MAX9985ETX [MAXIM]

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch; 双通道,SiGe ,高线性度, 700MHz至1000MHz下变频混频器,带有LO缓冲器/开关
MAX9985ETX
型号: MAX9985ETX
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
双通道,SiGe ,高线性度, 700MHz至1000MHz下变频混频器,带有LO缓冲器/开关

开关 电信集成电路 蜂窝电话电路 电信电路 信息通信管理
文件: 总15页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0705 Rev 0; 1/07  
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
MAX985  
General Description  
Features  
The MAX9985 high-linearity, dual-channel downconver-  
sion mixer is designed to provide approximately 6dB  
gain, +28.5dBm of IIP3, and 10.5dB of noise figure (NF)  
ideal for diversity receiver applications. With a 700MHz  
to 1000MHz RF frequency range and a 570MHz to  
865MHz LO frequency range, this mixer is ideal for low-  
side LO injection architectures. In addition, the broad  
frequency range makes the MAX9985 ideal for GSM  
850/950, 2G/2.5G EDGE, WCDMA, cdma2000®, and  
iDEN® base-station applications.  
700MHz to 1000MHz RF Frequency Range  
570MHz to 865MHz LO Frequency Range  
50MHz to 250MHz IF Frequency Range  
6dB Typical Conversion Gain  
10.5dB Typical Noise Figure  
+28.5dBm Typical Input IP3  
+16.2dBm Typical Input 1dB Compression Point  
77dBc Typical 2RF-2LO Spurious Rejection at  
The MAX9985 dual-channel downconverter achieves a  
high level of component integration. The MAX9985 inte-  
grates two double-balanced active mixer cores, two LO  
buffers, a dual-input LO selectable switch, and a pair of  
differential IF output amplifiers. In addition, integrated  
on-chip baluns at the RF and LO ports allow for single-  
ended RF and single-ended LO inputs. The MAX9985  
requires a typical 0dBm LO drive. Supply current is  
adjustable up to 400mA.  
P
RF  
= -10dBm  
Dual Channels Ideal for Diversity Receiver  
Applications  
47dB Typical Channel-to-Channel Isolation  
-3dBm to +3dBm LO Drive  
Integrated LO Buffer  
Internal RF and LO Baluns for Single-Ended  
The MAX9985 is available in a 36-pin thin QFN pack-  
age (6mm x 6mm) with an exposed paddle. Electrical  
performance is guaranteed over the extended tempera-  
Inputs  
Built-In SPDT LO Switch with 43dB LO1-to-LO2  
Isolation and 50ns Switching Time  
ture range, from T = -40°C to +85°C.  
C
Pin-Compatible with MAX9995/MAX9995A  
Applications  
1700MHz to 2200MHz Mixers  
850MHz WCDMA Base Stations  
Lead-Free Package Available  
Ordering Information  
PKG  
GSM 850/GSM 950, 2G/2.5G EDGE Base  
Stations  
cdmaOne™ and cdma2000 Base Stations  
iDEN Base Stations  
PART  
TEMP RANGE PIN-PACKAGE  
CODE  
36 Thin QFN-EP*  
-40°C to +85°C  
Fixed Broadband Wireless Access  
Wireless Local Loop  
MAX9985ETX  
T3666-2  
(6mm x 6mm)  
36 Thin QFN-EP*  
-40°C to +85°C (6mm x 6mm), T3666-2  
T/R  
Private Mobile Radios  
MAX9985ETX-T  
MAX9985ETX+  
Military Systems  
Digital and Spread-Spectrum Communication  
Systems  
36 Thin QFN-EP*  
(6mm x 6mm),  
lead free, bulk  
-40°C to +85°C  
T3666-2  
Microwave Links  
cdma2000 is a registered trademark of Telecommunications  
Industry Association.  
36 Thin QFN-EP*  
MAX9985ETX+T -40°C to +85°C (6mm x 6mm), T3666-2  
lead free, T/R  
iDEN is a registered trademark of Motorola, Inc.  
cdmaOne is a trademark of CDMA Development Group.  
*EP = Exposed paddle.  
T = Tape-and-reel package.  
+Denotes lead-free and RoHS compliant.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
to GND...........................................................-0.3V to +5.5V  
Maximum Junction Temperature Range..........................+150°C  
LO1, LO2 to GND ............................................................... 0.3V  
Any Other Pins to GND...............................-0.3V to (V + 0.3V)  
θ
θ
.................................................................................+38°C/W  
...................................................................................7.4°C/W  
JA  
JC  
CC  
RFMAIN, RFDIV, and LO_ Input Power..........................+20dBm  
RFMAIN, RFDIV Current (RF is DC shorted to GND through  
balun)...............................................................................50mA  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Continuous Power Dissipation (T = +70°C) (Note A)  
C
36-Pin Thin QFN (derate 26mW/°C above +70°C) .........10.8W  
Operating Temperature Range ...........................-40°C to +85°C  
