KSZ8041NL-AM [MICROCHIP]

IC TXRX PHY 10/100 AUTO 32-MLF;
KSZ8041NL-AM
型号: KSZ8041NL-AM
厂家: MICROCHIP    MICROCHIP
描述:

IC TXRX PHY 10/100 AUTO 32-MLF

局域网(LAN)标准 以太网:16GBASE-T 电信 电信集成电路
文件: 总58页 (文件大小:1576K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KSZ8041NL/RNL  
10BASE-T/100BASE-TX  
Physical Layer Transceiver  
Highlights  
Key Benefits  
• Single-Chip Ethernet Physical Layer Transceiver  
(PHY)  
• Single-Chip 10BASE-T/100BASE-TX Physical  
Layer Solution  
• HP Auto-MDIX Support  
• Fully Compliant To IEEE 802.3u Standard  
• Low Power CMOS Design, Power Consumption  
of <180 mW  
Target Applications  
• HP Auto MDI/MDI-X For Reliable Detection and  
Correction for Straight-Through and Crossover  
Cables with Disable and Enable Option  
• Printer  
• LOM  
• Game Console  
• IPTV  
• Robust Operation Over Standard Cables  
• Power Down and Power Saving Modes  
• MII Interface Support (KSZ8041NL Only)  
• IP Phone  
• IP Set-Top Box  
• RMII Interface Support with External 50-MHz  
System Clock (KSZ8041NL Only)  
• RMII Interface Support with 25-MHz Crystal/Clock  
Input and 50-MHz Reference Clock Output to  
MAC (KSZ8041RNL Only)  
• MIIM (MDC/MDIO) Management Bus to 6.25 MHz  
for Rapid PHY Register Configuration  
• Interrupt Pin Option  
• Programmable LED Outputs for Link, Activity  
and Speed  
• ESD Rating (6 kV)  
• Single Power Supply (3.3V)  
• Built-in 1.8V Regulator for Core  
• Available In 32-pin 5 mm × 5 mm QFN Package  
DS00002245B-page 1  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com. We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for cur-  
rent devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the  
revision of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS00002245B-page 2  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
Table of Contents  
1.0 General Description ........................................................................................................................................................................ 4  
2.0 Pin Description and Configuration .................................................................................................................................................. 6  
3.0 Functional Description .................................................................................................................................................................. 17  
4.0 Registers ....................................................................................................................................................................................... 29  
5.0 Operational Characteristics ........................................................................................................................................................... 38  
6.0 Electrical Characteristics ............................................................................................................................................................... 39  
7.0 Timing Diagrams ........................................................................................................................................................................... 40  
8.0 Selection of Isolation Transformer ................................................................................................................................................ 50  
9.0 Selection of Reference Crystal ..................................................................................................................................................... 51  
10.0 Package Outline & Recommended Land Pattern ....................................................................................................................... 52  
Appendix A: Data Sheet Revision History ........................................................................................................................................... 53  
The Microchip Web Site ...................................................................................................................................................................... 54  
Customer Change Notification Service ............................................................................................................................................... 54  
Customer Support ............................................................................................................................................................................... 54  
Product Identification System ............................................................................................................................................................. 55  
2017 Microchip Technology Inc.  
DS00002245B-page 3  
KSZ8041NL/RNL  
1.0  
GENERAL DESCRIPTION  
The KSZ8041NL is a single supply 10BASE-T/100BASE-TX physical layer transceiver, which provides  
MII/RMII interfaces to transmit and receive data. A unique mixed-signal design extends signaling distance  
while reducing power consumption.  
HP Auto MDI/MDI-X provides the most robust solution for eliminating the need to differentiate between  
crossover and straight-through cables.  
The KSZ8041NL represents a new level of features and performance and is an ideal choice of physical layer  
transceiver for 10BASE-T/100BASE-TX applications.  
The KSZ8041RNL is an enhanced Reduced Media Independent Interface (RMII) version of the  
KSZ8041NL that does not require a 50-MHz system clock. It uses a 25-MHz crystal for its input reference  
clock and outputs a 50-MHz RMII reference clock to the media access control (MAC).  
The KSZ8041NL and KSZ8041RNL are available in 32-pin, lead-free QFN packages (see Product Identifi-  
cation System).  
FIGURE 1-1:  
KSZ8041NL FUNCTIONAL DIAGRAM  
4B/5B Encoder  
Scrambler  
Parallel/Serial  
NRZ/NRZI  
MLT3 Encoder  
MDC  
MDIO  
10/100  
Pulse  
Shaper  
TX+  
Transmitter  
TXC  
TX-  
TXEN  
TXD3  
TXD2  
TXD1  
TXD0  
Parallel/Serial  
Manchester Encoder  
REXT  
MII/RMII  
Registers  
Adaptive EQ  
Base Line  
Wander Correction  
MLT3 Decoder  
NRZI/NRZ  
RXC  
4B/5B Decoder  
Descrambler  
Serial/Parallel  
RX+  
RX-  
and  
RXDV  
RXD3  
RXD2  
Clock  
Recovery  
Controller  
Interface  
RXD1  
RXD0  
RXER  
Auto  
Negotiation  
CRS  
COL  
10Base-T  
Receiver  
Manchester Decoder  
Serial/Parallel  
INTRP  
RST#  
Power Down  
Power Saving  
XI  
LED0  
LED1  
LED  
PLL  
XO  
Driver  
DS0002245B-page 4  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
FIGURE 1-2:  
KSZ8041RNL FUNCTIONAL DIAGRAM  
4B/5B Encoder  
Scrambler  
Parallel/Serial  
NRZ/NRZI  
MLT3 Encoder  
MDC  
MDIO  
10/100  
Pulse  
Shaper  
TX+  
TX-  
Transmitter  
TX_EN  
TXD1  
TXD0  
Parallel/Serial  
Manchester Encoder  
REXT  
CRS_DV  
RXD1  
RXD0  
RMII  
Adaptive EQ  
Base Line  
Wander Correction  
MLT3 Decoder  
NRZI/NRZ  
4B/5B Decoder  
Descrambler  
Serial/Parallel  
RX+  
RX-  
Clock  
Recovery  
RX_ER  
REF_CLK  
Auto  
Negotiation  
10Base-T  
Receiver  
Manchester Decoder  
Serial/Parallel  
INTRP  
RST#  
Power Down  
Power Saving  
XI  
LED0  
LED1  
LED  
PLL  
XO  
Driver  
2017 Microchip Technology Inc.  
DS0002245B-page 5  
KSZ8041NL/RNL  
2.0  
2.1  
PIN DESCRIPTION AND CONFIGURATION  
KSZ8041NL Pin Description and Configuration  
FIGURE 2-1:  
KSZ8041NL 32-QFN PIN ASSIGNMENT (TOP VIEW)  
32 31 30 29 28 27 26 25  
1
2
24  
23  
GND  
VDDPLL_1.8  
VDDA_3.3  
RX-  
TXD0/TXD[0]  
TXEN/TX_EN  
3
4
5
22 TXC  
21  
INTRP  
RXER/RX_ER/ISO  
RXC  
RXDV/CRSDV/CONFIG2  
VDDIO_3.3  
Paddle Ground  
on bottom of chip  
20  
RX+  
TX-  
TX+  
XO  
6
7
8
19  
18  
17  
9
10 11 12 13 14 15 16  
TABLE 2-1:  
Pin Number  
KSZ8041NL PIN DESCRIPTION  
Buffer Type  
Symbol  
Description  
(Note 2-1)  
1
2
GND  
Gnd  
P
Ground  
1.8V Analog VDD  
Decouple with 1.0-µF and 0.1-µF capacitors to ground.  
VDDPLL_1.8  
3
4
5
6
VDDA_3.3  
RX-  
P
3.3V Analog VDD  
I/O  
I/O  
I/O  
Physical receive or transmit signal (- differential)  
Physical receive or transmit signal (+ differential)  
Physical transmit or receive signal (- differential)  
RX+  
TX-  
DS00002245B-page 6  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
TABLE 2-1:  
Pin Number  
KSZ8041NL PIN DESCRIPTION (CONTINUED)  
Buffer Type  
Symbol  
Description  
(Note 2-1)  
7
8
TX+  
XO  
I/O  
Physical transmit or receive signal (+ differential)  
Crystal Feedback.  
This pin is used only in MII mode when a 25-MHz crystal is used.  
This pin is a no connect if an oscillator or an external clock source is  
used, or if RMII mode is selected.  
O
Crystal/Oscillator/External Clock Input:  
MII mode: 25 MHz ±50 ppm (crystal, oscillator, or external clock)  
RMII mode: 50 MHz ±50 ppm (oscillator or external clock only)  
XI /  
REFCLK  
9
I
Set physical transmit output current.  
Connect a 6.49-Kresistor in parallel with a 100-pF capacitor to  
ground on this pin.  
10  
REXT  
I/O  
Management Interface (MII) Data I/O  
This pin requires an external 4.7-Kpull-up resistor.  
11  
12  
MDIO  
MDC  
I/O  
I
Management Interface (MII) Clock Input  
This pin is synchronous to the MDIO data interface.  
MII mode: Receive Data Output[3] (Note 2-2)  
Config mode: The pull-up/pull-down value is latched as PHY-  
ADDR[0] during power-up or reset. See “Strap-In option –  
KSZ8041NL” for details.  
RXD3 /  
PHYAD0  
13  
14  
Ipu/O  
Ipd/O  
MII mode: Receive Data Output[2] (Note 2-2)  
Config mode: The pull-up/pull-down value is latched as PHY-  
ADDR[1] during power-up or reset. See “Strap-In option –  
KSZ8041NL” for details.  
RXD2 /  
PHYAD1  
MII mode: Receive Data Output[1] (Note 2-2)  
RMII mode: Receive Data Output[1] (Note 2-3)  
Config mode: The pull-up/pull-down value is latched as PHY-  
ADDR[2] during power-up or reset. See “Strap-In option –  
KSZ8041NL” for details.  
RXD1 /  
RXD[1] /  
PHYAD2  
15  
Ipd/O  
MII mode: Receive Data Output[0] (Note 2-2).  
RMII mode: Receive Data Output[0] (Note 2-3).  
Config mode: Latched as DUPLEX (register 0h, bit 8) during power-  
up or reset. See “Strap-In option – KSZ8041NL” for details.  
RXD0 /  
RXD[0] /  
DUPLEX  
16  
17  
Ipu/O  
P
3.3V Digital VDD  
VDDIO_3.3  
MII mode: Receive Data Valid Output  
RXDV /  
CRSDV /  
CONFIG2  
RMII mode: Carrier Sense/Receive Data Valid Output  
Config mode: The pull-up/pull-down value is latched as CONFIG2  
during power-up or reset. See “Strap-In option – KSZ8041NL”  
18  
19  
20  
Ipd/O  
O
for details.  
MII mode: Receive Clock Output  
RXC  
MII mode: Receive Error Output  
RMII mode: Receive Error Output  
Config mode: The pull-up/pull-down value is latched as ISOLATE  
during power-up or reset. See “Strap-In option – KSZ8041NL” for  
details.  
RXER /  
RX_ER /  
ISO  
Ipd/O  
2017 Microchip Technology Inc.  
DS00002245B-page 7  
KSZ8041NL/RNL  
TABLE 2-1:  
Pin Number  
KSZ8041NL PIN DESCRIPTION (CONTINUED)  
Buffer Type  
(Note 2-1)  
Symbol  
Description  
Interrupt Output: Programmable Interrupt Output  
Register 1Bh is the Interrupt Control/Status Register for program-  
ming the interrupt conditions and reading the interrupt status. Regis-  
ter 1Fh bit 9 sets the interrupt output to active low (default) or active  
high.  
21  
INTRP  
TXC  
Opu  
MII mode: Transmit Clock Output  
22  
23  
O
I
MII mode: Transmit Enable Input  
RMII mode: Transmit Enable Input  
TXEN /  
TX_EN  
MII mode: Transmit Data Input[0] (Note 2-4)  
RMII mode: Transmit Data Input[0] (Note 2-5)  
TXD0 /  
TXD[0]  
24  
25  
I
I
MII mode: Transmit Data Input[1] (Note 2-4)  
RMII mode: Transmit Data Input[1] (Note 2-5)  
TXD1 /  
TXD[1]  
MII mode: Transmit Data Input[2] (Note 2-4)  
MII mode: Transmit Data Input[3] (Note 2-4)  
26  
27  
TXD2  
TXD3  
I
I
MII mode: Collision Detect Output  
Config mode: The pull-up/pull-down value is latched as CONFIG0  
during power-up or reset. See “Strap-In option – KSZ8041NL” for  
details.  
28  
29  
COL/CONFIG0  
CRS/CONFIG1  
Ipd/O  
Ipd/O  
MII mode: Collision Sense Output  
Config mode: The pull-up/pull-down value is latched as CONFIG1  
during power-up or reset. See “Strap-In option – KSZ8041NL” for  
details.  
DS00002245B-page 8  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
TABLE 2-1:  
Pin Number  
KSZ8041NL PIN DESCRIPTION (CONTINUED)  
Buffer Type  
Symbol  
Description  
(Note 2-1)  
LED Output: Programmable LED0 Output  
Config ode: Latched as Auto-Negotiation Enable (register 0h, bit 12)  
during power-up or reset. See Strap-In option – KSZ8041NL for  
details.  
The LED0 pin is programmable via register 1Eh bits [15:14] and is  
defined as follows:  
LED Mode = [00]  
Link/Activity  
No Link  
Link  
Pin State  
LED Definition  
OFF  
H
L
ON  
Activity  
Toggle  
Blinking  
30  
LED0 / NWAYEN  
Ipu/O  
LED Mode = [01]  
Link/Activity  
No Link  
Link  
Pin State  
LED Definition  
H
L
OFF  
ON  
LED Mode = [10]  
Reserved  
LED Mode = [11]  
Reserved  
2017 Microchip Technology Inc.  
DS00002245B-page 9  
KSZ8041NL/RNL  
TABLE 2-1:  
Pin Number  
KSZ8041NL PIN DESCRIPTION (CONTINUED)  
Buffer Type  
(Note 2-1)  
Symbol  
Description  
LED Output: Programmable LED1 Output  
Config mode: Latched as SPEED (register 0h, bit 13) during power-  
up or reset. See Strap-In option – KSZ8041NL for details.  
The LED1 pin is programmable via register 1Eh bits [15:14] and is  
defined as follows:  
LED Mode = [00]  
Speed  
10BT  
Pin State  
LED Definition  
H
L
OFF  
ON  
100BT  
31  
LED1 / SPEED  
Ipu/O  
LED Mode = [01]  
Activity  
No Activity  
Activity  
Pin State  
H
LED Definition  
OFF  
Toggle  
Blinking  
LED Mode = [10]  
Reserved  
LED Mode = [11]  
Reserved  
32  
RST#  
GND  
I
Chip Reset (active low)  
Ground  
PADDLE  
Gnd  
Note 2-1  
P = Power supply  
Gnd = Ground  
I = Input  
O = Output  
I/O = Bi-directional  
Ipd = Input with internal pull-down (40K ±30%)  
Ipu = Input with internal pull-up (40K ±30%)  
Opu = Output with internal pull-up (40K ±30%)  
Ipu/O = Input with internal pull-up (40K ±30%) during power-up/reset; output pin otherwise.  
Ipd/O = Input with internal pull-down (40K ±30%) during power-up/reset; output pin otherwise.  
Note 2-2  
Note 2-3  
Note 2-4  
MII Rx mode: The RXD[3:0] bits are synchronous with RXCLK. When RXDV is asserted, RXD[3:0]  
presents a valid data to the MAC through the MII. RXD[3:0] is invalid when RXDV is deasserted.  
RMII Rx mode: The RXD[1:0] bits are synchronous with REF_CLK. For each clock period in which  
CRS_DV is asserted, two bits of recovered data are sent from the PHY.  
MII Tx mode: The TXD[3:0] bits are synchronous with TXCLK. When TXEN is asserted, TXD[3:0]  
presents a valid data from the MAC through the MII. TXD[3..0] has no effect when TXEN is  
deasserted.  
Note 2-5  
RMII Tx mode: The TXD[1:0] bits are synchronous with REF_CLK. For each clock period in which  
TX_EN is asserted, two bits of data are received by the PHY from the MAC.  
DS00002245B-page 10  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
2.2  
STRAP-IN OPTION – KSZ8041NL  
Pin strap-ins are latched during power-up or reset. In some systems, the MAC receive input pins may drive high during  
power-up or reset, and consequently cause the PHY strap-in pins on the MII/RMII signals to be latched high. In this  
case, it is recommended to add 1K pull-downs on these PHY strap-in pins to ensure the PHY does not strap in to ISO-  
LATE mode, or is not configured with an incorrect PHY Address.  
TABLE 2-2:  
STRAP-IN OPTION – KSZ8041NL  
Type  
Pin  
Number  
Pin Name  
Pin Function  
(Note 2-1)  
15  
14  
PHYAD2  
PHYAD1  
Ipd/O  
Ipd/O  
The PHY Address is latched at power-up or reset and is configurable to any  
value from 1 to 7.  
The default PHY Address is 00001.  
13  
PHYAD0  
Ipu/O  
PHY Address bits [4:3] are always set to ‘00’.  
18  
29  
CONFIG2  
CONFIG1  
Ipd/O  
Ipd/O  
The CONFIG[2:0] strap-in pins are latched at power-up or reset and are  
defined as follows:  
CONFIG[2:0]  
000  
Mode  
MII (default)  
001  
RMII  
010  
Reserved - not used  
Reserved - not used  
MII 100 Mbps Preamble Restore  
Reserved - not used  
Reserved - not used  
Reserved - not used  
011  
28  
CONFIG0  
Ipd/O  
100  
101  
110  
111  
ISOLATE mode:  
Pull-up = Enable  
Pull-down (default) = Disable  
During power-up or reset, this pin value is latched into register 0h bit 10.  
20  
31  
ISO  
Ipd/O  
Ipu/O  
SPEED mode:  
Pull-up (default) = 100 Mbps  
Pull-down = 10 Mbps  
During power-up or reset, this pin value is latched into register 0h bit 13 as  
the Speed Select, and also is latched into register 4h (Auto-Negotiation  
Advertisement) as the Speed capability support.  
SPEED  
DUPLEX mode:  
Pull-up (default) = Half Duplex  
16  
DUPLEX  
NWAYEN  
Ipu/O  
Ipu/O  
Pull-down = Full Duplex  
During power-up or reset, this pin value is latched into register 0h bit 8 as  
the Duplex mode.  
Nway Auto-Negotiation Enable:  
Pull-up (default) = Enable Auto-Negotiation  
Pull-down = Disable Auto-Negotiation  
30  
During power-up or reset, this pin value is latched into register 0h bit 12.  
Note 2-1  
Ipu/O = Input with internal pull-up (40K ±30%) during power-up/reset; output pin otherwise.  
Ipd/O = Input with internal pull-down (40K ±30%) during power-up/reset; output pin otherwise.  
2017 Microchip Technology Inc.  
DS00002245B-page 11  
 
