LMC7101BIM5 [MICREL]

Low-Power Operational Amplifier; 低功耗运算放大器
LMC7101BIM5
型号: LMC7101BIM5
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Low-Power Operational Amplifier
低功耗运算放大器

运算放大器 放大器电路 光电二极管
文件: 总12页 (文件大小:156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMC7101  
Low-Power Operational Amplifier  
General Description  
Features  
TheLMC7101isahigh-performance,low-power,operational  
amplifier which is pin-for-pin compatible with the National  
Semiconductor LMC7101. It features rail-to-rail input and  
• Small footprint SOT-23-5 package  
• Guaranteed 2.7V, 3V, 5V, and 12V performance  
• 500kHz gain-bandwidth  
• 0.01% total harmonic distortion at 10kHz (5V, 2k)  
• 0.5mA typical supply current at 5V  
output performance in Micrel’s IttyBitty SOT-23-5 package.  
The LMC7101 is a 500kHz gain bandwidth amplifier de-  
signed to operate from 2.7V to 12V single-ended power  
supplies with guaranteed performance at supply voltages of  
2.7V, 3V, 5V, and 12V.  
Applications  
• Mobile communications, cellular phones, pagers  
• Battery-powered instrumentation  
• PCMCIA, USB  
This op amp’s input common-mode range includes ground  
and extends 300mV beyond the supply rails. For example,  
the common-mode range is –0.3V to +5.3V with a 5V supply.  
• Portable computers and PDAs  
Ordering Information  
Part Number  
LMC7101AIM5  
LMC7101BIM5  
Marking  
A12A  
A12  
Grade  
Prime  
Temperature Range  
–40°C to +85°C  
Package  
SOT-23-5  
SOT-23-5  
Standard  
–40°C to +85°C  
Pin Configuration  
Functional Configuration  
IN+ V+ OUT  
IN+ V+ OUT  
3
2
1
3
2
1
Part  
Identification  
A12A  
4
5
4
5
IN–  
V–  
IN–  
V–  
SOT-23-5 (M5)  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
2
3
4
5
OUT  
V+  
Amplifier Output  
Positive Supply  
Noninverting Input  
Inverting Input  
IN+  
IN–  
V–  
Negative Supply: Negative supply for split supply application or ground for  
single supply application.  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
September 1999  
1
LMC7101  
LMC7101  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 1)  
Supply Voltage (V – V )...........................................15V  
Supply Voltage (V – V ).............................. 2.7V to 12V  
V+  
V–  
V+ V–  
Differential Input Voltage (V  
– V ) ...........±(V – V  
)
Ambient Temperature (T ) ......................... –40°C to +85°C  
IN+  
IN–  
V+  
V–  
A
I/O Pin Voltage (V , V  
), Note 2  
Junction Temperature (T ) ....................... –40°C to +125°C  
IN  
OUT  
J
.............................................V + 0.3V to V – 0.3V  
Max. Junction Temperature (T  
), Note 3 ......... +125°C  
V+  
V–  
J(max)  
Junction Temperature (T ) ...................................... +150°C  
Package Thermal Resistance (θ ), Note 4..........325°C/W  
J
JA  
Storage Temperature ............................... –65°C to +150°C  
Lead Temperature (soldering, 10 sec.) ..................... 260°C  
ESD, Note 5.................................................................. 2kV  
Max. Power Dissipation............................................ Note 3  
Electrical Characteristics (2.7V)  
V+ = +2.7V, V– = 0V, VCM = VOUT = V+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
LMC7101A LMC7101B  
Symbol  
VOS  
Parameter  
Condition  
Typ  
0.11  
1.0  
1.0  
0.5  
>1  
Min  
Max  
Min  
Max  
Units  
mV  
µV/°C  
pA  
Input Offset Voltage  
6
9
TCVOS  
IB  
Input Offset Voltage Average Drift  
Input Bias Current  
64  
32  
64  
32  
IOS  
Input Offset Current  
pA  
RIN  
Input Resistance  
TΩ  
dB  
CMRR  
VCM  
Common-Mode Rejection Ratio  
Input Common-Mode Voltage  
0V VCM 2.7V, Note 6  
input low, CMRR 50dB  
input high, CMRR 50dB  
70  
50  
50  
–0.3  
3.0  
60  
0.0  
0.0  
V
2.7  
50  
2.7  
45  
V
PSRR  
Power Supply Rejection Ratio  
V+ = 1.35V to 1.65V, V– =  
