KSZ8041NLAM [MICREL]

10Base-T/100Base-TX Physical Layer Transceiver; 10BASE-T / 100BASE-TX物理层收发器
KSZ8041NLAM
型号: KSZ8041NLAM
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

10Base-T/100Base-TX Physical Layer Transceiver
10BASE-T / 100BASE-TX物理层收发器

电信集成电路 以太网:16GBASE-T
文件: 总45页 (文件大小:585K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KSZ8041NL  
10Base-T/100Base-TX  
Physical Layer Transceiver  
Data Sheet Rev. 1.2  
General Description  
The KSZ8041NL is a single supply 10Base-T/100Base-TX  
Physical Layer Transceiver, which provides MII/RMII  
interfaces to transmit and receive data. An unique mixed  
signal design extends signaling distance while reducing  
power consumption.  
The KSZ8041NL represents a new level of features and  
performance and is an ideal choice of physical layer  
transceiver for 10Base-T/100Base-TX applications.  
The KSZ8041NL comes in a 32-pin, lead-free MLF® (QFN  
per JDEC) package (See Ordering Information).  
HP Auto MDI/MDI-X provides the most robust solution for  
eliminating the need to differentiate between crossover  
and straight-through cables.  
Data sheets and support documentation can be found on  
Micrel’s web site at: www.micrel.com.  
Functional Diagram  
MicroLeadFrame and MLF are registered trademarks of Amkor Technology, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-071808-1.2  
July 2008  
Micrel, Inc.  
KSZ8041NL  
Features  
Applications  
Single-chip 10Base-T/100Base-TX physical layer  
Printer  
LOM  
Game Console  
IPTV  
IP Phone  
IP Set-top Box  
solution  
Fully compliant to IEEE 802.3u Standard  
Low power CMOS design, power consumption of  
<180mW  
HP auto MDI/MDI-X for reliable detection and  
correction for straight-through and crossover cables  
with disable and enable option  
Robust operation over standard cables  
Power down and power saving modes  
MII interface support  
RMII interface support with external 50MHz system  
clock  
MIIM (MDC/MDIO) management bus to 6.25MHz for  
rapid PHY register configuration  
Interrupt pin option  
Programmable LED outputs for link, activity and  
speed  
ESD rating (6kV)  
Single power supply (3.3V)  
Built-in 1.8V regulator for core  
Available in 32-pin (5mm x 5mm) MLF® package  
Ordering Information  
Part Number  
Temp. Range  
0°C to 70°C  
Package  
Lead Finish  
Pb-Free  
Description  
KSZ8041NL  
KSZ8041NLI (1)  
KSZ8041NL AM(1)  
32-Pin MLF®  
32-Pin MLF®  
32-Pin MLF®  
Commercial Temperature Device  
Industrial Temperature Device  
Automotive Qualified Device  
-40°C to 85°C  
-40°C to 85°C  
Pb-Free  
Pb-Free  
Note:  
1. Contact factory for lead time.  
July 2008  
2
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Revision History  
Revision  
1.0  
Date  
Summary of Changes  
10/13/06  
4/27/07  
Data sheet created.  
1.1  
Added maximum MDC clock speed.  
Added 40K +/-30% to note 1 of Pin Description and Strapping Options tables for internal pull-ups/pull-  
downs.  
Changed Model Number in Register 3h – PHY Identifier 2.  
Changed polarity (swapped definition) of DUPLEX strapping pin.  
Removed DUPLEX strapping pin update to Register 4h – Auto-Negotiation Advertisement bits [8, 6].  
Set “Disable power saving” as the default for Register 1Fh bit [10].  
Corrected LED1 (pin 31) definition for Activity in LED mode 01.  
Added Symbol Error to MII/RMII Receive Error description and Register 15h – RXER Counter.  
Added a 100pF capacitor on REXT (pin 10) in Pin Description table.  
Added Automotive Qualified part number to Ordering Information.  
Added maximum case temperature.  
1.2  
7/18/08  
Added thermal resistance (θJC).  
Added chip maximum current consumption.  
July 2008  
3
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Contents  
Pin Configuration ..................................................................................................................................................................8  
Pin Description......................................................................................................................................................................9  
Strapping Options...............................................................................................................................................................12  
Functional Description .......................................................................................................................................................13  
100Base-TX Transmit.......................................................................................................................................................13  
100Base-TX Receive........................................................................................................................................................13  
PLL Clock Synthesizer......................................................................................................................................................13  
Scrambler/De-scrambler (100Base-TX only)....................................................................................................................13  
10Base-T Transmit ...........................................................................................................................................................13  
10Base-T Receive ............................................................................................................................................................13  
SQE and Jabber Function (10Base-T only)......................................................................................................................14  
Auto-Negotiation...............................................................................................................................................................14  
MII Management (MIIM) Interface ....................................................................................................................................16  
Interrupt (INTRP) ..............................................................................................................................................................16  
MII Data Interface .............................................................................................................................................................16  
MII Signal Definition..........................................................................................................................................................17  
Transmit Clock (TXC)...................................................................................................................................................17  
Transmit Enable (TXEN) ..............................................................................................................................................17  
Transmit Data [3:0] (TXD[3:0]) .....................................................................................................................................17  
Receive Clock (RXC)....................................................................................................................................................17  
Receive Data Valid (RXDV)..........................................................................................................................................18  
Receive Data [3:0] (RXD[3:0])......................................................................................................................................18  
Receive Error (RXER) ..................................................................................................................................................18  
Carrier Sense (CRS) ....................................................................................................................................................18  
Collision (COL) .............................................................................................................................................................18  
Reduced MII (RMII) Data Interface...................................................................................................................................18  
RMII Signal Definition .......................................................................................................................................................19  
Reference Clock (REF_CLK) .......................................................................................................................................19  
Transmit Enable (TX_EN) ............................................................................................................................................19  
Transmit Data [1:0] (TXD[1:0]) .....................................................................................................................................19  
Carrier Sense/Receive Data Valid (CRS_DV)..............................................................................................................19  
Receive Data [1:0] (RXD[1:0])......................................................................................................................................19  
Receive Error (RX_ER) ................................................................................................................................................19  
Collision Detection........................................................................................................................................................20  
HP Auto MDI/MDI-X..........................................................................................................................................................20  
Straight Cable...............................................................................................................................................................20  
Crossover Cable...........................................................................................................................................................21  
Power Management..........................................................................................................................................................22  
Power Saving Mode .....................................................................................................................................................22  
Power Down Mode .......................................................................................................................................................22  
Reference Clock Connection Options ..............................................................................................................................22  
July 2008  
4
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Reference Circuit for Power and Ground Connections ....................................................................................................23  