MAX985  
Note A: T is the temperature on the exposed paddle of the package.  
C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(Using the Typical Application Circuit, no input RF or LO signals applied, V  
= 4.75V to 5.25V, T = -40°C to +85°C. Typical values  
C
CC  
are at V  
= 5.0V, T = +25°C, unless otherwise noted.)  
CC  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage  
Supply Current  
V
4.75  
5
5.25  
V
CC  
Total supply current (see Table 1 for lower  
current settings)  
400  
440  
V
V
(pin 16)  
(pin 30)  
80  
80  
CC  
CC  
I
mA  
CC  
IFM+/IFM- (total of both)  
IFD+/IFD- (total of both)  
105  
105  
LOSEL Input High Voltage  
LOSEL Input Low Voltage  
LOSEL Input Current  
V
2
V
V
IH  
V
0.8  
IL  
I
and I  
-10  
+10  
µA  
IH  
IL  
AC ELECTRICAL CHARACTERISTICS  
(Using the Typical Application Circuit, V  
= 4.75V to 5.25V, RF and LO ports are driven from 50sources, P = -3dBm to +3dBm,  
CC  
LO  
P
V
= -5dBm, f = 820MHz to 920MHz, f = 670MHz to 865MHz, f = 100MHz, f > f , T = -40°C to +85°C. Typical values are at  
RF  
CC  
RF LO IF RF LO C  
= 5.0V, P = -5dBm, P = 0dBm, f = 870MHz, f = 770MHz, f = 100MHz, T = +25°C, unless otherwise noted.) (Note 1)  
RF  
LO  
RF  
LO  
IF  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
700  
570  
TYP  
MAX  
1000  
865  
UNITS  
MHz  
RF Frequency  
LO Frequency  
f
(Note 2)  
(Note 2)  
RF  
LO  
f
MHz  
IF matching components affect the IF  
frequency range (Note 2)  
IF Frequency  
f
50  
250  
MHz  
IF  
LO Drive  
P
(Note 3)  
(Note 6)  
-3  
+3  
dBm  
dB  
LO  
Conversion Gain  
G
4.5  
6
7.5  
C
Gain Variation over Temperature  
-0.012  
dB/°C  
Flatness over any one of three frequency bands:  
f
RF  
f
RF  
f
RF  
= 824MHz to 849MHz  
= 869MHz to 894MHz  
= 880MHz to 915MHz  
Conversion Gain Flatness  
0.1  
dB  
2
_______________________________________________________________________________________  
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
MAX985  
AC ELECTRICAL CHARACTERISTICS (continued)  
(Using the Typical Application Circuit, V  
= 4.75V to 5.25V, RF and LO ports are driven from 50sources, P = -3dBm to +3dBm,  
CC  
LO  
P
V
= -5dBm, f = 820MHz to 920MHz, f = 670MHz to 865MHz, f = 100MHz, f > f , T = -40°C to +85°C. Typical values are at  
RF  
CC  
RF LO IF RF LO C  
= 5.0V, P = -5dBm, P = 0dBm, f = 870MHz, f = 770MHz, f = 100MHz, T = +25°C, unless otherwise noted.) (Note 1)  
RF  
LO  
RF  
LO  
IF  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Noise Figure, Single Sideband  
NF  
f
= 190MHz, no blockers present (Note 3)  
10.5  
13  
dB  
IF  
+11dBm blocker tone applied to RF port at  
961MHz, f = 860MHz, f = 670MHz,  
Noise Figure under Blocking  
Condition  
RF  
LO  
21  
26  
dB  
f
f
= 190MHz,  
= 291MHz (Notes 3, 4)  
IFDESIRED  
BLOCKER  
Input Compression Point  
Output Compression Point  
P
16.2  
21.2  
dBm  
dBm  
1dB  
OP  
18.5  
1dB  
P
= -5dBm, f  
=
P
P
= +8dBm  
0.1  
RF  
RF  
BLOCKER  
BLOCKER  
Small-Signal Compression under  
Blocking Conditions  
870MHz, f  
= 871MHz  
dB  
BLOCKER  
= +11dBm  
0.25  
f
P
-f  
= 1MHz, f = 100MHz,  
RF1 RF2 IF  
Third-Order Input Intercept Point  
IIP3  
28.5  
-0.01  
34.5  
dBm  
dB/°C  
dBm  
= -5dBm/tone  
RF  
Third-Order Input Intercept Point  
Variation over Temperature  
Third-Order Output Intercept  
Point  
P
= -5dBm/tone, f = 100MHz,  
IF  
RF  
OIP3  
2 x 2  
32.0  
f
f
-f  
= 1MHz (Note 3)  
RF1 RF2  
= 870MHz, f  
P
P
P
P
= -10dBm  
= -5dBm  
= -10dBm  
= -5dBm  
63  
58  
70  
60  
77  
72  
85  
75  
RF  
LO  
RF  
RF  
RF  
RF  
2RF-2LO Spur  
= 770MHz, f  
820MHz (Note 3)  
=
dBc  
dBc  
dB  
SPUR  
f
= 870MHz, f  
RF  
LO  
=
SPUR  
3RF-3LO Spur  
3 x 3  
= 770MHz, f  
803.3MHz (Note 3)  
P
f
f
= +3dBm, P = +3dBm,  
LO2  
LO1  
LO1-to-LO2 Port Isolation  
-f  
= 1MHz, P = -5dBm,  
RF  
39  
43  
LO1 LO2  
= 100MHz (Notes 3, 5)  
IF  
Maximum LO Leakage at RF Port  
Maximum 2LO Leakage at RF Port  
Maximum LO Leakage at IF Port  
Minimum RF-to-IF Isolation  
-40  
-45  
-30  
45  
-30  
-20  
-20  
dBm  
dBm  
dBm  
dB  
30  
40  
P
= -10dBm, RFMAIN (RFDIV) power  
RF  
Minimum Channel-to-Channel  
Isolation  
measured at IFDIV (IFMAIN), relative to  
IFMAIN (IFDIV), all unused ports terminated  
to 50  
47  
dB  
_______________________________________________________________________________________  
3
