MAX9986AETP+ [MAXIM]

SiGe High-Linearity, 815MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch; SiGe,高线性度,815MHz至1000MHz下变频混频器,带有LO缓冲器/开关
MAX9986AETP+
型号: MAX9986AETP+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

SiGe High-Linearity, 815MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
SiGe,高线性度,815MHz至1000MHz下变频混频器,带有LO缓冲器/开关

开关
文件: 总12页 (文件大小:348K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3906; Rev 0; 1/06  
SiGe High-Linearity, 815MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
General Description  
Features  
The MAX9986A high-linearity downconversion mixer  
provides 8.2dB gain, +25dBm IIP3, and 10dB NF for  
815MHz to 1000MHz base-station receiver applica-  
tions. With a 960MHz to 1180MHz LO frequency range,  
this particular mixer is ideal for high-side LO injection  
receiver architectures. Low-side LO injection is sup-  
ported by the MAX9984, which is pin-for-pin and func-  
tionally compatible with the MAX9986A.  
815MHz to 1000MHz RF Frequency Range  
960MHz to 1180MHz LO Frequency Range  
(MAX9986A/MAX9986)  
570MHz to 850MHz LO Frequency Range  
(MAX9984)  
50MHz to 250MHz IF Frequency Range  
8.2dB Conversion Gain  
+25dBm Input IP3  
+14.8dBm Input 1dB Compression Point  
10dB Noise Figure  
In addition to offering excellent linearity and noise perfor-  
mance, the MAX9986A also yields a high level of compo-  
nent integration. This device includes a double-balanced  
passive mixer core, an IF amplifier, a dual-input LO selec-  
table switch, and an LO buffer. On-chip baluns are also  
integrated to allow for single-ended RF and LO inputs.  
The MAX9986A requires a nominal LO drive of 0dBm,  
and supply current is guaranteed to be below 250mA.  
69dBc 2LO - 2RF Spurious Rejection at  
P
= -10dBm  
RF  
Integrated LO Buffer  
Integrated RF and LO Baluns for Single-Ended  
Inputs  
The MAX9986A is a derivative version of the MAX9986  
with improved large-signal blocking performance. The  
MAX9984/MAX9986/MAX9986A are pin compatible with  
the MAX9994/MAX9996 1700MHz to 3000MHz mixers,  
making this entire family of downconverters ideal for  
applications where a common PC board layout is used  
for both frequency bands. The MAX9986A is also func-  
tionally compatible with the MAX9993.  
Low -3dBm to +3dBm LO Drive  
Built-In SPDT LO Switch with 49dB LO1 to LO2  
Isolation and 50ns Switching Time  
Pin Compatible with MAX9994/MAX9996 1700MHz  
to 3000MHz Mixers  
Functionally Compatible with MAX9993  
External Current-Setting Resistors Provide Option  
for Operating Mixer in Reduced Power/Reduced  
Performance Mode  
The MAX9986A is available in a compact, 20-pin, thin  
QFN package (5mm x 5mm) with an exposed paddle.  
Electrical performance is guaranteed over the extended  
-40°C to +85°C temperature range.  
Lead-Free Package Available  
Applications  
Ordering Information  
850MHz WCDMA Base Stations  
PKG  
CODE  
PART  
TEMP RANGE PIN-PACKAGE  
GSM 850/GSM 900 2G and 2.5G EDGE Base  
Stations  
cdmaOne™ and cdma2000® Base Stations  
iDEN® Base Stations  
20 Thin QFN-EP*  
-40°C to +85°C  
MAX9986AETP  
T2055-3  
5mm × 5mm  
20 Thin QFN-EP*  
5mm × 5mm  
MAX9986AETP-T -40°C to +85°C  
MAX9986AETP+ -40°C to +85°C  
MAX9986AETP+T -40°C to +85°C  
T2055-3  
T2055-3  
T2055-3  
Predistortion Receivers  
Fixed Broadband Wireless Access  
Wireless Local Loops  
20 Thin QFN-EP*  
5mm × 5mm  
20 Thin QFN-EP*  
5mm × 5mm  
Private Mobile Radios  
Military Systems  
*EP = Exposed paddle.  
+ = Lead free.  
Microwave Links  
T = Tape-and-reel.  
Digital and Spread-Spectrum Communication  
Systems  
cdma2000 is a registered trademark of the Telecommunications  
Industry Association.  
cdmaOne is a trademark of CDMA Development Group.  
iDEN is a registered trademark of Motorola, Inc.  
