ATXMEGA32D3-MN [MICROCHIP]

IC MCU 8BIT 32KB FLASH 64QFN;
ATXMEGA32D3-MN
型号: ATXMEGA32D3-MN
厂家: MICROCHIP    MICROCHIP
描述:

IC MCU 8BIT 32KB FLASH 64QFN

文件: 总463页 (文件大小:29891K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8/16-bit Atmel AVR XMEGA D3 Microcontroller  
ATxmega32D3 / ATxmega64D3 / ATxmega128D3 /  
ATxmega192D3 / ATxmega256D3 / ATxmega384D3  
Features  
High-performance, low-power Atmel® AVR® XMEGA® 8/16-bit Microcontroller  
Nonvolatile program and data memories  
32K - 384KBytes of in-system self-programmable flash  
4K - 8KBytes boot section  
1K - 4KBytes EEPROM  
4K - 32KBytes internal SRAM  
Peripheral features  
Four-channel event system  
Five 16-bit timer/counters  
Four timer/counters with four output compare or input capture channels  
One timer/counter with two output compare or input capture channels  
High resolution extension on two timer/counters  
Advanced waveform extension (AWeX) on one timer/counter  
Three USARTs with IrDA support for one USART  
Two two-wire interfaces with dual address match (I2C and SMBus compatible)  
Two serial peripheral interfaces (SPIs)  
CRC-16 (CRC-CCITT) and CRC-32 (IEEE®802.3) generator  
16-bit real time counter (RTC) with separate oscillator  
One sixteen-channel, 12-bit, 300ksps Analog to Digital Converter  
Two Analog Comparators with window compare function, and current sources  
External interrupts on all general purpose I/O pins  
Programmable watchdog timer with separate on-chip ultra low power oscillator  
Atmel QTouch® library support  
Capacitive touch buttons, sliders and wheels  
Special microcontroller features  
Power-on reset and programmable brown-out detection  
Internal and external clock options with PLL and prescaler  
Programmable multilevel interrupt controller  
Five sleep modes  
Programming and debug interface  
PDI (program and debug interface)  
I/O and packages  
50 programmable I/O pins  
64-lead TQFP  
64-pad QFN  
Operating voltage  
1.6 – 3.6V  
Operating frequency  
0 – 12MHz from 1.6V  
0 – 32MHz from 2.7V  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
1.  
Ordering Information  
EEPROM  
[bytes]  
SRAM  
[bytes]  
Power  
supply  
Package  
(1)(2)(3)  
Ordering code  
ATxmega32D3-AU  
Flash [bytes]  
32K + 4K  
Speed [MHz]  
Temp.  
1K  
1K  
2K  
2K  
2K  
2K  
2K  
2K  
4K  
4K  
4K  
4K  
1K  
1K  
2K  
2K  
2K  
2K  
2K  
2K  
4K  
4K  
4K  
4K  
4K  
4K  
ATxmega32D3-AUR (4)  
ATxmega64D3-AU  
32K + 4K  
64K + 4K  
4K  
ATxmega64D3-AUR (4)  
ATxmega128D3-AU  
64K + 4K  
4K  
128K + 8K  
128K + 8K  
192K + 8K  
192K + 8K  
256K + 8K  
256K + 8K  
384K + 8K  
384K + 8K  
32K + 4K  
8K  
ATxmega128D3-AUR (4)  
ATxmega192D3-AU  
8K  
64A  
16K  
16K  
16K  
16K  
32K  
32K  
4K  
ATxmega192D3-AUR (4)  
ATxmega256D3-AU  
ATxmega256D3-AUR (4)  
ATxmega384D3-AU  
ATxmega384D3-AUR (4)  
ATxmega32D3-MH  
32  
1.6 - 3.6V  
-40C - 85C  
ATxmega32D3-MHR (4)  
ATxmega64D3-MH  
32K + 4K  
4K  
64K + 4K  
4K  
ATxmega64D3-MHR (4)  
ATxmega128D3-MH  
ATxmega128D3-MHR (4)  
ATxmega192D3-MH  
ATxmega192D3-MHR (4)  
ATxmega256D3-MH  
ATxmega256D3-MHR (4)  
ATxmega384D3-MH  
ATxmega384D3-MHR (4)  
64K + 4K  
4K  
128K + 8K  
128K + 8K  
192K + 8K  
192K + 8K  
256K + 8K  
256K + 8K  
384K + 8K  
384K + 8K  
8K  
8K  
64M  
16K  
16K  
16K  
16K  
32K  
32K  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
2
EEPROM  
[bytes]  
SRAM  
[bytes]  
Power  
supply  
Package  
(1)(2)(3)  
Ordering code  
Flash [bytes]  
32K + 4K  
Speed [MHz]  
Temp.  
ATxmega32D3-AN  
1K  
1K  
2K  
2K  
2K  
2K  
2K  
2K  
4K  
4K  
4K  
4K  
1K  
1K  
2K  
2K  
2K  
2K  
2K  
2K  
4K  
4K  
4K  
4K  
4K  
4K  
ATxmega32D3-ANR (4)  
ATxmega64D3-AN  
32K + 4K  
64K + 4K  
4K  
ATxmega64D3-ANR (4)  
ATxmega128D3-AN  
ATxmega128D3-ANR (4)  
ATxmega192D3-AN  
ATxmega192D3-ANR (4)  
ATxmega256D3-AN  
ATxmega256D3-ANR (4)  
ATxmega384D3-AN  
ATxmega384D3-ANR (4)  
ATxmega32D3-MN  
64K + 4K  
4K  
128K + 8K  
128K + 8K  
192K + 8K  
192K + 8K  
256K + 8K  
256K + 8K  
384K + 8K  
384K + 8K  
32K + 4K  
8K  
8K  
64A  
16K  
16K  
16K  
16K  
32K  
32K  
4K  
32  
1.6 - 3.6V  
-40C - 105C  
ATxmega32D3-MNR (4)  
ATxmega64D3-MN  
32K + 4K  
4K  
64K + 4K  
4K  
ATxmega64D3-MNR (4)  
ATxmega128D3-MN  
ATxmega128D3-MNR (4)  
ATxmega192D3-MN  
ATxmega192D3-MNR (4)  
ATxmega256D3-MN  
ATxmega256D3-MNR (4)  
ATxmega384D3-MN  
ATxmega384D3-MNR (4)  
64K + 4K  
4K  
128K + 8K  
128K + 8K  
192K + 8K  
192K + 8K  
256K + 8K  
256K + 8K  
384K + 8K  
384K + 8K  
8K  
8K  
64M  
16K  
16K  
16K  
16K  
32K  
32K  
Notes:  
1. This device can also be supplied in wafer form. Contact your local Atmel sales office for detailed ordering information.  
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.  
3. For packaging information, see “Packaging Information” on page 61.  
4. Tape and Reel.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
3
Package type  
64-lead, 14 * 14mm body size, 1.0mm body thickness, 0.8mm lead pitch, thin profile plastic quad flat package (TQFP)  
64-pad, 9 * 9 * 1.0mm body, lead pitch 0.50mm, 7.65mm exposed pad, quad flat no-lead package (QFN)  
64A  
64M  
Typical applications  
Industrial control  
Climate control  
RF and ZigBee®  
Motor control  
Sensor control  
Optical  
Low power battery applications  
Power tools  
Factory automation  
Building control  
HVAC  
Board control  
Utility metering  
White goods  
Medical applications  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
4
2.  
Pinout/block Diagram  
Figure 2-1. Block Diagram and Pinout  
Power  
Programming, debug, test  
Ground  
Digital function  
Analog function/Oscillators  
External clock/Crystal pins  
General Purpose I /O  
Port R  
XOSC  
PA3  
PA4  
PA5  
PA6  
PA7  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
GND  
VCC  
PC0  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PF2  
PF1  
PF0  
VCC  
GND  
PE7  
PE6  
PE5  
PE4  
PE3  
PE2  
PE1  
PE0  
VCC  
GND  
PD7  
DATA BUS  
3
OSC/CLK  
Control  
Internal  
oscillators  
Watchdog  
oscillator  
Power  
Supervision  
4
AREF  
Sleep  
Controller  
Real Time  
Counter  
Watchdog  
Timer  
Reset  
Controller  
ADC  
5
AC0:1  
Event System  
Controller  
Prog/Debug  
Interface  
6
CRC  
OCD  
7
Interrupt  
Controller  
BUS  
matrix  
8
AREF  
Internal  
references  
CPU  
9
SRAM  
10  
11  
12  
13  
14  
15  
16  
FLASH  
EEPROM  
DATA BUS  
EVENT ROUTING NETWORK  
Port C  
Port D  
Port E  
Port F  
Notes: 1. For full details on pinout and alternate pin functions refer to “Pinout and Pin Functions” on page 50.  
2. The large center pad underneath the QFN/MLF package should be soldered to ground on the board to ensure good  
mechanical stability.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
5
3.  
Overview  
The Atmel AVR XMEGA is a family of low power, high performance, and peripheral rich 8/16-bit microcontrollers based  
on the AVR enhanced RISC architecture. By executing instructions in a single clock cycle, the AVR XMEGA devices  
achieve CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the system  
designer to optimize power consumption versus processing speed.  
The AVR CPU combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly  
connected to the arithmetic logic unit (ALU), allowing two independent registers to be accessed in a single instruction,  
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs many times  
faster than conventional single-accumulator or CISC based microcontrollers.  
The XMEGA D3 devices provide the following features: in-system programmable flash with read-while-write capabilities;  
internal EEPROM and SRAM; four-channel event system and programmable multilevel interrupt controller, 50 general  
purpose I/O lines, 16-bit real-time counter (RTC); five, 16-bit timer/counters with compare and PWM channels; three  
USARTs; two two-wire serial interfaces (TWIs); two serial peripheral interfaces (SPIs); one sixteen-channel, 12-bit ADC  
with programmable gain; two analog comparators (ACs) with window mode; programmable watchdog timer with separate  
internal oscillator; accurate internal oscillators with PLL and prescaler; and programmable brown-out detection.  
The program and debug interface (PDI), a fast, two-pin interface for programming and debugging, is available.  
The AVR XMEGA devices have five software selectable power saving modes. The idle mode stops the CPU while  
allowing the SRAM, event system, interrupt controller, and all peripherals to continue functioning. The power-down mode  
saves the SRAM and register contents, but stops the oscillators, disabling all other functions until the next TWI, or pin-  
change interrupt, or reset. In power-save mode, the asynchronous real-time counter continues to run, allowing the  
application to maintain a timer base while the rest of the device is sleeping. In standby mode, the external crystal  
oscillator keeps running while the rest of the device is sleeping. This allows very fast startup from the external crystal,  
combined with low power consumption. In extended standby mode, both the main oscillator and the asynchronous timer  
continue to run. To further reduce power consumption, the peripheral clock to each individual peripheral can optionally be  
stopped in active mode and idle sleep mode.  
Atmel offers a free QTouch library for embedding capacitive touch buttons, sliders and wheels functionality into AVR  
microcontrollers.  
The devices are manufactured using Atmel high-density, nonvolatile memory technology. The program flash memory can  
be reprogrammed in-system through the PDI. A boot loader running in the device can use any interface to download the  
application program to the flash memory. The boot loader software in the boot flash section will continue to run while the  
application flash section is updated, providing true read-while-write operation. By combining an 8/16-bit RISC CPU with  
in-system, self-programmable flash, the AVR XMEGA is a powerful microcontroller family that provides a highly flexible  
and cost effective solution for many embedded applications.  
All AVR XMEGA devices are supported with a full suite of program and system development tools, including: C  
compilers, macro assemblers, program debugger/simulators, programmers, and evaluation kits.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
6
3.1  
Block Diagram  
Figure 3-1. XMEGA D3 Block Diagram  
PR[0..1]  
XTAL1  
Power  
Ground  
Digital function  
Analog function/Oscillators  
Programming, debug,  
External clock/Crystal pins  
General Purpose I /O  
XTAL2  
Oscillator  
Circuits/  
Clock  
Real Time  
Counter  
Watchdog  
Oscillator  
PORT R (2)  
Generation  
DATA BUS  
Watchdog  
Timer  
ACA  
Event System  
Controller  
Oscillator  
Control  
Sleep  
Controller  
VCC  
GND  
Power  
Supervision  
POR/BOD &  
RESET  
PA[0..7]  
PORT A (8)  
ADCA  
SRAM  
BUS Matrix  
AREFA  
VCC/10  
Int. Refs.  
Tempref  
AREFB  
RESET/  
Interrupt  
Prog/Debug  
Controller  
PDI_CLK  
PDI  
Controller  
PDI_DATA  
CPU  
CRC  
OCD  
NVM Controller  
PB[0..7]  
PORT B (8)  
TCF0  
PF[0..7]  
Flash  
EEPROM  
DATA BUS  
EVENT ROUTING NETWORK  
To Clock  
Generator  
PORT C (8)  
PORT D (8)  
PORT E (8)  
TOSC1  
TOSC2  
PC[0..7]  
PD[0..7]  
PE[0..7]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
7
4.  
Resources  
A comprehensive set of development tools, application notes and datasheets are available for download on  
www.atmel.com/avr.  
4.1  
Recommended Reading  
Atmel AVR XMEGA D manual  
XMEGA application notes  
This device data sheet only contains part specific information with a short description of each peripheral and module. The  
XMEGA D manual describes the modules and peripherals in depth. The XMEGA application notes contain example code  
and show applied use of the modules and peripherals.  
All documentation are available from www.atmel.com/avr.  
5.  
Capacitive Touch Sensing  
The Atmel QTouch library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR  
microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced  
reporting of touch keys and includes Adjacent Key Suppression(AKS) technology for unambiguous detection of key  
events. The QTouch library includes support for the QTouch and Atmel QMatrix acquisition methods.  
Touch sensing can be added to any application by linking the appropriate Atmel QTouch library for the AVR  
microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the  
touch sensing API’s to retrieve the channel information and determine the touch sensor states.  
The QTouch library is FREE and downloadable from the Atmel website at the following location:  
http://www.atmel.com/tools/qtouchlibrary.aspx. For implementation details and other information, refer to the QTouch  
library user guide - also available for download from the Atmel website.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
8
6.  
AVR CPU  
6.1  
Features  
8/16-bit, high-performance Atmel AVR RISC CPU  
137 instructions  
Hardware multiplier  
32x8-bit registers directly connected to the ALU  
Stack in RAM  
Stack pointer accessible in I/O memory space  
Direct addressing of up to 16MB of program memory and 16MB of data memory  
True 16/24-bit access to 16/24-bit I/O registers  
Efficient support for 8-, 16-, and 32-bit arithmetic  
Configuration change protection of system-critical features  
6.2  
6.3  
Overview  
All Atmel AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to execute the code and  
perform all calculations. The CPU is able to access memories, perform calculations, control peripherals, and execute the  
program in the flash memory. Interrupt handling is described in a separate section, refer to “Interrupts and Programmable  
Multilevel Interrupt Controller” on page 28.  
Architectural Overview  
In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture with separate memories  
and buses for program and data. Instructions in the program memory are executed with single-level pipelining. While one  
instruction is being executed, the next instruction is pre-fetched from the program memory. This enables instructions to  
be executed on every clock cycle. For details of all AVR instructions, refer to www.atmel.com/avr.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
9
Figure 6-1. Block Diagram of the AVR CPU Architecture  
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a  
register. Single-register operations can also be executed in the ALU. After an arithmetic operation, the status register is  
updated to reflect information about the result of the operation.  
The ALU is directly connected to the fast-access register file. The 32 * 8-bit general purpose working registers all have  
single clock cycle access time allowing single-cycle arithmetic logic unit (ALU) operation between registers or between a  
register and an immediate. Six of the 32 registers can be used as three 16-bit address pointers for program and data  
space addressing, enabling efficient address calculations.  
The memory spaces are linear. The data memory space and the program memory space are two different memory  
spaces.  
The data memory space is divided into I/O registers, SRAM, and external RAM. In addition, the EEPROM can be  
memory mapped in the data memory.  
All I/O status and control registers reside in the lowest 4KB addresses of the data memory. This is referred to as the I/O  
memory space. The lowest 64 addresses can be accessed directly, or as the data space locations from 0x00 to 0x3F.  
The rest is the extended I/O memory space, ranging from 0x0040 to 0x0FFF. I/O registers here must be accessed as  
data space locations using load (LD/LDS/LDD) and store (ST/STS/STD) instructions.  
The SRAM holds data. Code execution from SRAM is not supported. It can easily be accessed through the five different  
addressing modes supported in the AVR architecture. The first SRAM address is 0x2000.  
Data addresses 0x1000 to 0x1FFF are reserved for memory mapping of EEPROM.  
The program memory is divided in two sections, the application program section and the boot program section. Both  
sections have dedicated lock bits for write and read/write protection. The SPM instruction that is used for self-  
programming of the application flash memory must reside in the boot program section. The application section contains  
an application table section with separate lock bits for write and read/write protection. The application table section can  
be used for safe storing of nonvolatile data in the program memory.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
10  
6.4  
ALU - Arithmetic Logic Unit  
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a  
register. Single-register operations can also be executed. The ALU operates in direct connection with all 32 general  
purpose registers. In a single clock cycle, arithmetic operations between general purpose registers or between a register  
and an immediate are executed and the result is stored in the register file. After an arithmetic or logic operation, the  
status register is updated to reflect information about the result of the operation.  
ALU operations are divided into three main categories – arithmetic, logical, and bit functions. Both 8- and 16-bit  
arithmetic is supported, and the instruction set allows for efficient implementation of 32-bit aritmetic. The hardware  
multiplier supports signed and unsigned multiplication and fractional format.  
6.4.1 Hardware Multiplier  
The multiplier is capable of multiplying two 8-bit numbers into a 16-bit result. The hardware multiplier supports different  
variations of signed and unsigned integer and fractional numbers:  
Multiplication of unsigned integers  
Multiplication of signed integers  
Multiplication of a signed integer with an unsigned integer  
Multiplication of unsigned fractional numbers  
Multiplication of signed fractional numbers  
Multiplication of a signed fractional number with an unsigned one  
A multiplication takes two CPU clock cycles.  
6.5  
Program Flow  
After reset, the CPU starts to execute instructions from the lowest address in the flash programmemory ‘0.’ The program  
counter (PC) addresses the next instruction to be fetched.  
Program flow is provided by conditional and unconditional jump and call instructions capable of addressing the whole  
address space directly. Most AVR instructions use a 16-bit word format, while a limited number use a 32-bit format.  
During interrupts and subroutine calls, the return address PC is stored on the stack. The stack is allocated in the general  
data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. After  
reset, the stack pointer (SP) points to the highest address in the internal SRAM. The SP is read/write accessible in the  
I/O memory space, enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be  
accessed through the five different addressing modes supported in the AVR CPU.  
6.6  
Status Register  
The status register (SREG) contains information about the result of the most recently executed arithmetic or logic  
instruction. This information can be used for altering program flow in order to perform conditional operations. Note that  
the status register is updated after all ALU operations, as specified in the instruction set reference. This will in many  
cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.  
The status register is not automatically stored when entering an interrupt routine nor restored when returning from an  
interrupt. This must be handled by software.  
The status register is accessible in the I/O memory space.  
6.7  
Stack and Stack Pointer  
The stack is used for storing return addresses after interrupts and subroutine calls. It can also be used for storing  
temporary data. The Stack Pointer (SP) register always points to the top of the stack. It is implemented as two 8-bit  
registers that are accessible in the I/O memory space. Data are pushed and popped from the stack using the PUSH and  
POP instructions. The stack grows from a higher memory location to a lower memory location. This implies that pushing  
data onto the stack decreases the SP, and popping data off the stack increases the SP. The SP is automatically loaded  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
11  
after reset, and the initial value is the highest address of the internal SRAM. If the SP is changed, it must be set to point  
above address 0x2000, and it must be defined before any subroutine calls are executed or before interrupts are enabled.  
During interrupts or subroutine calls, the return address is automatically pushed on the stack. The return address can be  
two or three bytes, depending on program memory size of the device. For devices with 128KB or less of program  
memory, the return address is two bytes, and hence the stack pointer is decremented/incremented by two. For devices  
with more than 128KB of program memory, the return address is three bytes, and hence the SP is  
decremented/incremented by three. The return address is popped off the stack when returning from interrupts using the  
RETI instruction, and from subroutine calls using the RET instruction.  
The SP is decremented by one when data are pushed on the stack with the PUSH instruction, and incremented by one  
when data is popped off the stack using the POP instruction.  
To prevent corruption when updating the stack pointer from software, a write to SPL will automatically disable interrupts  
for up to four instructions or until the next I/O memory write.  
After reset the stack pointer is initialized to the highest address of the SRAM. See Figure 7-2 on page 16.  
6.8  
Register File  
The register file consists of 32 * 8-bit general purpose working registers with single clock cycle access time. The register  
file supports the following input/output schemes:  
One 8-bit output operand and one 8-bit result input  
Two 8-bit output operands and one 8-bit result input  
Two 8-bit output operands and one 16-bit result input  
One 16-bit output operand and one 16-bit result input  
Six of the 32 registers can be used as three 16-bit address register pointers for data space addressing, enabling efficient  
address calculations. One of these address pointers can also be used as an address pointer for lookup tables in flash  
program memory.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
12  
7.  
Memories  
7.1  
Features  
Flash program memory  
One linear address space  
In-system programmable  
Self-programming and boot loader support  
Application section for application code  
Application table section for application code or data storage  
Boot section for application code or boot loader code  
Separate read/write protection lock bits for all sections  
Built in fast CRC check of a selectable flash program memory section  
Data memory  
One linear address space  
Single-cycle access from CPU  
SRAM  
EEPROM  
Byte and page accessible  
Optional memory mapping for direct load and store  
I/O memory  
Configuration and status registers for all peripherals and modules  
Four bit-accessible general purpose registers for global variables or flags  
Production signature row memory for factory programmed data  
ID for each microcontroller device type  
Serial number for each device  
Calibration bytes for factory calibrated peripherals  
User signature row  
One flash page in size  
Can be read and written from software  
Content is kept after chip erase  
7.2  
Overview  
The Atmel AVR architecture has two main memory spaces, the program memory and the data memory. Executable code  
can reside only in the program memory, while data can be stored in the program memory and the data memory. The data  
memory includes the internal SRAM, and EEPROM for nonvolatile data storage. All memory spaces are linear and  
require no memory bank switching. Nonvolatile memory (NVM) spaces can be locked for further write and read/write  
operations. This prevents unrestricted access to the application software.  
A separate memory section contains the fuse bytes. These are used for configuring important system functions, and can  
only be written by an external programmer.  
The available memory size configurations are shown in “Ordering Information” on page 2. In addition, each device has a  
Flash memory signature row for calibration data, device identification, serial number etc.  
7.3  
Flash Program Memory  
The Atmel AVR XMEGA devices contain on-chip, in-system reprogrammable flash memory for program storage. The  
flash memory can be accessed for read and write from an external programmer through the PDI or from application  
software running in the device.  
All AVR CPU instructions are 16 or 32 bits wide, and each flash location is 16 bits wide. The flash memory is organized  
in two main sections, the application section and the boot loader section. The sizes of the different sections are fixed, but  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
13  
device-dependent. These two sections have separate lock bits, and can have different levels of protection. The store  
program memory (SPM) instruction, which is used to write to the flash from the application software, will only operate  
when executed from the boot loader section.  
The application section contains an application table section with separate lock settings. This enables safe storage of  
nonvolatile data in the program memory.  
Figure 7-1. Flash Program Memory (hexadecimal address)  
Word address  
ATxmega  
32D3  
64D3  
128D3  
192D3  
256D3  
384D3  
0
0
0
0
0
0
Application section  
(32K/64K/128K/192K/256K/384K)  
...  
37FF  
3800  
3FFF  
4000  
47FF  
77FF  
7800  
7FFF  
8000  
87FF  
EFFF  
F000  
16FFF  
17000  
17FFF  
18000  
18FFF  
1EFFF  
1F000  
1FFFF  
20000  
20FFF  
2EFFF  
2F000  
2FFFF  
30000  
30FFF  
Application table section  
(4K/4K/8K/8K/8K/8K)  
FFFF  
10000  
10FFF  
Boot section (4K/4K/8K/8K/8K/8K)  
7.3.1 Application Section  
The application section is the section of the flash that is used for storing the executable application code. The protection  
level for the application section can be selected by the boot lock bits for this section. The application section can not store  
any boot loader code since the SPM instruction cannot be executed from the application section.  
7.3.2 Application Table Section  
The application table section is a part of the application section of the flash memory that can be used for storing data.  
The size is identical to the boot loader section. The protection level for the application table section can be selected by  
the boot lock bits for this section. The possibilities for different protection levels on the application section and the  
application table section enable safe parameter storage in the program memory. If this section is not used for data,  
application code can reside here.  
7.3.3 Boot Loader Section  
While the application section is used for storing the application code, the boot loader software must be located in the boot  
loader section because the SPM instruction can only initiate programming when executing from this section. The SPM  
instruction can access the entire flash, including the boot loader section itself. The protection level for the boot loader  
section can be selected by the boot loader lock bits. If this section is not used for boot loader software, the application  
code can be stored here.  
7.3.4 Production Signature Row  
The production signature row is a separate memory section for factory programmed data. It contains calibration data for  
functions such as oscillators and analog modules. Some of the calibration values will be automatically loaded to the  
corresponding module or peripheral unit during reset. Other values must be loaded from the signature row and written to  
the corresponding peripheral registers from software. For details on calibration conditions, refer to “Electrical  
Characteristics” on page 63.  
The production signature row also contains an ID that identifies each microcontroller device type and a serial number for  
each manufactured device. The serial number consists of the production lot number, wafer number, and wafer  
coordinates for the device. The device ID for the available devices is shown in Table 7-1 on page 15.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
14  
The production signature row cannot be written or erased, but it can be read from application software and external  
programmers.  
Table 7-1. Device ID Bytes  
Device  
Device ID bytes  
Byte 1  
Byte 2  
4A  
Byte 0  
1E  
ATxmega32D3  
ATxmega64D3  
ATxmega128D3  
ATxmega192D3  
ATxmega256D3  
ATxmega384D3  
95  
96  
97  
97  
98  
98  
4A  
1E  
48  
1E  
49  
1E  
44  
1E  
47  
1E  
7.3.5 User Signature Row  
The user signature row is a separate memory section that is fully accessible (read and write) from application software  
and external programmers. It is one flash page in size, and is meant for static user parameter storage, such as calibration  
data, custom serial number, identification numbers, random number seeds, etc. This section is not erased by chip erase  
commands that erase the flash, and requires a dedicated erase command. This ensures parameter storage during  
multiple program/erase operations and on-chip debug sessions.  
7.4  
Fuses and Lock Bits  
The fuses are used to configure important system functions, and can only be written from an external programmer. The  
application software can read the fuses. The fuses are used to configure reset sources such as brownout detector and  
watchdog, and startup configuration.  
The lock bits are used to set protection levels for the different flash sections (that is, if read and/or write access should be  
blocked). Lock bits can be written by external programmers and application software, but only to stricter protection levels.  
Chip erase is the only way to erase the lock bits. To ensure that flash contents are protected even during chip erase, the  
lock bits are erased after the rest of the flash memory has been erased.  
An unprogrammed fuse or lock bit will have the value one, while a programmed fuse or lock bit will have the value zero.  
Both fuses and lock bits are reprogrammable like the flash program memory.  
7.5  
Data Memory  
The data memory contains the I/O memory, internal SRAM, optionally memory mapped EEPROM, and external memory  
if available. The data memory is organized as one continuous memory section, see Figure 7-2 on page 16. To simplify  
development, I/O Memory, EEPROM and SRAM will always have the same start addresses for all Atmel AVR XMEGA  
devices.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
15  
Figure 7-2. Data Memory Map (hexadecimal address)  
Byte address  
ATxmega32D3  
Byte address  
ATxmega64D3  
0
FFF  
0
FFF  
I/O registers (4K)  
I/O registers (4K)  
1000  
17FF  
1000  
17FF  
EEPROM (1K)  
RESERVED  
EEPROM (2K)  
RESERVED  
2000  
2FFF  
2000  
2FFF  
Internal SRAM (4K)  
Internal SRAM (4K)  
Byte address  
ATxmega128D3  
Byte address  
ATxmega192D3  
0
FFF  
0
FFF  
I/O registers (4K)  
I/O registers (4K)  
1000  
17FF  
1000  
17FF  
EEPROM (2K)  
RESERVED  
EEPROM (2K)  
RESERVED  
2000  
3FFF  
2000  
5FFF  
Internal SRAM (8K)  
Internal SRAM (16K)  
Byte address  
ATxmega256D3  
Byte address  
ATxmega384D3  
0
FFF  
0
FFF  
I/O registers (4K)  
I/O registers (4K)  
1000  
1000  
EEPROM (4K)  
EEPROM (4K)  
1FFF  
2000  
5FFF  
1FFF  
2000  
9FFF  
Internal SRAM (16K)  
Internal SRAM (32K)  
7.6  
EEPROM  
All devices have EEPROM for nonvolatile data storage. It is either addressable in a separate data space (default) or  
memory mapped and accessed in normal data space. The EEPROM supports both byte and page access. Memory  
mapped EEPROM allows highly efficient EEPROM reading and EEPROM buffer loading. When doing this, EEPROM is  
accessible using load and store instructions. Memory mapped EEPROM will always start at hexadecimal address  
0x1000.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
16  
7.7  
I/O Memory  
The status and configuration registers for peripherals and modules, including the CPU, are addressable through I/O  
memory locations. All I/O locations can be accessed by the load (LD/LDS/LDD) and store (ST/STS/STD) instructions,  
which are used to transfer data between the 32 registers in the register file and the I/O memory. The IN and OUT  
instructions can address I/O memory locations in the range of 0x00 to 0x3F directly. In the address range 0x00 - 0x1F,  
single-cycle instructions for manipulation and checking of individual bits are available.  
The I/O memory address for all peripherals and modules is shown in the “Peripheral Module Address Map” on page 55.  
7.7.1 General Purpose I/O Registers  
The lowest 16 I/O memory addresses are reserved as general purpose I/O registers. These registers can be used for  
storing global variables and flags, as they are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.  
7.8  
7.9  
Memory Timing  
Read and write access to the I/O memory takes one CPU clock cycle. A write to SRAM takes one cycle, and a read from  
SRAM takes two cycles. EEPROM page load (write) takes one cycle, and three cycles are required for read. For burst  
read, new data are available every second cycle. Refer to the instruction summary for more details on instructions and  
instruction timing.  
Device ID and Revision  
Each device has a three-byte device ID. This ID identifies Atmel as the manufacturer of the device and the device type. A  
separate register contains the revision number of the device.  
7.10 I/O Memory Protection  
Some features in the device are regarded as critical for safety in some applications. Due to this, it is possible to lock the  
I/O register related to the clock system, the event system, and the advanced waveform extensions. As long as the lock is  
enabled, all related I/O registers are locked and they can not be written from the application software. The lock registers  
themselves are protected by the configuration change protection mechanism.  
7.11 Flash and EEPROM Page Size  
The flash program memory and EEPROM data memory are organized in pages. The pages are word accessible for the  
flash and byte accessible for the EEPROM.  
Table 7-2 on page 18 shows the Flash Program Memory organization and Program Counter (PC) size. Flash write and  
erase operations are performed on one page at a time, while reading the Flash is done one byte at a time. For Flash  
access the Z-pointer (Z[m:n]) is used for addressing. The most significant bits in the address (FPAGE) give the page  
number and the least significant address bits (FWORD) give the word in the page.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
17  
Table 7-2. Number of Words and Pages in the Flash  
Devices  
PC size  
Flash size  
Page size  
FWORD  
FPAGE  
Application  
Boot  
No. of  
pages  
No. of  
pages  
[bits]  
[bytes]  
[words]  
Size  
Size  
ATxmega32D3  
ATxmega64D3  
ATxmega128D3  
ATxmega192D3  
ATxmega256D3  
ATxmega384D3  
15  
16  
17  
17  
18  
18  
32K + 4K  
64K + 4K  
128  
128  
256  
256  
256  
256  
Z[7:1]  
Z[7:1]  
Z[8:1]  
Z[8:1]  
Z[8:1]  
Z[8:1]  
Z[15:7]  
Z[16:9]  
Z[17:9]  
Z[17:9]  
Z[18:9]  
Z[19:9]  
32K  
64K  
128  
4K  
4K  
8K  
8K  
8K  
8K  
16  
16  
16  
16  
16  
16  
256  
128K + 8K  
192K + 8K  
256K + 8K  
384K + 8K  
128K  
192K  
256K  
384K  
256  
384  
512  
768  
Table 7-3 shows EEPROM memory organization. EEEPROM write and erase operations can be performed one page or  
one byte at a time, while reading the EEPROM is done one byte at a time. For EEPROM access the NVM address  
register (ADDR[m:n]) is used for addressing. The most significant bits in the address (E2PAGE) give the page number  
and the least significant address bits (E2BYTE) give the byte in the page.  
Table 7-3. Number of Bytes and Pages in the EEPROM  
Devices  
EEPROM  
size  
1K  
Page size  
E2BYTE  
E2PAGE  
No. of pages  
[bytes]  
32  
ATxmega32D3  
ATxmega64D3  
ATxmega128D3  
ATxmega192D3  
ATxmega256D3  
ATxmega384D3  
ADDR[4:0]  
ADDR[4:0]  
ADDR[4:0]  
ADDR[4:0]  
ADDR[4:0]  
ADDR[4:0]  
ADDR[10:5]  
ADDR[10:5]  
ADDR[10:5]  
ADDR[10:5]  
ADDR[11:5]  
ADDR[11:5]  
64  
64  
2K  
32  
2K  
32  
64  
2K  
32  
64  
4K  
32  
128  
128  
4K  
32  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
18  
8.  
Event System  
8.1  
Features  
System for direct peripheral-to-peripheral communication and signaling  
Peripherals can directly send, receive, and react to peripheral events  
CPU independent operation  
100% predictable signal timing  
Short and guaranteed response time  
Four event channels for up to four different and parallel signal routing configurations  
Events can be sent and/or used by most peripherals, clock system, and software  
Additional functions include  
Quadrature decoders  
Digital filtering of I/O pin state  
Works in active mode and idle sleep mode  
8.2  
Overview  
The event system enables direct peripheral-to-peripheral communication and signaling. It allows a change in one  
peripheral’s state to automatically trigger actions in other peripherals. It is designed to provide a predictable system for  
short and predictable response times between peripherals. It allows for autonomous peripheral control and interaction  
without the use of interrupts or CPU resources, and is thus a powerful tool for reducing the complexity, size and  
execution time of application code. It also allows for synchronized timing of actions in several peripheral modules.  
A change in a peripheral’s state is referred to as an event, and usually corresponds to the peripheral’s interrupt  
conditions. Events can be directly passed to other peripherals using a dedicated routing network called the event routing  
network. How events are routed and used by the peripherals is configured in software.  
Figure 8-1 shows a basic diagram of all connected peripherals. The event system can directly connect together analog to  
digital converter, analog comparators, I/O port pins, the real-time counter, timer/counters, and IR communication module  
(IRCOM). Events can also be generated from software and the peripheral clock.  
Figure 8-1. Event System Overview and Connected Peripherals  
CPU /  
Software  
Event Routing Network  
clkPER  
Prescaler  
ADC  
Event  
Real Time  
System  
Counter  
Controller  
AC  
Timer /  
Counters  
Port pins  
IRCOM  
The event routing network consists of four software-configurable multiplexers that control how events are routed and  
used. These are called event channels, and allow for up to four parallel event routing configurations. The maximum  
routing latency is two peripheral clock cycles. The event system works in both active mode and idle sleep mode.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
19  
9.  
System Clock and Clock Options  
9.1  
Features  
Fast start-up time  
Safe run-time clock switching  
Internal oscillators:  
32MHz run-time calibrated and tuneable oscillator  
2MHz run-time calibrated oscillator  
32.768kHz calibrated oscillator  
32kHz ultra low power (ULP) oscillator with 1kHz output  
External clock options  
0.4MHz - 16MHz crystal oscillator  
32.768kHz crystal oscillator  
External clock  
PLL with 20MHz - 128MHz output frequency  
Internal and external clock options and 1× to 31× multiplication  
Lock detector  
Clock prescalers with 1× to 2048× division  
Fast peripheral clocks running at two and four times the CPU clock  
Automatic run-time calibration of internal oscillators  
External oscillator and PLL lock failure detection with optional non-maskable interrupt  
9.2  
Overview  
Atmel AVR XMEGA D3 devices have a flexible clock system supporting a large number of clock sources. It incorporates  
both accurate internal oscillators and external crystal oscillator and resonator support. A high-frequency phase locked  
loop (PLL) and clock prescalers can be used to generate a wide range of clock frequencies. A calibration feature (DFLL)  
is available, and can be used for automatic run-time calibration of the internal oscillators to remove frequency drift over  
voltage and temperature. An oscillator failure monitor can be enabled to issue a non-maskable interrupt and switch to the  
internal oscillator if the external oscillator or PLL fails.  
When a reset occurs, all clock sources except the 32kHz ultra low power oscillator are disabled. After reset, the device  
will always start up running from the 2MHz internal oscillator. During normal operation, the system clock source and  
prescalers can be changed from software at any time.  
Figure 9-1 on page 21 presents the principal clock system. Not all of the clocks need to be active at a given time. The  
clocks for the CPU and peripherals can be stopped using sleep modes and power reduction registers, as described in  
“Power Management and Sleep Modes” on page 23.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
20  
Figure 9-1. The Clock System, Clock Sources, and Clock Distribution  
Real Time  
Peripherals  
Counter  
Non-Volatile  
Memory  
RAM  
AVR CPU  
clkPER  
clkPER2  
clkCPU  
clkPER4  
System Clock Prescalers  
clkSYS  
Brown-out  
Detector  
Watchdog  
Timer  
clkRTC  
System Clock Multiplexer  
(SCLKSEL)  
RTCSRC  
PLL  
PLLSRC  
XOSCSEL  
32kHz  
Int. ULP  
32.768kHz  
Int. OSC  
32.768kHz  
TOSC  
0.4 – 16MHz  
XTAL  
32MHz  
Int. Osc  
2MHz  
Int. Osc  
9.3  
Clock Sources  
The clock sources are divided in two main groups: internal oscillators and external clock sources. Most of the clock  
sources can be directly enabled and disabled from software, while others are automatically enabled or disabled,  
depending on peripheral settings. After reset, the device starts up running from the 2MHz internal oscillator. The other  
clock sources, DFLLs and PLL, are turned off by default.  
The internal oscillators do not require any external components to run. For details on characteristics and accuracy of the  
internal oscillators, refer to the device datasheet.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
21  
9.3.1 32kHz Ultra Low Power Internal Oscillator  
This oscillator provides an approximate 32kHz clock. The 32kHz ultra low power (ULP) internal oscillator is a very low  
power clock source, and it is not designed for high accuracy. The oscillator employs a built-in prescaler that provides a  
1kHz output. The oscillator is automatically enabled/disabled when it is used as clock source for any part of the device.  
This oscillator can be selected as the clock source for the RTC.  
9.3.2 32.768kHz Calibrated Internal Oscillator  
This oscillator provides an approximate 32.768kHz clock. It is calibrated during production to provide a default frequency  
close to its nominal frequency. The calibration register can also be written from software for run-time calibration of the  
oscillator frequency. The oscillator employs a built-in prescaler, which provides both a 32.768kHz output and a 1.024kHz  
output.  
9.3.3 32.768kHz Crystal Oscillator  
A 32.768kHz crystal oscillator can be connected between the TOSC1 and TOSC2 pins and enables a dedicated low  
frequency oscillator input circuit. A low power mode with reduced voltage swing on TOSC2 is available. This oscillator  
can be used as a clock source for the system clock and RTC, and as the DFLL reference clock.  
9.3.4 0.4 - 16MHz Crystal Oscillator  
This oscillator can operate in four different modes optimized for different frequency ranges, all within 0.4 - 16MHz.  
9.3.5 2MHz Run-time Calibrated Internal Oscillator  
The 2MHz run-time calibrated internal oscillator is the default system clock source after reset. It is calibrated during  
production to provide a default frequency close to its nominal frequency. A DFLL can be enabled for automatic run-time  
calibration of the oscillator to compensate for temperature and voltage drift and optimize the oscillator accuracy.  
9.3.6 32MHz Run-time Calibrated Internal Oscillator  
The 32MHz run-time calibrated internal oscillator is a high-frequency oscillator. It is calibrated during production to  
provide a default frequency close to its nominal frequency. A digital frequency looked loop (DFLL) can be enabled for  
automatic run-time calibration of the oscillator to compensate for temperature and voltage drift and optimize the oscillator  
accuracy. This oscillator can also be adjusted and calibrated to any frequency between 30MHz and 55MHz.  
9.3.7 External Clock Sources  
The XTAL1 and XTAL2 pins can be used to drive an external oscillator, either a quartz crystal or a ceramic resonator.  
XTAL1 can be used as input for an external clock signal. The TOSC1 and TOSC2 pins is dedicated to driving a  
32.768kHz crystal oscillator.  
9.3.8 PLL with 1x-31x Multiplication Factor  
The built-in phase locked loop (PLL) can be used to generate a high-frequency system clock. The PLL has a user-  
selectable multiplication factor of from 1 to 31. In combination with the prescalers, this gives a wide range of output  
frequencies from all clock sources.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
22  
10. Power Management and Sleep Modes  
10.1 Features  
Power management for adjusting power consumption and functions  
Five sleep modes  
Idle  
Power down  
Power save  
Standby  
Extended standby  
Power reduction register to disable clock and turn off unused peripherals in active and idle modes  
10.2 Overview  
Various sleep modes and clock gating are provided in order to tailor power consumption to application requirements.  
This enables the Atmel AVR XMEGA microcontroller to stop unused modules to save power.  
All sleep modes are available and can be entered from active mode. In active mode, the CPU is executing application  
code. When the device enters sleep mode, program execution is stopped and interrupts or a reset is used to wake the  
device again. The application code decides which sleep mode to enter and when. Interrupts from enabled peripherals  
and all enabled reset sources can restore the microcontroller from sleep to active mode.  
In addition, power reduction registers provide a method to stop the clock to individual peripherals from software. When  
this is done, the current state of the peripheral is frozen, and there is no power consumption from that peripheral. This  
reduces the power consumption in active mode and idle sleep modes and enables much more fine-tuned power  
management than sleep modes alone.  
10.3 Sleep Modes  
Sleep modes are used to shut down modules and clock domains in the microcontroller in order to save power. XMEGA  
microcontrollers have five different sleep modes tuned to match the typical functional stages during application  
execution. A dedicated sleep instruction (SLEEP) is available to enter sleep mode. Interrupts are used to wake the  
device from sleep, and the available interrupt wake-up sources are dependent on the configured sleep mode. When an  
enabled interrupt occurs, the device will wake up and execute the interrupt service routine before continuing normal  
program execution from the first instruction after the SLEEP instruction. If other, higher priority interrupts are pending  
when the wake-up occurs, their interrupt service routines will be executed according to their priority before the interrupt  
service routine for the wake-up interrupt is executed. After wake-up, the CPU is halted for four cycles before execution  
starts.  
The content of the register file, SRAM and registers are kept during sleep. If a reset occurs during sleep, the device will  
reset, start up, and execute from the reset vector.  
10.3.1 Idle Mode  
In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming will be completed), but  
all peripherals, including the interrupt controller and event system are kept running. Any enabled interrupt will wake the  
device.  
10.3.2 Power-down Mode  
In power-down mode, all clocks, including the real-time counter clock source, are stopped. This allows operation only of  
asynchronous modules that do not require a running clock. The only interrupts that can wake up the MCU are the two-  
wire interface address match interrupt and asynchronous port interrupts.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
23  
10.3.3 Power-save Mode  
Power-save mode is identical to power down, with one exception. If the real-time counter (RTC) is enabled, it will keep  
running during sleep, and the device can also wake up from either an RTC overflow or compare match interrupt.  
10.3.4 Standby Mode  
Standby mode is identical to power down, with the exception that the enabled system clock sources are kept running  
while the CPU, peripheral, and RTC clocks are stopped. This reduces the wake-up time.  
10.3.5 Extended Standby Mode  
Extended standby mode is identical to power-save mode, with the exception that the enabled system clock sources are  
kept running while the CPU and peripheral clocks are stopped. This reduces the wake-up time.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
24  
11. System Control and Reset  
11.1 Features  
Reset the microcontroller and set it to initial state when a reset source goes active  
Multiple reset sources that cover different situations  
Power-on reset  
External reset  
Watchdog reset  
Brownout reset  
PDI reset  
Software reset  
Asynchronous operation  
No running system clock in the device is required for reset  
Reset status register for reading the reset source from the application code  
11.2 Overview  
The reset system issues a microcontroller reset and sets the device to its initial state. This is for situations where  
operation should not start or continue, such as when the microcontroller operates below its power supply rating. If a reset  
source goes active, the device enters and is kept in reset until all reset sources have released their reset. The I/O pins  
are immediately tri-stated. The program counter is set to the reset vector location, and all I/O registers are set to their  
initial values. The SRAM content is kept. However, if the device accesses the SRAM when a reset occurs, the content of  
the accessed location can not be guaranteed.  
After reset is released from all reset sources, the default oscillator is started and calibrated before the device starts  
running from the reset vector address. By default, this is the lowest program memory address, 0, but it is possible to  
move the reset vector to the lowest address in the boot section.  
The reset functionality is asynchronous, and so no running system clock is required to reset the device. The software  
reset feature makes it possible to issue a controlled system reset from the user software.  
The reset status register has individual status flags for each reset source. It is cleared at power-on reset, and shows  
which sources have issued a reset since the last power-on.  
11.3 Reset Sequence  
A reset request from any reset source will immediately reset the device and keep it in reset as long as the request is  
active. When all reset requests are released, the device will go through three stages before the device starts running  
again:  
Reset counter delay  
Oscillator startup  
Oscillator calibration  
If another reset requests occurs during this process, the reset sequence will start over again.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
25  
11.4 Reset Sources  
11.4.1 Power-on Reset  
A power-on reset (POR) is generated by an on-chip detection circuit. The POR is activated when the VCC rises and  
reaches the POR threshold voltage (VPOT), and this will start the reset sequence.  
The POR is also activated to power down the device properly when the VCC falls and drops below the VPOT level.  
The VPOT level is higher for falling VCC than for rising VCC. Consult the datasheet for POR characteristics data.  
11.4.2 Brownout Detection  
The on-chip brownout detection (BOD) circuit monitors the VCC level during operation by comparing it to a fixed,  
programmable level that is selected by the BODLEVEL fuses. If disabled, BOD is forced on at the lowest level during chip  
erase and when the PDI is enabled.  
11.4.3 External Reset  
The external reset circuit is connected to the external RESET pin. The external reset will trigger when the RESET pin is  
driven below the RESET pin threshold voltage, VRST, for longer than the minimum pulse period, tEXT. The reset will be  
held as long as the pin is kept low. The RESET pin includes an internal pull-up resistor.  
11.4.4 Watchdog Reset  
The watchdog timer (WDT) is a system function for monitoring correct program operation. If the WDT is not reset from  
the software within a programmable timeout period, a watchdog reset will be given. The watchdog reset is active for one  
to two clock cycles of the 2MHz internal oscillator. For more details see “WDT – Watchdog Timer” on page 27.  
11.4.5 Software Reset  
The software reset makes it possible to issue a system reset from software by writing to the software reset bit in the reset  
control register. The reset will be issued within two CPU clock cycles after writing the bit. It is not possible to execute any  
instruction from when a software reset is requested until it is issued.  
11.4.6 Program and Debug Interface Reset  
The program and debug interface reset contains a separate reset source that is used to reset the device during external  
programming and debugging. This reset source is accessible only from external debuggers and programmers.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
26  
12. WDT – Watchdog Timer  
12.1 Features  
Issues a device reset if the timer is not reset before its timeout period  
Asynchronous operation from dedicated oscillator  
1kHz output of the 32kHz ultra low power oscillator  
11 selectable timeout periods, from 8ms to 8s  
Two operation modes:  
Normal mode  
Window mode  
Configuration lock to prevent unwanted changes  
12.2 Overview  
The watchdog timer (WDT) is a system function for monitoring correct program operation. It makes it possible to recover  
from error situations such as runaway or deadlocked code. The WDT is a timer, configured to a predefined timeout  
period, and is constantly running when enabled. If the WDT is not reset within the timeout period, it will issue a  
microcontroller reset. The WDT is reset by executing the WDR (watchdog timer reset) instruction from the application  
code.  
The window mode makes it possible to define a time slot or window inside the total timeout period during which WDT  
must be reset. If the WDT is reset outside this window, either too early or too late, a system reset will be issued.  
Compared to the normal mode, this can also catch situations where a code error causes constant WDR execution.  
The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, runs from a CPU-independent clock  
source, and will continue to operate to issue a system reset even if the main clocks fail.  
The configuration change protection mechanism ensures that the WDT settings cannot be changed by accident. For  
increased safety, a fuse for locking the WDT settings is also available.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
27  
13. Interrupts and Programmable Multilevel Interrupt Controller  
13.1 Features  
Short and predictable interrupt response time  
Separate interrupt configuration and vector address for each interrupt  
Programmable multilevel interrupt controller  
Interrupt prioritizing according to level and vector address  
Three selectable interrupt levels for all interrupts: low, medium, and high  
Selectable, round-robin priority scheme within low-level interrupts  
Non-maskable interrupts for critical functions  
Interrupt vectors optionally placed in the application section or the boot loader section  
13.2 Overview  
Interrupts signal a change of state in peripherals, and this can be used to alter program execution. Peripherals can have  
one or more interrupts, and all are individually enabled and configured. When an interrupt is enabled and configured, it  
will generate an interrupt request when the interrupt condition is present. The programmable multilevel interrupt  
controller (PMIC) controls the handling and prioritizing of interrupt requests. When an interrupt request is acknowledged  
by the PMIC, the program counter is set to point to the interrupt vector, and the interrupt handler can be executed.  
All peripherals can select between three different priority levels for their interrupts: low, medium, and high. Interrupts are  
prioritized according to their level and their interrupt vector address. Medium-level interrupts will interrupt low-level  
interrupt handlers. High-level interrupts will interrupt both medium- and low-level interrupt handlers. Within each level, the  
interrupt priority is decided from the interrupt vector address, where the lowest interrupt vector address has the highest  
interrupt priority. Low-level interrupts have an optional round-robin scheduling scheme to ensure that all interrupts are  
serviced within a certain amount of time.  
Non-maskable interrupts (NMI) are also supported, and can be used for system critical functions.  
13.3 Interrupt Vectors  
The interrupt vector is the sum of the peripheral’s base interrupt address and the offset address for specific interrupts in  
each peripheral. The base addresses for the Atmel AVR XMEGA D3 devices are shown in Table 13-1 on page 29. Offset  
addresses for each interrupt available in the peripheral are described for each peripheral in the XMEGA D manual. For  
peripherals or modules that have only one interrupt, the interrupt vector is shown in Table 13-1 on page 29. The program  
address is the word address.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
28  
Table 13-1. Reset and Interrupt Vectors  
Program address  
(base address)  
0x000  
0x002  
0x004  
0x008  
0x014  
0x018  
0x01C  
0x028  
0x030  
0x032  
0x040  
0x044  
0x056  
0x05A  
0x05E  
0x074  
0x080  
0x084  
0x088  
0x08E  
0x09A  
0x0AE  
0x0B0  
0x0B6  
0x0D0  
0x0D8  
Source  
Interrupt description  
RESET  
OSCF_INT_vect  
PORTC_INT_base  
PORTR_INT_base  
RTC_INT_base  
Crystal oscillator failure interrupt vector (NMI)  
Port C interrupt base  
Port R interrupt base  
Real Time Counter Interrupt base  
Two-Wire Interface on Port C Interrupt base  
Timer/Counter 0 on port C Interrupt base  
Timer/Counter 1 on port C Interrupt base  
SPI on port C Interrupt vector  
TWIC_INT_base  
TCC0_INT_base  
TCC1_INT_base  
SPIC_INT_vect  
USARTC0_INT_base  
NVM_INT_base  
PORTB_INT_base  
PORTE_INT_base  
TWIE_INT_base  
TCE0_INT_base  
USARTE0_INT_base  
PORTD_INT_base  
PORTA_INT_base  
ACA_INT_base  
ADCA_INT_base  
TCD0_INT_base  
SPID_INT_vector  
USARTD0_INT_base  
USARTD1_INT_base  
PORTF_INT_base  
TCF0_INT_base  
USART 0 on port C Interrupt base  
Non-Volatile Memory Interrupt base  
Port B Interrupt base  
Port E INT base  
Two-Wire Interface on Port E Interrupt base  
Timer/Counter 0 on port E Interrupt base  
USART 0 on port E Interrupt base  
Port D Interrupt base  
Port A Interrupt base  
Analog Comparator on Port A Interrupt base  
Analog to Digital Converter on Port A Interrupt base  
Timer/Counter 0 on port D Interrupt base  
SPI D Interrupt vector  
USART 0 on port D Interrupt base  
USART 1 on port D Interrupt base  
Port F Interrupt base  
Timer/Counter 0 on port F Interrupt base  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
29  
14. I/O Ports  
14.1 Features  
50 general purpose input and output pins with individual configuration  
Output driver with configurable driver and pull settings:  
Totem-pole  
Wired-AND  
Wired-OR  
Bus-keeper  
Inverted I/O  
Input with synchronous and/or asynchronous sensing with interrupts and events  
Sense both edges  
Sense rising edges  
Sense falling edges  
Sense low level  
Optional pull-up and pull-down resistor on input and Wired-OR/AND configuration  
Asynchronous pin change sensing that can wake the device from all sleep modes  
Two port interrupts with pin masking per I/O port  
Efficient and safe access to port pins  
Hardware read-modify-write through dedicated toggle/clear/set registers  
Configuration of multiple pins in a single operation  
Mapping of port registers into bit-accessible I/O memory space  
Peripheral clocks output on port pin  
Real-time counter clock output to port pin  
Event channels can be output on port pin  
Remapping of digital peripheral pin functions  
Selectable USART, SPI, and timer/counter input/output pin locations  
14.2 Overview  
One port consists of up to eight port pins: pin 0 to 7. Each port pin can be configured as input or output with configurable  