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
AC ELECTRICAL CHARACTERISTICS (continued)  
(Using the Typical Application Circuit, V  
= 4.75V to 5.25V, RF and LO ports are driven from 50sources, P = -3dBm to +3dBm,  
CC  
LO  
P
V
= -5dBm, f = 820MHz to 920MHz, f = 670MHz to 865MHz, f = 100MHz, f > f , T = -40°C to +85°C. Typical values are at  
RF  
CC  
RF LO IF RF LO C  
= 5.0V, P = -5dBm, P = 0dBm, f = 870MHz, f = 770MHz, f = 100MHz, T = +25°C, unless otherwise noted.) (Note 1)  
RF  
LO  
RF  
LO  
IF  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
50% of LOSEL to IF settled within 2 degrees  
(Note 3)  
LO Switching Time  
0.05  
1
µs  
RF Input Impedance  
LO Input Impedance  
IF Output Impedance  
RF Input Return Loss  
50  
50  
MAX985  
Differential  
200  
24  
LO on and IF terminated  
LO port selected  
dB  
35  
LO Input Return Loss  
IF Return Loss  
dB  
dB  
LO port unselected  
RF terminated in 50Ω  
36  
20  
Note 1: All limits reflect losses of external components. Output measurements taken at IF outputs of the Typical Application Circuit.  
Note 2: Performance is guaranteed for f = 820MHz to 920MHz, f = 670MHz to 865MHz, and f = 100MHz. Operation outside  
RF  
LO  
IF  
this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics.  
Note 3: Guaranteed by design and characterization.  
Note 4: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of all  
SNR degradations in the mixer including the LO noise, as defined in Maxim Application Note 2021.  
Note 5: Measured at IF port at IF frequency. LOSEL may be in any logic state.  
Note 6: Performance at T = -40°C is guaranteed by design.  
C
4
_______________________________________________________________________________________  
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
MAX985  
Typical Operating Characteristics  
(Using the Typical Application Circuit, V  
wise noted.)  
= 5.0V, P = 0dBm, P = -5dBm, f > f , f = 100MHz, T = +25°C, unless other-  
CC  
LO  
RF  
RF  
LO IF  
C
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
8
8
7
6
5
4
8
7
6
5
4
T
= -30°C  
C
7
6
5
4
P
LO  
= -3dBm, 0dBm, +3dBm  
V
CC  
= 4.75V, 5.0V, 5.25V  
T
= +85°C  
T
= +25°C  
C
C
700  
800  
900  
1000  
700  
800  
900  
1000  
700  
800  
900  
1000  
1000  
1000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
30  
29  
28  
27  
26  
25  
24  
30  
29  
28  
27  
26  
25  
24  
30  
29  
28  
27  
26  
25  
24  
V
= 5.0V  
CC  
V
= 4.75V  
T
= +85°C  
CC  
C
V
= 5.25V  
CC  
T
= +25°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= -30°C  
C
700  
800  
900  
1000  
700  
800  
900  
1000  
700  
800  
900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
T
= +85°C  
C
V
= 5.25V  
CC  
V
= 4.75V  
CC  
P
= -3dBm, 0dBm, +3dBm  
V
= 5.0V  
LO  
CC  
T
= +25°C  
C
T
= -30°C  
C
8
8
8
7
7
7
700  
800  
900  
1000  
700  
800  
900  
1000  
700  
800  
900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
_______________________________________________________________________________________  
5
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics (continued)  
(Using the Typical Application Circuit, V  
wise noted.)  
= 5.0V, P = 0dBm, P = -5dBm, f > f , f = 100MHz, T = +25°C, unless other-  
CC  
LO  
RF  
RF  
LO IF  
C
2RF-2LO RESPONSE vs. RF FREQUENCY  
2RF-2LO RESPONSE vs. RF FREQUENCY  
2RF-2LO RESPONSE vs. RF FREQUENCY  
80  
80  
75  
70  
65  
60  
55  
50  
80  
75  
70  
65  
60  
55  
50  
T
= +85°C  
P
= -5dBm  
P
= -5dBm  
= 0dBm  
P
= +3dBm  
= -3dBm  
C
RF  
RF  
P
= -5dBm  
RF  
LO  
LO  
75  
70  
65  
60  
55  
50  
MAX985  
T
= -30°C  
V
CC  
= 4.75V, 5.0V, 5.25V  
C
P
T
= +25°C  
C
P
LO  
700  
800  
900  
1000  
700  
800  
900  
1000  
700  
800  
900  
1000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
3RF-3LO RESPONSE vs. RF FREQUENCY  
3RF-3LO RESPONSE vs. RF FREQUENCY  
3RF-3LO RESPONSE vs. RF FREQUENCY  
95  
85  
75  
65  
55  
95  
85  
75  
65  
55  
95  
85  
75  
65  
55  
P
= -5dBm  
P
= -5dBm  
RF  
P
= -5dBm  
RF  
RF  
T
= +25°C  
C
V
= 5.0V  
T
= +85°C  
CC  
C
V
= 4.75V  
CC  
P
LO  
= -3dBm, 0dBm, +3dBm  
V
= 5.25V  
CC  
T
= -30°C  
C
700  
800  
900  
1000  
700  
800  
900  
1000  
700  
800  
900  
1000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
vs. RF FREQUENCY  
1dB  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
