application  
MCP1256  
OUTPUT  
3.3V  
INPUT  
1.8V to 3.6V  
7
5
1
V
V
IN  
OUT  
C
C
OUT  
10 μF  
The devices incorporate thermal and short-circuit pro-  
tection. Two package offerings are provided: 10-pin  
MSOP and 10-lead 3 mm x 3 mm DFN. The devices  
are completely characterized over the junction temper-  
ature range of -40°C to +125°C.  
IN  
R
10  
1
10 μF  
SHDN  
PGOOD  
Power-Good  
Indication  
4
8
6
3
C +  
1
C +  
2
C
1 μF  
C
2
1 μF  
1
C -  
1
C -  
2
2
SLEEP  
GND  
ON / OFF  
9
Typical Application with Power-Good Indication  
© 2006 Microchip Technology Inc.  
DS21989A-page 1  
MCP1256/7/8/9  
Package Pinouts  
MCP1256  
MCP1257  
PGOOD  
SLEEP  
10 SHDN  
LBO  
1
2
3
4
5
10 SHDN  
1
2
3
4
5
9
8
7
6
GND  
SLEEP  
9
8
7
6
GND  
C -  
C -  
C -  
C -  
2
1
2
1
C +  
V
C +  
V
1
IN  
1
IN  
V
C +  
V
C +  
OUT  
2
OUT  
2
MCP1258  
MCP1259  
PGOOD  
BYPASS  
1
2
3
4
5
10 SHDN  
LBO  
1
2
3
4
5
10 SHDN  
9
8
7
6
GND  
BYPASS  
9
8
7
6
GND  
C -  
C -  
C -  
C -  
2
1
2
1
C +  
V
C +  
V
1
IN  
1
IN  
V
C +  
V
C +  
OUT  
2
OUT  
2
Functional Block Diagram  
C2-  
C2+  
C1-  
C1+  
VIN  
1.5x, 2x Mode  
Comparator  
840 kΩ  
Gate Drives  
S1  
S5  
S6  
+
-
S5,S7  
S6  
D Q  
S4  
S1,S3,CE  
650 kHz  
Osc.  
S4  
VOUT  
840 kΩ  
CE  
S2  
S3  
S7  
Bandgap  
Ref.  
+
-
Feedback  
Amplifier  
480 kΩ  
720kΩ  
GND  
VOUT  
TABLE 1:  
Mode  
SWITCH LOGIC  
Phase  
Oscillator  
Q
S1  
S2(CE)  
S3  
S4  
S5  
S6  
S7  
1.5x  
1.5x  
Charging  
Transfer  
Charging  
Transfer  
H
L
L
L
H
L
H
L
H
L
L
H
L
H
L
L
H
H
H
L
H
L
L
L
L
2x  
H
L
H
H
H
L
H
L
H
L
L
2x  
H
H
L
BYPASS  
H
L
H
H
Legend: L is Logic Low, H is Logic High  
DS21989A-page 2  
© 2006 Microchip Technology Inc.  
MCP1256/7/8/9  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
Power Supply Voltage, V ...............................................3.8V  
IN  
Voltage on Any Pin w.r.t. GND ................. -0.3V to (V +0.3V)  
IN  
Output Short Circuit Duration ................................continuous  
Storage Temperature Range.........................-65°C to +150°C  
Ambient Temperature with Power Applied ....-55°C to +125°C  
Maximum Junction Temperature.................................+150°C  
ESD protection on all pins  
Human Body Model (1.5 kΩ in Series with 100 pF).......2 kV  
Machine Model (200 pF, No Series Resistance).............200V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = 1.8V to 3.6V, SHDN = V , C = C  
= 10 μF,  
IN  
IN  
IN  
OUT  
C = C = 1 μF, I  
= 10 mA, T = -40°C to +125°C. Typical values are at T = +25°C.  
J J  
1
2
OUT  
Unit  
s
Parameters  
Sym  
Min  
Typ  
Max  
Conditions  
ALL DEVICES  
Supply Voltage  
V
1.8  
3.6  
+3.0  
V
V
IN  
Output Voltage  
V
V
3.3  
OUT  
OUT  
Output Voltage Accuracy  
Output Current  
-3.0  
30  
70  
100  
±0.5  
%
I
= 10 mA to I  
OUT OUT(MAX)  
I
mA 1.8V < V < 2.0V  
IN  
OUT(MAX)  
mA 2.0V < V < 2.2V  
IN  
mA 2.2V < V < 3.6V  
IN  
Short Circuit Current  
Power Efficiency  
I
150  
84.5  
84.5  
76.4  
80.1  
64.0  
67.1  
67.5  
69.7  
76.0  
76.7  
65.0  
71.0  
71.6  
mA  
%
%
%
%
%
%
%
%
%
%
%
%
%
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= 0V, V = 1.8V to 3.6V  
OUT IN  
SC  
η
= 1.8V, I  
= 10 mA  
= 50 mA  
= 10 mA  
= 50 mA  
= 10 mA  
= 50 mA  
= 100 mA  
= 10 mA  
= 50 mA  
= 100 mA  
= 10 mA  
= 50 mA  
= 100 mA  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1.8V, I  
= 2.0V, I  
= 2.0V, I  
= 2.4V, I  
= 2.4V, I  
= 2.4V, I  
= 2.8V, I  
= 2.8V, I  
= 2.8V, I  
= 3.0V, I  
= 3.0V, I  
= 3.0V, I  
Shutdown Input - SHDN  
SHDN Input Voltage Low  
SHDN Input Voltage High  
V
1.4  
0.4  
V
V
IL(SHDN)  
IH(SHDN)  
LK(SHDN)  
V
SHDN Input Leakage  
Current  
I
0.001  
0.1  
μA  
SHDN Quiescent Current  
I
0.25  
2
μA  
V
= 0V, T = +25°C  
Q
SHDN J  
Thermal Shutdown  
Thermal Shutdown  
Threshold  
T
160  
15  
°C  
°C  
J
Thermal Shutdown  
Hysteresis  
T
J(HYS)  
© 2006 Microchip Technology Inc.  
DS21989A-page 3  
MCP1256/7/8/9  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = 1.8V to 3.6V, SHDN = V , C = C  
= 10 μF,  
IN  
IN  
IN  
OUT  
C = C = 1 μF, I  
= 10 mA, T = -40°C to +125°C. Typical values are at T = +25°C.  
1
2
OUT  
J
J
Unit  
s
Parameters  
Sym  
Min  
Typ  
Max  
Conditions  
MCP1256 and MCP1257 Devices  
SLEEP Mode Input - SLEEP  
SLEEP Input Voltage Low  
SLEEP Input Voltage High  
V
1.4  
0.4  
V
V
IL(SLEEP)  
IH(SLEEP)  
LK(SLEEP)  
V
SLEEP Input Leakage  
Current  
I
0.001  
0.1  
μA  
SLEEP Quiescent Current  
I
10  
20  
μA  
V
= 0V, I  
= 0 mA  
OUT  
Q
SLEEP  
MCP1256 and MCP1258 Devices  
Power-Good Output - PGOOD  
PGOOD Threshold  
PGOOD Hysteresis  
V
93  
110  
25  
%
Percent of V  
Falling  
OUT  
TH  
V
mV  
mV  
V
Rising  
HYS  
OUT  
PGOOD Output Low  
Voltage  
V
100  
I
= 0.5 mA, V = 1.8V  
OL  
SINK IN  
PGOOD Input Leakage  
Current  