Register Map........................................................................................................................................................................24  
Register Description...........................................................................................................................................................24  
Absolute Maximum Ratings(1) ............................................................................................................................................31  
Operating Ratings(2) ............................................................................................................................................................31  
Electrical Characteristics(4) ................................................................................................................................................31  
Electrical Characteristics(6) ................................................................................................................................................32  
Timing Diagrams .................................................................................................................................................................33  
MII SQE Timing (10Base-T) .............................................................................................................................................33  
MII Transmit Timing (10Base-T).......................................................................................................................................34  
MII Receive Timing (10Base-T)........................................................................................................................................35  
MII Transmit Timing (100Base-TX) ..................................................................................................................................36  
MII Receive Timing (100Base-TX) ...................................................................................................................................37  
RMII Timing.......................................................................................................................................................................38  
Auto-Negotiation Timing ...................................................................................................................................................39  
MDC/MDIO Timing ...........................................................................................................................................................40  
Reset Timing.....................................................................................................................................................................41  
Reset Circuit ........................................................................................................................................................................42  
Reference Circuits for LED Strapping Pins......................................................................................................................43  
Selection of Isolation Transformer....................................................................................................................................44  
Selection of Reference Crystal ..........................................................................................................................................44  
Package Information...........................................................................................................................................................45  
July 2008  
5
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
List of Figures  
Figure 1. Auto-Negotiation Flow Chart.................................................................................................................................15  
Figure 2. Typical Straight Cable Connection .......................................................................................................................20  
Figure 3. Typical Crossover Cable Connection ...................................................................................................................21  
Figure 4. 25MHz Crystal / Oscillator Reference Clock for MII Mode ...................................................................................22  
Figure 5. 50MHz Oscillator Reference Clock for RMII Mode...............................................................................................22  
Figure 6. KSZ8041NL Power and Ground Connections......................................................................................................23  
Figure 7. MII SQE Timing (10Base-T) .................................................................................................................................33  
Figure 8. MII Transmit Timing (10Base-T)...........................................................................................................................34  
Figure 9. MII Receive Timing (10Base-T)............................................................................................................................35  
Figure 10. MII Transmit Timing (100Base-TX).....................................................................................................................36  
Figure 11. MII Receive Timing (100Base-TX)......................................................................................................................37  
Figure 12. RMII Timing – Data Received from RMII............................................................................................................38  
Figure 13. RMII Timing – Data Input to RMII .......................................................................................................................38  
Figure 14. Auto-Negotiation Fast Link Pulse (FLP) Timing .................................................................................................39  
Figure 15. MDC/MDIO Timing..............................................................................................................................................40  
Figure 16. Reset Timing.......................................................................................................................................................41  
Figure 17. Recommended Reset Circuit..............................................................................................................................42  
Figure 18. Recommended Reset Circuit for interfacing with CPU/FPGA Reset Output......................................................42  
Figure 19. Reference Circuits for LED Strapping Pins.........................................................................................................43  
July 2008  
6
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
List of Tables  
Table 1. MII Management Frame Format ............................................................................................................................16  
Table 2. MII Signal Definition ...............................................................................................................................................17  
Table 3. RMII Signal Description..........................................................................................................................................19  
Table 4. MDI/MDI-X Pin Definition .......................................................................................................................................20  
Table 5. KSZ8041NL Power Pin Description.......................................................................................................................23  
Table 6. MII SQE Timing (10Base-T) Parameters...............................................................................................................33  
Table 7. MII Transmit Timing (10Base-T) Parameters.........................................................................................................34  
Table 8. MII Receive Timing (10Base-T) Parameters..........................................................................................................35  
Table 9. MII Transmit Timing (100Base-TX) Parameters....................................................................................................36  
Table 10. MII Receive Timing (100Base-TX) Parameters...................................................................................................37  
Table 11. RMII Timing Parameters......................................................................................................................................38  
Table 12. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters...............................................................................39  
Table 13. MDC/MDIO Timing Parameters...........................................................................................................................40  
Table 14. Reset Timing Parameters ....................................................................................................................................41  
Table 15. Transformer Selection Criteria.............................................................................................................................44  
Table 16. Qualified Single Port Magnetics...........................................................................................................................44  
Table 17. Typical Reference Crystal Characteristics...........................................................................................................44  
July 2008  
7
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Pin Configuration  
32-Pin (5mm x 5mm) MLF®  
July 2008  
8
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Pin Description  
Type(1)  
Gnd  
Pin Number  
Pin Name  
Pin Function  
1
2
3
4
5
6
7
8
GND  
Ground  
VDDPLL_1.8  
VDDA_3.3  
RX-  
P
1.8V analog VDD  
P
3.3V analog VDD  
I/O  
I/O  
I/O  
I/O  
O
Physical receive or transmit signal (- differential)  
Physical receive or transmit signal (+ differential)  
Physical transmit or receive signal (- differential)  
Physical transmit or receive signal (+ differential)  
Crystal feedback  
RX+  
TX-  
TX+  
XO  
This pin is used only in MII mode when a 25 MHz crystal is used.  
This pin is a no connect if oscillator or external clock source is used, or if RMII  
mode is selected.  
9
XI /  
I
Crystal / Oscillator / External Clock Input  
REFCLK  
MII Mode:  
25MHz +/-50ppm (crystal, oscillator, or external clock)  
50MHz +/-50ppm (oscillator, or external clock only)  
RMII Mode:  
10  
REXT  
I/O  
Set physical transmit output current  
Connect a 6.49KΩ resistor in parallel with a 100pF capacitor to ground on this  