 
KSZ8041NL/RNL  
2.3  
KSZ8041RNL Pin Description and Configuration  
FIGURE 2-2:  
KSZ8041RNL 32-QFN PIN ASSIGNMENT (TOP VIEW)  
32  
31  
30  
29  
28  
27  
26  
25  
GND  
1
2
3
4
5
6
7
8
24 TXD0  
23 TX_EN  
22 NC  
VDDPLL_1.8  
VDDA_3.3  
RX-  
Paddle  
21 INTRP  
Ground  
RX_ER /  
ISO  
RX+  
20  
(on bottom of chip)  
TX-  
19 REF_CLK  
CRS_DV /  
18  
TX+  
CONFIG2  
XO  
17 VDDIO_3.3  
9
10  
11  
12  
13  
14  
15  
16  
TABLE 2-3:  
Pin Number  
1
KSZ8041RNL PIN DESCRIPTION  
Pin Name  
Type (Note 2-1)  
Pin Function  
GND  
Gnd  
Ground  
1.8V Analog VDD  
Decouple with 1.0-µF and 0.1-µF capacitors to ground.  
2
VDDPLL_1.8  
P
3
4
5
6
7
VDDA_3.3  
RX-  
P
3.3V Analog VDD  
I/O  
I/O  
I/O  
I/O  
Physical receive or transmit signal (- differential)  
Physical receive or transmit signal (+ differential)  
Physical transmit or receive signal (- differential)  
Physical transmit or receive signal (+ differential)  
RX+  
TX-  
TX+  
Crystal Feedback for 25-MHz Crystal  
This pin is a no connect if an oscillator or an external clock  
source is used.  
8
9
XO  
XI  
O
I
Crystal/Oscillator/External Clock Input  
25 MHz ±50 ppm  
Set physical transmit output current.  
Connect a 6.49-kresistor in parallel with a 100-pF capaci-  
tor to ground on this pin. See KSZ8041RNL reference  
schematics.  
10  
REXT  
I/O  
DS00002245B-page 12  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
TABLE 2-3:  
Pin Number  
KSZ8041RNL PIN DESCRIPTION (CONTINUED)  
Pin Name  
Type (Note 2-1)  
Pin Function  
Management Interface (MII) Data I/O  
This pin requires an external 4.7-kpull-up resistor.  
11  
12  
MDIO  
I/O  
Management Interface (MII) Clock Input  
This pin is synchronous to the MDIO data interface.  
MDC  
I
The pull-up/pull-down value is latched as PHYADDR[0]  
during power-up or reset. See Strap-In option –  
KSZ8041RNL for details.  
13  
14  
PHYAD0  
Ipu/O  
The pull-up/pull-down value is latched as PHYADDR[1]  
during power-up or reset. See Strap-In option –  
KSZ8041RNL for details.  
PHYAD1  
Ipd/O  
Ipd/O  
RMII mode: RMII Receive Data Output[1] (Note 2-2)  
Config mode: The pull-up/pull-down value is latched as  
PHYADDR[2] during power-up or reset. See Strap-In option  
– KSZ8041RNL for details.  
RXD1 /  
PHYAD2  
15  
RMII mode: RMII Receive Data Output[0]] (Note 2-2)  
Config mode: Latched as DUPLEX (register 0h, bit 8) during  
power-up or reset. See Strap-In option – KSZ8041RNL for  
details.  
RXD0 /  
DUPLEX  
16  
17  
18  
Ipu/O  
P
VDDIO_3.3  
3.3V Digital VDD  
RMII mode: Carrier Sense/Receive Data Valid Output  
Config mode: The pull-up/pull-down value is latched as  
CONFIG2 during power-up or reset. See Strap-In option –  
KSZ8041RNL for details.  
CRSDV /  
CONFIG2  
Ipd/O  
50 MHz Clock Output  
19  
20  
REF_CLK  
O
This pin provides the 50-MHz RMII reference clock output to  
the MAC.  
RMII mode: Receive Error Output.  
RXER /  
RX_ER /  
ISO  
Config mode: The pull-up/pull-down value is latched as ISO-  
LATE during power-up or reset. See Strap-In option –  
KSZ8041RNL for details.  
Ipd/O  
Interrupt Output: Programmable Interrupt Output  
Register 1Bh is the Interrupt Control/Status Register for pro-  
gramming the interrupt conditions and reading the interrupt  
status. Register 1Fh bit 9 sets the interrupt output to active  
low (default) or active high.  
21  
INTRP  
Opu  
No Connect  
22  
23  
24  
25  
26  
27  
NC  
TX_EN  
TXD0  
TXD1  
NC  
O
I
RMII Transmit Enable Input  
RMII Transmit Data Input[0] (Note 2-3)  
RMII Transmit Data Input[1] (Note 2-3)  
No Connect  
I
I
I
No Connect  
NC  
I
The pull-up/pull-down value is latched as CONFIG0 during  
power-up or reset. See Strap-In option – KSZ8041RNL for  
details.  
28  
29  
CONFIG0  
CONFIG1  
Ipd/O  
Ipd/O  
The pull-up/pull-down value is latched as CONFIG1 during  
power-up or reset. See Strap-In option – KSZ8041RNL for  
details.  
2017 Microchip Technology Inc.  
DS00002245B-page 13  
KSZ8041NL/RNL  
TABLE 2-3:  
Pin Number  
KSZ8041RNL PIN DESCRIPTION (CONTINUED)  
Pin Name  
Type (Note 2-1)  
Pin Function  
LED Output: Programmable LED0 Output  
Config mode: Latched as Auto-Negotiation Enable (register  
0h, bit 12) during power-up or reset. See Strap-In option –  
KSZ8041RNL for details.  
The LED0 pin is programmable via register 1Eh bits [15:14]  
and is defined as follows:  
LED Mode = [00]  
Link/Activity  
No Link  
Link  
Pin State  
LED Definition  
OFF  
H
L
ON  
LED0 /  
NWAYEN  
30  
Ipu/O  
Activity  
Toggle  
Blinking  
LED Mode = [01]  
Link  
Pin State  
LED Definition  
No Link  
Link  
H
L
OFF  
ON  
LED Mode = [10], [11]  
Reserved  
LED Output: Programmable LED1 Output  
Config mode: Latched as SPEED (register 0h, bit 13) during  
power-up or reset. See Strap-In option – KSZ8041RNL for  
details.  
The LED1 pin is programmable via register 1Eh bits [15:14]  
and is defined as follows:  
LED Mode = [00]  
Speed  
10BT  
Pin State  
LED Definition  
H
L
OFF  
ON  
LED1 /  
SPEED  
100BT  
31  
Ipu/O  
LED Mode = [01]  
Activity  
No Activity  
Activity  
Pin State  
H
LED Definition  
OFF  
Toggle  
Blinking  
LED Mode = [10], [11]  
Reserved  
32  
RST#  
GND  
I
Chip Reset (active low)  
Ground  
PADDLE  
Gnd  
DS00002245B-page 14  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
Note 2-1  
P = Power supply  
Gnd = Ground  
I = Input  
O = Output  
I/O = Bi-directional  
Opu = Output with internal pull-up (40K ±30%)  
Ipu/O = Input with internal pull-up (40K ±30%) during power-up/reset; output pin otherwise.  
Ipd/O = Input with internal pull-down (40K ±30%) during power-up/reset; output pin otherwise.  
Note 2-2  
Note 2-3  
RMII Rx mode: The RXD[1:0] bits are synchronous with REF_CLK. For each clock period in which  
CRS_DV is asserted, two bits of recovered data are sent from the PHY.  
RMII Tx mode: The TXD[1:0] bits are synchronous with REF_CLK. For each clock period in which  
TX_EN is asserted, two bits of data are received by the PHY from the MAC.  
2017 Microchip Technology Inc.  
DS00002245B-page 15  
KSZ8041NL/RNL  
2.4  
STRAP-IN OPTION – KSZ8041RNL  
Pin strap-ins are latched during power-up or reset. In some systems, the MAC receive input pins may drive high during  
power-up or reset, and consequently cause the PHY strap-in pins on the RMII signals to be latched high. In this case,  
it is recommended to add 1K pull-downs on these PHY strap-in pins to ensure the PHY does not strap in to ISOLATE  
mode, or is not configured with an incorrect PHY Address.  
TABLE 2-4:  
STRAP-IN OPTION – KSZ8041RNL  
Type  
Pin  
Number  
Pin Name  
Pin Function  
(Note 2-1)  
15  
14  
PHYAD2  
PHYAD1  
Ipd/O  
Ipd/O  
The PHY Address is latched at power-up or reset and is configurable to any  
value from 1 to 7.  
The default PHY Address is 00001.  
13  
PHYAD0  
Ipu/O  
PHY Address bits [4:3] are always set to ‘00’.  
18  
29  
CONFIG2  
CONFIG1  
Ipd/O  
Ipd/O  
The CONFIG[2:0] strap-in pins are latched at power-up or reset and are  
defined as follows:  
CONFIG[2:0]  
000  
Mode  
Reserved - not used  
RMII  
001  
010  
Reserved - not used  
Reserved - not used  
Reserved - not used  
Reserved - not used  
Reserved - not used  
Reserved - not used  
011  
28  
CONFIG0  
Ipd/O  
100  
101  
110  
111  
ISOLATE mode:  
Pull-up = Enable  
Pull-down (default) = Disable  
During power-up or reset, this pin value is latched into register 0h bit 10.  
20  
31  
ISO  
Ipd/O  
Ipu/O  
SPEED mode:  
Pull-up (default) = 100 Mbps  
Pull-down = 10 Mbps  
During power-up or reset, this pin value is latched into register 0h bit 13 as  
the Speed Select, and also is latched into register 4h (Auto-Negotiation  
Advertisement) as the Speed capability support.  
SPEED  
DUPLEX mode:  
Pull-up (default) = Half Duplex  
16  
DUPLEX  
NWAYEN  
Ipu/O  
Ipu/O  
Pull-down = Full Duplex  
During power-up or reset, this pin value is latched into register 0h bit 8 as  
the Duplex mode.  
Nway Auto-Negotiation Enable:  
Pull-up (default) = Enable Auto-Negotiation  
Pull-down = Disable Auto-Negotiation  
30  
During power-up or reset, this pin value is latched into register 0h bit 12.  
Note 2-1  
Ipu/O = Input with internal pull-up (40K ±30%) during power-up/reset; output pin otherwise.  
Ipd/O = Input with internal pull-down (40K ±30%) during power-up/reset; output pin otherwise.  
DS00002245B-page 16  
2017 Microchip Technology Inc.  
 