I
0.02  
1
μA  
V
= V  
LK(PGOOD)  
PGOOD IN  
MCP1257 and MCP1259  
Low-Battery Output - LBO  
LBO Threshold  
V
1.95  
240  
25  
V
V
V
Falling  
TH  
IN  
LBO Hysteresis  
V
mV  
mV  
μA  
Rising  
HYS  
IN  
LBO Output Low Voltage  
LBO Input Leakage Current  
MCP1258 and MCP1259  
V
100  
1
I
= 0.5 mA, V = 1.8V  
OL  
SINK IN  
I
0.02  
V
= V  
LK(LBO)  
LBO  
IN  
BYPASS Mode Input - BYPASS  
BYPASS Input Voltage Low  
V
0.4  
V
V
IL(BYPASS)  
IH(BYPASS)  
BYPASS Input Voltage  
High  
V
1.4  
BYPASS Input Leakage  
Current  
I
0.001  
0.25  
1.5  
0.1  
2
μA  
μA  
Ω
LK(BYPASS)  
BYPASS Quiescent  
Current  
I
V
= 0V, I  
= 0 mA,  
OUT  
Q
BYPASS  
T = +25°C  
J
BYPASS Input-to-Output  
Impedance  
R
V
= 2.4V  
BYPASS  
IN  
DS21989A-page 4  
© 2006 Microchip Technology Inc.  
MCP1256/7/8/9  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = 1.8V to 3.6V, SHDN = V , C = C = 10 μF,  
IN  
IN  
IN  
OUT  
C = C = 1 μF, I  
= 10 mA, T = -40°C to +125°C. Typical values are at T = +25°C.  
1
2
OUT  
J
J
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
ALL DEVICES  
Internal Oscillator Frequency  
Output Voltage Ripple,  
Normal Operation  
F
650  
5
kHz  
mVp-p  
mVp-p  
mVp-p  
mVp-p  
μs  
OSC  
V
C
C
C
C
= 10 μF, I  
= 10 μF, I  
= 10 mA  
RIP  
OUT  
OUT  
OUT  
OUT  
OUT  
20  
12  
55  
175  
= 100 mA  
= 10 mA  
OUT  
= 2.2 μF, I  
= 2.2 μF, I  
OUT  
OUT  
= 100 mA  
V
Wake-up Time From  
T
V
= 3.0V, I  
= 10 mA,  
,
OUT  
WKUP  
IN  
OUT  
Shutdown  
SHDN = V  
IH(MIN)  
V
from 0 to 90% Nominal Regulated  
OUT  
Output Voltage  
MCP1256 and MCP1257  
Output Voltage Ripple,  
SLEEP Mode  
V
40  
60  
40  
60  
mVp-p  
mVp-p  
mVp-p  
mVp-p  
C
C
C
C
= 10 μF, I  
= 10 μF, I  
= 0.1 mA  
= 4 mA  
RIP  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 2.2 μF, I  
= 2.2 μF, I  
= 0.1 mA  
= 4 mA  
OUT  
OUT  
MCP1258 and MCP1259  
V
Wake-up Time From  
T
150  
μs  
V
= 3.0V, I  
= 10 mA,  
,
OUT  
WKUP  
IN  
OUT  
BYPASS  
SHDN = V  
IH(MIN)  
V
from 0 to 90% Nominal Regulated  
OUT  
Output Voltage  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = 1.8V to 3.6V, SHDN = V , C = C = 10 μF,  
OUT  
IN  
IN  
IN  
C = C = 1 μF, I  
= 10 mA, T = -40°C to +125°C. Typical values are at T = +25°C.  
1
2
OUT  
J
J
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
T
T
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
J
J
T
A
Thermal Package Resistances  
Thermal Resistance, 10-Lead, MSOP  
θ
θ
200  
57  
°C/W  
°C/W  
4-Layer JC51-7 Standard Board,  
Natural Convection  
JA  
JA  
Thermal Resistance, 10-Lead, DFN  
3 mm x 3 mm  
4-Layer JC51-7 Standard Board,  
Natural Convection  
© 2006 Microchip Technology Inc.  
DS21989A-page 5  
MCP1256/7/8/9  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
NOTE: Unless otherwise indicated, CIN = COUT = 10 μF, C1 = C2 = 1 μF, IOUT = 10 mA, and TA= +25°C.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 1.8V  
VIN = 2.1V  
VIN = 2.4V  
VIN = 2.7V  
IOUT = 25 mA  
Mode Transition  
10  
30  
50  
70  
90  
110  
130  
1.8  
2.1  
2.1  
2.1  
2.4  
2.7  
3.0  
3.3  
Output Current (mA)  
Input Voltage (V)  
FIGURE 2-1:  
Current (IOUT).  
Efficiency (η) vs. Output  
FIGURE 2-4:  
Voltage (VIN).  
Efficiency (η) vs. Supply  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 2.7V  
VIN = 3.0V  
VIN = 3.3V  
IOUT = 50 mA  
Mode Transition  
10  
30  
50  
70  
90  
110  
130  
1.8  
2.4  
2.7  
3.0  
3.3  
Output Current (mA)  
Input Voltage (V)  
FIGURE 2-2:  
Current (IOUT).  
Efficiency (η) vs. Output  
FIGURE 2-5:  
Voltage (VIN).  
Efficiency (η) vs. Supply  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 100 mA  
IOUT = 10 mA  
Mode Transition  
Mode Transition  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
1.8  
2.4  
2.7  
3.0  
3.3  
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-3:  
Efficiency (η) vs. Supply  
FIGURE 2-6:  
Efficiency (η) vs. Supply  
Voltage (VIN).  
Voltage (VIN).  
DS21989A-page 6  
© 2006 Microchip Technology Inc.  
MCP1256/7/8/9  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
NOTE: Unless otherwise indicated, CIN = COUT = 10 μF, C1 = C2 = 1 μF, IOUT = 10 mA, and TA= +25°C.  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
VIN = 3.6V  
VIN = 2.1V  
VIN = 2.4V  
VIN = 1.8V  
0
10 20 30 40 50 60 70 80 90 100  
Output Current (mA)  
10  
30  
50  
70  
90  
110  
130  
Output Current (mA)  
FIGURE 2-7:  
Output Voltage (VOUT) vs.  
FIGURE 2-10:  
Quiescent Supply Current  
Output Current (IOUT).  
(IQ) vs. Output Current (IOUT) - Normal Mode.  
3.5  
140  
VIN = 2.4V  
120  
100  
80  
3.4  
IOUT = 10 mA  
3.3  
3.2  
VIN = 3.0V  
IOUT = 50 mA  
60  
3.1  
40  
20  
0
IOUT = 100 mA  
3.0  
2.9  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Input Voltage (V)  
Output Current (mA)  
FIGURE 2-8:  
Output Voltage (VOUT) vs.  