pin. See KSZ8041NL reference schematics.  
11  
12  
13  
MDIO  
MDC  
I/O  
Management Interface (MII) Data I/O  
This pin requires an external 4.7KΩ pull-up resistor.  
Management Interface (MII) Clock Input  
I
This pin is synchronous to the MDIO data interface.  
MII Mode:  
Receive Data Output[3](2)  
/
RXD3 /  
Ipu/O  
PHYAD0  
Config Mode:  
The pull-up/pull-down value is latched as PHYADDR[0] during  
power-up / reset. See “Strapping Options” section for details.  
14  
15  
RXD2 /  
Ipd/O  
Ipd/O  
MII Mode:  
Receive Data Output[2](2)  
/
PHYAD1  
Config Mode:  
The pull-up/pull-down value is latched as PHYADDR[1] during  
power-up / reset. See “Strapping Options” section for details.  
RXD1 /  
MII Mode:  
Receive Data Output[1](2)  
Receive Data Output[1](3)  
/
/
RXD[1] /  
PHYAD2  
RMII Mode:  
Config Mode:  
The pull-up/pull-down value is latched as PHYADDR[2] during  
power-up / reset. See “Strapping Options” section for details.  
16  
RXD0 /  
Ipu/O  
MII Mode:  
Receive Data Output[0](2)  
Receive Data Output[0](3)  
/
/
RXD[0] /  
DUPLEX  
RMII Mode:  
Config Mode:  
Latched as DUPLEX (register 0h, bit 8) during power-up /  
reset. See “Strapping Options” section for details.  
17  
18  
VDDIO_3.3  
RXDV /  
P
3.3V digital VDD  
MII Mode:  
Ipd/O  
Receive Data Valid Output /  
CRSDV /  
CONFIG2  
RMII Mode:  
Config Mode:  
Carrier Sense/Receive Data Valid Output /  
The pull-up/pull-down value is latched as CONFIG2 during  
power-up / reset. See “Strapping Options” section for details.  
19  
RXC  
O
MII Mode:  
Receive Clock Output  
July 2008  
9
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Type(1)  
Ipd/O  
Pin Number  
Pin Name  
Pin Function  
20  
RXER /  
RX_ER /  
ISO  
MII Mode:  
Receive Error Output /  
Receive Error Output /  
RMII Mode:  
Config Mode:  
The pull-up/pull-down value is latched as ISOLATE during  
power-up / reset. See “Strapping Options” section for details.  
21  
INTRP  
Opu  
Interrupt Output: Programmable Interrupt Output  
Register 1Bh is the Interrupt Control/Status Register for programming the interrupt  
conditions and reading the interrupt status. Register 1Fh bit 9 sets the interrupt  
output to active low (default) or active high.  
22  
23  
TXC  
O
I
MII Mode:  
MII Mode:  
RMII Mode:  
Transmit Clock Output  
Transmit Enable Input /  
Transmit Enable Input  
TXEN /  
TX_EN  
TXD0 /  
TXD[0]  
MII Mode:  
RMII Mode:  
MII Mode:  
RMII Mode:  
MII Mode:  
Transmit Data Input[0](4)  
Transmit Data Input[0](5)  
Transmit Data Input[1](4)  
Transmit Data Input[1](5)  
Transmit Data Input[2](4)  
Transmit Data Input[3](4)  
Collision Detect Output /  
/
/
24  
25  
I
I
TXD1 /  
TXD[1]  
26  
27  
28  
TXD2  
TXD3  
I
/
/
I
MII Mode:  
COL /  
Ipd/O  
MII Mode:  
CONFIG0  
Config Mode:  
The pull-up/pull-down value is latched as CONFIG0 during  
power-up / reset. See “Strapping Options” section for details.  
29  
30  
CRS /  
Ipd/O  
Ipu/O  
MII Mode:  
Carrier Sense Output /  
CONFIG1  
Config Mode:  
The pull-up/pull-down value is latched as CONFIG1 during  
power-up / reset. See “Strapping Options” section for details.  
LED0 /  
LED Output:  
Config Mode:  
Programmable LED0 Output /  
NWAYEN  
Latched as Auto-Negotiation Enable (register 0h, bit 12) during  
power-up / reset. See “Strapping Options” section for details.  
The LED0 pin is programmable via register 1Eh bits [15:14], and is defined as  
follows.  
LED mode = [00]  
Link/Activity  
No Link  
Link  
Pin State  
LED Definition  
OFF  
H
L
ON  
Activity  
Toggle  
Blinking  
LED mode = [01]  
Link  
Pin State  
LED Definition  
No Link  
Link  
H
L
OFF  
ON  
LED mode = [10]  
Reserved  
LED mode = [11]  
Reserved  
July 2008  
10  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Type(1)  
Ipu/O  
Pin Number  
Pin Name  
Pin Function  
31  
LED1 /  
LED Output:  
Config Mode:  
Programmable LED1 Output /  
SPEED  
Latched as SPEED (register 0h, bit 13) during power-up / reset.  
See “Strapping Options” section for details.  
The LED1 pin is programmable via register 1Eh bits [15:14], and is defined as  
follows.  
LED mode = [00]  
Speed  
10BT  
Pin State  
LED Definition  
H
L
OFF  
ON  
100BT  
LED mode = [01]  
Activity  
Pin State  
H
LED Definition  
OFF  
No Activity  
Activity  
Toggle  
Blinking  
LED mode = [10]  
Reserved  
LED mode = [11]  
Reserved  
32  
RST#  
GND  
I
Chip Reset (active low)  
Ground  
PADDLE  
Notes:  
Gnd  
1. P = Power supply.  
Gnd = Ground.  
I = Input.  
O = Output.  
I/O = Bi-directional.  
Ipd = Input with internal pull-down (40K +/-30%).  
Ipu = Input with internal pull-up (40K +/-30%).  
Opu = Output with internal pull-up (40K +/-30%).  
Ipu/O = Input with internal pull-up (40K +/-30%) during power-up/reset; output pin otherwise.  
Ipd/O = Input with internal pull-down (40K +/-30%) during power-up/reset; output pin otherwise.  
2. MII Rx Mode: The RXD[3..0] bits are synchronous with RXCLK. When RXDV is asserted, RXD[3..0] presents valid data to MAC through the MII.  
RXD[3..0] is invalid when RXDV is de-asserted.  
3. RMII Rx Mode: The RXD[1:0] bits are synchronous with REF_CLK. For each clock period in which CRS_DV is asserted, two bits of recovered  
data are sent from the PHY.  
4. MII Tx Mode: The TXD[3..0] bits are synchronous with TXCLK. When TXEN is asserted, TXD[3..0] presents valid data from the MAC through  
the MII. TXD[3..0] has no effect when TXEN is de-asserted.  
5. RMII Tx Mode: The TXD[1:0] bits are synchronous with REF_CLK. For each clock period in which TX_EN is asserted, two bits of data are  
received by the PHY from the MAC.  
July 2008  
11  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Strapping Options  
Type(1)  
Ipd/O  
Pin Number  
Pin Name  
Pin Function  
15  
14  
13  
PHYAD2  
PHYAD1  
PHYAD0  
The PHY Address is latched at power-up / reset and is configurable to any value from  
1 to 7.  
Ipd/O  
Ipu/O  
The default PHY Address is 00001.  
PHY Address bits [4:3] are always set to ‘00’.  
18  
29  
28  
CONFIG2  
CONFIG1  
CONFIG0  
Ipd/O  
Ipd/O  
Ipd/O  
The CONFIG[2:0] strap-in pins are latched at power-up / reset and are defined as  
follows:  
CONFIG[2:0]  
Mode  
000  
MII (default)  
001  
RMII  
010  
Reserved – not used  
Reserved – not used  
PCS Loopback  
Reserved – not used  
Reserved – not used  
Reserved – not used  
011  
100  
101  
110  
111  
20  
31  
ISO  
Ipd/O  
Ipu/O  
ISOLATE mode  
Pull-up = Enable  
Pull-down (default) = Disable  
During power-up / reset, this pin value is latched into register 0h bit 10.  
SPEED mode  
SPEED  
Pull-up (default) = 100Mbps  
Pull-down = 10Mbps  
During power-up / reset, this pin value is latched into register 0h bit 13 as the Speed  
Select, and also is latched into register 4h (Auto-Negotiation Advertisement) as the  
Speed capability support.  
16  
30  
DUPLEX  
NWAYEN  
Ipu/O  
Ipu/O  
DUPLEX mode  
Pull-up (default) = Half Duplex  
Pull-down = Full Duplex  
During power-up / reset, this pin value is latched into register 0h bit 8 as the Duplex  
Mode.  
Nway Auto-Negotiation Enable  
Pull-up (default) = Enable Auto-Negotiation  
Pull-down = Disable Auto-Negotiation  
During power-up / reset, this pin value is latched into register 0h bit 12.  
Note:  
1. Ipu/O = Input with internal pull-up (40K +/-30%) during power-up/reset; output pin otherwise.  
Ipd/O = Input with internal pull-down (40K +/-30%) during power-up/reset; output pin otherwise.  
Pin strap-ins are latched during power-up or reset. In some systems, the MAC receive input pins may drive high during  
power-up or reset, and consequently cause the PHY strap-in pins on the MII/RMII signals to be latched high. In this case,  
it is recommended to add 1K pull-downs on these PHY strap-in pins to ensure the PHY does not strap-in to ISOLATE or  
PCS Loopback mode, or is not configured with an incorrect PHY Address.  
July 2008  
12  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Functional Description  
The KSZ8041NL is a single 3.3V supply Fast Ethernet transceiver. It is fully compliant with the IEEE 802.3u Specification.  
On the media side, the KSZ8041NL supports 10Base-T and 100Base-TX with HP auto MDI/MDI-X for reliable detection of  
and correction for straight-through and crossover cables.  
The KSZ8041NL offers a choice of MII or RMII data interface connection with the MAC processor. The MII management  
bus option gives the MAC processor complete access to the KSZ8041NL control and status registers. Additionally, an  
interrupt pin eliminates the need for the processor to poll for PHY status change.  
Physical signal transmission and reception are enhanced through the use of patented analog circuitries that make the  
design more efficient and allow for lower power consumption and smaller chip die size.  
100Base-TX Transmit  
The 100Base-TX transmit function performs parallel-to-serial conversion, 4B/5B coding, scrambling, NRZ-to-NRZI  
conversion, and MLT3 encoding and transmission.  
The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125MHz serial bit  
stream. The data and control stream is then converted into 4B/5B coding, followed by a scrambler. The serialized data is  
further converted from NRZ-to-NRZI format, and then transmitted in MLT3 current output.  
The output current is set by an external 6.49kΩ 1% resistor for the 1:1 transformer ratio. It has typical rise/fall times of 4  
ns and complies with the ANSI TP-PMD standard regarding amplitude balance, overshoot and timing jitter. The wave-  
shaped 10Base-T output drivers are also incorporated into the 100Base-TX drivers.  
100Base-TX Receive  
The 100Base-TX receiver function performs adaptive equalization, DC restoration, MLT3-to-NRZI conversion, data and  
clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.  
The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair  
cable. Since the amplitude loss and phase distortion is a function of the cable length, the equalizer must adjust its  
characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on  
comparisons of incoming signal strength against some known cable characteristics, and then tunes itself for optimization.  
This is an ongoing process and self-adjusts against environmental changes such as temperature variations.  
Next, the equalized signal goes through a DC restoration and data conversion block. The DC restoration circuit is used to  
compensate for the effect of baseline wander and to improve the dynamic range. The differential data conversion circuit  
converts the MLT3 format back to NRZI. The slicing threshold is also adaptive.  
The clock recovery circuit extracts the 125MHz clock from the edges of the NRZI signal. This recovered clock is then used  
to convert the NRZI signal into the NRZ format. This signal is sent through the de-scrambler followed by the 4B/5B  
decoder. Finally, the NRZ serial data is converted to the MII format and provided as the input data to the MAC.  
PLL Clock Synthesizer  