KSZ8041NL/RNL  
3.0  
FUNCTIONAL DESCRIPTION  
The KSZ8041NL is a single 3.3V supply Fast Ethernet transceiver. It is fully compliant with the IEEE 802.3u  
specification.  
On the media side, the KSZ8041NL supports 10BASE-T and 100BASE-TX with HP auto MDI/MDI-X for reliable detec-  
tion of and correction for straight-through and crossover cables.  
The KSZ8041NL offers a choice of MII or RMII data interface connection with the MAC processor. The MII management  
bus option gives the MAC processor complete access to the KSZ8041NL control and status registers. Additionally, an  
interrupt pin eliminates the need for the processor to poll for PHY status change.  
Physical signal transmission and reception are enhanced through the use of patented analog circuitries that make the  
design more efficient and allow for lower power consumption and smaller chip die size.  
The KSZ8041RNL is an enhanced RMII version of the KSZ8041NL that does not require a 50-MHz system clock. It uses  
a 25-MHz crystal for its input reference clock and outputs a 50-MHz RMII reference clock to the MAC.  
3.1  
100BASE-TX Transmit  
The 100BASE-TX transmit function performs parallel-to-serial conversion, 4B/5B coding, scrambling, NRZ-to-NRZI con-  
version, and MLT3 encoding and transmission.  
The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125-MHz serial  
bit stream. The data and control stream is then converted into 4B/5B coding, followed by a scrambler. The serialized  
data is further converted from NRZ-to-NRZI format, and then transmitted in MLT3 current output.  
The output current is set by an external 6.49-k1% resistor for the 1:1 transformer ratio. It has typical rise or fall times  
of 4 ns and complies with the ANSI TP-PMD standard regarding amplitude balance, overshoot, and timing jitter. The  
wave-shaped 10BASE-T output drivers are also incorporated into the 100BASE-TX drivers.  
3.2  
100BASE-TX Receive  
The 100BASE-TX receiver function performs adaptive equalization, DC restoration, MLT3-to-NRZI conversion, data and  
clock recovery, NRZI-to-NRZ conversion, descrambling, 4B/5B decoding, and serial-to-parallel conversion.  
The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted  
pair cable. Because the amplitude loss and phase distortion are functions of the cable length, the equalizer must adjust  
its characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on  
comparisons of incoming signal strength against some known cable characteristics, and then tunes itself for optimiza-  
tion. This is an ongoing process and self-adjusts against environmental changes such as temperature variations.  
Next, the equalized signal goes through a DC restoration and data conversion block. The DC restoration circuit is used  
to compensate for the effect of baseline wander and to improve the dynamic range. The differential data conversion  
circuit converts the MLT3 format back to NRZI. The slicing threshold is also adaptive.  
The clock recovery circuit extracts the 125-MHz clock from the edges of the NRZI signal. This recovered clock is then  
used to convert the NRZI signal into the NRZ format. This signal is sent through the descrambler followed by the 4B/5B  
decoder. Finally, the NRZ serial data is converted to the MII format and provided as the input data to the MAC.  
3.3  
PLL Clock Synthesizer  
The KSZ8041NL/RNL generates 125-MHz, 25-MHz, and 20-MHz clocks for system timing. Internal clocks are gener-  
ated from an external 25-MHz crystal or oscillator. For the KSZ8041NL in RMII mode, these internal clocks are gener-  
ated from an external 50-MHz oscillator or system clock.  
3.4  
Scrambler/Descrambler (100BASE-TX only)  
The purpose of the scrambler is to spread the power spectrum of the signal to reduce EMI and baseline wander.  
3.5  
10BASE-T Transmit  
The 10BASE-T drivers are incorporated with the 100BASE-TX drivers to allow for transmission using the same mag-  
netic. The drivers also perform internal wave-shaping and pre-emphasize, and output 10BASE-T signals with a typical  
amplitude of 2.5V peak. The 10BASE-T signals have harmonic contents that are at least 27 dB below the fundamental  
frequency when driven by an all-ones Manchester-encoded signal.  
2017 Microchip Technology Inc.  
DS00002245B-page 17  
KSZ8041NL/RNL  
3.6  
10BASE-T Receive  
On the receive side, input buffer and level detecting squelch circuits are employed. A differential input receiver circuit  
and a PLL performs the decoding function. The Manchester-encoded data stream is separated into clock signal and  
NRZ data. A squelch circuit rejects signals with levels less than 400 mV or with short pulse widths to prevent noise at  
the RX+ and RX- inputs from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL locks  
onto the incoming signal and the KSZ8041NL/RNL decodes a data frame. The receive clock is kept active during idle  
periods in between data reception.  
3.7  
SQE and Jabber Function (10BASE-T only)  
In 10BASE-T operation, a short pulse is put out on the COL pin after each frame is transmitted. This SQE Test is required  
as a test of the 10BASE-T transmit/receive path. If transmit enable (TXEN) is high for more than 20 ms (jabbering), the  
10BASE-T transmitter is disabled and COL is asserted high. If TXEN is then driven low for more than 250 ms, the  
10BASE-T transmitter is re-enabled and COL is deasserted (returns to low).  
3.8  
Auto-Negotiation  
The KSZ8041NL/RNL conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3u specification.  
Auto-negotiation is enabled by either hardware pin strapping (pin 30) or software (register 0h bit 12).  
Auto-negotiation allows unshielded twisted pair (UTP) link partners to select the highest common mode of operation.  
Link partners advertise their capabilities to each other, and then compare their own capabilities with those they received  
from their link partners. The highest speed and duplex setting that is common to the two link partners is selected as the  
mode of operation.  
The following list shows the speed and duplex operation mode from highest to lowest:  
• Priority 1: 100BASE-TX, full-duplex  
• Priority 2: 100BASE-TX, half-duplex  
• Priority 3: 10BASE-T, full-duplex  
• Priority 4: 10BASE-T, half-duplex  
If auto-negotiation is not supported or the KSZ8041NL/RNL link partner is forced to bypass auto-negotiation, the  
KSZ8041NL/RNL sets its operating mode by observing the signal at its receiver. This is known as parallel detection, and  
this allows the KSZ8041NL/RNL to establish a link by listening for a fixed signal protocol in the absence of auto-nego-  
tiation advertisement protocol.  
The auto-negotiation link-up process is shown in the flow chart illustrated as Figure 3-1.  
DS00002245B-page 18  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
FIGURE 3-1:  
AUTO-NEGOTIATION FLOW CHART  
Start Auto Negotiation  
N
o
Parallel  
Force Link Setting  
Yes  
Operation  
Listen for 10BASE-T  
Bypass Auto Negotiation  
and Set Link Mode  
Attempt Auto  
Negotiation  
Listen for 100BASE-TX  
Idles  
Link Pulses  
No  
Join  
Flow  
Link Mode Set ?  
Yes  
Link Mode Set  
3.9  
MII Management (MIIM) Interface  
The KSZ8041NL/RNL supports the IEEE 802.3 MII Management Interface, also known as the Management Data Input  
or Output (MDIO) Interface. This interface allows upper-layer devices to monitor and control the state of the  
KSZ8041NL/RNL. An external device with MIIM capability is used to read the PHY status or to configure the PHY set-  
tings or both. Further details on the MIIM interface can be found in Clause 22.2.4 of the IEEE 802.3 specification.  
The MIIM interface consists of the following:  
• A physical connection that incorporates the clock line (MDC) and the data line (MDIO).  
• A specific protocol that operates across the aforementioned physical connection that allows an external controller  
to communicate with one or more PHY devices. Each KSZ8041NL/RNL device is assigned a unique PHY address  
between 1 and 7 by its PHYAD[2:0] strapping pins. Additionally, every KSZ8041NL/RNL device supports the  
broadcast PHY address 0, as defined per the IEEE 802.3 specification, which can be used to read or write to a  
single KSZ8041NL/RNL device, or write to multiple KSZ8041NL/RNL devices simultaneously.  
• A set of 16-bit MDIO registers. Registers [0:6] are required, and their functions are defined per the IEEE 802.3  
specification. The additional registers are provided for expanded functionality.  
2017 Microchip Technology Inc.  
DS00002245B-page 19  
KSZ8041NL/RNL  
Table 3-1 shows the MII Management frame format for the KSZ8041NL/RNL.  
TABLE 3-1:  
MII MANAGEMENT FRAME FORMAT  
Read/  
Write  
OP  
PHY  
REG  
Start of  
Frame  
Address Address  
Bits  
Preamble  
TA  
Data Bits [15:0]  
Idle  
Bits  
[4:0]  
[4:0]  
Code  
Read  
Write  
32 1’s  
32 1’s  
01  
01  
10  
01  
00AAA RRRRR  
00AAA RRRRR  
Z0  
10  
DDDDDDDD_DDDDDDDD  
DDDDDDDD_DDDDDDDD  
Z
Z
3.10 Interrupt (INTRP)  
INTRP (pin 21) is an optional interrupt signal that is used to inform the external controller that there has been a status  
update to the KSZ8041NL/RNL PHY register. Bits[15:8] of register 1Bh are the interrupt control bits and are used to  
enable and disable the conditions for asserting the INTRP signal. Bits[7:0] of register 1Bh are the interrupt status bits,  
and are used to indicate which interrupt conditions have occurred. The interrupt status bits are cleared after reading  
register 1Bh.  
Bit 9 of register 1Fh sets the interrupt level to active high or active low.  
3.11 MII Data Interface (KSZ8041NL only)  
The Media Independent Interface (MII) is specified in Clause 22 of the IEEE 802.3 specification. It provides a common  
interface between physical layer and MAC layer devices, and has the following key characteristics:  
• Supports 10 Mbps and 100 Mbps data rates  
• Uses a 25-MHz reference clock, sourced by the PHY  
• Provides independent 4-bit wide (nibble) transmit and receive data paths  
• Contains two distinct groups of signals: one for transmission and the other for reception  
By default, the KSZ8041NL is configured to MII mode after it is powered up or reset with the following:  
• A 25-MHz crystal connected to XI, XO (pins 9, 8), or an external 25-MHz clock source (oscillator) connected to XI  
• CONFIG[2:0] (pins 18, 29, 28) set to ‘000’ (default setting)  
3.12 MII Signal Definition (KSZ8041NL only)  
Table 3-2 describes the MII signals. Refer to Clause 22 of the IEEE 802.3 specification for detailed information.  
TABLE 3-2:  
MII SIGNAL DEFINITION  
Direction (with  
respect to PHY,  
KSZ8041NL signal)  
MII Signal  
Name  
Direction  
(with respect to MAC)  
Description  
Transmit Clock  
(2.5 MHz for 10 Mbps, 25 MHz for 100 Mbps)  
TXC  
Output  
Input  
TXEN  
Input  
Input  
Output  
Output  
Transmit Enable  
TXD[3:0]  
Transmit Data [3:0]  
Receive Clock  
(2.5 MHz for 10 Mbps, 25 MHz for 100 Mbps)  
RXC  
Output  
Input  
RXDV  
RXD[3:0]  
RXER  
CRS  
Output  
Output  
Output  
Output  
Output  
Input  
Input  
Receive Data Valid  
Receive Data [3:0]  
Input, or (not required) Receive Error  
Input  
Input  
Carrier Sense  
COL  
Collision Detection  
DS00002245B-page 20  
2017 Microchip Technology Inc.  
 