FIGURE 2-11:  
Quiescent Supply Current  
Input Voltage (VIN).  
(IQ) vs. Output Current (IOUT) - SLEEP Mode.  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
0.8  
VIN = 2.4V  
0.7  
0.6  
0.5  
VIN = 2.4V  
VIN = 3.0V  
0.4  
0.3  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10 12 14 16 18 20  
Output Current (mA)  
Output Current (mA)  
FIGURE 2-9:  
Quiescent Supply Current  
FIGURE 2-12:  
Quiescent Supply Current  
(IQ) vs. Output Current (IOUT) - Normal Mode.  
(IQ) vs. Output Current (IOUT) - SLEEP Mode.  
© 2006 Microchip Technology Inc.  
DS21989A-page 7  
MCP1256/7/8/9  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
NOTE: Unless otherwise indicated, CIN = COUT = 10 μF, C1 = C2 = 1 μF, IOUT = 10 mA, and TA= +25°C.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
-0.02  
-0.03  
-0.04  
VIN = 2.4V  
IOUT = 100 mA  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
0
1
2
3
4
5
6
7
8
9
10  
Input Voltage (V)  
Time (μs)  
FIGURE 2-13:  
BYPASS Impedance  
FIGURE 2-16:  
Output Voltage Ripple vs.  
(RBYPASS) vs. Supply Voltage (VIN).  
Time - Normal 2x Mode.  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
-0.02  
-0.03  
-0.04  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
-0.02  
-0.03  
-0.04  
VIN = 2.4V  
OUT = 10 mA  
VIN = 3.0V  
IOUT = 10 mA  
I
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Time (μs)  
Time (μs)  
FIGURE 2-14:  
Output Voltage Ripple vs.  
FIGURE 2-17:  
Output Voltage Ripple vs.  
Time - Normal 2x Mode.  
Time - Normal 1.5x Mode.  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
-0.02  
-0.03  
-0.04  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
-0.02  
-0.03  
-0.04  
VIN = 2.4V  
OUT = 50 mA  
VIN = 3.0V  
IOUT = 50 mA  
I
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Time (μs)  
Time (μs)  
FIGURE 2-15:  
Output Voltage Ripple vs.  
FIGURE 2-18:  
Output Voltage Ripple vs.  
Time - Normal 2x Mode.  
Time - Normal 1.5x Mode.  
DS21989A-page 8  
© 2006 Microchip Technology Inc.  
MCP1256/7/8/9  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
NOTE: Unless otherwise indicated, CIN = COUT = 10 μF, C1 = C2 = 1 μF, IOUT = 10 mA, and TA= +25°C.  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
-0.02  
-0.03  
-0.04  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
VIN = 3.0V  
IOUT = 1 mA  
VIN = 3.0V  
IOUT = 100 mA  
0
1
2
3
4
5
6
7
8
9
10  
Time (μs)  
Time (μs)  
FIGURE 2-19:  
Output Voltage Ripple vs.  
FIGURE 2-22:  
Output Voltage Ripple vs.  
Time - Normal 1.5x Mode.  
Time - SLEEP Mode.  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
VIN = 3.0V  
OUT = 10 mA  
VIN = 2.4V  
OUT = 1 mA  
I
I
Time (μs)  
Time (μs)  
FIGURE 2-20:  
Output Voltage Ripple vs.  
FIGURE 2-23:  
Output Voltage Ripple vs.  
Time - SLEEP Mode.  
Time - SLEEP Mode.  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
8
7
6
5
4
3
2
1
0
0.20  
0.10  
0.00  
VIN = 2.4V  
OUT = 10 mA  
I
-0.10  
VIN = 2.4V  
IOUT = 10 mA -0.20  
-0.30  
-0.40  
-0.50  
-0.60  
Time (μs)  
Time (μs)  
FIGURE 2-21:  
Output Voltage Ripple vs.  
FIGURE 2-24:  
Output Voltage Ripple vs.  
Time - SLEEP Mode.  
Time - Mode Transition: SLEEP Mode-to-Normal  
2x Mode-to-SLEEP Mode.  
© 2006 Microchip Technology Inc.  
DS21989A-page 9  
MCP1256/7/8/9  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
NOTE: Unless otherwise indicated, CIN = COUT = 10 μF, C1 = C2 = 1 μF, IOUT = 10 mA, and TA= +25°C.  
8
7
6
5
4
3
2
1
0
0.20  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.20  
0.10  
VOUT  
0.10  
VOUT  
0.00  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
-0.60  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
-0.60  
VIN = 2.4V  
IOUT = 10 mA  
VIN  
IOUT  
Time (μs)  
Time (μs)  
FIGURE 2-25:  
Load Transient Response -  
FIGURE 2-27:  
Line Transient Response.  
Normal 2x Mode.  
8
0.20  
0.10  
0.00  
0.40  
0.20  
0.10  
0.00  
7
0.35  
VOUT  
VOUT  
6
5
4
0.30  
0.25  
0.20  
0.15  
0.10  
-0.10  
-0.10  
IOUT = 100 mA  
VIN = 3.0V  
-0.20  
-0.30  
-0.40  
-0.50  
-0.60  
-0.20  
-0.30  
-0.40  
-0.50  
-0.60  
VIN  
3
2
1
0
0.05  
0.00  
IOUT  
Time (μs)  
Time (μs)  
FIGURE 2-28:  
Line Transient Response.  
FIGURE 2-26:  
Load Transient Response -  
Normal 1.5x Mode.  
DS21989A-page 10  
© 2006 Microchip Technology Inc.  
MCP1256/7/8/9  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Pin No.  
PIN FUNCTION TABLE  
Symbol  
Function  
DFN  
MSOP  
1
1
PGOOD  
LBO  
Power-Good Indication Open-Drain Output Pin: MCP1256 and MCP1258  
Low-Battery Indication Open-Drain Output Pin: MCP1257 and MCP1259  
Active Low SLEEP Mode Input Pin: MCP1256 and MCP1257  
Active Low BYPASS Mode Input Pin: MCP1258 and MCP1259  
Flying Capacitor Negative Pin  
2
2
SLEEP  
BYPASS  
C2-  
3
4
3
4
C1+  
Flying Capacitor Positive Pin  
5
5
V
Regulated 3.3V Output Voltage  
OUT  
6