–1.35V to –1.65V, VCM = 0  
dB  
CIN  
VO  
Common-Mode Input Capacitance  
Output Swing  
3
pF  
V
output high, RL = 10k  
output low, RL = 10k  
output high, RL = 2k  
output low, RL = 2k  
VOUT = V+/2  
2.699  
0.001  
2.692  
0.008  
0.5  
2.64  
2.6  
2.64  
2.6  
0.06  
0.1  
0.06  
0.1  
V
V
V
IS  
Supply Current  
0.81  
0.95  
0.81  
0.95  
mA  
mA  
SR  
Slew Rate  
0.4  
0.5  
V/µs  
GBW  
Gain-Bandwidth Product  
MHz  
Electrical Characteristics (3.0V)  
V+ = +3.0V, V– = 0V, VCM = VOUT = V+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
LMC7101A LMC7101B  
Symbol  
Parameter  
Condition  
Typ  
Min  
Max  
Min  
Max  
Units  
VOS  
Input Offset Voltage  
0.11  
4
6
7
9
mV  
mV  
TCVOS  
IB  
Input Offset Voltage Average Drift  
Input Bias Current  
1.0  
1.0  
0.5  
>1  
µV/°C  
pA  
64  
32  
64  
32  
IOS  
Input Offset Current  
pA  
RIN  
Input Resistance  
TΩ  
LMC7101  
2
September 1999  
LMC7101  
Micrel  
LMC7101A  
LMC7101B  
Symbol  
CMRR  
VCM  
Parameter  
Condition  
Typ  
74  
Min  
Max  
Min  
Max  
Units  
dB  
V
Common-Mode Rejection Ratio  
Input Common-Mode Voltage  
0V VCM 3.0V, Note 6  
input low, CMRR 50dB  
input high, CMRR 50dB  
60  
60  
–0.3  
3.3  
80  
0
0
3.0  
68  
3.0  
60  
V
PSRR  
Power Supply Rejection Ratio  
V+ = 1.5V to 6.0V, V– =  
–1.5V to –6.0V, VCM = 0  
dB  
CIN  
Common-Mode Input Capacitance  
Output Swing  
3
pF  
V
VOUT  
output high, RL = 2k  
output low, RL = 2k  
2.992  
0.008  
2.973  
0.027  
0.5  
2.9  
2.9  
0.1  
0.1  
V
output high, RL = 600Ω  
output low, RL = 600Ω  
2.85  
2.85  
V
0.15  
0.15  
V
IS  
Supply Current  
0.81  
0.95  
0.81  
0.95  
mA  
mA  
Electrical Characteristics—DC (5V)  
V+ = +5.0V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
LMC7101A LMC7101B  
Symbol  
Parameter  
Condition  
Typ  
Min  
Max  
Min  
Max  
Units  
VOS  
Input Offset Voltage  
0.11  
3
5
7
9
mV  
mV  
TCVOS  
IB  
Input Offset Voltage Average Drift  
Input Bias Current  
1.0  
1.0  
0.5  
>1  
µV/°C  
pA  
64  
32  
64  
32  
IOS  
Input Offset Current  
pA  
RIN  
Input Resistance  
TΩ  
CMRR  
Common-Mode Rejection Ratio  
0V VCM 5V, Note 6  
input low, CMRR 50dB  
input high, CMRR 50dB  
82  
60  
55  
60  
55  
dB  
dB  
VCM  
Input Common-Mode Voltage  
–0.3  
5.3  
82  
–0.20  
0.00  
–0.20  
0.00  
V
V
5.20  
5.00  
5.20  
5.00  
V
V
+PSRR  
–PSRR  
Positive Power Supply  
Rejection Ratio  
V+ = 5V to 12V,  
V– = 0V, VOUT = 1.5V  
70  
65  
65  
62  
dB  
dB  
Negative Power Supply  
Rejection Ratio  
V+ = 0V, V– = –5V to –12V,  
VOUT = –1.5V  
82  
70  
65  
65  
62  
dB  
dB  
CIN  
Common-Mode Input Capacitance  
Output Swing  
3
pF  
VOUT  
output high, RL = 2k  
output low, RL = 2k  
4.989  
4.9  
4.85  
4.9  
4.85  
V
V
0.011  
4.963  
0.037  
200  
0.1  
0.15  
0.1  
0.15  
V
V
output high, RL = 600Ω  
output low, RL = 600Ω  
4.9  
4.8  
4.9  
4.8  
V
V
0.1  
0.2  
0.1  
0.2  
V
V
ISC  
IS  
Output Short Circuit Current  
Note 7  
sourcing (VOUT = 0V) or  
sinking (VOUT = 5V)  
120  
80  
120  
80  
mA  
mA  
Supply Current  
VOUT = V+/2  
0.5  
0.85  
1.0  
0.85  
1.0  
mA  
mA  
September 1999  
3
LMC7101  
LMC7101  
Micrel  
Electrical Characteristics—DC (12V)  
V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
LMC7101A  
LMC7101B  
Symbol  
VOS  
Parameter  
Condition  
Typ  
0.11  
1.0  
1.0  
0.5  
>1  
Min  
Max  
Min  
Max  
Units  
mV  
Input Offset Voltage  
Input Offset Voltage Average Drift  
Input Bias Current  
6
9
TCVOS  
IB  
µV/°C  
pA  
64  
32  
64  
32  
IOS  
Input Offset Current  
Input Resistance  
pA  
RIN  
TΩ  
CMRR  
Common-Mode Rejection Ratio  
0V VCM 12V, Note 6  
82  
65  
60  
65  
60  
dB  
dB  
VCM  
Input Common-Mode Voltage  
input low, V+ = 12V,  
CMRR 50dB  
–0.3  
12.3  
82  
–0.20  
0.00  
–0.20  
0.00  
V
V
input high, V+ = 12V,  