driver and pull settings. They also implement synchronous and asynchronous input sensing with interrupts and events for  
selectable pin change conditions. Asynchronous pin-change sensing means that a pin change can wake the device from  
all sleep modes, included the modes where no clocks are running.  
All functions are individual and configurable per pin, but several pins can be configured in a single operation. The pins  
have hardware read-modify-write (RMW) functionality for safe and correct change of drive value and/or pull resistor  
configuration. The direction of one port pin can be changed without unintentionally changing the direction of any other  
pin.  
The port pin configuration also controls input and output selection of other device functions. It is possible to have both the  
peripheral clock and the real-time clock output to a port pin, and available for external use. The same applies to events  
from the event system that can be used to synchronize and control external functions. Other digital peripherals, such as  
USART, SPI, and timer/counters, can be remapped to selectable pin locations in order to optimize pin-out versus  
application needs.  
The notation of the ports are PORTA, PORTB, PORTC, PORTD, PORTE, PORTF, and PORTR.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
30  
14.3 Output Driver  
All port pins (Pn) have programmable output configuration.  
14.3.1 Push-pull  
Figure 14-1. I/O Configuration - Totem-pole  
DIRn  
OUTn  
INn  
Pn  
14.3.2 Pull-down  
Figure 14-2. I/O Configuration - Totem-pole with Pull-down (on input)  
DIRn  
OUTn  
INn  
Pn  
14.3.3 Pull-up  
Figure 14-3. I/O Configuration - Totem-pole with Pull-up (on input)  
DIRn  
OUTn  
INn  
Pn  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
31  
14.3.4 Bus-keeper  
The bus-keeper’s weak output produces the same logical level as the last output level. It acts as a pull-up if the last level  
was ‘1’, and pull-down if the last level was ‘0’.  
Figure 14-4. I/O Configuration - Totem-pole with Bus-keeper  
DIRn  
OUTn  
INn  
Pn  
14.3.5 Others  
Figure 14-5. Output Configuration - Wired-OR with Optional Pull-down  
OUTn  
Pn  
INn  
Figure 14-6. I/O Configuration - Wired-AND with Optional Pull-up  
INn  
Pn  
OUTn  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
32  
14.4 Input Sensing  
Input sensing is synchronous or asynchronous depending on the enabled clock for the ports, and the configuration is  
shown in Figure 14-7.  
Figure 14-7. Input Sensing System Overview  
Asynchronous sensing  
EDGE  
DETECT  
Interrupt  
Control  
IRQ  
Synchronous sensing  
Pxn  
Synchronizer  
INn  
EDGE  
DETECT  
Synchronous  
Events  
D
Q
D
Q
R
R
INVERTED I/O  
Asynchronous  
Events  
When a pin is configured with inverted I/O, the pin value is inverted before the input sensing.  
14.5 Alternate Port Functions  
Most port pins have alternate pin functions in addition to being a general purpose I/O pin. When an alternate function is  
enabled, it might override the normal port pin function or pin value. This happens when other peripherals that require pins  
are enabled or configured to use pins. If and how a peripheral will override and use pins is described in the section for  
that peripheral. “Pinout and Pin Functions” on page 50 shows which modules on peripherals that enable alternate  
functions on a pin, and which alternate functions that are available on a pin.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
33  
15. TC0/1 – 16-bit Timer/Counter Type 0 and 1  
15.1 Features  
Five 16-bit timer/counters  
Four timer/counters of type 0  
One timer/counter of type 1  
Split-mode enabling two 8-bit timer/counter from each timer/counter type 0  
32-bit timer/counter support by cascading two timer/counters  
Up to four compare or capture (CC) channels  
Four CC channels for timer/counters of type 0  
Two CC channels for timer/counters of type 1  
Double buffered timer period setting  
Double buffered capture or compare channels  
Waveform generation:  
Frequency generation  
Single-slope pulse width modulation  
Dual-slope pulse width modulation  
Input capture:  
Input capture with noise cancelling  
Frequency capture  
Pulse width capture  
32-bit input capture  
Timer overflow and error interrupts/events  
One compare match or input capture interrupt/event per CC channel  
Can be used with event system for:  
Quadrature decoding  
Count and direction control  
Capture  
High-resolution extension  
Increases frequency and waveform resolution by 4× (2-bit) or 8× (3-bit)  
Advanced waveform extension:  
Low- and high-side output with programmable dead-time insertion (DTI)  
Event controlled fault protection for safe disabling of drivers  
15.2 Overview  
Atmel AVR XMEGA D3 devices have a set of five flexible 16-bit timer/counters (TC). Their capabilities include accurate  
program execution timing, frequency and waveform generation, and input capture with time and frequency measurement  
of digital signals. Two timer/counters can be cascaded to create a 32-bit timer/counter with optional 32-bit capture.  
A timer/counter consists of a base counter and a set of compare or capture (CC) channels. The base counter can be  
used to count clock cycles or events. It has direction control and period setting that can be used for timing. The CC  
channels can be used together with the base counter to do compare match control, frequency generation, and pulse  
width waveform modulation, as well as various input capture operations. A timer/counter can be configured for either  
capture or compare functions, but cannot perform both at the same time.  
A timer/counter can be clocked and timed from the peripheral clock with optional prescaling or from the event system.  
The event system can also be used for direction control and capture trigger or to synchronize operations.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
34  
There are two differences between timer/counter type 0 and type 1. Timer/counter 0 has four CC channels, and  
timer/counter 1 has two CC channels. All information related to CC channels 3 and 4 is valid only for timer/counter 0.  
Only Timer/Counter 0 has the split mode feature that split it into two 8-bit Timer/Counters with four compare channels  
each.  
Some timer/counters have extensions to enable more specialized waveform and frequency generation. The advanced  
waveform extension (AWeX) is intended for motor control and other power control applications. It enables low- and high-  
side output with dead-time insertion, as well as fault protection for disabling and shutting down external drivers. It can  
also generate a synchronized bit pattern across the port pins.  
The advanced waveform extension can be enabled to provide extra and more advanced features for the Timer/Counter.  
This are only available for Timer/Counter 0. See “AWeX – Advanced Waveform Extension” on page 37 for more details.  
The high-resolution (hi-res) extension can be used to increase the waveform output resolution by four or eight times by  
using an internal clock source running up to four times faster than the peripheral clock. See “Hi-Res – High Resolution  
Extension” on page 38 for more details.  
Figure 15-1. Overview of a Timer/Counter and Closely Related Peripherals  
Timer/Counter  
Base Counter  
Prescaler  
clkPER  
Timer Period  
Counter  
Control Logic  
Event  
System  
clkPER4  
Compare/Capture Channel D  
Compare/Capture Channel C  
Compare/Capture Channel B  
Compare/Capture Channel A  
AWeX  
Pattern  
Generation  
Fault  
Dead-Time  
Insertion  
Capture  
Comparator  
Control  
Protection  
Waveform  
Generation  
Buffer  
PORTC has one Timer/Counter 0 and one Timer/Counter1. PORTD, PORTE and PORTF each has one Timer/Counter  
0. Notation of these are TCC0 (Time/Counter C0), TCC1, TCD0, TCE0, and TCF0, respectively.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
35  
16. TC2 – Timer/Counter Type 2  
16.1 Features  
Eight 8-bit timer/counters  
Four Low-byte timer/counter  
Four High-byte timer/counter  
Up to eight compare channels in each Timer/Counter 2  
Four compare channels for the low-byte timer/counter  
Four compare channels for the high-byte timer/counter  
Waveform generation  
Single slope pulse width modulation  
Timer underflow interrupts/events  
One compare match interrupt/event per compare channel for the low-byte timer/counter  
Can be used with the event system for count control  
16.2 Overview  
There are four Timer/Counter 2. These are realized when a Timer/Counter 0 is set in split mode. It is then a system of  
two eight-bit timer/counters, each with four compare channels. This results in eight configurable pulse width modulation  
(PWM) channels with individually controlled duty cycles, and is intended for applications that require a high number of  
PWM channels.  
The two eight-bit timer/counters in this system are referred to as the low-byte timer/counter and high-byte timer/counter,  
respectively. The difference between them is that only the low-byte timer/counter can be used to generate compare  
match interrupts and events. The two eight-bit timer/counters have a shared clock source and separate period and  
compare settings. They can be clocked and timed from the peripheral clock, with optional prescaling, or from the event  
system. The counters are always counting down.  
PORTC, PORTD, PORTE, and PORTF each has one Timer/Counter 2. Notation of these are TCC2 (Timer/Counter C2),  
TCD2, TCE2, and TCF2, respectively.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
36  
17. AWeX – Advanced Waveform Extension  
17.1 Features  
Waveform output with complementary output from each compare channel  
Four dead-time insertion (DTI) units  
8-bit resolution  
Separate high and low side dead-time setting  
Double buffered dead time  
Optionally halts timer during dead-time insertion  
Pattern generation unit creating synchronised bit pattern across the port pins  
Double buffered pattern generation  
Optional distribution of one compare channel output across the port pins  
Event controlled fault protection for instant and predictable fault triggering  
17.2 Overview  
The advanced waveform extension (AWeX) provides extra functions to the timer/counter in waveform generation (WG)  
modes. It is primarily intended for use with different types of motor control and other power control applications. It  
enables low- and high side output with dead-time insertion and fault protection for disabling and shutting down external  
drivers. It can also generate a synchronized bit pattern across the port pins.  
Each of the waveform generator outputs from the timer/counter 0 are split into a complimentary pair of outputs when any  
AWeX features are enabled. These output pairs go through a dead-time insertion (DTI) unit that generates the non-  
inverted low side (LS) and inverted high side (HS) of the WG output with dead-time insertion between LS and HS  
switching. The DTI output will override the normal port value according to the port override setting.  
The pattern generation unit can be used to generate a synchronized bit pattern on the port it is connected to. In addition,  
the WG output from compare channel A can be distributed to and override all the port pins. When the pattern generator  
unit is enabled, the DTI unit is bypassed.  
The fault protection unit is connected to the event system, enabling any event to trigger a fault condition that will disable  
the AWeX output. The event system ensures predictable and instant fault reaction, and gives flexibility in the selection of  
fault triggers.  
The AWeX is available for TCC0. The notation of this is AWEXC.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
37  
18. Hi-Res – High Resolution Extension  
18.1 Features  
Increases waveform generator resolution up to 8× (three bits)  
Supports frequency, single-slope PWM, and dual-slope PWM generation  
Supports the AWeX when this is used for the same timer/counter  
18.2 Overview  
The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output from a  
timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or dual-slope PWM  
generation. It can also be used with the AWeX if this is used for the same timer/counter.  
The hi-res extension uses the peripheral 4× clock (ClkPER4). The system clock prescalers must be configured so the  
peripheral 4× clock frequency is four times higher than the peripheral and CPU clock frequency when the hi-res  
extension is enabled.  
There is one hi-res extensions that can be enabled for timer/counters pair on PORTC. The notation of this is HIRESC.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
38  
19. RTC – 16-bit Real-Time Counter  
19.1 Features  
16-bit resolution  
Selectable clock source  
32.768kHz external crystal  
External clock  
32.768kHz internal oscillator  
32kHz internal ULP oscillator  
Programmable 10-bit clock prescaling  
One compare register  
One period register  
Clear counter on period overflow  
Optional interrupt/event on overflow and compare match  
19.2 Overview  
The 16-bit real-time counter (RTC) is a counter that typically runs continuously, including in low-power sleep modes, to  
keep track of time. It can wake up the device from sleep modes and/or interrupt the device at regular intervals.  
The reference clock is typically the 1.024kHz output from a high-accuracy crystal of 32.768kHz, and this is the  
configuration most optimized for low power consumption. The faster 32.768kHz output can be selected if the RTC needs  
a resolution higher than 1ms. The RTC can also be clocked from an external clock signal, the 32.768kHz internal  
oscillator or the 32kHz internal ULP oscillator.  
The RTC includes a 10-bit programmable prescaler that can scale down the reference clock before it reaches the  
counter. A wide range of resolutions and time-out periods can be configured. With a 32.768kHz clock source, the  
maximum resolution is 30.5µs, and time-out periods can range up to 2000 seconds. With a resolution of 1s, the  
maximum timeout period is more than18 hours (65536 seconds). The RTC can give a compare interrupt and/or event  
when the counter equals the compare register value, and an overflow interrupt and/or event when it equals the period  
register value.  
Figure 19-1. Real-time Counter Overview  
External Clock  
TOSC1  
32.768kHz Crystal Osc  
TOSC2  
32.768kHz Int. Osc  
32kHz int ULP (DIV32)  
PER  
RTCSRC  
TOP/  
clkRTC  
10-bit  
=
=
Overflow  
CNT  
prescaler  
”match”/  
Compare  
COMP  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
39  
20. TWI – Two-Wire Interface  
20.1 Features  
Two Identical two-wire interface peripherals  
Bidirectional, two-wire communication interface  
Phillips I2C compatible  
System Management Bus (SMBus) compatible  
Bus master and slave operation supported  
Slave operation  
Single bus master operation  
Bus master in multi-master bus environment  
Multi-master arbitration  
Flexible slave address match functions  
7-bit and general call address recognition in hardware  
10-bit addressing supported  
Address mask register for dual address match or address range masking  
Optional software address recognition for unlimited number of addresses  
Slave can operate in all sleep modes, including power-down  
Slave address match can wake device from all sleep modes  
100kHz and 400kHz bus frequency support  
Slew-rate limited output drivers  
Input filter for bus noise and spike suppression  
Support arbitration between start/repeated start and data bit (SMBus)  
Slave arbitration allows support for address resolve protocol (ARP) (SMBus)  
20.2 Overview  
The two-wire interface (TWI) is a bidirectional, two-wire communication interface. It is I2C and System Management Bus  
(SMBus) compatible. The only external hardware needed to implement the bus is one pull-up resistor on each bus line.  
A device connected to the bus must act as a master or a slave. The master initiates a data transaction by addressing a  
slave on the bus and telling whether it wants to transmit or receive data. One bus can have many slaves and one or  
several masters that can take control of the bus. An arbitration process handles priority if more than one master tries to  
transmit data at the same time. Mechanisms for resolving bus contention are inherent in the protocol.  
The TWI module supports master and slave functionality. The master and slave functionality are separated from each  
other, and can be enabled and configured separately. The master module supports multi-master bus operation and  
arbitration. It contains the baud rate generator. Both 100kHz and 400kHz bus frequency is supported. Quick command  
and smart mode can be enabled to auto-trigger operations and reduce software complexity.  
The slave module implements 7-bit address match and general address call recognition in hardware. 10-bit addressing is  
also supported. A dedicated address mask register can act as a second address match register or as a register for  
address range masking. The slave continues to operate in all sleep modes, including power-down mode. This enables  
the slave to wake up the device from all sleep modes on TWI address match. It is possible to disable the address  
matching to let this be handled in software instead.  
The TWI module will detect START and STOP conditions, bus collisions, and bus errors. Arbitration lost, errors, collision,  
and clock hold on the bus are also detected and indicated in separate status flags available in both master and slave  
modes.  
It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for connecting to an external  
TWI bus driver. This can be used for applications where the device operates from a different VCC voltage than used by  
the TWI bus.  
PORTC and PORTE each has one TWI. Notation of these peripherals are TWIC and TWIE.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
40  
21. SPI – Serial Peripheral Interface  
21.1 Features  
Two identical SPI peripherals  
Full-duplex, three-wire synchronous data transfer  
Master or slave operation  
Lsb first or msb first data transfer  
Eight programmable bit rates  
Interrupt flag at the end of transmission  
Write collision flag to indicate data collision  
Wake up from idle sleep mode  
Double speed master mode  
21.2 Overview  
The Serial Peripheral Interface (SPI) is a high-speed synchronous data transfer interface using three or four pins. It  
allows fast communication between an Atmel AVR XMEGA device and peripheral devices or between several  
microcontrollers. The SPI supports full-duplex communication.  
A device connected to the bus must act as a master or slave. The master initiates and controls all data transactions.  
PORTC and PORTD each has one SPI. Notation of these peripherals are SPIC and SPID, respectively.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
41  
22. USART  
22.1 Features  
Three identical USART peripherals  
Full-duplex operation  
Asynchronous or synchronous operation  
Synchronous clock rates up to 1/2 of the device clock frequency  
Asynchronous clock rates up to 1/8 of the device clock frequency  
Supports serial frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits  
Fractional baud rate generator  
Can generate desired baud rate from any system clock frequency  
No need for external oscillator with certain frequencies  
Built-in error detection and correction schemes  
Odd or even parity generation and parity check  
Data overrun and framing error detection  
Noise filtering includes false start bit detection and digital low-pass filter  
Separate interrupts for  
Transmit complete  
Transmit data register empty  
Receive complete  
Multiprocessor communication mode  
Addressing scheme to address a specific devices on a multidevice bus  
Enable unaddressed devices to automatically ignore all frames  
Master SPI mode  
Double buffered operation  
Operation up to 1/2 of the peripheral clock frequency  
IRCOM module for IrDA compliant pulse modulation/demodulation  
22.2 Overview  
The universal synchronous and asynchronous serial receiver and transmitter (USART) is a fast and flexible serial  
communication module. The USART supports full-duplex communication and asynchronous and synchronous operation.  
The USART can be configured to operate in SPI master mode and used for SPI communication.  
Communication is frame based, and the frame format can be customized to support a wide range of standards. The  
USART is buffered in both directions, enabling continued data transmission without any delay between frames. Separate  
interrupts for receive and transmit complete enable fully interrupt driven communication. Frame error and buffer overflow  
are detected in hardware and indicated with separate status flags. Even or odd parity generation and parity check can  
also be enabled.  
The clock generator includes a fractional baud rate generator that is able to generate a wide range of USART baud rates  
from any system clock frequencies. This removes the need to use an external crystal oscillator with a specific frequency  
to achieve a required baud rate. It also supports external clock input in synchronous slave operation.  
When the USART is set in master SPI mode, all USART-specific logic is disabled, leaving the transmit and receive  
buffers, shift registers, and baud rate generator enabled. Pin control and interrupt generation are identical in both modes.  
The registers are used in both modes, but their functionality differs for some control settings.  
An IRCOM module can be enabled for one USART to support IrDA 1.4 physical compliant pulse modulation and  
demodulation for baud rates up to 115.2kbps.  
PORTC, PORTD, and PORTE each has one USART. Notation of these peripherals are USARTC0, USARTD0, and  
USARTE0, respectively.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
42  
23. IRCOM – IR Communication Module  
23.1 Features  
Pulse modulation/demodulation for infrared communication  
IrDA compatible for baud rates up to 115.2kbps  
Selectable pulse modulation scheme  
3/16 of the baud rate period  
Fixed pulse period, 8-bit programmable  
Pulse modulation disabled  
Built-in filtering  
Can be connected to and used by any USART  
23.2 Overview  
Atmel AVR XMEGA devices contain an infrared communication module (IRCOM) that is IrDA compatible for baud rates  
up to 115.2kbps. It can be connected to any USART to enable infrared pulse encoding/decoding for that USART.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
43  
24. CRC – Cyclic Redundancy Check generator  
24.1 Features  
Cyclic redundancy check (CRC) generation and checking for  
Communication data  
Program or data in flash memory  
Data in SRAM and I/O memory space  
Integrated with flash memory and CPU  
Automatic CRC of the complete or a selectable range of the flash memory  
CPU can load data to the CRC generator through the I/O interface  
CRC polynomial software selectable to  
CRC-16 (CRC-CCITT)  
CRC-32 (IEEE 802.3)  
Zero remainder detection  
24.2 Overview  
A cyclic redundancy check (CRC) is an error detection technique test algorithm used to find accidental errors in data, and  
it is commonly used to determine the correctness of a data transmission, and data present in the data and program  
memories. A CRC takes a data stream or a block of data as input and generates a 16- or 32-bit output that can be  
appended to the data and used as a checksum. When the same data are later received or read, the device or application  
repeats the calculation. If the new CRC result does not match the one calculated earlier, the block contains a data error.  
The application will then detect this and may take a corrective action, such as requesting the data to be sent again or  
simply not using the incorrect data.  
Typically, an n-bit CRC applied to a data block of arbitrary length will detect any single error burst not longer than n bits  
(any single alteration that spans no more than n bits of the data), and will detect the fraction 1-2-n of all longer error  
bursts. The CRC module in Atmel AVR XMEGA devices supports two commonly used CRC polynomials; CRC-16 (CRC-  
CCITT) and CRC-32 (IEEE 802.3).  
CRC-16:  
Polynominal: x16+x12+x5+1  
Hex value:  
0x1021  
CRC-32:  
Polynominal: x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1  
Hex value: 0x04C11DB7  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
44  
25. ADC – 12-bit Analog to Digital Converter  
25.1 Features  
One Analog to Digital Converter (ADC)  
12-bit resolution  
Up to 300 thousand samples per second  
Down to 2.3µs conversion time with 8-bit resolution  
Down to 3.35µs conversion time with 12-bit resolution  
Differential and single-ended input  
16 single-ended inputs  
16 * 4 differential inputs without gain  
8 * 4 differential input with gain  
Built-in differential gain stage  
1/2×, 1×, 2×, 4×, 8×, 16×, 32×, and 64× gain options  
Single, continuous and scan conversion options  
Three internal inputs  
Internal temperature sensor  
AVCC voltage divided by 10  
1.1V bandgap voltage  
Internal and external reference options  
Compare function for accurate monitoring of user defined thresholds  
Optional event triggered conversion for accurate timing  
Optional interrupt/event on compare result  
25.2 Overview  
The ADC converts analog signals to digital values. The ADC has 12-bit resolution and is capable of converting up to 300  
thousand samples per second (ksps). The input selection is flexible, and both single-ended and differential  
measurements can be done. For differential measurements, an optional gain stage is available to increase the dynamic  
range. In addition, several internal signal inputs are available. The ADC can provide both signed and unsigned results.  
The ADC measurements can either be started by application software or an incoming event from another peripheral in  
the device. The ADC measurements can be started with predictable timing, and without software intervention.  
Both internal and external reference voltages can be used. An integrated temperature sensor is available for use with the  
ADC. The AVCC/10 and the bandgap voltage can also be measured by the ADC.  
The ADC has a compare function for accurate monitoring of user defined thresholds with minimum software intervention  
required.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
45  
Figure 25-1. ADC Overview  
Compare  
Register  
ADC0  
VINP  
<
>
ADC15  
Threshold  
(Int Req)  
Internal  
signals  
CH0 Result  
ADC  
ADC0  
VINN  
ADC7  
Internal 1.00V  
Internal AVCC/1.6V  
l
Interna AVCC/2  
Reference  
Voltage  
AREFA  
AREFB  
The ADC may be configured for 8- or 12-bit result, reducing the minimum conversion time (propagation delay) from  
3.35µs for 12-bit to 2.3µs for 8-bit result.  
ADC conversion results are provided left- or right adjusted with optional ‘1’ or ‘0’ padding. This eases calculation when  
the result is represented as a signed integer (signed 16-bit number).  
PORTA has one ADC. Notation of this peripheral is ADCA.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
46  
26. AC – Analog Comparator  
26.1 Features  
Two analog comparators (AC)  
Selectable hysteresis  
No  
Small  
Large  
Analog comparator output available on pin  
Flexible input selection  
All pins on the port  
Bandgap reference voltage  
A 64-level programmable voltage scaler of the internal AVCC voltage  
Interrupt and event generation on:  
Rising edge  
Falling edge  
Toggle  
Window function interrupt and event generation on:  
Signal above window  
Signal inside window  
Signal below window  
Constant current source with configurable output pin selection  
26.2 Overview  
The analog comparator (AC) compares the voltage levels on two inputs and gives a digital output based on this  
comparison. The analog comparator may be configured to generate interrupt requests and/or events upon several  
different combinations of input change.  
The analog comparator hysteresis can be adjusted in order to achieve the optimal operation for each application.  
The input selection includes analog port pins, several internal signals, and a 64-level programmable voltage scaler. The  
analog comparator output state can also be output on a pin for use by external devices.  
A constant current source can be enabled and output on a selectable pin. This can be used to replace, for example,  
external resistors used to charge capacitors in capacitive touch sensing applications.  
The analog comparators are always grouped in pairs on each port. These are called analog comparator 0 (AC0) and  
analog comparator 1 (AC1). They have identical behavior, but separate control registers. Used as pair, they can be set in  
window mode to compare a signal to a voltage range instead of a voltage level.  
PORTA has one AC pair. Notation is ACA.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
47  
Figure 26-1. Analog Comparator Overview  
Pin Input  
+
AC0OUT  
Pin Input  
-
Hysteresis  
Enable  
Interrupt  
Interrupts  
Events  
Interrupt  
Mode  
Sensititivity  
Control  
&
Voltage  
Scaler  
ACnMUXCTRL  
ACnCTRL  
WINCTRL  
Window  
Function  
Enable  
Bandgap  
Hysteresis  
+
-
Pin Input  
AC1OUT  
Pin Input  
The window function is realized by connecting the external inputs of the two analog comparators in a pair as shown in  
Figure 26-2.  
Figure 26-2. Analog Comparator Window Function  
+
AC0  
Upper limit of window  
-
Interrupts  
Interrupt  
Input signal  
sensitivity  
Events  
control  
+
AC1  
Lower limit of window  
-
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
48  
27. Programming and Debugging  
27.1 Features  
Programming  
External programming through PDI interface  
Minimal protocol overhead for fast operation  
Built-in error detection and handling for reliable operation  
Boot loader support for programming through any communication interface  
Debugging  
Nonintrusive, real-time, on-chip debug system  
No software or hardware resources required from device except pin connection  
Program flow control  
Go, Stop, Reset, Step Into, Step Over, Step Out, Run-to-Cursor  
Unlimited number of user program breakpoints  
Unlimited number of user data breakpoints, break on:  
Data location read, write, or both read and write  
Data location content equal or not equal to a value  
Data location content is greater or smaller than a value  
Data location content is within or outside a range  
No limitation on device clock frequency  
Program and Debug Interface (PDI)  
Two-pin interface for external programming and debugging  
Uses the Reset pin and a dedicated pin  
No I/O pins required during programming or debugging  
27.2 Overview  
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external programming and on-chip  
debugging of a device.  
The PDI supports fast programming of nonvolatile memory (NVM) spaces; flash, EEPOM, fuses, lock bits, and the user  
signature row.  
Debug is supported through an on-chip debug system that offers nonintrusive, real-time debug. It does not require any  
software or hardware resources except for the device pin connection. Using the Atmel tool chain, it offers complete  
program flow control and support for an unlimited number of program and complex data breakpoints. Application debug  
can be done from a C or other high-level language source code level, as well as from an assembler and disassembler  
level.  
Programming and debugging can be done through the PDI physical layer. This is a two-pin interface that uses the Reset  
pin for the clock input (PDI_CLK) and one other dedicated pin for data input and output (PDI_DATA). Any external  
programmer or on-chip debugger/emulator can be directly connected to this interface.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
49  
28. Pinout and Pin Functions  
The device pinout is shown in “Pinout/block Diagram” on page 5. In addition to general purpose I/O functionality, each pin  
can have several alternate functions. This will depend on which peripheral is enabled and connected to the actual pin.  
Only one of the pin functions can be used at time.  
28.1 Alternate Pin Function Description  
The tables below show the notation for all pin functions available and describe its function.  
28.1.1 Operation/power Supply  
VCC  
Digital supply voltage  
Analog supply voltage  
Ground  
AVCC  
GND  
28.1.2 Port Interrupt Functions  
SYNC  
Port pin with full synchronous and limited asynchronous interrupt function  
ASYNC  
Port pin with full synchronous and full asynchronous interrupt function  
28.1.3 Analog Functions  
ACn  
Analog comparator input pin n  
Analog comparator n output  
Analog to digital converter input pin n  
Analog reference input pin  
ACnOUT  
ADCn  
AREF  
28.1.4 Timer/counter and AWEX Functions  
OCnxLS  
OCnxHS  
Output compare channel x low side for Timer/Counter n  
Output compare channel x high side for Timer/Counter n  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
50  
28.1.5 Communication Functions  
SCL  
Serial Clock for TWI  
SDA  
Serial Data for TWI  
SCLIN  
SCLOUT  
SDAIN  
SDAOUT  
XCKn  
RXDn  
TXDn  
SS  
Serial Clock In for TWI when external driver interface is enabled  
Serial Clock Out for TWI when external driver interface is enabled  
Serial Data In for TWI when external driver interface is enabled  
Serial Data Out for TWI when external driver interface is enabled  
Transfer Clock for USART n  
Receiver Data for USART n  
Transmitter Data for USART n  
Slave Select for SPI  
MOSI  
MISO  
SCK  
Master Out Slave In for SPI  
Master In Slave Out for SPI  
Serial Clock for SPI  
28.1.6 Oscillators, Clock, and Event  
TOSCn  
XTALn  
Timer Oscillator pin n  
Input/Output for Oscillator pin n  
Peripheral Clock Output  
Event Channel Output  
CLKOUT  
EVOUT  
RTCOUT  
RTC Clock Source Output  
28.1.7 Debug/system Functions  
RESET  
Reset pin  
PDI_CLK  
PDI_DATA  
Program and Debug Interface Clock pin  
Program and Debug Interface Data pin  
28.2 Alternate Pin Functions  
The tables below show the primary/default function for each pin on a port in the first column, the pin number in the  
second column, and then all alternate pin functions in the remaining columns. The head row shows what peripheral that  
enable and use the alternate pin functions.  
For better flexibility, some alternate functions also have selectable pin locations for their functions, this is noted under the  
first table where this apply.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
51  
Table 28-1. Port A - Alternate Functions  
ADCA POS/  
ADCA  
PORT A  
GND  
AVCC  
PA0  
PIN #  
60  
61  
62  
63  
64  
1
INTERRUPT  
GAINPOS  
ADCA NEG  
GAINNEG  
ACA POS  
ACA NEG  
ACA OUT  
REFA  
SYNC  
SYNC  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC0  
ADC1  
ADC2  
ADC3  
AC0  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC0  
AC1  
AREFA  
PA1  
PA2  
SYNC/ASYNC  
SYNC  
PA3  
AC3  
AC5  
AC7  
PA4  
2
SYNC  
ADC4  
ADC5  
ADC6  
ADC7  
PA5  
3
SYNC  
PA6  
4
SYNC  
AC1OUT  
AC0OUT  
PA7  
5
SYNC  
Table 28-2. Port B - Alternate Functions  
PORT B  
PB0  
PIN #  
6
INTERRUPT  
SYNC  
ADCA POS  
ADC8  
REFB  
AREFB  
PB1  
7
SYNC  
ADC91  
ADC10  
ADC11  
ADC12  
ADC13  
ADC14  
ADC15  
PB2  
8
SYNC/ASYNC  
SYNC  
PB3  
9
PB4  
10  
11  
12  
13  
14  
15  
SYNC  
PB5  
SYNC  
PB6  
SYNC  
PB7  
SYNC  
GND  
VCC  
Table 28-3. Port C - Alternate Functions  
PORT C  
PC0  
PIN #  
16  
INTERRUPT  
SYNC  
TCC0 (1)(2)  
OC0A  
AWEXC  
OC0ALS  
OC0AHS  
OC0BLS  
OC0BHS  
OC0CLS  
OC0CHS  
TCC1  
USARTC0 (3)  
SPIC (4)  
TWIC  
CLOCKOUT (5)  
EVENTOUT (6)  
SDA  
SCL  
PC1  
17  
SYNC  
OC0B  
XCK0  
RXD0  
TXD0  
PC2  
18  
SYNC/ASYNC  
SYNC  
OC0C  
PC3  
19  
OC0D  
PC4  
20  
SYNC  
OC1A  
OC1B  
SS  
PC5  
21  
SYNC  
MOSI  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
52  
PORT C  
PC6  
PIN #  
22  
INTERRUPT  
SYNC  
TCC0 (1)(2)  
AWEXC  
OC0DLS  
OC0DHS  
TCC1  
USARTC0 (3)  
SPIC (4)  
MISO  
SCK  
TWIC  
CLOCKOUT (5)  
RTCOUT  
clkPER  
EVENTOUT (6)  
PC7  
23  
SYNC  
EVOUT  
GND  
VCC  
24  
25  
Notes:  
1. Pin mapping of all TC0 can optionally be moved to high nibble of port.  
2. If TC0 is configured as TC2 all eight pins can be used for PWM output.  
3. Pin mapping of all USART0 can optionally be moved to high nibble of port.  
4. Pins MOSI and SCK for all SPI can optionally be swapped.  
5. CLKOUT can optionally be moved between port C, D, and E and between pin 4 and 7.  
6. EVOUT can optionally be moved between port C, D, and E and between pin 4 and 7.  
Table 28-4. Port D - Alternate Functions  
PORT D  
PD0  
PIN #  
26  
INTERRUPT  
SYNC  
TCD0  
OC0A  
OC0B  
OC0C  
OC0D  
USARTD0  
SPID  
CLOCKOUT  
EVENTOUT  
PD1  
27  
SYNC  
XCK0  
RXD0  
TXD0  
PD2  
28  
SYNC/ASYNC  
SYNC  
PD3  
29  
PD4  
30  
SYNC  
SS  
PD5  
31  
SYNC  
MOSI  
MISO  
SCK  
PD6  
32  
SYNC  
PD7  
33  
SYNC  
ClkPER  
EVOUT  
GND  
VCC  
34  
35  
Table 28-5. Port E - Alternate Functions  
PORT E  
PE0  
PIN #  
36  
INTERRUPT  
SYNC  
TCE0  
USARTE0  
TOSC  
TWIE  
CLOCKOUT  
EVENTOUT  
OC0A  
OC0B  
OC0C  
OC0D  
SDA  
SCL  
PE1  
37  
SYNC  
XCK0  
RXD0  
TXD0  
PE2  
38  
SYNC/ASYNC  
SYNC  
PE3  
39  
PE4  
40  
SYNC  
PE5  
41  
SYNC  
PE6  
42  
SYNC  
TOSC2  
TOSC1  
PE7  
43  
SYNC  
ClkPER  
EVOUT  
GND  
VCC  
44  
45  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
53  
Table 28-6. Port F - Alternate Functions  
PORT F  
PF0  
PIN #  
46  
INTERRUPT  
SYNC  
TCF0  
OC0A  
OC0B  
OC0C  
OC0D  
PF1  
47  
SYNC  
PF2  
48  
SYNC/ASYNC  
SYNC  
PF3  
49  
PF4  
50  
SYNC  
PF5  
51  
SYNC  
PF6  
54  
SYNC  
PF7  
55  
SYNC  
GND  
VCC  
52  
53  
Table 28-7. Port R - Alternate Functions  
PORT R  
PDI  
PIN #  
56  
INTERRUPT  
PDI  
XTAL  
PDI_DATA  
PDI_CLOCK  
RESET  
PRO  
57  
58  
SYNC  
SYNC  
XTAL2  
XTAL1  
PR1  
59  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
54  
29. Peripheral Module Address Map  
The address maps show the base address for each peripheral and module in Atmel AVR XMEGA D3. For complete  
register description and summary for each peripheral module, refer to the XMEGA D manual.  
Table 29-1. Peripheral Module Address Map  
Base address  
0x0000  
0x0010  
0x0014  
0x0018  
0x001C  
0x0030  
0x0040  
0x0048  
0x0050  
0x0060  
0x0068  
0x0070  
0x0078  
0x0080  
0x0090  
0x00A0  
0x00B0  
0x0180  
0x00D0  
0x01C0  
0x0200  
0x0380  
0x0400  
0x0480  
0x04A0  
0x0600  
0x0620  
0x0640  
Name  
GPIO  
Description  
General Purpose IO Registers  
Virtual Port 0  
VPORT0  
VPORT1  
VPORT2  
VPORT3  
CPU  
Virtual Port 1  
Virtual Port 2  
Virtual Port 2  
CPU  
CLK  
Clock Control  
SLEEP  
OSC  
Sleep Controller  
Oscillator Control  
DFLLRC32M  
DFLLRC2M  
PR  
DFLL for the 32MHz Internal Oscillator  
DFLL for the 2MHz Internal Oscillator  
Power Reduction  
RST  
Reset Controller  
WDT  
Watchdog Timer  
MCU  
MCU Control  
PMIC  
Programmable Multilevel Interrupt Controller  
Port Configuration  
PORTCFG  
EVSYS  
CRC  
Event System  
CRC Module  
NVM  
Non Volatile Memory (NVM) Controller  
Analog to Digital Converter on port A  
Analog Comparator pair on port A  
Real-Time Counter  
ADCA  
ACA  
RTC  
TWIC  
Two-Wire Interface on port C  
Two-Wire Interface on port E  
Port A  
TWIE  
PORTA  
PORTB  
PORTC  
Port B  
Port C  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
55  
Base address  
0x0660  
0x0680  
0x06A0  
0x07E0  
0x0800  
0x0840  
0x0880  
0x0890  
0x08A0  
0x08C0  
0x08F8  
0x0900  
0x09A0  
0x09C0  
0x0A00  
0x0A80  
0x0AA0  
0x0AC0  
0x0B00  
Name  
PORTD  
PORTE  
PORTF  
PORTR  
TCC0  
Description  
Port D  
Port E  
Port F  
Port R  
Timer/Counter 0 on port C  
Timer/Counter 1 on port C  
Advanced Waveform Extension on port C  
High Resolution Extension on port C  
USART 0 on port C  
TCC1  
AWEXC  
HIRESC  
USARTC0  
SPIC  
Serial Peripheral Interface on port C  
Infrared Communication Module  
Timer/Counter 0 on port D  
USART 0 on port D  
IRCOM  
TCD0  
USARTD0  
SPID  
Serial Peripheral Interface on port D  
Timer/Counter 0 on port E  
Advanced Waveform Extension on port E  
USART 0 on port E  
TCE0  
AWEXE  
USARTE0  
SPIE  
Serial Peripheral Interface on port E  
Timer/Counter 0 on port F  
TCF0  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
56  
30. Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
Arithmetic and logic instructions  
ADD  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add without Carry  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd + Rr  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
None  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
ADC  
Add with Carry  
Rd + Rr + C  
Rd + 1:Rd + K  
Rd - Rr  
ADIW  
SUB  
Add Immediate to Word  
Subtract without Carry  
Subtract Immediate  
Subtract with Carry  
Subtract Immediate with Carry  
Subtract Immediate from Word  
Logical AND  
SUBI  
SBC  
Rd - K  
Rd - Rr - C  
Rd - K - C  
Rd + 1:Rd - K  
Rd Rr  
SBCI  
SBIW  
AND  
Rd + 1:Rd  
Rd  
ANDI  
OR  
Logical AND with Immediate  
Logical OR  
Rd  
Rd K  
Rd  
Rd v Rr  
ORI  
Logical OR with Immediate  
Exclusive OR  
Rd  
Rd v K  
EOR  
COM  
NEG  
SBR  
Rd  
Rd Rr  
One’s Complement  
Two’s Complement  
Set Bit(s) in Register  
Clear Bit(s) in Register  
Increment  
Rd  
$FF - Rd  
Rd  
Rd  
$00 - Rd  
Rd, K  
Rd, K  
Rd  
Rd  
Rd v K  
CBR  
Rd  
Rd ($FFh - K)  
Rd + 1  
INC  
Rd  
DEC  
Rd  
Decrement  
Rd  
Rd - 1  
TST  
Rd  
Test for Zero or Minus  
Clear Register  
Rd  
Rd Rd  
CLR  
Rd  
Rd  
Rd Rd  
SER  
Rd  
Set Register  
Rd  
$FF  
MUL  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Multiply Unsigned  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
Rd x Rr (UU)  
Rd x Rr (SS)  
Rd x Rr (SU)  
Rd x Rr<<1 (UU)  
Rd x Rr<<1 (SS)  
Rd x Rr<<1 (SU)  
Z,C  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
Multiply Signed  
Z,C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Z,C  
Z,C  
Z,C  
Z,C  
Branch instructions  
RJMP  
IJMP  
k
Relative Jump  
PC  
PC + k + 1  
None  
None  
2
2
PC(15:0)  
Z,  
0
Indirect Jump to (Z)  
PC(21:16)  
PC(15:0)  
Z,  
EIND  
EIJMP  
Extended Indirect Jump to (Z)  
None  
2
PC(21:16)  
JMP  
k
k
Jump  
PC  
PC  
k
None  
None  
3
RCALL  
Relative Call Subroutine  
PC + k + 1  
2 / 3 (1)  
PC(15:0)  
Z,  
0
2 / 3 (1)  
ICALL  
Indirect Call to (Z)  
None  
PC(21:16)  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
57  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
PC(15:0)  
Z,  
EIND  
3 (1)  
EICALL  
Extended Indirect Call to (Z)  
None  
PC(21:16)  
CALL  
RET  
k
call Subroutine  
PC  
k
None  
None  
I
3 / 4 (1)  
4 / 5 (1)  
4 / 5 (1)  
1 / 2 / 3  
1
Subroutine Return  
PC  
PC  
STACK  
STACK  
PC + 2 or 3  
RETI  
Interrupt Return  
CPSE  
CP  
Rd, Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC  
None  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Rd, Rr  
Rd - Rr  
CPC  
Rd, Rr  
Compare with Carry  
Rd - Rr - C  
1
CPI  
Rd, K  
Compare with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd - K  
1
SBRC  
SBRS  
SBIC  
SBIS  
Rr, b  
if (Rr(b) = 0) PC  
if (Rr(b) = 1) PC  
if (I/O(A,b) = 0) PC  
If (I/O(A,b) =1) PC  
if (SREG(s) = 1) then PC  
if (SREG(s) = 0) then PC  
if (Z = 1) then PC  
if (Z = 0) then PC  
if (C = 1) then PC  
if (C = 0) then PC  
if (C = 0) then PC  
if (C = 1) then PC  
if (N = 1) then PC  
if (N = 0) then PC  
if (N V= 0) then PC  
if (N V= 1) then PC  
if (H = 1) then PC  
if (H = 0) then PC  
if (T = 1) then PC  
if (T = 0) then PC  
if (V = 1) then PC  
if (V = 0) then PC  
if (I = 1) then PC  
if (I = 0) then PC  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
1 / 2 / 3  
1 / 2 / 3  
2 / 3 / 4  
2 / 3 / 4  
1 / 2  
Rr, b  
A, b  
A, b  
s, k  
s, k  
k
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
BRIE  
BRID  
1 / 2  
1 / 2  
k
Branch if Not Equal  
1 / 2  
k
Branch if Carry Set  
1 / 2  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if Minus  
1 / 2  
k
Branch if Plus  
1 / 2  
k
Branch if Greater or Equal, Signed  
Branch if Less Than, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
Data transfer instructions  
MOV  
MOVW  
LDI  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, k  
Copy Register  
Rd  
Rd+1:Rd  
Rd  
Rr  
None  
None  
None  
None  
None  
1
1
Copy Register Pair  
Load Immediate  
Rr+1:Rr  
K
1
LDS  
LD  
Load Direct from data space  
Load Indirect  
Rd  
(k)  
(X)  
2 (1)(2)  
1 (1)(2)  
Rd, X  
Rd  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
58  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
Rd  
(X)  
X + 1  
1 (1)(2)  
LD  
Rd, X+  
Load Indirect and Post-Increment  
None  
X
X X - 1,  
Rd (X)  
X - 1  
(X)  
2 (1)(2)  
1 (1)(2)  
1 (1)(2)  
LD  
LD  
LD  
Rd, -X  
Rd, Y  
Load Indirect and Pre-Decrement  
Load Indirect  
None  
None  
None  
Rd (Y)  
(Y)  
Rd  
Y
(Y)  
Y + 1  
Rd, Y+  
Load Indirect and Post-Increment  
Y
Y - 1  
(Y)  
2 (1)(2)  
LD  
Rd, -Y  
Load Indirect and Pre-Decrement  
None  
Rd  
LDD  
LD  
Rd, Y+q  
Rd, Z  
Load Indirect with Displacement  
Load Indirect  
Rd  
Rd  
(Y + q)  
(Z)  
None  
None  
2 (1)(2)  
1 (1)(2)  
1 (1)(2)  
Rd  
Z
(Z),  
Z+1  
LD  
LD  
Rd, Z+  
Rd, -Z  
Load Indirect and Post-Increment  
Load Indirect and Pre-Decrement  
None  
None  
Z
Z - 1,  
(Z)  
2 (1)(2)  
2 (1)(2)  
2 (1)  
Rd  
LDD  
STS  
ST  
Rd, Z+q  
k, Rr  
Load Indirect with Displacement  
Store Direct to Data Space  
Store Indirect  
Rd  
(k)  
(X)  
(Z + q)  
Rd  
None  
None  
None  
X, Rr  
Rr  
1 (1)  
(X)  
X
Rr,  
X + 1  
1 (1)  
ST  
X+, Rr  
Store Indirect and Post-Increment  
None  
X
X - 1,  
Rr  
2 (1)  
1 (1)  
1 (1)  
ST  
ST  
ST  
-X, Rr  
Y, Rr  
Store Indirect and Pre-Decrement  
Store Indirect  
None  
None  
None  
(X)  
(Y)  
Rr  
(Y)  
Y
Rr,  
Y + 1  
Y+, Rr  
Store Indirect and Post-Increment  
Y
Y - 1,  
Rr  
2 (1)  
ST  
-Y, Rr  
Store Indirect and Pre-Decrement  
None  
(Y)  
STD  
ST  
Y+q, Rr  
Z, Rr  
Store Indirect with Displacement  
Store Indirect  
(Y + q)  
(Z)  
Rr  
Rr  
None  
None  
2 (1)  
1 (1)  
(Z)  
Z
Rr  
Z + 1  
1 (1)  
ST  
Z+, Rr  
Store Indirect and Post-Increment  
None  
ST  
-Z, Rr  
Store Indirect and Pre-Decrement  
Store Indirect with Displacement  
Load Program Memory  
Z
(Z + q)  
R0  
Z - 1  
Rr  
None  
None  
None  
None  
2 (1)  
2 (1)  
3
STD  
LPM  
LPM  
Z+q, Rr  
(Z)  
Rd, Z  
Load Program Memory  
Rd  
(Z)  
3
Rd  
Z
(Z),  
Z + 1  
LPM  
Rd, Z+  
Load Program Memory and Post-Increment  
None  
3
ELPM  
ELPM  
Extended Load Program Memory  
Extended Load Program Memory  
R0  
Rd  
(RAMPZ:Z)  
(RAMPZ:Z)  
None  
None  
3
3
Rd, Z  
Extended Load Program Memory and Post-  
Increment  
Rd  
Z
(RAMPZ:Z),  
Z + 1  
ELPM  
SPM  
SPM  
Rd, Z+  
None  
None  
None  
3
-
Store Program Memory  
(RAMPZ:Z)  
R1:R0  
(RAMPZ:Z)  
Z
R1:R0,  
Z + 2  
Z+  
Store Program Memory and Post-Increment by 2  
-
IN  
Rd, A  
A, Rr  
Rr  
In From I/O Location  
Out To I/O Location  
Rd  
I/O(A)  
STACK  
Rd  
I/O(A)  
Rr  
None  
None  
None  
None  
1
OUT  
PUSH  
POP  
1
Push Register on Stack  
Pop Register from Stack  
Rr  
1 (1)  
2 (1)  
Rd  
STACK  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
59  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
Bit and bit-test instructions  
Rd(n+1)  
Rd(n),  
0,  
LSL  
Rd  
Rd  
Rd  
Rd  
Logical Shift Left  
Z,C,N,V,H  
Z,C,N,V  
1
1
1
1
Rd(0)  
Rd(n)  
Rd(7)  
Rd(n+1),  
0,  
LSR  
ROL  
ROR  
Logical Shift Right  
Rd(0)  
C,  
Rd(n),  
Rotate Left Through Carry  
Rotate Right Through Carry  
Z,C,N,V,H  
Z,C,N,V  
Rd(n+1)  
Rd(7)  
Rd(n)  
C,  
Rd(n+1),  
ASR  
SWAP  
BSET  
BCLR  
SBI  
Rd  
Arithmetic Shift Right  
Swap Nibbles  
Rd(n)  
Rd(n+1), n=0..6  
Z,C,N,V  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Rd  
Rd(3..0)  
Rd(7..4)  
None  
s
Flag Set  
SREG(s)  
1
SREG(s)  
s
Flag Clear  
SREG(s)  
0
SREG(s)  
A, b  
A, b  
Rr, b  
Rd, b  
Set Bit in I/O Register  
Clear Bit in I/O Register  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
I/O(A, b)  
1
None  
CBI  
I/O(A, b)  
0
None  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
T
Rr(b)  
T
1
T
Rd(b)  
C
C
N
N
Z
None  
C
C
N
N
Z
Clear Carry  
0
Set Negative Flag  
1
Clear Negative Flag  
Set Zero Flag  
0
1
Clear Zero Flag  
Z
0
Z
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
Set Two’s Complement Overflow  
Clear Two’s Complement Overflow  
Set T in SREG  
I
1
I
CLI  
I
0
I
SES  
CLS  
SEV  
CLV  
SET  
CLT  
S
1
S
S
V
V
T
S
0
V
1
V
0
T
1
Clear T in SREG  
T
0
T
SEH  
CLH  
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
H
H
1
H
H
0
MCU control instructions  
BREAK  
NOP  
Break  
(See specific descr. for BREAK)  
None  
None  
None  
None  
1
1
1
1
No Operation  
Sleep  
SLEEP  
WDR  
(See specific descr. for Sleep)  
(See specific descr. for WDR)  
Watchdog Reset  
Notes:  
1. Cycle times for data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.  
2. One extra cycle must be added when accessing internal SRAM.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
60  
31. Packaging Information  
31.1 64A  
PIN 1  
e
B
PIN 1 IDENTIFIER  
E1  
E
D1  
D
C
0°~7°  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
15.75  
13.90  
15.75  
13.90  
0.15  
1.00  
16.00  
14.00  
16.00  
14.00  
0.45  
1.05  
16.25  
14.10  
16.25  
14.10  
D1  
E
Note 2  
Note 2  
Notes:  
1.This package conforms to JEDEC reference MS-026, Variation AEB.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
E1  
B
0.30–  
protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
3. Lead coplanarity is 0.10mm maximum.  
C
0.09  
0.45  
0.20  
0.75  
L
e
0.80 TYP  
2010-10-20  
TITLE  
DRAWING NO.  
REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
64A, 64-lead, 14 x 14mm Body Size, 1.0mm Body Thickness,  
0.8mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
64A  
C
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
61  
31.2 64M  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
62  
32. Electrical Characteristics  
All typical values are measured at T = 25C unless other temperature condition is given. All minimum and maximum  
values are valid across operating temperature and voltage unless other conditions are given.  
32.1 Atmel ATxmega32D3  
32.1.1 Absolute Maximum Ratings  
Stresses beyond those listed in Table 32-1 may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
Table 32-1. Absolute Maximum Ratings  
Symbol  
VCC  
IVCC  
IGND  
VPIN  
IPIN  
Parameter  
Condition  
Min.  
Typ.  
Max.  
4
Units  
Power supply voltage  
Current into a VCC pin  
Current out of a Gnd pin  
Pin voltage with respect to Gnd and VCC  
I/O pin sink/source current  
Storage temperature  
-0.3  
V
200  
mA  
200  
-0.5  
-25  
-65  
VCC + 0.5  
25  
V
mA  
TA  
150  
°C  
Tj  
Junction temperature  
150  
32.1.2 General Operating Ratings  
The device must operate within the ratings listed in Table 32-31 on page 82 in order for all other electrical characteristics  
and typical characteristics of the device to be valid.  
Table 32-2. General Operating Conditions  
Symbol  
VCC  
Parameter  
Condition  
Min.  
1.60  
1.60  
-40  
Typ.  
Max.  
3.6  
Units  
Power supply voltage  
Analog supply voltage  
Temperature range  
Junction temperature  
V
AVCC  
TA  
3.6  
85  
°C  
Tj  
-40  
105  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
63  
Table 32-3. Operating Voltage and Frequency  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
VCC = 1.8V  
VCC = 2.7V  
VCC = 3.6V  
Min.  
Typ.  
Max.  
12  
Units  
0
0
0
0
12  
ClkCPU  
CPU clock frequency  
MHz  
32  
32  
The maximum CPU clock frequency depends on VCC. As shown in Figure 32-8 on page 83 the frequency vs. VCC curve is  
linear between 1.8V < VCC < 2.7V.  
Figure 32-1. Maximum Frequency vs. VCC  
MHz  
32  
Safe operating area  
12  
V
1.6  
1.8  
2.7  
3.6  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
64  
32.1.3 Current Consumption  
Table 32-4. Current Consumption for Active Mode and Sleep Modes  
Symbol Parameter  
Condition  
Min.  
Typ.  
50  
Max. Units  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
32kHz, Ext. Clk  
130  
215  
475  
445  
0.95  
7.8  
2.8  
3
µA  
1MHz, Ext. Clk  
Active power  
consumption (1)  
600  
2MHz, Ext. Clk  
32MHz, Ext. Clk  
32kHz, Ext. Clk  
1.5  
mA  
12.0  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
46  
1MHz, Ext. Clk  
2MHz, Ext. Clk  
µA  
Idle power  
92  
consumption (1)  
93  
225  
350  
184  
2.9  
0.07  
1.3  
4.0  
1.3  
2.6  
5.0  
1.7  
1.8  
0.5  
0.7  
0.9  
1.2  
120  
VCC = 3.0V  
ICC  
32MHz, Ext. Clk  
5.0  
1.0  
5.0  
8.0  
2.0  
6.0  
10  
mA  
T = 25°C  
T = 85°C  
VCC = 3.0V  
T = 105°C  
Power-down power  
consumption  
WDT and sampled BOD enabled, T = 25°C  
WDT and sampled BOD enabled, T = 85°C  
WDT and sampled BOD enabled, T= 105°C  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 3.0V  
µA  
RTC from ULP clock, WDT and sampled  
BOD enabled, T = 25°C  
2.0  
2.0  
3.0  
3.0  
Power-save power  
consumption (2)  
RTC from 1.024kHz low power 32.768kHz  
TOSC, T = 25°C  
RTC from low power 32.768kHz TOSC,  
T = 25°C  
Reset power consumption Current through RESET pin substracted  
Notes:  
1. All Power Reduction Registers set.  
2. Maximum limits are based on characterization, and not tested in production.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
65  
Table 32-5. Current Consumption for Modules and Peripherals  
Symbol Parameter  
Condition (1)  
Min.  
Typ.  
0.9  
29  
Max.  
Units  
ULP oscillator  
32.768kHz int. oscillator  
82  
2MHz int. oscillator  
32MHz int. oscillator  
DFLL enabled with 32.768kHz int. osc. as reference  
DFLL enabled with 32.768kHz int. osc. as reference  
114  
250  
400  
µA  
20× multiplication factor,  
32MHz int. osc. DIV4 as reference  
PLL  
300  
Watchdog timer  
1.0  
140  
1.4  
Continuous mode  
BOD  
Sampled mode, includes ULP oscillator  
ICC  
Internal 1.0V reference  
Temperature sensor  
180  
175  
1.23  
1.1  
CURRLIMIT = LOW  
16ksps  
VREF = Ext. ref.  
CURRLIMIT = MEDIUM  
0.98  
0.87  
CURRLIMIT = HIGH  
ADC  
mA  
75ksps  
CURRLIMIT = LOW  
VREF = Ext. ref.  
1.7  
3.1  
300ksps  
VREF = Ext. ref.  
USART  
Rx and Tx enabled, 9600 BAUD  
9.7  
5
µA  
Flash memory and EEPROM programming  
mA  
Note:  
1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock  
without prescaling, T = 25°C unless other conditions are given.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
66  
32.1.4 Wake-up Time from Sleep Modes  
Table 32-6. Device Wake-up Time from Sleep Modes with Various System Clock Sources  
Symbol Parameter  
Condition  
Min.  
Typ. (1)  
2.0  
Max.  
Units  
External 2MHz clock  
Wake-up time from idle,  
standby, and extended standby  
mode  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
125  
2.0  
0.2  
twakeup  
µs  
4.6  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
330  
9.5  
Wake-up time from power-save  
and power-down mode  
5.6  
Note:  
1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 32-2. All peripherals and modules start  
execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.  
Figure 32-2. Wake-up Time Definition  
Wakeup time  
Wakeup request  
Clock output  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
67  
32.1.5 I/O Pin Characteristics  
The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low-level input and output  
voltage limits reflect or exceed this specification.  
Table 32-7. I/O Pin Characteristics  
Symbol  
Parameter  
Condition  
Min.  
-15  
Typ.  
Max.  
15  
Units  
IOH (1)/ IOL  
I/O pin source/sink current  
mA  
(2)  
VCC = 2.4 - 3.6V  
0.7 * VCC  
0.8 * VCC  
-0.5  
VCC + 0.5  
VCC + 0.5  
0.3 * VCC  
0.2 * VCC  
VIH  
High level input voltage  
Low level input voltage  
VCC = 1.6 - 2.4V  
VCC = 2.4 - 3.6V  
VCC = 1.6 - 2.4V  
VCC = 3.3V  
VIL  
-0.5  
IOH = -4mA  
IOH = -3mA  
IOH = -1mA  
IOL = 8mA  
IOL = 5mA  
IOL = 3mA  
2.6  
2.9  
2.6  
V
VOH  
High level output voltage  
Low level output voltage  
VCC = 3.0V  
2.1  
VCC = 1.8V  
1.4  
1.6  
VCC = 3.3V  
0.4  
0.76  
0.64  
0.46  
1
VOL  
VCC = 3.0V  
0.3  
VCC = 1.8V  
0.2  
IIN  
Input leakage current I/O pin  
Pull/buss keeper resistor  
T = 25°C  
<0.01  
25  
µA  
RP  
k  
Notes:  
1. The sum of all IOH for PORTA and PORTB must not exceed 100mA.  
The sum of all IOH for PORTC, PORTD, and PORTE must for each port not exceed 200mA.  
The sum of all IOH for pins PF[0-5] on PORTF must not exceed 200mA.  
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.  
2. The sum of all IOL for PORTA and PORTB must not exceed 100mA.  
The sum of all IOL for PORTC, PORTD, and PORTE must for each port not exceed 200mA.  
The sum of all IOL for pins PF[0-5] on PORTF must not exceed 200mA.  
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
68  
32.1.6 ADC Characteristics  
Table 32-8. Power Supply, Reference, and Input Range  
Symbol Parameter  
Condition  
Min.  
VCC - 0.3  
1
Typ.  
Max.  
VCC + 0.3  
AVCC - 0.6  
4.5  
Units  
AVCC  
VREF  
Rin  
Analog supply voltage  
V
Reference voltage  
Input resistance  
Switched  
k  
pF  
Cin  
Input capacitance  
Reference input resistance  
Reference input capacitance  
Input range  
Switched  
5
RAREF  
CAREF  
Vin  
(leakage only)  
Static load  
>10  
7
M  
pF  
0
VREF  
VREF  
Conversion range  
Conversion range  
Fixed offset voltage  
Differential mode, Vinp - Vinn  
-VREF  
-V  
V
Single ended unsigned mode, Vinp  
VREF - V  
V  
200  
lsb  
Table 32-9. Clock and Timing  
Symbol Parameter  
Condition  
Min.  
100  
100  
16  
Typ.  
Max.  
1800  
125  
300  
300  
250  
150  
50  
Units  
Maximum is 1/4 of peripheral clock frequency  
Measuring internal signals  
ClkADC  
ADC clock frequency  
Sample rate  
kHz  
fClkADC  
Current limitation (CURRLIMIT) off  
CURRLIMIT = LOW  
16  
16  
ksps  
µs  
fADC  
Sample rate  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
16  
16  
Configurable in steps of 1/2 ClkADC cycle up  
to 32 ClkADC cycles  
Sampling time  
0.28  
5.5  
320  
10  
(RES+2)/2 + 1 + GAIN  
RES (Resolution) = 8 or 12, GAIN = 0 to 3  
Conversion time (latency)  
ClkADC  
cycles  
Start-up time  
ADC clock cycles  
12  
7
24  
7
ADC settling time  
After changing reference or input mode  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
69  
Table 32-10. Accuracy Characteristics  
Symbol  
Parameter  
Condition (2)  
Differential  
Min.  
Typ.  
12  
Max.  
12  
11  
12  
1
Units  
8
7
8
RES  
Resolution  
12-bit resolution  
Differential mode  
Single ended signed  
Single ended unsigned  
16ksps, VREF = 3V  
16ksps, all VREF  
300ksps, VREF = 3V  
300ksps, all VREF  
16ksps, VREF = 3.0V  
16ksps, all VREF  
16ksps, VREF = 3V  
16ksps, all VREF  
300ksps, VREF = 3V  
300ksps, all VREF  
16ksps, VREF = 3V  
16ksps, all VREF  
300ksps, VREF = 3V  
Temperature drift, VREF = 3V  
Operating voltage drift  
External reference  
AVCC/1.6  
11  
Bits  
12  
0.5  
0.8  
0.6  
1
2
1
INL (1)  
Integral non-linearity  
2
0.5  
1.3  
0.3  
0.5  
0.3  
0.5  
0.6  
0.6  
-7  
1
Single ended  
unsigned mode  
2
lsb  
1
1
Differential mode  
1
DNL (1)  
Differential non-linearity  
1
1
Single ended  
unsigned mode  
1
mV  
Offset error  
Differential mode  
0.01  
0.16  
-5  
mV/K  
mV/V  
-5  
mV  
AVCC/2.0  
-6  
Gain error  
Differential mode  
Bandgap  
±10  
0.02  
2
Temperature drift  
Operating voltage drift  
External reference  
AVCC/1.6  
mV/K  
mV/V  
-8  
-8  
mV  
AVCC/2.0  
-8  
Single ended  
unsigned mode  
Gain error  
Bandgap  
±10  
0.03  
2
Temperature drift  
Operating voltage drift  
mV/K  
mV/V  
Notes:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
70  
Table 32-11. Gain Stage Characteristics  
Symbol  
Rin  
Parameter  
Condition  
Switched in normal mode  
Switched in normal mode  
Gain stage output  
Min.  
Typ.  
4.0  
Max.  
Units  
Input resistance  
Input capacitance  
Signal range  
k  
Csample  
4.4  
pF  
0
AVCC - 0.6  
V
Propagation delay  
Clock frequency  
ADC conversion rate  
Same as ADC  
1/2  
100  
1
3
ClkADC cycles  
kHz  
1800  
0.5× gain, normal mode  
1× gain, normal mode  
8× gain, normal mode  
64× gain, normal mode  
0.5× gain, normal mode  
1× gain, normal mode  
8× gain, normal mode  
64× gain, normal mode  
-1  
-1  
Gain error  
%
-1  
5
10  
5
Offset error, input  
referred  
mV  
-20  
-126  
32.1.7 Analog Comparator Characteristics  
Table 32-12. Analog Comparator Characteristics  
Symbol  
Voff  
Parameter  
Condition  
Min.  
Typ.  
10  
Max.  
Units  
mV  
nA  
Input offset voltage  
Input leakage current  
Input voltage range  
AC startup time  
Ilk  
<10  
50  
-0.1  
AVCC  
V
50  
0
µs  
Vhys1  
Vhys2  
Vhys3  
Hysteresis, none  
Hysteresis, small  
Hysteresis, large  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
VCC = 3.0V, T = 85°C  
VCC = 3.0V  
15  
30  
20  
17  
0.3  