6
C2+  
Flying Capacitor Positive Pin  
7
7
V
Power Supply Input Voltage  
IN  
8
8
C1-  
GND  
SHDN  
Flying Capacitor Negative Pin  
9
9
0V Reference  
10  
10  
Active Low SHUTDOWN Mode Input Pin  
3.2.2  
ACTIVE LOW BYPASS MODE  
(BYPASS)  
3.1  
3.1.1  
Status Indication (PGOOD, LBO)  
POWER-GOOD OUTPUT PIN  
(PGOOD)  
MCP1258/9: A logic low signal applied to this pin  
places the device into a BYPASS mode of operation. In  
this mode, the input supply voltage is connected  
directly to the output.  
MCP1256/8: PGOOD is high impedance when the out-  
put voltage is in regulation. A logic low is asserted  
when the output falls 7% (typical) below the nominal  
value. The PGOOD output remains low until VOUT is  
within 3% (typical) of its nominal value. On start-up, this  
pin indicates when the output voltage reaches its final  
value. PGOOD is high impedance when SHDN is low  
or when BYPASS is low (MCP1258).  
3.3  
Flying Capacitor Negative (C2-)  
A 1 μF ceramic flying capacitor is recommended.  
3.4  
Flying Capacitor Positive (C1+)  
A 1 μF ceramic flying capacitor is recommended.  
3.1.2  
LOW-BATTERY OUTPUT PIN (LBO)  
3.5  
Regulated Output Voltage (V  
)
OUT  
MCP1257/9: LBO is high impedance when the input  
voltage is above the low-battery threshold voltage. A  
logic low is asserted when the input falls below the low-  
battery threshold voltage. The LBO output remains low  
until VIN is above the low-battery threshold voltage plus  
the low-battery hysteresis voltage. LBO is high  
impedance when SHDN is low or when BYPASS is low  
(MCP1259).  
Regulated 3.3V output. Bypass to GND with a  
minimum of 2.2 μF.  
3.6  
Flying Capacitor Positive (C2+)  
A 1 μF ceramic flying capacitor is recommended.  
3.7  
Power Supply Input Voltage (V )  
IN  
A supply voltage of 1.8V to 3.6V is recommended.  
Bypass to GND with a minimum of 1 μF.  
3.2  
Mode Selection (SLEEP, BYPASS)  
3.2.1  
ACTIVE LOW SLEEP MODE  
(SLEEP)  
3.8  
Flying Capacitor Negative (C1-)  
A 1 μF ceramic flying capacitor is recommended.  
MCP1256/7: A logic low signal applied to this pin  
places the device into a SLEEP mode of operation. In  
this mode, the device maintains regulation. SLEEP  
mode performs pulse skip operation reducing the  
current draw of the device at the expense of increased  
output voltage ripple.  
3.9  
0V Reference (GND)  
Connect to negative terminal of and input supply.  
3.10 Device Shut Down (SHDN)  
A logic low signal applied to this pin disables the  
device. A logic high signal applied to this pin allows  
normal operation.  
© 2006 Microchip Technology Inc.  
DS21989A-page 11  
MCP1256/7/8/9  
(2x mode), when the energy is transferred to the out-  
put. The transfer mode determines which switches are  
closed for the transfer.  
4.0  
DEVICE OVERVIEW  
The MCP1256/7/8/9 devices are positive regulated  
charge pumps that accept an input voltage from +1.8V  
to +3.6V and convert it to a regulated 3.3V output volt-  
age. The MCP1256/7/8/9 provide a low-cost, compact  
and simple solution for step-up DC/DC conversions,  
primarily in battery applications, that do not want to use  
switching regulator solutions because of EMI noise and  
inductor size.  
Both phases occur in one clock period of the internal  
oscillator. When the second phase (transfer) has been  
completed, the cycle repeats.  
4.2  
Power Efficiency  
The power efficiency, η, is determined by the mode of  
operation, 1.5x mode or 2x mode. Equation 4-1 and  
Equation 4-2 are used to approximate the power effi-  
ciency with any significant amount of output current. At  
light loads, the device quiescent current must be taken  
into consideration.  
The MCP1256/7/8/9 are designed to offer the highest  
possible efficiency under common operating condi-  
tions, i.e. VIN = 2.4V or 2.8V, VOUT = 3.3V,  
I
OUT = 100 mA. A fixed switching frequency, 650 kHz  
typically, allows for easy external filtering.  
The MCP1256/7 provide a unique SLEEP mode  
feature which reduces the current drawn from the input  
supply while maintaining a regulated bias on external  
peripherals. SLEEP mode can substantially increase  
battery run-time in portable applications.  
EQUATION 4-1:  
POUT  
V
OUT × IOUT  
VOUT  
η1.5x = ------------- = ---------------------------------------- = ----------------------  
PIN  
VIN × 1.5 × IOUT  
VIN × 1.5  
The MCP1258/9 provide a unique BYPASS mode  
feature which virtually eliminates the current drawn  
from the input supply by the device while maintaining  
an unregulated bias on external peripherals. BYPASS  
connects the input supply voltage to the output. All  
remaining functions of the device are shutdown.  
BYPASS mode can substantially increase battery run-  
time in portable applications.  
EQUATION 4-2:  
POUT  
VOUT × IOUT  
VOUT  