 
KSZ8041NL/RNL  
3.12.1  
TRANSMIT CLOCK (TXC)  
TXC is sourced by the PHY. It is a continuous clock that provides the timing reference for Transmit Enable (TXEN) and  
Transmit Data [3:0] (TXD[3:0]).  
TXC is 2.5 MHz for 10 Mbps operation and 25 MHz for 100 Mbps operation.  
3.12.2  
TRANSMIT ENABLE (TXEN)  
TXEN indicates the MAC is presenting nibbles on TXD[3:0] for transmission. It is asserted synchronously with the first  
nibble of the preamble and remains asserted while all nibbles to be transmitted are presented on the MII, and is negated  
prior to the first TXC following the final nibble of a frame.  
TXEN transitions synchronously with respect to TXC.  
3.12.3  
TRANSMIT DATA [3:0] (TXD[3:0])  
TXD[3:0] transitions synchronously with respect to TXC. When TXEN is asserted, TXD[3:0] are accepted for transmis-  
sion by the PHY. TXD[3:0] is “00” to indicate idle when TXEN is deasserted. Values other than “00” on TXD[3:0] while  
TXEN is deasserted are ignored by the PHY.  
3.12.4  
RECEIVE CLOCK (RXC)  
RXC provides the timing reference for RXDV, RXD[3:0], and RXER.  
• In 10 Mbps mode, RXC is recovered from the line while the carrier is active. RXC is derived from the PHY’s refer-  
ence clock when the line is idle or the link is down.  
• In 100 Mbps mode, RXC is continuously recovered from the line. If the link is down, RXC is derived from the  
PHY’s reference clock.  
RXC is 2.5 MHz for 10 Mbps operation and 25 MHz for 100 Mbps operation.  
3.12.5  
RECEIVE DATA VALID (RXDV)  
RXDV is driven by the PHY to indicate that the PHY is presenting recovered and decoded nibbles on RXD[3:0].  
• In 10 Mbps mode, RXDV is asserted with the first nibble of the SFD (Start of Frame Delimiter), “5D”, and remains  
asserted until the end of the frame.  
• In 100 Mbps mode, RXDV is asserted from the first nibble of the preamble to the last nibble of the frame.  
RXDV transitions synchronously with respect to RXC.  
3.12.6  
RECEIVE DATA [3:0] (RXD[3:0])  
RXD[3:0] transitions synchronously with respect to RXC. For each clock period in which RXDV is asserted, RXD[3:0]  
transfers a nibble of recovered data from the PHY.  
3.12.7  
RECEIVE ERROR (RXER)  
RXER is asserted for one or more RXC periods to indicate that a Symbol Error (for example, a coding error that a PHY  
is capable of detecting, and that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the  
frame presently being transferred from the PHY.  
RXER transitions synchronously with respect to RXC. While RXDV is deasserted, RXER has no effect on the MAC.  
3.12.8  
CARRIER SENSE (CRS)  
CRS is asserted and deasserted as follows:  
• In 10 Mbps mode, CRS assertion is based on the reception of valid preambles. CRS deassertion is based on the  
reception of an end-of-frame (EOF) marker.  
• In 100 Mbps mode, CRS is asserted when a start-of-stream delimiter, or /J/K symbol pair is detected. CRS is  
deasserted when an end-of-stream delimiter, or /T/R symbol pair is detected. Additionally, the PMA layer  
deasserts CRS if IDLE symbols are received without /T/R.  
3.12.9  
COLLISION (COL)  
COL is asserted in half-duplex mode whenever the transmitter and the receiver are simultaneously active on the line.  
This is used to inform the MAC that a collision has occurred during its transmission to the PHY.  
COL transitions asynchronously with respect to TXC and RXC.  
2017 Microchip Technology Inc.  
DS00002245B-page 21  
KSZ8041NL/RNL  
3.13 Reduced MII (RMII) Data Interface  
The Reduced Media Independent Interface (RMII) specifies a low pin count MII. It provides a common interface between  
physical layer and MAC layer devices, and has the following key characteristics:  
• Supports 10 Mbps and 100 Mbps data rates  
• Uses a 50-MHz reference clock  
• Provides independent 2-bit wide (di-bit) transmit and receive data paths  
• Contains two distinct groups of signals: one for transmission and the other for reception  
The KSZ8041NL is configured in RMII mode after it is powered up or reset with the following:  
• A 500MHz reference clock connected to REFCLK (pin 9)  
• CONFIG[2:0] (pins 18, 29, 28) set to ‘001’  
The KSZ8041RNL is configured in RMII mode and outputs the 50-MHz RMII reference clock to the MAC on REF_CLK  
(pin 19) after it is powered up or reset with the following:  
• A 25-MHz crystal connected to XI (pin 9) and XO (pin 8), or a 25-MHz reference clock connected to XI (pin 9)  
• CONFIG[2:0] (pins 18, 29, 28) set to ‘001’  
In RMII mode, unused MII signals, TXD[3:2] (pins 27, 26), are tied to ground.  
3.14 RMII Signal Definition  
Table 3-3 and Table 3-4 describe the RMII signals for KSZ8041NL and KSZ8041RNL. Refer to RMII specification for  
detailed information.  
TABLE 3-3:  
RMII SIGNAL DESCRIPTION – KSZ8041NL  
Direction (with  
Direction (with  
RMII Signal  
Name  
respect to PHY,  
respect to MAC)  
KSZ8041NL signal)  
Description  
Synchronous 50-MHz clock reference for receive,  
transmit, and control interface  
REF_CLK  
Input  
Input or Output  
TX_EN  
TXD[1:0]  
CRS_DV  
RXD[1:0]  
Input  
Input  
Output  
Output  
Input  
Transmit Enable  
Transmit Data [1:0]  
Output  
Output  
Carrier Sense/Receive Data Valid  
Receive Data [1:0]  
Input  
Input, or (not  
required)  
RX_ER  
Output  
Receive Error  
TABLE 3-4:  
RMII SIGNAL DESCRIPTION – KSZ8041RNL  
Direction (with  
RMII Signal  
Name  
respect to PHY,  
KSZ8041RNL  
signal)  
Direction (with  
respect to MAC)  
Description  
Synchronous 50-MHz clock reference for receive,  
transmit, and control interface  
REF_CLK  
Output  
Input  
TX_EN  
TXD[1:0]  
CRS_DV  
RXD[1:0]  
Input  
Input  
Output  
Output  
Input  
Transmit Enable  
Transmit Data [1:0]  
Output  
Output  
Carrier Sense/Receive Data Valid  
Receive Data [1:0]  
Input  
Input, or (not  
required)  
RX_ER  
Output  
Receive Error  
3.14.1  
REFERENCE CLOCK (REF_CLK)  
REF_CLK is a continuous 50-MHz clock that provides the timing reference for TX_EN, TXD[1:0], CRS_DV, RXD[1:0],  
and RX_ER.  
DS00002245B-page 22  
2017 Microchip Technology Inc.  
 
 
KSZ8041NL/RNL  
The KSZ8041NL inputs the 50-MHz REF_CLK from the MAC or system board.  
The KSZ8041RNL generates the 50MHz RMII REF_CLK and outputs it to the MAC.  
3.14.2  
TRANSMIT ENABLE (TX_EN)  
TX_EN indicates that the MAC is presenting di-bits on TXD[1:0] for transmission. It is asserted synchronously with the  
first nibble of the preamble and remains asserted while all di-bits to be transmitted are presented on the RMII, and is  
negated prior to the first REF_CLK following the final di-bit of a frame.  
TX_EN transitions synchronously with respect to REF_CLK.  
3.14.3  
TRANSMIT DATA [1:0] (TXD[1:0])  
TXD[1:0] transitions synchronously with respect to REF_CLK. When TX_EN is asserted, TXD[1:0] is accepted for trans-  
mission by the PHY. TXD[1:0] is “00” to indicate idle when TX_EN is deasserted. Values other than “00” on TXD[1:0]  
while TX_EN is deasserted are ignored by the PHY.  
3.14.4  
CARRIER SENSE/RECEIVE DATA VALID (CRS_DV)  
CRS_DV is asserted by the PHY when the receive medium is non-idle. It is asserted asynchronously on detection of a  
carrier. This is when a squelch is passed in 10 Mbps mode, and when two non-contiguous zeros in 10 bits are detected  
in 100 Mbps mode. Loss of carrier results in the deassertion of CRS_DV.  
As long as carrier detection criteria are met, CRS_DV remains asserted continuously from the first recovered di-bit of  
the frame through the final recovered di-bit, and it is negated prior to the first REF_CLK that follows the final di-bit. The  
data on RXD[1:0] is considered valid once CRS_DV is asserted. However, since the assertion of CRS_DV is asynchro-  
nous relative to REF_CLK, the data on RXD[1:0] is “00” until proper receive signal decoding takes place.  
3.14.5  
RECEIVE DATA [1:0] (RXD[1:0])  
RXD[1:0] transitions synchronously to REF_CLK. For each clock period in which CRS_DV is asserted, RXD[1:0] trans-  
fers two bits of recovered data from the PHY. RXD[1:0] is “00” to indicate idle when CRS_DV is deasserted. Values other  
than “00” on RXD[1:0] while CRS_DV is deasserted are ignored by the MAC.  
3.14.6  
RECEIVE ERROR (RX_ER)  
RX_ER is asserted for one or more REF_CLK periods to indicate that a Symbol Error (for example,. a coding error that  
a PHY is capable of detecting, and that may otherwise be undetectable by the MAC sub-layer) was detected somewhere  
in the frame presently being transferred from the PHY.  
RX_ER transitions synchronously with respect to REF_CLK. While CRS_DV is deasserted, RX_ER has no effect on the  
MAC.  
3.14.7  
COLLISION DETECTION  
The MAC regenerates the COL signal of the MII from TX_EN and CRS_DV.  
2017 Microchip Technology Inc.  
DS00002245B-page 23  
KSZ8041NL/RNL  
3.15 RMII Signal Diagram  
The KSZ8041NL RMII pin connections to the MAC are shown in Figure 3-2.  
FIGURE 3-2:  
KSZ8041NL RMII INTERFACE  
KSZ8041NL  
RMII MAC  
CRS_DV  
RXD[1:0]  
CRS_DV  
RXD[1:0]  
RX_ER  
RX_ER  
TX_EN  
TX_EN  
TXD[1:0]  
TXD[1:0]  
REF_CLK  
REFCLK  
50 MHz  
OSC  
FIGURE 3-3:  
KSZ8041RNL RMII INTERFACE  
KSZ8041RNL  
RMII MAC  
CRS_DV  
RXD[1:0]  
CRS_DV  
RXD[1:0]  
RX_ER  
RX_ER  
TX_EN  
TX_EN  
TXD[1:0]  
TXD[1:0]  
REF_CLK  
REF_CLK  
XO  
XI  
25 MHz  
XTAL  
22 pF  
22 pF  
DS00002245B-page 24  
2017 Microchip Technology Inc.  
 
