MAX9312EGJ [MAXIM]

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), CQCC32, 5 X 5 MM, 0.90 MM HEIGHT, QFN-32;
MAX9312EGJ
型号: MAX9312EGJ
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), CQCC32, 5 X 5 MM, 0.90 MM HEIGHT, QFN-32

驱动 逻辑集成电路
文件: 总11页 (文件大小:332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2079; Rev 1; 2/02  
Dual 1:5 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
General Description  
Features  
The MAX9312/MAX9314 are low skew, dual 1-to-5 dif-  
ferential drivers designed for clock and data distribu-  
tion. These devices accept two inputs. Each input is  
reproduced at five differential outputs. The differential  
inputs can be adapted to accept single-ended inputs  
+2.25V to +3.8V Differential HSTL/LVPECL  
Operation  
-2.25V to -3.8V Differential LVECL Operation  
30ps (typ) Part-to-Part Skew  
by connecting the on-chip V supply to one input as a  
BB  
12ps (typ) Output-to-Output Skew  
312ps (typ) Propagation Delay  
300mV Differential Output at 3GHz  
On-Chip Reference for Single-Ended Inputs  
Output Low with Open Input  
reference voltage.  
The MAX9312/MAX9314 feature low part-to-part skew  
(30ps) and output-to-output skew (12ps), making them  
ideal for clock and data distribution across a backplane  
or a board. For interfacing to differential HSTL and  
LVPECL signals, these devices operate over a +2.25V  
to +3.8V supply range, allowing high-performance  
clock or data distribution in systems with a nominal  
+2.5V or +3.3V supply. For differential LVECL opera-  
tion, these devices operate from a -2.25V to -3.8V sup-  
ply.  
Pin Compatible with MC100LVEP210 (MAX9312)  
and MC100EP210 (MAX9314)  
Offered in Tiny QFN* Package (70% Smaller  
Footprint than LQFP)  
The MAX9312 features an on-chip V reference output  
BB  
of 1.425V below the positive supply voltage. The  
Ordering Information  
MAX9314 offers an on-chip V  
reference output of  
BB  
PART  
TEMP. RANGE  
PIN-PACKAGE  
1.32V below the positive supply voltage.  
MAX9312ECJ  
-40°C to +85°C  
32 TQFP (7mm 7mm)  
32 QFN (5mm 5mm)  
32 TQFP (5mm 5mm)  
32 TQFP (7mm 7mm)  
32 QFN (5mm 5mm)  
32 TQFP (5mm 5mm)  
Both devices are offered in space-saving, 32-pin 5mm ✕  
5mm TQFP, 5mm x 5mm QFN, and industry-standard  
32-pin 7mm 7mm TQFP packages.  
MAX9312EGJ* -40°C to +85°C  
MAX9312EHJ* -40°C to +85°C  
Applications  
MAX9314ECJ  
-40°C to +85°C  
MAX9314EGJ* -40°C to +85°C  
MAX9314EHJ* -40°C to +85°C  
Precision Clock Distribution  
Low-Jitter Data Repeater  
*Future product—contact factory for availability.  
Functional Diagram  
QB0  
QA0  
V
CC  
V
CC  
QB0  
QB1  
QA0  
QA1  
75k  
75kΩ  
QB1  
QB2  
QA1  
QA2  
CLKB  
CLKB  
CLKA  
CLKA  
QB2  
QB3  
QA2  
QA3  
75kΩ  
75kΩ  
75kΩ  
75kΩ  
QB3  
QB4  
QA3  
QA4  
V
EE  
V
EE  
V
EE  
V
EE  
V
BB  
QB4  
QA4  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual 1:5 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
ABSOLUTE MAXIMUM RATINGS  
V
- V ...............................................................................4.1V  
Junction-to-Case Thermal Resistance  
32-Pin 7mm 7mm TQFP..........................................+12°C/W  
CC  
EE  
Inputs (CLK_, CLK_).............................V - 0.3V to V  
+ 0.3V  
EE  
CC  
CLK_ to CLK_ .................................................................... 3.0V  
Continuous Output Current.................................................50mA  