5
mV  
40  
0.5  
6
tdelay  
Propagation delay  
ns  
64-level voltage scaler  
Integral non-linearity (INL)  
lsb  
%
Current source accuracy after calibration  
Current source calibration range  
Single mode  
4
µA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
71  
32.1.8 Bandgap and Internal 1.0V Reference Characteristics  
Table 32-13. Bandgp and Internal 1.0V Reference Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
As reference for ADC  
As input voltage to ADC and AC  
1 ClkPER + 2.5µs  
Startup time  
µs  
1.5  
1.1  
1
Bandgap voltage  
V
INT1V  
Internal 1.00V reference  
T = 85°C, after calibration  
Calibrated at T = 85°C  
0.99  
1.01  
Variation over voltage and temperature  
1
%
32.1.9 Brownout Detection Characteristics  
Table 32-14. Brownout Detection Characteristics (1)  
Symbol Parameter (BOD level 0 at 85°C)  
BOD level 0 falling VCC  
Condition  
Min.  
Typ.  
1.60  
1.8  
Max.  
Units  
1.40  
1.70  
BOD level 1 falling VCC  
BOD level 2 falling VCC  
2.0  
BOD level 3 falling VCC  
VBOT  
2.2  
V
BOD level 4 falling VCC  
2.4  
BOD level 5 falling VCC  
BOD level 6 falling VCC  
BOD level 7 falling VCC  
2.6  
2.8  
3.0  
Continuous mode  
Sampled mode  
0.4  
tBOD  
Detection time  
Hysteresis  
µs  
%
1000  
1.0  
VHYST  
Note:  
1. BOD is calibrated at 85°C within BOD level 0 values, and BOD level 0 is the default level.  
32.1.10 External Reset Characteristics  
Table 32-15. External Reset Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
90  
Max.  
Units  
tEXT  
VRST  
RRST  
Minimum reset pulse width  
Reset threshold voltage  
Reset pin pull-up resistor  
1000  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
0.45 * VCC  
0.42 * VCC  
25  
V
k  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
72  
32.1.11 Power-on Reset Characteristics  
Table 32-16. Power-on Reset Characteristics  
Symbol Parameter  
Condition  
Min.  
0.4  
Typ.  
1.0  
Max.  
Units  
VCC falls faster than 1V/ms  
VCC falls at 1V/ms or slower  
(1)  
VPOT-  
POR threshold voltage falling VCC  
POR threshold voltage rising VCC  
0.8  
1.3  
V
VPOT+  
1.3  
1.59  
Note:  
1. VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+  
.
32.1.12 Flash and EEPROM Memory Characteristics  
Table 32-17. Endurance and Data Retention  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
10K  
10K  
2K  
Write/Erase cycles  
Cycle  
Flash  
100  
25  
Data retention  
Year  
Cycle  
Year  
10  
100K  
100K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
10  
Table 32-18. Programming Time  
Symbol Parameter  
Chip erase (2)  
Condition  
Min.  
Typ. (1)  
Max.  
Units  
32KB Flash, EEPROM  
Section erase  
Page erase  
50  
6
Application erase  
4
Flash  
Page write  
4
ms  
Atomic page erase and write  
Page erase  
8
4
EEPROM  
Page write  
4
Atomic page erase and write  
8
Notes:  
1. Programming is timed from the 2MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
73  
32.1.13 Clock and Oscillator Characteristics  
32.1.13.1 Calibrated 32.768kHz Internal Oscillator Characteristics  
Table 32-19. 32.768kHz Internal Oscillator Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Frequency  
32.768  
kHz  
Factory calibration accuracy  
User calibration accuracy  
T = 85C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
32.1.13.2 Calibrated 2MHz RC Internal Oscillator Characteristics  
Table 32-20. 2MHz Internal Oscillator Characteristics  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
2.0  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
1.8  
2.2  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration stepsize  
2.0  
T = 85C, VCC = 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.18  
32.1.13.3 Calibrated 32MHz Internal Oscillator Characteristics  
Table 32-21. 32MHz Internal Oscillator Characteristics  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
32  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
30  
55  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
32  
T = 85C, VCC = 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.19  
32.1.13.4 32kHz Internal ULP Oscillator Characteristics  
Table 32-22. 32kHz Internal ULP Oscillator Characteristics  
Symbol Parameter  
Factory calibrated frequency  
Condition  
Min.  
Typ.  
Max.  
Units  
32  
kHz  
Factory calibration accuracy  
Accuracy  
T = 85°C, VCC = 3.0V  
-12  
-30  
12  
30  
%
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
74  
32.1.13.5 Internal Phase Locked Loop (PLL) Characteristics  
Table 32-23. Internal PLL Characteristics  
Symbol Parameter  
Condition  
Min.  
0.4  
20  
Typ.  
Max.  
64  
Units  
fIN  
Input frequency  
Output frequency must be within fOUT  
VCC = 1.6 - 1.8V  
48  
MHz  
fOUT  
Output frequency (1)  
VCC = 2.7 - 3.6V  
20  
128  
Start-up time  
Re-lock time  
25  
25  
µs  
Note:  
1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.  
32.1.13.6 External Clock Characteristics  
Figure 32-3. External Clock Drive Waveform  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
Table 32-24. External Clock used as System Clock without Prescaling  
Symbol  
Parameter  
Condition  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
Min.  
0
Typ.  
Max.  
12  
Units  
1/tCK  
Clock Frequency (1)  
MHz  
0
32  
83.3  
31.5  
30.0  
12.5  
30.0  
12.5  
tCK  
tCH  
tCL  
tCR  
Clock Period  
Clock High Time  
Clock Low Time  
ns  
10  
3
Rise Time (for maximum frequency)  
10  
3
tCF  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
10  
%
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
75  
Table 32-25. External Clock with Prescaler (1) for System Clock  
Symbol Parameter  
Condition  
Min.  
0
Typ.  
Max.  
90  
Units  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
1/tCK  
Clock Frequency (2)  
Clock Period  
MHz  
0
142  
11  
7
tCK  
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
tCL  
Clock Low Time  
ns  
1.5  
1.0  
1.5  
1.0  
10  
tCR  
Rise Time (for maximum frequency)  
tCF  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
%
Notes:  
1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
32.1.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics  
Table 32-26. External 16MHz Crystal Oscillator and XOSC Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
0
Max.  
Units  
FRQRANGE=0  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
Cycle to cycle jitter  
FRQRANGE=1, 2, or 3  
0
0
ns  
FRQRANGE=0  
0
Long term jitter  
Frequency error  
FRQRANGE=1, 2, or 3  
0
0
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
0.03  
0.03  
0.03  
0.003  
50  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
%
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
50  
Duty cycle  
50  
50  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
76  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
0.4MHz resonator,  
CL=100pF  
44k  
XOSCPWR=0,  
FRQRANGE=0  
1MHz crystal, CL=20pF  
2MHz crystal, CL=20pF  
2MHz crystal  
67k  
67k  
82k  
XOSCPWR=0,  
FRQRANGE=1,  
CL=20pF  
8MHz crystal  
1500  
1500  
2700  
2700  
1000  
3600  
1300  
590  
9MHz crystal  
8MHz crystal  
XOSCPWR=0,  
FRQRANGE=2,  
CL=20pF  
Negative impedance (1)  
RQ  
9MHz crystal  
12MHz crystal  
9MHz crystal  
XOSCPWR=0,  
FRQRANGE=3,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
390  
XOSCPWR=1,  
FRQRANGE=0,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
50  
10  
1500  
650  
XOSCPWR=1,  
FRQRANGE=1,  
CL=20pF  
12MHz crystal  
16MHz crystal  
12MHz crystal  
270  
Negative impedance (1)  
XOSCPWR=1,  
FRQRANGE=2,  
CL=20pF  
1000  
RQ  
16MHz crystal  
12MHz crystal  
16MHz crystal  
440  
1300  
590  
XOSCPWR=1,  
FRQRANGE=3,  
CL=20pF  
ESR  
SF = safety factor  
min(RQ)/SF  
k  
XOSCPWR=0,  
FRQRANGE=0  
0.4MHz resonator,  
CL=100pF  
1.0  
2.6  
0.8  
1.0  
1.4  
XOSCPWR=0,  
FRQRANGE=1  
2MHz crystal, CL=20pF  
8MHz crystal, CL=20pF  
12MHz crystal, CL=20pF  
16MHz crystal, CL=20pF  
XOSCPWR=0,  
FRQRANGE=2  
Start-up time  
ms  
XOSCPWR=0,  
FRQRANGE=3  
XOSCPWR=1,  
FRQRANGE=3  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
77  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Parasitic capacitance  
XTAL1 pin  
CXTAL1  
5.9  
Parasitic capacitance  
XTAL2 pin  
pF  
CXTAL2  
CLOAD  
8.3  
3.5  
Parasitic capacitance load  
Note:  
1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.  
32.1.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics  
Table 32-27. External 32.768kHz Crystal Oscillator and TOSC Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
60  
Units  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Crystal load capacitance 12pF  
Recommended crystal equivalent  
ESR/R1  
35  
k  
series resistance (ESR)  
28  
CTOSC1  
CTOSC2  
Parasitic capacitance TOSC1 pin  
Parasitic capacitance TOSC2 pin  
3.5  
3.5  
pF  
Capacitance load matched to crystal  
specification  
Recommended safety factor  
3
Note:  
See Figure 32-11 on page 97 for definition.  
Figure 32-4. TOSC Input Capacitance  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768 kHz crystal  
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without  
external capacitors.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
78  
32.1.14 SPI Characteristics  
Figure 32-5. SPI Timing Requirements in Master Mode  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
MSB  
tSCK  
MISO  
(Data Input)  
LSB  
tMOH  
tMOH  
MOSI  
(Data Output)  
MSB  
LSB  
Figure 32-6. SPI Timing Requirements in Slave Mode  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
MSB  
tSSCK  
LSB  
MOSI  
(Data Input)  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data Output)  
MSB  
LSB  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
79  
Table 32-28. SPI Timing Characteristics and Requirements  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
(See Table 20-3 in  
XMEGA D manual)  
tSCK  
SCK period  
Master  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK high/low width  
SCK rise time  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
0.5 * SCK  
2.7  
SCK fall time  
2.7  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
Slave SCK Period  
SCK high/low width  
SCK rise time  
10  
tMIH  
10  
0.5 * SCK  
1
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
4 * t ClkPER  
2 * t ClkPER  
ns  
1600  
1600  
SCK fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
SS hold after SCK  
MISO setup SCK  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
3
t ClkPER  
21  
tSIH  
tSSS  
tSSH  
20  
tSOS  
8
13  
11  
8
tSOH  
tSOSS  
tSOSH  
32.1.15 Two-wire Interface Characteristics  
Table 32-29 on page 81 describes the requirements for devices connected to the two-wire interface bus. The Atmel AVR  
XMEGA two-wire interface meets or exceeds these requirements under the noted conditions. Timing symbols refer to  
Figure 32-7.  
Figure 32-7. Two-wire Interface Bus Timing  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
80  
Table 32-29. Two-wire Interface Characteristics  
Symbol Parameter  
Condition  
Min.  
0.7VCC  
-0.5  
Typ.  
Max.  
VCC + 0.5  
0.3VCC  
Units  
VIH  
VIL  
Vhys  
VOL  
tr  
Input high voltage  
Input low voltage  
V
(1)  
Hysteresis of Schmitt trigger inputs  
Output low voltage  
0.05VCC  
0
3mA, sink current  
0.4  
300  
250  
50  
(1)(2)  
(1)(2)  
Rise time for both SDA and SCL  
Output fall time from VIHmin to VILmax  
Spikes suppressed by input filter  
Input current for each I/O pin  
Capacitance for each I/O pin  
SCL clock frequency  
20 + 0.1Cb  
tof  
10pF < Cb < 400pF (2)  
0.1VCC < VI < 0.9VCC  
20 + 0.1Cb  
ns  
tSP  
II  
0
-10  
10  
µA  
pF  
CI  
10  
fSCL  
fPER (3) > max(10fSCL, 250kHz)  
fSCL 100kHz  
0
400  
kHz  
100ns  
--------------  
Cb  
VCC – 0.4V  
---------------------------  
3mA  
RP  
Value of pull-up resistor  
300ns  
fSCL > 100kHz  
--------------  
Cb  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
4.0  
0.6  
4.7  
1.3  
4.0  
0.6  
4.7  
0.6  
0
tHD;STA  
Hold time (repeated) START condition  
Low period of SCL clock  
tLOW  
tHIGH  
High period of SCL clock  
Set-up time for a repeated START  
condition  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
µs  
3.45  
0.9  
Data hold time  
0
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
Setup time for STOP condition  
Bus free time between a STOP and  
START condition  
Notes:  
1. Required only for fSCL > 100kHz.  
2. Cb = Capacitance of one bus line in pF.  
3. fPER = Peripheral clock frequency.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
81  
32.2 Atmel ATxmega64D3  
32.2.1 Absolute Maximum Ratings  
Stresses beyond those listed in Table 32-30 may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
Table 32-30. Absolute Maximum Ratings  
Symbol  
VCC  
IVCC  
IGND  
VPIN  
IPIN  
Parameter  
Condition  
Min.  
Typ.  
Max.  
4
Units  
Power supply voltage  
Current into a VCC pin  
Current out of a Gnd pin  
Pin voltage with respect to Gnd and VCC  
I/O pin sink/source current  
Storage temperature  
-0.3  
V
200  
mA  
200  
-0.5  
-25  
-65  
VCC + 0.5  
25  
V
mA  
TA  
150  
°C  
Tj  
Junction temperature  
150  
32.2.2 General Operating Ratings  
The device must operate within the ratings listed in Table 32-31 in order for all other electrical characteristics and typical  
characteristics of the device to be valid.  
Table 32-31. General Operating Conditions  
Symbol  
VCC  
Parameter  
Condition  
Min.  
1.60  
1.60  
-40  
Typ.  
Max.  
3.6  
Units  
Power supply voltage  
Analog supply voltage  
Temperature range  
Junction temperature  
V
AVCC  
TA  
3.6  
85  
°C  
Tj  
-40  
105  
Table 32-32. Operating Voltage and Frequency  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
VCC = 1.8V  
VCC = 2.7V  
VCC = 3.6V  
Min.  
Typ.  
Max.  
12  
Units  
0
0
0
0
12  
ClkCPU  
CPU clock frequency  
MHz  
32  
32  
The maximum CPU clock frequency depends on VCC. As shown in Figure 32-8 on page 83 the frequency vs. VCC curve is  
linear between 1.8V < VCC < 2.7V.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
82  
Figure 32-8. Maximum Frequency vs. VCC  
MHz  
32  
Safe operating area  
12  
V
1.6  
1.8  
2.7  
3.6  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
83  
32.2.3 Current Consumption  
Table 32-33. Current Consumption for Active Mode and Sleep Modes  
Symbol Parameter  
Condition  
Min.  
Typ.  
50  
Max. Units  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
32kHz, Ext. Clk  
130  
215  
475  
445  
0.95  
7.8  
2.8  
3
µA  
1MHz, Ext. Clk  
Active power  
consumption (1)  
600  
2MHz, Ext. Clk  
32MHz, Ext. Clk  
32kHz, Ext. Clk  
1.5  
mA  
12.0  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
46  
1MHz, Ext. Clk  
2MHz, Ext. Clk  
µA  
Idle power  
92  
consumption (1)  
93  
225  
350  
184  
2.9  
0.07  
1.3  
4.0  
1.3  
2.6  
5.0  
1.7  
1.8  
0.5  
0.7  
0.9  
1.2  
120  
VCC = 3.0V  
ICC  
32MHz, Ext. Clk  
5.0  
1.0  
5.0  
8.0  
2.0  
6.0  
10  
mA  
T = 25°C  
T = 85°C  
VCC = 3.0V  
T = 105°C  
Power-down power  
consumption  
WDT and sampled BOD enabled, T = 25°C  
WDT and sampled BOD enabled, T = 85°C  
WDT and sampled BOD enabled, T= 105°C  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 3.0V  
µA  
RTC from ULP clock, WDT and sampled  
BOD enabled, T = 25°C  
2.0  
2.0  
3.0  
3.0  
Power-save power  
consumption (2)  
RTC from 1.024kHz low power 32.768kHz  
TOSC, T = 25°C  
RTC from low power 32.768kHz TOSC,  
T = 25°C  
Reset power consumption Current through RESET pin substracted  
Notes:  
1. All Power Reduction Registers set.  
2. Maximum limits are based on characterization, and not tested in production.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
84  
Table 32-34. Current Consumption for Modules and Peripherals  
Symbol Parameter  
Condition (1)  
Min.  
Typ.  
0.9  
29  
Max.  
Units  
ULP oscillator  
32.768kHz int. oscillator  
82  
2MHz int. oscillator  
32MHz int. oscillator  
DFLL enabled with 32.768kHz int. osc. as reference  
DFLL enabled with 32.768kHz int. osc. as reference  
114  
250  
400  
µA  
20× multiplication factor,  
32MHz int. osc. DIV4 as reference  
PLL  
300  
Watchdog timer  
1.0  
140  
1.4  
Continuous mode  
BOD  
Sampled mode, includes ULP oscillator  
ICC  
Internal 1.0V reference  
Temperature sensor  
180  
175  
1.23  
1.1  
CURRLIMIT = LOW  
16ksps  
VREF = Ext. ref.  
CURRLIMIT = MEDIUM  
0.98  
0.87  
CURRLIMIT = HIGH  
ADC  
mA  
75ksps  
CURRLIMIT = LOW  
VREF = Ext. ref.  
1.7  
3.1  
300ksps  
VREF = Ext. ref.  
USART  
Rx and Tx enabled, 9600 BAUD  
9.7  
5
µA  
Flash memory and EEPROM programming  
mA  
Note:  
1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock  
without prescaling, T = 25°C unless other conditions are given.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
85  
32.2.4 Wake-up Time from Sleep Modes  
Table 32-35. Device Wake-up Time from Sleep Modes with Various System Clock Sources  
Symbol Parameter  
Condition  
Min.  
Typ. (1)  
2.0  
Max.  
Units  
External 2MHz clock  
Wake-up time from idle,  
standby, and extended standby  
mode  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
125  
2.0  
0.2  
twakeup  
µs  
4.6  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
330  
9.5  
Wake-up time from power-save  
and power-down mode  
5.6  
Note:  
1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 32-9. All peripherals and modules start  
execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.  
Figure 32-9. Wake-up Time Definition  
Wakeup time  
Wakeup request  
Clock output  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
86  
32.2.5 I/O Pin Characteristics  
The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output  
voltage limits reflect or exceed this specification.  
Table 32-36. I/O Pin Characteristics  
Symbol  
Parameter  
Condition  
Min.  
-15  
Typ.  
Max.  
15  
Units  
IOH (1)/ IOL  
I/O pin source/sink current  
mA  
(2)  
VCC = 2.4 - 3.6V  
0.7 * VCC  
0.8 * VCC  
-0.5  
VCC + 0.5  
VCC + 0.5  
0.3 * VCC  
0.2 * VCC  
VIH  
High level input voltage  
Low level input voltage  
VCC = 1.6 - 2.4V  
VCC = 2.4 - 3.6V  
VCC = 1.6 - 2.4V  
VCC = 3.3V  
VIL  
-0.5  
IOH = -4mA  
IOH = -3mA  
IOH = -1mA  
IOL = 8mA  
IOL = 5mA  
IOL = 3mA  
2.6  
2.9  
2.6  
V
VOH  
High level output voltage  
Low level output voltage  
VCC = 3.0V  
2.1  
VCC = 1.8V  
1.4  
1.6  
VCC = 3.3V  
0.4  
0.76  
0.64  
0.46  
1
VOL  
VCC = 3.0V  
0.3  
VCC = 1.8V  
0.2  
IIN  
Input leakage current I/O pin  
Pull/buss keeper resistor  
T = 25°C  
<0.01  
25  
µA  
RP  
k  
Notes:  
1. The sum of all IOH for PORTA and PORTB must not exceed 100mA.  
The sum of all IOH for PORTC, PORTD, and PORTE must for each port not exceed 200mA.  
The sum of all IOH for pins PF[0-5] on PORTF must not exceed 200mA.  
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.  
2. The sum of all IOL for PORTA and PORTB must not exceed 100mA.  
The sum of all IOL for PORTC, PORTD, and PORTE must for each port not exceed 200mA.  
The sum of all IOL for pins PF[0-5] on PORTF must not exceed 200mA.  
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
87  
32.2.6 ADC Characteristics  
Table 32-37. Power Supply, Reference, and Input Range  
Symbol Parameter  
Condition  
Min.  
VCC - 0.3  
1
Typ.  
Max.  
VCC + 0.3  
AVCC - 0.6  
4.5  
Units  
AVCC  
VREF  
Rin  
Analog supply voltage  
V
Reference voltage  
Input resistance  
Switched  
k  
pF  
Cin  
Input capacitance  
Reference input resistance  
Reference input capacitance  
Input range  
Switched  
5
RAREF  
CAREF  
Vin  
(leakage only)  
Static load  
>10  
7
M  
pF  
0
VREF  
VREF  
Conversion range  
Conversion range  
Fixed offset voltage  
Differential mode, Vinp - Vinn  
-VREF  
-V  
V
Single ended unsigned mode, Vinp  
VREF - V  
V  
200  
lsb  
Table 32-38. Clock and Timing  
Symbol Parameter  
Condition  
Min.  
100  
100  
16  
Typ.  
Max.  
1800  
125  
300  
300  
250  
150  
50  
Units  
Maximum is 1/4 of peripheral clock frequency  
Measuring internal signals  
ClkADC  
ADC clock frequency  
Sample rate  
kHz  
fClkADC  
Current limitation (CURRLIMIT) off  
CURRLIMIT = LOW  
16  
16  
ksps  
µs  
fADC  
Sample rate  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
16  
16  
Configurable in steps of 1/2 ClkADC cycle up  
to 32 ClkADC cycles  
Sampling time  
0.28  
5.5  
320  
10  
(RES+2)/2 + 1 + GAIN  
RES (Resolution) = 8 or 12, GAIN = 0 to 3  
Conversion time (latency)  
ClkADC  
cycles  
Start-up time  
ADC clock cycles  
12  
7
24  
7
ADC settling time  
After changing reference or input mode  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
88  
Table 32-39. Accuracy Characteristics  
Symbol  
Parameter  
Condition (2)  
Differential  
Min.  
Typ.  
12  
Max.  
12  
11  
12  
1
Units  
8
7
8
RES  
Resolution  
12-bit resolution  
Differential mode  
Single ended signed  
Single ended unsigned  
16ksps, VREF = 3V  
16ksps, all VREF  
300ksps, VREF = 3V  
300ksps, all VREF  
16ksps, VREF = 3.0V  
16ksps, all VREF  
16ksps, VREF = 3V  
16ksps, all VREF  
300ksps, VREF = 3V  
300ksps, all VREF  
16ksps, VREF = 3V  
16ksps, all VREF  
300ksps, VREF = 3V  
Temperature drift, VREF = 3V  
Operating voltage drift  
External reference  
AVCC/1.6  
11  
Bits  
12  
0.5  
0.8  
0.6  
1
2
1
INL (1)  
Integral non-linearity  
2
0.5  
1.3  
0.3  
0.5  
0.3  
0.5  
0.6  
0.6  
-7  
1
Single ended  
unsigned mode  
2
lsb  
1
1
Differential mode  
1
DNL (1)  
Differential non-linearity  
1
1
Single ended  
unsigned mode  
1
mV  
Offset error  
Differential mode  
0.01  
0.16  
-5  
mV/K  
mV/V  
-5  
mV  
AVCC/2.0  
-6  
Gain error  
Differential mode  
Bandgap  
±10  
0.02  
2
Temperature drift  
Operating voltage drift  
External reference  
AVCC/1.6  
mV/K  
mV/V  
-8  
-8  
mV  
AVCC/2.0  
-8  
Single ended  
unsigned mode  
Gain error  
Bandgap  
±10  
0.03  
2
Temperature drift  
Operating voltage drift  
mV/K  
mV/V  
Notes:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
89  
Table 32-40. Gain Stage Characteristics  
Symbol  
Rin  
Parameter  
Condition  
Min.  
Typ.  
4.0  
Max.  
Units  
Input resistance  
Input capacitance  
Signal range  
Switched in normal mode  
Switched in normal mode  
Gain stage output  
k  
Csample  
4.4  
pF  
0
AVCC - 0.6  
V
Propagation delay  
Clock frequency  
ADC conversion rate  
Same as ADC  
1/2  
100  
1
3
ClkADC cycles  
kHz  
1800  
0.5× gain, normal mode  
1× gain, normal mode  
8× gain, normal mode  
64× gain, normal mode  
0.5× gain, normal mode  
1× gain, normal mode  
8× gain, normal mode  
64× gain, normal mode  
-1  
-1  
Gain error  
%
-1  
5
10  
5
Offset error, input referred  
mV  
-20  
-126  
32.2.7 Analog Comparator Characteristics  
Table 32-41. Analog Comparator Characteristics  
Symbol  
Voff  
Parameter  
Condition  
Min.  
Typ.  
10  
Max.  
Units  
mV  
nA  
Input offset voltage  
Input leakage current  
Input voltage range  
AC startup time  
Ilk  
<10  
50  
-0.1  
AVCC  
V
50  
0
µs  
Vhys1  
Vhys2  
Vhys3  
Hysteresis, none  
Hysteresis, small  
Hysteresis, large  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
VCC = 3.0V, T = 85°C  
VCC = 3.0V  
15  
30  
20  
17  
0.3  
5
mV  
40  
0.5  
6
tdelay  
Propagation delay  
ns  
64-level voltage scaler  
Integral non-linearity (INL)  
lsb  
%
Current source accuracy after calibration  
Current source calibration range  
Single mode  
4
µA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
90  
32.2.8 Bandgap and Internal 1.0V Reference Characteristics  
Table 32-42. Bandgap and Internal 1.0V Reference Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
As reference for ADC  
As input voltage to ADC and AC  
1 ClkPER + 2.5µs  
Startup time  
µs  
1.5  
1.1  
1
Bandgap voltage  
V
INT1V  
Internal 1.00V reference  
T = 85°C, after calibration  
Calibrated at T = 85°C  
0.99  
1.01  
Variation over voltage and temperature  
1
%
32.2.9 Brownout Detection Characteristics  
Table 32-43. Brownout Detection Characteristics (1)  
Symbol Parameter (BOD level 0 at 85°C)  
BOD level 0 falling VCC  
Condition  
Min.  
Typ.  
1.60  
1.8  
Max.  
Units  
1.40  
1.70  
BOD level 1 falling VCC  
BOD level 2 falling VCC  
2.0  
BOD level 3 falling VCC  
VBOT  
2.2  
V
BOD level 4 falling VCC  
2.4  
BOD level 5 falling VCC  
BOD level 6 falling VCC  
BOD level 7 falling VCC  
2.6  
2.8  
3.0  
Continuous mode  
Sampled mode  
0.4  
tBOD  
Detection time  
Hysteresis  
µs  
%
1000  
1.0  
VHYST  
Note:  
1. BOD is calibrated at 85°C within BOD level 0 values, and BOD level 0 is the default level.  
32.2.10 External Reset Characteristics  
Table 32-44. External Reset Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
90  
Max.  
Units  
tEXT  
VRST  
RRST  
Minimum reset pulse width  
Reset threshold voltage  
Reset pin pull-up resistor  
1000  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
0.45 * VCC  
0.42 * VCC  
25  
V
k  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
91  
32.2.11 Power-on Reset Characteristics  
Table 32-45. Power-on Reset Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
VCC falls faster than 1V/ms  
VCC falls at 1V/ms or slower  
0.4  
0.8  
1.0  
1.3  
1.3  
(1)  
VPOT-  
POR threshold voltage falling VCC  
POR threshold voltage rising VCC  
V
VPOT+  
1.59  
Note:  
1. VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+  
.
32.2.12 Flash and EEPROM Memory Characteristics  
Table 32-46. Endurance and Data Retention  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
10K  
10K  
2K  
Write/Erase cycles  
Cycle  
Flash  
100  
25  
Data retention  
Year  
Cycle  
Year  
10  
100K  
100K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
10  
Table 32-47. Programming Time  
Symbol Parameter  
Chip erase (2)  
Condition  
Min.  
Typ. (1)  
Max.  
Units  
64KB Flash, EEPROM  
Section erase  
Page erase  
55  
6
Application erase  
4
Flash  
Page write  
4
ms  
Atomic page erase and write  
Page erase  
8
4
EEPROM  
Page write  
4
Atomic page erase and write  
8
Notes:  
1. Programming is timed from the 2MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
92  
32.2.13 Clock and Oscillator Characteristics  
32.2.13.1 Calibrated 32.768kHz Internal Oscillator Characteristics  
Table 32-48. 32.768kHz Internal Oscillator Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Frequency  
32.768  
kHz  
Factory calibration accuracy  
User calibration accuracy  
T = 85C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
32.2.13.2 Calibrated 2MHz RC Internal Oscillator Characteristics  
Table 32-49. 2MHz Internal Oscillator Characteristics  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
2.0  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
1.8  
2.2  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration stepsize  
2.0  
T = 85C, VCC = 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.18  
32.2.13.3 Calibrated 32MHz Internal Oscillator Characteristics  
Table 32-50. 32MHz Internal Oscillator Characteristics  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
32  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
30  
55  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
32  
T = 85C, VCC = 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.19  
32.2.13.4 32kHz Internal ULP Oscillator Characteristics  
Table 32-51. 32kHz Internal ULP Oscillator Characteristics  
Symbol Parameter  
Factory calibrated frequency  
Condition  
Min.  
Typ.  
Max.  
Units  
32  
kHz  
Factory calibration accuracy  
Accuracy  
T = 85°C, VCC = 3.0V  
-12  
-30  
12  
30  
%
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
93  
32.2.13.5 Internal Phase Locked Loop (PLL) Characteristics  
Table 32-52. Internal PLL Characteristics  
Symbol Parameter  
Condition  
Min.  
0.4  
20  
Typ.  
Max.  
64  
Units  
fIN  
Input frequency  
Output frequency must be within fOUT  
VCC = 1.6 - 1.8V  
48  
MHz  
fOUT  
Output frequency (1)  
VCC = 2.7 - 3.6V  
20  
128  
Start-up time  
Re-lock time  
25  
25  
µs  
Note:  
1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.  
32.2.13.6 External Clock Characteristics  
Figure 32-10.External Clock Drive Waveform  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
Table 32-53. External Clock used as System Clock without Prescaling  
Symbol  
Parameter  
Condition  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
Min.  
0
Typ.  
Max.  
12  
Units  
1/tCK  
Clock Frequency (1)  
MHz  
0
32  
83.3  
31.5  
30.0  
12.5  
30.0  
12.5  
tCK  
tCH  
tCL  
tCR  
Clock Period  
Clock High Time  
Clock Low Time  
ns  
10  
3
Rise Time (for maximum frequency)  
10  
3
tCF  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
10  
%
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
94  
Table 32-54. External Clock with Prescaler (1) for System Clock  
Symbol Parameter  
Condition  
Min.  
0
Typ.  
Max.  
90  
Units  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
1/tCK  
Clock Frequency (2)  
Clock Period  
MHz  
0
142  
11  
7
tCK  
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
tCL  
Clock Low Time  
ns  
1.5  
1.0  
1.5  
1.0  
10  
tCR  
Rise Time (for maximum frequency)  
tCF  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
%
Notes:  
1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
32.2.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics  
Table 32-55. External 16MHz Crystal Oscillator and XOSC Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
0
Max.  
Units  
FRQRANGE=0  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
Cycle to cycle jitter  
FRQRANGE=1, 2, or 3  
0
0
ns  
FRQRANGE=0  
0
Long term jitter  
Frequency error  
FRQRANGE=1, 2, or 3  
0
0
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
0.03  
0.03  
0.03  
0.003  
50  
50  
50  
50  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
%
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
Duty cycle  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
95  
Symbol Parameter  
Condition  
Min.  
Typ.  
44k  
Max.  
Units  
0.4MHz resonator, CL=100pF  
1MHz crystal, CL=20pF  
2MHz crystal, CL=20pF  
2MHz crystal  
XOSCPWR=0,  
FRQRANGE=0  
67k  
67k  
82k  
XOSCPWR=0,  
FRQRANGE=1,  
CL=20pF  
8MHz crystal  
1500  
1500  
2700  
2700  
1000  
3600  
1300  
590  
9MHz crystal  
8MHz crystal  
XOSCPWR=0,  
FRQRANGE=2,  
CL=20pF  
9MHz crystal  
12MHz crystal  
9MHz crystal  
XOSCPWR=0,  
FRQRANGE=3,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
Negative impedance (1)  
RQ  
390  
XOSCPWR=1,  
FRQRANGE=0,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
50  
10  
1500  
650  
XOSCPWR=1,  
FRQRANGE=1,  
CL=20pF  
12MHz crystal  
16MHz crystal  
12MHz crystal  
270  
XOSCPWR=1,  
FRQRANGE=2,  
CL=20pF  
1000  
16MHz crystal  
12MHz crystal  
16MHz crystal  
440  
1300  
590  
XOSCPWR=1,  
FRQRANGE=3,  
CL=20pF  
ESR  
SF = safety factor  
min(RQ)/SF  
k  
XOSCPWR=0,  
FRQRANGE=0  
0.4MHz resonator, CL=100pF  
2MHz crystal, CL=20pF  
8MHz crystal, CL=20pF  
12MHz crystal, CL=20pF  
16MHz crystal, CL=20pF  
1.0  
2.6  
0.8  
1.0  
1.4  
XOSCPWR=0,  
FRQRANGE=1  
XOSCPWR=0,  
FRQRANGE=2  
Start-up time  
ms  
XOSCPWR=0,  
FRQRANGE=3  
XOSCPWR=1,  
FRQRANGE=3  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
96  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Parasitic capacitance  
XTAL1 pin  
CXTAL1  
5.9  
Parasitic capacitance  
XTAL2 pin  
pF  
CXTAL2  
CLOAD  
8.3  
3.5  
Parasitic capacitance load  
Note:  
1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.  
32.2.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics  
Table 32-56. External 32.768kHz Crystal Oscillator and TOSC Characteristics  
Symbo  
l
Parameter  
Condition  
Min.  
Typ.  
Max.  
60  
Units  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Crystal load capacitance 12pF  
ESR/  
R1  
Recommended crystal equivalent  
series resistance (ESR)  
35  
k  
28  
CTOSC1  
CTOSC2  
Parasitic capacitance TOSC1 pin  
Parasitic capacitance TOSC2 pin  
3.5  
3.5  
pF  
Capacitance load matched to crystal  
specification  
Recommended safety factor  
3
Note:  
See Figure 32-11 for definition.  
Figure 32-11.TOSC Input Capacitance  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768 kHz crystal  
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without  
external capacitors.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
97  
32.2.14 SPI Characteristics  
Figure 32-12. SPI Timing Requirements in Master Mode  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
MSB  
tSCK  
MISO  
(Data Input)  
LSB  
tMOH  
tMOH  
MOSI  
(Data Output)  
MSB  
LSB  
Figure 32-13.SPI Timing Requirements in Slave Mode  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
MSB  
tSSCK  
LSB  
MOSI  
(Data Input)  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data Output)  
MSB  
LSB  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
98  
Table 32-57. SPI Timing Characteristics and Requirements  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
(See Table 20-3 in  
XMEGA D manual)  
tSCK  
SCK period  
Master  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK high/low width  
SCK rise time  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
0.5 * SCK  
2.7  
SCK fall time  
2.7  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
Slave SCK Period  
SCK high/low width  
SCK rise time  
10  
tMIH  
10  
0.5 * SCK  
1
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
4 * t ClkPER  
2 * t ClkPER  
ns  
1600  
1600  
SCK fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
SS hold after SCK  
MISO setup SCK  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
3
t ClkPER  
21  
tSIH  
tSSS  
tSSH  
20  
tSOS  
8
13  
11  
8
tSOH  
tSOSS  
tSOSH  
32.2.15 Two-wire Interface Characteristics  
Table 32-58 on page 100 describes the requirements for devices connected to the two-wire interface bus. The Atmel  
AVR XMEGA two-wire interface meets or exceeds these requirements under the noted conditions. Timing symbols refer  
to Figure 32-14.  
Figure 32-14.Two-wire Interface Bus Timing  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
99  
Table 32-58. Two-wire Interface Characteristics  
Symbol Parameter  
Condition  
Min.  
0.7VCC  
-0.5  
Typ.  
Max.  
VCC + 0.5  
0.3VCC  
Units  
VIH  
VIL  
Vhys  
VOL  
tr  
Input high voltage  
Input low voltage  
V
(1)  
Hysteresis of Schmitt trigger inputs  
Output low voltage  
0.05VCC  
0
3mA, sink current  
0.4  
300  
250  
50  
(1)(2)  
(1)(2)  
Rise time for both SDA and SCL  
Output fall time from VIHmin to VILmax  
Spikes suppressed by input filter  
Input current for each I/O pin  
Capacitance for each I/O pin  
SCL clock frequency  
20 + 0.1Cb  
tof  
10pF < Cb < 400pF (2)  
0.1VCC < VI < 0.9VCC  
20 + 0.1Cb  
ns  
tSP  
II  
0
-10  
10  
µA  
pF  
CI  
10  
fSCL  
fPER (3) > max(10fSCL, 250kHz)  
fSCL 100kHz  
0
400  
kHz  
100ns  
--------------  
Cb  
VCC – 0.4V  
---------------------------  
3mA  
RP  
Value of pull-up resistor  
300ns  
fSCL > 100kHz  
--------------  
Cb  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
4.0  
0.6  
4.7  
1.3  
4.0  
0.6  
4.7  
0.6  
0
tHD;STA  
Hold time (repeated) START condition  
Low period of SCL clock  
tLOW  
µs  
tHIGH  
High period of SCL clock  
Set-up time for a repeated START  
condition  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
3.45  
0.9  
Data hold time  
0
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
µs  
Setup time for STOP condition  
Bus free time between a STOP and  
START condition  
Notes:  
1. Required only for fSCL > 100kHz.  
2. Cb = Capacitance of one bus line in pF.  
3. fPER = Peripheral clock frequency.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
100  
32.3 Atmel ATxmega128D3  
32.3.1 Absolute Maximum Ratings  
Stresses beyond those listed in Table 32-59 may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
Table 32-59. Absolute Maximum Ratings  
Symbol  
VCC  
IVCC  
IGND  
VPIN  
IPIN  
Parameter  
Condition  
Min.  
Typ.  
Max.  
4
Units  
Power supply voltage  
Current into a VCC pin  
Current out of a Gnd pin  
Pin voltage with respect to Gnd and VCC  
I/O pin sink/source current  
Storage temperature  
-0.3  
V
200  
mA  
200  
-0.5  
-25  
-65  
VCC + 0.5  
25  
V
mA  
TA  
150  
°C  
Tj  
Junction temperature  
150  
32.3.2 General Operating Ratings  
The device must operate within the ratings listed in Table 32-60 in order for all other electrical characteristics and typical  
characteristics of the device to be valid.  
Table 32-60. General Operating Conditions  
Symbol  
VCC  
Parameter  
Condition  
Min.  
1.60  
1.60  
-40  
Typ.  
Max.  
3.6  
Units  
Power supply voltage  
Analog supply voltage  
Temperature range  
Junction temperature  
V
AVCC  
TA  
3.6  
85  
°C  
Tj  
-40  
105  
Table 32-61. Operating Voltage and Frequency  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
VCC = 1.8V  
VCC = 2.7V  
VCC = 3.6V  
Min.  
Typ.  
Max.  
12  
Units  
0
0
0
0
12  
ClkCPU  
CPU clock frequency  
MHz  
32  
32  
The maximum CPU clock frequency depends on VCC. As shown in Figure 32-15 on page 102 the frequency vs. VCC  
curve is linear between 1.8V < VCC < 2.7V.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
101  
Figure 32-15.Maximum Frequency vs. VCC  
MHz  
32  
Safe operating area  
12  
V
1.6  
1.8  
2.7  
3.6  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
102  
32.3.3 Current Consumption  
Table 32-62. Current Consumption for Active Mode and Sleep Modes  
Symbol Parameter  
Condition  
Min.  
Typ.  
55  
Max. Units  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
32kHz, Ext. Clk  
135  
237  
515  
425  
0.9  
8.3  
2.8  
3.1  
47  
µA  
1MHz, Ext. Clk  
Active power  
consumption (1)  
700  
2MHz, Ext. Clk  
32MHz, Ext. Clk  
32kHz, Ext. Clk  
1.5  
mA  
12  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
1MHz, Ext. Clk  
2MHz, Ext. Clk  
µA  
Idle power  
95  
consumption (1)  
94  
200  
400  
190  
3.0  
0.1  
1.9  
4.0  
1.5  
3.0  
5.0  
1.3  
1.4  
0.7  
0.8  
0.9  
1.1  
145  
VCC = 3.0V  
ICC  
32MHz, Ext. Clk  
7.0  
1.0  
4.0  
8.0  
2.0  
8.0  
10  
mA  
T = 25°C  
T = 85°C  
VCC = 3.0V  
T = 105°C  
Power-down power  
consumption  
WDT and sampled BOD enabled, T = 25°C  
WDT and sampled BOD enabled, T = 85°C  
WDT and sampled BOD enabled, T= 105°C  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 3.0V  
µA  
RTC from ULP clock, WDT and sampled  
BOD enabled, T = 25°C  
2.0  
2.0  
3.0  
3.0  
Power-save power  
consumption (2)  
RTC from 1.024kHz low power 32.768kHz  
TOSC, T = 25°C  
RTC from low power 32.768kHz TOSC,  
T = 25°C  
Reset power consumption Current through RESET pin substracted  
Notes:  
1. All Power Reduction Registers set.  
2. Maximum limits are based on characterization, and not tested in production.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
103  
Table 32-63. Current Consumption for Modules and Peripherals  
Symbol Parameter  
Condition (1)  
Min.  
Typ.  
0.9  
26  
Max.  
Units  
ULP oscillator  
32.768kHz int. oscillator  
79  
2MHz int. oscillator  
32MHz int. oscillator  
DFLL enabled with 32.768kHz int. osc. as reference  
DFLL enabled with 32.768kHz int. osc. as reference  
110  
245  
415  
µA  
20× multiplication factor,  
32MHz int. osc. DIV4 as reference  
PLL  
305  
Watchdog timer  
1.0  
138  
1.4  
Continuous mode  
BOD  
Sampled mode, includes ULP oscillator  
ICC  
Internal 1.0V reference  
Temperature sensor  
185  
173  
1.3  
CURRLIMIT = LOW  
16ksps  
1.15  
1.0  
VREF = Ext. ref.  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
0.9  
ADC  
mA  
75ksps  
CURRLIMIT = LOW  
VREF = Ext. ref.  
1.7  
3.1  
300ksps  
VREF = Ext. ref.  
USART  
Rx and Tx enabled, 9600 BAUD  
7.5  
4
µA  
Flash memory and EEPROM programming  
mA  
Note:  
1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock  
without prescaling, T = 25°C unless other conditions are given.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
104  
32.3.4 Wake-up Time from Sleep Modes  
Table 32-64. Device Wake-up Time from Sleep Modes with Various System Clock Sources  
Symbol Parameter  
Condition  
Min.  
Typ. (1)  
2.0  
Max.  
Units  
External 2MHz clock  
Wake-up time from idle,  
standby, and extended standby  
mode  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
130  
2.0  
0.2  
twakeup  
µs  
4.5  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
320  
9.0  
Wake-up time from power-save  
and power-down mode  
5.0  
Note:  
1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 32-16. All peripherals and modules start  
execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.  
Figure 32-16.Wake-up Time Definition  
Wakeup time  
Wakeup request  
Clock output  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
105  
32.3.5 I/O Pin Characteristics  
The I/O pins compiles with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output  
voltage limits or exceeds this specification.  
Table 32-65. I/O Pin Characteristics  
Symbol  
Parameter  
Condition  
Min.  
-15  
Typ.  
Max.  
15  
Units  
IOH (1)/ IOL  
I/O pin source/sink current  
mA  
(2)  
VCC = 2.4 - 3.6V  
0.7 * VCC  
0.8 * VCC  
-0.5  
VCC + 0.5  
VCC + 0.5  
0.3 * VCC  
0.2 * VCC  
VIH  
High level input voltage  
Low level input voltage  
VCC = 1.6 - 2.4V  
VCC = 2.4 - 3.6V  
VCC = 1.6 - 2.4V  
VCC = 3.3V  
VIL  
-0.5  
IOH = -4mA  
IOH = -3mA  
IOH = -1mA  
IOL = 8mA  
IOL = 5mA  
IOL = 3mA  
2.6  
2.9  
2.6  
V
VOH  
High level output voltage  
Low level output voltage  
VCC = 3.0V  
2.1  
VCC = 1.8V  
1.4  
1.6  
VCC = 3.3V  
0.4  
0.76  
0.64  
0.46  
1.0  
VOL  
VCC = 3.0V  
0.3  
VCC = 1.8V  
0.2  
IIN  
Input leakage current I/O pin  
Pull/buss keeper resistor  
T = 25°C  
<0.01  
25  
µA  
RP  
k  
Notes:  
1. The sum of all IOH for PORTA and PORTB must not exceed 100mA.  
The sum of all IOH for PORTC, PORTD, and PORTE must for each port not exceed 200mA.  
The sum of all IOH for pins PF[0-5] on PORTF must not exceed 200mA.  
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.  
2. The sum of all IOL for PORTA and PORTB must not exceed 100mA.  
The sum of all IOL for PORTC, PORTD, and PORTE must for each port not exceed 200mA.  
The sum of all IOL for pins PF[0-5] on PORTF must not exceed 200mA.  
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
106  
32.3.6 ADC Characteristics  
Table 32-66. Power Supply, Reference, and Input Range  
Symbol Parameter  
Condition  
Min.  
VCC - 0.3  
1
Typ.  
Max.  
VCC + 0.3  
AVCC - 0.6  
4.5  
Units  
AVCC  
VREF  
Rin  
Analog supply voltage  
V
Reference voltage  
Input resistance  
Switched  
k  
pF  
Cin  
Input capacitance  
Reference input resistance  
Reference input capacitance  
Input range  
Switched  
5
RAREF  
CAREF  
Vin  
(leakage only)  
Static load  
>10  
7
M  
pF  
0
VREF  
VREF  
Conversion range  
Conversion range  
Fixed offset voltage  
Differential mode, Vinp - Vinn  
-VREF  
-V  
V
Single ended unsigned mode, Vinp  
VREF - V  
V  
200  
lsb  
Table 32-67. Clock and Timing  
Symbol Parameter  
Condition  
Min.  
100  
100  
16  
Typ.  
Max.  
1800  
125  
300  
300  
250  
150  
50  
Units  
kHz  
Maximum is 1/4 of peripheral clock frequency  
Measuring internal signals  
ClkADC  
ADC clock frequency  
Sample rate  
fClkADC  
ksps  
Current limitation (CURRLIMIT) off  
CURRLIMIT = LOW  
16  
16  
fADC  
Sample rate  
ksps  
µs  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
16  
16  
Sampling time  
1/2 ClkADC cycle  
0.28  
320  
(RES+2)/2 + GAIN  
RES (Resolution) = 8 or 12, GAIN = 0 to 3  
Conversion time (latency)  
5.5  
10  
ClkADC  
cycles  
Start-up time  
ADC clock cycles  
12  
7
24  
7
ADC settling time  
After changing reference or input mode  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
107  
Table 32-68. Accuracy Characteristics  
Symbol  
Parameter  
Condition (2)  
Differential  
Min.  
Typ.  
12  
Max.  
12  
11  
12  
1
Units  
8
7
8
RES  
Resolution  
12-bit resolution  
Differential mode  
Single ended signed  
Single ended unsigned  
16ksps, VREF = 3V  
16ksps, all VREF  
300ksps, VREF = 3V  
300ksps, all VREF  
16ksps, VREF = 3.0V  
16ksps, all VREF  
16ksps, VREF = 3V  
16ksps, all VREF  
300ksps, VREF = 3V  
300ksps, all VREF  
16ksps, VREF = 3.0V  
16ksps, all VREF  
300ksps, VREF = 3V  
Temperature drift, VREF = 3V  
Operating voltage drift  
External reference  
AVCC/1.6  
11  
Bits  
12  
0.5  
0.8  
0.6  
1.0  
0.5  
1.3  
0.3  
0.5  
0.3  
0.5  
0.6  
0.6  
-7  
2
1
INL (1)  
Integral non-linearity  
lsb  
2
1
Single ended  
unsigned mode  
2
1
1
Differential mode  
1
DNL (1)  
Differential non-linearity  
lsb  
1
1
Single ended  
unsigned mode  
1
mV  
Offset error  
Differential mode  
0.01  
0.16  
-5  
mV/K  
mV/V  
-5  
mV  
AVCC/2.0  
-6  
Gain error  
Differential mode  
Bandgap  
±10  
0.02  
2
Temperature drift  
Operating voltage drift  
External reference  
AVCC/1.6  
mV/K  
mV/V  
-8  
-8  
mV  
AVCC/2.0  
-8  
Single ended  
unsigned mode  
Gain error  
Bandgap  
±10  
0.03  
2
Temperature drift  
Operating voltage drift  
mV/K  
mV/V  
Notes:  
1. Maximum numbers are based on characterization and not tested in production and valid for 5% to 95% input voltage range.  
2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
108  
Table 32-69. Gain Stage Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
4.0  
Max.  
Units  
Rin  
Input resistance  
Input capacitance  
Signal range  
Switched in normal mode  
Switched in normal mode  
Gain stage output  
k  
Csample  
4.4  
pF  
0
AVCC - 0.6  
V
Propagation delay  
Clock frequency  
ADC conversion rate  
Same as ADC  
1/2  
100  
1
3
ClkADC cycles  
kHz  
1800  
0.5x gain, normal mode  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
0.5x gain, normal mode  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
-1  
-1  
Gain error  
%
-1  
5
10  
5
Offset error, input referred  
mV  
-20  
-126  
32.3.7 Analog Comparator Characteristics  
Table 32-70. Analog Comparator Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
10  
Max.  
Units  
mV  
nA  
Voff  
Ilk  
Input offset voltage  
Input leakage current  
Input voltage range  
AC startup time  
<10  
50  
-0.1  
AVCC  
V
50  
0
µs  
Vhys1  
Vhys2  
Vhys3  
Hysteresis, none  
Hysteresis, small  
Hysteresis, large  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
VCC = 3.0V, T = 85°C  
VCC = 3.0V  
15  
30  
20  
17  
0.3  
5
mV  
90  
0.5  
6
tdelay  
Propagation delay  
ns  
64-level voltage scaler  
Integral non-linearity (INL)  
lsb  
%
Current source accuracy after calibration  
Current source calibration range  
Single mode  
4
µA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
109  
32.3.8 Bandgap and Internal 1.0V Reference Characteristics  
Table 32-71. Bandgap and Internal 1.0V Reference Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
As reference for ADC  
As input voltage to ADC and AC  
1 ClkPER + 2.5µs  
Startup time  
µs  
1.5  
1.1  
1.0  
1
Bandgap voltage  
V
INT1V  
Internal 1.00V reference  
T = 85°C, after calibration  
Calibrated at T = 85°C  
0.99  
1.01  
Variation over voltage and temperature  
%
32.3.9 Brownout Detection Characteristics  
Table 32-72. Brownout Detection Characteristics (1)  
Symbol Parameter  
BOD level 0 falling VCC  
BOD level 1 falling VCC  
BOD level 2 falling VCC  
Condition  
Min.  
Typ.  
1.60  
1.8  
Max.  
Units  
1.40  
1.70  
2.0  
BOD level 3 falling VCC  
VBOT  
2.2  
V
BOD level 4 falling VCC  
2.4  
BOD level 5 falling VCC  
BOD level 6 falling VCC  
BOD level 7 falling VCC  
2.6  
2.8  
3.0  
Continuous mode  
Sampled mode  
0.4  
tBOD  
Detection time  
Hysteresis  
µs  
%
1000  
1.0  
VHYST  
Note:  
1. BOD is calibrated at 85°C within BOD level 0 values, and BOD level 0 is the default level.  
32.3.10 External Reset Characteristics  
Table 32-73. External Reset Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
100  
Max.  
Units  
tEXT  
VRST  
RRST  
Minimum reset pulse width  
Reset threshold voltage  
Reset pin pull-up resistor  
1000  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
0.45 * VCC  
0.45 * VCC  
27  
V
k  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
110  
32.3.11 Power-on Reset Characteristics  
Table 32-74. Power-on Reset Characteristics  
Symbol Parameter  
Condition  
Min.  
0.4  
Typ.  
1.0  
Max.  
Units  
VCC falls faster than 1V/ms  
VCC falls at 1V/ms or slower  
(1)  
VPOT-  
POR threshold voltage falling VCC  
POR threshold voltage rising VCC  
0.8  
1.3  
V
VPOT+  
1.3  
1.59  
Note:  
1. VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+  
.
32.3.12 Flash and EEPROM Memory Characteristics  
Table 32-75. Endurance and Data Retention  
Symbol Parameter  
Condition  
Min.  
10K  
10K  
2K  
Typ.  
Max.  
Units  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
Write/Erase cycles  
Cycle  
Flash  
100  
25  
Data retention  
Year  
Cycle  
Year  
10  
100K  
100K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
10  
Table 32-76. Programming Time  
Symbol Parameter  
Condition  
Min.  
Typ. (1)  
Max.  
Units  
Chip erase (2)  
128KB Flash, EEPROM  
Section erase  
Page erase  
75  
6
Application erase  
4
Flash  
Page write  
4
ms  
Atomic page erase and write  
Page erase  
8
4
EEPROM  
Page write  
4
Atomic page erase and write  
8
Notes:  
1. Programming is timed from the 2MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
111  
32.3.13 Clock and Oscillator Characteristics  
32.3.13.1 Calibrated 32.768kHz Internal Oscillator Characteristics  
Table 32-77. 32.768kHz Internal Oscillator Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Frequency  
32.768  
kHz  
Factory calibration accuracy  
User calibration accuracy  
T = 85C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
32.3.13.2 Calibrated 2MHz RC Internal Oscillator Characteristics  
Table 32-78. 2MHz Internal Oscillator Characteristics  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
2.0  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
1.8  
2.2  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration stepsize  
2.0  
T = 85C, VCC = 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.18  
32.3.13.3 Calibrated 32MHz Internal Oscillator Characteristics  
Table 32-79. 32MHz Internal Oscillator Characteristics  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
32  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
30  
55  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
32  
T = 85C, VCC = 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.2  
32.3.13.4 32kHz Internal ULP Oscillator Characteristics  
Table 32-80. 32kHz Internal ULP Oscillator Characteristics  
Symbol Parameter  
Factory calibrated frequency  
Condition  
Min.  
Typ.  
Max.  
Units  
32  
kHz  
Factory calibration accuracy  
Accuracy  
T = 85°C, VCC = 3.0V  
-12  
-30  
12  
30  
%
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
112  
32.3.13.5 Internal Phase Locked Loop (PLL) Characteristics  
Table 32-81. Internal PLL Characteristics  
Symbol Parameter  
Condition  
Min.  
0.4  
20  
Typ.  
Max.  
64  
Units  
fIN  
Input frequency  
Output frequency must be within fOUT  
VCC = 1.6 - 1.8V  
48  
MHz  
fOUT  
Output frequency (1)  
VCC = 2.7 - 3.6V  
20  
128  
Start-up time  
Re-lock time  
25  
25  
µs  
Note:  
1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.  
32.3.13.6 External Clock Characteristics  
Figure 32-17.External Clock Drive Waveform  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
Table 32-82. External Clock used as System Clock without Prescaling  
Symbol  
Parameter  
Condition  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
Min.  
0
Typ.  
Max.  
12  
Units  
1/tCK  
Clock Frequency (1)  
MHz  
0
32  
83.3  
31.5  
30.0  
12.5  
30.0  
12.5  
tCK  
tCH  
tCL  
tCR  
Clock Period  
Clock High Time  
Clock Low Time  
ns  
10  
3
Rise Time (for maximum frequency)  
10  
3
tCF  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
10  
%
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
113  
Table 32-83. External Clock with Prescaler (1) for System Clock  
Symbol Parameter Condition  
Clock Frequency (2)  
Min.  
0
Typ.  
Max.  
90  
Units  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
1/tCK  
MHz  
0
142  
11  
7
tCK  
Clock Period  
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
tCL  
Clock Low Time  
ns  
1.5  
1.0  
1.5  
1.0  
10  
tCR  
Rise Time (for maximum frequency)  
tCF  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
%
Notes:  
1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
32.3.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics  
Table 32-84. External 16MHz Crystal Oscillator and XOSC Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
0
Max.  
Units  
FRQRANGE=0  
FRQRANGE=0  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
Cycle to cycle jitter  
0
0
ns  
FRQRANGE=0  
FRQRANGE=0  
0
Long term jitter  
Frequency error  
0
0
FRQRANGE=0  
FRQRANGE=0  
FRQRANGE=0  
0.03  
0.03  
0.03  
0.003  
50  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
%
FRQRANGE=0  
FRQRANGE=0  
FRQRANGE=0  
50  
Duty cycle  
50  
50  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
114  
Symbol Parameter  
Condition  
Min.  
Typ.  
44k  
Max.  
Units  
0.4MHz resonator, CL=100pF  
1MHz resonator, CL=20pF  
2MHz resonator, CL=20pF  
2MHz crystal  
XOSCPWR=0,  
FRQRANGE=0  
67k  
67k  
82k  
XOSCPWR=0,  
FRQRANGE=1,  
CL=20pF  
8MHz crystal  
1500  
1500  
2700  
2700  
1000  
3600  
1300  
590  
9MHz crystal  
8MHz crystal  
XOSCPWR=0,  
FRQRANGE=2,  
CL=20pF  
9MHz crystal  
12MHz crystal  
9MHz crystal  
XOSCPWR=0,  
FRQRANGE=3,  
CL=20pF  
12MHz crystal  
RQ  
Negative impedance (1)  
16MHz crystal  
9MHz crystal  
390  
XOSCPWR=1,  
FRQRANGE=0,  
CL=20pF  
12MHz crystal  
50  
16MHz crystal  
10  
9MHz crystal  
1500  
650  
XOSCPWR=1,  
FRQRANGE=1,  
CL=20pF  
12MHz crystal  
16MHz crystal  
270  
XOSCPWR=1,  
FRQRANGE=2,  
CL=20pF  
12MHz crystal  
1000  
16MHz crystal  
12MHz crystal  
16MHz crystal  
440  
1300  
590  
XOSCPWR=1,  
FRQRANGE=3,  
CL=20pF  
ESR  
SF = safety factor  
min(RQ)/SF  
k  
XOSCPWR=0,  
FRQRANGE=0  
0.4MHz resonator, CL=100pF  
2MHz crystal, CL=20pF  
8MHz crystal, CL=20pF  
12MHz crystal, CL=20pF  
16MHz crystal, CL=20pF  
1.0  
2.6  
0.8  
1.0  
1.4  
XOSCPWR=0,  
FRQRANGE=1  
XOSCPWR=0,  
FRQRANGE=2  
Start-up time  
ms  
XOSCPWR=0,  
FRQRANGE=3  
XOSCPWR=1,  
FRQRANGE=3  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
115  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Parasitic capacitance  
XTAL1 pin  
CXTAL1  
5.9  
Parasitic capacitance  
XTAL1 pin  
pF  
CXTAL2  
CLOAD  
8.3  
3.5  
Parasitic capacitance load  
Note:  
1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.  
32.3.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics  
Table 32-85. External 32.768kHz Crystal Oscillator and TOSC Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
60  
Units  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Crystal load capacitance 12pF  
Recommended crystal  
ESR/R1 equivalent series  
resistance (ESR)  
35  
k  
28  
Parasitic capacitance  
TOSC1 pin  
CTOSC1  
3.5  
3.5  
pF  
Parasitic capacitance  
TOSC2 pin  
CTOSC2  
Recommended safety  
factor  
Capacitance load matched to crystal specification  
3
Note:  
See Figure 32-18 for definition.  
Figure 32-18.TOSC Input Capacitance  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768 kHz crystal  
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without  
external capacitors.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
116  
32.3.14 SPI Characteristics  
Figure 32-19.SPI Timing Requirements in Master Mode  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
MSB  
tSCK  
MISO  
(Data Input)  
LSB  
tMOH  
tMOH  
MOSI  
(Data Output)  
MSB  
LSB  
Figure 32-20.SPI Timing Requirements in Slave Mode  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
MSB  
tSSCK  
LSB  
MOSI  
(Data Input)  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data Output)  
MSB  
LSB  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
117  
Table 32-86. SPI Timing Characteristics and Requirements  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
(See Table 20-3 in  
XMEGA D manual)  
tSCK  
SCK period  
Master  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK high/low width  
SCK rise time  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
0.5 * SCK  
2.7  
SCK fall time  
2.7  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
Slave SCK Period  
SCK high/low width  
SCK rise time  
10  
tMIH  
10  
0.5 * SCK  
1
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
4 * t ClkPER  
2 * t ClkPER  
ns  
1600  
1600  
SCK fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
SS hold after SCK  
MISO setup SCK  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
3
t ClkPER  
21  
tSIH  
tSSS  
tSSH  
20  
tSOS  
8
13  
11  
8
tSOH  
tSOSS  
tSOSH  
32.3.15 Two-wire Interface Characteristics  
Table 32-87 on page 119 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel  
AVR XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols  
refer to Figure 32-21.  
Figure 32-21.Two-wire Interface Bus Timing  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
118  
Table 32-87. Two-wire Interface Characteristics  
Symbol Parameter  
Condition  
Min.  
0.7VCC  
-0.5  
Typ.  
Max.  
VCC + 0.5  
0.3VCC  
Units  
VIH  
VIL  
Vhys  
VOL  
tr  
Input high voltage  
Input low voltage  
V
(1)  
Hysteresis of Schmitt trigger inputs  
Output low voltage  
0.05VCC  
0
3mA, sink current  
0.4  
300  
250  
50  
(1)(2)  
(1)(2)  
Rise time for both SDA and SCL  
Output fall time from VIHmin to VILmax  
Spikes suppressed by input filter  
Input current for each I/O pin  
Capacitance for each I/O pin  
SCL clock frequency  
20 + 0.1Cb  
tof  
10pF < Cb < 400pF (2)  
0.1VCC < VI < 0.9VCC  
20 + 0.1Cb  
ns  
tSP  
II  
0
-10  
10  
µA  
pF  
CI  
10  
fSCL  
fPER (3) > max(10fSCL, 250kHz)  
fSCL 100kHz  
0
400  
kHz  
100ns  
--------------  
Cb  
VCC – 0.4V  
---------------------------  
3mA  
RP  
Value of pull-up resistor  
300ns  
fSCL > 100kHz  
--------------  
Cb  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
4.0  
0.6  
4.7  
1.3  
4.0  
0.6  
4.7  
0.6  
0
tHD;STA  
Hold time (repeated) START condition  
Low period of SCL clock  
tLOW  
µs  
tHIGH  
High period of SCL clock  
Set-up time for a repeated START  
condition  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
3.45  
0.9  
Data hold time  
0
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
µs  
Setup time for STOP condition  
Bus free time between a STOP and  
START condition  
Notes:  
1. Required only for fSCL > 100kHz.  
2. Cb = Capacitance of one bus line in pF.  
3. fPER = Peripheral clock frequency.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
119  
32.4 Atmel ATxmega192D3  
32.4.1 Absolute Maximum Ratings  
Stresses beyond those listed in Table 32-88 may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
Table 32-88. Absolute Maximum Ratings  
Symbol  
VCC  
IVCC  
IGND  
VPIN  
IPIN  
Parameter  
Condition  
Min.  
Typ.  
Max.  
4
Units  
Power supply voltage  
Current into a VCC pin  
Current out of a Gnd pin  
Pin voltage with respect to Gnd and VCC  
I/O pin sink/source current  
Storage temperature  
-0.3  
V
200  
mA  
200  
-0.5  
-25  
-65  
VCC + 0.5  
25  
V
mA  
TA  
150  
°C  
Tj  
Junction temperature  
150  
32.4.2 General Operating Ratings  
The device must operate within the ratings listed in Table 32-89 in order for all other electrical characteristics and typical  
characteristics of the device to be valid.  
Table 32-89. General Operating Conditions  
Symbol  
VCC  
Parameter  
Condition  
Min.  
1.60  
1.60  
-40  
Typ.  
Max.  
3.6  
Units  
Power supply voltage  
Analog supply voltage  
Temperature range  
Junction temperature  
V
AVCC  
TA  
3.6  
85  
°C  
Tj  
-40  
105  
Table 32-90. Operating Voltage and Frequency  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
VCC = 1.8V  
VCC = 2.7V  
VCC = 3.6V  
Min.  
Typ.  
Max.  
12  
Units  
0
0
0
0
12  
ClkCPU  
CPU clock frequency  
MHz  
32  
32  
The maximum CPU clock frequency depends on VCC. As shown in Figure 32-22 on page 121 the frequency vs. VCC  
curve is linear between 1.8V < VCC < 2.7V.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
120  
Figure 32-22.Maximum Frequency vs. VCC  
MHz  
32  
Safe operating area  
12  
V
1.6  
1.8  
2.7  
3.6  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
121  
32.4.3 Current Consumption  
Table 32-91. Current Consumption for Active Mode and Sleep Modes  
Symbol Parameter  
Condition  
Min.  
Typ.  
60  
Max. Units  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
32kHz, Ext. Clk  
140  
245  
550  
440  
0.9  
9.0  
3.0  
3.5  
55  
µA  
1MHz, Ext. Clk  
Active power  
consumption (1)  
700  
2MHz, Ext. Clk  
32MHz, Ext. Clk  
32kHz, Ext. Clk  
1.5  
mA  
15  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
1MHz, Ext. Clk  
2MHz, Ext. Clk  
µA  