CMRR 50dB  
12.2  
12.0  
12.2  
12.0  
V
V
+PSRR  
–PSRR  
AV  
Positive Power Supply  
Rejection Ratio  
V+ = 5V to 12V,  
V– = 0V, VOUT = 1.5V  
70  
65  
65  
62  
dB  
dB  
Negative Power Supply  
Rejection Ratio  
V+ = 0V, V– = –5V to  
–12V, VOUT = –1.5V  
82  
70  
65  
65  
62  
dB  
dB  
Large Signal Voltage Gain  
sourcing or sinking,  
RL = 2k, Note 9  
340  
300  
80  
40  
80  
40  
V/mV  
V/mV  
sourcing or sinking,  
RL = 600, Note 9  
15  
10  
15  
10  
V/mV  
V/mV  
CIN  
Common-Mode Input Capacitance  
Output Swing  
3
pF  
VOUT  
output high, V+ = 12V,  
RL = 2k  
11.98  
11.9  
11.87  
11.9  
11.87  
V
V
output low, V+ = 12V,  
RL = 2k,  
0.02  
0.10  
0.13  
0.10  
0.13  
V
V
output high, V+ = 12V,  
RL = 600Ω  
11.93 11.73  
11.73  
11.65  
V
V
11.65  
output low, V+ = 12V,  
RL = 600Ω  
0.07  
0.27  
0.35  
0.27  
0.35  
V
V
ISC  
Output Short Circuit Current  
Supply Current  
sourcing (VOUT = 0V) or  
sinking (VOUT = 12V),  
Notes 7, 8  
300  
0.8  
200  
120  
200  
120  
mA  
mA  
IS  
VOUT = V+/2  
1.5  
1.71  
1.5  
1.71  
mA  
mA  
LMC7101  
4
September 1999  
LMC7101  
Micrel  
Electrical Characteristics—AC (5V)  
V+ = 5V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
LMC7101A  
Min Max  
LMC7101B  
Min Max  
Symbol  
Parameter  
Condition  
Typ  
Units  
THD  
Total Harmonic Distortion  
f = 10kHz, AV = –2,  
0.01  
%
RL = 2k, VOUT = 4.0 VPP  
SR  
Slew Rate  
0.3  
0.5  
V/µs  
GBW  
Gain-Bandwidth Product  
MHz  
Electrical Characteristics—AC (12V)  
V+ = 12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
LMC7101A LMC7101B  
Symbol  
Parameter  
Condition  
Typ  
Min  
Max  
Min  
Max  
Units  
THD  
Total Harmonic Distortion  
f = 10kHz, AV = –2,  
0.01  
%
RL = 2k, VOUT = 8.5 VPP  
SR  
Slew Rate  
V+ = 12V, Note 10  
0.3  
0.19  
0.15  
0.19  
0.15  
V/µs  
V/µs  
GBW  
φm  
Gain-Bandwidth Product  
Phase Margin  
0.5  
45  
10  
37  
MHz  
°
Gm  
en  
Gain Margin  
dB  
Input-Referred Voltage Noise  
f = 1kHz, VCM = 1V  
f = 1kHz  
nV/ Hz  
in  
Input-Referred Current Noise  
1.5  
fA/ Hz  
General Notes: Devices are ESD protected; however, handling precautions are recommended. All limits guaranteed by testing on statistical analysis.  
Note 1. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when  
operating the device outside its recommended operating ratings.  
Note 2. I/O Pin Voltage is any external voltage to which an input or output is referenced.  
Note 3. The maximum allowable power dissipation is a function of the maximum junction temperature, T  
; the junction-to-ambient thermal  
J(max)  
resistance, θ ; and the ambient temperature, T . The maximum allowable power dissipation at any ambient temperature is calculated using:  
JA  
A
P
= (T  
– T ) ÷ θ . Exceeding the maximum allowable power dissipation will result in excessive die temperature.  
D
J(max) A JA  
Note 4. Thermal resistance, θ , applies to a part soldered on a printed-circuit board.  
JA  
Note 5. Human body model, 1.5k in series with 100pF.  
Note 6. Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails.  
Note 7. Continuous short circuit may exceed absolute maximum T under some conditions.  
J
Note 8. Shorting OUT to V+ when V+ > 12V may damage the device.  
Note 9. R connected to 5.0V. Sourcing: 5V V  
12V. Sinking: 2.5V V  
5V.  
OUT  
L
OUT  
Note 10. Device connected as a voltage follower with a 12V step input. The value is the positive or negative slew rate, whichever is slower.  
September 1999  
5
LMC7101  
LMC7101  
Micrel  
Typical Characteristics  
PSRR  
vs. Frequency  
Supply Current  
vs. Supply Voltage  
Input Current vs.  
Junction Temperature  
100  
80  
60  
40  
20  
0
1000  
10000  
1000  
100  
10  
–40°C  
12V  
800  
25°C  
2.7V  
5V  
600  
85°C  
400  
200  
0
TA = 25°C  
-20  
1x10  
1
-40  
1
2
3
4
5