Surge Output Current........................................................100mA  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-ꢁ5°C to +150°C  
ESD Protection  
V
Sink/Source Current ............................................... 0.ꢁ5mA  
BB  
Junction-to-Ambient Thermal Resistance in Still Air  
32-Pin 7mm 7mm TQFP..........................................+90°C/W  
Human Body Model (CLK_, CLK_, Q_, Q_) ........................2kV  
Soldering Temperature (10s)...........................................+300°C  
Junction-to-Ambient Thermal Resistance with  
500 LFPM Airflow  
32-Pin 7mm 7mm TQFP..........................................+ꢁ0°C/W  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
- V = +2.25V to +3.8V, outputs loaded with 501ꢀ to V  
- 2V.) (Notes 1–4)  
CC  
EE  
CC  
-40°C  
+25°C  
+85°C  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
_
INPUTS (CLK_, CLK )  
V
BB  
V
1.23  
-
-
V
1.23  
-
V
CC  
1.23  
-
CC  
CC  
MAX9312  
MAX9314  
MAX9312  
MAX9314  
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
connected  
to CLK_  
(V for V  
connected  
to CLK_)  
Single-Ended  
Input High  
Voltage  
V
V
IH  
IL  
BB  
V
V
-
V
-
CC  
CC  
CC  
1.165  
1.165  
1.165  
V
BB  
V
-
V
-
V
-
CC  
CC  
CC  
V
V
V
V
V
V
EE  
EE  
EE  
EE  
EE  
EE  
connected  
to CLK_  
(V for V  
connected  
to CLK_)  
1.62  
1.62  
1.62  
Single-Ended  
Input Low  
Voltage  
V
V
IL  
IL  
BB  
V
-
V
-
V
-
CC  
CC  
CC  
1.475  
1.475  
1.475  
High Voltage of  
Differential Input  
V
+
1.2  
V
+
1.2  
V
+
EE  
1.2  
EE  
EE  
V
V
V
V
CC  
V
V
IHD  
CC  
CC  
Low Voltage of  
Differential Input  
V
-
V
-
V
-
CC  
CC  
CC  
V
V
V
V
EE  
ILD  
EE  
EE  
0.095  
0.095  
0.095  
V
V
-
V
V
-
V
V
EE  
-
CC  
CC  
CC  
For V  
For V  
- V < 3.0V  
0.095  
0.095  
0.095  
0.095  
0.095  
0.095  
CC  
CC  
EE  
Differential Input  
Voltage  
V
V
-
IHD  
V
EE  
EE  
ILD  
- V 3.0V  
EE  
3.0  
3.0  
3.0  
Input High  
Current  
I
150  
150  
150  
µA  
µA  
IH  
CLK_ Input Low  
Current  
I
-10  
+10  
-10  
+10  
-10  
+10  
ILCLK  
2
_______________________________________________________________________________________  
Dual 1:5 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
CC  
- V = +2.25V to +3.8V, outputs loaded with 501ꢀ to V  
- 2V.) (Notes 14)  
EE  
CC  
-40°C  
+25°C  
+85°C  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
CLK_ Input Low  
Current  
I
-150  
-150  
-150  
µA  
ILCLK  
__  
)
OUTPUTS (Q__, Q  
Single-Ended  
Output High  
Voltage  
V
-
V
-
V
-
V
-
V
-
V
-
CC  
CC  
CC  
CC  
CC  
CC  
V
Figure 1  
V
OH  
1.025  
0.900  
1.025  
0.900  
1.025  
0.900  
Single-Ended  
Output Low  
Voltage  
V
-
V
-
V
-
V
-
V
-
V
-
CC  
CC  
CC  
CC  
CC  
CC  
V
Figure 1  
Figure 1  
V
OL  
- V  
-1.930  
1.695  
-1.930  
1.695  
-1.930  
1.695  
Differential  
V
670  
950  
670  
950  
670  
950  
mV  
OH  
OL  
Output Voltage  
REFERENCE (V  
)
BB  
V
-
V
-
V
-
V
-
V
-
V
-
CC  
CC  
CC  
CC  
CC  
CC  
MAX9312  
MAX9314  
Reference  
Voltage Output  
(Note 5)  
1.525  
1.325  
1.525  
1.325  
1.525  
1.325  
I
=
BB  
V
V
BB  
0.5mA  
V
1.38  
-
V
1.26  
-
V
1.38  
-
V
1.26  
-
V
1.38  
-
V
1.26  
-
CC  
CC  
CC  
CC  
CC  
CC  
POWER SUPPLY  
Supply Current  
(Note 6)  
I
75  
82  
95  
mA  
EE  
_______________________________________________________________________________________  
3
Dual 1:5 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
AC ELECTRICAL CHARACTERISTICS  
(V  
- V = +2.25V to +3.8V, outputs loaded with 501ꢀ to V  