The KSZ8041NL generates 125MΗz, 25MΗz and 20MΗz clocks for system timing. Internal clocks are generated from an  
external 25MHz crystal or oscillator. In RMII mode, these internal clocks are generated from an external 50MHz oscillator  
or system clock.  
Scrambler/De-scrambler (100Base-TX only)  
The purpose of the scrambler is to spread the power spectrum of the signal in order to reduce EMI and baseline wander.  
10Base-T Transmit  
The 10Base-T drivers are incorporated with the 100Base-TX drivers to allow for transmission using the same magnetic.  
The drivers also perform internal wave-shaping and pre-emphasize, and output 10Base-T signals with a typical amplitude  
of 2.5V peak. The 10Base-T signals have harmonic contents that are at least 27dB below the fundamental frequency  
when driven by an all-ones Manchester-encoded signal.  
10Base-T Receive  
On the receive side, input buffer and level detecting squelch circuits are employed. A differential input receiver circuit and  
a PLL performs the decoding function. The Manchester-encoded data stream is separated into clock signal and NRZ data.  
A squelch circuit rejects signals with levels less than 400 mV or with short pulse widths to prevent noise at the RX+ and  
RX- inputs from falsely trigger the decoder. When the input exceeds the squelch limit, the PLL locks onto the incoming  
July 2008  
13  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
signal and the KSZ8041NL decodes a data frame. The receive clock is kept active during idle periods in between data  
reception.  
SQE and Jabber Function (10Base-T only)  
In 10Base-T operation, a short pulse is put out on the COL pin after each frame is transmitted. This SQE Test is required  
as a test of the 10Base-T transmit/receive path. If transmit enable (TXEN) is high for more than 20 ms (jabbering), the  
10Base-T transmitter is disabled and COL is asserted high. If TXEN is then driven low for more than 250 ms, the 10Base-  
T transmitter is re-enabled and COL is de-asserted (returns to low).  
Auto-Negotiation  
The KSZ8041NL conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3u specification. Auto-  
negotiation is enabled by either hardware pin strapping (pin 30) or software (register 0h bit 12).  
Auto-negotiation allows unshielded twisted pair (UTP) link partners to select the highest common mode of operation. Link  
partners advertise their capabilities to each other, and then compare their own capabilities with those they received from  
their link partners. The highest speed and duplex setting that is common to the two link partners is selected as the mode  
of operation.  
The following list shows the speed and duplex operation mode from highest to lowest.  
Priority 1: 100Base-TX, full-duplex  
Priority 2: 100Base-TX, half-duplex  
Priority 3: 10Base-T, full-duplex  
Priority 4: 10Base-T, half-duplex  
If auto-negotiation is not supported or the KSZ8041NL link partner is forced to bypass auto-negotiation, the KSZ8041NL  
sets its operating mode by observing the signal at its receiver. This is known as parallel detection, and allows the  
KSZ8041NL to establish link by listening for a fixed signal protocol in the absence of auto-negotiation advertisement  
protocol.  
The auto-negotiation link up process is shown in the following flow chart.  
July 2008  
14  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Start Auto Negotiation  
N
o
Parallel  
Operation  
Force Link Setting  
Yes  
Listen for 10BASE-T  
Link Pulses  
Bypass Auto Negotiation  
and Set Link Mode  
Attempt Auto  
Negotiation  
Listen for 100BASE-TX  
Idles  
No  
Join  
Flow  
Link Mode Set ?  
Yes  
Link Mode Set  
Figure 1. Auto-Negotiation Flow Chart  
July 2008  
15  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
MII Management (MIIM) Interface  
The KSZ8041NL supports the IEEE 802.3 MII Management Interface, also known as the Management Data Input / Output  
(MDIO) Interface. This interface allows upper-layer devices to monitor and control the state of the KSZ8041NL. An  
external device with MIIM capability is used to read the PHY status and/or configure the PHY settings. Additional details  
on the MIIM interface can be found in Clause 22.2.4.5 of the IEEE 802.3u Specification.  
The MIIM interface consists of the following:  
A physical connection that incorporates the clock line (MDC) and the data line (MDIO).  
A specific protocol that operates across the aforementioned physical connection that allows an external controller  
to communicate with one or more KSZ8041NL devices. Each KSZ8041NL device is assigned a PHY address  
between 1 and 7 by the PHYAD[2:0] strapping pins.  
An internal addressable set of thirteen 16-bit MDIO registers. Register [0:6] are required, and their functions are  
defined by the IEEE 802.3u Specification. The additional registers are provided for expanded functionality.  
The KSZ8041NL supports MIIM in both MII mode and RMII mode.  
The following table shows the MII Management frame format for the KSZ8041NL.  
Preamble  
Start of  
Frame  
Read/Write PHY  
REG  
TA  
Data  
Idle  
OP Code  
Address  
Address  
Bits [4:0]  
RRRRR  
RRRRR  
Bits [15:0]  
Bits [4:0]  
00AAA  
Read  
Write  
32 1’s  
32 1’s  
01  
01  
10  
01  
Z0  
10  
DDDDDDDD_DDDDDDDD  
DDDDDDDD_DDDDDDDD  
Z
Z
00AAA  
Table 1. MII Management Frame Format  
Interrupt (INTRP)  
INTRP (pin 21) is an optional interrupt signal that is used to inform the external controller that there has been a status  
update in the KSZ8041NL PHY register. Bits[15:8] of register 1Bh are the interrupt control bits, and are used to enable  
and disable the conditions for asserting the INTRP signal. Bits[7:0] of register 1Bh are the interrupt status bits, and are  
used to indicate which interrupt conditions have occurred. The interrupt status bits are cleared after reading register 1Bh.  
Bit 9 of register 1Fh sets the interrupt level to active high or active low.  
MII Data Interface  
The Media Independent Interface (MII) is specified in Clause 22 of the IEEE 802.3u Specification. It provides a common  
interface between physical layer and MAC layer devices, and has the following key characteristics:  
Supports 10Mbps and 100Mbps data rates.  
Uses a 25MHz reference clock, sourced by the PHY.  
Provides independent 4-bit wide (nibble) transmit and receive data paths.  
Contains two distinct groups of signals: one for transmission and the other for reception.  
By default, the KSZ8041NL is configured in MII mode after it is power-up or reset with the following:  
A 25MHz crystal connected to XI, XO (pins 9, 8), or an external 25MHz clock source (oscillator) connected to XI.  
CONFIG[2:0] (pins 18, 29, 28) set to ‘000’ (default setting).  
July 2008  
16  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
MII Signal Definition  
The following table describes the MII signals. Refer to Clause 22 of the IEEE 802.3u Specification for detailed information.  
Direction  
(with respect to PHY,  
KSZ8041NL signal)  
MII  
Direction  
(with respect to MAC)  
Description  
Signal Name  
TXC  
Output  
Input  
Transmit Clock  
(2.5MHz for 10Mbps; 25MHz for 100Mbps)  
TXEN  
TXD[3:0]  
RXC  
Input  
Output  
Output  
Input  
Transmit Enable  
Input  
Transmit Data [3:0]  
Receive Clock  
Output  
(2.5MHz for 10Mbps; 25MHz for 100Mbps)  
Receive Data Valid  
Receive Data [3:0]  
Receive Error  
RXDV  
RXD[3:0]  
RXER  
CRS  
Output  
Output  
Output  
Output  
Output  
Input  
Input  
Input, or (not required)  
Input  
Input  
Carrier Sense  
COL  
Collision Detection  
Table 2. MII Signal Definition  
Transmit Clock (TXC)  
TXC is sourced by the PHY. It is a continuous clock that provides the timing reference for TXEN and TXD[3:0].  
TXC is 2.5MHz for 10Mbps operation and 25MHz for 100Mbps operation.  
Transmit Enable (TXEN)  
TXEN indicates the MAC is presenting nibbles on TXD[3:0] for transmission. It is asserted synchronously with the first  
nibble of the preamble and remains asserted while all nibbles to be transmitted are presented on the MII, and is negated  
prior to the first TXC following the final nibble of a frame.  
TXEN transitions synchronously with respect to TXC.  
Transmit Data [3:0] (TXD[3:0])  
TXD[3:0] transitions synchronously with respect to TXC. When TXEN is asserted, TXD[3:0] are accepted for transmission  
by the PHY. TXD[3:0] is ”00” to indicate idle when TXEN is de-asserted. Values other than “00” on TXD[3:0] while TXEN  
is de-asserted are ignored by the PHY.  
Receive Clock (RXC)  
RXC provides the timing reference for RXDV, RXD[3:0], and RXER.  
In 10Mbps mode, RXC is recovered from the line while carrier is active. RXC is derived from the PHY’s reference  
clock when the line is idle, or link is down.  
In 100Mbps mode, RXC is continuously recovered from the line. If link is down, RXC is derived from the PHY’s  
reference clock.  
RXC is 2.5MHz for 10Mbps operation and 25MHz for 100Mbps operation.  
July 2008  
17  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Receive Data Valid (RXDV)  
RXDV is driven by the PHY to indicate that the PHY is presenting recovered and decoded nibbles on RXD[3:0].  
In 10Mbps mode, RXDV is asserted with the first nibble of the SFD (Start of Frame Delimiter), “5D”, and remains  
asserted until the end of the frame.  
In 100Mbps mode, RXDV is asserted from the first nibble of the preamble to the last nibble of the frame.  
RXDV transitions synchronously with respect to RXC.  
Receive Data [3:0] (RXD[3:0])  
RXD[3:0] transitions synchronously with respect to RXC. For each clock period in which RXDV is asserted, RXD[3:0]  
transfers a nibble of recovered data from the PHY.  
Receive Error (RXER)  
RXER is asserted for one or more RXC periods to indicate that a Symbol Error (e.g. a coding error that a PHY is capable  
of detecting, and that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the frame  
presently being transferred from the PHY.  
RXER transitions synchronously with respect to RXC. While RXDV is de-asserted, RXER has no effect on the MAC.  
Carrier Sense (CRS)  
CRS is asserted and de-asserted as follows:  
In 10Mbps mode, CRS assertion is based on the reception of valid preambles. CRS de-assertion is based on the  
reception of an end-of-frame (EOF) marker.  
In 100Mbps mode, CRS is asserted when a start-of-stream delimiter, or /J/K symbol pair is detected. CRS is de-  
asserted when an end-of-stream delimiter, or /T/R symbol pair is detected. Additionally, the PMA layer de-asserts  
CRS if IDLE symbols are received without /T/R.  
Collision (COL)  
COL is asserted in half-duplex mode whenever the transmitter and receiver are simultaneously active on the line. This is  
used to inform the MAC that a collision has occurred during its transmission to the PHY.  
COL transitions asynchronously with respect to TXC and RXC.  
Reduced MII (RMII) Data Interface  
The Reduced Media Independent Interface (RMII) specifies a low pin count Media Independent Interface (MII). It provides  