η2x = ------------- = ------------------------------------ = -----------------  
PIN  
VIN × 2 × IOUT  
VIN × 2  
4.3  
Shutdown Mode (SHDN)  
Driving SHDN low places the MCP1256/7/8/9 in a low-  
power Shutdown mode. This disables the charge-pump  
switches, oscillator and control logic, reducing the  
quiescent current to 0.25 μA (typical). The PGOOD  
output and LBO are in a high impedance state during  
shutdown.  
The devices supply up to 100 mA of output current for  
input voltages, VIN, greater than or equal to 2.2V. The  
devices are available in small 10-Pin MSOP or DFN  
packages with an operating junction temperature range  
of -40°C to +125°C.  
4.4  
SLEEP Mode (SLEEP)  
4.1  
Theory of Operation  
The MCP1256/7 provide a unique SLEEP mode fea-  
ture. SLEEP mode reduces the current drawn from the  
input supply while maintaining a regulated bias on  
external peripherals. SLEEP mode can substantially  
increase battery run-time in portable applications.  
The MCP1256/7/8/9 devices employ a switched capac-  
itor charge pump to boost an input supply, VIN, to a reg-  
ulated 3.3V output voltage. Refering to the Functional  
Block Diagram, the devices perform conversion and  
regulation in two phases: charge and transfer. When  
the devices are not in shutdown, SLEEP or BYPASS,  
the two phases are continuously cycled through.  
The regulation control is referred to as a bang-bang  
control due to the output being regulated around a fixed  
reference with some hysteresis. As a result, some  
amount of peak-to-peak ripple will be observed at the  
output independent of load current. The frequency of  
the output ripple, however, will be influenced heavily by  
the load current and output capacitance.  
Charge transfers charge from the input supply to the  
flying capacitors, C1 and C2, connected to pins C1+,  
C1-, C2+ and C2-, respectively. During this phase,  
switches S4 and S6 are closed. Switch S2 controls the  
amount of charge transferred to the flying capacitors.  
The amount of charge is determined by a sample and  
hold error amplifier with feedback from the output  
voltage at the beginning of the phase.  
4.5  
BYPASS Mode (BYPASS)  
The MCP1258/9 provide a unique BYPASS mode fea-  
ture which virtually eliminates the current drawn from  
the input supply by the device, while maintaining an  
unregulated bias on external peripherals. BYPASS  
connects the input supply voltage to the output. All  
remaining functions of the device are shutdown.  
BYPASS mode can substantially increase battery run-  
time in portable applications.  
Once the first phase (charge) is complete, transfer is  
initiated. The second phase transfers the energy from  
the flying capacitors to the output. The MCP1256/7/8/9  
devices autonomously switch between 1.5x mode and  
2x mode. This determines whether the flying capacitors  
are placed in parallel (1.5x mode), or remain in series  
DS21989A-page 12  
© 2006 Microchip Technology Inc.  
MCP1256/7/8/9  
4.6  
Power-Good Output (PGOOD)  
4.9  
Thermal Shutdown  
For the MCP1256/8 devices, the PGOOD output is an  
open-drain output that sinks current when the regulator  
output voltage falls below 0.93VOUT (typical). If the reg-  
ulator output voltage falls below 0.93VOUT (typical) for  
less than 200 μs and then recovers, glitch immunity cir-  
cuits prevent the PGOOD signal from transitioning low.  
A 10 kΩ to 1 MΩ pull-up resistor from PGOOD to VOUT  
may be used to provide a logic output. If not used,  
connect PGOOD to GND or leave unconnected.  
The MCP1256/7/8/9 devices feature thermal shutdown  
with temperature hysteresis. When the die temperature  
exceeds 160°C, the device shuts down. When the die  
cools by 15°C, the MCP1256/7/8/9 automatically turns  
back on again. If high die temperature is caused by out-  
put overload and the load is not removed, the device  
will turn on and off resulting in a pulsed output.  
5.0  
5.1  
APPLICATIONS  
PGOOD is high impedance when the output voltage is  
in regulation. A logic low is asserted when the output  
falls 7% (typical) below the nominal value. The PGOOD  
output remains low until VOUT is within 3% (typical) of  
its nominal value. On start-up, this pin indicates when  
the output voltage reaches its final value. PGOOD is  
high impedance when SHDN is low or when BYPASS  
is low (MCP1258).  
Capacitor Selection  
The style and value of capacitors used with the  
MCP1256/7/8/9 family determine several important  
parameters, such as output voltage ripple and charge  
pump strength. To minimize noise and ripple, it is rec-  
ommended that low ESR (0.1Ω) capacitors be used for  
both CIN and COUT. These capacitors should be  
ceramic and should be 10 μF or higher for optimum  
performance.  
4.7  
Low-Battery Output (LBO)  
For the MCP1257/9 devices, the LBO output is an  