- 2V, input frequency = 1.5GHz, input transition time = 125ps  
CC  
EE  
CC  
- 0.15V, V  
(20ꢀ to 80ꢀ), V  
= V + 1.2V to V , V  
= V to V  
- V  
= 0.15V to the smaller of 3V or V - V , unless oth-  
CC EE  
IHD  
EE  
CC ILD  
EE  
CC  
IHD  
ILD  
erwise noted. Typical values are at V - V = 3.3V, V  
= V - 1V, V = V - 1.5V.) (Note 7)  
CC  
EE  
IHD  
CC ILD CC  
-40°C  
+25°C  
+85°C  
TYP MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
Figure 2  
UNITS  
MIN  
TYP MAX MIN  
TYP MAX MIN  
Differential Input-  
to-Output Delay  
t ,  
PLHD  
220  
321  
12  
380  
46  
220  
312  
12  
410  
46  
260  
322  
10  
400  
35  
ps  
ps  
ps  
t
PHLD  
Output-to-Output  
Skew (Note 8)  
t
SKOO  
Part-to-Part Skew  
(Note 9)  
t
30  
160  
30  
190  
30  
140  
SKPP  
f
= 1.5GHz  
IN  
1.2  
1.2  
2.5  
2.6  
1.2  
1.2  
2.5  
2.6  
1.2  
1.2  
2.5  
2.6  
clock pattern  
Added Random  
Jitter (Note 10)  
ps  
(RMS)  
t
RJ  
f
IN  
= 3.0GHz  
clock pattern  
Added  
Deterministic  
Jitter (Note 10)  
3Gbps,  
223 -1 PRBS pattern  
ps  
(pk-pk)  
t
80  
95  
80  
95  
80  
95  
DJ  
V
- V 300mV,  
OL  
OH  
3.0  
3.0  
3.0  
clock pattern, Figure 2  
Switching  
Frequency  
f
GHz  
ps  
MAX  
V
- V 500mV,  
OH  
OL  
1.5  
1.5  
1.5  
clock pattern, Figure 2  
Output Rise/Fall  
Time (20ꢀ to 80ꢀ)  
t , t  
R
Figure 2  
100  
112  
140  
100  
116  
140  
100  
121  
140  
F
Note 1: Measurements are made with the device in thermal equilibrium.  
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.  
Note 3: Single-ended input operation using V is limited to V  
- V = 3.0V to 3.8V for the MAX9312 and V  
- V = 2.7V to  
CC EE  
BB  
CC  
EE  
3.8V for the MAX9314.  
Note 4: DC parameters production tested at T = +25°C. Guaranteed by design and characterization over the full operating temper-  
A
ature range.  
Note 5: Use V only for inputs that are on the same device as the V reference.  
BB  
BB  
Note 6: All pins open except V  
and V .  
EE  
CC  
Note 7: Guaranteed by design and characterization limits are set at 6 sigma.  
Note 8: Measured between outputs on the same part at the signal crossing points for a same-edge transition.  
Note 9: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.  
Note 10:Device jitter added to the input signal.  
4
_______________________________________________________________________________________  
Dual 1:5 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
Typical Operating Characteristics  
(V  
CC  
= +3.3V, V = 0, V  
= V  
- 0.95V, V  
= V - 1.25V, input transition time = 125ps (20ꢀ to 80ꢀ), f = 1.5GHz, outputs  
EE  
IHD  
CC  
ILD  
CL  
IN  
loaded with 50to V  
- 2V, T = +25°C, unless otherwise noted.)  
CC  
A
OUTPUT AMPLITUDE (V - V  
OH  
)
OL  
SUPPLY CURRENT, I  
vs. TEMPERATURE  
EE  
TRANSITION TIME vs. TEMPERATURE  
vs. FREQUENCY  
80  
75  
70  
65  
60  
55  
50  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
130  
125  
120  
115  
110  
105  
100  
95  
t
R
t
F
90  
-40  
-15  
10  
35  
60  
85  
0
1000  
2000  
3000  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
PROPAGATION DELAY vs.  
SINGLE-ENDED HIGH VOLTAGE OF  
DIFFERENTIAL INPUT (V  
PROPAGATION DELAY vs. TEMPERATURE  
)
IHD  
340  
320  
300  
280  
306  
304  
302  
300  
298  
296  
294  
292  
290  
288  
V
= V - 0.95V  
CC  
CC  
V -V = 150mV  
IHD ILD  
IHD  
V
ILD  
= V - 1.1V  
t
PLHD  
t
PLHD  
t
t
PHLD  
PHLD  
3.8  
1.0  