a common interface between physical layer and MAC layer devices, and has the following key characteristics:  
Supports 10Mbps and 100Mbps data rates.  
Uses a single 50MHz reference clock provided by the MAC or the system board.  
Provides independent 2-bit wide (di-bit) transmit and receive data paths.  
Contains two distinct groups of signals: one for transmission and the other for reception.  
The KSZ8041NL is configured in RMII mode after it is power-up or reset with the following:  
A 50MHz reference clock connected to REFCLK (pin 9).  
CONFIG[2:0] (pins 18, 29, 28) set to ‘001’.  
In RMII mode, unused MII signals, TXD[3:2] (pins 27, 26), are tied to ground.  
July 2008  
18  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
RMII Signal Definition  
The following table describes the RMII signals. Refer to RMII Specification for detailed information.  
Direction  
(with respect to PHY,  
KSZ8041NL signal)  
RMII  
Signal Name  
Direction  
(with respect to MAC)  
Description  
REF_CLK  
Input  
Input, or Output  
Synchronous 50 MHz clock reference for  
receive, transmit and control interface  
TX_EN  
Input  
Output  
Transmit Enable  
TXD[1:0]  
CRS_DV  
RXD[1:0]  
RX_ER  
Input  
Output  
Transmit Data [1:0]  
Carrier Sense/Receive Data Valid  
Receive Data [1:0]  
Receive Error  
Output  
Output  
Output  
Input  
Input  
Input, or (not required)  
Table 3. RMII Signal Description  
Reference Clock (REF_CLK)  
REF_CLK is sourced by the MAC or system board. It is a continuous 50MHz clock that provides the timing reference for  
TX_EN, TXD[1:0], CRS_DV, RXD[1:0], and RX_ER.  
Transmit Enable (TX_EN)  
TX_EN indicates that the MAC is presenting di-bits on TXD[1:0] for transmission. It is asserted synchronously with the first  
nibble of the preamble and remains asserted while all di-bits to be transmitted are presented on the RMII, and is negated  
prior to the first REF_CLK following the final di-bit of a frame.  
TX_EN transitions synchronously with respect to REF_CLK.  
Transmit Data [1:0] (TXD[1:0])  
TXD[1:0] transitions synchronously with respect to REF_CLK. When TX_EN is asserted, TXD[1:0] are accepted for  
transmission by the PHY. TXD[1:0] is ”00” to indicate idle when TX_EN is de-asserted. Values other than “00” on TXD[1:0]  
while TX_EN is de-asserted are ignored by the PHY.  
Carrier Sense/Receive Data Valid (CRS_DV)  
CRS_DV is asserted by the PHY when the receive medium is non-idle. It is asserted asynchronously on detection of  
carrier. This is when squelch is passed in 10Mbps mode, and when 2 non-contiguous zeroes in 10 bits are detected in  
100Mbps mode. Loss of carrier results in the de-assertion of CRS_DV.  
So long as carrier detection criteria are met, CRS_DV remains asserted continuously from the first recovered di-bit of the  
frame through the final recovered di-bit, and it is negated prior to the first REF_CLK that follows the final di-bit. The data  
on RXD[1:0] is considered valid once CRS_DV is asserted. However, since the assertion of CRS_DV is asynchronous  
relative to REF_CLK, the data on RXD[1:0] is "00" until proper receive signal decoding takes place.  
Receive Data [1:0] (RXD[1:0])  
RXD[1:0] transitions synchronously to REF_CLK. For each clock period in which CRS_DV is asserted, RXD[1:0] transfers  
two bits of recovered data from the PHY. RXD[1:0] is "00" to indicate idle when CRS_DV is de-asserted. Values other  
than “00” on RXD[1:0] while CRS_DV is de-asserted are ignored by the MAC.  
Receive Error (RX_ER)  
RX_ER is asserted for one or more REF_CLK periods to indicate that a Symbol Error (e.g. a coding error that a PHY is  
capable of detecting, and that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the  
frame presently being transferred from the PHY.  
RX_ER transitions synchronously with respect to REF_CLK. While CRS_DV is de-asserted, RX_ER has no effect on the  
MAC.  
July 2008  
19  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Collision Detection  
The MAC regenerates the COL signal of the MII from TX_EN and CRS_DV.  
HP Auto MDI/MDI-X  
HP Auto MDI/MDI-X configuration eliminates the confusion of whether to use a straight cable or a crossover cable  
between the KSZ8041NL and its link partner. This feature allows the KSZ8041NL to use either type of cable to connect  
with a link partner that is in either MDI or MDI-X mode. The auto-sense function detects transmit and receive pairs from  
the link partner, and then assigns transmit and receive pairs of the KSZ8041NL accordingly.  
HP Auto MDI/MDI-X is enabled by default. It is disabled by writing a one to register 1F bit 13. MDI and MDI-X mode is  
selected by register 1F bit 14 if HP Auto MDI/MDI-X is disabled.  
An isolation transformer with symmetrical transmit and receive data paths is recommended to support auto MDI/MDI-X.  
The IEEE 802.3u Standard defines MDI and MDI-X as follow:  
MDI  
MDI-X  
RJ-45 Pin  
Signal  
TD+  
TD-  
RJ-45 Pin  
Signal  
RD+  
RD-  
1
2
3
6
1
2
3
6
RD+  
RD-  
TD+  
TD-  
Table 4. MDI/MDI-X Pin Definition  
Straight Cable  
A straight cable connects a MDI device to a MDI-X device, or a MDI-X device to a MDI device. The following diagram  
depicts a typical straight cable connection between a NIC card (MDI) and a switch, or hub (MDI-X).  
10/100 Ethernet  
10/100 Ethernet  
Media Dependent Interface  
Media Dependent Interface  
1
1
Transmit Pair  
2
Receive Pair  
2
Straight  
Cable  
3
3
4
4
Receive Pair  
5
Transmit Pair  
5
6
7
8
6
7
8
Modular Connector  
(RJ-45)  
Modular Connector  
(RJ-45)  
HUB  
NIC  
(Repeater or Switch)  
Figure 2. Typical Straight Cable Connection  
July 2008  
20  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Crossover Cable  
A crossover cable connects a MDI device to another MDI device, or a MDI-X device to another MDI-X device. The  
following diagram depicts a typical crossover cable connection between two switches or hubs (two MDI-X devices).  
10/100 Ethernet  
10/100 Ethernet  
Media Dependent Interface  
Media Dependent Interface  
1
1
Crossover  
Cable  
Receive Pair  
2
Receive Pair  
2
3
3
4
4
Transmit Pair  
5
Transmit Pair  
5
6
7
8
6
7
8
Modular Connector (RJ-45)  
HUB  
Modular Connector (RJ-45)  
HUB  
(Repeater or Switch)  
(Repeater or Switch)  
Figure 3. Typical Crossover Cable Connection  
July 2008  
21  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Power Management  
The KSZ8041NL offers the following power management modes:  
Power Saving Mode  
This mode is used to reduce power consumption when the cable is unplugged. It is in effect when auto-negotiation mode  
is enabled, cable is disconnected, and register 1F bit 10 is set to 1. Under power saving mode, the KSZ8041NL shuts  
down all transceiver blocks, except for transmitter, energy detect and PLL circuits. Additionally, in MII mode, the RXC  
clock output is disabled. RXC clock is enabled after the cable is connected and link is established.  
Power saving mode is disabled by writing a zero to register 1F bit 10.  
Power Down Mode  
This mode is used to power down the entire KSZ8041NL device when it is not in use. Power down mode is enabled by  
writing a one to register 0 bit 11. In the power down state, the KSZ8041NL disables all internal functions, except for the  
MII management interface.  
Reference Clock Connection Options  
A crystal or clock source, such as an oscillator, is used to provide the reference clock for the KSZ8041NL. The reference  
clock is 25MHz for MII mode and 50MHz for RMII mode. The following two figures illustrate how to connect the reference  
clock to XI / REFCLK (pin 9) and XO (pin 8) of the KSZ8041NL.  
Figure 4. 25MHz Crystal / Oscillator Reference Clock for MII Mode  
Figure 5. 50MHz Oscillator Reference Clock for RMII Mode  
July 2008  
22  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Reference Circuit for Power and Ground Connections  
The KSZ8041NL is a single 3.3V supply device with a built-in 1.8V low noise regulator. The power and ground  
connections are shown in the following figure and table.  
Figure 6. KSZ8041NL Power and Ground Connections  
Power Pin  
VDDPLL_1.8  
VDDA_3.3  
VDDIO_3.3  
Pin Number Description  
2
3
Decouple with 10uF and 0.1uF capacitors-to-ground.  
Connect to board’s 3.3V supply through ferrite bead.  
Connect to board’s 3.3V supply.  
17  
Table 5. KSZ8041NL Power Pin Description  
July 2008  
23  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Register Map  
Register Number (Hex)  
Description  
0h  
Basic Control  
1h  
Basic Status  
2h  
PHY Identifier 1  
3h  
PHY Identifier 2  
4h  
Auto-Negotiation Advertisement  
Auto-Negotiation Link Partner Ability  
Auto-Negotiation Expansion  
Auto-Negotiation Next Page  
Link Partner Next Page Ability  
Reserved  
5h  
6h  
7h  
8h  
9h – 14h  
15h  
RXER Counter  
16h – 1Ah  
1Bh  
Reserved  
Interrupt Control/Status  
Reserved  
1Ch – 1Dh  
1Eh  
PHY Control 1  
1Fh  
PHY Control 2  
Register Description  
Mode(1)  
Address  
Name  
Description  
Default  
Register 0h – Basic Control  
0.15  
Reset  
1 = Software reset  
RW/SC  
0
0 = Normal operation  
This bit is self-cleared after a ‘1’ is written to it.  
1 = Loop-back mode  
0 = Normal operation  
1 = 100Mbps  
0.14  
0.13  
Loop-back  
RW  
RW  
0
Speed Select  
(LSB)  
Set by SPEED strapping pin.  
0 = 10Mbps  
See “Strapping Options” section  
for details.  
This bit is ignored if auto-negotiation is enabled  
(register 0.12 = 1).  
0.12  
Auto-  
Negotiation  
Enable  
1 = Enable auto-negotiation process  
0 = Disable auto-negotiation process  
RW  
Set by NWAYEN strapping pin.  
See “Strapping Options” section  
for details.  
If enabled, auto-negotiation result overrides  
settings in register 0.13 and 0.8.  
0.11  
0.10  
Power Down  
Isolate  
1 = Power down mode  
0 = Normal operation  
RW  
RW  
0
1 = Electrical isolation of PHY from MII and  
TX+/TX-  
Set by ISO strapping pin.  
See “Strapping Options” section  
for details.  
0 = Normal operation  
0.9  
Restart Auto-  
Negotiation  
1 = Restart auto-negotiation process  
0 = Normal operation.  
RW/SC  
0
This bit is self-cleared after a ‘1’ is written to it.  
July 2008  
24  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Mode(1)  
Address  
Name  
Description  
Default  
0.8  
Duplex Mode  
1 = Full-duplex  
0 = Half-duplex  
RW  
Set by DUPLEX strapping pin.  
See “Strapping Options” section  
for details.  
0.7  
Collision Test  
1 = Enable COL test  
0 = Disable COL test  
RW  
0
0.6:1  
0.0  
Reserved  
Disable  
RO  
RW  
000_000  
0
0 = Enable transmitter  
1 = Disable transmitter  
Transmitter  
Register 1h – Basic Status  
1.15  
1.14  
1.13  
1.12  
1.11  
100Base-T4  
1 = T4 capable  
RO  
RO  
RO  
RO  
RO  
0
1
1
1
1
0 = Not T4 capable  
100Base-TX  
Full Duplex  
1 = Capable of 100Mbps full-duplex  
0 = Not capable of 100Mbps full-duplex  
1 = Capable of 100Mbps half-duplex  
0 = Not capable of 100Mbps half-duplex  
100Base-TX  