Pin Configuration/Functional Diagram and Typical  
Application Circuit appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
SiGe High-Linearity, 815MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
ABSOLUTE MAXIMUM RATINGS  
CC  
IF+, IF-, LOBIAS, LOSEL, IFBIAS to GND...-0.3V to (V  
TAP........................................................................-0.3V to +1.4V  
LO1, LO2, LEXT to GND........................................-0.3V to +0.3V  
RF, LO1, LO2 Input Power .............................................+12dBm  
RF (RF is DC shorted to GND through a balun) .................50mA  
V
to GND...........................................................-0.3V to +5.5V  
θ
θ
.................................................................................+38°C/W  
.................................................................................+13°C/W  
JA  
JC  
+ 0.3V)  
CC  
Operating Temperature Range (Note A) ....T = -40°C to +85°C  
C
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
20-Pin Thin QFN-EP (derate 26.3mW/°C above +70°C)...........2.1W  
Note A: T is the temperature on the exposed paddle of the package.  
C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(MAX9986A Typical Application Circuit, V  
= +4.75V to +5.25V, no RF signal applied, IF+ and IF- outputs pulled up to V  
through  
CC  
CC  
inductive chokes, R1 = 953, R2 = 619, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +5V, T  
=
C
CC  
C
+25°C, unless otherwise noted.)  
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
5.00  
213  
MAX  
5.25  
250  
0.8  
UNITS  
V
4.75  
V
mA  
V
CC  
CC  
Supply Current  
I
LO_SEL Input-Logic Low  
LO_SEL Input-Logic High  
V
IL  
V
2
V
IH  
AC ELECTRICAL CHARACTERISTICS  
(MAX9986A Typical Application Circuit, V  
= +4.75V to +5.25V, RF and LO ports are driven from 50sources, P  
= -3dBm to  
LO  
CC  
+3dBm, P = -5dBm, f = 815MHz to 1000MHz, f = 960MHz to 1180MHz, f = 160MHz, f > f , T = -40°C to +85°C, unless  
RF  
RF  
LO  
IF  
LO  
RF  
C
otherwise noted. Typical values are at V  
= +5V, P = -5dBm, P = 0dBm, f = 910MHz, f = 1070MHz, f = 160MHz, T  
=
CC  
RF  
LO  
RF  
LO  
IF  
C
+25°C, unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
815  
960  
570  
50  
TYP  
MAX  
1000  
1180  
850  
UNITS  
RF Frequency Range  
f
(Note 2)  
(Note 2)  
MAX9984  
(Note 2)  
MHz  
RF  
LO Frequency Range  
f
MHz  
LO  
IF Frequency Range  
f
IF  
250  
MHz  
dB  
Conversion Gain  
G
T
C
C
= +25°C  
7.2  
8.2  
9.3  
C
Gain Variation Over Temperature  
T
= -40°C to +85°C  
-0.009  
dB/°C  
Flatness over any one of three frequency bands:  
f
f
f
= 824MHz to 849MHz  
= 869MHz to 894MHz  
= 880MHz to 915MHz  
RF  
RF  
RF  
Conversion Gain Flatness  
Input Compression Point  
0.15  
14.8  
25  
dB  
P
(Note 3)  
dBm  
dBm  
1dB  
Two tones:  
f
= 910MHz, f  
= 911MHz,  
RF1  
RF2  
Input Third-Order Intercept Point  
IIP3  
22  
P
P
= -5dBm/tone, f = 1070MHz,  
LO  
RF  
LO  
= 0dBm, T = +25°C  
A
T
T
= +25°C to -40°C  
= +25°C to +85°C  
-1.8  
Input IP3 Variation Over  
Temperature  
C
dB  
+0.7  
C
2
_______________________________________________________________________________________  
SiGe High-Linearity, 815MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
AC ELECTRICAL CHARACTERISTICS (continued)  
(MAX9986A Typical Application Circuit, V  
= +4.75V to +5.25V, RF and LO ports are driven from 50sources, P  
= -3dBm to  
LO  
CC  
+3dBm, P = -5dBm, f = 815MHz to 1000MHz, f = 960MHz to 1180MHz, f = 160MHz, f > f , T = -40°C to +85°C, unless  
RF  
RF  
LO  
IF  
LO  
RF  
C
otherwise noted. Typical values are at V  
= +5V, P = -5dBm, P = 0dBm, f = 910MHz, f = 1070MHz, f = 160MHz, T  
=
CC  
RF  
LO  
RF  
LO  
IF  
C