1.4 1.8 2.2 2.6 3.0 3.4  
(V)  
-40  
-15  
10  
35  
60  
85  
V
IHD  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Dual 1:5 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
Pin Description  
PIN  
NAME  
FUNCTION  
Positive Supply Voltage. Bypass from V  
to V with 0.1µF and 0.01µF ceramic capacitors.  
CC  
EE  
Place the capacitors as close to the device as possible with the smaller value capacitor closest to  
the device.  
1, 9, 16, 25, 32  
V
CC  
2
3
4
N.C.  
CLKA  
CLKA  
Not Connected  
Noninverting Differential Clock Input A  
Inverting Differential Clock Input A  
Reference Output Voltage. Connect to the inverting or noninverting clock input to provide a  
reference for single-ended operation. When used, bypass to V with a 0.01µF ceramic  
CC  
5
V
BB  
capacitor.  
6
CLKB  
Noninverting Differential Clock Input B  
Inverting Differential Clock Input B  
Negative Supply Voltage  
7
CLKB  
8
V
EE  
10  
11  
12  
13  
14  
15  
17  
18  
19  
20  
21  
22  
23  
24  
26  
27  
28  
29  
30  
31  
QB4  
QB4  
QB3  
QB3  
QB2  
QB2  
QB1  
QB1  
QB0  
QB0  
QA4  
QA4  
QA3  
QA3  
QA2  
QA2  
QA1  
QA1  
QA0  
QA0  
Inverting QB4 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting QB4 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Inverting QB3 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting QB3 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Inverting QB2 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting QB2 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Inverting QB1 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting QB1 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Inverting QB0 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting QB0 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Inverting QA4 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting QA4 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Inverting QA3 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting QA3 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Inverting QA2 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting QA2 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Inverting QA1 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting QA1 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Inverting QA0 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting QA0 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
6
_______________________________________________________________________________________  
Dual 1:5 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
This limit also applies to the difference between any ref-  
Detailed Description  
erence voltage input and a single-ended input.  
The MAX9312/MAX9314 are low-skew, dual 1-to-5 differ-  
The differential inputs have bias resistors that drive the  
outputs to a differential low when the inputs are open.  
The inverting inputs (CLKA and CLKB) are biased with a  
ential drivers designed for clock and data distribution.  
For interfacing to differential HSTL and LVPECL signals,  
these devices operate over a +2.25V to +3.8V supply  
range, allowing high-performance clock or data distribu-  
tion in systems with a nominal +2.5V or +3.3V supply.  
For differential LVECL operation, these devices operate  
from a -2.25V to -3.8V supply.  
75kpullup to V  
and a 75kpulldown to V . The  
EE  
CC  
noninverting inputs (CLKA and CLKB) are biased with a  
75kpulldown to V  
.
EE  