Idle power  
110  
105  
215  
3.4  
0.1  
3.5  
10  
consumption (2)  
350  
650  
VCC = 3.0V  
ICC  
32MHz, Ext. Clk  
8.0  
1.0  
6.0  
15  
mA  
T = 25°C  
T = 85°C  
VCC = 3.0V  
T = 105°C  
Power-down power  
consumption  
WDT and sampled BOD enabled, T = 25°C  
WDT and sampled BOD enabled, T = 85°C  
WDT and sampled BOD enabled, T= 105°C  
1.5  
5.8  
12  
2.0  
10  
VCC = 3.0V  
20  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 3.0V  
1.3  
1.4  
0.7  
0.8  
0.9  
1.1  
170  
µA  
RTC from ULP clock, WDT and sampled  
BOD enabled, T = 25°C  
2.0  
2.0  
3.0  
3.0  
Power-save power  
consumption (3)  
RTC from 1.024kHz low power 32.768kHz  
TOSC, T = 25°C  
RTC from low power 32.768kHz TOSC,  
T = 25°C  
Reset power consumption Current through RESET pin substracted  
Notes:  
1. All power reduction registers set including FPRM and EPRM.  
2. All power reduction registers set without FPRM and EPRM.  
3. Maximum limits are based on characterization, and not tested in production.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
122  
Table 32-92. Current Consumption for Modules and Peripherals  
Symbol Parameter  
Condition (1)  
Min.  
Typ.  
0.9  
25  
Max.  
Units  
ULP oscillator  
32.768kHz int. oscillator  
78  
2MHz int. oscillator  
32MHz int. oscillator  
DFLL enabled with 32.768kHz int. osc. as reference  
DFLL enabled with 32.768kHz int. osc. as reference  
110  
250  
440  
µA  
20× multiplication factor,  
32MHz int. osc. DIV4 as reference  
PLL  
310  
Watchdog timer  
1.0  
132  
1.4  
Continuous mode  
BOD  
Sampled mode, includes ULP oscillator  
ICC  
Internal 1.0V reference  
Temperature sensor  
185  
182  
1.12  
1.01  
0.9  
CURRLIMIT = LOW  
16ksps  
VREF = Ext. ref.  
CURRLIMIT = MEDIUM  
ADC  
mA  
CURRLIMIT = HIGH  
0.8  
75ksps  
CURRLIMIT = LOW  
VREF = Ext. ref.  
1.7  
300ksps, VREF = Ext. ref.  
3.1  
9.5  
10  
USART  
Rx and Tx enabled, 9600 BAUD  
µA  
Flash memory and EEPROM programming  
mA  
Note:  
1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock  
without prescaling, T = 25°C unless other conditions are given.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
123  
32.4.4 Wake-up Time from Sleep Modes  
Table 32-93. Device Wake-up Time from Sleep Modes with Various System Clock Sources  
Symbol Parameter  
Condition  
Min.  
Typ. (1)  
2.0  
Max.  
Units  
External 2MHz clock  
Wake-up time from idle,  
standby, and extended standby  
mode  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
125  
2.0  
0.2  
twakeup  
µs  
4.6  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
330  
9.5  
Wake-up time from power-save  
and power-down mode  
5.6  
Note:  
1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 32-23. All peripherals and modules start  
execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.  
Figure 32-23.Wake-up Time Definition  
Wakeup time  
Wakeup request  
Clock output  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
124  
32.4.5 I/O Pin Characteristics  
The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output  
voltage limits reflect or exceed this specification.  
Table 32-94. I/O Pin Characteristics  
Symbol  
Parameter  
Condition  
Min.  
-15  
Typ.  
Max.  
15  
Units  
IOH (1)/ IOL  
I/O pin source/sink current  
mA  
(2)  
VCC = 2.4 - 3.6V  
0.7 * VCC  
0.8 * VCC  
-0.5  
VCC + 0.5  
VCC + 0.5  
0.3 * VCC  
0.2 * VCC  
VIH  
High level input voltage  
Low level input voltage  
VCC = 1.6 - 2.4V  
VCC = 2.4 - 3.6V  
VCC = 1.6 - 2.4V  
VCC = 3.3V  
VIL  
-0.5  
IOH = -4mA  
IOH = -3mA  
IOH = -1mA  
IOL = 8mA  
IOL = 5mA  
IOL = 3mA  
2.6  
2.9  
2.6  
V
VOH  
High level output voltage  
Low level output voltage  
VCC = 3.0V  
2.1  
VCC = 1.8V  
1.4  
1.6  
VCC = 3.3V  
0.4  
0.76  
0.64  
0.46  
1.0  
VOL  
VCC = 3.0V  
0.3  
VCC = 1.8V  
0.2  
IIN  
Input leakage current I/O pin  
Pull/buss keeper resistor  
T = 25°C  
<0.01  
25  
µA  
RP  
k  
Notes:  
1. The sum of all IOH for PORTA and PORTB must not exceed 100mA.  
The sum of all IOH for PORTC, PORTD, and PORTE must for each port not exceed 200mA.  
The sum of all IOH for pins PF[0-5] on PORTF must not exceed 200mA.  
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.  
2. The sum of all IOL for PORTA and PORTB must not exceed 100mA.  
The sum of all IOL for PORTC, PORTD, and PORTE must for each port not exceed 200mA.  
The sum of all IOL for pins PF[0-5] on PORTF must not exceed 200mA.  
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
125  
32.4.6 ADC Characteristics  
Table 32-95. Power Supply, Reference, and Input Range  
Symbol Parameter  
Condition  
Min.  
VCC - 0.3  
1
Typ.  
Max.  
VCC + 0.3  
AVCC - 0.6  
4.5  
Units  
AVCC  
VREF  
Rin  
Analog supply voltage  
V
Reference voltage  
Input resistance  
Switched  
k  
pF  
Cin  
Input capacitance  
Reference input resistance  
Reference input capacitance  
Input range  
Switched  
5
RAREF  
CAREF  
(leakage only)  
Static load  
>10  
7
M  
pF  
0
VREF  
VREF  
Vin  
Conversion range  
Conversion range  
Fixed offset voltage  
Differential mode, Vinp - Vinn  
-VREF  
-V  
V
Single ended unsigned mode, Vinp  
VREF - V  
V  
200  
lsb  
Table 32-96. Clock and Timing  
Symbol Parameter  
Condition  
Min.  
100  
100  
16  
Typ.  
Max.  
1800  
125  
300  
300  
250  
150  
50  
Units  
Maximum is 1/4 of peripheral clock frequency  
Measuring internal signals  
ClkADC  
ADC clock frequency  
Sample rate  
kHz  
fClkADC  
Current limitation (CURRLIMIT) off  
CURRLIMIT = LOW  
16  
16  
ksps  
µs  
fADC  
Sample rate  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
16  
16  
Configurable in steps of 1/2 ClkADC cycles up  
to 32 ClkADC cycles  
Sampling time  
0.28  
5.5  
320  
10  
(RES+2)/2 + 1 + GAIN  
RES (Resolution) = 8 or 12, GAIN = 0 to 3  
Conversion time (latency)  
ClkADC  
cycles  
Start-up time  
ADC clock cycles  
12  
7
24  
7
ADC settling time  
After changing reference or input mode  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
126  
Table 32-97. Accuracy Characteristics  
Symbol  
Parameter  
Condition (2)  
Differential  
Min.  
Typ.  
12  
Max.  
12  
11  
12  
1
Units  
8
7
8
RES  
Resolution  
12-bit resolution  
Differential mode  
Single ended signed  
Single ended unsigned  
16ksps, VREF = 3V  
16ksps, all VREF  
300ksps, VREF = 3V  
300ksps, all VREF  
16ksps, VREF = 3.0V  
16ksps, all VREF  
16ksps, VREF = 3V  
16ksps, all VREF  
300ksps, VREF = 3V  
300ksps, all VREF  
16ksps, VREF = 3.0V  
16ksps, All VREF  
300ksps, VREF = 3V  
Temperature drift, VREF = 3V  
Operating voltage drift  
External reference  
AVCC/1.6  
11  
Bits  
12  
0.5  
0.8  
0.6  
1
2
1
INL (1)  
Integral non-linearity  
2
0.5  
1.3  
0.3  
0.5  
0.3  
0.5  
0.6  
0.6  
-7  
1
Single ended  
unsigned mode  
2
lsb  
1
1
Differential mode  
1
DNL (1)  
Differential non-linearity  
1
1
Single ended  
unsigned mode  
1
mV  
Offset error  
Differential mode  
0.01  
0.16  
-5  
mV/K  
mV/V  
-5  
mV  
AVCC/2.0  
-6  
Gain error  
Differential mode  
Bandgap  
±10  
0.02  
2
Temperature drift  
Operating voltage drift  
External reference  
AVCC/1.6  
mV/K  
mV/V  
-8  
-8  
mV  
AVCC/2.0  
-8  
Single ended  
unsigned mode  
Gain error  
Bandgap  
±10  
0.03  
2
Temperature drift  
Operating voltage drift  
mV/K  
mV/V  
Notes:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
2. Unless otherwise noted all linearity, offset, and gain error numbers are valid under the condition that external VREF is used.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
127  
Table 32-98. Gain Stage Characteristics  
Symbol  
Rin  
Parameter  
Condition  
Min.  
Typ.  
4.0  
Max.  
Units  
Input resistance  
Input capacitance  
Signal range  
Switched in normal mode  
Switched in normal mode  
Gain stage output  
k  
Csample  
4.4  
pF  
0
AVCC - 0.6  
V
Propagation delay  
Clock frequency  
ADC conversion rate  
Same as ADC  
1/2  
100  
1
3
ClkADC cycles  
kHz  
1800  
0.5× gain, normal mode  
1× gain, normal mode  
8× gain, normal mode  
64× gain, normal mode  
0.5× gain, normal mode  
1× gain, normal mode  
8× gain, normal mode  
64× gain, normal mode  
-1  
-1  
Gain error  
%
-1  
5
10  
5
Offset error, input referred  
mV  
-20  
-126  
32.4.7 Analog Comparator Characteristics  
Table 32-99. Analog Comparator Characteristics  
Symbol  
Voff  
Parameter  
Condition  
Min.  
Typ.  
10  
Max.  
Units  
mV  
nA  
Input offset voltage  
Input leakage current  
Input voltage range  
AC startup time  
Ilk  
<10  
50  
-0.1  
AVCC  
V
50  
0
µs  
Vhys1  
Vhys2  
Vhys3  
Hysteresis, none  
Hysteresis, small  
Hysteresis, large  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
VCC = 3.0V, T = 85°C  
VCC = 3.0V  
15  
30  
20  
17  
0.3  
5
mV  
40  
0.5  
6
tdelay  
Propagation delay  
ns  
64-level voltage scaler  
Integral non-linearity (INL)  
lsb  
%
Current source accuracy after calibration  
Current source calibration range  
Single mode  
4
µA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
128  
32.4.8 Bandgap and Internal 1.0V Reference Characteristics  
Table 32-100. Bandgap and Internal 1.0V Reference Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
As reference for ADC  
As input voltage to ADC and AC  
1 ClkPER + 2.5µs  
Startup time  
µs  
1.5  
1.1  
1.0  
1
Bandgap voltage  
V
INT1V  
Internal 1.00V reference  
T = 85°C, after calibration  
Calibrated at T = 85°C  
0.99  
1.01  
Variation over voltage and temperature  
%
32.4.9 Brownout Detection Characteristics  
Table 32-101.Brownout Detection Characteristics (1)  
Symbol Parameter (BOD level 0 at 85°C)  
BOD level 0 falling VCC  
Condition  
Min.  
Typ.  
1.60  
1.8  
Max.  
Units  
1.40  
1.70  
BOD level 1 falling VCC  
BOD level 2 falling VCC  
2.0  
BOD level 3 falling VCC  
VBOT  
2.2  
V
BOD level 4 falling VCC  
2.4  
BOD level 5 falling VCC  
BOD level 6 falling VCC  
BOD level 7 falling VCC  
2.6  
2.8  
3.0  
Continuous mode  
Sampled mode  
0.4  
tBOD  
Detection time  
Hysteresis  
µs  
%
1000  
1.0  
VHYST  
Note:  
1. BOD is calibrated at 85°C within BOD level 0 values, and BOD level 0 is the default level.  
32.4.10 External Reset Characteristics  
Table 32-102.External Reset Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
90  
Max.  
Units  
tEXT  
VRST  
RRST  
Minimum reset pulse width  
Reset threshold voltage  
Reset pin pull-up resistor  
1000  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
0.45 * VCC  
0.45 * VCC  
25  
V
k  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
129  
32.4.11 Power-on Reset Characteristics  
Table 32-103.Power-on Reset Characteristics  
Symbol Parameter  
Condition  
Min.  
0.4  
Typ.  
1.0  
Max.  
Units  
VCC falls faster than 1V/ms  
VCC falls at 1V/ms or slower  
(1)  
VPOT-  
POR threshold voltage falling VCC  
POR threshold voltage rising VCC  
0.8  
1.3  
V
VPOT+  
1.3  
1.59  
Note:  
1. VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+  
.
32.4.12 Flash and EEPROM Memory Characteristics  
Table 32-104.Endurance and Data Retention  
Symbol Parameter  
Condition  
Min.  
10K  
10K  
2K  
Typ.  
Max.  
Units  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
Write/Erase cycles  
Cycle  
Flash  
100  
25  
Data retention  
Year  
Cycle  
Year  
10  
100K  
100K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
10  
Table 32-105. Programming Time  
Symbol Parameter  
Condition  
Min.  
Typ. (1)  
Max.  
Units  
Chip erase (2)  
192KB flash, EEPROM  
Section erase  
Page erase  
90  
6
Application erase  
4
Flash  
Page write  
4
ms  
Atomic page erase and write  
Page erase  
8
4
EEPROM  
Page write  
4
Atomic page erase and write  
8
Notes:  
1. Programming is timed from the 2MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
130  
32.4.13 Clock and Oscillator Characteristics  
32.4.13.1 Calibrated 32.768kHz Internal Oscillator Characteristics  
Table 32-106. 32.768kHz Internal Oscillator Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Frequency  
32.768  
kHz  
Factory calibration accuracy  
User calibration accuracy  
T = 85C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
32.4.13.2 Calibrated 2MHz RC Internal Oscillator Characteristics  
Table 32-107. 2MHz Internal Oscillator Characteristics  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
2.0  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
1.8  
2.2  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration stepsize  
2.0  
T = 85C, VCC = 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.18  
32.4.13.3 Calibrated 32MHz Internal Oscillator Characteristics  
Table 32-108. 32MHz Internal Oscillator Characteristics  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
32  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
30  
55  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
32  
T = 85C, VCC = 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.19  
32.4.13.4 32kHz Internal ULP Oscillator Characteristics  
Table 32-109. 32kHz Internal ULP Oscillator Characteristics  
Symbol Parameter  
Factory calibrated frequency  
Condition  
Min.  
Typ.  
Max.  
Units  
32  
kHz  
Factory calibration accuracy  
Accuracy  
T = 85C, VCC = 3.0V  
-12  
-30  
12  
30  
%
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
131  
32.4.13.5 Internal Phase Locked Loop (PLL) Characteristics  
Table 32-110. Internal PLL Characteristics  
Symbol Parameter  
Condition  
Min.  
0.4  
20  
Typ.  
Max.  
64  
Units  
fIN  
Input frequency  
Output frequency must be within fOUT  
VCC = 1.6 - 1.8V  
48  
MHz  
fOUT  
Output frequency (1)  
VCC = 2.7 - 3.6V  
20  
128  
Start-up time  
Re-lock time  
25  
25  
µs  
Note:  
1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.  
32.4.13.6 External Clock Characteristics  
Figure 32-24. External Clock Drive Waveform  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
Table 32-111.External Clock used as System Clock without Prescaling  
Symbol  
Parameter  
Condition  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
Min.  
0
Typ.  
Max.  
12  
Units  
1/tCK  
Clock Frequency (1)  
MHz  
0
32  
83.3  
31.5  
30.0  
12.5  
30.0  
12.5  
tCK  
tCH  
tCL  
tCR  
Clock Period  
Clock High Time  
Clock Low Time  
ns  
10  
3
Rise Time (for maximum frequency)  
10  
3
tCF  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
10  
%
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
132  
Table 32-112.External Clock with Prescaler (1) for System Clock  
Symbol Parameter  
Condition  
VCC = 1.6 - 1.8V  
Min.  
0
Typ.  
Max.  
90  
Units  
1/tCK  
Clock Frequency (2)  
Clock Period  
MHz  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
0
142  
11  
tCK  
7
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
tCL  
Clock Low Time  
ns  
1.5  
1.0  
1.5  
1.0  
10  
tCR  
Rise Time (for maximum frequency)  
tCF  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
%
Notes:  
1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
32.4.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics  
Table 32-113. External 16MHz Crystal Oscillator and XOSC Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
0
Max.  
Units  
FRQRANGE=0  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
Cycle to cycle jitter  
FRQRANGE=1, 2, or 3  
0
0
ns  
FRQRANGE=0  
0
Long term jitter  
Frequency error  
FRQRANGE=1, 2, or 3  
0
0
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
0.03  
0.03  
0.03  
0.003  
50  
50  
50  
50  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
%
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
Duty cycle  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
133  
Symbol Parameter  
Condition  
Min.  
Typ.  
44k  
Max.  
Units  
0.4MHz resonator, CL=100pF  
1MHz crystal, CL=20pF  
2MHz crystal, CL=20pF  
2MHz crystal  
XOSCPWR=0,  
FRQRANGE=0  
67k  
67k  
82k  
XOSCPWR=0,  
FRQRANGE=1, 8MHz crystal  
1500  
1500  
2700  
2700  
1000  
3600  
1300  
590  
CL=20pF  
9MHz crystal  
8MHz crystal  
XOSCPWR=0,  
FRQRANGE=2, 9MHz crystal  
CL=20pF  
12MHz crystal  
9MHz crystal  
XOSCPWR=0,  
FRQRANGE=3, 12MHz crystal  
RQ  
Negative impedance (1)  
CL=20pF  
16MHz crystal  
9MHz crystal  
390  
XOSCPWR=1,  
FRQRANGE=0, 12MHz crystal  
50  
CL=20pF  
16MHz crystal  
10  
9MHz crystal  
1500  
650  
XOSCPWR=1,  
FRQRANGE=1, 12MHz crystal  
CL=20pF  
16MHz crystal  
270  
XOSCPWR=1,  
FRQRANGE=2,  
CL=20pF  
12MHz crystal  
16MHz crystal  
12MHz crystal  
16MHz crystal  
1000  
440  
1300  
590  
XOSCPWR=1,  
FRQRANGE=3,  
CL=20pF  
min  
(RQ)/  
SF  
ESR  
SF = safety factor  
k  
XOSCPWR=0,  
FRQRANGE=0  
0.4MHz resonator, CL=100pF  
2MHz resonator, CL=20pF  
8MHz resonator, CL=20pF  
12MHz resonator, CL=20pF  
16MHz resonator, CL=20pF  
1.0  
2.6  
0.8  
1.0  
1.4  
XOSCPWR=0,  
FRQRANGE=1  
XOSCPWR=0,  
FRQRANGE=2  
Start-up time  
ms  
XOSCPWR=0,  
FRQRANGE=3  
XOSCPWR=1,  
FRQRANGE=3  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
134  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Parasitic capacitance  
XTAL1 pin  
CXTAL1  
5.9  
Parasitic capacitance  
XTAL2 pin  
pF  
CXTAL2  
CLOAD  
8.3  
3.5  
Parasitic capacitance load  
Notes:  
1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.  
32.4.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics  
Table 32-114. External 32.768kHz Crystal Oscillator and TOSC Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
60  
Units  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Crystal load capacitance 12pF  
Recommended crystal equivalent  
ESR/R1  
35  
k  
series resistance (ESR)  
28  
CTOSC1  
CTOSC2  
Parasitic capacitance TOSC1 pin  
Parasitic capacitance TOSC2 pin  
Recommended safety factor  
3.5  
3.5  
pF  
Capacitance load matched to crystal specification  
3
Note:  
See Figure 32-25 for definition.  
Figure 32-25. TOSC Input Capacitance  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768 kHz crystal  
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without  
external capacitors.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
135  
32.4.14 SPI Characteristics  
Figure 32-26. SPI Timing Requirements in Master Mode  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
MSB  
tSCK  
MISO  
(Data Input)  
LSB  
tMOH  
tMOH  
MOSI  
(Data Output)  
MSB  
LSB  
Figure 32-27.SPI Timing Requirements in Slave Mode  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
MSB  
tSSCK  
LSB  
MOSI  
(Data Input)  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data Output)  
MSB  
LSB  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
136  
Table 32-115. SPI Timing Characteristics and Requirements  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
(See Table 20-3 in  
XMEGA D manual)  
tSCK  
SCK period  
Master  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK high/low width  
SCK rise time  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
0.5 * SCK  
2.7  
SCK fall time  
2.7  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
Slave SCK Period  
SCK high/low width  
SCK rise time  
10  
tMIH  
10  
0.5 * SCK  
1
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
4 * t ClkPER  
2 * t ClkPER  
ns  
1600  
1600  
SCK fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
SS hold after SCK  
MISO setup SCK  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
3
t ClkPER  
21  
tSIH  
tSSS  
tSSH  
20  
tSOS  
8
13  
11  
8
tSOH  
tSOSS  
tSOSH  
32.4.15 Two-wire Interface Characteristics  
Table 32-116 on page 138 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel  
AVR XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols  
refer to Figure 32-28.  
Figure 32-28. Two-wire Interface Bus Timing  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
137  
Table 32-116. Two-wire Interface Characteristics  
Symbol Parameter  
Condition  
Min.  
0.7VCC  
-0.5  
Typ.  
Max.  
VCC + 0.5  
0.3VCC  
Units  
VIH  
VIL  
Vhys  
VOL  
tr  
Input high voltage  
Input low voltage  
V
(1)  
Hysteresis of Schmitt trigger inputs  
Output low voltage  
0.05VCC  
0
3mA, sink current  
0.4  
300  
250  
50  
(1)(2)  
(1)(2)  
Rise time for both SDA and SCL  
Output fall time from VIHmin to VILmax  
Spikes suppressed by input filter  
Input current for each I/O pin  
Capacitance for each I/O pin  
SCL clock frequency  
20 + 0.1Cb  
tof  
10pF < Cb < 400pF (2)  
0.1VCC < VI < 0.9VCC  
20 + 0.1Cb  
ns  
tSP  
II  
0
-10  
10  
µA  
pF  
CI  
10  
fSCL  
fPER (3) > max(10fSCL, 250kHz)  
fSCL 100kHz  
0
400  
kHz  
100ns  
--------------  
Cb  
VCC – 0.4V  
---------------------------  
3mA  
RP  
Value of pull-up resistor  
300ns  
fSCL > 100kHz  
--------------  
Cb  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
4.0  
0.6  
4.7  
1.3  
4.0  
0.6  
4.7  
0.6  
0
tHD;STA  
Hold time (repeated) START condition  
Low period of SCL clock  
tLOW  
µs  
tHIGH  
High period of SCL clock  
Set-up time for a repeated START  
condition  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
3.45  
0.9  
Data hold time  
0
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
µs  
Setup time for STOP condition  
Bus free time between a STOP and  
START condition  
Notes:  
1. Required only for fSCL > 100kHz.  
2. Cb = Capacitance of one bus line in pF.  
3. fPER = Peripheral clock frequency.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
138  
32.5 Atmel ATxmega256D3  
32.5.1 Absolute Maximum Ratings  
Stresses beyond those listed in Table 32-117 may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or other conditions beyond those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
Table 32-117. Absolute Maximum Ratings  
Symbol  
VCC  
IVCC  
IGND  
VPIN  
IPIN  
Parameter  
Condition  
Min.  
Typ.  
Max.  
4
Units  
Power supply voltage  
Current into a VCC pin  
Current out of a Gnd pin  
Pin voltage with respect to Gnd and VCC  
I/O pin sink/source current  
Storage temperature  
-0.3  
V
200  
mA  
200  
-0.5  
-25  
-65  
VCC + 0.5  
25  
V
mA  
TA  
150  
°C  
Tj  
Junction temperature  
150  
32.5.2 General Operating Ratings  
The device must operate within the ratings listed in Table 32-118 in order for all other electrical characteristics and typical  
characteristics of the device to be valid.  
Table 32-118. General Operating Conditions  
Symbol  
VCC  
Parameter  
Condition  
Min.  
1.60  
1.60  
-40  
Typ.  
Max.  
3.6  
Units  
Power supply voltage  
Analog supply voltage  
Temperature range  
Junction temperature  
V
AVCC  
TA  
3.6  
85  
°C  
Tj  
-40  
105  
Table 32-119. Operating Voltage and Frequency  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
VCC = 1.8V  
VCC = 2.7V  
VCC = 3.6V  
Min.  
Typ.  
Max.  
12  
Units  
0
0
0
0
12  
ClkCPU  
CPU clock frequency  
MHz  
32  
32  
The maximum CPU clock frequency depends on VCC. As shown in Figure 32-29 on page 140 the frequency vs. VCC  
curve is linear between 1.8V < VCC < 2.7V.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
139  
Figure 32-29. Maximum Frequency vs. VCC  
MHz  
32  
Safe operating area  
12  
V
1.6  
1.8  
2.7  
3.6  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
140  
32.5.3 Current Consumption  
Table 32-120. Current Consumption for Active Mode and Sleep Modes  
Symbol Parameter  
Condition  
Min.  
Typ.  
60  
Max. Units  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
32kHz, Ext. Clk  
140  
245  
550  
440  
0.9  
9.0  
3.0  
3.5  
55  
µA  
1MHz, Ext. Clk  
Active power  
consumption (1)  
700  
2MHz, Ext. Clk  
32MHz, Ext. Clk  
32kHz, Ext. Clk  
1.5  
mA  
15  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
1MHz, Ext. Clk  
2MHz, Ext. Clk  
µA  
Idle power  
110  
105  
215  
3.4  
0.1  
3.5  
10  
consumption (2)  
350  
650  
VCC = 3.0V  
ICC  
32MHz, Ext. Clk  
8.0  
1.0  
6.0  
15  
mA  
T = 25°C  
T = 85°C  
VCC = 3.0V  
T = 105°C  
Power-down power  
consumption  
WDT and sampled BOD enabled, T = 25°C  
WDT and sampled BOD enabled, T = 85°C  
WDT and sampled BOD enabled, T= 105°C  
1.5  
5.8  
12  
2.0  
10  
VCC = 3.0V  
20  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 3.0V  
1.3  
1.4  
0.7  
0.8  
0.9  
1.1  
170  
µA  
RTC from ULP clock, WDT and sampled  
BOD enabled, T = 25°C  
2.0  
2.0  
3.0  
3.0  
Power-save power  
consumption (3)  
RTC from 1.024kHz low power 32.768kHz  
TOSC, T = 25°C  
RTC from low power 32.768kHz TOSC,  
T = 25°C  
Reset power consumption Current through RESET pin substracted  
Notes:  
1. All power reduction registers set including FPRM and EPRM.  
2. All power reduction registers set without FPRM and EPRM.  
3. Maximum limits are based on characterization, and not tested in production.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
141  
Table 32-121. Current Consumption for Modules and Peripherals  
Symbol Parameter  
Condition (1)  
Min.  
Typ.  
0.9  
25  
Max.  
Units  
ULP oscillator  
32.768kHz int. oscillator  
78  
2MHz int. oscillator  
32MHz int. oscillator  
DFLL enabled with 32.768kHz int. osc. as reference  
DFLL enabled with 32.768kHz int. osc. as reference  
110  
250  
440  
µA  
20× multiplication factor,  
32MHz int. osc. DIV4 as reference  
PLL  
310  
Watchdog timer  
1.0  
132  
1.4  
Continuous mode  
BOD  
Sampled mode, includes ULP oscillator  
ICC  
Internal 1.0V reference  
Temperature sensor  
185  
182  
1.12  
1.01  
0.9  
CURRLIMIT = LOW  
16ksps  
VREF = Ext. ref.  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
0.8  
ADC  
mA  
75ksps  
CURRLIMIT = LOW  
VREF = Ext. ref.  
1.7  
3.1  
300ksps  
VREF = Ext. ref.  
USART  
Rx and Tx enabled, 9600 BAUD  
9.5  
10  
µA  
Flash memory and EEPROM programming  
mA  
Note:  
1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock  
without prescaling, T = 25°C unless other conditions are given.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
142  
32.5.4 Wake-up Time from Sleep Modes  
Table 32-122. Device Wake-up Time from Sleep Modes with Various System Clock Sources  
Symbol Parameter  
Condition  
Min.  
Typ. (1)  
2.0  
Max.  
Units  
External 2MHz clock  
Wake-up time from idle,  
standby, and extended standby  
mode  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
125  
2.0  
0.2  
twakeup  
µs  
4.6  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
330  
9.5  
Wake-up time from power-save  
and power-down mode  
5.6  
Note:  
1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 32-30. All peripherals and modules start  
execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.  
Figure 32-30. Wake-up Time Definition  
Wakeup time  
Wakeup request  
Clock output  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
143  
32.5.5 I/O Pin Characteristics  
The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output  
voltage limits reflect or exceed this specification.  
Table 32-123. I/O Pin Characteristics  
Symbol  
Parameter  
Condition  
Min.  
-15  
Typ.  
Max.  
15  
Units  
IOH (1)/ IOL  
I/O pin source/sink current  
mA  
(2)  
VCC = 2.4 - 3.6V  
0.7 * VCC  
0.8 * VCC  
-0.5  
VCC + 0.5  
VCC + 0.5  
0.3 * VCC  
0.2 * VCC  
VIH  
High level input voltage  
Low level input voltage  
VCC = 1.6 - 2.4V  
VCC = 2.4 - 3.6V  
VCC = 1.6 - 2.4V  
VCC = 3.3V  
VIL  
-0.5  
IOH = -4mA  
IOH = -3mA  
IOH = -1mA  
IOL = 8mA  
IOL = 5mA  
IOL = 3mA  
2.6  
2.9  
2.6  
V
VOH  
High level output voltage  
Low level output voltage  
VCC = 3.0V  
2.1  
VCC = 1.8V  
1.4  
1.6  
VCC = 3.3V  
0.4  
0.76  
0.64  
0.46  
1.0  
VOL  
VCC = 3.0V  
0.3  
VCC = 1.8V  
0.2  
IIN  
Input leakage current I/O pin  
Pull/buss keeper resistor  
T = 25°C  
<0.01  
25  
µA  
RP  
k  
Notes:  
1. The sum of all IOH for PORTA and PORTB must not exceed 100mA.  
The sum of all IOH for PORTC, PORTD, and PORTE must for each port not exceed 200mA.  
The sum of all IOH for pins PF[0-5] on PORTF must not exceed 200mA.  
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.  
2. The sum of all IOL for PORTA and PORTB must not exceed 100mA.  
The sum of all IOL for PORTC, PORTD, and PORTE must for each port not exceed 200mA.  
The sum of all IOL for pins PF[0-5] on PORTF must not exceed 200mA.  
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
144  
32.5.6 ADC Characteristics  
Table 32-124. Power Supply, Reference, and Input Range  
Symbol Parameter  
Condition  
Min.  
VCC - 0.3  
1
Typ.  
Max.  
VCC + 0.3  
AVCC - 0.6  
4.5  
Units  
AVCC  
VREF  
Rin  
Analog supply voltage  
V
Reference voltage  
Input resistance  
Switched  
k  
pF  
Cin  
Input capacitance  
Reference input resistance  
Reference input capacitance  
Input range  
Switched  
5
RAREF  
CAREF  
(leakage only)  
Static load  
>10  
7
M  
pF  
0
VREF  
VREF  
Vin  
Conversion range  
Conversion range  
Fixed offset voltage  
Differential mode, Vinp - Vinn  
-VREF  
-V  
V
Single ended unsigned mode, Vinp  
VREF - V  
V  
200  
lsb  
Table 32-125. Clock and Timing  
Symbol Parameter  
Condition  
Min.  
100  
100  
16  
Typ.  
Max.  
1800  
125  
300  
300  
250  
150  
50  
Units  
Maximum is 1/4 of peripheral clock frequency  
Measuring internal signals  
ClkADC  
ADC clock frequency  
Sample rate  
kHz  
fClkADC  
Current limitation (CURRLIMIT) off  
CURRLIMIT = LOW  
16  
16  
ksps  
µs  
fADC  
Sample rate  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
16  
16  
Configurable in steps of 1/2 ClkADC cycles up  
to 32 ClkADC cycles  
Sampling time  
0.28  
5.5  
320  
10  
(RES+2)/2 + 1 + GAIN  
RES (Resolution) = 8 or 12, GAIN = 0 to 3  
Conversion time (latency)  
ClkADC  
cycles  
Start-up time  
ADC clock cycles  
12  
7
24  
7
ADC settling time  
After changing reference or input mode  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
145  
Table 32-126. Accuracy Characteristics  
Symbol  
Parameter  
Condition (2)  
Differential  
Min.  
Typ.  
12  
Max.  
12  
11  
12  
1
Units  
8
7
8
RES  
Resolution  
12-bit resolution  
Differential mode  
Single ended signed  
Single ended unsigned  
16ksps, VREF = 3V  
16ksps, all VREF  
300ksps, VREF = 3V  
300ksps, all VREF  
16ksps, VREF = 3.0V  
16ksps, all VREF  
16ksps, VREF = 3V  
16ksps, all VREF  
300ksps, VREF = 3V  
300ksps, all VREF  
16ksps, VREF = 3.0V  
16ksps, All VREF  
300ksps, VREF = 3V  
Temperature drift, VREF = 3V  
Operating voltage drift  
External reference  
AVCC/1.6  
11  
Bits  
12  
0.5  
0.8  
0.6  
1
2
1
INL (1)  
Integral non-linearity  
2
0.5  
1.3  
0.3  
0.5  
0.3  
0.5  
0.6  
0.6  
-7  
1
Single ended  
unsigned mode  
2
lsb  
1
1
Differential mode  
1
DNL (1)  
Differential non-linearity  
1
1
Single ended  
unsigned mode  
1
mV  
Offset error  
Differential mode  
0.01  
0.16  
-5  
mV/K  
mV/V  
-5  
mV  
AVCC/2.0  
-6  
Gain error  
Differential mode  
Bandgap  
±10  
0.02  
2
Temperature drift  
Operating voltage drift  
External reference  
AVCC/1.6  
mV/K  
mV/V  
-8  
-8  
mV  
AVCC/2.0  
-8  
Single ended  
unsigned mode  
Gain error  
Bandgap  
±10  
0.03  
2
Temperature drift  
Operating voltage drift  
mV/K  
mV/V  
Notes:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
2. Unless otherwise noted all linearity, offset, and gain error numbers are valid under the condition that external VREF is used.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
146  
Table 32-127. Gain Stage Characteristics  
Symbol  
Rin  
Parameter  
Condition  
Min.  
Typ.  
4.0  
Max.  
Units  
Input resistance  
Input capacitance  
Signal range  
Switched in normal mode  
Switched in normal mode  
Gain stage output  
k  
Csample  
4.4  
pF  
0
AVCC - 0.6  
V
Propagation delay  
Clock frequency  
ADC conversion rate  
Same as ADC  
1/2  
100  
1
3
ClkADC cycles  
kHz  
1800  
0.5× gain, normal mode  
1× gain, normal mode  
8× gain, normal mode  
64× gain, normal mode  
0.5× gain, normal mode  
1× gain, normal mode  
8× gain, normal mode  
64× gain, normal mode  
-1  
-1  
Gain error  
%
-1  
5
10  
5
Offset error, input referred  
mV  
-20  
-126  
32.5.7 Analog Comparator Characteristics  
Table 32-128. Analog Comparator Characteristics  
Symbol  
Voff  
Parameter  
Condition  
Min.  
Typ.  
10  
Max.  
Units  
mV  
nA  
Input offset voltage  
Input leakage current  
Input voltage range  
AC startup time  
Ilk  
<10  
50  
-0.1  
AVCC  
V
50  
0
µs  
Vhys1  
Vhys2  
Vhys3  
Hysteresis, none  
Hysteresis, small  
Hysteresis, large  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
VCC = 3.0V, T = 85°C  
VCC = 3.0V  
15  
30  
20  
17  
0.3  
5
mV  
40  
0.5  
6
tdelay  
Propagation delay  
ns  
64-level voltage scaler  
Integral non-linearity (INL)  
lsb  
%
Current source accuracy after calibration  
Current source calibration range  
Single mode  
4
µA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
147  
32.5.8 Bandgap and Internal 1.0V Reference Characteristics  
Table 32-129. Bandgap and Internal 1.0V Reference Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
As reference for ADC  
As input voltage to ADC and AC  
1 ClkPER + 2.5µs  
Startup time  
µs  
1.5  
1.1  
1.0  
1
Bandgap voltage  
V
INT1V  
Internal 1.00V reference  
T = 85°C, after calibration  
Calibrated at T = 85°C  
0.99  
1.01  
Variation over voltage and temperature  
%
32.5.9 Brownout Detection Characteristics  
Table 32-130. Brownout Detection Characteristics (1)  
Symbol Parameter  
BOD level 0 falling VCC  
BOD level 1 falling VCC  
BOD level 2 falling VCC  
Condition  
Min.  
Typ.  
1.60  
1.8  
Max.  
Units  
1.40  
1.70  
2.0  
BOD level 3 falling VCC  
VBOT  
2.2  
V
BOD level 4 falling VCC  
2.4  
BOD level 5 falling VCC  
BOD level 6 falling VCC  
BOD level 7 falling VCC  
2.6  
2.8  
3.0  
Continuous mode  
Sampled mode  
0.4  
tBOD  
Detection time  
Hysteresis  
µs  
%
1000  
1.0  
VHYST  
Note:  
1. BOD is calibrated at 85°C within BOD level 0 values, and BOD level 0 is the default level.  
32.5.10 External Reset Characteristics  
Table 32-131. External Reset Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
90  
Max.  
Units  
tEXT  
VRST  
RRST  
Minimum reset pulse width  
Reset threshold voltage  
Reset pin pull-up resistor  
1000  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
0.45 * VCC  
0.45 * VCC  
25  
V
k  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
148  
32.5.11 Power-on Reset Characteristics  
Table 32-132. Power-on Reset Characteristics  
Symbol Parameter  
Condition  
Min.  
0.4  
Typ.  
1.0  
Max.  
Units  
VCC falls faster than 1V/ms  
VCC falls at 1V/ms or slower  
(1)  
VPOT-  
POR threshold voltage falling VCC  
POR threshold voltage rising VCC  
0.8  
1.3  
V
VPOT+  
1.3  
1.59  
Note:  
1. VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+  
.
32.5.12 Flash and EEPROM Memory Characteristics  
Table 32-133. Endurance and Data Retention  
Symbol Parameter  
Condition  
Min.  
10K  
10K  
2K  
Typ.  
Max.  
Units  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
Write/Erase cycles  
Data retention  
Cycle  
Flash  
100  
25  
Year  
Cycle  
Year  
10  
100K  
100K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
10  
Table 32-134. Programming Time  
Symbol Parameter  
Condition  
Min.  
Typ. (1)  
Max.  
Units  
Chip erase (2)  
256KB flash, EEPROM  
Section erase  
Page erase  
105  
6
Application erase  
4
Flash  
Page write  
4
ms  
Atomic page erase and write  
Page erase  
8
4
EEPROM  
Page write  
4
Atomic page erase and write  
8
Notes:  
1. Programming is timed from the 2MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
149  
32.5.13 Clock and Oscillator Characteristics  
32.5.13.1 Calibrated 32.768kHz Internal Oscillator Characteristics  
Table 32-135. 32.768kHz Internal Oscillator Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Frequency  
32.768  
kHz  
Factory calibration accuracy  
User calibration accuracy  
T = 85C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
32.5.13.2 Calibrated 2MHz RC Internal Oscillator Characteristics  
Table 32-136. 2MHz Internal Oscillator Characteristics  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
2.0  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
1.8  
2.2  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration stepsize  
2.0  
T = 85C, VCC = 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.18  
32.5.13.3 Calibrated 32MHz Internal Oscillator Characteristics  
Table 32-137. 32MHz Internal Oscillator Characteristics  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
32  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
30  
55  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
32  
T = 85C, VCC = 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.19  
32.5.13.4 32kHz Internal ULP Oscillator Characteristics  
Table 32-138. 32kHz Internal ULP Oscillator Characteristics  
Symbol Parameter  
Factory calibrated frequency  
Factory calibration accuracy  
Condition  
Min.  
Typ.  
Max.  
Units  
kHz  
%
32  
T = 85C, VCC = 3.0V  
-12  
12  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
150  
32.5.13.5 Internal Phase Locked Loop (PLL) Characteristics  
Table 32-139. Internal PLL Characteristics  
Symbol Parameter  
Condition  
Min.  
0.4  
20  
Typ.  
Max.  
64  
Units  
fIN  
Input frequency  
Output frequency must be within fOUT  
VCC = 1.6 - 1.8V  
48  
MHz  
fOUT  
Output frequency (1)  
VCC = 2.7 - 3.6V  
20  
128  
Start-up time  
Re-lock time  
25  
25  
µs  
Note:  
1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.  
32.5.13.6 External Clock Characteristics  
Figure 32-31.External Clock Drive Waveform  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
Table 32-140.External Clock used as System Clock without Prescaling  
Symbol  
Parameter  
Condition  
Min.  
0
Typ.  
Max.  
12  
Units  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
1/tCK  
Clock Frequency (1)  
MHz  
0
32  
83.3  
31.5  
30.0  
12.5  
30.0  
12.5  
tCK  
tCH  
tCL  
tCR  
Clock Period  
Clock High Time  
Clock Low Time  
ns  
10  
3
Rise Time (for maximum frequency)  
10  
3
tCF  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
10  
%
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
151  
Table 32-141.External Clock with Prescaler (1) for System Clock  
Symbol Parameter  
Condition  
Min.  
0
Typ.  
Max.  
90  
Units  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
1/tCK  
Clock Frequency (2)  
Clock Period  
MHz  
0
142  
11  
7
tCK  
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
tCL  
Clock Low Time  
ns  
1.5  
1.0  
1.5  
1.0  
10  
tCR  
Rise Time (for maximum frequency)  
tCF  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
%
Notes:  
1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
32.5.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics  
Table 32-142. External 16MHz Crystal Oscillator and XOSC Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
0
Max.  
Units  
FRQRANGE=0  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
Cycle to cycle jitter  
FRQRANGE=1, 2, or 3  
0
0
ns  
FRQRANGE=0  
0
Long term jitter  
Frequency error  
FRQRANGE=1, 2, or 3  
0
0
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
0.03  
0.03  
0.03  
0.003  
50  
50  
50  
50  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
%
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
Duty cycle  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
152  
Symbol Parameter  
Condition  
Min.  
Typ.  
44k  
Max.  
Units  
0.4MHz resonator, CL=100pF  
1MHz crystal, CL=20pF  
2MHz crystal, CL=20pF  
2MHz crystal  
XOSCPWR=0,  
FRQRANGE=0  
67k  
67k  
82k  
XOSCPWR=0,  
FRQRANGE=1,  
CL=20pF  
8MHz crystal  
1500  
1500  
2700  
2700  
1000  
3600  
1300  
590  
9MHz crystal  
8MHz crystal  
XOSCPWR=0,  
FRQRANGE=2,  
CL=20pF  
9MHz crystal  
12MHz crystal  
9MHz crystal  
XOSCPWR=0,  
FRQRANGE=3,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
RQ  
Negative impedance (1)  
390  
XOSCPWR=1,  
FRQRANGE=0,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
50  
10  
1500  
650  
XOSCPWR=1,  
FRQRANGE=1,  
CL=20pF  
12MHz crystal  
16MHz crystal  
12MHz crystal  
270  
XOSCPWR=1,  
FRQRANGE=2,  
CL=20pF  
1000  
16MHz crystal  
12MHz crystal  
16MHz crystal  
440  
1300  
590  
XOSCPWR=1,  
FRQRANGE=3,  
CL=20pF  
ESR  
SF = safety factor  
min(RQ)/SF  
k  
XOSCPWR=0,  
FRQRANGE=0  
0.4MHz resonator, CL=100pF  
2MHz resonator, CL=20pF  
8MHz resonator, CL=20pF  
12MHz resonator, CL=20pF  
16MHz resonator, CL=20pF  
1.0  
2.6  
0.8  
1.0  
1.4  
XOSCPWR=0,  
FRQRANGE=1  
XOSCPWR=0,  
FRQRANGE=2  
Start-up time  
ms  
XOSCPWR=0,  
FRQRANGE=3  
XOSCPWR=1,  
FRQRANGE=3  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
153  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Parasitic capacitance  
XTAL1 pin  
CXTAL1  
5.9  
Parasitic capacitance  
XTAL2 pin  
pF  
CXTAL2  
CLOAD  
8.3  
3.5  
Parasitic capacitance load  
Notes:  
1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.  
32.5.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics  
Table 32-143. External 32.768kHz Crystal Oscillator and TOSC Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
60  
Units  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Crystal load capacitance 12pF  
Recommended crystal equivalent  
ESR/R1  
35  
k  
series resistance (ESR)  
28  
CTOSC1  
CTOSC2  
Parasitic capacitance TOSC1 pin  
Parasitic capacitance TOSC2 pin  
3.5  
3.5  
pF  
Capacitance load matched to crystal  
specification  
Recommended safety factor  
3
Note:  
See Figure 32-32 for definition.  
Figure 32-32. TOSC Input Capacitance  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768 kHz crystal  
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without  
external capacitors.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
154  
32.5.14 SPI Characteristics  
Figure 32-33. SPI Timing Requirements in Master Mode  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
MSB  
tSCK  
MISO  
(Data Input)  
LSB  
tMOH  
tMOH  
MOSI  
(Data Output)  
MSB  
LSB  
Figure 32-34.SPI Timing Requirements in Slave Mode  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
MSB  
tSSCK  
LSB  
MOSI  
(Data Input)  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data Output)  
MSB  
LSB  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
155  
Table 32-144. SPI Timing Characteristics and Requirements  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
(See Table 20-3 in  
XMEGA D manual)  
tSCK  
SCK period  
Master  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK high/low width  
SCK rise time  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
0.5 * SCK  
2.7  
SCK fall time  
2.7  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
Slave SCK Period  
SCK high/low width  
SCK rise time  
10  
tMIH  
10  
0.5 * SCK  
1
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
4 * t ClkPER  
2 * t ClkPER  
ns  
1600  
1600  
SCK fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
SS hold after SCK  
MISO setup SCK  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
3
t ClkPER  
21  
tSIH  
tSSS  
tSSH  
20  
tSOS  
8
13  
11  
8
tSOH  
tSOSS  
tSOSH  
32.5.15 Two-wire Interface Characteristics  
Table 32-145 on page 157 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel  
AVR XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols  
refer to Figure 32-35.  
Figure 32-35. Two-wire Interface Bus Timing  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
156  
Table 32-145. Two-wire Interface Characteristics  
Symbol Parameter  
Condition  
Min.  
0.7VCC  
-0.5  
Typ.  
Max.  
VCC + 0.5  
0.3VCC  
Units  
VIH  
VIL  
Vhys  
VOL  
tr  
Input high voltage  
Input low voltage  
V
(1)  
Hysteresis of Schmitt trigger inputs  
Output low voltage  
0.05VCC  
0
3mA, sink current  
0.4  
300  
250  
50  
(1)(2)  
(1)(2)  
Rise time for both SDA and SCL  
Output fall time from VIHmin to VILmax  
Spikes suppressed by input filter  
Input current for each I/O pin  
Capacitance for each I/O pin  
SCL clock frequency  
20 + 0.1Cb  
tof  
10pF < Cb < 400pF (2)  
0.1VCC < VI < 0.9VCC  
20 + 0.1Cb  
ns  
tSP  
II  
0
-10  
10  
µA  
pF  
CI  
10  
fSCL  
fPER (3) > max(10fSCL, 250kHz)  
fSCL 100kHz  
0
400  
kHz  
100ns  
--------------  
Cb  
VCC – 0.4V  
---------------------------  
3mA  
RP  
Value of pull-up resistor  
300ns  
fSCL > 100kHz  
--------------  
Cb  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
4.0  
0.6  
4.7  
1.3  
4.0  
0.6  
4.7  
0.6  
0
tHD;STA  
Hold time (repeated) START condition  
Low period of SCL clock  
tLOW  
µs  
tHIGH  
High period of SCL clock  
Set-up time for a repeated START  
condition  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
3.45  
0.9  
Data hold time  
0
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
µs  
Setup time for STOP condition  
Bus free time between a STOP and  
START condition  
Notes:  
1. Required only for fSCL > 100kHz.  
2. Cb = Capacitance of one bus line in pF.  
3. fPER = Peripheral clock frequency.69  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
157  
32.6 Atmel ATxmega384D3  
32.6.1 Absolute Maximum Ratings  
Stresses beyond those listed in Table 32-146 may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or other conditions beyond those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
Table 32-146. Absolute Maximum Ratings  
Symbol  
VCC  
IVCC  
IGND  
VPIN  
IPIN  
Parameter  
Condition  
Min.  
Typ.  
Max.  
4
Units  
Power supply voltage  
Current into a VCC pin  
Current out of a Gnd pin  
Pin voltage with respect to Gnd and VCC  
I/O pin sink/source current  
Storage temperature  
-0.3  
V
200  
mA  
200  
-0.5  
-25  
-65  
VCC + 0.5  
25  
V
mA  
TA  
150  
°C  
Tj  
Junction temperature  
150  
32.6.2 General Operating Ratings  
The device must operate within the ratings listed in Table 32-147 in order for all other electrical characteristics and typical  
characteristics of the device to be valid.  
Table 32-147. General Operating Conditions  
Symbol  
VCC  
Parameter  
Condition  
Min.  
1.60  
1.60  
-40  
Typ.  
Max.  
3.6  
Units  
Power supply voltage  
Analog supply voltage  
Temperature range  
Junction temperature  
V
AVCC  
TA  
3.6  
85  
°C  
Tj  
-40  
105  
Table 32-148. Operating Voltage and Frequency  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
VCC = 1.8V  
VCC = 2.7V  
VCC = 3.6V  
Min.  
Typ.  
Max.  
12  
Units  
0
0
0
0
12  
ClkCPU  
CPU clock frequency  
MHz  
32  
32  
The maximum CPU clock frequency depends on VCC. As shown in Figure 32-36 on page 159 the frequency vs. VCC  
curve is linear between 1.8V < VCC < 2.7V.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
158  
Figure 32-36. Maximum Frequency vs. VCC  
MHz  
32  
Safe operating area  
12  
V
1.6  
1.8  
2.7  
3.6  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
159  
32.6.3 Current Consumption  
Table 32-149. Current Consumption for Active Mode and Sleep Modes  
Symbol Parameter  
Condition  
Min.  
Typ.  
150  
320  
410  
830  
660  
1.3  
10  
Max. Units  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
32kHz, Ext. Clk  
µA  
1MHz, Ext. Clk  
Active power  
consumption (1)  
800  
2MHz, Ext. Clk  
32MHz, Ext. Clk  
32kHz, Ext. Clk  
1.8  
mA  
15  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
4
5
50  
1MHz, Ext. Clk  
2MHz, Ext. Clk  
µA  
Idle power  
100  
100  
200  
3.3  
0.2  
3.5  
15  
consumption (1)  
350  
600  
VCC = 3.0V  
ICC  
32MHz, Ext. Clk  
7
mA  
T = 25°C  
1.0  
6.0  
20  
2.0  
10  
27  
T = 85°C  
VCC = 3.0V  
T = 105°C  
Power-down power  
consumption  
WDT and sampled BOD enabled, T = 25°C  
WDT and sampled BOD enabled, T = 85°C  
WDT and sampled BOD enabled, T= 105°C  
1.5  
6.0  
16  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 3.0V  
1.4  
1.5  
0.7  
0.8  
0.9  
1.1  
300  
µA  
RTC from ULP clock, WDT and sampled  
BOD enabled, T = 25°C  
2
2
3
3
Power-save power  
consumption (2)  
RTC from 1.024kHz low power 32.768kHz  
TOSC, T = 25°C  
RTC from low power 32.768kHz TOSC,  
T = 25°C  
Reset power consumption Current through RESET pin substracted  
Notes:  
1. All Power Reduction Registers set.  
2. Maximum limits are based on characterization, and not tested in production.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
160  
Table 32-150. Current Consumption for Modules and Peripherals  
Symbol Parameter  
Condition (1)  
Min.  
Typ.  
0.93  
27  
Max. Units  
ULP oscillator  
32.768kHz int. oscillator  
85  
2MHz int. oscillator  
32MHz int. oscillator  
DFLL enabled with 32.768kHz int. osc. as reference  
115  
240  
430  
300  
1.0  
DFLL enabled with 32.768kHz int. osc. as reference  
µA  
PLL  
20× multiplication factor, 32MHz int. osc. DIV4 as reference  
Watchdog timer  
Continuous mode  
140  
1.3  
BOD  
Sampled mode, includes ULP oscillator  
ICC  
Internal 1.0V reference  
Temperature sensor  
220  
215  
1.12  
1.01  
0.9  
CURRLIMIT = LOW  
16ksps, VREF = Ext. ref.  
CURRLIMIT = MEDIUM  
ADC  
mA  
CURRLIMIT = HIGH  
0.8  
75ksps, VREF = Ext. ref.  
300ksps, VREF = Ext. ref.  
CURRLIMIT = LOW  
1.7  
3.1  
USART  
Rx and Tx enabled, 9600 BAUD  
9.5  
µA  
Flash memory and EEPROM programming  
4.0  
mA  
Note:  
1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock  
without prescaling, T = 25°C unless other conditions are given.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
161  
32.6.4 Wake-up Time from Sleep Modes  
Table 32-151. Device Wake-up Time from Sleep Modes with Various System Clock Sources  
Symbol Parameter  
Condition  
Min.  
Typ. (1)  
2.0  
Max.  
Units  
External 2MHz clock  
Wake-up time from idle,  
standby, and extended  
standby mode  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
130  
2.0  
0.2  
twakeup  
µs  
4.5  
Wake-up time from  
power-save and power-  
down mode  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
320  
9.0  
5.0  
Note:  
1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 32-37. All peripherals and modules start  
execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.  
Figure 32-37. Wake-up Time Definition  
Wakeup time  
Wakeup request  
Clock output  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
162  
32.6.5 I/O Pin Characteristics  
The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output  
voltage limits reflect or exceed this specification.  
Table 32-152. I/O Pin Characteristics  
Symbol  
Parameter  
Condition  
Min.  
-15  
Typ.  
Max.  
15  
Units  
IOH (1)/ IOL  
I/O pin source/sink current  
mA  
(2)  
VCC = 2.4 - 3.6V  
0.7 * VCC  
0.8 * VCC  
-0.5  
VCC + 0.5  
VCC + 0.5  
0.3 * VCC  
0.2 * VCC  
VIH  
High level input voltage  
Low level input voltage  
VCC = 1.6 - 2.4V  
VCC = 2.4 - 3.6V  
VCC = 1.6 - 2.4V  
VCC = 3.3V  
VIL  
-0.5  
IOH = -4mA  
IOH = -3mA  
IOH = -1mA  
IOL = 8mA  
IOL = 5mA  
IOL = 3mA  
2.6  
2.9  
2.6  
V
VOH  
High level output voltage  
Low level output voltage  
VCC = 3.0V  
2.1  
VCC = 1.8V  
1.4  
1.6  
VCC = 3.3V  
0.4  
0.76  
0.64  
0.46  
1
VOL  
VCC = 3.0V  
0.3  
VCC = 1.8V  
0.2  
IIN  
Input leakage current I/O pin  
Pull/buss keeper resistor  
T = 25°C  
<0.01  
25  
µA  
RP  
k  
Notes:  
1. The sum of all IOH for PORTA and PORTB must not exceed 100mA.  
The sum of all IOH for PORTC, PORTD, and PORTE must for each port not exceed 200mA.  
The sum of all IOH for pins PF[0-5] on PORTF must not exceed 200mA.  
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.  
2. The sum of all IOL for PORTA and PORTB must not exceed 100mA.  
The sum of all IOL for PORTC, PORTD, and PORTE must for each port not exceed 200mA.  
The sum of all IOL for pins PF[0-5] on PORTF must not exceed 200mA.  
The sum of all IOL for pins PF[6-7] on PORTF, PORTR, and PDI must not exceed 100mA.  
32.6.6 ADC Characteristics  
Table 32-153. Power Supply, Reference, and Input Range  
Symbol Parameter  
Condition  
Min.  
VCC - 0.3  
1
Typ.  
Max.  
VCC + 0.3  
AVCC - 0.6  
4.5  
Units  
AVCC  
VREF  
Rin  
Analog supply voltage  
V
Reference voltage  
Input resistance  
Switched  
k  
pF  
Cin  
Input capacitance  
Switched  
5
RAREF  
CAREF  
Reference input resistance  
Reference input capacitance  
(leakage only)  
Static load  
>10  
7
M  
pF  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
163  
Symbol Parameter  
Condition  
Min.  
0
Typ.  
Max.  
VREF  
Units  
V
Vin  
Input range  
Conversion range  
Conversion range  
Fixed offset voltage  
Differential mode, Vinp - Vinn  
-VREF  
-V  
VREF  
Single ended unsigned mode, Vinp  
VREF - V  
V  
200  
lsb  
Table 32-154. Clock and Timing  
Symbol Parameter  
Condition  
Min.  
100  
100  
16  
Typ.  
Max.  
1800  
125  
300  
300  
250  
150  
50  
Units  
Maximum is 1/4 of peripheral clock frequency  
Measuring internal signals  
ClkADC  
ADC clock frequency  
Sample rate  
kHz  
fClkADC  
Current limitation (CURRLIMIT) off  
CURRLIMIT = LOW  
16  
16  
ksps  
µs  
fADC  
Sample rate  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
16  
16  
Configurable in steps of 1/2 ClkADC cycles up  
to 32 ClkADC cycles  
Sampling time  
0.28  
5.5  
320  
10  
(RES+1)/2 + GAIN  
RES (Resolution) = 8 or 12, GAIN = 0 to 3  
Conversion time (latency)  
ClkADC  
cycles  
Start-up time  
ADC clock cycles  
12  
7
24  
7
ADC settling time  
After changing reference or input mode  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
164  
Table 32-155. Accuracy Characteristics  
Symbol  
Parameter  
Condition (1)  
Differential  
Min.  
Typ.  
12  
Max.  
12  
11  
12  
1
Units  
8
7
8
RES  
Resolution  
12-bit resolution  
Differential mode  
Single ended signed  
Single ended unsigned  
16ksps, VREF = 3V  
16ksps, all VREF  
300ksps, VREF = 3V  
300ksps, all VREF  
16ksps, VREF = 3.0V  
16ksps, all VREF  
16ksps, VREF = 3V  
16ksps, all VREF  
300ksps, VREF = 3V  
300ksps, all VREF  
16ksps, VREF = 3.0V  
16ksps, all VREF  
300ksps, VREF = 3V  
Temperature drift, VREF = 3V  
Operating voltage drift  
External reference  
AVCC/1.6  
11  
Bits  
12  
0.5  
0.8  
0.6  
1
2
1
INL (2)  
Integral non-linearity  
2
0.5  
1.3  
0.3  
0.5  
0.35  
0.5  
0.6  
0.6  
-7  
1
Single ended  
unsigned mode  
2
lsb  
1
1
Differential mode  
1
DNL (2)  
Differential non-linearity  
1
1
Single ended  
unsigned mode  
1
mV  
Offset error  
Differential mode  
0.01  
0.16  
-5  
mV/K  
mV/V  
-5  
mV  
AVCC/2.0  
-6  
Gain error  
Differential mode  
Bandgap  
±10  
0.02  
2
Temperature drift  
Operating voltage drift  
External reference  
AVCC/1.6  
mV/K  
mV/V  
-8  
-8  
mV  
AVCC/2.0  
-8  
Single ended  
unsigned mode  
Gain error  
Bandgap  
±10  
0.03  
2
Temperature drift  
Operating voltage drift  
mV/K  
mV/V  
Notes:  
1. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.  
2. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
165  
Table 32-156. Gain Stage Characteristics  
Symbol  
Rin  
Parameter  
Condition  
Min. Typ.  
Max.  
Units  
Input resistance  
Input capacitance  
Signal range  
Switched in normal mode  
Switched in normal mode  
Gain stage output  
4.0  
k  
Csample  
4.4  
pF  
0
AVCC - 0.6  
V
Propagation delay  
Clock rate  
ADC conversion rate  
Same as ADC  
1/2  
1
3
ClkADC cycles  
kHz  
100  
1800  
0.5x gain, normal mode  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
0.5x gain, normal mode  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
-1  
-1  
Gain error  
%
-1  
5
10  
5
Offset error, input referred  
mV  
-20  
-126  
32.6.7 Analog Comparator Characteristics  
Table 32-157. Analog Comparator Characteristics  
Symbol  
Voff  
Parameter  
Condition  
Min. Typ.  
Max.  
Units  
mV  
nA  
Input offset voltage  
Input leakage current  
Input voltage range  
AC startup time  
10  
Ilk  
<10  
50  
-0.1  
50  
0
AVCC  
V
µs  
Vhys1  
Vhys2  
Vhys3  
Hysteresis, none  
Hysteresis, small  
Hysteresis, large  
VCC = 1.6V - 3.6V  
VCC = 1.6V - 3.6V  
15  
30  
20  
17  
0.3  
5
mV  
VCC = 1.6V - 3.6V  
VCC = 3.0V, T = 85°C  
VCC = 3.0V, T = 85°C  
Integral non-linearity (INL)  
90  
0.5  
6
tdelay  
Propagation delay  
ns  
64-level voltage scaler  
lsb  
%
Current source accuracy after calibration  
Current source calibration range  
4
µA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
166  
32.6.8 Bandgap and Internal 1.0V Reference Characteristics  
Table 32-158. Bandgap and Internal 1.0V Reference Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
As reference for ADC  
As input voltage to ADC and AC  
1 ClkPER + 2.5µs  
Startup time  
µs  
1.5  
1.1  
1
Bandgap voltage  
V
INT1V  
Internal 1.00V reference  
T = 85°C, after calibration  
Calibrated at T = 85°C  
0.99  
1.01  
Variation over voltage and temperature  
2
%
32.6.9 Brownout Detection Characteristics  
Table 32-159. Brownout Detection Characteristics (1)  
Symbol Parameter  
BOD level 0 falling VCC  
BOD level 1 falling VCC  
BOD level 2 falling VCC  
Condition  
Min.  
Typ.  
1.62  
1.9  
Max.  
Units  
1.60  
1.72  
2.0  
BOD level 3 falling VCC  
VBOT  
2.2  
V
BOD level 4 falling VCC  
2.4  
BOD level 5 falling VCC  
BOD level 6 falling VCC  
BOD level 7 falling VCC  
2.6  
2.8  
3.0  
Continuous mode  
Sampled mode  
0.4  
tBOD  
Detection time  
Hysteresis  
µs  
%
1000  
1.0  
VHYST  
Note:  
1. BOD is calibrated at 85°C within BOD level 0 values, and BOD level 0 is the default level.  
32.6.10 External Reset Characteristics  
Table 32-160. External Reset Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
90  
Max.  
Units  
tEXT  
VRST  
RRST  
Minimum reset pulse width  
Reset threshold voltage  
Reset pin pull-up resistor  
1000  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
0.45 * VCC  
0.42 * VCC  
25  
V
k  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
167  
32.6.11 Power-on Reset Characteristics  
Table 32-161. Power-on Reset Characteristics  
Symbol Parameter  
Condition  
Min.  
0.4  
Typ.  
1.0  
Max.  
Units  
VCC falls faster than 1V/ms  
VCC falls at 1V/ms or slower  
(1)  
VPOT-  
POR threshold voltage falling VCC  
POR threshold voltage rising VCC  
0.8  
1.3  
V
VPOT+  
1.3  
1.59  
Note:  
1. VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+  
.
32.6.12 Flash and EEPROM Memory Characteristics  
Table 32-162. Endurance and Data Retention  
Symbol Parameter  
Condition  
Min.  
10K  
10K  
2K  
Typ.  
Max.  
Units  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
Write/Erase cycles  
Data retention  
Cycle  
Flash  
100  
25  
Year  
Cycle  
Year  
10  
100K  
100K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
10  
Table 32-163. Programming Time  
Symbol Parameter  
Condition  
Min.  
Typ. (1)  
Max.  
Units  
Chip erase (2)  
384KB Flash, EEPROM  
Section erase  
Page erase  
130  
6
Application erase  
6
Flash  
Page write  
6
ms  
Atomic page erase and write  
Page erase  
12  
6
EEPROM  
Page write  
6
Atomic page erase and write  
12  
Notes:  
1. Programming is timed from the 2MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
168  
32.6.13 Clock and Oscillator Characteristics  
32.6.13.1 Calibrated 32.768kHz Internal Oscillator Characteristics  
Table 32-164. 32.768kHz Internal Oscillator Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Frequency  
32.768  
kHz  
Factory calibration accuracy  
User calibration accuracy  
T = 85C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
32.6.13.2 Calibrated 2MHz RC Internal Oscillator Characteristics  
Table 32-165. 2MHz Internal Oscillator Characteristics  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
1.8  
2.2  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration stepsize  
2.0  
T = 85C, VCC = 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.23  
32.6.13.3 Calibrated 32MHz Internal Oscillator Characteristics  
Table 32-166. 32MHz Internal Oscillator Characteristics  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
32  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
30  
35  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
32  
T = 85C, VCC = 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.24  
32.6.13.4 32kHz Internal ULP Oscillator Characteristics  
Table 32-167. 32kHz Internal ULP Oscillator Characteristics  
Symbol Parameter  
Factory calibrated frequency  
Condition  
Min.  
Typ.  
Max.  
Units  
26  
kHz  
Factory calibration accuracy  
Accuracy  
T = 85°C, VCC = 3.0V  
-12  
-30  
12  
30  
%
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
169  
32.6.13.5 Internal Phase Locked Loop (PLL) Characteristics  
Table 32-168. Internal PLL Characteristics  
Symbol Parameter  
Condition  
Min.  
0.4  
20  
Typ.  
Max.  
64  
Units  
fIN  
Input frequency  
Output frequency must be within fOUT  
VCC = 1.6 - 1.8V  
48  
MHz  
fOUT  
Output frequency (1)  
VCC = 2.7 - 3.6V  
20  
128  
Start-up time  
Re-lock time  
25  
25  
µs  
Note:  
1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.  
32.6.13.6 External Clock Characteristics  
Figure 32-38. External Clock Drive Waveform  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
Table 32-169.External Clock used as System Clock without Prescaling  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
VCC = 1.6 -  
VCC = 2.7 -  
VCC = 1.6 -  
VCC = 2.7 -  
VCC = 1.6 -  
VCC = 2.7 -  
VCC = 1.6 -  
VCC = 2.7 -  
VCC = 1.6 -  
VCC = 2.7 -  
VCC = 1.6 -  
VCC = 2.7 -  
0