+25°C, unless otherwise noted.) (Note 1)  
PARAMETER SYMBOL  
Noise Figure  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NF  
Single sideband, f = 190MHz  
10  
dB  
IF  
P
=
=
f
f
f
f
= 900MHz (no signal)  
= 1090MHz  
BLOCKER  
RF  
20  
23  
+8dBm  
LO  
Noise Figure Under-Blocking  
= 981MHz  
dB  
BLOCKER  
= 190MHz  
P
IF  
BLOCKER  
(Note 4)  
+11dBm  
P
=
=
BLOCKER  
0.18  
0.4  
P
= -5dBm  
= 910MHz  
= 911MHz  
FUNDAMENTAL  
+8dBm  
Small-Signal Compression  
Under-Blocking Condition  
dB  
f
f
FUNDAMENTAL  
P
BLOCKER  
BLOCKER  
+11dBm  
LO Drive  
-3  
+3  
dBm  
dBc  
P
P
P
P
= -10dBm  
= -5dBm  
= -10dBm  
= -5dBm  
69  
64  
88  
78  
49  
50  
-45  
-33  
54  
50  
20  
RF  
RF  
RF  
RF  
2 x 2  
3 x 3  
2LO - 2RF  
3LO - 3RF  
Spurious Response at IF  
LO2 selected  
LO1 selected  
42  
42  
P
= +3dBm  
LO  
LO1-to-LO2 Isolation  
dB  
T
C
= +25°C (Note 5)  
LO Leakage at RF Port  
LO Leakage at IF Port  
RF-to-IF Isolation  
P
P
= +3dBm  
= +3dBm  
dBm  
dBm  
dB  
LO  
LO  
LO Switching Time  
RF Port Return Loss  
50% of LOSEL to IF settled to within 2°  
ns  
dB  
LO1/2 port selected,  
LO2/1 and IF terminated  
22  
34  
22  
LO Port Return Loss  
dB  
LO1/2 port unselected,  
LO2/1 and IF terminated  
LO driven at 0dBm, RF terminated into 50,  
differential 200Ω  
IF Port Return Loss  
dB  
Note 1: All limits include external component losses. Output measurements taken at IF output of the Typical Application Circuit.  
Note 2: Operation outside this range is possible, but with degraded performance of some parameters.  
Note 3: Compression point characterized. It is advisable not to operate continuously the mixer RF input above +12dBm.  
Note 4: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of all  
SNR degradations in the mixer, including the LO noise as defined in Maxim Application Note 2021.  
Note 5: Guaranteed by design and characterization.  
_______________________________________________________________________________________  
3
SiGe High-Linearity, 815MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics  
(MAX9986A Typical Application Circuit, V  
= +5.0V, P = 0dBm, P = -5dBm, f > f , f = 160MHz, unless otherwise noted.)  
LO RF LO RF IF  
CC  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
10  
10  
9
10  
9
T
= -40°C  
C
9
8
7
6
5
8
8
T
= -25°C  
C
T
= +25°C  
C
7
7
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
LO  
T
= +85°C  
C
6
6
5
5
740  
790  
840  
890  
940  
990 1040  
740  
790  
840  
890  
940  
990 1040  
740  
790  
840  
890  
940  
990 1040  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
28  
27  
26  
25  
24  
23  
22  
21  
28  
27  
26  
25  
24  
23  
22  
21  
28  
27  
26  
25  
24  
23  
22  
21  
T
= +25°C  
C
T
= +85°C  
C
V
= 4.75V  
CC  
V
= 5.0V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 5.25V  
CC  
T
= -25°C  
C
T
= -40°C  
C
740  
790  
840  
890  
940  
990 1040  
740  
790  
840  
890  
940  
990 1040  
740  
790  
840  
890  
940  
990 1040  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
12  
11  
10  
9
12  
11  
10  
9
12  
11  
10  
9
T
= +85°C  
T
= +25°C  
C
C
IF = 190MHz  
IF = 190MHz  
P
= -3dBm, 0dBm  
V
= 5.25V  
LO  
CC  
V
= 5.0V  
CC  
P
= +3dBm  
LO  
V
= 4.75V  
CC  
T
= -25°C  
C
8
8
8
T
= -40°C  
C
7
7
7
IF = 190MHz  
950 1000  
6
6
6
750  
800  
850  
900  
750  
800  
850  
900  
950  
1000  
750  
800  
850  
900  
950  
1000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
4
_______________________________________________________________________________________  
SiGe High-Linearity, 815MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics (continued)  
(MAX9986A Typical Application Circuit, V  
= +5.0V, P = 0dBm, P = -5dBm, f > f , f = 160MHz, unless otherwise noted.)  