open-drain output that sinks current when the input  
voltage falls below a preset threshold. If the input volt-  
age falls below the preset threshold for less than  
200 μs and then recovers, glitch immunity circuits pre-  
vent the LBO signal from transitioning low. A 10 kΩ to  
1 MΩ pull-up resistor from LBO to VOUT may be used  
to provide a logic output. If not used, connect LBO to  
GND or leave unconnected.  
If the source impedance to VIN is very low, up to several  
megahertz, CIN may not be required. Alternatively, a  
somewhat smaller value of CIN may be substituted for  
the recommended 10 μF, but will not be as effective in  
preventing ripple on the VIN pin.  
The value of COUT controls the amount of output volt-  
age ripple present on VOUT. Increasing the size of  
COUT will reduce output ripple at the expense of a  
slower turn-on time from shutdown and a higher inrush  
current.  
LBO is high impedance when the input voltage is above  
the low-battery threshold voltage. A logic low is  
asserted when the input falls below the low-battery  
threshold voltage. The LBO output remains low until  
The flying capacitors (C1 and C2) control the strength  
of the charge pump and in order to achieve the maxi-  
mum rated output current (100 mA), it is necessary to  
have at least 1 μF of capacitance for the flying capaci-  
tor. A smaller flying capacitor delivers less charge per  
clock cycle to the output capacitor resulting in lower  
available output current.  
VIN is above the low-battery threshold voltage plus the  
low-battery hysteresis voltage. LBO is high impedance  
when SHDN is low or when BYPASS is low  
(MCP1259).  
4.8  
Soft-Start and Short-Circuit  
Protection  
5.2  
PCB Layout Issues  
The MCP1256/7/8/9 devices transfer charge at high  
switching frequencies producing fast, high peak, tran-  
sient currents. As a result, any stray inductance in the  
component layout will produce unwanted noise in the  
system. Proper board layout techniques are required to  
ensure optimum performance.  
The MCP1256/7/8/9 devices feature fold back short-  
circuit protection. This circuitry provides an internal  
soft-start function by limiting inrush current during  
startup and also limits the output current to 150 mA  
(typical), if the output is short-circuited to GND. The  
internal soft-start circuitry requires approximately  
175 μs, typical, from either initial power-up, release  
from Shutdown, or release from BYPASS (MCP1258/9)  
for the output voltage to be in regulation.  
© 2006 Microchip Technology Inc.  
DS21989A-page 13  
MCP1256/7/8/9  
6.0  
TYPICAL APPLICATION  
CIRCUITS  
The MCP1256/7/8/9 devices are inductorless, positive  
regulated, switched capacitor DC/DC converters.  
Typical application circuits are depicted in Figure 6-1.  
MCP1256  
INPUT  
1.8V to 3.6V  
OUTPUT  
3.3V  
7
5
1
V
V
IN  
OUT  
C
C
OUT  
IN  
R
C
1
2
10 μF  
10 μF  
10  
SHDN  
PGOOD  
Power-Good  
Indication  
4
8
6
3
C +  
C +  
1
2
C
1 μF  
1
1 μF  
C -  
C -  
1
2
2
SLEEP  
GND  
ON / OFF  
9
Typical Application with Power-Good Indication  
MCP1259  
INPUT  
1.8V to 3.6V  
OUTPUT  
3.3V  
7
5
1
V
V
OUT  
IN  
C
C
OUT  
IN  
10 μF  
R
10 μF  
1
10  
SHDN  
LBO  
Low-Battery  
Indication  
4
8
6
3
C +  
C +  
2
1
C
1 μF  
C
2
1
1 μF  
C -  
C -  
2
1
2
BYPASS  
GND  
ON / OFF  
9
Typical Application with Low-Battery Indication  
FIGURE 6-1:  
Typical Application Circuits.  
DS21989A-page 14  
© 2006 Microchip Technology Inc.  
MCP1256/7/8/9  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
10-Lead DFN  
Example:  
1
2
3
4
5
10  
9
1
2
3
4
5
10  
9
XXXX  
XYWW  
NNN  
1256  
E607  
256  
8
8
7
7
6
6
Example:  
10-Lead MSOP  
1259E  
607256  
XXXXX  
YWWNNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2006 Microchip Technology Inc.  
DS21989A-page 15  
MCP1256/7/8/9  
10-Lead Plastic Dual-Flat No-Lead Package (MF) 3x3x0.9 mm Body (DFN) – Saw Singulated  
b
p
E
n
L
K
D
D2  
EXPOSED  
METAL  
PAD  
2
1
PIN 1  
ID INDEX  
AREA  
E2  
(NOTE 2)  
TOP VIEW  
BOTTOM VIEW  
(NOTE 1)  
A
EXPOSED  
TIE BAR  
(NOTE 3)  
A3  
A1  
Units  
INCHES  
NOM  
MILLIMETERS  
NOM  
10  
*
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
e
Number of Pins  
Pitch  
10  
.020 BSC  
0.50 BSC  
0.90  
Overall Height  
Standoff  
A
.031  
.035  
.001  
.008 REF.  
.039  
0.80  
1.00  
0.05  
A1  
A3  
E
.000  
.002  
0.00  
0.02  
Lead Thickness  
Overall Length  
0.20 REF.  
3.00  
.112  
.082  
.112  
.051  
.008  
.012  
.008  
.118  
.094  
.118  
.065  
.010  
.016  
.124  
.096  
.124  
.067  
.015  
.020  
2.85  
2.08  
2.85  
1.30  
0.18  
0.30  
0.20  
3.15  
2.45  
3.15  
1.70  
0.30  
0.50  
(
Note 3  
)
Exposed Pad Length  
Overall Width  
E2  
D
2.39  
3.00  
(
Note 3  
)
Exposed Pad Width  
Lead Width  
D2  
b
1.65  
0.25  
Contact Length §  
Contact-to-Exposed Pad §  