Half Duplex  
10Base-T Full 1 = Capable of 10Mbps full-duplex  
Duplex  
0 = Not capable of 10Mbps full-duplex  
10Base-T Half 1 = Capable of 10Mbps half-duplex  
Duplex  
0 = Not capable of 10Mbps half-duplex  
1.10:7  
1.6  
Reserved  
RO  
RO  
0000  
1
No Preamble  
1 = Preamble suppression  
0 = Normal preamble  
1.5  
Auto-  
Negotiation  
Complete  
1 = Auto-negotiation process completed  
0 = Auto-negotiation process not completed  
RO  
0
1.4  
1.3  
Remote Fault  
1 = Remote fault  
RO/LH  
RO  
0
1
0 = No remote fault  
Auto-  
Negotiation  
Ability  
1 = Capable to perform auto-negotiation  
0 = Not capable to perform auto-negotiation  
1.2  
1.1  
1.0  
Link Status  
1 = Link is up  
RO/LL  
RO/LH  
RO  
0
0
1
0 = Link is down  
Jabber Detect  
1 = Jabber detected  
0 = Jabber not detected (default is low)  
1 = Supports extended capabilities registers  
Extended  
Capability  
Register 2h – PHY Identifier 1  
2.15:0  
PHY ID  
Number  
Assigned to the 3rd through 18th bits of the  
Organizationally Unique Identifier (OUI).  
Kendin Communication’s OUI is 0010A1 (hex)  
RO  
0022h  
July 2008  
25  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Mode(1)  
Address  
Name  
Description  
Default  
Register 3h – PHY Identifier 2  
3.15:10  
PHY ID  
Number  
Assigned to the 19th through 24th bits of the  
Organizationally Unique Identifier (OUI).  
Kendin Communication’s OUI is 0010A1 (hex)  
RO  
0001_01  
3.9:4  
3.3:0  
Model Number Six bit manufacturer’s model number  
RO  
RO  
01_0001  
0010  
Revision  
Number  
Four bit manufacturer’s model number  
Register 4h – Auto-Negotiation Advertisement  
4.15  
Next Page  
1 = Next page capable  
RW  
0
0 = No next page capability.  
4.14  
4.13  
Reserved  
RO  
RW  
0
0
Remote Fault  
1 = Remote fault supported  
0 = No remote fault  
4.12:11  
4.10  
Reserved  
Pause  
RO  
RW  
00  
0
1 = PAUSE function supported  
0 = No PAUSE function supported  
1 = T4 capable  
4.9  
4.8  
100Base-T4  
RO  
RW  
0
0 = No T4 capability  
100Base-TX  
Full-Duplex  
1 = 100Mbps full-duplex capable  
0 = No 100Mbps full-duplex capability  
Set by SPEED strapping pin.  
See “Strapping Options” section  
for details.  
4.7  
100Base-TX  
Half-Duplex  
1 = 100Mbps half-duplex capable  
RW  
Set by SPEED strapping pin.  
0 = No 100Mbps half-duplex capability  
See “Strapping Options” section  
for details.  
4.6  
10Base-T  
Full-Duplex  
1 = 10Mbps full-duplex capable  
0 = No 10Mbps full-duplex capability  
1 = 10Mbps half-duplex capable  
0 = No 10Mbps half-duplex capability  
[00001] = IEEE 802.3  
RW  
RW  
RW  
1
4.5  
10Base-T  
Half-Duplex  
1
4.4:0  
Selector Field  
0_0001  
Register 5h – Auto-Negotiation Link Partner Ability  
5.15  
5.14  
5.13  
Next Page  
1 = Next page capable  
RO  
RO  
RO  
0
0
0
0 = No next page capability  
1 = Link code word received from partner  
0 = Link code word not yet received  
1 = Remote fault detected  
Acknowledge  
Remote Fault  
0 = No remote fault  
5.12  
Reserved  
Pause  
RO  
RO  
0
5.11:10  
[00] = No PAUSE  
00  
[10] = Asymmetric PAUSE  
[01] = Symmetric PAUSE  
[11] = Asymmetric & Symmetric PAUSE  
1 = T4 capable  
5.9  
100Base-T4  
RO  
0
0 = No T4 capability  
July 2008  
26  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Mode(1)  
Address  
Name  
Description  
Default  
5.8  
100Base-TX  
Full-Duplex  
1 = 100Mbps full-duplex capable  
0 = No 100Mbps full-duplex capability  
1 = 100Mbps half-duplex capable  
0 = No 100Mbps half-duplex capability  
1 = 10Mbps full-duplex capable  
0 = No 10Mbps full-duplex capability  
1 = 10Mbps half-duplex capable  
0 = No 10Mbps half-duplex capability  
[00001] = IEEE 802.3  
RO  
0
5.7  
100Base-TX  
Half-Duplex  
RO  
RO  
RO  
RO  
0
5.6  
10Base-T  
Full-Duplex  
0
5.5  
10Base-T  
Half-Duplex  
0
5.4:0  
Selector Field  
0_0001  
Register 6h – Auto-Negotiation Expansion  
6.15:5  
6.4  
Reserved  
RO  
0000_0000_000  
0
Parallel  
Detection Fault  
1 = Fault detected by parallel detection  
0 = No fault detected by parallel detection.  
1 = Link partner has next page capability  
RO/LH  
6.3  
6.2  
Link Partner  
Next Page  
Able  
RO  
RO  
0
1
0 = Link partner does not have next page  
capability  
Next Page  
Able  
1 = Local device has next page capability  
0 = Local device does not have next page  
capability  
6.1  
6.0  
Page Received 1 = New page received  
0 = New page not received yet  
RO/LH  
RO  
0
0
Link Partner  
Auto-  
1 = Link partner has auto-negotiation capability  
0 = Link partner does not have auto-negotiation  
capability  
Negotiation  
Able  
Register 7h – Auto-Negotiation Next Page  
7.15  
Next Page  
1 = Additional next page(s) will follow  
0 = Last page  
RW  
0
7.14  
7.13  
Reserved  
RO  
RW  
0
1
Message Page 1 = Message page  
0 = Unformatted page  
7.12  
7.11  
Acknowledge2 1 = Will comply with message  
0 = Cannot comply with message  
RW  
RO  
0
0
Toggle  
1 = Previous value of the transmitted link code  
word equaled logic one  
0 = Logic zero  
Message Field 11-bit wide field to encode 2048 messages  
7.10:0  
RW  
000_0000_0001  
Register 8h – Link Partner Next Page Ability  
8.15  
8.14  
8.13  
Next Page  
1 = Additional Next Page(s) will follow  
0 = Last page  
RO  
RO  
RO  
0
0
0
Acknowledge  
1 = Successful receipt of link word  
0 = No successful receipt of link word  
Message Page 1 = Message page  
0 = Unformatted page  
July 2008  
27  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Mode(1)  
Address  
Name  
Description  
Default  
8.12  
Acknowledge2 1 = Able to act on the information  
0 = Not able to act on the information  
RO  
0
8.11  
Toggle  
1 = Previous value of transmitted link code  
word equal to logic zero  
RO  
0
0 = Previous value of transmitted link code  
word equal to logic one  
8.10:0  
Message Field  
RO  
000_0000_0000  
Register 15h – RXER Counter  
15.15:0 RXER Counter Receive error counter for Symbol Error frames  
Register 1Bh – Interrupt Control/Status  
RO/SC  
RW  
0000h  
0
1b.15  
1b.14  
1b.13  
1b.12  
1b.11  
Jabber  
Interrupt  
Enable  
1 = Enable Jabber Interrupt  
0 = Disable Jabber Interrupt  
Receive Error  
Interrupt  
Enable  
1 = Enable Receive Error Interrupt  
0 = Disable Receive Error Interrupt  
RW  
RW  
RW  
RW  
0
0
0
0
Page Received 1 = Enable Page Received Interrupt  
Interrupt  
Enable  
0 = Disable Page Received Interrupt  
Parallel Detect 1 = Enable Parallel Detect Fault Interrupt  
Fault Interrupt  
Enable  
0 = Disable Parallel Detect Fault Interrupt  
Link Partner  
Acknowledge  
Interrupt  
1 = Enable Link Partner Acknowledge Interrupt  
0 = Disable Link Partner Acknowledge  
Interrupt  
Enable  
1b.10  
1b.9  
1b.8  
Link Down  
Interrupt  
Enable  
1= Enable Link Down Interrupt  
0 = Disable Link Down Interrupt  
RW  
RW  
RW  
0
0
0
Remote Fault  
Interrupt  
Enable  
1 = Enable Remote Fault Interrupt  
0 = Disable Remote Fault Interrupt  
Link Up  
Interrupt  
Enable  
1 = Enable Link Up Interrupt  
0 = Disable Link Up Interrupt  
1b.7  
1b.6  
1b.5  
1b.4  
1b.3  
Jabber  
Interrupt  
1 = Jabber occurred  
RO/SC  
RO/SC  
RO/SC  
RO/SC  
RO/SC  
0
0
0
0
0
0 = Jabber did not occurred  
1 = Receive Error occurred  
0 = Receive Error did not occurred  
1 = Page Receive occurred  
0 = Page Receive did not occurred  
Receive Error  
Interrupt  
Page Receive  
Interrupt  
Parallel Detect 1 = Parallel Detect Fault occurred  
Fault Interrupt  
0 = Parallel Detect Fault did not occurred  
Link Partner  
Acknowledge  
Interrupt  
1= Link Partner Acknowledge occurred  
0= Link Partner Acknowledge did not occurred  
1b.2  
Link Down  
Interrupt  
1= Link Down occurred  
RO/SC  
0
0= Link Down did not occurred  
July 2008  
28  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Mode(1)  
Address  
Name  
Description  
Default  
1b.1  
Remote Fault  
Interrupt  
1= Remote Fault occurred  
0= Remote Fault did not occurred  
1= Link Up occurred  
RO/SC  
0
1b.0  
Link Up  
Interrupt  
RO/SC  
RW  
0
0= Link Up did not occurred  
Register 1Eh – PHY Control 1  
1e:15:14  
LED mode  
[00] =  
00  
LED1 : Speed  
LED0 : Link/Activity  
[01] =  
LED1 : Activity  
LED0 : Link  
[10] =  
Reserved  
[11] =  
Reserved  
1e.13  
Polarity  
0 = Polarity is not reversed  
1 = Polarity is reversed  
RO  
1e.12  
1e.11  
Reserved  
RO  
RO  
0
0
MDI/MDI-X  
State  
0 = MDI  
1 = MDI-X  
1e:10:8  
1e:7  
Reserved  
Remote  
0 = Normal mode  
RW  
loopback  
1 = Remote (analog) loop back is enable  
1e:6:0  
Reserved  
Register 1Fh – PHY Control 2  
1f:15  
HP_MDIX  
0 = Micrel Auto MDI/MDI-X mode  
1 = HP Auto MDI/MDI-X mode  
When Auto MDI/MDI-X is disabled,  
0 = MDI Mode  
RW  
RW  
1
0
1f:14  
MDI/MDI-X  
Select  
Transmit on TX+/- (pins 7,6) and  
Receive on RX+/- (pins 5,4)  
1 = MDI-X Mode  
Transmit on RX+/- (pins 5,4) and  
Receive on TX+/- (pins 7,6)  
1f:13  
1f.12  
Pairswap  
Disable  
1 = Disable auto MDI/MDI-X  
0 = Enable auto MDI/MDI-X  
RW  
RO  
0
0
Energy Detect  
1 = Presence of signal on RX+/- analog wire  
pair  
0 = No signal detected on RX+/-  
July 2008  
29  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Mode(1)  
Address  
Name  
Description  
Default  
1f.11  
Force Link  
1 = Force link pass  
RW  
0
0 = Normal link operation  
This bit bypasses the control logic and allow  
transmitter to send pattern even if there is no  
link.  
1f.10  
Power Saving  
1 = Enable power saving  
0 = Disable power saving  
RW  
0
If power saving mode is enabled and the cable  
is disconnected, the RXC clock output (in MII  
mode) is disabled. RXC clock is enabled after  
the cable is connected and link is established.  
1f.9  
1f.8  
1f.7  
Interrupt Level  
Enable Jabber  
1 = Interrupt pin active high  
RW  
RW  
RW  
0
1
0
0 = Interrupt pin active low  
1 = Enable jabber counter  
0 = Disable jabber counter  
Auto-  
Negotiation  
Complete  
1 = Auto-negotiation process completed  
0 = Auto-negotiation process not completed  
1f.6  
Enable Pause  
(Flow Control)  
1 = Flow control capable  
0 = No flow control capability  
1 = PHY in isolate mode  
0 = PHY in normal operation  
[000] = still in auto-negotiation  
[001] = 10Base-T half-duplex  
[010] = 100Base-TX half-duplex  
[011] = reserved  
RO  
RO  
RO  
0
1f.5  
PHY Isolate  
0
1f.4:2  
Operation  
Mode  
Indication  
000  
[101] = 10Base-T full-duplex  
[110] = 100Base-TX full-duplex  
[111] = reserved  
1f.1  
1f.0  
Enable SQE  
test  
1 = Enable SQE test  
RW  
RW  
0
0
0 = Disable SQE test  
Disable Data  
Scrambling  
1 = Disable scrambler  
0 = Enable scrambler  
Note:  
1. RW = Read/Write.  
RO = Read only.  
SC = Self-cleared.  
LH = Latch high.  
LL = Latch low.  
July 2008  
30  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage  
Supply Voltage  
(VDDPLL_1.8)...............................................-0.5V to +2.4V  
(VDDIO_3.3, VDDA_3.3) ...................................-0.5V to +4.0V  
Input Voltage (all inputs) ...............................-0.5V to +4.0V  