KSZ8041NL/RNL  
3.16 HP Auto MDI/MDI-X  
HP Auto MDI/MDI-X configuration eliminates the confusion of whether to use a straight cable or a crossover cable  
between the KSZ8041NL/RNL and its link partner. This feature allows the KSZ8041NL/RNL to use either type of cable  
to connect with a link partner that is in either MDI or MDI-X mode. The auto-sense function detects transmit and receive  
pairs from the link partner, and then assigns transmit and receive pairs of the KSZ8041NL/RNL accordingly.  
HP Auto MDI/MDI-X is enabled by default. Writing “1” to register 1F bit 13 disables HP Auto MDI/MDL-X. Register 1F  
bit 14 selects MDI and MDI-X mode if HP Auto MDI/MDI-X is disabled.  
An isolation transformer with symmetrical transmit and receive data paths is recommended to support auto MDI/MDI-X.  
The IEEE 802.3 Standard MDI and MDI-X is defined in Table 3-5.  
TABLE 3-5:  
MDI/MDI-X PIN DESCRIPTION  
MDI  
MDI-X  
RJ-45 Pin  
Signal  
RJ-45 Pin  
Signal  
1
2
3
6
TD+  
TD–  
RD+  
RD–  
1
2
3
6
RD+  
RD–  
TD+  
TD–  
2017 Microchip Technology Inc.  
DS00002245B-page 25  
 
KSZ8041NL/RNL  
3.16.1  
STRAIGHT CABLE  
A straight cable connects an MDI device to an MDI-X device, or an MDI-X device to an MDI device. Figure 3-4 depicts  
a typical straight cable connection between a NIC card (MDI) and a switch, or hub (MDI-X).  
FIGURE 3-4:  
TYPICAL STRAIGHT CABLE CONNECTION  
3.16.2  
CROSSOVER CABLE  
A crossover cable connects an MDI device to another MDI device, or an MDI-X device to another MDI-X device.  
Table 3-4 depicts a typical crossover cable connection between two switches or hubs (two MDI-X devices).  
FIGURE 3-5:  
TYPICAL CROSSOVER CABLE CONNECTION  
DS00002245B-page 26  
2017 Microchip Technology Inc.  
 
KSZ8041NL/RNL  
3.17 Power Management  
The KSZ8041NL/RNL offers the following two power management modes:  
• Power Saving Mode  
This mode is used to reduce power consumption when the cable is unplugged. It is in effect when the auto-negoti-  
ation mode is enabled, the cable is disconnected, and register 1F bit 10 is set to 1. Under the power saving mode,  
the KSZ8041NL/RNL shuts down all transceiver blocks, except for transmitter, energy detect, and PLL circuits.  
Additionally, for the KSZ8041NL in MII mode, the RXC clock output is disabled. RXC clock is enabled after the  
cable is connected and a link is established.  
Power-saving mode is disabled by writing “0” to register 1F bit 10.  
• Power-Down Mode  
This mode is used to power down the entire KSZ8041NL/RNL device when it is not in use. Power down mode is  
enabled by writing “1” to register 0 bit 11. In the power down state, the KSZ8041NL/RNL disables all internal func-  
tions, except for the MII management interface.  
3.18 Reference Clock Connection Options  
A crystal or clock source, such as an oscillator, is used to provide the reference clock for the KSZ8041NL/RNL.  
Figure 3-6 illustrates how to connect the 25-MHz crystal and oscillator reference clock.  
FIGURE 3-6:  
25-MHZ CRYSTAL/OSCILLATOR REFERENCE CLOCK  
22pF  
22pF  
pF  
XI  
XI  
25MHz OSC  
+/-50ppm  
22pF  
NC  
XO  
XO  
NC  
25MHz XTAL  
+/-50ppm  
For the KSZ8041NL, Figure 3-7 illustrates how to connect the 50-MHz oscillator reference clock for RMII mode.  
FIGURE 3-7:  
50-MHZ OSCILLATOR REFERENCE CLOCK FOR KSZ8041NL RMII MODE  
REFCLK  
50MHz OSC  
+/-50ppm  
NC  
XO  
NC  
3.19 Reference Circuit for Power and Ground Connections  
The KSZ8041NL/RNL is a single 3.3V supply device with a built-in 1.8V low-noise regulator. The power and ground con-  
nections are shown in Figure 3-8 and Table 3-6.  
2017 Microchip Technology Inc.  
DS00002245B-page 27  
 
 
KSZ8041NL/RNL  
FIGURE 3-8:  
KSZ8041NL/RNL POWER AND GROUND CONNECTIONS  
Ferrite  
Bead  
`
2
1.0uF  
0.1uF  
VIN  
VOUT  
3
1.8V Low Noise  
Regulator  
(integrated)  
`
VDDA_3.3  
22uF  
0.1uF  
17  
3.3V  
VDDIO_3.3  
`
22uF  
0.1uF  
GND  
KSZ8041NL/RNL  
1
Paddle  
TABLE 3-6:  
Power Pin  
KSZ8041NL/RNL POWER PIN DESCRIPTION  
Pin Number  
Description  
VDDPLL_1.8  
VDDA_3.3  
2
3
Decouple with 1.0 µF and 0.1 µF capacitors to ground.  
Connect to the board’s 3.3V supply through ferrite bead.  
Connect to the board’s 3.3V supply.  
VDDIO_3.3  
17  
DS00002245B-page 28  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
4.0  
4.1  
REGISTERS  
Register Map  
Table 4-1 summarizes the register map.  
TABLE 4-1:  
Register Number (Hex)  
0h  
REGISTER MAP  
Description  
Basic Control  
1h  
Basic Status  
2h  
PHY Identifier 1  
3h  
PHY Identifier 2  
4h  
Auto-Negotiation Advertisement  
Auto-Negotiation Link Partner Ability  
Auto-Negotiation Expansion  
Auto-Negotiation Next Page  
Link Partner Next Page Ability  
Reserved  
5h  
6h  
7h  
8h  
9h – 13h  
14h  
MII Control  
15h  
RXER Counter  
16h – 1Ah  
1Bh  
1Ch – 1Dh  
1Eh  
1Fh  
Reserved  
Interrupt Control/Status  
Reserved  
PHY Control 1  
PHY Control 2  
2017 Microchip Technology Inc.  
DS00002245B-page 29  
 
KSZ8041NL/RNL  
4.2  
Register Descriptions  
Table 4-2 provides a list of supported registers and their descriptions.  
TABLE 4-2:  
Address  
REGISTER DESCRIPTIONS  
Name  
Mode  
(Note 4-1)  
Description  
Default  
Register 0h – Basic Control  
1 = Software reset  
0 = Normal operation  
This bit is self-cleared after a ‘1’  
is written to it.  
0.15  
0.14  
Reset  
RW/SC  
RW  
0
0
1 = Loop-back mode  
0 = Normal operation  
Loop-Back  
1 = 100 Mbps  
0 = 10 Mbps  
This bit is ignored if auto-negotia-  
tion is enabled (register 0.12 =  
1).  
Set by SPEED strapping  
pin.  
See Table 2-2 and  
Table 2-4 for details.  
0.13  
0.12  
Speed Select (LSB)  
RW  
RW  
1 = Enable auto-negotiation  
process  
0 = Disable auto-negotiation  
process  
If enabled, auto-negotiation  
result overrides the settings in  
register 0.13 and 0.8.  
Set by NWAYEN strap-  
ping pin.  
See Table 2-2 and  
Table 2-4 for details.  
Auto-Negotiation Enable  
1 = Power-down mode  
0 = Normal operation  
0.11  
0.10  
Power Down  
Isolate  
RW  
RW  
0
1 = Electrical isolation of PHY  
from MII and TX+/TX-  
Set by ISO strapping pin.  
See Table 2-2 and  
0 = Normal operation  
Table 2-4 for details.  
1 = Restart auto-negotiation  
process  
0.9  
0.8  
Restart Auto-Negotiation  
Duplex Mode  
0 = Normal operation  
This bit is self-cleared after a ‘1’  
is written to it.  
RW/SC  
RW  
0
Inverse of DUPLEX  
strapping pin value.  
See Table 2-2 and  
Table 2-4 for details.  
1 = Full-duplex  
0 = Half-duplex  
1 = Enable COL test  
0 = Disable COL test  
0.7  
0.6:1  
0.0  
Collision Test  
Reserved  
RW  
RO  
RW  
0
000_000  
0
Disable  
Transmitter  
0 = Enable transmitter  
1 = Disable transmitter  
Register 1h – Basic Status  
1 = T4 capable  
0 = Not T4 capable  
1.15  
100BASE-T4  
RO  
RO  
0
1
1 = Capable of 100 Mbps full-  
duplex  
0 = Not capable of 100 Mbps full-  
duplex  
1.14  
100BASE-TX Full Duplex  
DS00002245B-page 30  
2017 Microchip Technology Inc.  
 