1dB  
1dB  
19  
18  
17  
16  
15  
14  
13  
19  
18  
17  
16  
15  
14  
13  
19  
18  
17  
16  
15  
14  
13  
V
= 5.25V  
CC  
T
= +85°C  
C
P
= -3dBm, 0dBm, +3dBm  
V
= 5.0V  
LO  
CC  
T
= -30°C  
C
V
= 4.75V  
CC  
T
= +25°C  
C
700  
800  
900  
1000  
1100  
1200  
700  
800  
900  
1000  
1100  
1200  
700  
800  
900  
1000  
1100  
1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
MAX985  
Typical Operating Characteristics (continued)  
(Using the Typical Application Circuit, V  
wise noted.)  
= 5.0V, P = 0dBm, P = -5dBm, f > f , f = 100MHz, T = +25°C, unless other-  
CC  
LO  
RF  
RF  
LO IF  
C
CHANNEL ISOLATION vs. RF FREQUENCY  
CHANNEL ISOLATION vs. RF FREQUENCY  
CHANNEL ISOLATION vs. RF FREQUENCY  
60  
60  
55  
50  
45  
40  
35  
30  
60  
55  
50  
45  
40  
35  
30  
55  
50  
45  
P
LO  
= -3dBm, 0dBm, +3dBm  
V
CC  
= 4.75V, 5.0V, 5.25V  
T = -30°C  
C
,
+25°C  
,
+85°C  
40  
35  
30  
700  
800  
900  
1000  
700  
800  
900  
1000  
700  
800  
900  
1000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
-10  
-10  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-15  
-20  
-25  
-30  
-35  
-40  
-15  
-20  
-25  
-30  
-35  
-40  
T
T
= +25°C  
= +85°C  
C
C
V
= 5.25V  
CC  
P
= 0dBm  
LO  
T
= -30°C  
C
P
= +3dBm  
V
= 5.0V  
CC  
LO  
V
= 4.75V  
700  
CC  
P
= -3dBm  
LO  
600  
650  
700  
750  
800  
850  
900  
600  
650  
700  
750  
800  
850  
900  
600  
650  
750  
800  
850  
900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
60  
55  
50  
45  
40  
35  
30  
60  
55  
50  
45  
40  
35  
30  
60  
55  
50  
45  
40  
35  
30  
T
= +85°C  
C
T
= +25°C  
C
V
CC  
= 4.75V, 5.0V, 5.25V  
P
LO  
= -3dBm, 0dBm, +3dBm  
T
= -30°C  
C
700  
800  
900  
1000  
700  
800  
900  
1000  
700  
800  
900  
1000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics (continued)  
(Using the Typical Application Circuit, V  
wise noted.)  
= 5.0V, P = 0dBm, P = -5dBm, f > f , f = 100MHz, T = +25°C, unless other-  
CC  
LO  
RF  
RF  
LO IF  
C
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-20  
-20  
-30  
-40  
-50  
-60  
-20  
-30  
-40  
-50  
-60  
8
-30  
T
= +25°C  
T
= -30°C  
C
C
-40  
-50  
-60  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= +85°C  
C
500 600 700 800 900 1000 1100 1200  
LO FREQUENCY (MHz)  
500 600 700 800 900 1000 1100 1200  
LO FREQUENCY (MHz)  
500 600 700 800 900 1000 1100 1200  
LO FREQUENCY (MHz)  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-20  
-30  
-40  
-50  
-60  
P
= 0dBm  
T
= +25°C  
LO  
C
P
= -3dBm  
T
= +85°C  
LO  
C
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= +3dBm  
LO  
T
= -30°C  
C
500 600 700 800 900 1000 1100 1200  
LO FREQUENCY (MHz)  
500 600 700 800 900 1000 1100 1200  
LO FREQUENCY (MHz)  
500 600 700 800 900 1000 1100 1200  
LO FREQUENCY (MHz)  
LO SWITCH ISOLATION  
vs. RF FREQUENCY  
LO SWITCH ISOLATION  
vs. RF FREQUENCY  
LO SWITCH ISOLATION  
vs. RF FREQUENCY  
50  
45  
40  
35  
30  
50  
45  
40  
35  
30  
50  
45  
40  
35  
30  
T
= -30°C  
C
V
= 4.75V, 5.0V, 5.25V  
T
= +85°C  
P
= -3dBm, 0dBm, 3dBm  
LO  
CC  
C
T
= +25°C  
C
600  
700  
800  
900 1000 1100 1200  
600  
700  
800  
900 1000 1100 1200  
600  
700  
800  
900 1000 1100 1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
8
_______________________________________________________________________________________  
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
MAX985  
Typical Operating Characteristics (continued)  
(Using the Typical Application Circuit, V  
wise noted.)  
= 5.0V, P = 0dBm, P = -5dBm, f > f , f = 100MHz, T = +25°C, unless other-  
CC  
LO  
RF  
RF  
LO IF  
C
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IF PORT RETURN LOSS  
vs. IF FREQUENCY  
LO SELECTED RETURN LOSS  
vs. LO FREQUENCY  
0
10  
20  
30  
40  
50  
0
0
5
5
V
= 4.75V, 5.0V, 5.25V  
P
= +3dBm  
LO  
CC  
10  
10  
15  
20  
25  
30  
P
= -3dBm, 0dBm, +3dBm  
LO  
P
= 0dBm  
LO  
15  
20  
25  
30  
P
= -3dBm  
LO  
500 600 700 800 900 1000 1100 1200  
RF FREQUENCY (MHz)  
500 600 700 800 900 1000 1100 1200  
LO FREQUENCY (MHz)  
0
100  
200  
300  
400  
500  
IF FREQUENCY (MHz)  
LO UNSELECTED RETURN LOSS  
vs. LO FREQUENCY  
SUPPLY CURRENT  
vs. TEMPERATURE (T )  
CONVERSION GAIN vs. RF FREQUENCY  
(VARIOUS LO AND IF BUFFER BIAS)  
C
7.0  
6.5  
6.0  
5.5  
0