Output Voltage (all outputs) ..........................-0.5V to +4.0V  
Lead Temperature (soldering, 10sec.)....................... 260°C  
Storage Temperature (Ts) ..........................-55°C to +150°C  
ESD Rating(3)..................................................................6kV  
(VDDIO_3.3, VDDA_3.3) .......................... +3.135V to +3.465V  
Ambient Temperature (TA)..............................0°C to +70°C  
Maximum Junction Temperature (TJ Max) ................. 125°C  
Maximum Case Temperature (TC Max)...................... 150°C  
Thermal Resistance (θJA) .........................................34°C/W  
Thermal Resistance (θJC)...........................................6°C/W  
Electrical Characteristics(4)  
Symbol  
Supply Current(5)  
IDD1 100Base-TX  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Chip only (no transformer);  
53  
38  
58.3  
41.8  
mA  
mA  
Full-duplex traffic @ 100% utilization  
Chip only (no transformer);  
IDD2  
10Base-T  
Full-duplex traffic @ 100% utilization  
Ethernet cable disconnected (reg. 1F.10 = 1)  
Software power down (reg. 0.11 = 1)  
IDD3  
Power Saving Mode  
Power Down Mode  
32  
4
35.2  
4.4  
mA  
mA  
IDD4  
TTL Inputs  
VIH  
VIL  
IIN  
Input High Voltage  
Input Low Voltage  
Input Current  
2.0  
2.4  
V
V
0.8  
10  
VIN = GND ~ VDDIO  
-10  
µA  
TTL Outputs  
VOH  
VOL  
|Ioz|  
Output High Voltage  
IOH = -4mA  
IOL = 4mA  
V
V
Output Low Voltage  
0.4  
10  
Output Tri-State Leakage  
µA  
100Base-TX Transmit (measured differentially after 1:1 transformer)  
VO  
Peak Differential Output Voltage  
Output Voltage Imbalance  
Rise/Fall Time  
0.95  
1.05  
V
100Ω termination across differential output  
100Ω termination across differential output  
VIMB  
tr, tf  
2
5
%
3
0
ns  
ns  
ns  
%
0.5  
+ 0.25  
5
Rise/Fall Time Imbalance  
Duty Cycle Distortion  
Overshoot  
0.65  
0.7  
VSET  
Reference Voltage of ISET  
Output Jitter  
V
1.4  
Peak-to-peak  
ns  
Notes:  
1. Exceeding the absolute maximum rating may damage the device. Stresses greater than the absolute maximum rating may cause permanent  
damage to the device. Operation of the device at these or any other conditions above those specified in the operating sections of this specification  
is not implied. Maximum conditions for extended periods may affect reliability.  
2. The device is not guaranteed to function outside its operating rating.  
3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
4. TA = 25°C. Specification for packaged product only.  
5. Current consumption is for the single 3.3V supply KSZ8041NL device only, and includes the 1.8V supply voltage (VDDPLL_1.8) that is provided by the  
KSZ8041NL. The PHY port’s transformer consumes an additional 45mA @ 3.3V for 100Base-TX and 70mA @ 3.3V for 10Base-T.  
July 2008  
31  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Electrical Characteristics(6)  
10Base-T Transmit (measured differentially after 1:1 transformer)  
VP  
Peak Differential Output Voltage  
Jitter Added  
2.2  
2.8  
3.5  
V
100Ω termination across differential output  
Peak-to-peak  
ns  
ns  
25  
tr, tf  
Rise/Fall Time  
10Base-T Receive  
VSQ  
Squelch Threshold  
5MHz square wave  
400  
mV  
Notes:  
6. TA = 25°C. Specification for packaged product only.  
July 2008  
32  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Timing Diagrams  
MII SQE Timing (10Base-T)  
Figure 7. MII SQE Timing (10Base-T)  
Timing Parameter  
Description  
Min  
Typ  
400  
200  
200  
2.5  
Max  
Unit  
ns  
tP  
TXC period  
tWL  
TXC pulse width low  
ns  
tWH  
tSQE  
tSQEP  
TXC pulse width high  
ns  
COL (SQE) delay after TXEN de-asserted  
COL (SQE) pulse duration  
us  
1.0  
us  
Table 6. MII SQE Timing (10Base-T) Parameters  
July 2008  
33  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
MII Transmit Timing (10Base-T)  
Figure 8. MII Transmit Timing (10Base-T)  
Timing Parameter  
Description  
Min  
Typ  
400  
200  
200  
Max  
Unit  
ns  
tP  
TXC period  
tWL  
TXC pulse width low  
ns  
tWH  
tSU1  
tSU2  
tHD1  
tHD2  
tCRS1  
TXC pulse width high  
ns  
TXD[3:0] setup to rising edge of TXC  
TXEN setup to rising edge of TXC  
TXD[3:0] hold from rising edge of TXC  
TXEN hold from rising edge of TXC  
TXEN high to CRS asserted latency  
10  
10  
0
ns  
ns  
ns  
0
ns  
4
8
Bit  
Time  
tCRS2  
TXEN low to CRS de-asserted latency  
Bit  
Time  
Table 7. MII Transmit Timing (10Base-T) Parameters  
July 2008  
34  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
MII Receive Timing (10Base-T)  
Figure 9. MII Receive Timing (10Base-T)  
Timing Parameter  
Description  
Min  
Typ  
400  
200  
200  
Max  
Unit  
ns  
tP  
RXC period  
tWL  
tWH  
tOD  
RXC pulse width low  
RXC pulse width high  
ns  
ns  
(RXD[3:0], RXER, RXDV) output  
delay from rising edge of RXC  
182  
225  
ns  
tRLAT  
CRS to (RXD[3:0], RXER, RXDV)  
latency  
6.5  
us  
Table 8. MII Receive Timing (10Base-T) Parameters  
July 2008  
35  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
MII Transmit Timing (100Base-TX)  
Figure 10. MII Transmit Timing (100Base-TX)  
Timing Parameter  
Description  
Min  
Typ  
40  
Max  
Unit  
ns  
tP  
TXC period  
tWL  
TXC pulse width low  
20  
ns  
tWH  
tSU1  
tSU2  
tHD1  
tHD2  
tCRS1  
TXC pulse width high  
20  
ns  
TXD[3:0] setup to rising edge of TXC  
TXEN setup to rising edge of TXC  
TXD[3:0] hold from rising edge of TXC  
TXEN hold from rising edge of TXC  
TXEN high to CRS asserted latency  
10  
10  
0
ns  
ns  
ns  
0
ns  
4
4
Bit  
Time  
tCRS2  
TXEN low to CRS de-asserted latency  
Bit  
Time  
Table 9. MII Transmit Timing (100Base-TX) Parameters  
July 2008  
36  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
MII Receive Timing (100Base-TX)  
Figure 11. MII Receive Timing (100Base-TX)  
Timing Parameter  
Description  
Min  
Typ  
40  
Max  
Unit  
ns  
tP  
RXC period  
tWL  
tWH  
tOD  
RXC pulse width low  
RXC pulse width high  
20  
ns  
20  
ns  
(RXD[3:0], RXER, RXDV) output  
delay from rising edge of RXC  
19  
1
25  
3
ns  
tRLAT  
CRS to (RXD[3:0], RXER, RXDV)  
latency  
2
Bit  
Time  
Table 10. MII Receive Timing (100Base-TX) Parameters  
July 2008  
37  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
RMII Timing  
Figure 12. RMII Timing – Data Received from RMII  
Figure 13. RMII Timing – Data Input to RMII  
Timing Parameter  
Description  
Clock cycle  
Setup time  
Hold time  
Min  
Typ  
Max  
Unit  
ns  
tcyc  
t1  
20  
4
2
ns  
t2  
ns  
tod  
Output delay  
2.8  
10  
ns  
Table 11. RMII Timing Parameters  
July 2008  
38  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Auto-Negotiation Timing  
Figure 14. Auto-Negotiation Fast Link Pulse (FLP) Timing  
Timing Parameter  
Description  
Min  
Typ  
16  
Max  
Units  
ms  
ms  
ns  
tBTB  
tFLPW  
tPW  
FLP Burst to FLP Burst  
FLP Burst width  
8
24  
2
Clock/Data Pulse width  
Clock Pulse to Data Pulse  
Clock Pulse to Clock Pulse  
100  
64  
tCTD  
tCTC  
55.5  
111  
17  
69.5  
139  
33  
µs  
128  
µs  
Number of Clock/Data Pulse per  
FLP Burst  
Table 12. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters  
July 2008  
39  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
MDC/MDIO Timing  
Figure 15. MDC/MDIO Timing  
Timing Parameter  
Description  
Min  
Typ  
Max  
Unit  
tP  
MDC period  
400  
ns  
ns  
ns  
ns  
t1MD1  
tMD2  
tMD3  
MDIO (PHY input) setup to rising edge of MDC  
MDIO (PHY input) hold from rising edge of MDC  
MDIO (PHY output) delay from rising edge of MDC  
10  
10  
222  
Table 13. MDC/MDIO Timing Parameters  
July 2008  
40  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Reset Timing  
The KSZ8041NL reset timing requirement is summarized in the following figure and table.  
Figure 16. Reset Timing  
Parameter  
Description  
Min  
10  
5
Max  
Units  
ms  
ns  
tsr  
tcs  
tch  
trc  
Stable supply voltage to reset high  
Configuration setup time  
Configuration hold time  
Reset to strap-in pin output  
5
ns  
6
ns  
Table 14. Reset Timing Parameters  
After the de-assertion of reset, it is recommended to wait a minimum of 100 us before starting programming on the MIIM  
(MDC/MDIO) Interface.  
July 2008  
41  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Reset Circuit  
The following reset circuit is recommended for powering up the KSZ8041NL if reset is triggered by the power supply.  
Figure 17. Recommended Reset Circuit  
The following reset circuit is recommended for applications where reset is driven by another device (e.g., CPU or FPGA).  
At power-on-reset, R, C and D1 provide the necessary ramp rise time to reset the KSZ8041NL device. The RST_OUT_n  
from CPU/FPGA provides the warm reset after power up.  
Figure 18. Recommended Reset Circuit for interfacing with CPU/FPGA Reset Output.  
July 2008  
42  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Reference Circuits for LED Strapping Pins  
The following figure shows the reference circuits for pull-up, float and pull-down on the LED1 and LED0 strapping pins.  
Figure 19. Reference Circuits for LED Strapping Pins  
July 2008  
43  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Selection of Isolation Transformer  
A 1:1 isolation transformer is required at the line interface. An isolation transformer with integrated common-mode chokes  
is recommended for exceeding FCC requirements.  
The following table gives recommended transformer characteristics.  
Parameter  
Value  
Test Condition  
Turns ratio  
1 CT : 1 CT  
350μH  
0.4μH  
Open-circuit inductance (min.)  
Leakage inductance (max.)  
Inter-winding capacitance (max.)  
D.C. resistance (max.)  
Insertion loss (max.)  
HIPOT (min.)  
100mV, 100kHz, 8mA  
1MHz (min.)  
12pF  
0.9Ω  
1.0dB  
0MHz – 65MHz  
1500Vrms  
Table 15. Transformer Selection Criteria  
Magnetic Manufacturer  
Bel Fuse  
Part Number  
S558-5999-U7  
SI-46001  
SI-50170  
LF8505  
Auto MDI-X  
Yes  
Number of Port  
1
1
1
1
1
1
1
1
1
Bel Fuse (Mag Jack)  
Bel Fuse (Mag Jack)  
Delta  
Yes  
Yes  
Yes  
LanKom  
LF-H41S  
H1102  
Yes  
Pulse  
Yes  
Pulse (low cost)  
Transpower  
H1260  
Yes  
HB726  
Yes  
TDK (Mag Jack)  
TLA-6T718  
Yes  
Table 16. Qualified Single Port Magnetics  
Selection of Reference Crystal  
Characteristics  
Value  
Units  
MHz  
ppm  
pF  
Frequency  
25  
Frequency tolerance (max)  
Load capacitance (max)  
Series resistance  
±50  
20  
40  
Ω
Table 17. Typical Reference Crystal Characteristics  
July 2008  
44  
M9999-071808-1.2  
Micrel, Inc.  
KSZ8041NL  
Package Information  
32-Pin (5mm x 5mm) MLF® Package  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its  
use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical  
implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user.  
A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to  
fully indemnify Micrel for any damages resulting from such use or sale.  
© 2006 Micrel, Incorporated.  
July 2008  
45  
M9999-071808-1.2  