LO RF LO RF IF  
CC  
2LO - 2RF RESPONSE vs. RF FREQUENCY  
2LO - 2RF RESPONSE vs. RF FREQUENCY  
2LO - 2RF RESPONSE vs. RF FREQUENCY  
85  
75  
65  
55  
45  
85  
75  
65  
55  
45  
85  
P
= -5dBm  
P
= -5dBm  
P = -5dBm  
RF  
RF  
RF  
T
= -25°C  
C
V
= 5.25V  
CC  
75  
65  
55  
45  
T
= +85°C  
C
P
= 0dBm  
LO  
T
= -40°C  
C
V
= 5.0V  
CC  
P
= -3dBm  
940  
LO  
T
= +25°C  
C
V
= 4.75V  
840  
P
= +3dBm  
840  
CC  
LO  
740  
790  
840  
890  
940  
990 1040  
740  
790  
890  
990 1040  
740  
790  
890  
940  
990 1040  
FUNDAMENTAL RF FREQUENCY (MHz)  
FUNDAMENTAL RF FREQUENCY (MHz)  
FUNDAMENTAL RF FREQUENCY (MHz)  
3LO - 3RF RESPONSE vs. RF FREQUENCY  
3LO - 3RF RESPONSE vs. RF FREQUENCY  
3LO - 3RF RESPONSE vs. RF FREQUENCY  
95  
85  
75  
65  
55  
95  
85  
75  
65  
55  
95  
85  
75  
65  
55  
P
= -5dBm  
P
= -5dBm  
P
RF  
= -5dBm  
RF  
RF  
T
= +85°C  
C
T
= -25°C  
C
V
= 5.25V  
CC  
P
= 0dBm, +3dBm  
LO  
V
= 5.0V  
CC  
T
= +25°C  
C
V
= 4.75V  
CC  
T
= -40°C  
C
P
= -3dBm  
940  
LO  
740  
790  
840  
890  
940  
990 1040  
740  
790  
840  
890  
990 1040  
740  
790  
840  
890  
940  
990 1040  
FUNDAMENTAL RF FREQUENCY (MHz)  
FUNDAMENTAL RF FREQUENCY (MHz)  
FUNDAMENTAL RF FREQUENCY (MHz)  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
1dB  
1dB  
1dB  
17  
16  
15  
14  
13  
12  
11  
10  
17  
16  
15  
14  
13  
12  
11  
10  
17  
16  
15  
14  
13  
12  
11  
10  
V
= 5.25V  
CC  
T
= +85°C  
C
T
= +25°C  
C
T
= -25°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V  
CC  
V
= 5.0V  
CC  
T
= -40°C  
C
740  
790  
840  
890  
940  
990 1040  
740  
790  
840  
890  
940  
990 1040  
740  
790  
840  
890  
940  
990 1040  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
_______________________________________________________________________________________  
5
SiGe High-Linearity, 815MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics (continued)  
(MAX9986A Typical Application Circuit, V  
= +5.0V, P = 0dBm, P = -5dBm, f > f , f = 160MHz, unless otherwise noted.)  
LO RF LO RF IF  
CC  
LO SWITCH ISOLATION  
vs. LO FREQUENCY  
LO SWITCH ISOLATION  
vs. LO FREQUENCY  
LO SWITCH ISOLATION  
vs. LO FREQUENCY  
60  
60  
55  
50  
45  
40  
60  
P
= -3dBm, 0dBm  
LO  
55  
55  
50  
45  
40  
T
= -40°C, -25°C  
C
50  
45  
40  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= +3dBm  
LO  
T
= +85°C  
T = +25°C  
C
C
700  
900  
900  
800  
900  
1000  
1100  
1200  
700  
900  
900  
800  
900  
1000  
1100  
1200  
700  
800  
900  
1000  
1100  
1200  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
T
= -25°C  
C
V
= 5.25V  
CC  
T
= -40°C  
C
P
= 0dBm  
LO  
P
= -3dBm  
LO  
V = 4.75V  
CC  
T
= +25°C  
C
V
= 5.0V  
CC  
T
= +85°C  
C
P
= +3dBm  
LO  
950 1000 1050 1100 1150 1200  
LO FREQUENCY (MHz)  
950 1000 1050 1100 1150 1200  
LO FREQUENCY (MHz)  
900  
950 1000 1050 1100 1150 1200  
LO FREQUENCY (MHz)  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
T
= -40°C, -25°C  
C
T
= +25°C  
C
V
= 5.25V  
CC  
T
= -40°C  
P
= +3dBm  
C
LO  
P
= 0dBm  
LO  
V
= 5.0V  
CC  
P
= -3dBm  
LO  
T
= +85°C  
C
V
= 4.75V  
CC  
950 1000 1050 1100 1150 1200  
LO FREQUENCY (MHz)  
950 1000 1050 1100 1150 1200  
LO FREQUENCY (MHz)  
900  
950 1000 1050 1100 1150 1200  
LO FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
SiGe High-Linearity, 815MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics (continued)  
(MAX9986A Typical Application Circuit, V  
= +5.0V, P = 0dBm, P = -5dBm, f > f , f = 160MHz, unless otherwise noted.)  
LO RF LO RF IF  
CC  
LO LEAKAGE AT IF PORT  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
OVER FREQUENCY vs. L  
EXT  
0
-10  
-20  
-30  
-40  
60  
50  
40  
30  
60  
T
= +25°C  
P
= +3dBm  
LO  