L
0.40  
K
*
§
Controlling Parameter  
Significant Characteristic  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Exposed pad varies according to die attach paddle size.  
3. Package may have one or more exposed tie bars at ends.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
See ASME Y14.5M  
JEDEC equivalent: Not Registered  
Drawing No. C04-063  
Revised 09-12-05  
DS21989A-page 16  
© 2006 Microchip Technology Inc.  
MCP1256/7/8/9  
10-Lead Plastic Micro Small Outline Package (UN) (MSOP)  
E
E1  
p
D
2
n
1
B
c
α
φ
A2  
A
L
A1  
β
(F)  
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
10  
10  
.020 BSC  
.033  
.193 BSC  
0.50 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
A
A2  
A1  
E
.043  
0.75  
0.00  
1.10  
.030  
.000  
.037  
.006  
0.85  
0.95  
0.15  
Overall Width  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
.118 BSC  
.118 BSC  
3.00 BSC  
3.00 BSC  
L
.016  
.024  
.037 REF  
.031  
0.40  
0.60  
0.95 REF  
0.80  
Footprint  
F
φ
Foot Angle  
0°  
.003  
.006  
5°  
8°  
.009  
.012  
15°  
0°  
0.08  
0.15  
5°  
8°  
0.23  
0.30  
15°  
c
Lead Thickness  
Lead Width  
B
α
.009  
0.23  
Mold Draft Angle Top  
Mold Draft Angle Bott om  
β
5°  
15°  
5°  
15°  
*
Controlling Parameter  
Notes:  
Dimensions D and E1 donot include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254 mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimnesion, usually witho ut tolerance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MO-187 BA  
Drawing No. C04-021  
Revised 09-16-05  
© 2006 Microchip Technology Inc.  
DS21989A-page 17  
MCP1256/7/8/9  
NOTES:  
DS21989A-page 18  
© 2006 Microchip Technology Inc.  
MCP1256/7/8/9  
APPENDIX A: REVISION HISTORY  
Revision A (March 2006)  
• Original Release of this Document.  
© 2006 Microchip Technology Inc.  
DS21989A-page 19  
MCP1256/7/8/9  
NOTES:  
DS21989A-page 20  
© 2006 Microchip Technology Inc.  
MCP1256/7/8/9  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a)  
b)  
MCP1256-EMF:  
E-Temp, DFN package  
MCP1256T-EMF: Tape and Reel, E-Temp,  
DFN package  
Temperature  
Range  
Package  
c)  
d)  
MCP1256-EUN:  
MCP1256T-EUN: Tape and Reel, E-Temp,  
MSOP package  
E-Temp, MSOP package  
Device  
MCP1256:  
Positive Regulated Charge Pump with SLEEP  
Mode and Power-Good Indication  
Positive Regulated Charge Pump with SLEEP  
Mode and Power-Good Indication,  
Tape and Reel  
Positive Regulated Charge Pump with SLEEP  
Mode and Low-Battery Indication  
Positive Regulated Charge Pump with SLEEP  
Mode and Low-Battery Indication,  
Tape and Reel  
MCP1256T:  
a)  
b)  
MCP1257-EMF:  
MCP1257T-EMF: Tape and Reel, E-Temp,  
DFN package  
MCP1257-EUN:  
MCP1257T-EUN: Tape and Reel, E-Temp,  
MSOP package  
E-Temp, DFN package  
MCP1257:  
c)  
d)  
E-Temp, MSOP package  
MCP1257T:  
MCP1258:  
Positive Regulated Charge Pump with  
BYPASS Mode and Power-Good Indication  
Positive Regulated Charge Pump with  
BYPASS Mode and Power-Good Indication,  
Tape and Reel  
a)  
b)  
MCP1258-EMF:  
MCP1258T-EMF: Tape and Reel, E-Temp,  
DFN package  
E-Temp, DFN package  
MCP1258T:  
c)  
d)  
MCP1258-EUN:  
MCP1258T-EUN: Tape and Reel, E-Temp,  
MSOP package  
E-Temp, MSOP package  
MCP1259:  
Positive Regulated Charge Pump with  
BYPASS Mode and Low-Battery Indication  
Positive Regulated Charge Pump with  
BYPASS Mode and Low -Battery Indication,  
Tape and Reel  
MCP1259T:  
a)  
b)  
MCP1259-EMF:  
MCP1259T-EMF: Tape and Reel, E-Temp,  
DFN package  
MCP1259-EUN:  
MCP1259T-EUN: Tape and Reel, E-Temp,  
MSOP package  
E-Temp, DFN package  
Temperature Range  
Package  
E
= -40°C to +125°C  
c)  
d)  
E-Temp, MSOP package  
MF  
UN  
=
=
Dual Flat, No Lead (3x3 mm body), 10-Lead  
Plastic Micro Small Outline (MSOP), 10-Lead  
© 2006 Microchip Technology Inc.  
DS21989A-page 21  
MCP1256/7/8/9  
NOTES:  
DS21989A-page 22  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip devices in life support and/or safety  
applications is entirely at the buyer’s risk, and the buyer agrees  
to defend, indemnify and hold harmless Microchip from any and  
all damages, claims, suits, or expenses resulting from such  
use. No licenses are conveyed, implicitly or otherwise, under  
any Microchip intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Linear Active Thermistor,  
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,  
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,  
PowerMate, PowerTool, Real ICE, rfLAB, rfPICDEM, Select  
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,  
WiperLock and Zena are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS21989A-page 23  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenzhen  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
02/16/06  
DS21989A-page 24  
© 2006 Microchip Technology Inc.  