相关型号:

KSZ8041NLAM-TR

DATACOM, QCC32
MICROCHIP

KSZ8041NLAMTR

DATACOM, QCC32, 5 X 5 MM, LEAD FREE, MLF-32
MICROCHIP

KSZ8041NLAMTR

DATACOM, QCC32, 5 X 5 MM, LEAD FREE, MLF-32
MICREL

KSZ8041NLI

10Base-T/100Base-TX Physical Layer Transceiver
MICREL

KSZ8041NLITR

10Base-T/100Base-TX Physical Layer Transceiver
MICREL

KSZ8041NLITR

DATACOM, ETHERNET TRANSCEIVER, QCC32, 5 X 5 MM, LEAD FREE, MLF-32
MICROCHIP

KSZ8041NLJ

10/100 Ethernet Transceiver with Extended Temperature Support
MICREL

KSZ8041NLJ-TR

暂无描述
MICROCHIP

KSZ8041NLJ_10

10/100 Ethernet Transceiver with Extended Temperature Support
MICREL

KSZ8041NLTR

DATACOM, ETHERNET TRANSCEIVER, QCC32, 5 X 5 MM, LEAD FREE, MLF-32
MICREL

KSZ8041NLTR

DATACOM, ETHERNET TRANSCEIVER, QCC32, 5 X 5 MM, LEAD FREE, MLF-32
MICROCHIP

KSZ8041NL_08

10Base-T/100Base-TX Physical Layer Transceiver
MICREL