KSZ8041NL/RNL  
TABLE 4-2:  
Address  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Default  
Name  
Description  
(Note 4-1)  
1 = Capable of 100 Mbps half-  
duplex  
0 = Not capable of 100 Mbps  
half-duplex  
1.13  
1.12  
1.11  
100BASE-TX Half Duplex  
RO  
RO  
RO  
1
1
1
1 = Capable of 10 Mbps full-  
duplex  
0 = Not capable of 10 Mbps full-  
duplex  
10BASE-T Full Duplex  
10BASE-T Half Duplex  
1 = Capable of 10 Mbps half-  
duplex  
0 = Not capable of 10 Mbps half-  
duplex  
1.10:7  
1.6  
Reserved  
RO  
RO  
0000  
1
1 = Preamble suppression  
0 = Normal preamble  
No Preamble  
1 = Auto-negotiation process  
completed  
0 = Auto-negotiation process not  
completed  
1.5  
1.4  
1.3  
Auto-Negotiation Complete  
Remote Fault  
RO  
RO/LH  
RO  
0
0
1
1 = Remote fault  
0 = No remote fault  
1 = Capable to perform auto-  
negotiation  
0 = Not capable to perform auto-  
negotiation  
Auto-Negotiation Ability  
1 = Link is up  
0 = Link is down  
1.2  
1.1  
1.0  
Link Status  
RO/LL  
RO/LH  
RO  
0
0
1
1 = Jabber detected  
0 = Jabber not detected (default  
is low)  
Jabber Detect  
1 = Supports extended capabili-  
ties registers  
Extended Capability  
Register 2h – PHY Identifier 1  
Assigned to the 3rd through 18th  
bits of the Organizationally  
Unique Identifier (OUI). Kendin  
Communication’s OUI is 0010A1  
(hex)  
2.15.0  
PHY ID Number  
RO  
RO  
0022h  
Register 3h – PHY Identifier 2  
Assigned to the 19th through  
24th bits of the Organizationally  
Unique Identifier (OUI). Kendin  
Communication’s OUI is 0010A1  
(hex)  
3.15:10  
PHY ID Number  
0001_01  
Six bit manufacturer’s model  
number  
3.9:4  
3.3:0  
Model Number  
RO  
RO  
01_0001  
Four bit manufacturer’s  
revision number  
Revision Number  
Indicates silicon revision  
2017 Microchip Technology Inc.  
DS00002245B-page 31  
KSZ8041NL/RNL  
TABLE 4-2:  
Address  
REGISTER DESCRIPTIONS (CONTINUED)  
Name Description  
Mode  
(Note 4-1)  
Default  
Register 4h – Auto-Negotiation Advertisement  
1 = Next page capable  
0 = No next page capability  
4.15  
4.14  
4.13  
4.12  
Next Page  
Reserved  
RW  
RO  
RW  
RO  
0
0
0
0
1 = Remote fault supported  
0 = No remote fault  
Remote Fault  
Reserved  
[00] = No PAUSE  
[10] = Asymmetric PAUSE  
[01] = Symmetric PAUSE  
[11] = Asymmetric & Symmetric  
PAUSE  
4.11:10  
Pause  
RW  
00  
1 = T4 capable  
0 = No T4 capability  
4.9  
4.8  
100BASE-T4  
RO  
RW  
0
Set by SPEED strapping  
pin.  
See Table 2-2 and  
Table 2-4 for details.  
1 = 100 Mbps full-duplex capable  
0 = No 100 Mbps full-duplex  
capability  
100BASE-TX Full-Duplex  
1 = 100 Mbps half-duplex capa-  
ble  
0 = No 100 Mbps half-duplex  
capability  
Set by SPEED strapping  
pin.  
See Table 2-2 and  
Table 2-4 for details.  
4.7  
4.6  
100BASE-TX Half-Duplex  
10BASE-T Full-Duplex  
RW  
RW  
1 = 10 Mbps full-duplex capable  
0 = No 10 Mbps full-duplex capa-  
bility  
1
1 = 10 Mbps half-duplex  
capable  
0 = No 10 Mbps half-duplex  
capability  
4.5  
10BASE-T Half-Duplex  
Selector Field  
RW  
RW  
1
4.4:0  
[00001] = IEEE 802.3  
0_0001  
Register 5h – Auto-Negotiation Link Partner Ability  
1 = Next page capable  
0 = No next page capability  
5.15  
5.14  
Next Page  
RO  
RO  
0
0
1 = Link code word received from  
partner  
0 = Link code word not yet  
received  
Acknowledge  
1 = Remote fault detected  
0 = No remote fault  
5.13  
5.12  
Remote Fault  
Reserved  
RO  
RO  
0
0
[00] = No PAUSE  
[10] = Asymmetric PAUSE  
[01] = Symmetric PAUSE  
[11] = Asymmetric &  
Symmetric PAUSE  
5.11:10  
Pause  
RO  
00  
1 = T4 capable  
0 = No T4 capability  
5.9  
5.8  
100BASE-T4  
RO  
RO  
0
0
1 = 100 Mbps full-duplex capable  
0 = No 100 Mbps full-duplex  
capability  
100BASE-TX Full-Duplex  
DS00002245B-page 32  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
TABLE 4-2:  
Address  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Default  
Name  
Description  
(Note 4-1)  
1 = 100 Mbps half-duplex  
capable  
0 = No 100 Mbps half-duplex  
capability  
5.7  
5.6  
100BASE-TX Half-Duplex  
RO  
RO  
0
0
1 = 10 Mbps full-duplex  
capable  
0 = No 10 Mbps full-duplex  
capability  
10BASE-T Full-Duplex  
1 = 10 Mbps half-duplex  
capable  
0 = No 10 Mbps half-duplex  
capability  
5.5  
10BASE-T Half-Duplex  
Selector Field  
RO  
RO  
0
0_0001  
5.4:0  
[00001] = IEEE 802.3  
Register 6h – Auto-Negotiation Expansion  
6.15:5  
Reserved  
RO  
0000_0000_000  
0
1 = Fault detected by parallel  
detection  
0 = No fault detected by parallel  
detection.  
6.4  
Parallel Detection Fault  
RO/LH  
1 = Link partner has next page  
capability  
0 = Link partner does not have  
next page capability  
6.3  
Link Partner Next Page Able  
RO  
0
1 = Local device has next page  
capability  
0 = Local device does not have  
next page capability  
6.2  
6.1  
6.0  
Next Page Able  
Page Received  
RO  
RO/LH  
RO  
1
0
0
1 = New page received  
0 = New page not received yet  
1 = Link partner has auto-  
negotiation capability  
0 = Link partner does not have  
auto-negotiation capability  
Link Partner Auto-Negotia-  
tion Able  
Register 7h – Auto-Negotiation Next Page  
1 = Additional next page(s) will  
follow  
7.15  
Next Page  
RW  
0
0 = Last page  
7.14  
7.13  
7.12  
Reserved  
RO  
RW  
RW  
0
1
0
1 = Message page  
0 = Unformatted page  
Message Page  
Acknowledge2  
1 = Will comply with message  
0 = Cannot comply with message  
1 = Previous value of the trans-  
mitted link code word equaled  
logic one  
7.11  
Toggle  
RO  
RW  
0
0 = Logic zero  
11-bit wide field to encode 2048  
messages  
7.10:0  
Message Field  
000_0000_0001  
2017 Microchip Technology Inc.  
DS00002245B-page 33  
KSZ8041NL/RNL  
TABLE 4-2:  
Address  
REGISTER DESCRIPTIONS (CONTINUED)  
Name Description  
Mode  
(Note 4-1)  
Default  
Register 8h – Link Partner Next Page Ability  
1 = Additional Next Page(s) will  
follow  
0 = Last page  
8.15  
Next Page  
RO  
RO  
0
0
1 = Successful receipt of link  
word  
0 = No successful receipt of link  
word  
8.14  
Acknowledge  
1 = Message page  
0 = Unformatted page  
8.13  
8.12  
Message Page  
Acknowledge2  
RO  
RO  
0
0
1 = Able to act on the information  
0 = Not able to act on the  
information  
1 = Previous value of transmitted  
link code word equal to logic zero  
0 = Previous value of transmitted  
link code word equal to logic one  
8.11  
Toggle  
RO  
0
8.10:0  
Message Field  
RO  
RO  
000_0000_0000  
0000_0000  
Register 14h – MII Control  
14.15:8  
Reserved  
1 = Restore received preamble to  
MII output (random latency)  
0 = Consume 1-byte preamble  
before sending frame to MII  
output for fixed latency  
0 or  
100BASE-TX Preamble  
Restore  
1 (if CONFIG[2:0] = 100)  
See Table 2-2 and  
Table 2-4 for details.  
14.7  
RW  
RW  
1 = Restore received preamble to  
MII output  
0 = Remove all 7-bytes of  
preamble before sending frame  
(starting with SFD) to MII output  
10BASE-T Preamble  
Restore  
14.6  
0
14.5:0  
Reserved  
RO  
00_0001  
000h  
Register 15h – RXER Counter  
15.15:0 RXER Counter  
Register 1Bh – Interrupt Control/Status  
Receive error counter for Symbol  
Error frames  
RO/SC  
1 = Enable Jabber Interrupt  
0 = Disable Jabber Interrupt  
1b.15  
Jabber Interrupt Enable  
RW  
RW  
0
0
1 = Enable Receive Error  
Interrupt  
0 = Disable Receive Error  
Interrupt  
Receive Error Interrupt  
Enable  
1b.14  
1 = Enable Page Received  
Interrupt  
0 = Disable Page Received  
Interrupt  
Page Received Interrupt  
Enable  
1b.13  
1b.12  
RW  
RW  
0
0
1 = Enable Parallel Detect Fault  
Interrupt  
0 = Disable Parallel Detect Fault  
Interrupt  
Parallel Detect Fault Inter-  
rupt Enable  
DS00002245B-page 34  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
TABLE 4-2:  
Address  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Default  
Name  
Description  
(Note 4-1)  
1 = Enable Link Partner  
Acknowledge Interrupt  
0 = Disable Link Partner  
Acknowledge Interrupt  
Link Partner Acknowledge  
Interrupt Enable  
1b.11  
1b.10  
1b.9  
RW  
RW  
RW  
0
0
0
1= Enable Link Down Interrupt  
0 = Disable Link Down Interrupt  
Link Down Interrupt Enable  
1 = Enable Remote Fault  
Interrupt  
0 = Disable Remote Fault  
Interrupt  
Remote Fault Interrupt  
Enable  
1 = Enable Link Up Interrupt  
0 = Disable Link Up Interrupt  
1b.8  
1b.7  
1b.6  
1b.5  
Link Up Interrupt Enable  
Jabber Interrupt  
RW  
0
0
0
0
1 = Jabber occurred  
0 = Jabber did not occur  
RO/SC  
RO/SC  
RO/SC  
1 = Receive Error occurred  
0 = Receive Error did not occur  
Receive Error Interrupt  
Page Receive Interrupt  
1 = Page Receive occurred  
0 = Page Receive did not occur  
1 = Parallel Detect Fault  
occurred  
0 = Parallel Detect Fault did not  
occur  
Parallel Detect Fault  
Interrupt  
1b.4  
1b.3  
RO/SC  
RO/SC  
0
0
1= Link Partner Acknowledge  
occurred  
0= Link Partner Acknowledge did  
not occur  
Link Partner Acknowledge  
Interrupt  
1= Link Down occurred  
0= Link Down did not occur  
1b.2  
1b.1  
1b.0  
Link Down Interrupt  
Remote Fault Interrupt  
Link Up Interrupt  
RO/SC  
RO/SC  
RO/SC  
0
0
0
1= Remote Fault occurred  
0= Remote Fault did not occur  
1= Link Up occurred  
0= Link Up did not occur  
Register 1Eh – PHY Control 1  
[00] = LED1 : Speed  
LED0 : Link/Activity  
1e:15:14 LED mode  
[01] = LED1 : Activity  
LED0 : Link  
RW  
00  
[10], [11] = Reserved  
0 = Polarity is not reversed  
1 = Polarity is reversed  
1e.13  
1e.12  
Polarity  
RO  
RO  
RO  
0
Reserved  
0 = MDI  
1 = MDI-X  
1e.11  
MDI/MDI-X State  
Reserved  
1e:10:8  
0 = Normal mode  
1e:7  
Remote loopback  
1 = Remote (analog) loop back is  
enabled  
RW  
0
2017 Microchip Technology Inc.  
DS00002245B-page 35  
KSZ8041NL/RNL  
TABLE 4-2:  
Address  
1e:6:0  
REGISTER DESCRIPTIONS (CONTINUED)  
Name Description  
Mode  
(Note 4-1)  
Default  
Reserved  
Register 1Fh – PHY Control 2  
0 = Auto MDI/MDI-X mode  
1 = HP Auto MDI/MDI-X mode  
1f:15  
HP_MDIX  
RW  
1
0
When Auto MDI/MDI-X is  
disabled,  
0 = MDI mode  
Transmit on TX+/- (pins 7, 6) and  
Receive on RX+/- (pins 5, 4)  
1 = MDI-X mode  
1f:14  
MDI/MDI-X Select  
RW  
Transmit on RX+/- (pins 5,4) and  
Receive on TX+/- (pins 7, 6)  
1 = Disable auto MDI/MDI-X  
0 = Enable auto MDI/MDI-X  
1f:13  
1f.12  
Pair Swap Disable  
Energy Detect  
RW  
RO  
0
0
1 = Presence of signal on RX+/-  
analog wire pair  
0 = No signal detected on RX+/-  
1 = Force link pass  
0 = Normal link operation  
This bit bypasses the control  
logic and allows the transmitter  
to send a pattern even if there is  
no link.  
1f.11  
Force Link  
RW  
0
Register 1Fh – PHY Control 2 (Continued)  
1 = Enable power saving  
0 = Disable power saving  
If power saving mode is enabled  
and the cable is disconnected,  
the RXC clock output (in MII  
mode) is disabled. RXC clock is  
enabled after the cable is con-  
nected and a link is established.  
1f.10  
Power Saving  
RW  
0
1 = Interrupt pin active high  
0 = Interrupt pin active low  
1f.9  
1f.8  
Interrupt Level  
Enable Jabber  
RW  
RW  
0
1
1 = Enable jabber counter  
0 = Disable jabber counter  
1 = Auto-negotiation process  
completed  
0 = Auto-negotiation process not  
completed  
1f.7  
Auto-Negotiation Complete  
RW  
0
Enable Pause (Flow Con-  
trol)  
1 = Flow control capable  
0 = No flow control capability  
1f.6  
1f.5  
RO  
RO  
0
0
1 = PHY in isolate mode  
0 = PHY in normal operation  
PHY Isolate  
[000] = Still in auto-negotiation  
[001] = 10 BASE-T half-duplex  
[010] = 100 BASE-TX half-duplex  
[011] = Reserved  
1f.4:2  
Operation Mode Indication  
RO  
000  
[101] = 10 BASE-T full-duplex  
[110] = 100 BASE-TX full-duplex  
[111] = Reserved  
DS00002245B-page 36  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
TABLE 4-2:  
Address  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Default  
Name  
Description  
(Note 4-1)  
1 = Enable SQE test  
0 = Disable SQE test  
1f.1  
Enable SQE test  
RW  
RW  
0
0
1 = Disable scrambler  
0 = Enable scrambler  
1f.0  
Disable Data Scrambling  
Note 4-1  
RW = Read/Write  
RO = Read only  
SC = Self-cleared  
LH = Latch high  
LL = Latch low  
2017 Microchip Technology Inc.  
DS00002245B-page 37  
KSZ8041NL/RNL  
5.0  
5.1  
OPERATIONAL CHARACTERISTICS  
Absolute Maximum Ratings (Note 5-1)  
Supply Voltage (VDDPLL_1.8)...................................................................................................................... –0.5V to +2.4V  
Supply Voltage (VDDPLL_3.3, VDDPLL_3.3) .................................................................................................. –0.5V to +4.0V  
Input Voltage (all inputs)............................................................................................................................ –0.5V to +4.0V  
Output Voltage (all outputs)....................................................................................................................... –0.5V to +4.0V  
Storage Temperature (TS)......................................................................................................................–55°C to +150°C  
ESD Performance Rating (Note 5-2)........................................................................................................................+6 kV  
5.2  
Operating Ratings (Note 5-3)  
Supply Voltage (VDDIO_3.3, VDDA_3.3)................................................................................................+3.135V to +3.465V  
Ambient Temperature  
(TA, Commercial)...............................................................................................................................0°C to +70°C  
(TA, Industrial)................................................................................................................................40°C to +85°C  
(TA, Automotive Qualified) .............................................................................................................40°C to +85°C  
Maximum Junction Temperature (TJ maximum)....................................................................................................+125°C  
Thermal Resistance (JA)......................................................................................................................................34°C/W  
Thermal Resistance (JC)........................................................................................................................................6°C/W  
Note 5-1  
Exceeding the absolute maximum rating may damage the device. Stresses greater than the absolute  
maximum rating may cause permanent damage to the device. Operation of the device at these or  
any other conditions above those specified in the operating sections of this specification is not  
implied. Maximum conditions for extended periods may affect reliability.  
Note 5-2  
Note 5-3  
Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5 kin  
series with 100 pF.  
The device is not guaranteed to function outside its operating rating.  
DS00002245B-page 38  
2017 Microchip Technology Inc.  
 