12  
32  
1/tCK  
Clock Frequency (1)  
MHz  
0
83.3  
31.5  
30.0  
12.5  
30.0  
12.5  
tCK  
tCH  
tCL  
tCR  
Clock Period  
Clock High Time  
Clock Low Time  
ns  
10  
3
Rise Time (for maximum frequency)  
10  
3
tCF  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
10  
%
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
170  
Table 32-170.External Clock with Prescaler (1) for System Clock  
Symbol Parameter Condition  
Clock Frequency (2)  
Min.  
0
Typ.  
Max.  
90  
Units  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
1/tCK  
MHz  
0
142  
11  
tCK  
Clock Period  
7
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
tCL  
Clock Low Time  
ns  
1.5  
1.0  
1.5  
1.0  
10  
tCR  
Rise Time (for maximum frequency)  
tCF  
Fall Time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
%
Notes:  
1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
32.6.13.7 External 16MHz Crystal Oscillator and XOSC Characteristics  
Table 32-171. External 16MHz Crystal Oscillator and XOSC Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
0
Max.  
Units  
FRQRANGE=0  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
Cycle to cycle jitter  
FRQRANGE=1, 2, or 3  
0
0
ns  
FRQRANGE=0  
0
Long term jitter  
Frequency error  
FRQRANGE=1, 2, or 3  
0
0
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
0.03  
0.03  
0.03  
0.003  
50  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
%
%
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
50  
Duty cycle  
50  
50  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
171  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
0.4MHz resonator,  
CL=100pF  
44k  
XOSCPWR=0,  
FRQRANGE=0  
1MHz crystal, CL=20pF  
2MHz crystal, CL=20pF  
2MHz crystal  
67k  
67k  
82k  
XOSCPWR=0,  
FRQRANGE=1,  
CL=20pF  
8MHz crystal  
1500  
1500  
2700  
2700  
1000  
3600  
1300  
590  
9MHz crystal  
8MHz crystal  
XOSCPWR=0,  
FRQRANGE=2,  
CL=20pF  
9MHz crystal  
12MHz crystal  
9MHz crystal  
XOSCPWR=0,  
FRQRANGE=3,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
Negative impedance (1)  
RQ  
390  
XOSCPWR=1,  
FRQRANGE=0,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
50  
10  
1500  
650  
XOSCPWR=1,  
FRQRANGE=1,  
CL=20pF  
12MHz crystal  
16MHz crystal  
12MHz crystal  
270  
XOSCPWR=1,  
FRQRANGE=2,  
CL=20pF  
1000  
16MHz crystal  
12MHz crystal  
16MHz crystal  
440  
1300  
590  
XOSCPWR=1,  
FRQRANGE=3,  
CL=20pF  
ESR  
SF = safety factor  
min(RQ)/SF  
k  
XOSCPWR=0,  
FRQRANGE=0  
0.4MHz resonator,  
CL=100pF  
1.0  
2.6  
0.8  
1.0  
1.4  
XOSCPWR=0,  
FRQRANGE=1  
2MHz crystal, CL=20pF  
8MHz crystal, CL=20pF  
12MHz crystal, CL=20pF  
16MHz crystal, CL=20pF  
XOSCPWR=0,  
FRQRANGE=2  
Start-up time  
ms  
XOSCPWR=0,  
FRQRANGE=3  
XOSCPWR=1,  
FRQRANGE=3  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
172  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Parasitic capacitance  
XTAL1 pin  
CXTAL1  
5.9  
Parasitic capacitance  
XTAL2 pin  
pF  
CXTAL2  
CLOAD  
8.3  
3.5  
Parasitic capacitance load  
Note:  
1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.  
32.6.13.8 External 32.768kHz Crystal Oscillator and TOSC Characteristics  
Table 32-172. External 32.768kHz Crystal Oscillator and TOSC Characteristics  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Crystal load capacitance 12pF  
60  
35  
28  
Recommended crystal equivalent  
series resistance (ESR)  
ESR/R1  
k  
CTOSC1  
CTOSC2  
Parasitic capacitance TOSC1 pin  
Parasitic capacitance TOSC2 pin  
3.5  
3.5  
pF  
Capacitance load matched to crystal  
specification  
Recommended safety factor  
3
Note:  
See Figure 32-39 on page 173 for definition.  
Figure 32-39. TOSC Input Capacitance  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768 kHz crystal  
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without  
external capacitors.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
173  
32.6.14 SPI Characteristics  
Figure 32-40. SPI Timing Requirements in Master Mode  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
MSB  
tSCK  
MISO  
(Data Input)  
LSB  
tMOH  
tMOH  
MOSI  
(Data Output)  
MSB  
LSB  
Figure 32-41.SPI Timing Requirements in Slave Mode  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
MSB  
tSSCK  
LSB  
MOSI  
(Data Input)  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data Output)  
MSB  
LSB  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
174  
Table 32-173. SPI Timing Characteristics and Requirements  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
(See Table 20-3 in  
XMEGA D manual)  
tSCK  
SCK period  
Master  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK high/low width  
SCK rise time  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
0.5 * SCK  
2.7  
SCK fall time  
2.7  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
Slave SCK Period  
SCK high/low width  
SCK rise time  
10  
tMIH  
10  
0.5 * SCK  
1
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
4 * t ClkPER  
2 * t ClkPER  
ns  
1600  
1600  
SCK fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
SS hold after SCK  
MISO setup SCK  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
3
t ClkPER  
21  
tSIH  
tSSS  
tSSH  
20  
tSOS  
8
13  
11  
8
tSOH  
tSOSS  
tSOSH  
32.6.15 Two-wire Interface Characteristics  
Table 32-174 on page 176 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel  
AVR XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols  
refer to Figure 32-42.  
Figure 32-42. Two-wire Interface Bus Timing  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
175  
Table 32-174. Two-wire Interface Characteristics  
Symbol Parameter  
Condition  
Min.  
0.7VCC  
-0.5  
Typ.  
Max.  
VCC + 0.5  
0.3VCC  
Units  
VIH  
VIL  
Vhys  
VOL  
tr  
Input high voltage  
Input low voltage  
V
(1)  
Hysteresis of Schmitt trigger inputs  
Output low voltage  
0.05VCC  
0
3mA, sink current  
0.4  
300  
250  
50  
(1)(2)  
(1)(2)  
Rise time for both SDA and SCL  
Output fall time from VIHmin to VILmax  
Spikes suppressed by input filter  
Input current for each I/O pin  
Capacitance for each I/O pin  
SCL clock frequency  
20 + 0.1Cb  
tof  
10pF < Cb < 400pF (2)  
0.1VCC < VI < 0.9VCC  
20 + 0.1Cb  
ns  
tSP  
II  
0
-10  
10  
µA  
pF  
CI  
10  
fSCL  
fPER (3) > max(10fSCL, 250kHz)  
fSCL 100kHz  
0
400  
kHz  
100ns  
--------------  
Cb  
VCC – 0.4V  
---------------------------  
3mA  
RP  
Value of pull-up resistor  
300ns  
fSCL > 100kHz  
--------------  
Cb  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
4.0  
0.6  
4.7  
1.3  
4.0  
0.6  
4.7  
0.6  
0
tHD;STA  
Hold time (repeated) START condition  
Low period of SCL clock  
tLOW  
µs  
tHIGH  
High period of SCL clock  
Set-up time for a repeated START  
condition  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
3.45  
0.9  
Data hold time  
0
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
µs  
Setup time for STOP condition  
Bus free time between a STOP and  
START condition  
Notes:  
1. Required only for fSCL > 100kHz.  
2. Cb = Capacitance of one bus line in pF.  
3. fPER = Peripheral clock frequency.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
176  
33. Typical Characteristics  
33.1 Atmel ATxmega32D3  
33.1.1 Current Consumption  
33.1.1.1 Active Mode Supply Current  
Figure 33-1. Active Supply Current vs. Frequency  
fSYS = 0 - 1MHz external clock, T = 25°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 33-2. Active Supply Current vs. Frequency  
fSYS = 1 - 32MHz external clock, T = 25°C  
12  
10  
8
3.6 V  
3.3 V  
3.0 V  
2.7 V  
6
4
2.2 V  
1.8 V  
2
1.6 V  
0
0
4
8
12  
16  
Frequency [MHz]  
20  
24  
28  
32  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
177  
Figure 33-3. Active Mode Supply Current vs. VCC  
fSYS = 32.768kHz internal oscillator  
250  
225  
200  
175  
150  
125  
100  
75  
-40 °C  
25 °C  
85 °C  
105 °C  
50  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-4. Active Mode Supply Current vs. VCC  
fSYS = 1MHz external clock  
900  
800  
700  
600  
500  
400  
300  
200  
-40°C  
25°C  
85°C  
105°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
178  
Figure 33-5. Active Mode Supply Current vs. VCC  
fSYS = 2MHz internal oscillator  
1300  
1200  
1100  
1000  
900  
-40 °C  
25 °C  
85 °C  
105 °C  
800  
700  
600  
500  
400  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-6. Active Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator prescaled to 8MHz  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
179  
Figure 33-7. Active Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator  
12.0  
11.0  
10.0  
9.0  
-40°C  
25°C  
85°C  
105°C  
8.0  
7.0  
6.0  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
33.1.1.2 Idle Mode Supply Current  
Figure 33-8. Idle Mode Supply Current vs. Frequency  
fSYS = 0 - 1MHz external clock, T = 25°C  
140  
120  
100  
80  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
60  
2.2 V  
1.8 V  
1.6 V  
40  
20  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency[MHz]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
180  
Figure 33-9. Idle Mode Supply Current vs. Frequency  
fSYS = 1 - 32MHz external clock, T = 25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
0.5  
0
1.6 V  
0
4
8
12  
16  
Frequency [MHz]  
20  
24  
28  
32  
Figure 33-10. Idle Mode Supply Current vs. VCC  
fSYS = 32.768kHz internal oscillator  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
105°C  
85°C  
-40°C  
25°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
181  
Figure 33-11. Idle Mode Supply Current vs. VCC  
fSYS = 1MHz external clock  
135  
125  
115  
105  
95  
105°C  
85°C  
25°C  
-40°C  
85  
75  
65  
55  
45  
35  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-12. Idle Mode Supply Current vs. VCC  
fSYS = 2MHz internal oscillator  
365  
340  
315  
290  
265  
240  
215  
190  
165  
140  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
182  
Figure 33-13. Idle Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator prescaled to 8MHz  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
-40°C  
25°C  
85°C  
105°C  
800  
700  
600  
500  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-14. Idle Mode Current vs. VCC  
fSYS = 32MHz internal oscillator  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
-40°C  
25°C  
85°C  
105°C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
V
CC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
183  
33.1.1.3 Power-down Mode Supply Current  
Figure 33-15. Power-down Mode Supply Current vs. VCC  
All functions disabled  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
105°C  
85°C  
25 C  
°
-40 C  
°
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-16. Power-down Mode Supply Current vs. VCC  
Watchdog and sampled BOD enabled  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
105°C  
85°C  
25°C  
-40°C  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
184  
Figure 33-17. Power-down Mode Supply Current vs. Temperature  
All functions disabled  
4.8  
4.3  
3.8  
3.3  
2.8  
2.3  
1.8  
1.3  
0.8  
0.3  
-0.2  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45 -35 -25 -15 -5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
Figure 33-18. Power-down Mode Supply Current vs. Temperature  
Watchdog and sampled BOD enabled and running from internal ULP oscillator  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-45 -35 -25 -15 -5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
185  
33.1.2 I/O Pin Characteristics  
33.1.2.1 Pull-up  
Figure 33-19. I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 1.8V  
70  
60  
50  
40  
30  
20  
10  
0
-40°C  
25°C  
85°C  
105°C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
PIN [V]  
1.2  
1.4  
1.6  
1.8  
V
Figure 33-20. I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 3.0V  
120  
108  
96  
84  
72  
60  
48  
36  
24  
12  
0
-40°C  
25°C  
85°C  
105°C  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
V
PIN [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
186  
Figure 33-21. I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 3.3V  
140  
120  
100  
80  
60  
40  
-40°C  
25 °C  
85°C  
20  
105°C  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
V
PIN [V]  
33.1.2.2 Output Voltage vs. Sink/Source Current  
Figure 33-22. I/O Pin Output Voltage vs. Source Current  
VCC = 1.8V  
2.0  
1.8  
1.6  
1.4  
1.2  
25°C  
105°C  
-40°C  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
85°C  
-3.5  
-5.0  
-4.5  
-4.0  
-3.0  
-2.5  
IPIN [mA]  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
187  
Figure 33-23. I/O Pin Output Voltage vs. Source Current  
VCC = 3.0V  
3.5  
3.0  
2.5  
2.0  
1.5  
-40°C  
1.0  
85°C  
25°C  
0.5  
105°C  
0.0  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
IPIN [mA]  
Figure 33-24. I/O Pin Output Voltage vs. Source Current  
VCC = 3.3V  
3.5  
3.0  
2.5  
2.0  
-40 °C  
1.5  
25 °C  
1.0  
85 °C  
0.5  
105 °C  
0.0  
-20  
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
IPIN [mA]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
188  
Figure 33-25. I/O Pin Output Voltage vs. Sink Current  
VCC = 1.8V  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
85°C  
105°C  
25°C  
-40°C  
0
1
2
3
4
5
6
7
8
9
IPIN [mA]  
Figure 33-26. I/O Pin Output Voltage vs. Sink Current  
VCC = 3.0V  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105°C  
85°C  
25°C  
-40°C  
0
2
4
6
8
10  
12  
14  
16  
IPIN [mA]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
189  
Figure 33-27. I/O Pin Output Voltage vs. Sink Current  
VCC = 3.3V  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
105°C  
85°C  
25°C  
-40°C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
33.1.2.3 Thresholds and Hysteresis  
Figure 33-28. I/O Pin Input Threshold Voltage vs. VCC  
VIH I/O pin read as “1”  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
190  
Figure 33-29. I/O Pin Input Threshold Voltage vs. VCC  
VIL I/O pin read as “0”  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
105°C  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-30. I/O Pin Input Hysteresis vs. VCC  
0.39  
0.36  
0.33  
0.30  
0.27  
0.24  
0.21  
0.18  
0.15  
- 40°C  
25°C  
85°C  
105°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
191  
33.1.3 ADC Characteristics  
Figure 33-31. INL Error vs. External VREF  
T = 25C, VCC = 3.6V, external reference  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Single-ended unsigned mode  
Differential mode  
Single -ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
Figure 33-32. INL Error vs. Sample Rate  
T = 25C, VCC = 3.6V, VREF = 3.0V external  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
50  
100  
150  
200  
250  
300  
ADC sample rate [ksps]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
192  
Figure 33-33. INL Error vs. Input Code  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
-1.25  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
Figure 33-34. DNL Error vs. External VREF  
T = 25C, VCC = 3.6V, external reference  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
193  
Figure 33-35. DNL Error vs. Sample Rate  
T = 25C, VCC = 3.6V, VREF = 3.0V external  
0.60  
0.55  
Single-ended unsigned mode  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
Differential mode  
Single-ended signed mode  
50  
100  
150  
200  
250  
300  
ADC sample rate [ksps]  
Figure 33-36. DNL Error vs. Input Code  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
194  
Figure 33-37. Gain Error vs. VREF  
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps  
-5  
-6  
-7  
Differential mode  
-8  
-9  
mode  
Single-ended signed  
-10  
-11  
-12  
-13  
-14  
-15  
Single-ended unsigned mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
Figure 33-38. Gain Error vs. VCC  
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
Differential mode  
Single-ended signed  
mode  
Single-ended unsigned mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
195  
Figure 33-39. Offset error vs. VREF  
.
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps.  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
Differential mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
Figure 33-40. Gain Error vs. Temperature  
VCC = 3.0V, VREF = external 2.0V  
0
-2  
Single-ended signed mode  
-4  
-6  
Differentialmode  
-8  
-10  
Single-ended unsigned  
mode  
-12  
-14  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
196  
Figure 33-41. Offset Error vs. VCC  
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps  
8.00  
7.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
Differential mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
33.1.4 Analog Comparator Characteristics  
Figure 33-42. Analog Comparator Hysteresis vs. VCC  
Small hysteresis  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
105°C  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
CC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
V
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
197  
Figure 33-43. Analog Comparator Hysteresis vs. VCC  
Large hysteresis  
38  
36  
34  
32  
30  
28  
26  
24  
22  
105°C  
85°C  
25°C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC[V]  
Figure 33-44. Analog Comparator Current Source vs. Calibration Value  
VCC = 3.0V  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
-40°C  
25°C  
85°C  
105°C  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CURRCALIBA[3..0]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
198  
Figure 33-45. Voltage Scaler INL vs. SCALEFAC  
T = 25C, VCC = 3.0V  
0.425  
0.4  
0.375  
0.35  
0.325  
0.3  
25°C  
0.275  
0.25  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
33.1.5 Internal 1.0V Reference Characteristics  
Figure 33-46. ADC Internal 1.0V Reference vs. Temperature  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
0.975  
1.8 V  
2.7 V  
3.0 V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
199  
33.1.6 BOD Characteristics  
Figure 33-47. BOD Thresholds vs. Temperature  
BOD level = 1.6V  
1.623  
1.622  
1.621  
1.620  
1.619  
1.618  
1.617  
1.616  
1.615  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
Figure 33-48. BOD Thresholds vs. Temperature  
BOD level = 3.0V  
3.066  
3.063  
3.060  
3.057  
3.054  
3.051  
3.048  
3.045  
3.042  
3.039  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
200  
33.1.7 External Reset Characteristics  
Figure 33-49. Minimum Reset Pin Pulse Width vs. VCC  
144  
136  
128  
120  
112  
104  
96  
105°C  
85°C  
25°C  
88  
-40°C  
80  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 33-50. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 1.8V  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40°C  
25°C  
85°C  
105°C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VRESET [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
201  
Figure 33-51. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.0V  
120  
108  
96  
84  
72  
60  
48  
36  
24  
12  
0
-40°C  
25°C  
85°C  
105°C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VRESET [V]  
Figure 33-52. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.3V  
140  
120  
100  
80  
60  
40  
-40°C  
25°C  
85°C  
20  
105°C  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VRESET [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
202  
Figure 33-53. Reset Pin Input Threshold Voltage vs. VCC  
VIH - Reset pin read as “1”  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
105 °C  
85 °C  
25 °C  
- 40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
33.1.8 Oscillator Characteristics  
33.1.8.1 Ultra Low-power Internal Oscillator  
Figure 33-54. Ultra Low-power Internal Oscillator Frequency vs. Temperature  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
30.5  
30.0  
3.3 V  
3.0 V  
2.7 V  
1.8 V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
203  
33.1.8.2 32.768kHz Internal Oscillator  
Figure 33-55. 32.768kHz Internal Oscillator Frequency vs. Temperature  
32.9  
32.9  
32.8  
32.8  
32.7  
32.7  
32.6  
32.6  
32.5  
1.6 V  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
3.6 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
Figure 33-56. 32.768kHz Internal Oscillator Frequency vs. Calibration Value  
VCC = 3.0V, T = 25°C  
50  
47  
44  
41  
38  
35  
32  
29  
26  
23  
20  
3.0 V  
-4  
16  
36  
56  
76  
96  
116  
136  
156  
176  
196  
216  
236  
256  
RC32KCAL[7..0]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
204  
33.1.8.3 2MHz Internal Oscillator  
Figure 33-57. 2MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
2.14  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45 -35 -25 -15 -5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
Figure 33-58. 2MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
2.009  
2.006  
2.003  
2.7 V  
3.6 V  
3.0 V  
1.8 V  
1.6 V  
2.000  
2.2 V  
1.997  
1.994  
1.991  
1.988  
1.985  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
205  
Figure 33-59. 2MHz Internal Oscillator Frequency vs. CALA Calibration Value  
VCC = 3V  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
-40 °C  
25 °C  
85 °C  
°
105 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
33.1.8.4 32MHz Internal Oscillator  
Figure 33-60. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
36.0  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperatuire [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
206  
Figure 33-61. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
32.10  
32.07  
32.04  
32.01  
31.98  
2.2 V  
2.7 V  
3.0 V  
3.6 V  
1.6 V  
31.95  
1.8 V  
31.92  
31.89  
31.86  
31.83  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
Figure 33-62. 32MHz Internal Oscillator CALA Calibration Step Size  
T = -40°C, VCC = 3.0V  
0.31 %  
0.29 %  
0.27 %  
0.26 %  
0.24 %  
0.22 %  
0.20 %  
0.18 %  
0.17 %  
0.15 %  
0.13 %  
-40 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
207  
Figure 33-63. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 25°C, VCC = 3.0V  
0.26 %  
0.24 %  
0.22 %  
0.20 %  
0.18 %  
0.16 %  
0.14 %  
0.12 %  
25 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
Figure 33-64. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 85°C, VCC = 3.0V  
0.24 %  
0.23 %  
0.21 %  
0.20 %  
0.19 %  
0.18 %  
0.17 %  
0.15 %  
0.14 %  
0.13 %  
85 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
208  
Figure 33-65. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 105°C, VCC = 3.0V  
0.22 %  
0.21 %  
0.20 %  
0.19 %  
0.18 %  
0.17 %  
0.16 %  
0.15 %  
0.14 %  
105 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
Figure 33-66. 32MHz Internal Oscillator Frequency vs. CALB Calibration Value  
VCC = 3.0V  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
-40 °C  
25 °C  
85 °C  
105 °C  
0
7
14  
21  
28  
35  
42  
49  
56  
63  
CALB  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
209  
33.1.8.5 32MHz Internal Oscillator Calibrated to 48MHz  
Figure 33-67. 48MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
Figure 33-68. 48MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
48.20  
48.15  
48.10  
48.05  
48.00  
47.95  
47.90  
47.85  
47.80  
47.75  
1.6 V  
1.8 V  
2.2 V  
3.6 V  
2.7 V  
3.0 V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
210  
33.1.9 Two-Wire Interface Characteristics  
Figure 33-69. SDA Hold Time vs. Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 33-70. SDA Hold Time vs. Supply Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
211  
33.1.10 PDI Characteristics  
Figure 33-71. Maximum PDI Frequency vs. VCC  
24  
22  
20  
18  
16  
14  
12  
10  
8
-40°C  
25°C  
85°C  
105°C  
6
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
212  
33.2 Atmel ATxmega64D3  
33.2.1 Current Consumption  
33.2.1.1 Active Mode Supply Current  
Figure 33-72. Active Supply Current vs. Frequency  
fSYS = 0 - 1MHz external clock, T = 25°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 33-73. Active Supply Current vs. Frequency  
fSYS = 1 - 32MHz external clock, T = 25°C  
12  
10  
8
3.6 V  
3.3 V  
3.0 V  
2.7 V  
6
4
2.2 V  
1.8 V  
2
1.6 V  
0
0
4
8
12  
16  
Frequency [MHz]  
20  
24  
28  
32  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
213  
Figure 33-74. Active Mode Supply Current vs. VCC  
fSYS = 32.768kHz internal oscillator  
250  
225  
200  
175  
150  
125  
100  
75  
-40 °C  
25 °C  
85 °C  
105 °C  
50  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-75. Active Mode Supply Current vs. VCC  
fSYS = 1MHz external clock  
900  
800  
700  
600  
500  
400  
300  
200  
-40°C  
25°C  
85°C  
105°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
214  
Figure 33-76. Active Mode Supply Current vs. VCC  
fSYS = 2MHz internal oscillator  
1300  
1200  
1100  
1000  
900  
-40 °C  
25 °C  
85 °C  
105 °C  
800  
700  
600  
500  
400  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-77. Active Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator prescaled to 8MHz  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
215  
Figure 33-78.Active Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator  
12.0  
11.0  
10.0  
9.0  
-40°C  
25°C  
85°C  
105°C  
8.0  
7.0  
6.0  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
33.2.1.2 Idle Mode Supply Current  
Figure 33-79.Idle Mode Supply Current vs. Frequency  
fSYS = 0 - 1MHz external clock, T = 25°C  
140  
120  
100  
80  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
60  
2.2 V  
1.8 V  
1.6 V  
40  
20  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency[MHz]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
216  
Figure 33-80.Idle Mode Supply Current vs. Frequency  
fSYS = 1 - 32MHz external clock, T = 25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
0.5  
0
1.6 V  
0
4
8
12  
16  
Frequency [MHz]  
20  
24  
28  
32  
Figure 33-81. Idle Mode Supply Current vs. VCC  
fSYS = 32.768kHz internal oscillator  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
105°C  
85°C  
-40°C  
25°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
217  
Figure 33-82. Idle Mode Supply Current vs. VCC  
fSYS = 1MHz external clock  
135  
125  
115  
105  
95  
105°C  
85°C  
25°C  
-40°C  
85  
75  
65  
55  
45  
35  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-83. Idle Mode Supply Current vs. VCC  
fSYS = 2MHz internal oscillator  
365  
340  
315  
290  
265  
240  
215  
190  
165  
140  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
218  
Figure 33-84. Idle Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator prescaled to 8MHz  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
-40°C  
25°C  
85°C  
105°C  
800  
700  
600  
500  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-85. Idle Mode Current vs. VCC  
fSYS = 32MHz internal oscillator  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
-40°C  
25°C  
85°C  
105°C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
V
CC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
219  
33.2.1.3 Power-down Mode Supply Current  
Figure 33-86. Power-down Mode Supply Current vs. VCC  
All functions disabled  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
105°C  
85°C  
25 C  
°
-40 C  
°
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-87. Power-down Mode Supply Current vs. VCC  
Watchdog and sampled BOD enabled  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
105°C  
85°C  
25°C  
-40°C  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
220  
Figure 33-88. Power-down Mode Supply Current vs. Temperature  
All functions disabled  
4.8  
4.3  
3.8  
3.3  
2.8  
2.3  
1.8  
1.3  
0.8  
0.3  
-0.2  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45 -35 -25 -15 -5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
Figure 33-89. Power-down Mode Supply Current vs. Temperature  
Watchdog and sampled BOD enabled and running from internal ULP oscillator  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-45 -35 -25 -15 -5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
221  
33.2.2 I/O Pin Characteristics  
33.2.2.1 Pull-up  
Figure 33-90. I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 1.8V  
70  
60  
50  
40  
30  
20  
10  
0
-40°C  
25°C  
85°C  
105°C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
PIN [V]  
1.2  
1.4  
1.6  
1.8  
V
Figure 33-91. I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 3.0V  
120  
108  
96  
84  
72  
60  
48  
36  
24  
12  
0
-40°C  
25°C  
85°C  
105°C  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3
V
PIN [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
222  
Figure 33-92. I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 3.3V  
140  
120  
100  
80  
60  
40  
-40°C  
25 °C  
85°C  
20  
105°C  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
V
PIN [V]  
33.2.2.2 Output Voltage vs. Sink/Source Current  
Figure 33-93. I/O Pin Output Voltage vs. Source Current  
VCC = 1.8V  
2.0  
1.8  
1.6  
1.4  
1.2  
25°C  
105°C  
-40°C  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
85°C  
-3.5  
-5.0  
-4.5  
-4.0  
-3.0  
-2.5  
IPIN [mA]  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
223  
Figure 33-94. I/O Pin Output Voltage vs. Source Current  
VCC = 3.0V  
3.5  
3.0  
2.5  
2.0  
1.5  
-40°C  
1.0  
85°C  
25°C  
0.5  
105°C  
0.0  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
IPIN [mA]  
Figure 33-95. I/O Pin Output Voltage vs. Source Current  
VCC = 3.3V  
3.5  
3.0  
2.5  
2.0  
-40 °C  
1.5  
25 °C  
1.0  
85 °C  
0.5  
105 °C  
0.0  
-20  
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
IPIN [mA]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
224  
Figure 33-96. I/O Pin Output Voltage vs. Sink Current  
VCC = 1.8V  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
85°C  
105°C  
25°C  
-40°C  
0
1
2
3
4
5
6
7
8
9
IPIN [mA]  
Figure 33-97. I/O Pin Output Voltage vs. Sink Current  
VCC = 3.0V  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105°C  
85°C  
25°C  
-40°C  
0
2
4
6
8
10  
12  
14  
16  
IPIN [mA]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
225  
Figure 33-98. I/O Pin Output Voltage vs. Sink Current  
VCC = 3.3V  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
105°C  
85°C  
25°C  
-40°C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
33.2.2.3 Thresholds and Hysteresis  
Figure 33-99. I/O Pin Input Threshold Voltage vs. VCC  
VIH I/O pin read as “1”  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
226  
Figure 33-100. I/O Pin Input Threshold Voltage vs. VCC  
VIL I/O pin read as “0”  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
105°C  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-101. I/O Pin Input Hysteresis vs. VCC  
0.39  
0.36  
0.33  
0.30  
0.27  
0.24  
0.21  
0.18  
0.15  
- 40°C  
25°C  
85°C  
105°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
227  
33.2.3 ADC Characteristics  
Figure 33-102. INL Error vs. External VREF  
T = 25C, VCC = 3.6V, external reference  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Single-ended unsigned mode  
Differential mode  
Single -ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
Figure 33-103. INL Error vs. Sample Rate  
T = 25C, VCC = 3.6V, VREF = 3.0V external  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
50  
100  
150  
200  
250  
300  
ADC sample rate [ksps]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
228  
Figure 33-104. INL Error vs. Input Code  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
-1.25  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
Figure 33-105. DNL Error vs. External VREF  
T = 25C, VCC = 3.6V, external reference  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
229  
Figure 33-106. DNL Error vs. Sample Rate  
T = 25C, VCC = 3.6V, VREF = 3.0V external  
0.60  
0.55  
Single-ended unsigned mode  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
Differential mode  
Single-ended signed mode  
50  
100  
150  
200  
250  
300  
ADC sample rate [ksps]  
Figure 33-107. DNL Error vs. Input Code  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
230  
Figure 33-108. Gain Error vs. VREF  
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps  
-5  
-6  
-7  
Differential mode  
-8  
-9  
mode  
Single-ended signed  
-10  
-11  
-12  
-13  
-14  
-15  
Single-ended unsigned mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
Figure 33-109. Gain Error vs. VCC  
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
Differential mode  
Single-ended signed  
mode  
Single-ended unsigned mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
231  
Figure 33-110. Offset Error vs. VREF  
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
Differential mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
Figure 33-111. Gain Error vs. Temperature  
VCC = 3.0V, VREF = external 2.0V  
0
-2  
Single-ended signed mode  
-4  
-6  
Differentialmode  
-8  
-10  
Single-ended unsigned  
mode  
-12  
-14  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
232  
Figure 33-112. Offset Error vs. VCC  
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps  
8.00  
7.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
Differential mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
33.2.4 Analog Comparator Characteristics  
Figure 33-113. Analog Comparator Hysteresis vs. VCC  
Small hysteresis  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
105°C  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
CC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
V
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
233  
Figure 33-114. Analog Comparator Hysteresis vs. VCC  
Large hysteresis  
38  
36  
34  
32  
30  
28  
26  
24  
22  
105°C  
85°C  
25°C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC[V]  
Figure 33-115. Analog Comparator Current Source vs. Calibration Value  
VCC = 3.0V  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
-40°C  
25°C  
85°C  
105°C  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CURRCALIBA[3..0]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
234  
Figure 33-116. Voltage Scaler INL vs. SCALEFAC  
T = 25C, VCC = 3.0V  
0.425  
0.4  
0.375  
0.35  
0.325  
0.3  
25°C  
0.275  
0.25  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
33.2.5 Internal 1.0V Reference Characteristics  
Figure 33-117. ADC Internal 1.0V Reference vs. Temperature  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
0.975  
1.8 V  
2.7 V  
3.0 V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
235  
33.2.6 BOD Characteristics  
Figure 33-118. BOD Thresholds vs. Temperature  
BOD level = 1.6V  
1.623  
1.622  
1.621  
1.620  
1.619  
1.618  
1.617  
1.616  
1.615  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
Figure 33-119. BOD Thresholds vs. Temperature  
BOD level = 3.0V  
3.066  
3.063  
3.060  
3.057  
3.054  
3.051  
3.048  
3.045  
3.042  
3.039  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
236  
33.2.7 External Reset Characteristics  
Figure 33-120. Minimum Reset Pin Pulse Width vs. VCC  
144  
136  
128  
120  
112  
104  
96  
105°C  
85°C  
25°C  
88  
-40°C  
80  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 33-121. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 1.8V  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40°C  
25°C  
85°C  
105°C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VRESET [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
237  
Figure 33-122. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.0V  
120  
108  
96  
84  
72  
60  
48  
36  
24  
12  
0
-40°C  
25°C  
85°C  
105°C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VRESET [V]  
Figure 33-123. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.3V  
140  
120  
100  
80  
60  
40  
-40°C  
25°C  
85°C  
20  
105°C  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VRESET [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
238  
Figure 33-124. Reset Pin Input Threshold Voltage vs. VCC  
VIH - Reset pin read as “1”  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
105 °C  
85 °C  
25 °C  
- 40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
33.2.8 Oscillator Characteristics  
33.2.8.1 Ultra Low-Power Internal Oscillator  
Figure 33-125. Ultra Low-Power Internal Oscillator Frequency vs. Temperature  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
30.5  
30.0  
3.3 V  
3.0 V  
2.7 V  
1.8 V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
239  
33.2.8.2 32.768kHz Internal Oscillator  
Figure 33-126. 32.768kHz Internal Oscillator Frequency vs. Temperature  
32.9  
32.9  
32.8  
32.8  
32.7  
32.7  
32.6  
32.6  
32.5  
1.6 V  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
3.6 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
Figure 33-127. 32.768kHz Internal Oscillator Frequency vs. Calibration Value  
VCC = 3.0V, T = 25°C  
50  
47  
44  
41  
38  
35  
32  
29  
26  
23  
20  
3.0 V  
-4  
16  
36  
56  
76  
96  
116  
136  
156  
176  
196  
216  
236  
256  
RC32KCAL[7..0]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
240  
33.2.8.3 2MHz Internal Oscillator  
Figure 33-128. 2MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
2.14  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45 -35 -25 -15 -5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
Figure 33-129. 2MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
2.009  
2.006  
2.003  
2.7 V  
3.6 V  
3.0 V  
1.8 V  
1.6 V  
2.000  
2.2 V  
1.997  
1.994  
1.991  
1.988  
1.985  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
241  
Figure 33-130. 2MHz Internal Oscillator Frequency vs. CALA Calibration Value  
VCC = 3V  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
-40 °C  
25 °C  
85 °C  
°
105 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
33.2.8.4 32MHz Internal Oscillator  
Figure 33-131. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
36.0  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperatuire [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
242  
Figure 33-132. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
32.10  
32.07  
32.04  
32.01  
31.98  
2.2 V  
2.7 V  
3.0 V  
3.6 V  
1.6 V  
31.95  
1.8 V  
31.92  
31.89  
31.86  
31.83  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
Figure 33-133. 32MHz Internal Oscillator CALA Calibration Step Size  
T = -40°C, VCC = 3.0V  
0.31 %  
0.29 %  
0.27 %  
0.26 %  
0.24 %  
0.22 %  
0.20 %  
0.18 %  
0.17 %  
0.15 %  
0.13 %  
-40 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
243  
Figure 33-134. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 25°C, VCC = 3.0V  
0.26 %  
0.24 %  
0.22 %  
0.20 %  
0.18 %  
0.16 %  
0.14 %  
0.12 %  
25 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
Figure 33-135. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 85°C, VCC = 3.0V  
0.24 %  
0.23 %  
0.21 %  
0.20 %  
0.19 %  
0.18 %  
0.17 %  
0.15 %  
0.14 %  
0.13 %  
85 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
244  
Figure 33-136. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 105°C, VCC = 3.0V  
0.22 %  
0.21 %  
0.20 %  
0.19 %  
0.18 %  
0.17 %  
0.16 %  
0.15 %  
0.14 %  
105 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
Figure 33-137. 32MHz Internal Oscillator Frequency vs. CALB Calibration Value  
VCC = 3.0V  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
-40 °C  
25 °C  
85 °C  
105 °C  
0
7
14  
21  
28  
35  
42  
49  
56  
63  
CALB  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
245  
33.2.8.5 32MHz Internal Oscillator Calibrated to 48MHz  
Figure 33-138. 48MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
Figure 33-139. 48MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
48.20  
48.15  
48.10  
48.05  
48.00  
47.95  
47.90  
47.85  
47.80  
47.75  
1.6 V  
1.8 V  
2.2 V  
3.6 V  
2.7 V  
3.0 V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
246  
33.2.9 Two-Wire Interface Characteristics  
Figure 33-140. SDA Hold Time vs. Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 33-141. SDA Hold Time vs. Supply Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
247  
33.2.10 PDI Characteristics  
Figure 33-142. Maximum PDI Frequency vs. VCC  
24  
22  
20  
18  
16  
14  
12  
10  
8
-40°C  
25°C  
85°C  
105°C  
6
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
248  
33.3 Atmel ATxmega128D3  
33.3.1 Current Consumption  
33.3.1.1 Active Mode Supply Current  
Figure 33-143. Active Supply Current vs. Frequency  
fSYS = 0 - 1MHz external clock, T = 25°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
3.6V  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 33-144. Active Supply Current vs. Frequency  
fSYS = 1 - 32MHz external clock, T = 25°C  
12  
10  
8
3.6V  
3.3V  
3.0V  
2.7V  
6
4
2.2V  
1.8V  
2
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
249  
Figure 33-145. Active Mode Supply Current vs. VCC  
fSYS = 32.768kHz internal oscillator  
300  
250  
200  
150  
100  
50  
-40 °C  
25 °C  
85 °C  
105 °C  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-146. Active Mode Supply Current vs. VCC  
fSYS = 1MHz external clock  
800  
700  
600  
500  
400  
300  
200  
100  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
250  
Figure 33-147. Active Mode Supply Current vs. VCC  
fSYS = 2MHz internal oscillator  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
-40 °C  
25°C  
85°C  
105°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-148. Active Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator prescaled to 8MHz  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
251  
Figure 33-149. Active Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator  
13.0  
12.0  
11.0  
10.0  
9.0  
-40 °C  
25 °C  
85 °C  
105 °C  
8.0  
7.0  
6.0  
5.0  
4.0  
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
33.3.1.2 Idle Mode Supply Current  
Figure 33-150. Idle Mode Supply Current vs. Frequency  
fSYS = 0 - 1MHz external clock, T = 25°C  
140  
120  
100  
80  
3.6V  
3.3V  
3.0V  
2.7V  
60  
2.2V  
1.8V  
40  
20  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
252  
Figure 33-151. Idle Mode Supply Current vs. Frequency  
fSYS = 1 - 32MHz external clock, T = 25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.6V  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0.5  
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
Figure 33-152. Idle Mode Supply Current vs. VCC  
fSYS = 32.768kHz internal oscillator  
36  
34  
32  
30  
28  
26  
24  
105 °C  
85 °C  
-40 °C  
25 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
253  
Figure 33-153. Idle Mode Supply Current vs. VCC  
fSYS = 1MHz external clock  
105 °C  
85 °C  
25 °C  
-40 °C  
140  
120  
100  
80  
60  
40  
20  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-154. Idle Mode Supply Current vs. VCC  
fSYS = 2MHz internal oscillator  
400  
350  
300  
250  
200  
150  
100  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
254  
Figure 33-155. Idle Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator prescaled to 8MHz  
1800  
1600  
1400  
1200  
1000  
800  
-40 °C  
25 °C  
85 °C  
105 °C  
600  
400  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-156. Idle Mode Current vs. VCC  
fSYS = 32MHz internal oscillator  
5000  
4500  
4000  
3500  
3000  
2500  
-40 °C  
25 °C  
85 °C  
105 °C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
255  
33.3.1.3 Power-down Mode Supply Current  
Figure 33-157. Power-down Mode Supply Current vs. VCC  
All functions disabled  
6
5
4
3
2
1
0
105 °C  
85 °C  
25 °C  
- 40 °C  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-158. Power-down Mode Supply Current vs. VCC  
Watchdog and sampled BOD enabled  
7
6
5
4
3
2
1
0
105 °C  
85 °C  
25 °C  
-40 °C  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
256  
Figure 33-159. Power-down Mode Supply Current vs. Temperature  
Watchdog and sampled BOD enabled and running from internal ULP oscillator  
7
6
5
4
3
2
1
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
33.3.2 I/O Pin Characteristics  
33.3.2.1 Pull-up  
Figure 33-160. I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 1.8V  
70  
60  
50  
40  
30  
20  
10  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VPIN [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
257  
Figure 33-161. I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 3.0V  
120  
100  
80  
60  
40  
20  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VPIN [V]  
Figure 33-162. I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 3.3V  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
105 °C  
20  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VPIN [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
258  
33.3.2.2 Output Voltage vs. Sink/Source Current  
Figure 33-163. I/O Pin Output Voltage vs. Source Current  
VCC = 1.8V  
2.0  
1.8  
1.6  
1.4  
1.2  
-40 °C  
1.0  
0.8  
25 °C  
0.6  
85 °C  
0.4  
0.2  
105 °C  
0.0  
-5.0  
-4.5  
-4.0  
-3.5  
-3.0  
-2.5  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
IPIN [mA]  
Figure 33-164. I/O Pin Output Voltage vs. Source Current  
VCC = 3.0V  
3.5  
3.0  
2.5  
2.0  
-40 °C  
25 °C  
85 °C  
1.5  
1.0  
0.5  
0.0  
105 °C  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
IPIN [mA]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
259  
Figure 33-165. I/O Pin Output Voltage vs. Source Current  
VCC = 3.3V  
3.5  
3.0  
2.5  
2.0  
-40°C  
1.5  
25 °C  
1.0  
85 °C  
0.5  
0.0  
105 °C  
-20  
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
IPIN [mA]  
Figure 33-166. I/O Pin Output Voltage vs. Sink Current  
VCC = 1.8V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
1
2
3
4
5
6
7
8
9
IPIN [mA]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
260  
Figure 33-167. I/O Pin Output Voltage vs. Sink Current  
VCC = 3.0V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
IPIN [mA]  
Figure 33-168. I/O Pin Output Voltage vs. Sink Current  
VCC = 3.3V  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
261  
33.3.2.3 Thresholds and Hysteresis  
Figure 33-169. I/O Pin Input Threshold Voltage vs. VCC  
VIH I/O pin read as “1”  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-170. I/O Pin Input Threshold Voltage vs. VCC  
VIL I/O pin read as “0”  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
262  
Figure 33-171. I/O Pin Input Hysteresis vs. VCC  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
33.3.3 ADC Characteristics  
Figure 33-172. INL Error vs. External VREF  
T = 25C, VCC = 3.6V, external reference  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Single-ended unsigned mode  
Differential mode  
Single -ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
263  
Figure 33-173. INL Error vs. Sample Rate  
T = 25C, VCC = 3.6V, VREF = 3.0V external  
0.70  
0.65  
0.60  
0.55  
Single-ended unsigned mode  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
Differential mode  
Single-ended signed mode  
50  
100  
150  
200  
250  
300  
ADC sample rate [ksps]  
Figure 33-174. INL Error vs. Input Code  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
-1.25  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
264  
Figure 33-175. DNL Error vs. External VREF  
T = 25C, VCC = 3.6V, external reference  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
Figure 33-176. DNL Error vs. Sample Rate  
T = 25C, VCC = 3.6V, VREF = 3.0V external  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
50  
100  
150  
200  
250  
300  
ADC sample rate [ksps]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
265  
Figure 33-177. DNL Error vs. Input Code  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
Figure 33-178. Gain Error vs. VREF  
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps  
-5  
-6  
-7  
Differential mode  
-8  
-9  
mode  
Single-ended signed  
-10  
-11  
-12  
-13  
-14  
-15  
Single-ended unsigned mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
266  
Figure 33-179. Gain Error vs. VCC  
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
Differential mode  
Single-ended signed  
mode  
Single-ended unsigned mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
Figure 33-180. Offset Error vs. VREF  
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
Differential mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
267  
Figure 33-181. Gain Error vs. Temperature  
VCC = 3.0V, VREF = external 2.0V  
0
-2  
Single-ended signed mode  
-4  
-6  
Differentialmode  
-8  
-10  
Single-ended unsigned  
mode  
-12  
-14  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
C]  
55  
65  
75  
85  
95 105  
Temperature [  
°
Figure 33-182. Offset Error vs. VCC  
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps  
8.00  
7.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
Differential mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
268  
33.3.4 Analog Comparator Characteristics  
Figure 33-183. Analog Comparator Hysteresis vs. VCC  
Small hysteresis  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
105°C  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
CC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
V
Figure 33-184. Analog Comparator Hysteresis vs. VCC  
Large hysteresis  
38  
36  
34  
32  
30  
28  
26  
24  
22  
105°C  
85°C  
25°C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC[V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
269  
Figure 33-185. Analog Comparator Current Source vs. Calibration Value  
VCC = 3.0V  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
-40°C  
25°C  
85°C  
105°C  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CURRCALIBA[3..0]  
Figure 33-186. Voltage Scaler INL vs. SCALEFAC  
T = 25C, VCC = 3.0V  
0.425  
0.4  
0.375  
0.35  
0.325  
0.3  
25°C  
0.275  
0.25  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
270  
33.3.5 Internal 1.0V Reference Characteristics  
Figure 33-187. ADC Internal 1.0V Reference vs. Temperature  
1.007  
1.006  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
1.6 V  
2.7 V  
3.6 V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
T [°C]  
33.3.6 BOD Characteristics  
Figure 33-188. BOD Thresholds vs. Temperature  
BOD level = 1.6V  
1.598  
1.596  
1.594  
1.592  
Rising Vcc  
1.590  
1.588  
1.586  
1.584  
1.582  
Falling Vcc  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
271  
Figure 33-189. BOD Thresholds vs. Temperature  
BOD level = 3.0V  
3.05  
3.04  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
Rising Vcc  
Falling Vcc  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
T emperature[°C]  
33.3.7 External Reset Characteristics  
Figure 33-190. Minimum Reset Pin Pulse Width vs. VCC  
160  
140  
120  
100  
80  
105 °C  
85 °C  
25 °C  
-40 °C  
60  
40  
20  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
272  
Figure 33-191. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 1.8V  
80  
60  
40  
20  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VRESET [V]  
Figure 33-192. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.0V  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
20  
0
105 °C  
3.0  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
VRESET [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
273  
Figure 33-193. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.3V  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
105 °C  
20  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VRESET [V]  
Figure 33-194. Reset Pin Input Threshold Voltage vs. VCC  
VIH - Reset pin read as “1”  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
105 °C  
85 °C  
25 °C  
- 40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
274  
33.3.8 Oscillator Characteristics  
33.3.8.1 Ultra Low-Power Internal Oscillator  
Figure 33-195. Ultra Low-Power Internal Oscillator Frequency vs. Temperature  
36.0  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
1.8 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
33.3.8.2 32.768kHz Internal Oscillator  
Figure 33-196. 32.768kHz Internal Oscillator Frequency vs. Temperature  
32.89  
32.83  
32.77  
32.71  
32.65  
32.59  
32.53  
32.47  
32.41  
32.35  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
3.3 V  
3.6 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
275  
Figure 33-197. 32.768kHz Internal Oscillator Frequency vs. Calibration Value  
VCC = 3.0V, T = 25°C  
50  
47  
44  
41  
38  
35  
32  
29  
26  
23  
20  
3.0V  
0
16  
32  
48  
64  
80  
96  
112 128 144 160 176 192 208 224 240  
RC32KCAL[7..0]  
33.3.8.3 2MHz Internal Oscillator  
Figure 33-198. 2MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
2.16  
2.14  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
1.94  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
276  
Figure 33-199. 2MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
2.010  
2.005  
2.000  
1.995  
1.990  
1.985  
1.980  
1.975  
1.970  
1.8 V  
2.2 V  
2.7 V  
3.3 V  
3.0 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
Figure 33-200. 2MHz Internal Oscillator Frequency vs. CALA Calibration Value  
VCC = 3V  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
-40 °C  
25 °C  
85 °C  
105 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
277  
33.3.8.4 32MHz Internal Oscillator  
Figure 33-201. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
Figure 33-202. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
32.2  
32.1  
32.0  
31.9  
31.8  
31.7  
31.6  
1.8 V  
2.2 V  
3.3 V  
2.7 V  
3.0 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
278  
Figure 33-203. 32MHz Internal Oscillator CALA Calibration Step Size  
T = -40°C, VCC = 3.0V  
0.33 %  
0.30 %  
0.28 %  
0.25 %  
0.23 %  
0.20 %  
0.18 %  
0.15 %  
0.13 %  
0.10 %  
-40 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
Figure 33-204. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 25°C, VCC = 3.0V  
0.25 %  
0.24 %  
0.22 %  
0.21 %  
0.20 %  
0.19 %  
0.18 %  
0.16 %  
0.15 %  
0.14 %  
25 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
279  
Figure 33-205. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 85°C, VCC = 3.0V  
0.23 %  
0.22 %  
0.21 %  
0.20 %  
0.19 %  
0.18 %  
0.17 %  
0.16 %  
0.15 %  
0.14 %  
0.13 %  
85 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
Figure 33-206. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 105°C, VCC = 3.0V  
0.24 %  
0.23 %  
0.22 %  
0.21 %  
0.20 %  
0.19 %  
0.17 %  
0.16 %  
0.15 %  
0.14 %  
0.13 %  
105 °C  
128  
0
16  
32  
48  
64  
80  
96  
112  
CALA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
280  
Figure 33-207. 32MHz Internal Oscillator Frequency vs. CALB Calibration Value  
VCC = 3.0V  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
-40 °C  
25 °C  
85 °C  
105 °C  
0
7
14  
21  
28  
35  
42  
49  
56  
63  
DFLLRC32MCALB  
33.3.8.5 32MHz Internal Oscillator Calibrated to 48MHz  
Figure 33-208. 48MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
54  
53  
52  
51  
50  
49  
48  
47  
46  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
1.8 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
281  
Figure 33-209. 48MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
48.2  
48.1  
48.0  
47.9  
47.8  
47.7  
47.6  
47.5  
47.4  
47.3  
47.2  
1.8 V  
3.6 V  
3.0 V  
2.7 V  
3.3 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
33.3.9 Two-Wire Interface Characteristics  
Figure 33-210. SDA Hold Time vs. Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
282  
Figure 33-211. SDA Hold Time vs. Supply Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
33.3.10 PDI Characteristics  
Figure 33-212. Maximum PDI Frequency vs. VCC  
22  
20  
18  
16  
14  
12  
10  
8
-40 °C  
25 °C  
85 °C  
105 °C  
6
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
283  
33.4 Atmel ATxmega192D3  
33.4.1 Current Consumption  
33.4.1.1 Active Mode Supply Current  
Figure 33-213.Active Supply Current vs. Frequency  
fSYS = 0 - 1MHz external clock, T = 25°C  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 33-214.Active Supply Current vs. Frequency  
fSYS = 1 - 32MHz external clock, T = 25°C  
11  
10  
9
3.3V  
3.0V  
2.7V  
8
7
6
5
4
2.2V  
3
2
1
0
1.8V  
0
2
4
6
8
10 12  
14 16  
18 20  
22 24  
26 28  
30 32  
Frequency [MHz]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
284  
Figure 33-215.Active Mode Supply Current vs. VCC  
fSYS = 32.768kHz internal oscillator  
270  
250  
230  
210  
190  
170  
150  
130  
110  
90  
-40 °C  
25 °C  
85 °C  
105 °C  
70  
50  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-216.Active Mode Supply Current vs. VCC  
fSYS = 1MHz external clock  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
285  
Figure 33-217.Active Mode Supply Current vs. VCC  
fSYS = 2MHz internal oscillator  
1450  
1300  
1150  
1000  
850  
-40 °C  
25 °C  
85 °C  
105 °C  
700  
550  
400  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-218.Active Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator prescaled to 8MHz  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
286  
Figure 33-219.Active Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator  
14.0  
13.0  
12.0  
11.0  
10.0  
9.0  
-40 °C  
25 °C  
85 °C  
105 °C  
8.0  
7.0  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
33.4.1.2 Idle Mode Supply Current  
Figure 33-220.Idle Mode Supply Current vs. Frequency  
fSYS = 0 - 1MHz external clock, T = 25°C  
130  
117  
104  
91  
78  
65  
52  
39  
26  
13  
0
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
287  
Figure 33-221.Idle Mode Supply Current vs. Frequency  
fSYS = 1 - 32MHz external clock, T = 25°C  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0.5  
0
0
2
4
6
8
10 12  
14  
16 18  
20 22  
24 26  
28 30  
32  
Frequency [MHz]  
Figure 33-222.Idle Mode Supply Current vs. VCC  
fSYS = 32.768kHz internal oscillator  
41  
39  
37  
35  
33  
31  
29  
27  
25  
105 °C  
85 °C  
-40 °C  
25 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
288  
Figure 33-223.Idle Mode Supply Current vs. VCC  
fSYS = 1MHz external clock  
160  
145  
130  
115  
100  
85  
105 °C  
85 °C  
25 °C  
-40 °C  
70  
55  
40  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-224.Idle Mode Supply Current vs. VCC  
fSYS = 2MHz internal oscillator  
215  
195  
175  
155  
135  
115  
95  
-40 °C  
25 °C  
105 °C  
85 °C  
75  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
289  
Figure 33-225.Idle Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator prescaled to 8MHz  
1000  
900  
800  
700  
600  
500  
400  
300  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-226.Idle Mode Current vs. VCC  
fSYS = 32MHz internal oscillator  
5.4  
5.1  
4.8  
4.5  
4.2  
3.9  
3.6  
3.3  
3.0  
-40 °C  
25 °C  
85 °C  
105 °C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
290  
33.4.1.3 Power-down Mode Supply Current  
Figure 33-227.Power-down Mode Supply Current vs. VCC  
All functions disabled  
12.0  
10.5  
9.0  
7.5  
6.0  
4.5  
3.0  
1.5  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-228.Power-down Mode Supply Current vs. VCC  
Watchdog and sampled BOD enabled  
12.0  
10.5  
9.0  
7.5  
6.0  
4.5  
3.0  
1.5  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
291  
Figure 33-229.Power-down Mode Supply Current vs. Temperature  
Watchdog and sampled BOD enabled and running from internal ULP oscillator  
10.5  
9.0  
7.5  
6.0  
4.5  
3.0  
1.5  
0.0  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
33.4.2 I/O Pin Characteristics  
33.4.2.1 Pull-up  
Figure 33-230.I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 1.8V  
72  
64  
56  
48  
40  
32  
24  
16  
8
-
40 °C  
25 °C  
85 °C  
105 °C  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VPIN [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
292  
Figure 33-231.I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 3.0V  
120  
100  
80  
60  
40  
20  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VPIN [V]  
Figure 33-232.I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 3.3V  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
20  
105 °C  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VPIN [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
293  
33.4.2.2 Output Voltage vs. Sink/Source Current  
Figure 33-233.I/O Pin Output Voltage vs. Source Current  
VCC = 1.8V  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
105 °C  
0.8  
25 °C  
0.6  
-40 °C  
0.4  
0.2  
85 °C  
-4.0  
0.0  
-5.0  
-4.5  
-3.5  
-3.0  
-2.5  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
IPIN [mA]  
Figure 33-234.I/O Pin Output Voltage vs. Source Current  
VCC = 3.0V  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
-40°C  
1.2  
105 °C  
85 °C  
0.9  
0.6  
0.3  
0.0  
25 °C  
-16  
-14  
-12  
-10  
-8  
IPIN [mA]  
-6  
-4  
-2  
0