C
L3 = 0Ω  
T
= +85°C  
C
L3 = 4.7nH  
50  
40  
30  
P
= dBm  
LO  
T
= -25°C  
C
L3 = 10nH  
T
= -40°C  
C
P
= -3dBm  
LO  
L3 = 22nH  
L3 = 15nH  
L3 = 30nH  
900  
950 1000 1050 1100 1150 1200  
LO FREQUENCY (MHz)  
740  
790  
840  
890  
940  
990 1040  
740  
790  
840  
890  
940  
990 1040  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
RF-TO-IF ISOLATION  
OVER FREQUENCY vs. L  
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
EXT  
60  
50  
40  
30  
70  
60  
50  
40  
30  
20  
0
5
L3 = 22nH  
L3 = 30nH  
L3 = 15nH  
10  
15  
20  
25  
30  
35  
40  
V
= 4.75V, 5.0V, 5.25V  
CC  
L3 = 4.7nH  
L3 = 0Ω  
L3 = 10nH  
P
= -3dBm, 0dBm, +3dBm  
LO  
10  
0
740  
790  
840  
890  
940  
990 1040  
740  
790  
840  
890  
940  
990 1040  
500  
700  
900  
1100  
1300  
1500  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
IF PORT RETURN LOSS  
vs. IF FREQUENCY  
LO SELECTED RETURN LOSS  
vs. LO FREQUENCY  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
50  
P
= +3dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= 0dBm  
LO  
P
= -3dBm  
LO  
50  
50  
100  
150  
200  
250  
300  
350  
600  
800  
1000  
1200  
1400  
1600  
IF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
SiGe High-Linearity, 815MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics (continued)  
(MAX9986A Typical Application Circuit, V  
= +5.0V, P = 0dBm, P = -5dBm, f > f , f = 160MHz, unless otherwise noted.)  
LO RF LO RF IF  
CC  
LO UNSELECTED RETURN LOSS  
vs. LO FREQUENCY  
SUPPLY CURRENT vs. TEMPERATURE (T )  
C
0
10  
20  
30  
40  
50  
230  
220  
210  
200  
190  
V
= 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 5.0V  
CC  
V
= 4.75V  
10  
CC  
600  
800  
1000  
1200  
1400  
1600  
-40  
-15  
35  
60  
85  
LO FREQUENCY (MHz)  
TEMPERATURE (°C)  
Pin Description  
PIN  
NAME  
FUNCTION  
pin to GND with capacitors as shown in the Typical  
Power-Supply Connection. Bypass each V  
Application Circuit.  
CC  
1, 6, 8, 14  
V
CC  
Single-Ended 50RF Input. This port is internally matched and DC shorted to GND through a balun.  
Requires an external DC-blocking capacitor.  
2
3
RF  
Center Tap of the Internal RF Balun. Bypass to GND with capacitors close to the IC, as shown in the  
Typical Application Circuit.  
TAP  
GND  
4, 5, 10, 12,  
13, 17  
Ground  
7
9
LOBIAS  
LOSEL  
LO1  
Bias Resistor for Internal LO Buffer. Connect a 6191% resistor from LOBIAS to the power supply.  
Local Oscillator Select. Logic control input for selecting LO1 or LO2.  
Local Oscillator Input 1. Drive LOSEL low to select LO1.  
11  
15  
LO2  
Local Oscillator Input 2. Drive LOSEL high to select LO2.  
External Inductor Connection. Short LEXT to ground using a 0resistor. For applications requiring  
improved RF-to-IF and LO-to-IF isolation, connect a low-ESR inductor from LEXT to GND. See the  
Applications Information section regarding stability issues when using an LEXT inductor.  
16  
LEXT  
Differential IF Outputs. Each output requires external bias to V  
Typical Application Circuit).  
through an RF choke (see the  
CC  
18, 19  
IF-, IF+  
20  
EP  
IFBIAS  
GND  
IF Bias Resistor Connection for IF Amplifier. Connect a 9531% resistor from IFBIAS to GND.  
Exposed Ground Paddle. Solder the exposed paddle to the ground plane using multiple vias.  
ended interfaces to the RF and the two LO ports. A sin-  
Detailed Description  
gle-pole, double-throw (SPDT) switch provides 50ns  
switching time between the two LO inputs with 49dB of  
LO-to-LO isolation. Furthermore, the integrated LO  
buffer provides a high drive level to the mixer core,  
reducing the LO drive required at the MAX9986As  
The MAX9986A high-linearity downconversion mixer  
provides 8.2dB of conversion gain and +25dBm of  