430  
420  
410  
400  
390  
380  
370  
360  
V
= 5.25V  
CC  
10  
20  
30  
40  
50  
3
2
0
6
4
1
5
V
= 5.0V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V  
CC  
7
8, 9  
SEE TABLE 1 FOR R1, R2, AND I VALUES.  
CC  
500 600 700 800 900 1000 1100 1200  
LO FREQUENCY (MHz)  
-35  
-15  
5
25  
45  
65  
85  
700  
800  
900  
1000  
TEMPERATURE (°C)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
(VARIOUS LO AND IF BUFFER BIAS)  
2RF-2LO RESPONSE vs. RF FREQUENCY  
(VARIOUS LO AND IF BUFFER BIAS)  
3RF-3LO RESPONSE vs. RF FREQUENCY  
(VARIOUS LO AND IF BUFFER BIAS)  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
85  
80  
75  
70  
65  
60  
90  
85  
80  
75  
70  
65  
60  
55  
P
= -5dBm  
6
3
1
1
RF  
P
= -5dBm  
3
0
RF  
2
2
0
4
2
6
0
5
6
4
3
5
7
8
5
9
8
9
7
8
7
SEE TABLE 1 FOR R1, R2, AND I VALUES.  
SEE TABLE 1 FOR R1, R2, AND I VALUES.  
SEE TABLE 1 FOR R1, R2, AND I VALUES.  
CC  
CC  
CC  
700  
800  
900  
1000  
700  
800  
900  
1000  
700  
800  
900  
1000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
_______________________________________________________________________________________  
9
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics (continued)  
(Using the Typical Application Circuit, V  
wise noted.)  
= 5.0V, P = 0dBm, P = -5dBm, f > f , f = 100MHz, T = +25°C, unless other-  
CC  
LO  
RF  
RF  
LO IF  
C
INPUT P  
vs. RF FREQUENCY  
1dB  
RF-TO-IF ISOLATION vs. RF FREQUENCY  
(VARIOUS VALUES OF L3 AND L6)  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
(VARIOUS VALUES OF L3 AND L6)  
(VARIOUS LO AND IF BUFFER BIAS)  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
70  
60  
50  
40  
30  
20  
-10  
0
L = 15nH  
L = 30nH  
-15  
-20  
-25  
-30  
-35  
-40  
0  
MAX985  
1, 2, 3  
4, 5, 6  
L = 7.5nH  
L = 7.5nH  
L = 30nH  
650  
L = 15nH  
7, 8, 9  
0Ω  
SEE TABLE 1 FOR R1, R2, AND I VALUES.  
CC  
8
700  
800  
900  
1000  
700  
800  
900  
1000  
600  
700  
750  
800  
850  
900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Table 1. DC Current vs. Bias Resistor  
Settings  
BIAS  
CONDITION  
DC CURRENT  
(mA)  
R1 AND R4  
VALUES ()  
R2 AND R5  
VALUES ()  
0
1
2
3
4
5
6
7
8
9
397.8  
345.0  
316.5  
297.5  
301.2  
271.7  
252.2  
260.1  
230.5  
211.5  
1070  
1400  
1400  
1400  
1910  
1910  
1910  
2800  
2800  
2800  
1100  
1100  
1620  
2210  
1100  
1620  
2210  
1100  
1620  
2210  
10 ______________________________________________________________________________________  
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
MAX985  
Pin Description  
PIN  
1
NAME  
RFMAIN  
TAPMAIN  
FUNCTION  
Main Channel RF input. Internally matched to 50. Requires an input DC-blocking capacitor.  
Main Channel Balun Center Tap. Bypass to GND with capacitors close to the pin.  
2
3, 5, 7, 12,  
20, 22, 24,  
25, 26, 34  
GND  
Ground  
4, 6, 10, 16,  
21, 30, 36  
Power Supply. Connect bypass capacitors as close to the pin as possible (see the Typical  
Application Circuit).  
V
CC  
8
9
TAPDIV  
RFDIV  
Diversity Channel Balun Center Tap. Bypass to GND with capacitors close to the pin.  
Diversity Channel RF Input. Internally matched to 50. Requires an input DC-blocking capacitor.  
IF Diversity Amplifier Bias Control. Connect a 1.07kresistor from this pin to ground to set the bias  
current for the diversity IF amplifier (see the Typical Operating Characteristics for typical performance  
versus resistor value).  
11  
13, 14  
15  
IFDBIAS  
IFD+, IFD-  
LEXTD  
Diversity Mixer Differential IF Output. Connect pullup inductors from each of these pins to V (see  
CC  
the Typical Application Circuit).  
Connect a 30nH inductor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation.  
Connect this pin to ground if isolations can be degraded (see the Typical Operating Characteristics  
for typical degradation).  
LO Diversity Amplifier Bias Control. Connect a 1.1kresistor from this pin to ground to set the bias  
current for the diversity LO amplifier (see the Typical Operating Characteristics for typical  
performance versus resistor value).  
17  
LODBIAS  
18, 28  
19  
N.C.  
LO1  
No Connection. Not internally connected.  
Local Oscillator 1 Input. This input is internally matched to 50. Requires an input DC-blocking capacitor.  
Local Oscillator Select. Set this pin to high to select LO1. Set low to select LO2.  