 
 
KSZ8041NL/RNL  
6.0  
ELECTRICAL CHARACTERISTICS  
TABLE 6-1:  
Symbol  
ELECTRICAL CHARACTERISTICS (Note 6-1, Note 6-2)  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Supply Current  
Chip only (no transformer);  
Full-duplex traffic @ 100%  
utilization  
IDD1  
100BASE-TX  
53.0  
38.0  
mA  
mA  
Chip only (no transformer);  
Full-duplex traffic @ 100%  
utilization  
IDD2  
10BASE-T  
Ethernet cable discon-  
nected (reg. 1F.10 = 1)  
IDD3  
IDD4  
Power-Saving Mode  
Power-Down Mode  
32.0  
4.0  
mA  
mA  
Software power-down (reg.  
0.11 = 1)  
TTL Inputs  
VIH  
Input High Voltage  
Input Low Voltage  
Input Current  
2.0  
0.8  
10  
V
V
VIL  
IIN  
VIN = GND ~ VDDIO  
–10  
µA  
TTL Outputs  
VOH  
Output High Voltage  
Output Low Voltage  
IOH = 4 mA  
IOL = 4 mA  
2.4  
0.4  
10  
V
V
VOL  
|Ioz|  
Output Tri-State Leakage  
µA  
LED Outputs  
Each LED pin (LED0,  
LED1)  
ILED  
Output Drive Current  
8
mA  
100BASE-TX Transmit (measured differentially after 1:1 transformer)  
Peak Differential Output  
Voltage  
100termination across  
differential output  
VO  
0.95  
1.05  
2
V
100termination across  
differential output  
VIMB  
Output Voltage Imbalance  
%
Rise/Fall Time  
3
5
0.5  
+0.25  
5
ns  
ns  
ns  
%
V
Rise/Fall Time Imbalance  
Duty Cycle Distortion  
Overshoot  
0
tr, tf  
VSET  
Reference Voltage of ISET  
Output Jitter  
0.65  
0.7  
Peak-to-peak  
1.4  
ns  
10BASE-T Transmit (measured differentially after 1:1 transformer)  
Peak Differential Output  
Voltage  
100termination across  
differential output  
2.2  
2.8  
V
VP  
Jitter Added  
Peak-to-peak  
3.5  
ns  
ns  
tr, tf  
Rise/Fall Time  
25  
10BASE-T Receive  
Squelch Threshold  
5 MHz square wave  
400  
mV  
VSQ  
Note 6-1  
Current consumption is for the single 3.3V supply KSZ8041NL/RNL device only, and includes the  
1.8V supply voltage (VDDPLL_1.8) that is provided by the KSZ8041NL/RNL. The PHY port’s  
transformer consumes an additional 45 mA @ 3.3V for 100BASE-TX and 70 mA @ 3.3V for  
10BASE-T.  
Note 6-2  
TA = 25°C. Specification for packaged product only.  
2017 Microchip Technology Inc.  
DS00002245B-page 39  
 
 
KSZ8041NL/RNL  
7.0  
7.1  
TIMING DIAGRAMS  
MII SQE Timing  
FIGURE 7-1:  
MII SQE TIMING (10BASE-T)  
tWL  
TXC  
tWH  
tP  
TXEN  
COL  
tSQE  
tSQEP  
TABLE 7-1:  
MII SQE TIMING (10BASE-T) PARAMETERS  
Description Min.  
Timing  
Parameter  
Typ.  
Max.  
Unit  
tP  
TXC Period  
400  
200  
200  
2.5  
ns  
ns  
ns  
us  
us  
tWL  
TXC Pulse Width Low  
tWH  
tSQE  
tSQEP  
TXC Pulse Width High  
COL (SQE) Delay After TXEN De-Asserted  
COL (SQE) Pulse Duration  
1.0  
7.2  
MII Transmit Timing (10BASE-T)  
FIGURE 7-2:  
MII TRANSMIT TIMING (10BASE-T)  
tP  
tWL  
TXC  
tWH  
TXEN  
TXD[3:0]  
CRS  
tSU2  
tHD2  
tSU1  
tHD1  
tCRS1  
tCRS2  
DS00002245B-page 40  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
TABLE 7-2:  
MII TRANSMIT TIMING (10BASE-T) PARAMETERS  
Timing  
Parameter  
Description  
Min.  
Typ.  
Max.  
Units  
tP  
TXC Period  
400  
200  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWL  
TXC Pulse Width Low  
tWH  
TXC Pulse Width High  
tSU1  
tSU2  
tHD1  
tHD2  
tCRS1  
tCRS2  
TXD[3:0] Setup to Rising Edge of TXC  
TXEN Setup to Rising Edge of TXC  
TXD[3:0] Hold from Rising Edge of TXC  
TXEN Hold from Rising Edge of TXC  
TXEN High to CRS Asserted Latency  
TXEN Low to CRS De-Asserted Latency  
10  
10  
0
0
160  
510  
7.3  
MII Receive Timing (10BASE-T)  
FIGURE 7-3:  
MII RECEIVE TIMING (10BASE-T)  
CRS  
tRLAT  
tOD  
RXDV  
RXD[3:0]  
RXER  
tP  
tWL  
RXC  
tWH  
TABLE 7-3:  
MII RECEIVE TIMING (10BASE-T) PARAMETERS  
Timing  
Parameter  
Description  
Min.  
Typ.  
Max.  
Unit  
tP  
RXC Period  
400  
200  
200  
ns  
ns  
ns  
tWL  
tWH  
RXC Pulse Width Low  
RXC Pulse Width High  
(RXD[3:0], RXER, RXDV) Output Delay  
from Rising Edge of RXC  
tOD  
182  
225  
ns  
µs  
tRLAT  
CRS to (RXD[3:0], RXER, RXDV) Latency  
6.5  
2017 Microchip Technology Inc.  
DS00002245B-page 41  
KSZ8041NL/RNL  
7.4  
MII Transmit Timing (100BASE-TX)  
FIGURE 7-4:  
MII TRANSMIT TIMING (100BASE-TX)  
tWL  
TXC  
tWH  
tHD2  
tSU2  
tP  
TXEN  
tHD1  
tSU1  
Data  
In  
TXD[3:0]  
tCRS2  
tCRS1  
CRS  
TABLE 7-4:  
MII TRANSMIT TIMING (100BASE-TX) PARAMETERS  
Timing  
Parameter  
Description  
Min.  
Typ.  
Max.  
Unit  
tP  
TXC Period  
40  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWL  
TXC Pulse Width Low  
tWH  
TXC Pulse Width High  
tSU1  
tSU2  
tHD1  
tHD2  
tCRS1  
tCRS2  
TXD[3:0] Setup to Rising Edge of TXC  
TXEN Setup to Rising Edge of TXC  
TXD[3:0] Hold from Rising Edge of TXC  
TXEN Hold from Rising Edge of TXC  
TXEN High to CRS Asserted Latency  
TXEN Low to CRS De-Asserted Latency  
10  
10  
0
0
34  
33  
DS00002245B-page 42  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
7.5  
MII Receive Timing (100BASE-TX)  
FIGURE 7-5:  
MII RECEIVE TIMING (100BASE-TX)  
CRS  
tRLAT  
RXDV  
tOD  
RXD[3:0]  
RXER  
tWL  
RXC  
tWH  
tP  
TABLE 7-5:  
MII RECEIVE TIMING (100BASE-TX) PARAMETERS  
Timing  
Parameter  
Description  
Min.  
Typ  
Max.  
Units  
tP  
RXC Period  
40  
20  
20  
ns  
ns  
ns  
tWL  
tWH  
RXC Pulse Width Low  
RXC Pulse Width High  
(RXD[3:0], RXER, RXDV) Output Delay  
from Rising Edge of RXC  
tOD  
19  
25  
ns  
CRS to RXDV Latency  
CRS to RXD[3:0] Latency  
CRS to RXER Latency  
140  
52  
ns  
ns  
ns  
tRLAT  
60  
2017 Microchip Technology Inc.  
DS00002245B-page 43  
KSZ8041NL/RNL  
7.6  
RMII Timing  
FIGURE 7-6:  
RMII TIMING – DATA RECEIVED FROM RMII  
FIGURE 7-7:  
RMII TIMING – DATA INPUT TO RMII  
Receive  
Timing  
tcyc  
REFCLK  
CRSDV  
RXD[1:0]  
tod  
TABLE 7-6:  
RMII TIMING PARAMETERS – KSZ8041NL  
Timing  
Parameter  
Description  
Min.  
Typ  
Max.  
Units  
tcyc  
t1  
Clock Cycle  
Setup Time  
Hold Time  
4
20  
9
ns  
ns  
ns  
ns  
t2  
2
tod  
Output Delay  
3
TABLE 7-7:  
RMII TIMING PARAMETERS – KSZ8041RNL  
Description Min.  
Timing  
Parameter  
Typ  
Max.  
Units  
tcyc  
t1  
Clock Cycle  
Setup Time  
Hold Time  
4
20  
11  
13  
ns  
ns  
ns  
ns  
t2  
1
tod  
Output Delay  
9
DS00002245B-page 44  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
7.7  
Auto-Negotiation Timing  
FIGURE 7-8:  
Auto-Negotiation  
Fast Link Pulse (FLP) Timing  
AUTO-NEGOTIATION FAST LINK PULSE (FLP) TIMING  
FLP  
Burst  
FLP  
Burst  
TX+/TX-  
tFLPW  
tBTB  
Clock  
Pulse  
Data  
Pulse  
Clock  
Pulse  
Data  
Pulse  
TX+/TX-  
tPW  
tPW  
tCTD  
tCTC  
TABLE 7-8:  
AUTO-NEGOTIATION FAST LINK PULSE (FLP) TIMING PARAMETERS  
Timing  
Parameter  
Description  
FLP Burst to FLP Burst  
Min.  
Typ  
Max.  
Units  
tBTB  
tFLPW  
tPW  
8
16  
2
24  
ms  
ms  
ns  
FLP Burst Width  
Clock/Data Pulse Width  
Clock Pulse to Data Pulse  
Clock Pulse to Clock Pulse  
100  
64  
tCTD  
tCTC  
55.5  
111  
69.5  
139  
µs  
µs  
128  
Number of Clock/Data Pulse per FLP  
Burst  
17  
33  
2017 Microchip Technology Inc.  
DS00002245B-page 45  
KSZ8041NL/RNL  
7.8  
MDC/MDIO Timing  
FIGURE 7-9:  
MDC/MDIO TIMING  
tP  
MDC  
tMD1  
tMD2  
MDIO  
(PHY input)  
Valid  
Data  
Valid  
Data  
tMD3  
MDIO  
(PHY output)  
Valid  
Data  
TABLE 7-9:  
MDC/MDIO TIMING PARAMETERS  
Description  
Timing  
Parameter  
Min.  
Typ.  
Max.  
Unit  
tP  
MDC Period  
400  
ns  
ns  
MDIO (PHY Input) Setup to Rising Edge of  
MDC  
t1MD1  
10  
MDIO (PHY Input) Hold from Rising Edge of  
MDC  
tMD2  
tMD3  
4
ns  
ns  
MDIO (PHY Output) Delay from Rising  
Edge of MDC  
222  
DS00002245B-page 46  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
7.9  
Power-Up/Reset Timing  
The KSZ8041NL/RNL reset timing requirement is summarized in Figure 7-10 and Figure 7-10.  
FIGURE 7-10: POWER-UP/RESET TIMING  
TABLE 7-10: POWER-UP/RESET TIMING PARAMETERS  
Parameters  
Description  
Min  
Max  
Units  
Supply Voltage (VDDIO_3.3, VDDA_3.3) Rise  
Time  
tVR  
250  
µs  
tsr  
tcs  
tch  
trc  
Stable Supply Voltage to Reset High  
Configuration Setup Time  
10  
5
ms  
ns  
ns  
ns  
Configuration Hold Time  
5
Reset to Strap-In Pin Output  
6
The supply voltage (VDDIO_3.3 and VDDA_3.3) power-up waveform should be monotonic. The 250 µs minimum rise time  
is from 10% to 90%.  
After the deassertion of reset, it is recommended to wait a minimum of 100 µs before starting programming on the MIIM  
(MDC/MDIO) Interface.  
2017 Microchip Technology Inc.  
DS00002245B-page 47  
 