Specifications for the high and low voltages of a differen-  
tial input (V and V ) and the differential input volt-  
IHD  
ILD  
The differential inputs can be configured to accept sin-  
age (V  
- V ) apply simultaneously (V  
cannot be  
IHD  
ILD  
ILD  
gle-ended inputs when operating at approximately V  
-
CC  
higher than V ).  
IHD  
V
EE  
= 3.0V to 3.8V for the MAX9312 or V  
- V = 2.7V  
CC EE  
Output levels are referenced to V  
and are considered  
CC  
to 3.8V for the MAX9314. This is accomplished by con-  
LVPECL or LVECL, depending on the level of the V  
CC  
necting the on-chip reference voltage, V , to an input  
BB  
supply. With V  
EE  
outputs are LVECL when V  
connected to a positive supply and  
CC  
as a reference. For example, the differential CLKA, CLKA  
V
connected to GND, the outputs are LVPECL. The  
input is converted to a noninverting, single-ended input  
is connected to GND and  
CC  
by connecting V  
to CLKA and connecting the single-  
BB  
V
is connected to a negative supply.  
EE  
ended input to CLKA. Similarly, an inverting input is  
obtained by connecting V to CLKA and connecting  
BB  
A single-ended input of at least V  
95mV or a differen-  
BB  
the single-ended input to CLKA. With a differential input  
configured as single ended (using V ), the single-  
tial input of at least 95mV switches the outputs to the  
and V levels specified in the DC Electrical  
BB  
V
OH  
OL  
ended input can be driven to V  
and V or with a sin-  
CC  
EE  
Characteristics table.  
gle-ended LVPECL/LVECL signal.  
When a differential input is configured as a single-ended  
input (using V ), the approximate supply range is V  
Applications Information  
-
CC  
EE  
BB  
Supply Bypassing  
to V with high-frequency surface-mount  
V
EE  
= 3.0V to 3.8V for the MAX9312 and V  
- V  
=
CC  
Bypass V  
CC  
EE  
2.7V to 3.8V for the MAX9314. This is because one of the  
inputs must be V + 1.2V or higher for proper operation  
ceramic 0.1µF and 0.01µF capacitors in parallel as close  
to the device as possible, with the 0.01µF value capaci-  
tor closest to the device. Use multiple parallel vias for  
EE  
of the input stage. V  
must be at least V  
+ 1.2V  
EE  
BB  
because it becomes the high-level input when the other  
(single-ended) input swings below it. Therefore, mini-  
low inductance. When using the V  
reference output,  
BB  
bypass it with a 0.01µF ceramic capacitor to V  
(if the  
CC  
mum V = V + 1.2V.  
BB  
EE  
V
BB  
reference is not used, it can be left open).  
The minimum V  
output for the MAX9312 is V  
-
CC  
BB  
Traces  
1.525V and the minimum V output for the MAX9314 is  
BB  
Input and output trace characteristics affect the perfor-  
mance of the MAX9312/MAX9314.  
V
- 1.38V. Substituting the minimum V  
output for  
CC  
BB  
each device into V = V + 1.2V results in a minimum  
BB  
EE  
Connect each signal of a differential input or output to a  
50characteristic impedance trace. Minimize the num-  
ber of vias to prevent impedance discontinuities. Reduce  
reflections by maintaining the 50characteristic imped-  
ance through connectors and across cables. Reduce  
skew within a differential pair by matching the electrical  
length of the traces.  
supply of 2.725V for the MAX9312 and 2.58V for the  
MAX9314. Rounding up to standard supplies gives the  
single-ended operating supply ranges of V  
- V  
=
CC  
EE  
3.0V to 3.8V for the MAX9312 and V  