相关型号:

MCP1257T-EMF

Regulated 3.3V, Low-Ripple Charge Pump with Low- Operating Current SLEEP Mode or BYPASS Mode
MICROCHIP

MCP1257T-EUN

Regulated 3.3V, Low-Ripple Charge Pump with Low- Operating Current SLEEP Mode or BYPASS Mode
MICROCHIP

MCP1258

Regulated 3.3V, Low-Ripple Charge Pump with Low- Operating Current SLEEP Mode or BYPASS Mode
MICROCHIP

MCP1258-EMF

Regulated 3.3V, Low-Ripple Charge Pump with Low- Operating Current SLEEP Mode or BYPASS Mode
MICROCHIP

MCP1258-EUN

Regulated 3.3V, Low-Ripple Charge Pump with Low- Operating Current SLEEP Mode or BYPASS Mode
MICROCHIP

MCP1258T-EMF

Regulated 3.3V, Low-Ripple Charge Pump with Low- Operating Current SLEEP Mode or BYPASS Mode
MICROCHIP

MCP1258T-EUN

Regulated 3.3V, Low-Ripple Charge Pump with Low- Operating Current SLEEP Mode or BYPASS Mode
MICROCHIP

MCP1259

Regulated 3.3V, Low-Ripple Charge Pump with Low- Operating Current SLEEP Mode or BYPASS Mode
MICROCHIP

MCP1259-EMF

Regulated 3.3V, Low-Ripple Charge Pump with Low- Operating Current SLEEP Mode or BYPASS Mode
MICROCHIP

MCP1259-EUN

Regulated 3.3V, Low-Ripple Charge Pump with Low- Operating Current SLEEP Mode or BYPASS Mode
MICROCHIP

MCP1259T-EMF

Regulated 3.3V, Low-Ripple Charge Pump with Low- Operating Current SLEEP Mode or BYPASS Mode
MICROCHIP

MCP1259T-EUN

Regulated 3.3V, Low-Ripple Charge Pump with Low- Operating Current SLEEP Mode or BYPASS Mode
MICROCHIP