IIP3, with a typical 10dB noise figure. The integrated  
baluns and matching circuitry allow for 50single-  
8
_______________________________________________________________________________________  
SiGe High-Linearity, 815MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
inputs to a -3dBm to +3dBm range. The IF port incor-  
porates a differential output, which is ideal for provid-  
ing enhanced IIP2 performance.  
Differential IF Output Amplifier  
The MAX9986A mixer has a 50MHz to 250MHz IF fre-  
quency range. The differential, open-collector IF output  
ports require external pullup inductors to V . Note that  
CC  
Specifications are guaranteed over broad frequency  
ranges to allow for use in cellular band GSM,  
cdma2000, iDEN, and WCDMA 2G/2.5G/3G base sta-  
tions. The MAX9986A is specified to operate over a  
815MHz to 1000MHz RF frequency range, a 960MHz  
to 1180MHz LO frequency range, and a 50MHz to  
250MHz IF frequency range. Operation beyond these  
ranges is possible; see the Typical Operating  
Characteristics for additional details.  
these differential outputs are ideal for providing  
enhanced 2LO - 2RF rejection performance. Single-  
ended IF applications require a 4:1 balun to transform  
the 200differential output impedance to a 50single-  
ended output.  
Applications Information  
Input and Output Matching  
The RF and LO inputs are internally matched to 50. No  
matching components are required. RF and LO inputs  
require only DC-blocking capacitors for interfacing.  
RF Input and Balun  
The MAX9986A RF input is internally matched to 50,  
requiring no external matching components. A DC-  
blocking capacitor is required because the input is inter-  
nally DC shorted to ground through the on-chip balun.  
The IF output impedance is 200(differential). For  
evaluation, an external low-loss 4:1 (impedance ratio)  
balun transforms this impedance down to a 50single-  
ended output (see the Typical Application Circuit).  
LO Inputs, Buffer, and Balun  
The MAX9986A is ideally suited for high-side LO injec-  
tion applications with a 960MHz to 1180MHz LO fre-  
quency range. For a device with a 570MHz to 850MHz  
LO frequency range, refer to the MAX9984 data sheet.  
As an added feature, the MAX9986A includes an inter-  
nal LO SPDT switch that can be used for frequency-  
hopping applications. The switch selects one of the two  
single-ended LO ports, allowing the external oscillator  
to settle on a particular frequency before it is switched  
in. LO switching time is typically less than 50ns, which  
is more than adequate for virtually all GSM applica-  
tions. If frequency hopping is not employed, set the  
switch to either of the LO inputs. The switch is con-  
trolled by a digital input (LOSEL): logic-high selects  
LO2, logic-low selects LO1. To avoid damage to the  
Bias Resistors  
Bias currents for the LO buffer and the IF amplifier are  
optimized by fine tuning resistors R1 and R2. If  
reduced current is required at the expense of perfor-  
mance, contact the factory for details. If the 1% bias  
resistor values are not readily available, substitute stan-  
dard 5% values.  
LEXT Inductor  
Short LEXT to ground using a 0resistor. For applica-  
tions requiring improved RF-to-IF and LO-to-IF isolation,  
LEXT can be used by connecting a low-ESR inductor  
from LEXT to GND. See the Typical Operating  
Characteristics on RF-to-IF isolation and LO-to-IF leakage  
for various inductor values. However, the load impedance  
presented to the mixer must be such that any capaci-  
tance from both IF- and IF+ to ground do not exceed sev-  
eral picofarads to ensure stable operating conditions.  
part, voltage must be applied to V  
before digital  
CC  