3.8V for the MAX9314.  
- V = 2.7V to  
CC  
EE  
When using the V  
reference output, bypass it with a  
BB  
0.01µF ceramic capacitor to V . If the V reference is  
CC  
BB  
not used, it can be left open. The V  
source or sink 0.5mA, which is sufficient to drive two  
reference can  
BB  
Output Termination  
Terminate outputs through 50to V  
- 2V or use an  
CC  
inputs. Use V  
only for inputs that are on the same  
BB  
equivalent Thevenin termination. When a single-ended  
signal is taken from a differential output, terminate both  
outputs. For example, if QA0 is used as a single-ended  
output, terminate both QA0 and QA0.  
device as the V reference.  
BB  
The maximum magnitude of the differential input from  
CLK_ to CLK_ is 3.0V or V  
- V , whichever is less.  
EE  
CC  
_______________________________________________________________________________________  
7
Dual 1:5 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
CLK_  
V
IH  
CLK_  
V
BB  
V
IL  
(CONNECTED TO CLK_)  
V
Q_  
Q_  
OH  
V - V  
OH OL  
V
OL  
Figure 1. Switching with Single-Ended Input  
CLK_  
CLK_  
V
IHD  
V
V
IHD - ILD  
V
ILD  
t
t
PHLD  
PLHD  
Q_  
Q_  
V
OH  
V
V
OH - OL  
V
OL  
80%  
0 (DIFFERENTIAL)  
80%  
0 (DIFFERENTIAL)  
20%  
20%  
(Q_) - (Q_)  
t
R
t
F
Figure 2. Differential Transition Time and Propagation Delay Timing Diagram  
Pin Configuration  
Chip Information  
TRANSISTOR COUNT: 250  
TOP VIEW  
V
CC  
QA0 QA0 QA1 QA1 QA2 QA2  
V
CC  
32 31 30 29 28 27 26 25  
V
1
2
3
4
5
6
7
8
24 QA3  
QA3  
23  
CC  
N.C.  
CLKA  
CLKA  
22 QA4  
21 QA4  
20 QB0  
19 QB0  
18 QB1  
MAX9312  
MAX9314  
V
BB  
CLKB  
CLKB  
V
17  
QB1  
EE  
9
10 11 12 13 14 15 16  
QB4 QB4 QB3 QB3 QB2 QB2  
V
V
CC  
CC  
×
×
TQFP (7mm 7mm), TQFP (5mm 5mm),  
QFN (NO LEADS EXTENDING FROM QFN PACKAGE)  
8
_______________________________________________________________________________________  
Dual 1:5 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
Package Information  
_______________________________________________________________________________________  
9
Dual 1:5 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
Package Information (continued)  
10 ______________________________________________________________________________________  
Dual 1:5 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 11  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9312EHJ

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PQFP32, 5 X 5 MM, 1 MM HEIGHT, TQFP-32
MAXIM

MAX9312ETJ+

Dual 1:5 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
MAXIM

MAX9312ETJ+T

Clock Driver, PQCC32,
MAXIM

MAX9313

1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
MAXIM

MAX9313ECJ

1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
MAXIM

MAX9313ECJ+

Low Skew Clock Driver, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, LQFP-32
MAXIM

MAX9313ECJ+T

Low Skew Clock Driver, 9313 Series, 20 True Output(s), 0 Inverted Output(s), PQFP32, LQFP-32
MAXIM

MAX9313EGJ

1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
MAXIM

MAX9313EGJ+

Low Skew Clock Driver, 9313 Series, 20 True Output(s), 0 Inverted Output(s), QFN-32
MAXIM

MAX9313EHJ

1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
MAXIM

MAX9313EHJ-T

Low Skew Clock Driver, 9313 Series, 10 True Output(s), 0 Inverted Output(s), PQFP32, 5 X 5 MM, 1 MM HEIGHT, MO-136AA, TQFP-32
MAXIM

MAX9314

Dual 1:5 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
MAXIM