 
KSZ8041NL/RNL  
7.10 Reset Circuit  
The reset circuit in Figure 7-11 is recommended for powering up the KSZ8041NL/RNL if reset is triggered by the power  
supply.  
FIGURE 7-11:  
RECOMMENDED RESET CIRCUIT  
3.3V  
D1: 1N4148  
D1  
R
10k  
KSZ8041NL  
RST#  
C
10µF  
Figure 7-12 shows a reset circuit recommended for applications where reset is driven by another device (for example,  
the CPU or an FPGA). The reset out RST_OUT_n from CPU/FPGA provides the warm reset after power up reset. D2  
is required if using different VDDIO voltage between the switch and CPU/FPGA. Diode D2 should be selected to provide  
maximum 0.3V VF (Forward Voltage), for example, VISHAY BAT54, MSS1P2L. Alternatively, a level shifter device can  
also be used. D2 is not required if PHY and CPU/FPGA use same VDDIO voltage.  
FIGURE 7-12:  
RECOMMENDED RESET CIRCUIT FOR INTERFACING WITH CPU/FPGA RESET  
OUTPUT  
3.3V  
R
10k  
D1  
KSZ8041NL  
RST#  
CPU/FPGA  
RST_OUT_n  
D2  
C
10µF  
D1, D2: 1N4148  
DS00002245B-page 48  
2017 Microchip Technology Inc.  
 
 
KSZ8041NL/RNL  
7.11 Reference Circuits for LED Strapping Pins  
The Figure 7-13 shows the reference circuits for pull-up, float, and pull-down on the LED1 and LED0 strapping pins.  
FIGURE 7-13:  
REFERENCE CIRCUITS FOR LED STRAPPING PINS  
3.3V  
Pull-up  
220Ω  
4.7kΩ  
KSZ8041NL/RNL  
LED pin  
3.3V  
Float  
220Ω  
KSZ8041NL/RNL  
LED pin  
3.3V  
Pull-down  
220Ω  
KSZ8041NL/RNL  
LED pin  
1kΩ  
2017 Microchip Technology Inc.  
DS00002245B-page 49  
 
KSZ8041NL/RNL  
8.0  
SELECTION OF ISOLATION TRANSFORMER  
A 1:1 isolation transformer is required at the line interface. An isolation transformer with integrated common-mode  
chokes is recommended for exceeding FCC requirements.  
Table 8-1 gives the recommended transformer characteristics.  
TABLE 8-1:  
TRANSFORMER SELECTION CRITERIA  
Parameter  
Value  
Test Condition  
Turns Ratio  
1 CT : 1 CT  
350 H  
0.4 H  
Open-Circuit Inductance (minimum)  
Leakage Inductance (maximum)  
Inter-Winding Capacitance (typical)  
DC Resistance (typical)  
100 mV, 100 kHz, 8 mA  
1 MHz (minimum)  
12 pF  
0.9  
0 MHz – 65 MHz  
Insertion Loss (maximum)  
HIPOT (minimum)  
1.0 dB  
1500 VRMS  
TABLE 8-2:  
QUALIFIED SINGLE PORT MAGNETICS  
Magnetic Manufacturer  
Part Number  
Auto MDI-X  
Number of Ports  
Bel Fuse  
S558-5999-U7  
SI-46001  
SI-50170  
LF8505  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1
1
1
1
1
1
1
1
1
Bel Fuse (Mag Jack)  
Bel Fuse (Mag Jack)  
Delta  
LanKom  
LF-H41S  
H1102  
Pulse  
Pulse (low cost)  
Transpower  
TDK (Mag Jack)  
H1260  
HB726  
TLA-6T718  
DS00002245B-page 50  
2017 Microchip Technology Inc.  
 
KSZ8041NL/RNL  
9.0  
SELECTION OF REFERENCE CRYSTAL  
TABLE 9-1:  
TYPICAL REFERENCE CRYSTAL CHARACTERISTICS  
Characteristics  
Value  
Units  
Frequency  
25  
±50  
20  
MHz  
ppm  
pF  
Frequency Tolerance (maximum)  
Load Capacitance  
40  
Series Resistance  
2017 Microchip Technology Inc.  
DS00002245B-page 51  
KSZ8041NL/RNL  
10.0 PACKAGE OUTLINE & RECOMMENDED LAND PATTERN  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
FIGURE 10-1:  
32-LEAD QFN 5X5 PACKAGE  
TITLE  
32 LEAD QFN 5x5mm PACKAGE OUTLINE & RECOMMENDED LAND PATTERN  
DRAWING #  
UNIT  
MM  
QFN55-32LD-PL-1  
DS00002245B-page 52  
2017 Microchip Technology Inc.  
 
KSZ8041NL/RNL  
APPENDIX A: DATA SHEET REVISION HISTORY  
TABLE A-1:  
REVISION HISTORY  
Section/Figure/Entry  
Figure 10-1  
Revision  
Correction  
Updated the 32-LEAD QFN 5X5 Package  
illustration.  
DS00002245B (11-17-17)  
Minor text changes throughout.  
DS00002245A (05-02-17)  
ALL  
KSZ8041NL/RNL Datasheet initial conversion to  
Microchip DS00002245A.  
2017 Microchip Technology Inc.  
DS00002245B-page 53  
KSZ8041NL/RNL  
THE MICROCHIP WEB SITE  
Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make  
files and information easily available to customers. Accessible by using your favorite Internet browser, the web site con-  
tains the following information:  
Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s  
guides and hardware support documents, latest software releases and archived software  
General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion  
groups, Microchip consultant program member listing  
Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of semi-  
nars and events, listings of Microchip sales offices, distributors and factory representatives  
CUSTOMER CHANGE NOTIFICATION SERVICE  
Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive  
e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or  
development tool of interest.  
To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notifi-  
cation” and follow the registration instructions.  
CUSTOMER SUPPORT  
Users of Microchip products can receive assistance through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales  
offices are also available to help customers. A listing of sales offices and locations is included in the back of this docu-  
ment.  
Technical support is available through the web site at: http://microchip.com/support  
DS00002245B-page 54  
Advance Information  
2017 Microchip Technology Inc.  
KSZ8041NL/RNL  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, for example, on pricing or delivery, refer to the factory or the listed sales office.  
X
Examples:  
PART NO.  
Device  
X
X
X
a)  
b)  
c)  
KSZ8041NL – 10BASE-T/100BASE-TX Physi-  
cal Layer Transceiver, MII/RMII, 32-pin QFN  
Commercial temperature  
KSZ8041NLI – 10BASE-T/100BASE-TX Phys-  
ical Layer Transceiver, MII/RMII, 32-pin QFN,  
Industrial Temperature  
Temperature  
Power  
Option  
Interface  
Package  
Device:  
KSZ8041 – 10BASE-T/100BASE-TX Physical Layer  
Transceiver  
KSZ8041NL-AM  
– 10BASE-T/100BASE-TX  
Physical Layer Transceiver, MII/RMII, 32-pin  
QFN  
Industrial temperature, Automotive Grade 3  
Interface:  
Blank  
R
=
=
MII/RMII  
RMII  
d)  
e)  
f)  
KSZ8041RNLU  
10BASE-T/100BASE-TX  
Physical Layer Transceiver, RMII, 32-pin QFN  
Automotive Grade 3  
Package:  
N
L
=
=
32-pin QFN  
KSZ8041RNL  
10BASE-T/100BASE-TX  
Physical Layer Transceiver, RMII, 32-pin QFN,  
Commercial temperature  
Power Option:  
Temperature:  
Integrated LDO/LDO Controller/Regulator  
KSZ8041RNLI  
10BASE-T/100BASE-TX  
Physical Layer Transceiver, RMII, 32-pin QFN,  
Industrial temperature  
Blank  
I
U
=
=
=
Commercial (0°C to +70°C)  
Industrial (–40°C to +85°C)  
Automotive Grade 3 (–40°C to +85°C)  
(RMII Versions Only)  
AM  
=
Automotive Grade 3 (–40°C to +85°C)  
(MII/RMII Version Only)  
2017 Microchip Technology Inc.  
DS00002245B-page 55  
KSZ8041NL/RNL  
NOTES:  
DS00002245B-page 56  
2017 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be  
superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO  
REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of  
Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implic-  
itly or otherwise, under any Microchip intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF,  
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR,  
MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC,  
SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and  
other countries.  
ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision  
Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard,  
CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,  
EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench,  
MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher,  
SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other  
countries.  
All other trademarks mentioned herein are property of their respective companies.  
© 2017, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-2384-3  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
CERTIFIEDBYDNVꢀ  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS16949==ꢀ  
2017 Microchip Technology Inc.  
Advance Information  
DS00002245B-page 57  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7289-7561  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS00002245B-page 58  
2017 Microchip Technology Inc.  
10/25/17  

相关型号:

KSZ8041NL-TR

DATACOM, ETHERNET TRANSCEIVER, QCC32
MICROCHIP

KSZ8041NLAM

10Base-T/100Base-TX Physical Layer Transceiver
MICREL

KSZ8041NLAM-TR

DATACOM, QCC32
MICROCHIP

KSZ8041NLAMTR

DATACOM, QCC32, 5 X 5 MM, LEAD FREE, MLF-32
MICROCHIP

KSZ8041NLAMTR

DATACOM, QCC32, 5 X 5 MM, LEAD FREE, MLF-32
MICREL

KSZ8041NLI

10Base-T/100Base-TX Physical Layer Transceiver
MICREL

KSZ8041NLITR

10Base-T/100Base-TX Physical Layer Transceiver
MICREL

KSZ8041NLITR

DATACOM, ETHERNET TRANSCEIVER, QCC32, 5 X 5 MM, LEAD FREE, MLF-32
MICROCHIP

KSZ8041NLJ

10/100 Ethernet Transceiver with Extended Temperature Support
MICREL

KSZ8041NLJ-TR

暂无描述
MICROCHIP

KSZ8041NLJ_10

10/100 Ethernet Transceiver with Extended Temperature Support
MICREL

KSZ8041NLTR

DATACOM, ETHERNET TRANSCEIVER, QCC32, 5 X 5 MM, LEAD FREE, MLF-32
MICREL