MAX9313ECJ+ [MAXIM]

Low Skew Clock Driver, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, LQFP-32;
MAX9313ECJ+
型号: MAX9313ECJ+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low Skew Clock Driver, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, LQFP-32

驱动 逻辑集成电路
文件: 总12页 (文件大小:369K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2078; Rev 2; 10/02  
1:10 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
General Description  
Features  
The MAX9311/MAX9313 are low-skew, 1-to-10 differen-  
tial drivers designed for clock and data distribution.  
These devices allow selection between two inputs. The  
selected input is reproduced at 10 differential outputs.  
The differential inputs can be adapted to accept single-  
+2.25V to +3.8V Differential HSTL/LVPECL  
Operation  
-2.25V to -3.8V LVECL Operation  
30ps (typ) Part-to-Part Skew  
12ps (typ) Output-to-Output Skew  
312ps (typ) Propagation Delay  
300mV Differential Output at 3GHz  
On-Chip Reference for Single-Ended Inputs  
Output Low with Open Input  
ended inputs by connecting the on-chip V  
one input as a reference voltage.  
supply to  
BB  
The MAX9311/MAX9313 feature low part-to-part skew  
(30ps) and output-to-output skew (12ps), making them  
ideal for clock and data distribution across a backplane  
or a board. For interfacing to differential HSTL and  
LVPECL signals, these devices operate over a +2.25V  
to +3.8V supply range, allowing high-performance clock  
or data distribution in systems with a nominal +2.5V or  
+3.3V supply. For differential LVECL operation, these  
devices operate from a -2.25V to -3.8V supply.  
Pin Compatible with MC100LVEP111 (MAX9311)  
and MC100EP111 (MAX9313)  
Offered in Tiny QFN* Package (70% Smaller  
The MAX9311 features an on-chip V reference output  
BB  
of 1.425V below the positive supply voltage. The  
Footprint than LQFP)  
MAX9313 offers an on-chip V  
reference output of  
BB  
Ordering Information  
1.32V below the positive supply voltage.  
PART  
TEMP. RANGE  
PIN-PACKAGE  
Both devices are offered in space-saving, 32-pin 5mm  
5mm TQFP, 5mm x 5mm QFN, and industry-standard  
32-pin 7mm x 7mm LQFP packages.  
MAX9311ECJ  
-40°C to +85°C  
32 LQFP (7mm 7mm)  
32 QFN (5mm 5mm)  
32 TQFP (5mm 5mm)  
32 LQFP (7mm 7mm)  
32 QFN (5mm 5mm)  
32 TQFP (5mm 5mm)  
MAX9311EGJ* -40°C to +85°C  
MAX9311EHJ*  
MAX9313ECJ  
MAX9313EGJ*  
MAX9313EHJ*  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Applications  
Precision Clock Distribution  
Low-Jitter Data Repeater  
*Future product—contact factory for availability.  