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
294  
Figure 33-235.I/O Pin Output Voltage vs. Source Current  
VCC = 3.3V  
3.3  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
105 °C  
1.2  
0.9  
0.6  
0.3  
0.0  
85 °C  
-40 °C  
25 °C  
-20  
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
IPIN [mA]  
Figure 33-236.I/O Pin Output Voltage vs. Sink Current  
VCC = 1.8V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
1
2
3
4
5
6
7
8
IPIN [mA]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
295  
Figure 33-237.I/O Pin Output Voltage vs. Sink Current  
VCC = 3.0V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
IPIN [mA]  
Figure 33-238.I/O Pin Output Voltage vs. Sink Current  
VCC = 3.3V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
296  
33.4.2.3 Thresholds and Hysteresis  
Figure 33-239.I/O Pin Input Threshold Voltage vs. VCC  
VIH I/O pin read as “1”  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-240.I/O Pin Input Threshold Voltage vs. VCC  
VIL I/O pin read as “0”  
1.65  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
297  
Figure 33-241.I/O Pin Input Hysteresis vs. VCC  
0.40  
0.37  
0.34  
0.31  
0.28  
0.25  
0.22  
0.19  
0.16  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
33.4.3 ADC Characteristics  
Figure 33-242.INL Error vs. External VREF  
T = 25C, VCC = 3.6V, external reference  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Single-ended unsigned mode  
Differential mode  
Single -ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
298  
Figure 33-243.INL Error vs. Sample Rate  
T = 25C, VCC = 3.6V, VREF = 3.0V external  
0.70  
0.65  
0.60  
0.55  
Single-ended unsigned mode  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
Differential mode  
Single-ended signed mode  
50  
100  
150  
200  
250  
300  
ADC sample rate [ksps]  
Figure 33-244.INL Error vs. Input Code  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
-1.25  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
299  
Figure 33-245.DNL Error vs. External VREF  
T = 25C, VCC = 3.6V, external reference  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
Figure 33-246.DNL Error vs. Sample Rate  
T = 25C, VCC = 3.6V, VREF = 3.0V external  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
50  
100  
150  
200  
250  
300  
ADC sample rate [ksps]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
300  
Figure 33-247.DNL Error vs. Input Code  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
Figure 33-248.Gain Error vs. VREF  
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps  
-5  
-6  
-7  
Differential mode  
-8  
-9  
mode  
Single-ended signed  
-10  
-11  
-12  
-13  
-14  
-15  
Single-ended unsigned mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
301  
Figure 33-249.Gain Error vs. VCC  
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
Differential mode  
Single-ended signed  
mode  
Single-ended unsigned mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
Figure 33-250.Offset Error vs. VREF  
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
Differential mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
302  
Figure 33-251.Gain Error vs. Temperature  
VCC = 3.0V, VREF = external 2.0V  
0
-2  
Single-ended signed mode  
-4  
-6  
Differentialmode  
-8  
-10  
Single-ended unsigned  
mode  
-12  
-14  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
Figure 33-252.Offset Error vs. VCC  
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps  
8.00  
7.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
Differential mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
303  
33.4.4 Analog Comparator Characteristics  
Figure 33-253.Analog Comparator Hysteresis vs. VCC  
Small hysteresis  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
105°C  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-254.Analog Comparator Hysteresis vs. VCC  
Large hysteresis  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
105°C  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
304  
Figure 33-255.Analog Comparator Current Source vs. Calibration Value  
VCC = 3.0V  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
-40 °C  
25 °C  
85 °C  
105 °C  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CURRCALIBA[3..0]  
Figure 33-256.Voltage Scaler INL vs. SCALEFAC  
T = 25C, VCC = 3.0V  
0.39  
0.36  
0.33  
0.3  
25°C  
0.27  
0.24  
0.21  
0.18  
0.15  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
305  
33.4.5 Internal 1.0V Reference Characteristics  
Figure 33-257.ADC Internal 1.0V Reference vs. Temperature  
1.007  
1.006  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
1.6 V  
2.7 V  
3.6 V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
T [°C]  
33.4.6 BOD Characteristics  
Figure 33-258.BOD Thresholds vs. Temperature  
BOD level = 1.6V  
1.68  
1.67  
1.66  
1.65  
1.64  
1.63  
1.62  
1.61  
1.60  
1.59  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
306  
Figure 33-259.BOD Thresholds vs. Temperature  
BOD level = 3.0V  
3.16  
3.14  
3.12  
3.10  
3.08  
3.06  
3.04  
3.02  
3.00  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
33.4.7 External Reset Characteristics  
Figure 33-260.Minimum Reset Pin Pulse Width vs. VCC  
136  
128  
120  
112  
104  
96  
105 °C  
85 °C  
88  
25 °C  
-40 °C  
80  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
307  
Figure 33-261.Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 1.8V  
72  
64  
56  
48  
40  
32  
24  
16  
8
-
40 °C  
25 °C  
85 °C  
105 °C  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VPIN [V]  
Figure 33-262.Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.0V  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
105°C  
20  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VRESET [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
308  
Figure 33-263.Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.3V  
144  
126  
108  
90  
72  
54  
36  
-40 °C  
25 °C  
85 °C  
105°C  
18  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VRESET [V]  
Figure 33-264.Reset Pin Input Threshold Voltage vs. VCC  
VIH - Reset pin read as “1”  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
309  
33.4.8 Oscillator Characteristics  
33.4.8.1 Ultra Low-Power Internal Oscillator  
Figure 33-265.Ultra Low-Power Internal Oscillator Frequency vs. Temperature  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
30.5  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.0 V  
1.8 V  
1.6 V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
33.4.8.2 32.768kHz Internal Oscillator  
Figure 33-266.32.768kHz Internal Oscillator Frequency vs. Temperature  
32.768kHz internal oscillator frequency vs. temperature  
32.90  
32.85  
32.80  
32.75  
32.70  
32.65  
32.60  
32.55  
32.50  
1.6 V  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
3.3 V  
3.6 V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
310  
Figure 33-267.32.768kHz Internal Oscillator Frequency vs. Calibration Value  
VCC = 3.0V, T = 25°C  
53  
50  
47  
44  
41  
38  
35  
32  
29  
26  
23  
3.0 V  
0
16  
32 48  
64  
80  
96 112 128 144 160 176 192 208 224 240 256  
RC32KCAL[7..0]  
33.4.8.3 2MHz Internal Oscillator  
Figure 33-268. 2MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
2.16  
2.14  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
311  
Figure 33-269. 2MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
2.010  
2.005  
2.000  
1.995  
1.990  
1.985  
1.980  
1.975  
1.970  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
3.3 V  
3.6 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
Figure 33-270. 2MHz Internal Oscillator Frequency vs. CALA Calibration Value  
VCC = 3V  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
-40 °C  
25 °C  
85 °C  
105 °C  
0
8
16 24 32 40 48 56 64 72 80 88 96 104 112 120 128  
CALA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
312  
33.4.8.4 32MHz Internal Oscillator  
Figure 33-271. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
36.5  
36.0  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
Figure 33-272. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
32.15  
32.10  
32.05  
32.00  
31.95  
31.90  
31.85  
31.80  
31.75  
1.8V  
2.2V  
2.7V  
3.0V  
3.3V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
313  
Figure 33-273. 32MHz Internal Oscillator CALA Calibration Step Size  
T = -40°C, VCC = 3.0V  
0.4  
0.35  
0.3  
0.25  
0.2  
-40 °C  
0.15  
0.1  
0.05  
0
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
Figure 33-274. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 25°C, VCC = 3.0V  
0.28  
0.26  
0.24  
0.22  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
25 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
314  
Figure 33-275. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 85°C, VCC = 3.0V  
0.26  
0.24  
0.22  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
85 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
Figure 33-276. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 105°C, VCC = 3.0V  
0.24  
0.22  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
105 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
315  
Figure 33-277. 32MHz Internal Oscillator Frequency vs. CALB Calibration Value  
VCC = 3.0V  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
-40 °C  
25 °C  
85 °C  
105 °C  
0
7
14  
21  
28  
35  
42  
49  
56  
63  
CALB  
33.4.8.5 32MHz Internal Oscillator Calibrated to 48MHz  
Figure 33-278. 48MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
32MHz internal oscillator frequency vs. temperature  
Using 48MHz calibration value from signature row. DFLL disabled  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
316  
Figure 33-279. 48MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
48.3  
48.2  
48.1  
2.2V  
2.7V  
3.0V  
3.3V  
1.8V  
48.0  
47.9  
47.8  
47.7  
47.6  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
33.4.9 Two-Wire Interface Characteristics  
Figure 33-280.SDA Hold Time vs. Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
317  
Figure 33-281.SDA Hold Time vs. Supply Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
33.4.10 PDI Characteristics  
Figure 33-282.Maximum PDI Frequency vs. VCC  
36  
31  
26  
21  
16  
11  
-40°C  
25°C  
85°C  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
318  
33.5 Atmel ATxmega256D3  
33.5.1 Current Consumption  
33.5.1.1 Active Mode Supply Current  
Figure 33-283.Active Supply Current vs. Frequency  
fSYS = 0 - 1MHz external clock, T = 25°C  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 33-284.Active Supply Current vs. Frequency  
fSYS = 1 - 32MHz external clock, T = 25°C  
11  
10  
9
3.3V  
3.0V  
2.7V  
8
7
6
5
4
2.2V  
3
2
1
0
1.8V  
0
2
4
6
8
10 12  
14 16  
18 20  
22 24  
26 28  
30 32  
Frequency [MHz]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
319  
Figure 33-285.Active Mode Supply Current vs. VCC  
fSYS = 32.768kHz internal oscillator  
270  
250  
230  
210  
190  
170  
150  
130  
110  
90  
-40 °C  
25 °C  
85 °C  
105 °C  
70  
50  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-286.Active Mode Supply Current vs. VCC  
fSYS = 1MHz external clock  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
320  
Figure 33-287.Active Mode Supply Current vs. VCC  
fSYS = 2MHz internal oscillator  
1450  
1300  
1150  
1000  
850  
-40 °C  
25 °C  
85 °C  
105 °C  
700  
550  
400  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-288.Active Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator prescaled to 8MHz  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
321  
Figure 33-289.Active Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator  
14.0  
13.0  
12.0  
11.0  
10.0  
9.0  
-40 °C  
25 °C  
85 °C  
105 °C  
8.0  
7.0  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
33.5.1.2 Idle Mode Supply Current  
Figure 33-290.Idle Mode Supply Current vs. Frequency  
fSYS = 0 - 1MHz external clock, T = 25°C  
130  
117  
104  
91  
78  
65  
52  
39  
26  
13  
0
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
322  
Figure 33-291.Idle Mode Supply Current vs. Frequency  
fSYS = 1 - 32MHz external clock, T = 25°C  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0.5  
0
0
2
4
6
8
10 12  
14  
16 18  
20 22  
24 26  
28 30  
32  
Frequency [MHz]  
Figure 33-292.Idle Mode Supply Current vs. VCC  
fSYS = 32.768kHz internal oscillator  
41  
39  
37  
35  
33  
31  
29  
27  
25  
105 °C  
85 °C  
-40 °C  
25 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
323  
Figure 33-293.Idle Mode Supply Current vs. VCC  
fSYS = 1MHz external clock  
160  
145  
130  
115  
100  
85  
105 °C  
85 °C  
25 °C  
-40 °C  
70  
55  
40  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-294.Idle Mode Supply Current vs. VCC  
fSYS = 2MHz internal oscillator  
215  
195  
175  
155  
135  
115  
95  
-40 °C  
25 °C  
105 °C  
85 °C  
75  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
324  
Figure 33-295.Idle Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator prescaled to 8MHz  
1000  
900  
800  
700  
600  
500  
400  
300  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-296.Idle Mode Current vs. VCC  
fSYS = 32MHz internal oscillator  
5.4  
5.1  
4.8  
4.5  
4.2  
3.9  
3.6  
3.3  
3.0  
-40 °C  
25 °C  
85 °C  
105 °C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
325  
33.5.1.3 Power-down Mode Supply Current  
Figure 33-297.Power-down Mode Supply Current vs. VCC  
All functions disabled  
12.0  
10.5  
9.0  
7.5  
6.0  
4.5  
3.0  
1.5  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-298.Power-down Mode Supply Current vs. VCC  
Watchdog and sampled BOD enabled  
12.0  
10.5  
9.0  
7.5  
6.0  
4.5  
3.0  
1.5  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
326  
Figure 33-299.Power-down Mode Supply Current vs. Temperature  
Watchdog and sampled BOD enabled and running from internal ULP oscillator  
10.5  
9.0  
7.5  
6.0  
4.5  
3.0  
1.5  
0.0  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
33.5.2 I/O Pin Characteristics  
33.5.2.1 Pull-up  
Figure 33-300.I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 1.8V  
72  
64  
56  
48  
40  
32  
24  
16  
8
-
40 °C  
25 °C  
85 °C  
105 °C  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VPIN [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
327  
Figure 33-301.I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 3.0V  
120  
100  
80  
60  
40  
20  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VPIN [V]  
Figure 33-302.I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 3.3V  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
20  
105 °C  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VPIN [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
328  
33.5.2.2 Output Voltage vs. Sink/Source Current  
Figure 33-303.I/O Pin Output Voltage vs. Source Current  
VCC = 1.8V  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
105 °C  
0.8  
25 °C  
0.6  
-40 °C  
0.4  
0.2  
85 °C  
-4.0  
0.0  
-5.0  
-4.5  
-3.5  
-3.0  
-2.5  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
IPIN [mA]  
Figure 33-304.I/O Pin Output Voltage vs. Source Current  
VCC = 3.0V  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
-40°C  
1.2  
105 °C  
85 °C  
0.9  
0.6  
0.3  
0.0  
25 °C  
-16  
-14  
-12  
-10  
-8  
IPIN [mA]  
-6  
-4  
-2  
0
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
329  
Figure 33-305.I/O Pin Output Voltage vs. Source Current  
VCC = 3.3V  
3.3  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
105 °C  
1.2  
0.9  
0.6  
0.3  
0.0  
85 °C  
-40 °C  
25 °C  
-20  
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
IPIN [mA]  
Figure 33-306.I/O Pin Output Voltage vs. Sink Current  
VCC = 1.8V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
1
2
3
4
5
6
7
8
IPIN [mA]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
330  
Figure 33-307.I/O Pin Output Voltage vs. Sink Current  
VCC = 3.0V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
IPIN [mA]  
Figure 33-308.I/O Pin Output Voltage vs. Sink Current  
VCC = 3.3V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
331  
33.5.2.3 Thresholds and Hysteresis  
Figure 33-309.I/O Pin Input Threshold Voltage vs. VCC  
VIH I/O pin read as “1”  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-310.I/O Pin Input Threshold Voltage vs. VCC  
VIL I/O pin read as “0”  
1.65  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
332  
Figure 33-311.I/O Pin Input Hysteresis vs. VCC  
0.40  
0.37  
0.34  
0.31  
0.28  
0.25  
0.22  
0.19  
0.16  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
33.5.3 ADC Characteristics  
Figure 33-312.INL Error vs. External VREF  
T = 25C, VCC = 3.6V, external reference  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Single-ended unsigned mode  
Differential mode  
Single -ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
333  
Figure 33-313.INL Error vs. Sample Rate  
T = 25C, VCC = 3.6V, VREF = 3.0V external  
0.70  
0.65  
0.60  
0.55  
Single-ended unsigned mode  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
Differential mode  
Single-ended signed mode  
50  
100  
150  
200  
250  
300  
ADC sample rate [ksps]  
Figure 33-314.INL Error vs. Input Code  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
-1.25  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
334  
Figure 33-315.DNL Error vs. External VREF  
T = 25C, VCC = 3.6V, external reference  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
Figure 33-316.DNL Error vs. Sample Rate  
T = 25C, VCC = 3.6V, VREF = 3.0V external  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
50  
100  
150  
200  
250  
300  
ADC sample rate [ksps]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
335  
Figure 33-317.DNL Error vs. Input Code  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
Figure 33-318.Gain Error vs. VREF  
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps  
-5  
-6  
-7  
Differential mode  
-8  
-9  
mode  
Single-ended signed  
-10  
-11  
-12  
-13  
-14  
-15  
Single-ended unsigned mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
336  
Figure 33-319. Gain Error vs. VCC  
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps  
4
2
Single-ended signed mode  
Single-ended unsigned mode  
0
-2  
-4  
-6  
-8  
-10  
Differential mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
VREF [V]  
Figure 33-320. Offset Error vs. VREF  
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
Differential mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
337  
Figure 33-321. Gain Error vs. Temperature  
VCC = 3.0V, VREF = external 2.0V  
0
-2  
Single-ended signed mode  
-4  
-6  
Differentialmode  
-8  
-10  
Single-ended unsigned  
mode  
-12  
-14  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
Figure 33-322. Offset Error vs. VCC  
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps  
8.00  
7.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
Differential mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
338  
33.5.4 Analog Comparator Characteristics  
Figure 33-323. Analog Comparator Hysteresis vs. VCC  
Small hysteresis  
High speed mode, smallhysteresis  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
105°C  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-324. Analog Comparator Hysteresis vs. VCC  
Large hysteresis  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
105°C  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
339  
Figure 33-325. Analog Comparator Current Source vs. Calibration Value  
VCC = 3.0V  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
-40 °C  
25 °C  
85 °C  
105 °C  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CURRCALIBA[3..0]  
Figure 33-326. Voltage Scaler INL vs. SCALEFAC  
T = 25C, VCC = 3.0V  
0.39  
0.36  
0.33  
0.3  
25°C  
0.27  
0.24  
0.21  
0.18  
0.15  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
340  
33.5.5 Internal 1.0V Reference Characteristics  
Figure 33-327. ADC Internal 1.0V Reference vs. Temperature  
1.007  
1.006  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
1.6 V  
2.7 V  
3.6 V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
T [°C]  
33.5.6 BOD Characteristics  
Figure 33-328. BOD Thresholds vs. Temperature  
BOD level = 1.6V  
1.68  
1.67  
1.66  
1.65  
1.64  
1.63  
1.62  
1.61  
1.60  
1.59  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
341  
Figure 33-329. BOD Thresholds vs. Temperature  
BOD level = 3.0V  
3.16  
3.14  
3.12  
3.10  
3.08  
3.06  
3.04  
3.02  
3.00  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
33.5.7 External Reset Characteristics  
Figure 33-330. Minimum Reset Pin Pulse Width vs. VCC  
136  
128  
120  
112  
104  
96  
105 °C  
85 °C  
88  
25 °C  
-40 °C  
80  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
342  
Figure 33-331. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 1.8V  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40 °C  
25 °C  
85 °C  
105°C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VRESET [V]  
Figure 33-332. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.0V  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
105°C  
20  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VRESET [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
343  
Figure 33-333. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.3V  
VCC 3.3 V  
144  
126  
108  
90  
72  
54  
36  
-40 °C  
25 °C  
85 °C  
105°C  
18  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VRESET [V]  
Figure 33-334. Reset Pin Input Threshold Voltage vs. VCC  
VIH - Reset pin read as “1”  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
344  
33.5.8 Oscillator Characteristics  
33.5.8.1 Ultra Low-Power Internal Oscillator  
Figure 33-335. Ultra Low-Power Internal Oscillator Frequency vs. Temperature  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
30.5  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.0 V  
1.8 V  
1.6 V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
33.5.8.2 32.768kHz Internal Oscillator  
Figure 33-336. 32.768kHz Internal Oscillator Frequency vs. Temperature  
32.90  
32.85  
32.80  
32.75  
32.70  
32.65  
32.60  
32.55  
32.50  
1.6 V  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
3.3 V  
3.6 V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
345  
Figure 33-337. 32.768kHz Internal Oscillator Frequency vs. Calibration Value  
VCC = 3.0V, T = 25°C  
53  
50  
47  
44  
41  
38  
35  
32  
29  
26  
23  
3.0 V  
0
16  
32 48  
64  
80  
96 112 128 144 160 176 192 208 224 240 256  
RC32KCAL[7..0]  
33.5.8.3 2MHz Internal Oscillator  
Figure 33-338. 2MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
2.16  
2.14  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
346  
Figure 33-339. 2MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
2.010  
2.005  
2.000  
1.995  
1.990  
1.985  
1.980  
1.975  
1.970  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
3.3 V  
3.6 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
Figure 33-340. 2MHz Internal Oscillator Frequency vs. CALA Calibration Value  
VCC = 3V  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
-40 °C  
25 °C  
85 °C  
105 °C  
0
8
16 24 32 40 48 56 64 72 80 88 96 104 112 120 128  
CALA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
347  
33.5.8.4 32MHz Internal Oscillator  
Figure 33-341. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
36.5  
36.0  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
Figure 33-342. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
32.15  
32.10  
32.05  
32.00  
31.95  
31.90  
31.85  
31.80  
31.75  
1.8V  
2.2V  
2.7V  
3.0V  
3.3V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
348  
Figure 33-343. 32MHz Internal Oscillator CALA Calibration Step Size  
T = -40°C, VCC = 3.0V  
0.4  
0.35  
0.3  
0.25  
0.2  
-40 °C  
0.15  
0.1  
0.05  
0
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
Figure 33-344. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 25°C, VCC = 3.0V  
0.28  
0.26  
0.24  
0.22  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
25 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
349  
Figure 33-345. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 85°C, VCC = 3.0V  
0.26  
0.24  
0.22  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
85 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
Figure 33-346. 32MHz Internal Oscillator CALA Calibration Step Size  
T = 105°C, VCC = 3.0V  
0.24  
0.22  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
105 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
350  
Figure 33-347. 32MHz Internal Oscillator Frequency vs. CALB Calibration Value  
VCC = 3.0V  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
-40 °C  
25 °C  
85 °C  
105 °C  
0
7
14  
21  
28  
35  
42  
49  
56  
63  
CALB  
33.5.8.5 32MHz Internal Oscillator Calibrated to 48MHz  
Figure 33-348. 48MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
54  
53  
52  
51  
50  
49  
48  
47  
46  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
351  
Figure 33-349. 48MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
48.3  
48.2  
48.1  
48.0  
47.9  
47.8  
47.7  
47.6  
47.5  
47.4  
47.3  
1.8 V  
2.2 V  
3.6 V  
3.3 V  
2.7 V  
3.0 V  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
33.5.9 Two-Wire Interface Characteristics  
Figure 33-350. SDA Hold Time vs. Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
352  
Figure 33-351. SDA Hold Time vs. Supply Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
33.5.10 PDI Characteristics  
Figure 33-352. Maximum PDI Frequency vs. VCC  
36  
-40°C  
31  
26  
21  
16  
11  
25°C  
85°C  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
353  
33.6 Atmel ATxmega384D3  
33.6.1 Current Consumption  
33.6.1.1 Active Mode Supply Current  
Figure 33-353.Active Supply Current vs. Frequency  
fSYS = 0 - 1MHz external clock, T = 25°C  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 33-354.Active Supply Current vs. Frequency  
fSYS = 1 - 32MHz external clock, T = 25°C  
11  
10  
9
3.3V  
3.0V  
2.7V  
8
7
6
5
4
2.2V  
3
2
1
0
1.8V  
0
2
4
6
8
10 12  
14 16  
18 20  
22 24  
26 28  
30 32  
Frequency [MHz]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
354  
Figure 33-355.Active Mode Supply Current vs. VCC  
fSYS = 32.768kHz internal oscillator  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
-40 °C  
25 °C  
85 °C  
105 °C  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-356.Active Mode Supply Current vs. VCC  
fSYS = 1MHz external clock  
1280  
1160  
1040  
920  
800  
680  
560  
440  
320  
200  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
355  
Figure 33-357.Active Mode Supply Current vs. VCC  
fSYS = 2MHz internal oscillator  
1980  
1780  
1580  
1380  
1180  
980  
-40 °C  
25 °C  
85 °C  
105 °C  
780  
580  
380  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-358.Active Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator prescaled to 8MHz  
7.0  
-40 °C  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
356  
Figure 33-359.Active Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
9.0  
-40 °C  
25 °C  
85 °C  
105 °C  
8.0  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
33.6.1.2 Idle Mode Supply Current  
Figure 33-360.Idle Mode Supply Current vs. Frequency  
fSYS = 0 - 1MHz external clock, T = 25°C  
130  
117  
104  
91  
78  
65  
52  
39  
26  
13  
0
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
357  
Figure 33-361.Idle Mode Supply Current vs. Frequency  
fSYS = 1 - 32MHz external clock, T = 25°C  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0.5  
0
0
2
4
6
8
10 12  
14  
16 18  
20 22  
24 26  
28 30  
32  
Frequency [MHz]  
Figure 33-362.Idle Mode Supply Current vs. VCC  
fSYS = 32.768kHz internal oscillator  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
105 °C  
85 °C  
-40 °C  
25 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
358  
Figure 33-363.Idle Mode Supply Current vs. VCC  
fSYS = 1MHz external clock  
330  
300  
270  
240  
210  
180  
150  
120  
90  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-364.Idle Mode Supply Current vs. VCC  
fSYS = 2MHz internal oscillator  
640  
590  
540  
490  
440  
390  
340  
290  
240  
190  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
359  
Figure 33-365.Idle Mode Supply Current vs. VCC  
fSYS = 32MHz internal oscillator prescaled to 8MHz  
1900  
1700  
1500  
1300  
1100  
900  
-40 °C  
25 °C  
85 °C  
105 °C  
700  
500  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-366.Idle Mode Current vs. VCC  
fSYS = 32MHz internal oscillator  
5100  
4800  
4500  
4200  
3900  
3600  
3300  
3000  
-40 °C  
25 °C  
85 °C  
105 °C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
360  
33.6.1.3 Power-down Mode Supply Current  
Figure 33-367.Power-down Mode Supply Current vs. VCC  
All functions disabled  
18  
16  
14  
12  
10  
8
105 °C  
6
85 °C  
4
2
25 °C  
0
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-368.Power-down Mode Supply Current vs. VCC  
Watchdog and sampled BOD enabled  
16  
14  
12  
10  
8
105 °C  
85 °C  
6
4
2
25 °C  
-40 °C  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
361  
Figure 33-369.Power-down Mode Supply Current vs. Temperature  
Watchdog and sampled BOD enabled and running from internal ULP oscillator  
14  
12  
10  
8
3.0 V  
2.7 V  
2.2 V  
1.8 V  
6
4
2
0
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
33.6.2 I/O Pin Characteristics  
33.6.2.1 Pull-up  
Figure 33-370.I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 1.8V  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VPIN [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
362  
Figure 33-371.I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 3.0V  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
105 °C  
20  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VPIN [V]  
Figure 33-372.I/O Pin Pull-up Resistor Current vs. Input Voltage  
VCC = 3.3V  
140  
120  
100  
°
80  
60  
40  
20  
0
-40 °C  
25 °°C  
85 °C  
105 °C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VPIN [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
363  
33.6.2.2 Output Voltage vs. Sink/Source Current  
Figure 33-373.I/O Pin Output Voltage vs. Source Current  
VCC = 1.8V  
1.8  
1.6  
1.4  
-40 °C  
1.2  
1.0  
25 °C  
85 °C  
105 °C  
0.8  
0.6  
0.4  
0.2  
0.0  
-4.0  
-3.5  
-3.0  
-2.5  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
IPIN [mA]  
Figure 33-374.I/O Pin Output Voltage vs. Source Current  
VCC = 3.0V  
3.0  
2.7  
2.4  
2.1  
1.8  
-40 °C  
1.5  
1.2  
25 °C  
105 °C  
0.9  
0.6  
0.3  
0.0  
85 °C  
-16  
-14  
-12  
-10  
-8  
IPIN [mA]  
-6  
-4  
-2  
0
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
364  
Figure 33-375.I/O Pin Output Voltage vs. Source Current  
VCC = 3.3V  
3.3  
3.0  
2.7  
2.4  
2.1  
-40 °C  
1.8  
1.5  
25 °C  
1.2  
0.9  
0.6  
85 °C  
0.3  
105 °C  
0.0  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
IPIN [mA]  
Figure 33-376.I/O Pin Output Voltage vs. Sink Current  
VCC = 1.8V  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
105 °C  
85 °C  
25°C  
-40 °C  
0
1
2
3
4
5
6
7
8
9
IPIN [mA]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
365  
Figure 33-377.I/O Pin Output Voltage vs. Sink Current  
VCC = 3.0V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
IPIN [mA]  
Figure 33-378.I/O Pin Output Voltage vs. Sink Current  
VCC = 3.3V  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
366  
33.6.2.3 Thresholds and Hysteresis  
Figure 33-379.I/O Pin Input Threshold Voltage vs. VCC  
VIH I/O pin read as “1”  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-380.I/O Pin Input Threshold Voltage vs. VCC  
VIL I/O pin read as “0”  
1.70  
1.55  
1.40  
1.25  
1.10  
0.95  
0.80  
0.65  
0.50  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
367  
Figure 33-381.I/O Pin Input Hysteresis vs. VCC  
0.40  
0.37  
0.34  
0.31  
0.28  
0.25  
0.22  
0.19  
0.16  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
33.6.3 ADC Characteristics  
Figure 33-382. INL Error vs. External VREF  
T = 25C, VCC = 3.6V, external reference  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Single-ended unsigned mode  
Differential mode  
Single -ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
368  
Figure 33-383. INL Error vs. Sample Rate  
T = 25°C, VCC = 3.6V, VREF = 3.0V external  
0.70  
0.65  
0.60  
0.55  
Single-ended unsigned mode  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
Differential mode  
Single-ended signed mode  
50  
100  
150  
200  
250  
300  
ADC sample rate [ksps]  
Figure 33-384. INL Error vs. Input Code  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
-1.25  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
369  
Figure 33-385. DNL Error vs. External VREF  
T = 25C, VCC = 3.6V, external reference  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
Figure 33-386. DNL Error vs. Sample Rate  
T = 25C, VCC = 3.6V, VREF = 3.0V external  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
50  
100  
150  
200  
250  
300  
ADC sample rate [ksps]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
370  
Figure 33-387. DNL Error vs. Input Code  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
Figure 33-388. Gain Error vs. VREF  
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps  
-5  
-6  
-7  
Differential mode  
-8  
-9  
mode  
Single-ended signed  
-10  
-11  
-12  
-13  
-14  
-15  
Single-ended unsigned mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
371  
Figure 33-389. Gain Error vs. VCC  
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
Differential mode  
Single-ended signed  
mode  
Single-ended unsigned mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
Figure 33-390. Offset Error vs. VREF  
T = 25C, VCC = 3.6V, ADC sample rate = 300ksps  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
Differential mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
VREF [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
372  
Figure 33-391. Gain Error vs. Temperature  
VCC = 3.0V, VREF = external 2.0V  
0
-2  
Single-ended signed mode  
-4  
-6  
Differentialmode  
-8  
-10  
Single-ended unsigned  
mode  
-12  
-14  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
Figure 33-392. Offset Error vs. VCC  
T = 25C, VREF = external 1.0V, ADC sample rate = 300ksps  
8.00  
7.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
Differential mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
373  
33.6.4 Analog Comparator Characteristics  
Figure 33-393. Analog Comparator Hysteresis vs. VCC  
Small hysteresis  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
105°C  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 33-394. Analog Comparator Hysteresis vs. VCC  
Large hysteresis  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
105°C  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
374  
Figure 33-395. Analog Comparator Current Source vs. Calibration Value  
VCC = 3.0V  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
-40 °C  
25 °C  
85 °C  
105 °C  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CURRCALIBA[3..0]  
Figure 33-396. Voltage Scaler INL vs. SCALEFAC  
T = 25C, VCC = 3.0V  
0.44  
0.41  
0.38  
0.35  
0.32  
0.29  
0.26  
0.23  
0.2  
25°C  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
375  
33.6.5 Internal 1.0V Reference Characteristics  
Figure 33-397. ADC Internal 1.0V Reference vs. Temperature  
1.007  
1.006  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
1.6 V  
2.7 V  
3.6 V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
T [°C]  
33.6.6 BOD Characteristics  
Figure 33-398. BOD Thresholds vs. Temperature  
BOD level = 1.6V  
1.68  
1.67  
1.66  
1.65  
1.64  
1.63  
1.62  
1.61  
1.60  
1.59  
-45 -35 -25 -15 -5  
5
15 25 35 45 55 65 75 85 95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
376  
Figure 33-399. BOD Thresholds vs. Temperature  
BOD level = 3.0V  
3.16  
3.14  
3.12  
3.10  
3.08  
3.06  
3.04  
3.02  
3.00  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
33.6.7 External Reset Characteristics  
Figure 33-400. Minimum Reset Pin Pulse Width vs. VCC  
136  
128  
120  
112  
104  
96  
105 °C  
85 °C  
88  
25 °C  
-40 °C  
80  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
377  
Figure 33-401. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 1.8V  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40 °C  
25 °C  
85 °C  
105°C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VRESET [V]  
Figure 33-402. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.0V  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
105°C  
20  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VRESET [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
378  
Figure 33-403. Reset Pin Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.3V  
144  
126  
108  
90  
72  
54  
36  
-40 °C  
25 °C  
85 °C  
105°C  
18  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VRESET [V]  
Figure 33-404. Reset Pin Input Threshold Voltage vs. VCC  
VIH - Reset pin read as “1”  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
379  
33.6.8 Oscillator Characteristics  
33.6.8.1 Ultra Low-Power Internal Oscillator  
Figure 33-405. Ultra Low-Power Internal Oscillator Frequency vs. Temperature  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
30.5  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.0 V  
1.8 V  
1.6 V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
33.6.8.2 32.768kHz Internal Oscillator  
Figure 33-406. 32.768kHz Internal Oscillator Frequency vs. Temperature  
32.90  
32.85  
32.80  
32.75  
32.70  
32.65  
32.60  
32.55  
32.50  
1.6 V  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
3.3 V  
3.6 V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
380  
Figure 33-407. 32.768kHz Internal Oscillator Frequency vs. Calibration Value  
VCC = 3.0V, T = 25°C  
53  
50  
47  
44  
41  
38  
35  
32  
29  
26  
23  
3.0 V  
0
16  
32 48  
64  
80  
96 112 128 144 160 176 192 208 224 240 256  
RC32KCAL[7..0]  
33.6.8.3 2MHz Internal Oscillator  
Figure 33-408. 2MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
2.20  
2.18  
2.16  
2.14  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95 105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
381  
Figure 33-409. 2MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
2.010  
2.008  
2.006  
2.004  
2.002  
2.000  
1.998  
1.996  
1.994  
1.992  
1.990  
1.988  
1.986  
1.8V  
2.2V  
2.7V  
3.0V  
3.3V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
Figure 33-410. 2MHz Internal Oscillator Frequency vs. CALA Calibration Value  
VCC = 3V  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
-40 °C  
25 °C  
85 °C  
105 °C  
0
8
16 24 32 40 48 56 64 72 80 88 96 104 112 120 128  
CALA  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
382  
33.6.8.4 32MHz Internal Oscillator  
Figure 33-411. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
36.5  
36.0  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
Figure 33-412. 32MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
32.15  
32.10  
32.05  
32.00  
31.95  
31.90  
31.85  
31.80  
31.75  
1.8V  
2.2V  
2.7V  
3.0V  
3.3V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
383  
Figure 33-413. 32MHz Internal Oscillator CALA Calibration Step Size  
VCC = 3.0V  
0.35  
0.33  
0.31  
0.29  
0.27  
0.25  
0.23  
0.21  
0.19  
0.17  
0.15  
-40°C  
25°C  
85°C  
105°C  
0
8
16  
24  
32  
40  
48  
56  
64  
72  
80  
88  
96  
104 112 120 128  
CALA  
Figure 33-414. 32MHz Internal Oscillator Frequency vs. CALB Calibration Value  
VCC = 3.0V  
80  
74  
68  
62  
56  
50  
44  
38  
32  
26  
20  
-40 °C  
25 °C  
85 °C  
105 °C  
0
7
14  
21  
28  
35  
42  
49  
56  
63  
DFLLRC2MCALB  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
384  
33.6.8.5 32MHz Internal Oscillator Calibrated to 48MHz  
Figure 33-415. 48MHz Internal Oscillator Frequency vs. Temperature  
DFLL disabled  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
Figure 33-416. 48MHz Internal Oscillator Frequency vs. Temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
48.3  
48.2  
48.1  
2.2V  
2.7V  
3.0V  
3.3V  
1.8V  
48.0  
47.9  
47.8  
47.7  
47.6  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
385  
33.6.9 Two-Wire Interface Characteristics  
Figure 33-417. SDA Hold Time vs. Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 33-418. SDA Hold Time vs. Supply Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
386  
33.6.10 PDI Characteristics  
Figure 33-419. Maximum PDI Frequency vs. VCC  
36  
31  
26  
21  
16  
11  
-40°C  
25°C  
85°C  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
387  
34. Errata  
34.1 Atmel ATxmega32D3  
34.1.1 Rev. I  
AC system status flags are only valid if AC-system is enabled  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Temperature sensor not calibrated  
1. AC system status flags are only valid if AC-system is enabled  
The status flags for the ac-output are updated even though the AC is not enabled which is invalid. Also, it is not  
possible to clear the AC interrupt flags without enabling either of the Analog comparators.  
Problem fix/workaround  
Software should clear the AC system flags once, after enabling the AC system before using the AC system status  
flags.  
2. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC, and Analog Comparator.  
Problem fix/workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in  
sampled mode.  
3. Temperature sensor not calibrated  
Temperature sensor factory calibration not implemented.  
Problem fix/workaround  
None.  
34.1.2 Rev A - H  
Not sampled.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
388  
34.2 Atmel ATxmega64D3  
34.2.1 Rev. I  
AC system status flags are only valid if AC-system is enabled  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Temperature sensor not calibrated  
1. AC system status flags are only valid if AC-system is enabled  
The status flags for the ac-output are updated even though the AC is not enabled which is invalid. Also, it is not  
possible to clear the AC interrupt flags without enabling either of the Analog comparators.  
Problem fix/workaround  
Software should clear the AC system flags once, after enabling the AC system before using the AC system status  
flags.  
2. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC, and Analog Comparator.  
Problem fix/workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in  
sampled mode.  
3. Temperature sensor not calibrated  
Temperature sensor factory calibration not implemented.  
Problem fix/workaround  
None.  
34.2.2 Rev. H  
Not sampled.  
34.2.3 Rev. G  
Not sampled.  
34.2.4 Rev. F  
Not sampled.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
389  
34.2.5 Rev. E  
Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously  
VCC voltage scaler for AC is non-linear  
ADC gain stage cannot be used for single conversion  
ADC has increased INL error for some operating conditions  
ADC gain stage output range is limited to 2.4V  
ADC Event on compare match non-functional  
ADC propagation delay is not correct when 8× – 64× gain is used  
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
Accuracy lost on first three samples after switching input to ADC gain stage  
Configuration of PGM and CWCM not as described in the XMEGA D Manual  
PWM is not restarted properly after a fault in cycle-by-cycle mode  
BOD will be enabled at any reset  
EEPROM page buffer always written when NVM DATA0 is written  
Pending full asynchronous pin change interrupts will not wake the device  
Pin configuration does not affect Analog Comparator Output  
NMI Flag for Crystal Oscillator Failure automatically cleared  
RTC Counter value not correctly read after sleep  
Pending asynchronous RTC-interrupts will not wake up device  
TWI Transmit collision flag not cleared on repeated start  
Clearing TWI Stop Interrupt Flag may lock the bus  
TWI START condition at bus timeout will cause transaction to be dropped  
TWI Data Interrupt Flag (DIF) erroneously read as set  
WDR instruction inside closed window will not issue reset  
Non available functions and options  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Temperature sensor not calibrated  
Disabling of the USART transmitter does not automatically set the TxD pin direction to input.  
1. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously  
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as  
input for another AC, the first comparator will be affected for up to 1µs and could potentially give a wrong  
comparison result.  
Problem fix/workaround  
If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before  
enabling any of them.  
2.  
V
CC voltage scaler for AC is non-linear  
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
390  
Figure 34-1. Analog Comparator Voltage Scaler vs. Scalefac  
T = 25°C  
3.5  
3
3.3 V  
2.7 V  
2.5  
2
1.8 V  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
Problem fix/workaround  
Use external voltage input for the analog comparator if accurate voltage levels are needed.  
3. ADC gain stage cannot be used for single conversion  
The ADC gain stage will not output correct result for single conversion that is triggered and started from soft-  
ware or event system.  
Problem fix/workaround  
When the gain stage is used, the ADC must be set in free running mode for correct results.  
4. ADC has increased INL error for some operating conditions  
Some ADC configurations or operating condition will result in increased INL error.  
In signed mode INL is increased to:  
6LSB for sample rates above 130ksps, and up to 8LSB for 200ksps sample rate.  
6LSB for reference voltage below 1.1V when VCC is above 3.0V.  
20LSB for ambient temperature below 0°C and reference voltage below 1.3V.  
In unsigned mode, the INL error cannot be guaranteed, and this mode should not be used.  
Problem fix/workaround  
None, avoid using the ADC in the above configurations in order to prevent increased INL error. Use the ADC  
in signed mode also for single ended measurements.  
5. ADC gain stage output range is limited to 2.4V  
The amplified output of the ADC gain stage will never go above 2.4V, hence the differential input will only  
give correct output when below 2.4V/gain. For the available gain settings, this gives a differential input range  
of:  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
391  
1×  
2×  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
2.4  
1.2  
0.6  
V
V
V
4×  
8×  
300 mV  
150 mV  
75 mV  
38 mV  
16×  
32×  
64×  
Problem fix/workaround  
Keep the amplified voltage output from the ADC gain stage below 2.4V in order to get a correct result, or  
keep ADC voltage reference below 2.4V.  
6. ADC Event on compare match non-functional  
ADC signalling event will be given at every conversion complete even if Interrupt mode (INTMODE) is set to  
BELOW or ABOVE.  
Problem fix/workaround  
Enable and use interrupt on compare match when using the compare function.  
7. ADC propagation delay is not correct when 8× – 64× gain is used  
The propagation delay will increase by only one ADC clock cycle for all gain settings.  
Problem fix/workaround  
None.  
8. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
The ADC can not be used to do bandgap measurements when VCC is below 2.7V.  
Problem fix/workaround  
None.  
9. Accuracy lost on first three samples after switching input to ADC gain stage  
Due to memory effect in the ADC gain stage, the first three samples after changing input channel must be  
disregarded to achieve 12-bit accuracy.  
Problem fix/workaround  
Run three ADC conversions and discard these results after changing input channels to ADC gain stage.  
10. Configuration of PGM and CWCM not as described in XMEGA D Manual  
Enabling Common Waveform Channel Mode will enable Pattern generation mode (PGM), but not Common  
Waveform Channel Mode.  
Enabling Pattern Generation Mode (PGM) and not Common Waveform Channel Mode (CWCM) will enable  
both Pattern Generation Mode and Common Waveform Channel Mode.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
392  
Problem fix/workaround  
Table 34-1. Configure PWM and CWCM According to this Table:  
PGM  
CWCM  
Description  
0
0
1
1
0
1
0
1
PGM and CWCM disabled  
PGM enabled  
PGM and CWCM enabled  
PGM enabled  
11. PWM is not restarted properly after a fault in cycle-by-cycle mode  
When the AWeX fault restore mode is set to cycle-by-cycle, the waveform output will not return to normal  
operation at first update after fault condition is no longer present.  
Problem fix/workaround  
Do a write to any AWeX I/O register to re-enable the output.  
12. BOD will be enabled after any reset  
If any reset source goes active, the BOD will be enabled and keep the device in reset if the VCC voltage is  
below the programmed BOD level. During Power-On Reset, reset will not be released until VCC is above the  
programmed BOD level even if the BOD is disabled.  
Problem fix/workaround  
Do not set the BOD level higher than VCC even if the BOD is not used.  
13. EEPROM page buffer always written when NVM DATA0 is written  
If the EEPROM is memory mapped, writing to NVM DATA0 will corrupt data in the EEPROM page buffer.  
Problem fix/workaround  
Before writing to NVM DATA0, for example when doing software CRC or flash page buffer write, check if  
EEPROM page buffer active loading flag (EELOAD) is set. Do not write NVM DATA0 when EELOAD is set.  
14. Pending full asynchronous pin change interrupts will not wake the device  
Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the sleep instruction  
is executed, will be ignored until the device is woken from another source or the source triggers again. This  
applies when entering all sleep modes where the System Clock is stopped.  
Problem fix/workaround  
None.  
15. Pin configuration does not affect Analog Comparator output  
The Output/Pull and inverted pin configuration does not affect the Analog Comparator output.  
Problem fix/workaround  
None for Output/Pull configuration.  
For inverted I/O, configure the Analog Comparator to give an inverted result (that is, connect positive input to  
the negative AC input and vice versa), or use and external inverter to change polarity of Analog Comparator  
output.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
393  
16. NMI Flag for Crystal Oscillator Failure automatically cleared  
NMI flag for Crystal Oscillator Failure (XOSCFDIF) will be automatically cleared when executing the NMI  
interrupt handler.  
Problem fix/workaround  
This device revision has only one NMI interrupt source, so checking the interrupt source in software is not  
required.  
17. RTC Counter value not correctly read after sleep  
If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to bit 0 of RTC  
PER as the device is entering sleep, the value in the RTC count register can not be read correctly within the  
first prescaled RTC clock cycle after wake-up. The value read will be the same as the value in the register  
when entering sleep.  
The same applies if RTC Compare Match is used as wake-up source.  
Problem fix/workaround  
Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.  
18. Pending asynchronous RTC-interrupts will not wake up device  
Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep instruction is executed,  
will be ignored until the device is woken from another source or the source triggers again.  
Problem fix/workaround  
None.  
19. TWI Transmit collision flag not cleared on repeated start  
The TWI transmit collision flag should be automatically cleared on start and repeated start, but is only  
cleared on start.  
Problem fix/workaround  
Clear the flag in software after address interrupt.  
20. Clearing TWI Stop Interrupt Flag may lock the bus  
If software clears the STOP Interrupt Flag (APIF) on the same Peripheral Clock cycle as the hardware sets  
this flag due to a new address received, CLKHOLD is not cleared and the SCL line is not released. This will  
lock the bus.  
Problem fix/workaround  
Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is not IDLE, wait for  
the SCL pin to be low before clearing APIF.  
Code:  
/* Only clear the interrupt flag if within a "safe zone". */  
while ( /* Bus not IDLE: */  
((COMMS_TWI.MASTER.STATUS & TWI_MASTER_BUSSTATE_gm) !=  
TWI_MASTER_BUSSTATE_IDLE_gc)) &&  
/* SCL not held by slave: */  
!(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm)  
)
{
/* Ensure that the SCL line is low */  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
394  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
break;  
}
/* Check for an pending address match interrupt */  
if ( !(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm) )  
{
/* Safely clear interrupt flag */  
COMMS_TWI.SLAVE.STATUS |= (uint8_t)TWI_SLAVE_APIF_bm;  
}
21. TWI START condition at bus timeout will cause transaction to be dropped  
If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a START is detected,  
the transaction will be dropped.  
Problem fix/workaround  
None.  
22. TWI Data Interrupt Flag erroneously read as set  
When issuing the TWI slave response command CMD=0b11, it takes one Peripheral Clock cycle to clear the  
data interrupt flag (DIF). A read of DIF directly after issuing the command will show the DIF still set.  
Problem fix/workaround  
Add one NOP instruction before checking DIF.  
23. WDR instruction inside closed window will not issue reset  
When a WDR instruction is execute within one ULP clock cycle after updating the window control register,  
the counter can be cleared without giving a system reset.  
Problem fix/workaround  
Wait at least one ULP clock cycle before executing a WDR instruction.  
24. Non available functions and options  
The below function and options are not available. Writing to any registers or fuse to try and enable or  
configure these functions or options will have no effect, and will be as writing to a reserved address location.  
TWIE, the TWI module on PORTE  
TWI SDAHOLD option in the TWI CTRL register is one bit  
CRC generator module  
ADC 1/2× gain option, and this configuration option in the GAIN bits in the ADC Channel CTRL register  
ADC VCC/2 reference option and this configuration option in the REFSEL bits on the ADC REFCTRL  
register  
ADC option to use internal Gnd as negative input in differential measurements and this configuration option  
in the MUXNEG bits in the ADC Channel MUXCTRL register  
ADC channel scan and the ADC SCAN register  
ADC current limitation option, and the CURRLIMIT bits in the ADC CTRLB register  
ADC impedance mode selection for the gain stage, and the IMPMODE bit in the ADC CTRLB register  
Timer/Counter 2 and the SPLITMODE configuration option in the BYTEM bits in the Timer/Counter 0  
CTRLE register  
Analog Comparator (AC) current output option, and the AC CURRCTRL and CURRCALIB registers  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
395  
PORT remap functions with alternate pin locations for Timer/Counter output compare channels, USART0  
and SPI, and the PORT REMAP register  
PORT RTC clock output option and the RTCOUT bit in the PORT CLKEVOUT register  
PORT remap functions with alternate pin locations for the clock and event output, and the CLKEVPIN bit in  
the PORT CLKEVOUT register  
TOSC alternate pin locations, and TOSCSEL bit in FUSEBYTE2  
Real Time Counter clock source options of external clock from TOSC1, and 32.768kHz from TOSC, and  
32.768kHz from the 32.768kHz internal oscillator, and these configuration options in the RTCSRC bits in the  
Clock RTCTRL register  
PLL divide by two option, and the PLLDIV bit in the Clock PLLCTRL register  
PLL lock detection failure function and the PLLDIF and PLLFDEN bits in the Clock XOSCFAIL register  
The high drive option for external crystal and the XOSCPWR bit on the Oscillator XOSCCTRL register  
The option to enable sequential startup of the analog modules and the ANAINIT register in MCU Control  
memory  
Problem fix/workaround  
None.  
25. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC and Analog Comparator.  
Problem fix/workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in  
sampled mode.  
26. Temperature sensor not calibrated  
Temperature sensor factory calibration not implemented.  
Problem fix/workaround  
None.  
27. Disabling of USART transmitter does not automatically set the TxD pin direction to input  
If the USART transmitter is idle with no frames to transmit, setting TXEN to zero will not automatically set the TxD  
pin direction to input.  
Problem fix/workaround  
The TxD pin direction can be set to input using the Port DIR register. Be advised that setting the Port DIR register  
to input will be immediate. Ongoing transmissions will be truncated.  
34.2.6 Rev. D  
Not sampled.  
34.2.7 Rev. C  
Not sampled.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
396  
34.2.8 Rev. B  
Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously  
VCC voltage scaler for AC is non-linear  
ADC gain stage cannot be used for single conversion  
ADC has increased INL error for some operating conditions  
ADC gain stage output range is limited to 2.4V  
ADC Event on compare match non-functional  
ADC propagation delay is not correct when 8× – 64× gain is used  
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
Accuracy lost on first three samples after switching input to ADC gain stage  
Configuration of PGM and CWCM not as described in the XMEGA D Manual  
PWM is not restarted properly after a fault in cycle-by-cycle mode  
BOD will be enabled at any reset  
EEPROM page buffer always written when NVM DATA0 is written  
Pending full asynchronous pin change interrupts will not wake the device  
Pin configuration does not affect Analog Comparator Output  
NMI Flag for Crystal Oscillator Failure automatically cleared  
Writing EEPROM or Flash while reading any of them will not work  
RTC Counter value not correctly read after sleep  
Pending asynchronous RTC-interrupts will not wake up device  
TWI Transmit collision flag not cleared on repeated start  
Clearing TWI Stop Interrupt Flag may lock the bus  
TWI START condition at bus timeout will cause transaction to be dropped  
TWI Data Interrupt Flag (DIF) erroneously read as set  
WDR instruction inside closed window will not issue reset  
Non available functions and options  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Temperature sensor not calibrated  
Disabling the USART transmitter does not automatically set the TxD pin direction to input  
1. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously  
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as  
input for another AC, the first comparator will be affected for up to 1µs and could potentially give a wrong  
comparison result.  
Problem fix/workaround  
If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before  
enabling any of them.  
2.  
V
CC voltage scaler for AC is non-linear  
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
397  
Figure 34-2. Analog Comparator Voltage Scaler vs. Scalefac  
T = 25°C  
3.5  
3
3.3 V  
2.7 V  
2.5  
2
1.8 V  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
Problem fix/workaround  
Use external voltage input for the analog comparator if accurate voltage levels are needed.  
3. ADC gain stage cannot be used for single conversion  
The ADC gain stage will not output correct result for single conversion that is triggered and started from soft-  
ware or event system.  
Problem fix/workaround  
When the gain stage is used, the ADC must be set in free running mode for correct results.  
4. ADC has increased INL error for some operating conditions  
Some ADC configurations or operating condition will result in increased INL error.  
In signed mode INL is increased to:  
6LSB for sample rates above 130ksps, and up to 8LSB for 200ksps sample rate.  
6LSB for reference voltage below 1.1V when VCC is above 3.0V.  
20LSB for ambient temperature below 0°C and reference voltage below 1.3V.  
In unsigned mode, the INL error cannot be guaranteed, and this mode should not be used.  
Problem fix/workaround  
None, avoid using the ADC in the above configurations in order to prevent increased INL error. Use the ADC  
in signed mode also for single ended measurements.  
5. ADC gain stage output range is limited to 2.4V  
The amplified output of the ADC gain stage will never go above 2.4V, hence the differential input will only  
give correct output when below 2.4V/gain. For the available gain settings, this gives a differential input range  