0
2
4
6
8
10 12  
0
40  
80  
120 160  
1x10  
1x10  
FREQUENCY (Hz)  
1x10  
1x10  
SUPPLY VOLTAGE (V)  
JUNCTION TEMPERATURE (°C)  
+PSRR  
vs. Frequency  
CMRR  
vs. Frequency  
Sink / Source Currents  
vs. Output Voltage  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
1000  
100  
10  
TA = 25°C  
12V  
5V  
2.7V  
12V  
5V  
2.7V  
60  
1
40  
TA = 25°C  
TA = 25°C  
0.1  
20  
0
1x10  
0.01  
0.001  
1
2
3
4
5
1
2
3
4
5
0.01  
0.1  
1
10  
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Falling Slew Rate vs.  
vs. Supply Voltage  
Rising Slew Rate vs.  
vs. Supply Voltage  
Offset Voltage  
vs. Supply Voltage  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.8  
800  
600  
400  
200  
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
85°C  
-40°C  
+25°C  
-40°C  
+25°C  
25°C  
-40°C  
+85°C  
+85°C  
0
2
4
6
8
10 12  
0
2
4
6
8
10 12  
0
2
4
6
8
10 12  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Phase Margin  
vs. Capacitive Load  
100  
80  
60  
40  
20  
0
12V  
5V  
3V  
2.7V  
TA = 25°C  
AV = 1  
100  
1000  
200 300  
500  
LOAD CAPACITANCE (pF)  
LMC7101  
6
September 1999  
LMC7101  
Micrel  
2.7V Open-Loop  
Frequency Response  
5V Open-Loop  
Frequency Response  
12V Open-Loop  
Frequency Response  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
80  
60  
40  
20  
RL = 1M  
1M  
2k  
1MΩ  
RL = 2k  
2k  
TA = 25°C  
TA = 25°C  
600Ω  
600Ω  
TA = 25°C  
0
1x10  
0
2
3
4
5
2
3
4
5
1x10  
1x10  
1x10  
2
3
4
5
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
5V Open-Loop  
Gain and Phase  
12V Open-Loop Gain  
and Phase  
2.7V Open-Loop Gain  
and Phase  
100  
120  
90  
60  
30  
0
100  
75  
50  
25  
0
120  
150  
120  
90  
135  
90  
45  
0
100pF (°)  
TA = 25°C  
RL = 1MΩ  
100pF (°)  
500pF (°)  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
100pF (°)  
500pF (°)  
500pF (°)  
1000pF (°)  
60  
1000pF (°)  
500pF  
(dB)  
TA = 25°C  
L = 1MΩ  
30  
TA = 25°C  
RL = 1MΩ  
R
0
100pF (dB)  
500pF (dB)  
1000pF (dB)  
100pF (dB)  
500pF (dB)  
1000pF (dB)  
-45  
100pF (dB)  
-30  
-30  
-20  
-60  
6
-25  
1x10  
-20  
1x10  
-60  
6
-90  
6
2
3
4
5
2
3
4
5
2
3
4
5
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
1x10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
COMMON-MODE VOLTAGE (V)  
September 1999  
7
LMC7101  
LMC7101  
Micrel  
Functional Characteristics  
Inverting Small-Signal  
Inverting Large-Signal  
Pulse Response  
Pulse Response  
Noninverting Small-Signal  
Pulse Response  
Noninverting Large-Signal  
Pulse Response  
Input Voltage Noise vs. Frequency  
LMC7101  
8
September 1999  
LMC7101  
Micrel  
Application Information  
Input Common-Mode Voltage  
0.011V  
R
=
= 8.8 9Ω  
OUT  
0.001245A  
Driving Capacitive Loads  
Some amplifiers exhibit undesirable or unpredictable perfor-  
mancewhentheinputsaredrivenbeyondthecommon-mode  
voltage range, for example, phase inversion of the output  
signal. The LMC7101 tolerates input overdrive by at least  
200mV beyond either rail without producing phase inversion.  
Drivingacapacitiveloadintroducesphase-lagintotheoutput  
signal,andthisinturnreducesop-ampsystemphasemargin.  
The application that is least forgiving of reduced phase  
margin is a unity gain amplifier. The LMC7101 can typically  
drivea100pFcapacitiveloadconnecteddirectlytotheoutput  
when configured as a unity-gain amplifier.  
If the absolute maximum input voltage (700mV beyond either  
rail) is exceeded, the input current should be limited to ±5mA  
maximum to prevent reducing reliability. A 10kseries input  
resistor, used as a current limiter, will protect the input  
structure from voltages as large as 50V above the supply or  
below ground. See Figure 1.  
Using Large-Value Feedback Resistors  
A large-value feedback resistor (> 500k) can reduce the  