logic is applied to LOSEL. LO1 and LO2 inputs are  
internally matched to 50, requiring only an 82pF DC-  
blocking capacitor.  
Since approximately 140mA flows through LEXT, it is  
important to use a low DCR wire-wound inductor.  
A two-stage internal LO buffer allows a wide input  
power range for the LO drive. All guaranteed specifica-  
tions are for an LO signal power from -3dBm to +3dBm.  
The on-chip low-loss balun, along with an LO buffer,  
drives the double-balanced mixer. All interfacing and  
matching components from the LO inputs to the IF out-  
puts are integrated on-chip.  
Layout Considerations  
A properly designed PC board is an essential part of  
any RF/microwave circuit. Keep RF signal lines as short  
as possible to reduce losses, radiation, and induc-  
tance. For the best performance, route the ground pin  
traces directly to the exposed pad under the package.  
The PC board exposed pad MUST be connected to the  
ground plane of the PC board. It is suggested that mul-  
tiple vias be used to connect this pad to the lower level  
ground planes. This method provides a good RF/ther-  
mal conduction path for the device. Solder the exposed  
pad on the bottom of the device package to the PC  
board. The MAX9986A Evaluation Kit can be used as a  
High-Linearity Mixer  
The core of the MAX9986A is a double-balanced, high-  
performance passive mixer. Exceptional linearity is pro-  
vided by the large LO swing from the on-chip LO buffer.  
When combined with the integrated IF amplifiers, the cas-  
caded IIP3, 2LO - 2RF rejection, and NF performance is  
typically 25dBm, 69dBc, and 10dB, respectively.  
_______________________________________________________________________________________  
9
SiGe High-Linearity, 815MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
reference for board layout. Gerber files are available  
upon request at www.maxim-ic.com.  
Exposed Pad RF/Thermal Considerations  
The exposed paddle (EP) of the MAX9986As 20-pin  
thin QFN-EP package provides a low thermal-resis-  
tance path to the die. It is important that the PC board  
on which the MAX9986A is mounted be designed to  
conduct heat from the EP. In addition, provide the EP  
with a low-inductance path to electrical ground. The EP  
MUST be soldered to a ground plane on the PC board,  
either directly or through an array of plated via holes.  
Power-Supply Bypassing  
Proper voltage-supply bypassing is essential for high-  
frequency circuit stability. Bypass each V  
pin and  
CC  
TAP with the capacitors shown in the Typical Application  
Circuit; see Table 1. Place the TAP bypass capacitor to  
ground within 100 mils of the TAP pin.  
Table 1. Component List Referring to the Typical Application Circuit  
COMPONENT  
VALUE  
330nH  
30nH  
DESCRIPTION  
L1, L2  
Wire-wound high-Q inductors (0805)  
L3*  
Wire-wound high-Q inductor (0603)  
Microwave capacitor (0603)  
Microwave capacitors (0603)  
Microwave capacitors (0603)  
Microwave capacitor (0402)  
1% resistor (0603)  
C1  
10pF  
C2, C4, C7, C8, C10, C11, C12  
82pF  
C3, C5, C6, C9, C13, C14  
0.01µF  
220pF  
953Ω  
C15  
R1  
R2  
R3  
T1  
619Ω  
1% resistor (0603)  
0Ω  
1% resistor (1206)  
4:1 balun  
MAX9986A  
IF balun TC4-1W-7A  
U1  
Maxim IC  
*Use L3 for improved RF-to-IF and LO-to-IF isolation. See the Applications Information section regarding stability issues when using  
L3 inductor.  
Pin Configuration/Functional Diagram  
20  
19  
18  
16  
17  
V
CC  
1
2
3
4
15  
14  
13  
12  
11  
LO2  
V
RF  
CC  
MAX9986A  
TAP  
GND  
GND  
LO1  
GND  
GND  
5
6
7
8
9
10  
THIN QFN  
10 ______________________________________________________________________________________  
SiGe High-Linearity, 815MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Application Circuit  