of:  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
398  
1×  
2×  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
2.4  
1.2  
0.6  
V
V
V
4×  
8×  
300 mV  
150 mV  
75 mV  
38 mV  
16×  
32×  
64×  
Problem fix/workaround  
Keep the amplified voltage output from the ADC gain stage below 2.4V in order to get a correct result, or  
keep ADC voltage reference below 2.4V.  
6. ADC Event on compare match non-functional  
ADC signalling event will be given at every conversion complete even if Interrupt mode (INTMODE) is set to  
BELOW or ABOVE.  
Problem fix/workaround  
Enable and use interrupt on compare match when using the compare function.  
7. ADC propagation delay is not correct when 8× – 64× gain is used  
The propagation delay will increase by only one ADC clock cycle for all gain settings.  
Problem fix/workaround  
None.  
8. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
The ADC can not be used to do bandgap measurements when VCC is below 2.7V.  
Problem fix/workaround  
None.  
9. Accuracy lost on first three samples after switching input to ADC gain stage  
Due to memory effect in the ADC gain stage, the first three samples after changing input channel must be  
disregarded to achieve 12-bit accuracy.  
Problem fix/workaround  
Run three ADC conversions and discard these results after changing input channels to ADC gain stage.  
10. Configuration of PGM and CWCM not as described in XMEGA D Manual  
Enabling Common Waveform Channel Mode will enable Pattern generation mode (PGM), but not Common  
Waveform Channel Mode.  
Enabling Pattern Generation Mode (PGM) and not Common Waveform Channel Mode (CWCM) will enable  
both Pattern Generation Mode and Common Waveform Channel Mode.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
399  
Problem fix/workaround  
Table 34-2. Configure PWM and CWCM According to this Table:  
PGM  
CWCM  
Description  
0
0
1
1
0
1
0
1
PGM and CWCM disabled  
PGM enabled  
PGM and CWCM enabled  
PGM enabled  
11. PWM is not restarted properly after a fault in cycle-by-cycle mode  
When the AWeX fault restore mode is set to cycle-by-cycle, the waveform output will not return to normal  
operation at first update after fault condition is no longer present.  
Problem fix/workaround  
Do a write to any AWeX I/O register to re-enable the output.  
12. BOD will be enabled after any reset  
If any reset source goes active, the BOD will be enabled and keep the device in reset if the VCC voltage is  
below the programmed BOD level. During Power-On Reset, reset will not be released until VCC is above the  
programmed BOD level even if the BOD is disabled.  
Problem fix/workaround  
Do not set the BOD level higher than VCC even if the BOD is not used.  
13. EEPROM page buffer always written when NVM DATA0 is written  
If the EEPROM is memory mapped, writing to NVM DATA0 will corrupt data in the EEPROM page buffer.  
Problem fix/workaround  
Before writing to NVM DATA0, for example when doing software CRC or flash page buffer write, check if  
EEPROM page buffer active loading flag (EELOAD) is set. Do not write NVM DATA0 when EELOAD is set.  
14. Pending full asynchronous pin change interrupts will not wake the device  
Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the sleep instruction  
is executed, will be ignored until the device is woken from another source or the source triggers again. This  
applies when entering all sleep modes where the System Clock is stopped.  
Problem fix/workaround  
None.  
15. Pin configuration does not affect Analog Comparator output  
The Output/Pull and inverted pin configuration does not affect the Analog Comparator output.  
Problem fix/workaround  
None for Output/Pull configuration.  
For inverted I/O, configure the Analog Comparator to give an inverted result (that is, connect positive input to  
the negative AC input and vice versa), or use and external inverter to change polarity of Analog Comparator  
output.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
400  
16. NMI Flag for Crystal Oscillator Failure automatically cleared  
NMI flag for Crystal Oscillator Failure (XOSCFDIF) will be automatically cleared when executing the NMI  
interrupt handler.  
Problem fix/workaround  
This device revision has only one NMI interrupt source, so checking the interrupt source in software is not  
required.  
17. Writing EEPROM or Flash while reading any of them will not work  
The EEPROM and Flash cannot be written while reading EEPROM or Flash, or while executing code in  
Active mode.  
Problem fix/workaround  
Enter IDLE sleep mode within 2.5µs (five 2MHz clock cycles and 80 32MHz clock cycles) after starting an  
EEPROM or flash write operation. Wake-up source must either be EEPROM ready or NVM ready interrupt.  
Alternatively set up a Timer/Counter to give an overflow interrupt 7ms after the erase or write operation has  
started, or 13ms after atomic erase-and-write operation has started, and then enter IDLE sleep mode.  
18. RTC Counter value not correctly read after sleep  
If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to bit 0 of RTC  
PER as the device is entering sleep, the value in the RTC count register can not be read correctly within the  
first prescaled RTC clock cycle after wake-up. The value read will be the same as the value in the register  
when entering sleep.  
The same applies if RTC Compare Match is used as wake-up source.  
Problem fix/workaround  
Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.  
19. Pending asynchronous RTC-interrupts will not wake up device  
Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep instruction is executed,  
will be ignored until the device is woken from another source or the source triggers again.  
Problem fix/workaround  
None.  
20. TWI Transmit collision flag not cleared on repeated start  
The TWI transmit collision flag should be automatically cleared on start and repeated start, but is only  
cleared on start.  
Problem fix/workaround  
Clear the flag in software after address interrupt.  
21. Clearing TWI Stop Interrupt Flag may lock the bus  
If software clears the STOP Interrupt Flag (APIF) on the same Peripheral Clock cycle as the hardware sets  
this flag due to a new address received, CLKHOLD is not cleared and the SCL line is not released. This will  
lock the bus.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
401  
Problem fix/workaround  
Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is not IDLE, wait for  
the SCL pin to be low before clearing APIF.  
Code:  
/* Only clear the interrupt flag if within a "safe zone". */  
while ( /* Bus not IDLE: */  
((COMMS_TWI.MASTER.STATUS & TWI_MASTER_BUSSTATE_gm) !=  
TWI_MASTER_BUSSTATE_IDLE_gc)) &&  
/* SCL not held by slave: */  
!(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm)  
)
{
/* Ensure that the SCL line is low */  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
break;  
}
/* Check for an pending address match interrupt */  
if ( !(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm) )  
{
/* Safely clear interrupt flag */  
COMMS_TWI.SLAVE.STATUS |= (uint8_t)TWI_SLAVE_APIF_bm;  
}
22. TWI START condition at bus timeout will cause transaction to be dropped  
If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a START is detected,  
the transaction will be dropped.  
Problem fix/workaround  
None.  
23. TWI Data Interrupt Flag erroneously read as set  
When issuing the TWI slave response command CMD=0b11, it takes one Peripheral Clock cycle to clear the  
data interrupt flag (DIF). A read of DIF directly after issuing the command will show the DIF still set.  
Problem fix/workaround  
Add one NOP instruction before checking DIF.  
24. WDR instruction inside closed window will not issue reset  
When a WDR instruction is execute within one ULP clock cycle after updating the window control register,  
the counter can be cleared without giving a system reset.  
Problem fix/workaround  
Wait at least one ULP clock cycle before executing a WDR instruction.  
25. Non available functions and options  
The below function and options are not available. Writing to any registers or fuse to try and enable or config-  
ure these functions or options will have no effect, and will be as writing to a reserved address location.  
TWIE, the TWI module on PORTE  
TWI SDAHOLD option in the TWI CTRL register is one bit  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
402  
CRC generator module  
ADC 1/2× gain option, and this configuration option in the GAIN bits in the ADC Channel CTRL register  
ADC VCC/2 reference option and this configuration option in the REFSEL bits on the ADC REFCTRL  
register  
ADC option to use internal Gnd as negative input in differential measurements and this configuration option  
in the MUXNEG bits in the ADC Channel MUXCTRL register  
ADC channel scan and the ADC SCAN register  
ADC current limitation option, and the CURRLIMIT bits in the ADC CTRLB register  
ADC impedance mode selection for the gain stage, and the IMPMODE bit in the ADC CTRLB register  
Timer/Counter 2 and the SPLITMODE configuration option in the BYTEM bits in the Timer/Counter 0  
CTRLE register  
Analog Comparator (AC) current output option, and the AC CURRCTRL and CURRCALIB registers  
PORT remap functions with alternate pin locations for Timer/Counter output compare channels, USART0  
and SPI, and the PORT REMAP register  
PORT RTC clock output option and the RTCOUT bit in the PORT CLKEVOUT register  
PORT remap functions with alternate pin locations for the clock and event output, and the CLKEVPIN bit in  
the PORT CLKEVOUT register  
TOSC alternate pin locations, and TOSCSEL bit in FUSEBYTE2  
Real Time Counter clock source options of external clock from TOSC1, and 32.768kHz from TOSC, and  
32.768kHz from the 32.768kHz internal oscillator, and these configuration options in the RTCSRC bits in the  
Clock RTCTRL register  
PLL divide by two option, and the PLLDIV bit in the Clock PLLCTRL register  
PLL lock detection failure function and the PLLDIF and PLLFDEN bits in the Clock XOSCFAIL register  
The high drive option for external crystal and the XOSCPWR bit on the Oscillator XOSCCTRL register  
The option to enable sequential startup of the analog modules and the ANAINIT register in MCU Control  
memory  
Problem fix/workaround  
None.  
26. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC and Analog Comparator.  
Problem fix/workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in  
sampled mode.  
27. Temperature sensor not calibrated  
Temperature sensor factory calibration not implemented.  
Problem fix/workaround  
None.  
28. Disabling of USART transmitter does not automatically set the TxD pin direction to input  
If the USART transmitter is idle with no frames to transmit, setting TXEN to  
zero will not automatically set the TxD pin direction to input.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
403  
Problem fix/workaround  
The TxD pin direction can be set to input using the Port DIR register. Be advised that setting the Port DIR register  
to input will be immediate. Ongoing transmissions will be truncated.  
34.2.9 Rev. A  
Not sampled.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
404  
34.3 Atmel ATxmega128D3  
34.3.1 Rev. J  
AC system status flags are only valid if AC-system is enabled  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Temperature sensor not calibrated  
1. AC system status flags are only valid if AC-system is enabled  
The status flags for the ac-output are updated even though the AC is not enabled which is invalid. Also, it is not  
possible to clear the AC interrupt flags without enabling either of the Analog comparators.  
Problem fix/workaround  
Software should clear the AC system flags once, after enabling the AC system before using the AC system status  
flags.  
2. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC and Analog Comparator.  
Problem fix/workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in  
sampled mode.  
3. Temperature sensor not calibrated  
Temperature sensor factory calibration not implemented.  
Problem fix/workaround  
None.  
34.3.2 Rev. I  
Not sampled.  
34.3.3 Rev. H  
Not sampled.  
34.3.4 Rev. G  
Not sampled.  
34.3.5 Rev. F  
Not sampled.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
405  
34.3.6 Rev. E  
Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously  
VCC voltage scaler for AC is non-linear  
ADC gain stage cannot be used for single conversion  
ADC has increased INL error for some operating conditions  
ADC gain stage output range is limited to 2.4V  
ADC Event on compare match non-functional  
ADC propagation delay is not correct when 8× – 64× gain is used  
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
Accuracy lost on first three samples after switching input to ADC gain stage  
Configuration of PGM and CWCM not as described in the XMEGA D Manual  
PWM is not restarted properly after a fault in cycle-by-cycle mode  
BOD will be enabled at any reset  
EEPROM page buffer always written when NVM DATA0 is written  
Pending full asynchronous pin change interrupts will not wake the device  
Pin configuration does not affect Analog Comparator Output  
NMI Flag for Crystal Oscillator Failure automatically cleared  
RTC Counter value not correctly read after sleep  
Pending asynchronous RTC-interrupts will not wake up device  
TWI Transmit collision flag not cleared on repeated start  
Clearing TWI Stop Interrupt Flag may lock the bus  
TWI START condition at bus timeout will cause transaction to be dropped  
TWI Data Interrupt Flag (DIF) erroneously read as set  
WDR instruction inside closed window will not issue reset  
Non available functions and options  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Temperature sensor not calibrated  
Disabling the USART transmitter does not automatically set the TxD pin direction to input.  
1. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously  
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as  
input for another AC, the first comparator will be affected for up to 1µs and could potentially give a wrong  
comparison result.  
Problem fix/workaround  
If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before  
enabling any of them.  
2. VCC voltage scaler for AC is non-linear  
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
406  
Figure 34-3. Analog Comparator Voltage Scaler vs. Scalefac  
T = 25°C  
3.5  
3
3.3 V  
2.7 V  
2.5  
2
1.8 V  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
Problem fix/workaround  
Use external voltage input for the analog comparator if accurate voltage levels are needed.  
3. ADC gain stage cannot be used for single conversion  
The ADC gain stage will not output correct result for single conversion that is triggered and started from soft-  
ware or event system.  
Problem fix/workaround  
When the gain stage is used, the ADC must be set in free running mode for correct results.  
4. ADC has increased INL error for some operating conditions  
Some ADC configurations or operating condition will result in increased INL error.  
In signed mode INL is increased to:  
6LSB for sample rates above 130ksps, and up to 8LSB for 200ksps sample rate.  
6LSB for reference voltage below 1.1V when VCC is above 3.0V.  
20LSB for ambient temperature below 0°C and reference voltage below 1.3V.  
In unsigned mode, the INL error cannot be guaranteed, and this mode should not be used.  
Problem fix/workaround  
None, avoid using the ADC in the above configurations in order to prevent increased INL error. Use the ADC  
in signed mode also for single ended measurements.  
5. ADC gain stage output range is limited to 2.4V  
The amplified output of the ADC gain stage will never go above 2.4V, hence the differential input will only  
give correct output when below 2.4V/gain. For the available gain settings, this gives a differential input range  
of:  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
407  
1×  
2×  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
2.4  
1.2  
0.6  
V
V
V
4×  
8×  
300 mV  
150 mV  
75 mV  
38 mV  
16×  
32×  
64×  
Problem fix/workaround  
Keep the amplified voltage output from the ADC gain stage below 2.4V in order to get a correct result, or  
keep ADC voltage reference below 2.4V.  
6. ADC Event on compare match non-functional  
ADC signalling event will be given at every conversion complete even if Interrupt mode (INTMODE) is set to  
BELOW or ABOVE.  
Problem fix/workaround  
Enable and use interrupt on compare match when using the compare function.  
7. ADC propagation delay is not correct when 8× – 64× gain is used  
The propagation delay will increase by only one ADC clock cycle for all gain settings.  
Problem fix/workaround  
None.  
8. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
The ADC can not be used to do bandgap measurements when VCC is below 2.7V.  
Problem fix/workaround  
None.  
9. Accuracy lost on first three samples after switching input to ADC gain stage  
Due to memory effect in the ADC gain stage, the first three samples after changing input channel must be  
disregarded to achieve 12-bit accuracy.  
Problem fix/workaround  
Run three ADC conversions and discard these results after changing input channels to ADC gain stage.  
10. Configuration of PGM and CWCM not as described in XMEGA D Manual  
Enabling Common Waveform Channel Mode will enable Pattern generation mode (PGM), but not Common  
Waveform Channel Mode.  
Enabling Pattern Generation Mode (PGM) and not Common Waveform Channel Mode (CWCM) will enable  
both Pattern Generation Mode and Common Waveform Channel Mode.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
408  
Problem fix/workaround  
Table 34-3. Configure PWM and CWCM According to this Table:  
PGM  
CWCM  
Description  
0
0
1
1
0
1
0
1
PGM and CWCM disabled  
PGM enabled  
PGM and CWCM enabled  
PGM enabled  
11. PWM is not restarted properly after a fault in cycle-by-cycle mode  
When the AWeX fault restore mode is set to cycle-by-cycle, the waveform output will not return to normal  
operation at first update after fault condition is no longer present.  
Problem fix/workaround  
Do a write to any AWeX I/O register to re-enable the output.  
12. BOD will be enabled after any reset  
If any reset source goes active, the BOD will be enabled and keep the device in reset if the VCC voltage is  
below the programmed BOD level. During Power-On Reset, reset will not be released until VCC is above the  
programmed BOD level even if the BOD is disabled.  
Problem fix/workaround  
Do not set the BOD level higher than VCC even if the BOD is not used.  
13. EEPROM page buffer always written when NVM DATA0 is written  
If the EEPROM is memory mapped, writing to NVM DATA0 will corrupt data in the EEPROM page buffer.  
Problem fix/workaround  
Before writing to NVM DATA0, for example when doing software CRC or flash page buffer write, check if  
EEPROM page buffer active loading flag (EELOAD) is set. Do not write NVM DATA0 when EELOAD is set.  
14. Pending full asynchronous pin change interrupts will not wake the device  
Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the sleep instruction  
is executed, will be ignored until the device is woken from another source or the source triggers again. This  
applies when entering all sleep modes where the System Clock is stopped.  
Problem fix/workaround  
None.  
15. Pin configuration does not affect Analog Comparator output  
The Output/Pull and inverted pin configuration does not affect the Analog Comparator output.  
Problem fix/workaround  
None for Output/Pull configuration.  
For inverted I/O, configure the Analog Comparator to give an inverted result (that is, connect positive input to  
the negative AC input and vice versa), or use and external inverter to change polarity of Analog Comparator  
output.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
409  
16. NMI Flag for Crystal Oscillator Failure automatically cleared  
NMI flag for Crystal Oscillator Failure (XOSCFDIF) will be automatically cleared when executing the NMI  
interrupt handler.  
Problem fix/workaround  
This device revision has only one NMI interrupt source, so checking the interrupt source in software is not  
required.  
17. RTC Counter value not correctly read after sleep  
If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to bit 0 of RTC  
PER as the device is entering sleep, the value in the RTC count register can not be read correctly within the  
first prescaled RTC clock cycle after wake-up. The value read will be the same as the value in the register  
when entering sleep.  
The same applies if RTC Compare Match is used as wake-up source.  
Problem fix/workaround  
Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.  
18. Pending asynchronous RTC-interrupts will not wake up device  
Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep instruction is executed,  
will be ignored until the device is woken from another source or the source triggers again.  
Problem fix/workaround  
None.  
19. TWI Transmit collision flag not cleared on repeated start  
The TWI transmit collision flag should be automatically cleared on start and repeated start, but is only  
cleared on start.  
Problem fix/workaround  
Clear the flag in software after address interrupt.  
20. Clearing TWI Stop Interrupt Flag may lock the bus  
If software clears the STOP Interrupt Flag (APIF) on the same Peripheral Clock cycle as the hardware sets  
this flag due to a new address received, CLKHOLD is not cleared and the SCL line is not released. This will  
lock the bus.  
Problem fix/workaround  
Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is not IDLE, wait for  
the SCL pin to be low before clearing APIF.  
Code:  
/* Only clear the interrupt flag if within a "safe zone". */  
while ( /* Bus not IDLE: */  
((COMMS_TWI.MASTER.STATUS & TWI_MASTER_BUSSTATE_gm) !=  
TWI_MASTER_BUSSTATE_IDLE_gc)) &&  
/* SCL not held by slave: */  
!(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm)  
)
{
/* Ensure that the SCL line is low */  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
410  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
break;  
}
/* Check for an pending address match interrupt */  
if ( !(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm) )  
{
/* Safely clear interrupt flag */  
COMMS_TWI.SLAVE.STATUS |= (uint8_t)TWI_SLAVE_APIF_bm;  
}
21. TWI START condition at bus timeout will cause transaction to be dropped  
If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a START is detected,  
the transaction will be dropped.  
Problem fix/workaround  
None.  
22. TWI Data Interrupt Flag erroneously read as set  
When issuing the TWI slave response command CMD=0b11, it takes one Peripheral Clock cycle to clear the  
data interrupt flag (DIF). A read of DIF directly after issuing the command will show the DIF still set.  
Problem fix/workaround  
Add one NOP instruction before checking DIF.  
23. WDR instruction inside closed window will not issue reset  
When a WDR instruction is execute within one ULP clock cycle after updating the window control register,  
the counter can be cleared without giving a system reset.  
Problem fix/workaround  
Wait at least one ULP clock cycle before executing a WDR instruction.  
24. Non available functions and options  
The below function and options are not available. Writing to any registers or fuse to try and enable or  
configure these functions or options will have no effect, and will be as writing to a reserved address location.  
TWIE, the TWI module on PORTE  
TWI SDAHOLD option in the TWI CTRL register is one bit  
CRC generator module  
ADC 1/2× gain option, and this configuration option in the GAIN bits in the ADC Channel CTRL register  
ADC VCC/2 reference option and this configuration option in the REFSEL bits on the ADC REFCTRL  
register  
ADC option to use internal Gnd as negative input in differential measurements and this configuration option  
in the MUXNEG bits in the ADC Channel MUXCTRL register  
ADC channel scan and the ADC SCAN register  
ADC current limitation option, and the CURRLIMIT bits in the ADC CTRLB register  
ADC impedance mode selection for the gain stage, and the IMPMODE bit in the ADC CTRLB register  
Timer/Counter 2 and the SPLITMODE configuration option in the BYTEM bits in the Timer/Counter 0  
CTRLE register  
Analog Comparator (AC) current output option, and the AC CURRCTRL and CURRCALIB registers  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
411  
PORT remap functions with alternate pin locations for Timer/Counter output compare channels, USART0  
and SPI, and the PORT REMAP register  
PORT RTC clock output option and the RTCOUT bit in the PORT CLKEVOUT register  
PORT remap functions with alternate pin locations for the clock and event output, and the CLKEVPIN bit in  
the PORT CLKEVOUT register  
TOSC alternate pin locations, and TOSCSEL bit in FUSEBYTE2  
Real Time Counter clock source options of external clock from TOSC1, and 32.768kHz from TOSC, and  
32.768kHz from the 32.768kHz internal oscillator, and these configuration options in the RTCSRC bits in the  
Clock RTCTRL register  
PLL divide by two option, and the PLLDIV bit in the Clock PLLCTRL register  
PLL lock detection failure function and the PLLDIF and PLLFDEN bits in the Clock XOSCFAIL register  
The high drive option for external crystal and the XOSCPWR bit on the Oscillator XOSCCTRL register  
The option to enable sequential startup of the analog modules and the ANAINIT register in MCU Control  
memory  
Problem fix/workaround  
None.  
25. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC and Analog Comparator.  
Problem fix/workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in  
sampled mode.  
26. Temperature sensor not calibrated  
Temperature sensor factory calibration not implemented.  
Problem fix/workaround  
None.  
27. Disabling of USART transmitter does not automatically set the TxD pin direction to input  
If the USART transmitter is idle with no frames to transmit, setting TXEN to zero will not automatically set the TxD  
pin direction to input.  
Problem fix/workaround  
The TxD pin direction can be set to input using the Port DIR register. Be advised that setting the Port DIR register  
to input will be immediate. Ongoing transmissions will be truncated.  
34.3.7 Rev. D  
Not sampled.  
34.3.8 Rev. C  
Not sampled.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
412  
34.3.9 Rev. B  
Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously  
VCC voltage scaler for AC is non-linear  
ADC gain stage cannot be used for single conversion  
ADC has increased INL error for some operating conditions  
ADC gain stage output range is limited to 2.4V  
ADC Event on compare match non-functional  
ADC propagation delay is not correct when 8× – 64× gain is used  
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
Accuracy lost on first three samples after switching input to ADC gain stage  
Configuration of PGM and CWCM not as described in the XMEGA D Manual  
PWM is not restarted properly after a fault in cycle-by-cycle mode  
BOD will be enabled at any reset  
EEPROM page buffer always written when NVM DATA0 is written  
Pending full asynchronous pin change interrupts will not wake the device  
Pin configuration does not affect Analog Comparator Output  
NMI Flag for Crystal Oscillator Failure automatically cleared  
Writing EEPROM or Flash while reading any of them will not work  
RTC Counter value not correctly read after sleep  
Pending asynchronous RTC-interrupts will not wake up device  
TWI Transmit collision flag not cleared on repeated start  
Clearing TWI Stop Interrupt Flag may lock the bus  
TWI START condition at bus timeout will cause transaction to be dropped  
TWI Data Interrupt Flag (DIF) erroneously read as set  
WDR instruction inside closed window will not issue reset  
Non available functions and options  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Temperature sensor not calibrated  
Disabling the USART transmitter does not automatically set the TxD pin direction to input  
1. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously  
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as  
input for another AC, the first comparator will be affected for up to 1µs and could potentially give a wrong  
comparison result.  
Problem fix/workaround  
If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before  
enabling any of them.  
2. VCC voltage scaler for AC is non-linear  
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
413  
Figure 34-4. Analog Comparator Voltage Scaler vs. Scalefac  
T = 25°C  
3.5  
3
3.3 V  
2.7 V  
2.5  
2
1.8 V  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
Problem fix/workaround  
Use external voltage input for the analog comparator if accurate voltage levels are needed.  
3. ADC gain stage cannot be used for single conversion  
The ADC gain stage will not output correct result for single conversion that is triggered and started from soft-  
ware or event system.  
Problem fix/workaround  
When the gain stage is used, the ADC must be set in free running mode for correct results.  
4. ADC has increased INL error for some operating conditions  
Some ADC configurations or operating condition will result in increased INL error.  
In signed mode INL is increased to:  
6LSB for sample rates above 130ksps, and up to 8LSB for 200ksps sample rate.  
6LSB for reference voltage below 1.1V when VCC is above 3.0V.  
20LSB for ambient temperature below 0°C and reference voltage below 1.3V.  
In unsigned mode, the INL error cannot be guaranteed, and this mode should not be used.  
Problem fix/workaround  
None, avoid using the ADC in the above configurations in order to prevent increased INL error. Use the ADC  
in signed mode also for single ended measurements.  
5. ADC gain stage output range is limited to 2.4V  
The amplified output of the ADC gain stage will never go above 2.4V, hence the differential input will only  
give correct output when below 2.4V/gain. For the available gain settings, this gives a differential input range  
of:  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
414  
1×  
2×  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
2.4  
1.2  
0.6  
V
V
V
4×  
8×  
300 mV  
150 mV  
75 mV  
38 mV  
16×  
32×  
64×  
Problem fix/workaround  
Keep the amplified voltage output from the ADC gain stage below 2.4V in order to get a correct result, or  
keep ADC voltage reference below 2.4V.  
6. ADC Event on compare match non-functional  
ADC signalling event will be given at every conversion complete even if Interrupt mode (INTMODE) is set to  
BELOW or ABOVE.  
Problem fix/workaround  
Enable and use interrupt on compare match when using the compare function.  
7. ADC propagation delay is not correct when 8× – 64× gain is used  
The propagation delay will increase by only one ADC clock cycle for all gain settings.  
Problem fix/workaround  
None.  
8. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
The ADC can not be used to do bandgap measurements when VCC is below 2.7V.  
Problem fix/workaround  
None.  
9. Accuracy lost on first three samples after switching input to ADC gain stage  
Due to memory effect in the ADC gain stage, the first three samples after changing input channel must be  
disregarded to achieve 12-bit accuracy.  
Problem fix/workaround  
Run three ADC conversions and discard these results after changing input channels to ADC gain stage.  
10. Configuration of PGM and CWCM not as described in XMEGA D Manual  
Enabling Common Waveform Channel Mode will enable Pattern generation mode (PGM), but not Common  
Waveform Channel Mode.  
Enabling Pattern Generation Mode (PGM) and not Common Waveform Channel Mode (CWCM) will enable  
both Pattern Generation Mode and Common Waveform Channel Mode.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
415  
Problem fix/workaround  
Table 34-4. Configure PWM and CWCM According to this Table:  
PGM  
CWCM  
Description  
0
0
1
1
0
1
0
1
PGM and CWCM disabled  
PGM enabled  
PGM and CWCM enabled  
PGM enabled  
11. PWM is not restarted properly after a fault in cycle-by-cycle mode  
When the AWeX fault restore mode is set to cycle-by-cycle, the waveform output will not return to normal  
operation at first update after fault condition is no longer present.  
Problem fix/workaround  
Do a write to any AWeX I/O register to re-enable the output.  
12. BOD will be enabled after any reset  
If any reset source goes active, the BOD will be enabled and keep the device in reset if the VCC voltage is  
below the programmed BOD level. During Power-On Reset, reset will not be released until VCC is above the  
programmed BOD level even if the BOD is disabled.  
Problem fix/workaround  
Do not set the BOD level higher than VCC even if the BOD is not used.  
13. EEPROM page buffer always written when NVM DATA0 is written  
If the EEPROM is memory mapped, writing to NVM DATA0 will corrupt data in the EEPROM page buffer.  
Problem fix/workaround  
Before writing to NVM DATA0, for example when doing software CRC or flash page buffer write, check if  
EEPROM page buffer active loading flag (EELOAD) is set. Do not write NVM DATA0 when EELOAD is set.  
14. Pending full asynchronous pin change interrupts will not wake the device  
Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the sleep instruction  
is executed, will be ignored until the device is woken from another source or the source triggers again. This  
applies when entering all sleep modes where the System Clock is stopped.  
Problem fix/workaround  
None.  
15. Pin configuration does not affect Analog Comparator output  
The Output/Pull and inverted pin configuration does not affect the Analog Comparator output.  
Problem fix/workaround  
None for Output/Pull configuration.  
For inverted I/O, configure the Analog Comparator to give an inverted result (that is, connect positive input to  
the negative AC input and vice versa), or use and external inverter to change polarity of Analog Comparator  
output.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
416  
16. NMI Flag for Crystal Oscillator Failure automatically cleared  
NMI flag for Crystal Oscillator Failure (XOSCFDIF) will be automatically cleared when executing the NMI  
interrupt handler.  
Problem fix/workaround  
This device revision has only one NMI interrupt source, so checking the interrupt source in software is not  
required.  
17. Writing EEPROM or Flash while reading any of them will not work  
The EEPROM and Flash cannot be written while reading EEPROM or Flash, or while executing code in  
Active mode.  
Problem fix/workaround  
Enter IDLE sleep mode within 2.5µs (five 2MHz clock cycles and 80 32MHz clock cycles) after starting an  
EEPROM or flash write operation. Wake-up source must either be EEPROM ready or NVM ready interrupt.  
Alternatively set up a Timer/Counter to give an overflow interrupt 7ms after the erase or write operation has  
started, or 13ms after atomic erase-and-write operation has started, and then enter IDLE sleep mode.  
18. RTC Counter value not correctly read after sleep  
If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to bit 0 of RTC  
PER as the device is entering sleep, the value in the RTC count register can not be read correctly within the  
first prescaled RTC clock cycle after wake-up. The value read will be the same as the value in the register  
when entering sleep.  
The same applies if RTC Compare Match is used as wake-up source.  
Problem fix/workaround  
Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.  
19. Pending asynchronous RTC-interrupts will not wake up device  
Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep instruction is executed,  
will be ignored until the device is woken from another source or the source triggers again.  
Problem fix/workaround  
None.  
20. TWI Transmit collision flag not cleared on repeated start  
The TWI transmit collision flag should be automatically cleared on start and repeated start, but is only  
cleared on start.  
Problem fix/workaround  
Clear the flag in software after address interrupt.  
21. Clearing TWI Stop Interrupt Flag may lock the bus  
If software clears the STOP Interrupt Flag (APIF) on the same Peripheral Clock cycle as the hardware sets  
this flag due to a new address received, CLKHOLD is not cleared and the SCL line is not released. This will  
lock the bus.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
417  
Problem fix/workaround  
Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is not IDLE, wait for  
the SCL pin to be low before clearing APIF.  
Code:  
/* Only clear the interrupt flag if within a "safe zone". */  
while ( /* Bus not IDLE: */  
((COMMS_TWI.MASTER.STATUS & TWI_MASTER_BUSSTATE_gm) !=  
TWI_MASTER_BUSSTATE_IDLE_gc)) &&  
/* SCL not held by slave: */  
!(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm)  
)
{
/* Ensure that the SCL line is low */  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
break;  
}
/* Check for an pending address match interrupt */  
if ( !(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm) )  
{
/* Safely clear interrupt flag */  
COMMS_TWI.SLAVE.STATUS |= (uint8_t)TWI_SLAVE_APIF_bm;  
}
22. TWI START condition at bus timeout will cause transaction to be dropped  
If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a START is detected,  
the transaction will be dropped.  
Problem fix/workaround  
None.  
23. TWI Data Interrupt Flag erroneously read as set  
When issuing the TWI slave response command CMD=0b11, it takes one Peripheral Clock cycle to clear the  
data interrupt flag (DIF). A read of DIF directly after issuing the command will show the DIF still set.  
Problem fix/workaround  
Add one NOP instruction before checking DIF.  
24. WDR instruction inside closed window will not issue reset  
When a WDR instruction is execute within one ULP clock cycle after updating the window control register,  
the counter can be cleared without giving a system reset.  
Problem fix/workaround  
Wait at least one ULP clock cycle before executing a WDR instruction.  
25. Non available functions and options  
The below function and options are not available. Writing to any registers or fuse to try and enable or config-  
ure these functions or options will have no effect, and will be as writing to a reserved address location.  
TWIE, the TWI module on PORTE  
TWI SDAHOLD option in the TWI CTRL register is one bit  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
418  
CRC generator module  
ADC 1/2× gain option, and this configuration option in the GAIN bits in the ADC Channel CTRL register  
ADC VCC/2 reference option and this configuration option in the REFSEL bits on the ADC REFCTRL  
register  
ADC option to use internal Gnd as negative input in differential measurements and this configuration option  
in the MUXNEG bits in the ADC Channel MUXCTRL register  
ADC channel scan and the ADC SCAN register  
ADC current limitation option, and the CURRLIMIT bits in the ADC CTRLB register  
ADC impedance mode selection for the gain stage, and the IMPMODE bit in the ADC CTRLB register  
Timer/Counter 2 and the SPLITMODE configuration option in the BYTEM bits in the Timer/Counter 0  
CTRLE register  
Analog Comparator (AC) current output option, and the AC CURRCTRL and CURRCALIB registers  
PORT remap functions with alternate pin locations for Timer/Counter output compare channels, USART0  
and SPI, and the PORT REMAP register  
PORT RTC clock output option and the RTCOUT bit in the PORT CLKEVOUT register  
PORT remap functions with alternate pin locations for the clock and event output, and the CLKEVPIN bit in  
the PORT CLKEVOUT register  
TOSC alternate pin locations, and TOSCSEL bit in FUSEBYTE2  
Real Time Counter clock source options of external clock from TOSC1, and 32.768kHz from TOSC, and  
32.768kHz from the 32.768kHz internal oscillator, and these configuration options in the RTCSRC bits in the  
Clock RTCTRL register  
PLL divide by two option, and the PLLDIV bit in the Clock PLLCTRL register  
PLL lock detection failure function and the PLLDIF and PLLFDEN bits in the Clock XOSCFAIL register  
The high drive option for external crystal and the XOSCPWR bit on the Oscillator XOSCCTRL register  
The option to enable sequential startup of the analog modules and the ANAINIT register in MCU Control  
memory  
Problem fix/workaround  
None.  
27. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC and Analog Comparator.  
Problem fix/workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in  
sampled mode.  
28. Temperature sensor not calibrated  
Temperature sensor factory calibration not implemented.  
Problem fix/workaround  
None.  
28. Disabling of USART transmitter does not automatically set the TxD pin direction to input  
If the USART transmitter is idle with no frames to transmit, setting TXEN to zero will not automatically set the TxD  
pin direction to input.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
419  
Problem fix/workaround  
The TxD pin direction can be set to input using the Port DIR register. Be advised that setting the Port DIR register  
to input will be immediate. Ongoing transmissions will be truncated.  
34.3.10 Rev. A  
Not sampled.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
420  
34.4 Atmel ATxmega192D3  
34.4.1 Rev. I  
AC system status flags are only valid if AC-system is enabled  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Temperature sensor not calibrated  
1. AC system status flags are only valid if AC-system is enabled  
The status flags for the ac-output are updated even though the AC is not enabled which is invalid. Also, it is not  
possible to clear the AC interrupt flags without enabling either of the Analog comparators.  
Problem fix/workaround  
Software should clear the AC system flags once, after enabling the AC system before using the AC system status  
flags.  
2. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC and Analog Comparator.  
Problem fix/workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in  
sampled mode.  
3. Temperature sensor not calibrated  
Temperature sensor factory calibration not implemented.  
Problem fix/workaround  
None.  
34.4.2 Rev. H  
Not sampled.  
34.4.3 Rev. G  
Not sampled.  
34.4.4 Rev. F  
Not sampled.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
421  
34.4.5 Rev. E  
Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously  
VCC voltage scaler for AC is non-linear  
ADC gain stage cannot be used for single conversion  
ADC has increased INL error for some operating conditions  
ADC gain stage output range is limited to 2.4V  
ADC Event on compare match non-functional  
ADC propagation delay is not correct when 8× – 64× gain is used  
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
Accuracy lost on first three samples after switching input to ADC gain stage  
Configuration of PGM and CWCM not as described in the XMEGA D Manual  
PWM is not restarted properly after a fault in cycle-by-cycle mode  
BOD will be enabled at any reset  
EEPROM page buffer always written when NVM DATA0 is written  
Pending full asynchronous pin change interrupts will not wake the device  
Pin configuration does not affect Analog Comparator Output  
NMI Flag for Crystal Oscillator Failure automatically cleared  
RTC Counter value not correctly read after sleep  
Pending asynchronous RTC-interrupts will not wake up device  
TWI Transmit collision flag not cleared on repeated start  
Clearing TWI Stop Interrupt Flag may lock the bus  
TWI START condition at bus timeout will cause transaction to be dropped  
TWI Data Interrupt Flag (DIF) erroneously read as set  
WDR instruction inside closed window will not issue reset  
Non available functions and options  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Temperature sensor not calibrated  
1. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously  
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as  
input for another AC, the first comparator will be affected for up to 1µs and could potentially give a wrong  
comparison result.  
Problem fix/workaround  
If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before  
enabling any of them.  
2. VCC voltage scaler for AC is non-linear  
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
422  
Figure 34-5. Analog Comparator Voltage Scaler vs. Scalefac  
T = 25°C  
3.5  
3
3.3 V  
2.7 V  
2.5  
2
1.8 V  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
Problem fix/workaround  
Use external voltage input for the analog comparator if accurate voltage levels are needed.  
3. ADC gain stage cannot be used for single conversion  
The ADC gain stage will not output correct result for single conversion that is triggered and started from soft-  
ware or event system.  
Problem fix/workaround  
When the gain stage is used, the ADC must be set in free running mode for correct results.  
4. ADC has increased INL error for some operating conditions  
Some ADC configurations or operating condition will result in increased INL error.  
In signed mode INL is increased to:  
6LSB for sample rates above 130ksps, and up to 8LSB for 200ksps sample rate.  
6LSB for reference voltage below 1.1V when VCC is above 3.0V.  
20LSB for ambient temperature below 0°C and reference voltage below 1.3V.  
In unsigned mode, the INL error cannot be guaranteed, and this mode should not be used.  
Problem fix/workaround  
None, avoid using the ADC in the above configurations in order to prevent increased INL error. Use the ADC  
in signed mode also for single ended measurements.  
5. ADC gain stage output range is limited to 2.4V  
The amplified output of the ADC gain stage will never go above 2.4V, hence the differential input will only  
give correct output when below 2.4V/gain. For the available gain settings, this gives a differential input range  
of:  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
423  
1×  
2×  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
2.4  
1.2  
0.6  
V
V
V
4×  
8×  
300 mV  
150 mV  
75 mV  
38 mV  
16×  
32×  
64×  
Problem fix/workaround  
Keep the amplified voltage output from the ADC gain stage below 2.4V in order to get a correct result, or  
keep ADC voltage reference below 2.4V.  
6. ADC Event on compare match non-functional  
ADC signalling event will be given at every conversion complete even if Interrupt mode (INTMODE) is set to  
BELOW or ABOVE.  
Problem fix/workaround  
Enable and use interrupt on compare match when using the compare function.  
7. ADC propagation delay is not correct when 8× – 64× gain is used  
The propagation delay will increase by only one ADC clock cycle for all gain settings.  
Problem fix/workaround  
None.  
8. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
The ADC can not be used to do bandgap measurements when VCC is below 2.7V.  
Problem fix/workaround  
None.  
9. Accuracy lost on first three samples after switching input to ADC gain stage  
Due to memory effect in the ADC gain stage, the first three samples after changing input channel must be  
disregarded to achieve 12-bit accuracy.  
Problem fix/workaround  
Run three ADC conversions and discard these results after changing input channels to ADC gain stage.  
10. Configuration of PGM and CWCM not as described in XMEGA D Manual  
Enabling Common Waveform Channel Mode will enable Pattern generation mode (PGM), but not Common  
Waveform Channel Mode.  
Enabling Pattern Generation Mode (PGM) and not Common Waveform Channel Mode (CWCM) will enable  
both Pattern Generation Mode and Common Waveform Channel Mode.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
424  
Problem fix/workaround  
Table 34-5. Configure PWM and CWCM According to this Table:  
PGM  
CWCM  
Description  
0
0
1
1
0
1
0
1
PGM and CWCM disabled  
PGM enabled  
PGM and CWCM enabled  
PGM enabled  
11. PWM is not restarted properly after a fault in cycle-by-cycle mode  
When the AWeX fault restore mode is set to cycle-by-cycle, the waveform output will not return to normal  
operation at first update after fault condition is no longer present.  
Problem fix/workaround  
Do a write to any AWeX I/O register to re-enable the output.  
12. BOD will be enabled after any reset  
If any reset source goes active, the BOD will be enabled and keep the device in reset if the VCC voltage is  
below the programmed BOD level. During Power-On Reset, reset will not be released until VCC is above the  
programmed BOD level even if the BOD is disabled.  
Problem fix/workaround  
Do not set the BOD level higher than VCC even if the BOD is not used.  
13. EEPROM page buffer always written when NVM DATA0 is written  
If the EEPROM is memory mapped, writing to NVM DATA0 will corrupt data in the EEPROM page buffer.  
Problem fix/workaround  
Before writing to NVM DATA0, for example when doing software CRC or flash page buffer write, check if  
EEPROM page buffer active loading flag (EELOAD) is set. Do not write NVM DATA0 when EELOAD is set.  
14. Pending full asynchronous pin change interrupts will not wake the device  
Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the sleep instruction  
is executed, will be ignored until the device is woken from another source or the source triggers again. This  
applies when entering all sleep modes where the System Clock is stopped.  
Problem fix/workaround  
None.  
15. Pin configuration does not affect Analog Comparator output  
The Output/Pull and inverted pin configuration does not affect the Analog Comparator output.  
Problem fix/workaround  
None for Output/Pull configuration.  
For inverted I/O, configure the Analog Comparator to give an inverted result (that is, connect positive input to  
the negative AC input and vice versa), or use and external inverter to change polarity of Analog Comparator  
output.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
425  
16. NMI Flag for Crystal Oscillator Failure automatically cleared  
NMI flag for Crystal Oscillator Failure (XOSCFDIF) will be automatically cleared when executing the NMI  
interrupt handler.  
Problem fix/workaround  
This device revision has only one NMI interrupt source, so checking the interrupt source in software is not  
required.  
17. RTC Counter value not correctly read after sleep  
If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to bit 0 of RTC  
PER as the device is entering sleep, the value in the RTC count register can not be read correctly within the  
first prescaled RTC clock cycle after wake-up. The value read will be the same as the value in the register  
when entering sleep.  
The same applies if RTC Compare Match is used as wake-up source.  
Problem fix/workaround  
Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.  
18. Pending asynchronous RTC-interrupts will not wake up device  
Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep instruction is executed,  
will be ignored until the device is woken from another source or the source triggers again.  
Problem fix/workaround  
None.  
19. TWI Transmit collision flag not cleared on repeated start  
The TWI transmit collision flag should be automatically cleared on start and repeated start, but is only  
cleared on start.  
Problem fix/workaround  
Clear the flag in software after address interrupt.  
20. Clearing TWI Stop Interrupt Flag may lock the bus  
If software clears the STOP Interrupt Flag (APIF) on the same Peripheral Clock cycle as the hardware sets  
this flag due to a new address received, CLKHOLD is not cleared and the SCL line is not released. This will  
lock the bus.  
Problem fix/workaround  
Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is not IDLE, wait for  
the SCL pin to be low before clearing APIF.  
Code:  
/* Only clear the interrupt flag if within a "safe zone". */  
while ( /* Bus not IDLE: */  
((COMMS_TWI.MASTER.STATUS & TWI_MASTER_BUSSTATE_gm) !=  
TWI_MASTER_BUSSTATE_IDLE_gc)) &&  
/* SCL not held by slave: */  
!(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm)  
)
{
/* Ensure that the SCL line is low */  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
426  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
break;  
}
/* Check for an pending address match interrupt */  
if ( !(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm) )  
{
/* Safely clear interrupt flag */  
COMMS_TWI.SLAVE.STATUS |= (uint8_t)TWI_SLAVE_APIF_bm;  
}
21. TWI START condition at bus timeout will cause transaction to be dropped  
If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a START is detected,  
the transaction will be dropped.  
Problem fix/workaround  
None.  
22. TWI Data Interrupt Flag erroneously read as set  
When issuing the TWI slave response command CMD=0b11, it takes one Peripheral Clock cycle to clear the  
data interrupt flag (DIF). A read of DIF directly after issuing the command will show the DIF still set.  
Problem fix/workaround  
Add one NOP instruction before checking DIF.  
23. WDR instruction inside closed window will not issue reset  
When a WDR instruction is execute within one ULP clock cycle after updating the window control register,  
the counter can be cleared without giving a system reset.  
Problem fix/workaround  
Wait at least one ULP clock cycle before executing a WDR instruction.  
24. Non available functions and options  
The below function and options are not available. Writing to any registers or fuse to try and enable or  
configure these functions or options will have no effect, and will be as writing to a reserved address location.  
TWIE, the TWI module on PORTE  
TWI SDAHOLD option in the TWI CTRL register is one bit  
CRC generator module  
ADC 1/2× gain option, and this configuration option in the GAIN bits in the ADC Channel CTRL register  
ADC VCC/2 reference option and this configuration option in the REFSEL bits on the ADC REFCTRL  
register  
ADC option to use internal Gnd as negative input in differential measurements and this configuration option  
in the MUXNEG bits in the ADC Channel MUXCTRL register  
ADC channel scan and the ADC SCAN register  
ADC current limitation option, and the CURRLIMIT bits in the ADC CTRLB register  
ADC impedance mode selection for the gain stage, and the IMPMODE bit in the ADC CTRLB register  
Timer/Counter 2 and the SPLITMODE configuration option in the BYTEM bits in the Timer/Counter 0  
CTRLE register  
Analog Comparator (AC) current output option, and the AC CURRCTRL and CURRCALIB registers  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
427  
PORT remap functions with alternate pin locations for Timer/Counter output compare channels, USART0  
and SPI, and the PORT REMAP register  
PORT RTC clock output option and the RTCOUT bit in the PORT CLKEVOUT register  
PORT remap functions with alternate pin locations for the clock and event output, and the CLKEVPIN bit in  
the PORT CLKEVOUT register  
TOSC alternate pin locations, and TOSCSEL bit in FUSEBYTE2  
Real Time Counter clock source options of external clock from TOSC1, and 32.768kHz from TOSC, and  
32.768kHz from the 32.768kHz internal oscillator, and these configuration options in the RTCSRC bits in the  
Clock RTCTRL register  
PLL divide by two option, and the PLLDIV bit in the Clock PLLCTRL register  
PLL lock detection failure function and the PLLDIF and PLLFDEN bits in the Clock XOSCFAIL register  
The high drive option for external crystal and the XOSCPWR bit on the Oscillator XOSCCTRL register  
The option to enable sequential startup of the analog modules and the ANAINIT register in MCU Control  
memory  
Problem fix/workaround  
None.  
25. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC and Analog Comparator.  
Problem fix/workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in  
sampled mode.  
26. Temperature sensor not calibrated  
Temperature sensor factory calibration not implemented.  
Problem fix/workaround  
None.  
34.4.6 Rev. D  
Not sampled.  
34.4.7 Rev. C  
Not sampled.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
428  
34.4.8 Rev. B  
Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously  
VCC voltage scaler for AC is non-linear  
ADC gain stage cannot be used for single conversion  
ADC has increased INL error for some operating conditions  
ADC gain stage output range is limited to 2.4V  
ADC Event on compare match non-functional  
ADC propagation delay is not correct when 8× – 64× gain is used  
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
Accuracy lost on first three samples after switching input to ADC gain stage  
Configuration of PGM and CWCM not as described in the XMEGA D Manual  
PWM is not restarted properly after a fault in cycle-by-cycle mode  
BOD will be enabled at any reset  
EEPROM page buffer always written when NVM DATA0 is written  
Pending full asynchronous pin change interrupts will not wake the device  
Pin configuration does not affect Analog Comparator Output  
NMI Flag for Crystal Oscillator Failure automatically cleared  
Writing EEPROM or Flash while reading any of them will not work  
RTC Counter value not correctly read after sleep  
Pending asynchronous RTC-interrupts will not wake up device  
TWI Transmit collision flag not cleared on repeated start  
Clearing TWI Stop Interrupt Flag may lock the bus  
TWI START condition at bus timeout will cause transaction to be dropped  
TWI Data Interrupt Flag (DIF) erroneously read as set  
WDR instruction inside closed window will not issue reset  
Non available functions and options  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Temperature sensor not calibrated  
1. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously  
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as  
input for another AC, the first comparator will be affected for up to 1µs and could potentially give a wrong  
comparison result.  
Problem fix/workaround  
If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before  
enabling any of them.  
2. VCC voltage scaler for AC is non-linear  
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
429  
Figure 34-6. Analog Comparator Voltage Scaler vs. Scalefac  
T = 25°C  
3.5  
3
3.3 V  
2.7 V  
2.5  
2
1.8 V  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
Problem fix/workaround  
Use external voltage input for the analog comparator if accurate voltage levels are needed.  
3. ADC gain stage cannot be used for single conversion  
The ADC gain stage will not output correct result for single conversion that is triggered and started from soft-  
ware or event system.  
Problem fix/workaround  
When the gain stage is used, the ADC must be set in free running mode for correct results.  
4. ADC has increased INL error for some operating conditions  
Some ADC configurations or operating condition will result in increased INL error.  
In signed mode INL is increased to:  
6LSB for sample rates above 130ksps, and up to 8LSB for 200ksps sample rate.  
6LSB for reference voltage below 1.1V when VCC is above 3.0V.  
20LSB for ambient temperature below 0°C and reference voltage below 1.3V.  
In unsigned mode, the INL error cannot be guaranteed, and this mode should not be used.  
Problem fix/workaround  
None, avoid using the ADC in the above configurations in order to prevent increased INL error. Use the ADC  
in signed mode also for single ended measurements.  
5. ADC gain stage output range is limited to 2.4V  
The amplified output of the ADC gain stage will never go above 2.4V, hence the differential input will only  
give correct output when below 2.4V/gain. For the available gain settings, this gives a differential input range  
of:  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
430  
1×  
2×  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
2.4  
1.2  
0.6  
V
V
V
4×  
8×  
300 mV  
150 mV  
75 mV  
38 mV  
16×  
32×  
64×  
Problem fix/workaround  
Keep the amplified voltage output from the ADC gain stage below 2.4V in order to get a correct result, or  
keep ADC voltage reference below 2.4V.  
6. ADC Event on compare match non-functional  
ADC signalling event will be given at every conversion complete even if Interrupt mode (INTMODE) is set to  
BELOW or ABOVE.  
Problem fix/workaround  
Enable and use interrupt on compare match when using the compare function.  
7. ADC propagation delay is not correct when 8× – 64× gain is used  
The propagation delay will increase by only one ADC clock cycle for all gain settings.  
Problem fix/workaround  
None.  
8. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
The ADC can not be used to do bandgap measurements when VCC is below 2.7V.  
Problem fix/workaround  