Local Oscillator 2 Input. This input is internally matched to 50. Requires an input DC-blocking capacitor.  
23  
LOSEL  
LO2  
27  
LO Main Amplifier Bias Control. Connect a 1.1kresistor from this pin to ground to set the bias  
current for the main LO amplifier (see the Typical Operating Characteristics for typical performance  
versus resistor value).  
29  
31  
LOMBIAS  
LEXTM  
Connect a 30nH inductor from this pin to ground to increase the RF-IF and LO-IF isolation. Connect  
this pin to ground if isolations can be degraded (see the Typical Operating Characteristics for typical  
degradation).  
Main Mixer Differential IF Output. Connect pullup inductors from each of these pins to V (see the  
CC  
Typical Application Circuit).  
32, 33  
35  
IFM-, IFM+  
IFMBIAS  
EP  
IF Main Amplifier Bias Control. Connect a 1.07kresistor from this pin to ground to set the bias current for  
the main IF amplifier (see the Typical Operating Characteristics for typical performance vs. resistor value).  
Exposed Paddle. Solder the exposed paddle to the ground plane using multiple vias. This paddle  
affects RF performance and provides heat dissipation.  
______________________________________________________________________________________ 11  
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
(LOSEL), where logic-high selects LO1 and logic-low  
Detailed Description  
selects LO2. LO1 and LO2 inputs are internally  
The MAX9985 is a dual-channel downconverter  
matched to 50, requiring only an 82pF DC-blocking  
capacitor. To avoid damage to the part, voltage MUST  
designed to provide 6dB of conversion gain, +28.5dBm  
input IP3, and +16.2dBm 1dB input compression point,  
be applied to V  
before digital logic is applied to  
CC  
with a 10.5dB NF.  
LOSEL. Alternatively, a 1kresistor can be placed in  
In addition to its high-linearity performance, the  
MAX9985 achieves a high level of component integra-  
tion. The device integrates two double-balanced active  
mixers for two-channel downconversion. Both the main  
and diversity channels include a balun and matching  
circuitry to allow 50single-ended interfaces to the RF  
ports and the two LO ports. An integrated single-pole,  
double-throw (SPDT) switch provides 50ns switching  
time between the two LO inputs with 43dB of LO-to-LO  
isolation and a -40dBm of LO leakage at the RF port.  
Furthermore, the integrated LO buffers provide a high  
drive level to each mixer core, reducing the LO drive  
required at the MAX9985’s inputs to a -3dBm to +3dBm  
range. The IF ports for both channels incorporate differ-  
ential outputs for downconversion, which is ideal for  
providing enhanced IIP2 performance.  
series at the LOSEL to limit the input current in applica-  
tions where LOSEL is applied before V  
.
CC  
The main and diversity channels incorporate a two-  
stage LO buffer that allows for a wide-input power  
range for the LO drive. All guaranteed specifications  
are for an LO signal power from -3dBm to +3dBm. The  
on-chip low-loss baluns, along with LO buffers, drive  
the double-balanced mixers. All interfacing and match-  
ing components from the LO inputs to the IF outputs  
are integrated on-chip.  
MAX985  
High-Linearity Mixer  
The core of the MAX9985 dual-channel downconverter  
consists of two double-balanced, high-performance  
passive mixers. Exceptional linearity is provided by the  
large LO swing from the on-chip LO buffers. When com-  
bined with the integrated IF amplifiers, the cascaded  
IIP3, 2RF-2LO rejection, and NF performance are typi-  
cally +28.5dBm, 77dBc, and 10.5dB, respectively.  
Dual-channel downconversion makes the MAX9985  
ideal for diversity receiver applications. In addition,  
specifications are guaranteed over broad frequency  
ranges to allow for use in GSM 850/950, 2G/2.5G  
EDGE, WCDMA, cdma2000, and iDEN base stations.  
The MAX9985 is specified to operate over a 700MHz to  
1000MHz RF input range, a 570MHz to 865MHz LO  
range, and a 50MHz to 250MHz IF range. The external  
IF components set the lower frequency range (see the  
Typical Operating Characteristics for details).  
Differential IF  
The MAX9985 has a 50MHz to 250MHz IF frequency  
range, where the low-end frequency depends on the  
frequency response of the external IF components. Note  