phase margin of a system. This occurs when the feedback  
resistor acts in conjunction with input capacitance to create  
phase lag in the fedback signal. Input capacitance is usually  
a combination of input circuit components and other parasitic  
capacitance, such as amplifier input capacitance and stray  
printed circuit board capacitance.  
VOUT  
RIN  
Figure 2 illustrates a method of compensating phase lag  
caused by using a large-value feedback resistor. Feedback  
VIN  
10k  
capacitor C introduces sufficient phase lead to overcome  
FB  
the phase lag caused by feedback resistor R and input  
FB  
Figure 1. Input Current-Limit Protection  
Output Voltage Swing  
capacitance C . The value of C is determined by first  
IN  
FB  
estimating C and then applying the following formula:  
IN  
Sink and source output resistances of the LMC7101 are  
equal. Maximum output voltage swing is determined by the  
load and the approximate output resistance. The output  
resistance is:  
R
× C R  
× C  
IN  
IN  
FB FB  
CFB  
RFB  
V
DROP  
R
=
RIN  
OUT  
I
LOAD  
VIN  
VOUT  
V
is the voltage dropped within the amplifier output  
DROP  
CIN  
stage. V  
and I  
can be determined from the V  
DROP  
LOAD O  
(outputswing)portionoftheappropriateElectricalCharacter-  
istics table. I is equal to the typical output high voltage  
LOAD  
minus V+/2 and divided by R  
. For example, using the  
LOAD  
Figure 2. Cancelling Feedback Phase Lag  
Electrical Characteristics DC (5V) table, the typical output  
high voltage using a 2kload (connected to V+/2) is 4.989V,  
SinceasignificantpercentageofC maybecausedbyboard  
IN  
which produces an I  
of  
LOAD  
layout, it is important to note that the correct value of C may  
FB  
change when changing from a breadboard to the final circuit  
layout.  
4.989V 2.5V  
2k  
.
= 1.245mA  
1.245mA  
Voltage drop in the amplifier output stage is:  
V
V
= 5.0V – 4.989V  
= 0.011V  
DROP  
DROP  
Becauseofoutputstagesymmetry,thecorrespondingtypical  
output low voltage (0.011V) also equals V . Then:  
DROP  
September 1999  
9
LMC7101  
LMC7101  
Micrel  
Typical Circuits  
VS  
Some single-supply, rail-to-rail applications for which the  
LMC7101 is well suited are shown in the circuit diagrams of  
Figures 3 through 7.  
0.5V to Q1 VCEO(sus)  
VOUT  
0V to V+  
V+  
V+  
3
4
2
3
4
2
5
LMC7101  
LMC7101  
VIN  
V +  
VIN  
0V to 2V  
IOUT  
1
1
VOUT  
0V to V+  
0V to  
Q1  
2N3904  
A
V
CEO = 40V  
V
5
{
IC(max) = 200mA  
RS  
R2  
10  
Change Q1 and RS  
for higher current  
and/or different gain.  
900k  
12W  
R1  
100k  
V
IN  
IOUT  
=
= 100mA/V as shown  
RS  
Figure 3a. Noninverting Amplifier  
Figure 5. Voltage-Controlled Current Sink  
100  
V+  
R4  
100k  
C1  
V+  
0.001µF  
R2  
R1  
A
= 1 +  
10  
V
4
3
2
LMC7101  
1
VOUT  
V+  
0V  
0
5
0
100  
V
(V)  
IN  
R4  
R2  
Figure 3b. Noninverting Amplifier Behavior  
V+  
100k  
100k  
R3  
100k  
V+  
3
4
2
5
LMC7101  
VIN  
0V to V+  
1
Figure 6. Square Wave Oscillator  
VOUT  
0V to V+  
CIN  
R1  
R2  
33k  
330k  
V+  
VOUT = VIN  
Figure 4. Voltage Follower  
4
3
2
LMC7101  
COUT  
VOUT  
1
0V  
RL  
5
R3  
R4  
R2 330k  
= = 10  
V+  
A = −  
V
330k  
330k  
R1 33k  
C1  
1µF  
Figure 7. AC-Coupled Inverting Amplifier  
LMC7101  
10  
September 1999  
LMC7101  
Micrel  
Package Information  
1.90 (0.075) REF  
0.95 (0.037) REF  
1.75 (0.069) 3.00 (0.118)  
1.50 (0.059) 2.60 (0.102)  
DIMENSIONS:  
MM (INCH)  
1.30 (0.051)  
0.90 (0.035)  
3.02 (0.119)  
2.80 (0.110)  
0.20 (0.008)  
0.09 (0.004)  
10°  
0°  
0.15 (0.006)  
0.00 (0.000)  
0.50 (0.020)  
0.35 (0.014)  
0.60 (0.024)  
0.10 (0.004)  
SOT-23-5 (M5)  
September 1999  
11  
LMC7101  
LMC7101  
Micrel  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 1999 Micrel Incorporated  
LMC7101  
12  
September 1999  