None.  
9. Accuracy lost on first three samples after switching input to ADC gain stage  
Due to memory effect in the ADC gain stage, the first three samples after changing input channel must be  
disregarded to achieve 12-bit accuracy.  
Problem fix/workaround  
Run three ADC conversions and discard these results after changing input channels to ADC gain stage.  
10. Configuration of PGM and CWCM not as described in XMEGA D Manual  
Enabling Common Waveform Channel Mode will enable Pattern generation mode (PGM), but not Common  
Waveform Channel Mode.  
Enabling Pattern Generation Mode (PGM) and not Common Waveform Channel Mode (CWCM) will enable  
both Pattern Generation Mode and Common Waveform Channel Mode.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
431  
Problem fix/workaround  
Table 34-6. Configure PWM and CWCM According to this Table:  
PGM  
CWCM  
Description  
0
0
1
1
0
1
0
1
PGM and CWCM disabled  
PGM enabled  
PGM and CWCM enabled  
PGM enabled  
11. PWM is not restarted properly after a fault in cycle-by-cycle mode  
When the AWeX fault restore mode is set to cycle-by-cycle, the waveform output will not return to normal  
operation at first update after fault condition is no longer present.  
Problem fix/workaround  
Do a write to any AWeX I/O register to re-enable the output.  
12. BOD will be enabled after any reset  
If any reset source goes active, the BOD will be enabled and keep the device in reset if the VCC voltage is  
below the programmed BOD level. During Power-On Reset, reset will not be released until VCC is above the  
programmed BOD level even if the BOD is disabled.  
Problem fix/workaround  
Do not set the BOD level higher than VCC even if the BOD is not used.  
13. EEPROM page buffer always written when NVM DATA0 is written  
If the EEPROM is memory mapped, writing to NVM DATA0 will corrupt data in the EEPROM page buffer.  
Problem fix/workaround  
Before writing to NVM DATA0, for example when doing software CRC or flash page buffer write, check if  
EEPROM page buffer active loading flag (EELOAD) is set. Do not write NVM DATA0 when EELOAD is set.  
14. Pending full asynchronous pin change interrupts will not wake the device  
Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the sleep instruction  
is executed, will be ignored until the device is woken from another source or the source triggers again. This  
applies when entering all sleep modes where the System Clock is stopped.  
Problem fix/workaround  
None.  
15. Pin configuration does not affect Analog Comparator output  
The Output/Pull and inverted pin configuration does not affect the Analog Comparator output.  
Problem fix/workaround  
None for Output/Pull configuration.  
For inverted I/O, configure the Analog Comparator to give an inverted result (that is, connect positive input to  
the negative AC input and vice versa), or use and external inverter to change polarity of Analog Comparator  
output.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
432  
16. NMI Flag for Crystal Oscillator Failure automatically cleared  
NMI flag for Crystal Oscillator Failure (XOSCFDIF) will be automatically cleared when executing the NMI  
interrupt handler.  
Problem fix/workaround  
This device revision has only one NMI interrupt source, so checking the interrupt source in software is not  
required.  
17. Writing EEPROM or Flash while reading any of them will not work  
The EEPROM and Flash cannot be written while reading EEPROM or Flash, or while executing code in  
Active mode.  
Problem fix/workaround  
Enter IDLE sleep mode within 2.5µs (five 2MHz clock cycles and 80 32MHz clock cycles) after starting an  
EEPROM or flash write operation. Wake-up source must either be EEPROM ready or NVM ready interrupt.  
Alternatively set up a Timer/Counter to give an overflow interrupt 7ms after the erase or write operation has  
started, or 13ms after atomic erase-and-write operation has started, and then enter IDLE sleep mode.  
18. RTC Counter value not correctly read after sleep  
If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to bit 0 of RTC  
PER as the device is entering sleep, the value in the RTC count register can not be read correctly within the  
first prescaled RTC clock cycle after wake-up. The value read will be the same as the value in the register  
when entering sleep.  
The same applies if RTC Compare Match is used as wake-up source.  
Problem fix/workaround  
Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.  
19. Pending asynchronous RTC-interrupts will not wake up device  
Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep instruction is executed,  
will be ignored until the device is woken from another source or the source triggers again.  
Problem fix/workaround  
None.  
20. TWI Transmit collision flag not cleared on repeated start  
The TWI transmit collision flag should be automatically cleared on start and repeated start, but is only  
cleared on start.  
Problem fix/workaround  
Clear the flag in software after address interrupt.  
21. Clearing TWI Stop Interrupt Flag may lock the bus  
If software clears the STOP Interrupt Flag (APIF) on the same Peripheral Clock cycle as the hardware sets  
this flag due to a new address received, CLKHOLD is not cleared and the SCL line is not released. This will  
lock the bus.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
433  
Problem fix/workaround  
Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is not IDLE, wait for  
the SCL pin to be low before clearing APIF.  
Code:  
/* Only clear the interrupt flag if within a "safe zone". */  
while ( /* Bus not IDLE: */  
((COMMS_TWI.MASTER.STATUS & TWI_MASTER_BUSSTATE_gm) !=  
TWI_MASTER_BUSSTATE_IDLE_gc)) &&  
/* SCL not held by slave: */  
!(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm)  
)
{
/* Ensure that the SCL line is low */  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
break;  
}
/* Check for an pending address match interrupt */  
if ( !(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm) )  
{
/* Safely clear interrupt flag */  
COMMS_TWI.SLAVE.STATUS |= (uint8_t)TWI_SLAVE_APIF_bm;  
}
22. TWI START condition at bus timeout will cause transaction to be dropped  
If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a START is detected,  
the transaction will be dropped.  
Problem fix/workaround  
None.  
23. TWI Data Interrupt Flag erroneously read as set  
When issuing the TWI slave response command CMD=0b11, it takes one Peripheral Clock cycle to clear the  
data interrupt flag (DIF). A read of DIF directly after issuing the command will show the DIF still set.  
Problem fix/workaround  
Add one NOP instruction before checking DIF.  
24. WDR instruction inside closed window will not issue reset  
When a WDR instruction is execute within one ULP clock cycle after updating the window control register,  
the counter can be cleared without giving a system reset.  
Problem fix/workaround  
Wait at least one ULP clock cycle before executing a WDR instruction.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
434  
25. Non available functions and options  
The below function and options are not available. Writing to any registers or fuse to try and enable or config-  
ure these functions or options will have no effect, and will be as writing to a reserved address location.  
TWIE, the TWI module on PORTE  
TWI SDAHOLD option in the TWI CTRL register is one bit  
CRC generator module  
ADC 1/2× gain option, and this configuration option in the GAIN bits in the ADC Channel CTRL register  
ADC VCC/2 reference option and this configuration option in the REFSEL bits on the ADC REFCTRL  
register  
ADC option to use internal Gnd as negative input in differential measurements and this configuration option  
in the MUXNEG bits in the ADC Channel MUXCTRL register  
ADC channel scan and the ADC SCAN register  
ADC current limitation option, and the CURRLIMIT bits in the ADC CTRLB register  
ADC impedance mode selection for the gain stage, and the IMPMODE bit in the ADC CTRLB register  
Timer/Counter 2 and the SPLITMODE configuration option in the BYTEM bits in the Timer/Counter 0  
CTRLE register  
Analog Comparator (AC) current output option, and the AC CURRCTRL and CURRCALIB registers  
PORT remap functions with alternate pin locations for Timer/Counter output compare channels, USART0  
and SPI, and the PORT REMAP register  
PORT RTC clock output option and the RTCOUT bit in the PORT CLKEVOUT register  
PORT remap functions with alternate pin locations for the clock and event output, and the CLKEVPIN bit in  
the PORT CLKEVOUT register  
TOSC alternate pin locations, and TOSCSEL bit in FUSEBYTE2  
Real Time Counter clock source options of external clock from TOSC1, and 32.768kHz from TOSC, and  
32.768kHz from the 32.768kHz internal oscillator, and these configuration options in the RTCSRC bits in the  
Clock RTCTRL register  
PLL divide by two option, and the PLLDIV bit in the Clock PLLCTRL register  
PLL lock detection failure function and the PLLDIF and PLLFDEN bits in the Clock XOSCFAIL register  
The high drive option for external crystal and the XOSCPWR bit on the Oscillator XOSCCTRL register  
The option to enable sequential startup of the analog modules and the ANAINIT register in MCU Control  
memory  
Problem fix/workaround  
None.  
26. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC and Analog Comparator.  
Problem fix/workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in  
sampled mode.  
27. Temperature sensor not calibrated  
Temperature sensor factory calibration not implemented.  
Problem fix/workaround  
None.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
435  
34.4.9 Rev. A  
Not sampled.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
436  
34.5 Atmel ATxmega256D3  
34.5.1 Rev. I  
AC system status flags are only valid if AC-system is enabled  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Temperature sensor not calibrated  
1. AC system status flags are only valid if AC-system is enabled  
The status flags for the ac-output are updated even though the AC is not enabled which is invalid. Also, it is not  
possible to clear the AC interrupt flags without enabling either of the Analog comparators.  
Problem fix/workaround  
Software should clear the AC system flags once, after enabling the AC system before using the AC system status  
flags.  
2. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC and Analog Comparator.  
Problem fix/workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in  
sampled mode.  
3. Temperature sensor not calibrated  
Temperature sensor factory calibration not implemented.  
Problem fix/workaround  
None.  
34.5.2 Rev. H  
Not sampled.  
34.5.3 Rev. G  
Not sampled.  
34.5.4 Rev. F  
Not sampled.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
437  
34.5.5 Rev. E  
Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously  
VCC voltage scaler for AC is non-linear  
ADC gain stage cannot be used for single conversion  
ADC has increased INL error for some operating conditions  
ADC gain stage output range is limited to 2.4V  
ADC Event on compare match non-functional  
ADC propagation delay is not correct when 8× – 64× gain is used  
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
Accuracy lost on first three samples after switching input to ADC gain stage  
Configuration of PGM and CWCM not as described in the XMEGA D Manual  
PWM is not restarted properly after a fault in cycle-by-cycle mode  
BOD will be enabled at any reset  
EEPROM page buffer always written when NVM DATA0 is written  
Pending full asynchronous pin change interrupts will not wake the device  
Pin configuration does not affect Analog Comparator Output  
NMI Flag for Crystal Oscillator Failure automatically cleared  
RTC Counter value not correctly read after sleep  
Pending asynchronous RTC-interrupts will not wake up device  
TWI Transmit collision flag not cleared on repeated start  
Clearing TWI Stop Interrupt Flag may lock the bus  
TWI START condition at bus timeout will cause transaction to be dropped  
TWI Data Interrupt Flag (DIF) erroneously read as set  
WDR instruction inside closed window will not issue reset  
Non available functions and options  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Temperature sensor not calibrated  
Disabling the USART transmitter does not automatically set the TxD pin direction to input  
1. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously  
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as  
input for another AC, the first comparator will be affected for up to 1µs and could potentially give a wrong  
comparison result.  
Problem fix/workaround  
If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before  
enabling any of them.  
2.  
V
CC voltage scaler for AC is non-linear  
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
438  
Figure 34-7. Analog Comparator Voltage Scaler vs. Scalefac  
T = 25°C  
3.5  
3
3.3 V  
2.7 V  
2.5  
2
1.8 V  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
Problem fix/workaround  
Use external voltage input for the analog comparator if accurate voltage levels are needed.  
3. ADC gain stage cannot be used for single conversion  
The ADC gain stage will not output correct result for single conversion that is triggered and started from soft-  
ware or event system.  
Problem fix/workaround  
When the gain stage is used, the ADC must be set in free running mode for correct results.  
4. ADC has increased INL error for some operating conditions  
Some ADC configurations or operating condition will result in increased INL error.  
In signed mode INL is increased to:  
6LSB for sample rates above 130ksps, and up to 8LSB for 200ksps sample rate.  
6LSB for reference voltage below 1.1V when VCC is above 3.0V.  
20LSB for ambient temperature below 0°C and reference voltage below 1.3V.  
In unsigned mode, the INL error cannot be guaranteed, and this mode should not be used.  
Problem fix/workaround  
None, avoid using the ADC in the above configurations in order to prevent increased INL error. Use the ADC  
in signed mode also for single ended measurements.  
5. ADC gain stage output range is limited to 2.4V  
The amplified output of the ADC gain stage will never go above 2.4V, hence the differential input will only  
give correct output when below 2.4V/gain. For the available gain settings, this gives a differential input range  
of:  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
439  
1×  
2×  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
2.4  
1.2  
0.6  
V
V
V
4×  
8×  
300 mV  
150 mV  
75 mV  
38 mV  
16×  
32×  
64×  
Problem fix/workaround  
Keep the amplified voltage output from the ADC gain stage below 2.4V in order to get a correct result, or  
keep ADC voltage reference below 2.4V.  
6. ADC Event on compare match non-functional  
ADC signalling event will be given at every conversion complete even if Interrupt mode (INTMODE) is set to  
BELOW or ABOVE.  
Problem fix/workaround  
Enable and use interrupt on compare match when using the compare function.  
7. ADC propagation delay is not correct when 8× – 64× gain is used  
The propagation delay will increase by only one ADC clock cycle for all gain settings.  
Problem fix/workaround  
None.  
8. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
The ADC can not be used to do bandgap measurements when VCC is below 2.7V.  
Problem fix/workaround  
None.  
9. Accuracy lost on first three samples after switching input to ADC gain stage  
Due to memory effect in the ADC gain stage, the first three samples after changing input channel must be  
disregarded to achieve 12-bit accuracy.  
Problem fix/workaround  
Run three ADC conversions and discard these results after changing input channels to ADC gain stage.  
10. Configuration of PGM and CWCM not as described in XMEGA D Manual  
Enabling Common Waveform Channel Mode will enable Pattern generation mode (PGM), but not Common  
Waveform Channel Mode.  
Enabling Pattern Generation Mode (PGM) and not Common Waveform Channel Mode (CWCM) will enable  
both Pattern Generation Mode and Common Waveform Channel Mode.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
440  
Problem fix/workaround  
Table 34-7. Configure PWM and CWCM According to this Table:  
PGM  
CWCM  
Description  
0
0
1
1
0
1
0
1
PGM and CWCM disabled  
PGM enabled  
PGM and CWCM enabled  
PGM enabled  
11. PWM is not restarted properly after a fault in cycle-by-cycle mode  
When the AWeX fault restore mode is set to cycle-by-cycle, the waveform output will not return to normal  
operation at first update after fault condition is no longer present.  
Problem fix/workaround  
Do a write to any AWeX I/O register to re-enable the output.  
12. BOD will be enabled after any reset  
If any reset source goes active, the BOD will be enabled and keep the device in reset if the VCC voltage is  
below the programmed BOD level. During Power-On Reset, reset will not be released until VCC is above the  
programmed BOD level even if the BOD is disabled.  
Problem fix/workaround  
Do not set the BOD level higher than VCC even if the BOD is not used.  
13. EEPROM page buffer always written when NVM DATA0 is written  
If the EEPROM is memory mapped, writing to NVM DATA0 will corrupt data in the EEPROM page buffer.  
Problem fix/workaround  
Before writing to NVM DATA0, for example when doing software CRC or flash page buffer write, check if  
EEPROM page buffer active loading flag (EELOAD) is set. Do not write NVM DATA0 when EELOAD is set.  
14. Pending full asynchronous pin change interrupts will not wake the device  
Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the sleep instruction  
is executed, will be ignored until the device is woken from another source or the source triggers again. This  
applies when entering all sleep modes where the System Clock is stopped.  
Problem fix/workaround  
None.  
15. Pin configuration does not affect Analog Comparator output  
The Output/Pull and inverted pin configuration does not affect the Analog Comparator output.  
Problem fix/workaround  
None for Output/Pull configuration.  
For inverted I/O, configure the Analog Comparator to give an inverted result (that is, connect positive input to  
the negative AC input and vice versa), or use and external inverter to change polarity of Analog Comparator  
output.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
441  
16. NMI Flag for Crystal Oscillator Failure automatically cleared  
NMI flag for Crystal Oscillator Failure (XOSCFDIF) will be automatically cleared when executing the NMI  
interrupt handler.  
Problem fix/workaround  
This device revision has only one NMI interrupt source, so checking the interrupt source in software is not  
required.  
17. RTC Counter value not correctly read after sleep  
If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to bit 0 of RTC  
PER as the device is entering sleep, the value in the RTC count register can not be read correctly within the  
first prescaled RTC clock cycle after wake-up. The value read will be the same as the value in the register  
when entering sleep.  
The same applies if RTC Compare Match is used as wake-up source.  
Problem fix/workaround  
Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.  
18. Pending asynchronous RTC-interrupts will not wake up device  
Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep instruction is executed,  
will be ignored until the device is woken from another source or the source triggers again.  
Problem fix/workaround  
None.  
19. TWI Transmit collision flag not cleared on repeated start  
The TWI transmit collision flag should be automatically cleared on start and repeated start, but is only  
cleared on start.  
Problem fix/workaround  
Clear the flag in software after address interrupt.  
20. Clearing TWI Stop Interrupt Flag may lock the bus  
If software clears the STOP Interrupt Flag (APIF) on the same Peripheral Clock cycle as the hardware sets  
this flag due to a new address received, CLKHOLD is not cleared and the SCL line is not released. This will  
lock the bus.  
Problem fix/workaround  
Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is not IDLE, wait for  
the SCL pin to be low before clearing APIF.  
Code:  
/* Only clear the interrupt flag if within a "safe zone". */  
while ( /* Bus not IDLE: */  
((COMMS_TWI.MASTER.STATUS & TWI_MASTER_BUSSTATE_gm) !=  
TWI_MASTER_BUSSTATE_IDLE_gc)) &&  
/* SCL not held by slave: */  
!(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm)  
)
{
/* Ensure that the SCL line is low */  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
442  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
break;  
}
/* Check for an pending address match interrupt */  
if ( !(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm) )  
{
/* Safely clear interrupt flag */  
COMMS_TWI.SLAVE.STATUS |= (uint8_t)TWI_SLAVE_APIF_bm;  
}
21. TWI START condition at bus timeout will cause transaction to be dropped  
If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a START is detected,  
the transaction will be dropped.  
Problem fix/workaround  
None.  
22. TWI Data Interrupt Flag erroneously read as set  
When issuing the TWI slave response command CMD=0b11, it takes one Peripheral Clock cycle to clear the  
data interrupt flag (DIF). A read of DIF directly after issuing the command will show the DIF still set.  
Problem fix/workaround  
Add one NOP instruction before checking DIF.  
23. WDR instruction inside closed window will not issue reset  
When a WDR instruction is execute within one ULP clock cycle after updating the window control register,  
the counter can be cleared without giving a system reset.  
Problem fix/workaround  
Wait at least one ULP clock cycle before executing a WDR instruction.  
24. Non available functions and options  
The below function and options are not available. Writing to any registers or fuse to try and enable or  
configure these functions or options will have no effect, and will be as writing to a reserved address location.  
TWIE, the TWI module on PORTE  
TWI SDAHOLD option in the TWI CTRL register is one bit  
CRC generator module  
ADC 1/2× gain option, and this configuration option in the GAIN bits in the ADC Channel CTRL register  
ADC VCC/2 reference option and this configuration option in the REFSEL bits on the ADC REFCTRL  
register  
ADC option to use internal Gnd as negative input in differential measurements and this configuration option  
in the MUXNEG bits in the ADC Channel MUXCTRL register  
ADC channel scan and the ADC SCAN register  
ADC current limitation option, and the CURRLIMIT bits in the ADC CTRLB register  
ADC impedance mode selection for the gain stage, and the IMPMODE bit in the ADC CTRLB register  
Timer/Counter 2 and the SPLITMODE configuration option in the BYTEM bits in the Timer/Counter 0  
CTRLE register  
Analog Comparator (AC) current output option, and the AC CURRCTRL and CURRCALIB registers  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
443  
PORT remap functions with alternate pin locations for Timer/Counter output compare channels, USART0  
and SPI, and the PORT REMAP register  
PORT RTC clock output option and the RTCOUT bit in the PORT CLKEVOUT register  
PORT remap functions with alternate pin locations for the clock and event output, and the CLKEVPIN bit in  
the PORT CLKEVOUT register  
TOSC alternate pin locations, and TOSCSEL bit in FUSEBYTE2  
Real Time Counter clock source options of external clock from TOSC1, and 32.768kHz from TOSC, and  
32.768kHz from the 32.768kHz internal oscillator, and these configuration options in the RTCSRC bits in the  
Clock RTCTRL register  
PLL divide by two option, and the PLLDIV bit in the Clock PLLCTRL register  
PLL lock detection failure function and the PLLDIF and PLLFDEN bits in the Clock XOSCFAIL register  
The high drive option for external crystal and the XOSCPWR bit on the Oscillator XOSCCTRL register  
The option to enable sequential startup of the analog modules and the ANAINIT register in MCU Control  
memory  
Problem fix/workaround  
None.  
25. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC and Analog Comparator.  
Problem fix/workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in  
sampled mode.  
26. Temperature sensor not calibrated  
Temperature sensor factory calibration not implemented.  
Problem fix/workaround  
None.  
27. Disabling of USART transmitter does not automatically set the TxD pin direction to input  
If the USART transmitter is idle with no frames to transmit, setting TXEN to zero will not automatically set the TxD  
pin direction to input.  
Problem fix/workaround  
The TxD pin direction can be set to input using the Port DIR register. Be advised that setting the Port DIR register  
to input will be immediate. Ongoing transmissions will be truncated.  
34.5.6 Rev. D  
Not sampled.  
34.5.7 Rev. C  
Not sampled.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
444  
34.5.8 Rev. B  
Bandgap voltage input for the ACs can not be changed when used for both ACs simultaneously  
VCC voltage scaler for AC is non-linear  
ADC gain stage cannot be used for single conversion  
ADC has increased INL error for some operating conditions  
ADC gain stage output range is limited to 2.4V  
ADC Event on compare match non-functional  
ADC propagation delay is not correct when 8× – 64× gain is used  
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
Accuracy lost on first three samples after switching input to ADC gain stage  
Configuration of PGM and CWCM not as described in the XMEGA D Manual  
PWM is not restarted properly after a fault in cycle-by-cycle mode  
BOD will be enabled at any reset  
EEPROM page buffer always written when NVM DATA0 is written  
Pending full asynchronous pin change interrupts will not wake the device  
Pin configuration does not affect Analog Comparator Output  
NMI Flag for Crystal Oscillator Failure automatically cleared  
Writing EEPROM or Flash while reading any of them will not work  
RTC Counter value not correctly read after sleep  
Pending asynchronous RTC-interrupts will not wake up device  
TWI Transmit collision flag not cleared on repeated start  
Clearing TWI Stop Interrupt Flag may lock the bus  
TWI START condition at bus timeout will cause transaction to be dropped  
TWI Data Interrupt Flag (DIF) erroneously read as set  
WDR instruction inside closed window will not issue reset  
Non available functions and options  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Temperature sensor not calibrated  
Disabling the USART transmitter does not automatically set the TxD pin to input  
1. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously  
If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as  
input for another AC, the first comparator will be affected for up to 1µs and could potentially give a wrong  
comparison result.  
Problem fix/workaround  
If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before  
enabling any of them.  
2.  
V
CC voltage scaler for AC is non-linear  
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
445  
Figure 34-8. Analog Comparator Voltage Scaler vs. Scalefac  
T = 25°C  
3.5  
3
3.3 V  
2.7 V  
2.5  
2
1.8 V  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
Problem fix/workaround  
Use external voltage input for the analog comparator if accurate voltage levels are needed.  
3. ADC gain stage cannot be used for single conversion  
The ADC gain stage will not output correct result for single conversion that is triggered and started from soft-  
ware or event system.  
Problem fix/workaround  
When the gain stage is used, the ADC must be set in free running mode for correct results.  
4. ADC has increased INL error for some operating conditions  
Some ADC configurations or operating condition will result in increased INL error.  
In signed mode INL is increased to:  
6LSB for sample rates above 130ksps, and up to 8LSB for 200ksps sample rate.  
6LSB for reference voltage below 1.1V when VCC is above 3.0V.  
20LSB for ambient temperature below 0°C and reference voltage below 1.3V.  
In unsigned mode, the INL error cannot be guaranteed, and this mode should not be used.  
Problem fix/workaround  
None, avoid using the ADC in the above configurations in order to prevent increased INL error. Use the ADC  
in signed mode also for single ended measurements.  
5. ADC gain stage output range is limited to 2.4V  
The amplified output of the ADC gain stage will never go above 2.4V, hence the differential input will only  
give correct output when below 2.4V/gain. For the available gain settings, this gives a differential input range  
of:  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
446  
1×  
2×  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
gain:  
2.4  
1.2  
0.6  
V
V
V
4×  
8×  
300 mV  
150 mV  
75 mV  
38 mV  
16×  
32×  
64×  
Problem fix/workaround  
Keep the amplified voltage output from the ADC gain stage below 2.4V in order to get a correct result, or  
keep ADC voltage reference below 2.4V.  
6. ADC Event on compare match non-functional  
ADC signalling event will be given at every conversion complete even if Interrupt mode (INTMODE) is set to  
BELOW or ABOVE.  
Problem fix/workaround  
Enable and use interrupt on compare match when using the compare function.  
7. ADC propagation delay is not correct when 8× – 64× gain is used  
The propagation delay will increase by only one ADC clock cycle for all gain settings.  
Problem fix/workaround  
None.  
8. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
The ADC can not be used to do bandgap measurements when VCC is below 2.7V.  
Problem fix/workaround  
None.  
9. Accuracy lost on first three samples after switching input to ADC gain stage  
Due to memory effect in the ADC gain stage, the first three samples after changing input channel must be  
disregarded to achieve 12-bit accuracy.  
Problem fix/workaround  
Run three ADC conversions and discard these results after changing input channels to ADC gain stage.  
10. Configuration of PGM and CWCM not as described in XMEGA D Manual  
Enabling Common Waveform Channel Mode will enable Pattern Generation Mode (PGM), but not Common  
Waveform Channel Mode.  
Enabling Pattern Generation Mode (PGM) and not Common Waveform Channel Mode (CWCM) will enable  
both Pattern Generation Mode and Common Waveform Channel Mode.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
447  
Problem fix/workaround  
Table 34-8. Configure PWM and CWCM According to this Table:  
PGM  
CWCM  
Description  
0
0
1
1
0
1
0
1
PGM and CWCM disabled  
PGM enabled  
PGM and CWCM enabled  
PGM enabled  
11. PWM is not restarted properly after a fault in cycle-by-cycle mode  
When the AWeX fault restore mode is set to cycle-by-cycle, the waveform output will not return to normal  
operation at first update after fault condition is no longer present.  
Problem fix/workaround  
Do a write to any AWeX I/O register to re-enable the output.  
12. BOD will be enabled after any reset  
If any reset source goes active, the BOD will be enabled and keep the device in reset if the VCC voltage is  
below the programmed BOD level. During Power-On Reset, reset will not be released until VCC is above the  
programmed BOD level even if the BOD is disabled.  
Problem fix/workaround  
Do not set the BOD level higher than VCC even if the BOD is not used.  
13. EEPROM page buffer always written when NVM DATA0 is written  
If the EEPROM is memory mapped, writing to NVM DATA0 will corrupt data in the EEPROM page buffer.  
Problem fix/workaround  
Before writing to NVM DATA0, for example when doing software CRC or flash page buffer write, check if  
EEPROM page buffer active loading flag (EELOAD) is set. Do not write NVM DATA0 when EELOAD is set.  
14. Pending full asynchronous pin change interrupts will not wake the device  
Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the sleep instruction  
is executed, will be ignored until the device is woken from another source or the source triggers again. This  
applies when entering all sleep modes where the System Clock is stopped.  
Problem fix/workaround  
None.  
15. Pin configuration does not affect Analog Comparator output  
The Output/Pull and inverted pin configuration does not affect the Analog Comparator output.  
Problem fix/workaround  
None for Output/Pull configuration.  
For inverted I/O, configure the Analog Comparator to give an inverted result (that is, connect positive input to  
the negative AC input and vice versa), or use and external inverter to change polarity of Analog Comparator  
output.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
448  
16. NMI Flag for Crystal Oscillator Failure automatically cleared  
NMI flag for Crystal Oscillator Failure (XOSCFDIF) will be automatically cleared when executing the NMI  
interrupt handler.  
Problem fix/workaround  
This device revision has only one NMI interrupt source, so checking the interrupt source in software is not  
required.  
17. Writing EEPROM or Flash while reading any of them will not work  
The EEPROM and Flash cannot be written while reading EEPROM or Flash, or while executing code in  
Active mode.  
Problem fix/workaround  
Enter IDLE sleep mode within 2.5µs (five 2MHz clock cycles and 80 32MHz clock cycles) after starting an  
EEPROM or flash write operation. Wake-up source must either be EEPROM ready or NVM ready interrupt.  
Alternatively set up a Timer/Counter to give an overflow interrupt 7ms after the erase or write operation has  
started, or 13ms after atomic erase-and-write operation has started, and then enter IDLE sleep mode.  
18. RTC Counter value not correctly read after sleep  
If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to bit 0 of RTC  
PER as the device is entering sleep, the value in the RTC count register can not be read correctly within the  
first prescaled RTC clock cycle after wakeup. The value read will be the same as the value in the register  
when entering sleep.  
The same applies if RTC Compare Match is used as wake-up source.  
Problem fix/workaround  
Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.  
19. Pending asynchronous RTC-interrupts will not wake up device  
Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep instruction is executed,  
will be ignored until the device is woken from another source or the source triggers again.  
Problem fix/workaround  
None.  
20. TWI Transmit collision flag not cleared on repeated start  
The TWI transmit collision flag should be automatically cleared on start and repeated start, but is only  
cleared on start.  
Problem fix/workaround  
Clear the flag in software after address interrupt.  
21. Clearing TWI Stop Interrupt Flag may lock the bus  
If software clears the STOP Interrupt Flag (APIF) on the same Peripheral Clock cycle as the hardware sets  
this flag due to a new address received, CLKHOLD is not cleared and the SCL line is not released. This will  
lock the bus.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
449  
Problem fix/workaround  
Check if the bus state is IDLE. If this is the case, it is safe to clear APIF. If the bus state is not IDLE, wait for  
the SCL pin to be low before clearing APIF.  
Code:  
/* Only clear the interrupt flag if within a "safe zone". */  
while ( /* Bus not IDLE: */  
((COMMS_TWI.MASTER.STATUS & TWI_MASTER_BUSSTATE_gm) !=  
TWI_MASTER_BUSSTATE_IDLE_gc)) &&  
/* SCL not held by slave: */  
!(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm)  
)
{
/* Ensure that the SCL line is low */  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
if ( !(COMMS_PORT.IN & PIN1_bm) )  
break;  
}
/* Check for an pending address match interrupt */  
if ( !(COMMS_TWI.SLAVE.STATUS & TWI_SLAVE_CLKHOLD_bm) )  
{
/* Safely clear interrupt flag */  
COMMS_TWI.SLAVE.STATUS |= (uint8_t)TWI_SLAVE_APIF_bm;  
}
22. TWI START condition at bus timeout will cause transaction to be dropped  
If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a START is detected,  
the transaction will be dropped.  
Problem fix/workaround  
None.  
23. TWI Data Interrupt Flag erroneously read as set  
When issuing the TWI slave response command CMD=0b11, it takes one Peripheral Clock cycle to clear the  
data interrupt flag (DIF). A read of DIF directly after issuing the command will show the DIF still set.  
Problem fix/workaround  
Add one NOP instruction before checking DIF.  
24. WDR instruction inside closed window will not issue reset  
When a WDR instruction is execute within one ULP clock cycle after updating the window control register,  
the counter can be cleared without giving a system reset.  
Problem fix/workaround  
Wait at least one ULP clock cycle before executing a WDR instruction.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
450  
25. Non available functions and options  
The below function and options are not available. Writing to any registers or fuse to try and enable or config-  
ure these functions or options will have no effect, and will be as writing to a reserved address location.  
TWIE, the TWI module on PORTE  
TWI SDAHOLD option in the TWI CTRL register is one bit  
CRC generator module  
ADC 1/2× gain option, and this configuration option in the GAIN bits in the ADC Channel CTRL register  
ADC VCC/2 reference option and this configuration option in the REFSEL bits on the ADC REFCTRL  
register  
ADC option to use internal Gnd as negative input in differential measurements and this configuration option  
in the MUXNEG bits in the ADC Channel MUXCTRL register  
ADC channel scan and the ADC SCAN register  
ADC current limitation option, and the CURRLIMIT bits in the ADC CTRLB register  
ADC impedance mode selection for the gain stage, and the IMPMODE bit in the ADC CTRLB register  
Timer/Counter 2 and the SPLITMODE configuration option in the BYTEM bits in the Timer/Counter 0  
CTRLE register  
Analog Comparator (AC) current output option, and the AC CURRCTRL and CURRCALIB registers  
PORT remap functions with alternate pin locations for Timer/Counter output compare channels, USART0  
and SPI, and the PORT REMAP register  
PORT RTC clock output option and the RTCOUT bit in the PORT CLKEVOUT register  
PORT remap functions with alternate pin locations for the clock and event output, and the CLKEVPIN bit in  
the PORT CLKEVOUT register  
TOSC alternate pin locations, and TOSCSEL bit in FUSEBYTE2  
Real Time Counter clock source options of external clock from TOSC1, and 32.768kHz from TOSC, and  
32.768kHz from the 32.768kHz internal oscillator, and these configuration options in the RTCSRC bits in the  
Clock RTCTRL register  
PLL divide by two option, and the PLLDIV bit in the Clock PLLCTRL register  
PLL lock detection failure function and the PLLDIF and PLLFDEN bits in the Clock XOSCFAIL register  
The high drive option for external crystal and the XOSCPWR bit on the Oscillator XOSCCTRL register  
The option to enable sequential startup of the analog modules and the ANAINIT register in MCU Control  
memory  
Problem fix/workaround  
None.  
26. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC and Analog Comparator.  
Problem fix/workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in  
sampled mode.  
27. Temperature sensor not calibrated  
Temperature sensor factory calibration not implemented.  
Problem fix/workaround  
None.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
451  
28. Disabling of USART transmitter does not automatically set the TxD pin direction to input  
If the USART transmitter is idle with no frames to transmit, setting TXEN to zero will not automatically set the TxD  
pin direction to input.  
Problem fix/workaround  
The TxD pin direction can be set to input using the Port DIR register. Be advised that setting the Port DIR register  
to input will be immediate. Ongoing transmissions will be truncated.  
34.5.9 Rev. A  
Not sampled.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
452  
34.6 Atmel ATxmega384D3  
34.6.1 Rev. B  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Temperature sensor not calibrated  
1. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add noise on the bandgap  
reference for ADC, DAC and Analog Comparator.  
Problem fix/workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the BOD must not be set in  
sampled mode.  
2. Temperature sensor not calibrated  
Temperature sensor factory calibration not implemented.  
Problem fix/workaround  
None.  
34.6.2 Rev. A  
Not sampled.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
453  
35. Datasheet revision history  
Note that the referring page numbers in this section are referred to this document. The referring revisions in this section  
are referring to the document revision.  
35.1 8134Q – 10/2015  
1.  
Updated “Ordering Information” on page 2.  
All ATxmegayyD3-MT and ATxmegayyD3-MTR changed respectively to ATxmegayyD3-MN and ATxmegayyD3-MNR  
35.2 8134P – 11/2014  
1.  
2.  
Changed EEPROM value for ATxmega32D3 to 1K in Section 1. “Ordering Information” on page 2, in Figure 7-2 on  
page 16 and in Table 7-3 on page 18.  
Section naming in Chapter “Typical Characteristics” has been corrected.  
35.3 8134O – 09/2014  
1.  
2.  
Updated “Ordering Information” on page 2. Added Ordering codes for the devices characterized @ 105C.  
Updated “Electrical Characteristics” on page 63:  
Updated Table 32-4 on page 65, Table 32-33 on page 84, Table 32-62 on page 103, Table 32-91 on page 122,  
Table 32-120 on page 141 and Table 32-149 on page 160. Added ICC Power-down power consumption for  
T=105C for all functions disabled and for WDT and sampled BOD enabled.  
Updated,Table 32-17 on page 73, Table 32-46 on page 92, Table 32-75 on page 111, Table 32-104 on page  
130, Table 32-133 on page 149, and Table 32-162 on page 168. Updated all tables to include values for T=85C  
and T=105C. Removed T=55C.  
3.  
4.  
Updated “Typical Characteristics” on page 177. Added 105C characteristics.  
Changed Vcc to AVCC in Section 25. “ADC – 12-bit Analog to Digital Converter” on page 45 and Section 26. “AC –  
Analog Comparator” on page 47.  
5.  
Added ERRATA concerning disabling of the USART transmitter in Section 34.2 “Atmel ATxmega64D3” on page  
389, Section 34.3 “Atmel ATxmega128D3” on page 405 and Section 34.5 “Atmel ATxmega256D3” on page 437.  
35.4 8134N – 03/2014  
1.  
Updated Table 28-2 on page 52. PORT PB1 has PIN# 7  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
454  
2.  
Updated Table 32-5 on page 66 and Table 32-34 on page 85: The condition for ADC updated from 200ksps to  
16ksps, VREF = Ext. ref.  
3.  
4.  
Added “ External 16MHz Crystal Oscillator and XOSC Characteristics” on page 95, 114, 133 and on page 171.  
Updated the “Errata” on page 388:  
Removed errata: “Crystal start-up time required after power-save even if crystal is source for RTC”  
Added errata from Rev B and later: “Sampled BOD in Active mode will cause noise when bandgap is used  
as reference”  
35.5 8134M – 07/2013  
1.  
2.  
“Pinout/block Diagram” on page 5: USART0 removed from Port F.  
Typical chara, Figure 33-156 on page 255 and Figure 33-226 on page 290: Scale on Y-axis updated from mA to µA.  
35.6 8134L – 07/2013  
1.  
2.  
Added errata section for “Atmel ATxmega32D3” on page 388  
Errata Temperature sensor not calibrated added to:  
ATxmega64D3 “Rev. I” , “Rev. E” and “Rev. B” .  
ATxmega128D3 “Rev. J” , “Rev. E” and “Rev. B” .  
ATxmega192D3 “Rev. I” , “Rev. E” and “Rev. B” .  
ATxmega256D3 “Rev. I” , “Rev. E” and “Rev. B” .  
ATxmega384D3 “Rev. B” .  
35.7 8134K – 05/2013  
1.  
“Errata” is updated.  
35.8 8134J – 03/2013  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Almost all figures in Chapter “Typical Characteristics” are updated.  
Added new Errata “Rev. G” on page 117.  
Added new Errata “Rev. B” on page 125 and “Rev. E” on page 118. Non available functions and options.  
Editing updates.  
Added ATxmega32D3 and ATxmega384D3.  
New datasheet template is added.  
A lot of small corrections and a complete reorganization of “Electrical Characteristics” and “Typical Characteristics” .  
Bullet “Optional Slew Rate Control” in Chapter “I/O Ports” on page 30 is removed.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
455  
The sentence “The port pins also have configurable slew rate limitation to reduce electromagnetic emission” in  
Chapter “I/O Ports” on page 30 is removed.  
9.  
The sentence “The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low  
level input and output voltage limits reflect or exceed this specification” is added to Section 32.1.5 on page 68,  
Section 32.2.5 on page 87, Section 32.6.5 on page 163, Section 33.5.2 on page 297 and Section 33.6.2 on  
page 331.  
10.  
11.  
12.  
13.  
14.  
Figure 2-1 on page 5 is updated by changing VDD to VCC  
.
Table 7-1 on page 15 is updated.  
Figure 7-2 on page 16 is updated.  
Figure 14-7 on page 33 is updated.  
Former Table 32-24, Table 32-52, Table 32-79, Table 32-107, Table 32-135, Table 32-163 (title: “External clock”) have  
each been replaced by two new tables, named respectively “External clock used as system clock without prescaling”  
and “External clock with prescaler for system clock”.  
15.  
In Table 32-29 on page 81, Table 32-58 on page 100, Table 32-87 on page 119, Table 32-116 on page 138, Table  
32-145 on page 157, and Table 32-174 on page 176 the value for the parameter “Input voltage” has been corrected.  
16.  
17.  
18.  
In Table 32-18 on page 73, Table 32-47 on page 92, Table 32-76 on page 111, Table 32-105 on page 130, Table 32-  
134 on page 149, and Table 32-163 on page 168 the parameter “Application erase” has been added.  
Table 32-14 on page 72, Table 32-43 on page 91, Table 32-101 on page 129, Table 32-130 on page 148 and Table  
32-159 on page 167 (Brownout detection characteristics) are updated.  
19.  
20.  
21.  
22.  
23  
Table 32-20 on page 74 and Table 32-49 on page 93 (2MHz internal oscillator characteristics) are updated.  
Table 32-21 on page 74 and Table 32-50 on page 93 (32MHz internal oscillator characteristics) are updated.  
Accuracy added in Table 32-109 on page 131.  
Table 32-149 on page 160 has been corrected.  
Table 32-167 on page 169; “Factory calibration accuracy” and “Accuracy” is added.  
Table 32-150 on page 161, Table 32-152 on page 163, Table 32-154 on page 164, Table 32-155 on page 165, Table  
32-156 on page 166, and Table 32-157 on page 166 has been updated.  
24.  
25.  
26.  
27.  
Section 1. “Ordering Information” on page 2 is updated.  
Former Section 31.3 “64Z3” has been removed.  
Section 31.2 “64M” on page 62 has replaced the former Section 31.2 “64M2”.  
35.9 8134I – 12/2010  
1.  
2.  
Datasheet status changed to complete: Preliminary removed from front page.  
Updated all tables in the The maximum CPU clock frequency depends on VCC. As shown in Figure 32-8 on page 83  
the frequency vs. VCC curve is linear between 1.8V < VCC < 2.7V. on page 64.  
3.  
4.  
5.  
Replaced Table 31-11 on page 67.  
Replaced Table 31-17 on page 68 and added the figure “TOSC input capacitance” on page 78.  
Added “Rev. E” on page 118.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
456  
6.  
7.  
8.  
Updated ERRATA for ADC (ADC has increased INL error for some operating conditions).  
Updated ERRATA “Rev. B” on page 125 with twie (TWIE is not available).  
Updated the last page by Atmel new Brand Style Guide.  
35.10 8134H – 09/2010  
1.  
Updated “Errata” on page 388.  
35.11 8134G – 08/2010  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Updated the Footnote 3 of “Ordering Information” on page 2.  
All references to CRC removed. Updated Figure 3-1 on page 5.  
Updated “Features” on page 30.  
Updated “DC Characteristics” on page 61 by adding Icc for Flash/EEPROM Programming.  
Added AVCC in “ADC Characteristics” on page 68.  
Updated Start up time in “ADC Characteristics” on page 68.  
Updated and fixed typo in “Errata” on page 388.  
35.12 8134F – 02/2010  
1.  
Added “PDI Speed” on page 105.  
35.13 8134E – 01/2010  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
Updated the device pin-out Figure 2-1 on page 5. PDI_CLK and PDI_DATA renamed only PDI.  
Updated “ADC – 12-bit Analog to Digital Converter” on page 45.  
Updated Figure 25-1 on page 46.  
Updated “Alternate Pin Function Description” on page 50.  
Updated “Alternate Pin Functions” on page 51.  
Updated “Timer/counter and AWEX Functions” on page 50.  
Added Table 31-17 on page 68.  
Added Table 31-18 on page 69.  
Changed internal oscillator speed to “Power-on reset current consumption vs. VCC. BOD level = 3.0V, enabled in  
continuous mode.” on page 108.  
10.  
Updated “Errata” on page 388.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
457  
35.14 8134D – 11/2009  
1.  
2.  
3.  
4.  
Added Table 31-3 on page 64, Endurance and data retention.  
Updated Table 31-10 on page 67, Input hysteresis is in V and not in mV.  
Added “Errata” on page 388.  
Editing updates.  
35.15 8134C – 10/2009  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Updated “Features” on page 1 with two-wire interfaces.  
Updated “Pinout/block Diagram” on page 5.  
Updated “Overview” on page 6.  
Updated “XMEGA D# block diagram” on page 5.  
Updated Table 13-1 on page 29.  
Updated “Overview” on page 38.  
Updated Table 28-5 on page 53.  
Updated “Peripheral Module Address Map” on page 55.  
35.16 8134B – 08/2009  
1.  
2.  
Added The maximum CPU clock frequency depends on VCC. As shown in Figure 32-8 on page 83 the frequency vs.  
VCC curve is linear between 1.8V < VCC < 2.7V. on page 64.  
Added “Typical Characteristics” on page 177.  
35.17 8134A – 03/2009  
1.  
Initial revision.  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
458  
Table of Contents  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Pinout/block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1  
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4. Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.1  
Recommended Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
5. Capacitive Touch Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
6. AVR CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
ALU - Arithmetic Logic Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Stack and Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
7. Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Flash Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Fuses and Lock Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
I/O Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Device ID and Revision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.10 I/O Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.11 Flash and EEPROM Page Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
8. Event System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8.2  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
9. System Clock and Clock Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
9.1  
9.2  
9.3  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Clock Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10. Power Management and Sleep Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
10.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
10.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
10.3 Sleep Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
i
11. System Control and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
11.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
11.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
11.3 Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
11.4 Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
12. WDT – Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
12.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
12.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
13. Interrupts and Programmable Multilevel Interrupt Controller . . . . . . . . . . . . . . . . 28  
13.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
13.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
13.3 Interrupt Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
14. I/O Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
14.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
14.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
14.3 Output Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
14.4 Input Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
14.5 Alternate Port Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
15. TC0/1 – 16-bit Timer/Counter Type 0 and 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
15.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
15.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
16. TC2 – Timer/Counter Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
16.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
16.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
17. AWeX – Advanced Waveform Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
17.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
17.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
18. Hi-Res – High Resolution Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
18.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
18.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
19. RTC – 16-bit Real-Time Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
19.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
19.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
20. TWI – Two-Wire Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
20.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
20.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
21. SPI – Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
21.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
21.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
22. USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
22.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
22.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
ii  
23. IRCOM – IR Communication Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
23.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
23.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
24. CRC – Cyclic Redundancy Check generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
24.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
24.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
25. ADC – 12-bit Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
25.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
25.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
26. AC – Analog Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
26.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
26.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
27. Programming and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
27.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
27.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
28. Pinout and Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
28.1 Alternate Pin Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
28.2 Alternate Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
29. Peripheral Module Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
30. Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
31. Packaging Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
31.1 64A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
31.2 64M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
32. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
32.1 Atmel ATxmega32D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
32.2 Atmel ATxmega64D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
32.3 Atmel ATxmega128D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
32.4 Atmel ATxmega192D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
32.5 Atmel ATxmega256D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
32.6 Atmel ATxmega384D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
33. Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
33.1 Atmel ATxmega32D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
33.2 Atmel ATxmega64D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
33.3 Atmel ATxmega128D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
33.4 Atmel ATxmega192D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284  
33.5 Atmel ATxmega256D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319  
33.6 Atmel ATxmega384D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354  
34. Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388  
34.1 Atmel ATxmega32D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388  
34.2 Atmel ATxmega64D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389  
34.3 Atmel ATxmega128D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405  
34.4 Atmel ATxmega192D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421  
34.5 Atmel ATxmega256D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
iii  
34.6 Atmel ATxmega384D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453  
35. Datasheet revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454  
35.1 8134Q – 10/2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454  
35.2 8134P – 11/2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454  
35.3 8134O – 09/2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454  
35.4 8134N – 03/2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454  
35.5 8134M – 07/2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455  
35.6 8134L – 07/2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455  
35.7 8134K – 05/2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455  
35.8 8134J – 03/2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455  
35.9 8134I – 12/2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456  
35.10 8134H – 09/2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457  
35.11 8134G – 08/2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457  
35.12 8134F – 02/2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457  
35.13 8134E – 01/2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457  
35.14 8134D – 11/2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458  
35.15 8134C – 10/2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458  
35.16 8134B – 08/2009. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458  
35.17 8134A – 03/2009. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i  
XMEGA D3 [DATASHEET]  
Atmel-8134Q-ATxmega32D3-64D3-128D3-192D3-256D3-384D3_datasheet–10/2015  
iv  
X
X X X X  
X
Atmel Corporation  
1600 Technology Drive, San Jose, CA 95110 USA  
T: (+1)(408) 441.0311  
F: (+1)(408) 436.4200  
|
www.atmel.com  
© 2015 Atmel Corporation. / Rev.: Atmel-8134Q-AVR-ATxmega32D3-64D3-128D3-192D3-256D3-384D3-Datasheet_10/2015.  
Atmel®, Atmel logo and combinations thereof, AVR®, Enabling Unlimited Possibilities®, XMEGA®, QTouch®, and others are registered trademarks or trademarks of  
Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.  
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right  
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE  
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS  
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT  
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES  
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS  
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this  
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information  
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,  
authorized, or warranted for use as components in applications intended to support or sustain life.  
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where  
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written  
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.  
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are  
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.  

相关型号:

ATXMEGA32D3-MNR

IC MCU 8BIT 32KB FLASH 64QFN
MICROCHIP

ATXMEGA32D4

8/16-bit XMEGA D4 Microcontroller
ATMEL

ATXMEGA32D4-AN

IC MCU 8BIT 32KB FLASH 44TQFP
MICROCHIP

ATXMEGA32D4-ANR

IC MCU 8BIT 32KB FLASH 44TQFP
MICROCHIP

ATXMEGA32D4-AU

8/16-bit AVR XMEGA D4 Microcontroller
ATMEL

ATXMEGA32D4-AU-SL383

Microcontroller
ATMEL

ATxmega32D4-AUR

8/16-bit Atmel XMEGA D4 Microcontroller
ATMEL

ATXMEGA32D4-CU

8/16-bit AVR XMEGA D4 Microcontroller
ATMEL

ATXMEGA32D4-CU-SL383

Microcontroller
ATMEL

ATxmega32D4-CUR

8/16-bit Atmel XMEGA D4 Microcontroller
ATMEL

ATXMEGA32D4-MH

8/16-bit AVR XMEGA D4 Microcontroller
ATMEL

ATXMEGA32D4-MH-SL383

Microcontroller
ATMEL