that these differential ports are ideal for providing  
enhanced IIP2 performance. Single-ended IF applica-  
tions require a 4:1 (impedance ratio) balun to transform  
the 200differential IF impedance to a 50single-  
ended system. After the balun, the IF return loss is bet-  
ter than 20dB. The user can use a differential IF  
amplifier on the mixer IF ports, but a DC block is  
required on both IFD+/IFD- and IFM+/IFM- ports to keep  
external DC from entering the IF ports of the mixer.  
RF Port and Balun  
The RF input ports to both the main and diversity chan-  
nels are internally matched to 50, requiring no exter-  
nal matching components. A DC-blocking capacitor is  
required as the input is internally DC-shorted to ground  
through the on-chip balun. The RF port return loss is  
typically 15dB over the entire 700MHz to 1000MHz RF  
frequency range.  
Applications Information  
Input and Output Matching  
The RF and LO inputs are internally matched to 50.  
No matching components are required. Return loss at  
the RF port is typically 15dB over the entire input range  
and return loss at the LO ports are typically 25dB. RF  
and LO inputs require only DC-blocking capacitors for  
interfacing.  
LO Inputs, Buffer, and Balun  
The MAX9985 is optimized for a 570MHz to 865MHz  
LO frequency range. As an added feature, the  
MAX9985 includes an internal LO SPDT switch for use  
in frequency-hopping applications. The switch selects  
one of the two single-ended LO ports, allowing the  
external oscillator to settle on a particular frequency  
before it is switched in. LO switching time is typically  
less than 50ns, which is more than adequate for typical  
GSM applications. If frequency hopping is not  
employed, simply set the switch to either of the LO  
inputs. The switch is controlled by a digital input  
The IF output impedance is 200(differential). For  
evaluation, an external low-loss 4:1 (impedance ratio)  
balun transforms this impedance to a 50single-ended  
output (see the Typical Application Circuit).  
12 ______________________________________________________________________________________  
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
MAX985  
LO Buffer Bias Resistors  
Bias currents for the two on-chip LO buffers is opti-  
mized by fine-tuning the off-chip resistors on LODBIAS  
(pin 17) and LOMBIAS (pin 29). The current in the  
buffer amplifiers is reduced by increasing the value of  
these resistors, but performance may degrade. See the  
Typical Operating Characteristics for key performance  
parameters versus this resistor value. Doubling the  
value of these resistors reduces the total chip current  
by approximately 50mA (see Table 1).  
Power-Supply Bypassing  
Proper voltage-supply bypassing is essential for high-  
frequency circuit stability. Bypass each V  
pin and  
CC  
TAPMAIN/TAPDIV with the capacitors shown in the  
Typical Application Circuit (see Table 2 for component  
values). Place the TAPMAIN/TAPDIV bypass capacitor  
to ground within 100 mils of the pin.  
Table 2. Component Values  
COMPONENT  
C1, C2, C7, C8  
C3, C6  
VALUE  
DESCRIPTION  
IF Amplifier Bias Resistors  
Bias currents for the two on-chip IF amplifiers are opti-  
mized by fine-tuning the off-chip resistors on IFDBIAS  
(pin 11) and IFMBIAS (pin 35). The current in the IF  
amplifiers is decreased by raising the value of these  
resistors, but performance may degrade. See the  
Typical Operating Characteristics for key performance  
parameters versus this resistor value. Doubling the  
value of this resistor reduces the current in each IF  
amplifier from 100mA to approximately 50mA (see  
Table 1).  
39pF  
Microwave capacitors (0402)  
0.033µF Microwave capacitors (0603)  
Not used  
C4, C5  
C9, C13, C15,  
C17, C18  
0.01µF Microwave capacitors (0402)  
C10, C11, C12,  
C19, C20, C21  
150pF  
82pF  
Microwave capacitors (0603)  
Microwave capacitors (0402)  
C14, C16  
Wire-wound high-Q inductors  
(0805)  
L1, L2, L4, L5  
560nH  
LEXT Inductor  
Short LEXT_ to ground using a 0resistor. For applica-  
tions requiring improved RF-to-IF and LO-to-IF isolation,  
LEXT_ can be used by connecting a low-ESR inductor  
from LEXT_ to GND. See the Typical Operating  
Characteristics on RF-to-IF port isolation and LO-to-IF  
port leakage for various inductor values. The load  