相关型号:

LMC7101BIM5/NOPB

单路、15.5V、1.1MHz 运算放大器 | DBV | 5 | -40 to 85
TI

LMC7101BIM5TR

暂无描述
MICREL

LMC7101BIM5X

Tiny Low Power Operational Amplifier with Rail-To-Rail Input and Output
NSC

LMC7101BIM5X

单路、15.5V、1.1MHz 运算放大器 | DBV | 5 | -40 to 85
TI

LMC7101BIM5X/NOPB

IC OP-AMP, 9000 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, PDSO5, ROHS COMPLIANT, SOT-23, 5 PIN, Operational Amplifier
NSC

LMC7101BIM5X/NOPB

单路、15.5V、1.1MHz 运算放大器 | DBV | 5 | -40 to 85
TI

LMC7101BIN

IC-LOW POWER CMOS OP AMP
NSC

LMC7101BIN

OP-AMP, 9000uV OFFSET-MAX, 0.6MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8
TI

LMC7101Q

Tiny Low Power Operational Amplifier with Rail-to-Rail Input and Output
NSC

LMC7101Q-Q1

汽车级、单路、15.5V、1.1MHz 运算放大器
TI

LMC7101QM5

Tiny Low Power Operational Amplifier with Rail-to-Rail Input and Output
NSC

LMC7101QM5/NOPB

汽车级、单路、15.5V、1.1MHz 运算放大器 | DBV | 5 | -40 to 125
TI