V
CC  
T1  
3
6
4
IF  
R3  
OUTPUT  
L1  
L2  
2
C13  
1
C15  
17  
C14  
R1  
L3*  
V
CC  
19  
18  
16  
20  
C12  
C3  
C2  
V
CC  
LO2  
LO2  
1
2
3
4
5
15  
INPUT  
C1  
MAX9986A  
V
CC  
RF  
INPUT  
RF  
TAP  
14  
13  
12  
11  
V
CC  
C11  
C5  
GND  
GND  
C4  
GND  
GND  
C10  
LO1  
INPUT  
LO1  
6
7
8
9
10  
R2  
C7  
V
CC  
LOSEL  
INPUT  
C6  
C8  
C9  
V
CC  
*USE L3 FOR IMPROVED RF-TO-IF AND LO-TO-IF ISOLATION. SEE THE Applications Information SECTION REGARDING STABILITY ISSUES WHEN USING L3 INDUCTOR.  
Chip Information  
TRANSISTOR COUNT: 1017  
PROCESS: SiGe BiCMOS  
______________________________________________________________________________________ 11  
SiGe High-Linearity, 815MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
AAAAA  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45¡  
DETAIL A  
e/2  
PIN # 1  
I.D.  
e
(ND-1) X  
e
DETAIL B  
e
L
C
L
C
L
L1  
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
1
-DRAWING NOT TO SCALE-  
I
21-0140  
2
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
MIN. NOM. MAX. MIN. NOM. MAX.  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
40L 5x5  
L
DOWN  
BONDS  
ALLOWED  
YES  
NO  
NO  
YES  
exceptions  
PKG.  
CODES  
–0.15  
A
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05  
0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF.  
T1655-2  
T1655-3  
**  
**  
**  
**  
A1  
0
0
0
0
0
A3  
b
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
T2055-3  
T2055-4  
T2055-5  
T2855-3  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
D
E
NO  
**  
YES  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
3.15 3.25 3.35 3.15 3.25 3.35  
e
0.80 BSC.  
0.25  
0.65 BSC.  
0.25  
0.50 BSC.  
0.25  
0.50 BSC.  
0.25  
0.40 BSC.  
YES  
YES  
NO  
NO  
YES  
YES  
**  
**  
**  
k
-
-
-
-
-
-
-
-
0.25 0.35 0.45  
T2855-4  
T2855-5  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
L
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
0.30 0.40 0.50  
T2855-6  
T2855-7  
**  
**  
N
ND  
16  
4
4
20  
5
28  
7
32  
8
8
40  
10  
10  
2.80  
2.60 2.70  
2.60 2.70 2.80  
5
7
NE  
T2855-8  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
-----  
JEDEC  
NOTES:  
T2855N-1 3.15 3.25 3.35 3.15 3.25 3.35  
NO  
YES  
NO  
YES  
NO  
**  
**  
**  
**  
**  
**  
3.20  
T3255-3  
T3255-4  
T3255-5  
3.00 3.10  
3.00 3.10 3.20 3.00 3.10 3.20  
3.20  
3.00 3.10 3.20  
3.00 3.10  
3.00 3.10 3.20  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
T4055-1 3.20 3.30 3.40 3.20 3.30 3.40  
YES  
**SEE COMMON DIMENSIONS TABLE  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN  
0.25 mm AND 0.30 mm FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR  
T2855-3 AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", –0.05.  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
I
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9986AETP+T

SiGe High-Linearity, 815MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9986AETP-T

SiGe High-Linearity, 815MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9986ETP

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9986ETP+

Down Converter, BICMOS, 5 X 5 MM, QFN-20
MAXIM

MAX9986ETP+D

Down Converter, BICMOS, 5 X 5 MM, LEAD FREE, QFN-20
MAXIM

MAX9986ETP+T

Down Converter, BICMOS, 5 X 5 MM, QFN-20
MAXIM

MAX9986ETP+TD

Down Converter, BICMOS, 5 X 5 MM, LEAD FREE, QFN-20
MAXIM

MAX9986ETP-T

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9987

+14dBm to +20dBm LO Buffers/Splitters with ±.1dB Variation
MAXIM

MAX9987EGP

+14dBm to +20dBm LO Buffers/Splitters with 【1dB Variation
MAXIM

MAX9987ETP+T

Splitter, 700MHz Min, 1100MHz Max, 5 X 5 MM, QFN-20
MAXIM

MAX9987ETP-T

Splitter, 700MHz Min, 1100MHz Max, BICMOS, 5 X 5 MM, QFN-20
MAXIM