impedance presented to the mixer must be such that  
any capacitance from both IF- and IF+ to ground do not  
exceed several picofarads to ensure stable operating  
conditions.  
Wire-wound high-Q inductors  
(0603)  
L3, L6  
30nH  
R1, R4  
R2, R5  
R3, R6  
1.07kΩ  
1.1kΩ  
0Ω  
1% resistors (0402)  
1% resistors (0402)  
Resistors (1206)  
Transformers (200:50)  
Mini-Circuits TC4-1W-7A  
T1, T2  
U1  
4:1  
MAX9985 IC  
Approximately 100mA flows through LEXT_, so it is  
important to use a low-DCR wire-wound inductor.  
Exposed Paddle RF/Thermal  
Considerations  
The exposed paddle (EP) of the MAX9985’s 36-pin thin  
QFN-EP package provides a low thermal-resistance  
path to the die. It is important that the PCB on which the  
MAX9985 is mounted be designed to conduct heat  
from the EP. In addition, provide the EP with a low-  
inductance path to electrical ground. The EP MUST be  
soldered to a ground plane on the PCB, either directly  
or through an array of plated via holes.  
Layout Considerations  
A properly designed PCB is an essential part of any  
RF/microwave circuit. Keep RF signal lines as short as  
possible to reduce losses, radiation, and inductance.  
For the best performance, route the ground pin traces  
directly to the exposed paddle under the package. The  
PCB exposed paddle MUST be connected to the  
ground plane of the PCB. It is suggested that multiple  
vias be used to connect this paddle to the lower-level  
ground planes. This method provides a good RF/ther-  
mal-conduction path for the device. Solder the exposed  
paddle on the bottom of the device package to the  
PCB. Refer to the MAX9985 Evaluation Kit as a refer-  
ence for board layout. Gerber files are available upon  
request at www.maxim-ic.com.  
______________________________________________________________________________________ 13  
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Application Circuit  
C19  
IF MAIN  
OUTPUT  
T1  
L1  
L2  
V
CC  
C21  
R3  
MAX985  
4:1  
C20  
V
CC  
V
CC  
R1  
C17  
L3  
C18  
R2  
36  
35  
34  
33  
32  
31  
30  
29  
28  
RFMAIN  
LO2  
RF MAIN  
INPUT  
27  
1
2
3
4
5
6
7
8
9
LO2  
C1  
C16  
GND  
GND  
GND  
TAPMAIN  
GND  
26  
25  
24  
23  
22  
21  
20  
19  
C3  
C2  
MAX9985  
V
CC  
V
CC  
C4  
GND  
LOSEL  
GND  
LO  
SELECT  
V
CC  
V
CC  
V
CC  
C5  
C6  
V
GND  
TAPDIV  
RFDIV  
CC  
C15  
C7  
EXPOSED  
PADDLE  
GND  
LO1  
RF DIV  
INPUT  
LO1  
C8  
C14  
10  
11  
12  
13  
14  
15  
16  
17  
18  
R5  
V
CC  
V
CC  
L6  
R4  
C13  
C9  
C11  
T2  
L5  
V
CC  
C12  
R6  
IF DIV  
OUTPUT  
L4  
4:1  
C10  
14 ______________________________________________________________________________________  
Dual, SiGe, High-Linearity, 700MHz to 1000MHz  
Downconversion Mixer with LO Buffer/Switch  
MAX985  
Pin Configuration/Functional Diagram  
TOP VIEW (with  
exposed paddle on  
the bottom of the  
package)  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
RFMAIN  
TAPMAIN  
GND  
1
2
3
4
5
6
7
8
9
LO2  
GND  
MAX9985  
25 GND  
GND  
24  
23  
V
CC  
GND  
LOSEL  
22 GND  
V
CC  
21  
20  
19  
V
CC  
GND  
TAPDIV  
RFDIV  
EXPOSED  
PADDLE  
GND  
LO1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
THIN QFN  
6mm x 6mm  
Chip Information  
PROCESS: SiGe BiCMOS  
Package Information  
For the latest package outline information, go to  
www.maxim-ic.com/packages.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
CARDENAS  

相关型号:

MAX9985ETX+

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9985ETX+T

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9985ETX-T

Dual, SiGe, High-Linearity, 700MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9986

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9986A

SiGe High-Linearity, 815MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9986AETP

SiGe High-Linearity, 815MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9986AETP+

SiGe High-Linearity, 815MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9986AETP+T

SiGe High-Linearity, 815MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9986AETP-T

SiGe High-Linearity, 815MHz to 1000MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9986ETP

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9986ETP+

Down Converter, BICMOS, 5 X 5 MM, QFN-20
MAXIM

MAX9986ETP+D

Down Converter, BICMOS, 5 X 5 MM, LEAD FREE, QFN-20
MAXIM