Pin Configuration  
TOP VIEW  
V
Q0 Q0 Q1 Q1 Q2 Q2  
V
CC  
CC  
32 31 30 29 28 27 26 25  
V
1
2
3
4
5
6
7
8
24 Q3  
Q3  
CC  
×
×
CLKSEL  
CLK0  
23  
LQFP (7mm 7mm), TQFP (5mm 5mm),  
QFN (NO LEADS EXTENDING FROM QFN PACKAGE)  
22 Q4  
21 Q4  
20 Q5  
19 Q5  
18 Q6  
17 Q6  
MAX9311/MAX9313  
CLK0  
MAX9311  
MAX9313  
CLKSEL CLK0, CLK0 CLK1, CLK1  
V
BB  
0
1
ON  
OFF  
ON  
CLK1  
CLK1  
OFF  
V
EE  
9
10 11 12 13 14 15 16  
Q9 Q9 Q8 Q8 Q7 Q7  
V
V
CC  
CC  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1:10 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
ABSOLUTE MAXIMUM RATINGS  
V
- V ...............................................................................4.1V  
Junction-to-Case Thermal Resistance  
CC  
EE  
Inputs (CLK_, CLK_, CLKSEL)..............V - 0.3V to V  
+ 0.3V  
7mm x 7mm LQFP .....................................................+12°C/W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-ꢁ5°C to +150°C  
ESD Protection  
EE  
CC  
CLK_ to CLK_ .................................................................... 3.0V  
Continuous Output Current.................................................50mA  
Surge Output Current........................................................100mA  
V
Sink/Source Current ............................................... 0.ꢁ5mA  
BB  
Junction-to-Ambient Thermal Resistance in Still Air  
7mm x 7mm LQFP .....................................................+90°C/W  
Junction-to-Ambient Thermal Resistance with  
500 LFPM Airflow  
Human Body Model (CLKSEL, CLK_, CLK_,  
Q_, Q_, V ).......................................................................2kV  
BB  
Soldering Temperature (10s)...........................................+300°C  
7mm x 7mm LQFP .....................................................+ꢁ0°C/W  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V - V = +2.25V to +3.8V, outputs loaded with 501ꢀ to V - 2V, CLKSEL = high or low, unless otherwise noted.) (Notes 1–4)  
CC  
EE  
CC  
-40°C  
+25°C  
+85°C  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
SINGLE-ENDED INPUT (CLKSEL)  
V
V
V
CC  
- 1.23  
CC  
CC  
MAX9311  
MAX9313  
MAX9311  
MAX9313  
V
V
V
CC  
CC  
CC  
Internal  
- 1.23  
- 1.23  
Input High  
Voltage  
V
V
V
V
IH  
BB  
V
V
V
CC  
- 1.165  
CC  
CC  
threshold  
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
- 1.165  
- 1.165  
V
V
V
V
V
V
EE  
EE  
EE  
EE  
EE  
EE  
Internal  
- 1.62  
- 1.62  
- 1.62  
Input Low  
Voltage  
V
V
BB  
IL  
V
V
V
CC  
- 1.475  
CC  
CC  
threshold  
- 1.475  
- 1.475  
Input High  
Current  
I
150  
150  
150  
µA  
µA  
IH  
Input Low  
Current  
I
-10  
+10  
-10  
+10  
-10  
+10  
IL  
DIFFERENTIAL INPUTS (CLK_, CLK_)  
V
BB  
V
V
V
CC  
- 1.23  
CC  
CC  
connected  
to CLK_  
(V for V  
connected  
to CLK_),  
Figure 1  
MAX9311  
MAX9313  
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
Single-Ended  
Input High  
Voltage  
- 1.23  
- 1.23  
V
V
IH  
IL  
BB  
V
V
V
CC  
- 1.165  
CC  
CC  
- 1.165  
- 1.165  
2
_______________________________________________________________________________________  
1:10 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V - V = +2.25V to +3.8V, outputs loaded with 501ꢀ to V - 2V, CLKSEL = high or low, unless otherwise noted.) (Notes 14)  
CC  
EE  
CC  
-40°C  
+25°C  
+85°C  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
V
BB  
V
V
V
CC  
-1.62  
CC  
CC  
connected  
to CLK_  
(V for V  
connected  
to CLK_),  
Figure 1  
MAX9311  
MAX9313  
V
V
V
V
V
V
EE  
EE  
EE  
Single-Ended  
Input Low  
Voltage  
- 1.62  
- 1.62  
V
V
IL  
IH  
BB  
V
V
V
CC  
-1.475  
CC  
CC  
EE  
EE  
EE  
- 1.475  
- 1.475  
High Voltage  
of Differential  
Input  
V
V
+1.2  
V
V
+ 1.2  
V
V
+1.2  
V
V
V
V
IHD  
EE  
V
CC  
EE  
CC  
CC  
EE  
V
CC  
Low Voltage  
of Differential  
Input  
V
V
CC  
CC  
V
V
EE  
ILD  
EE  
EE  
- 0.095  
- 0.095  
- 0.095  
V
- V  
V
- V  
V
CC  
- V  
EE  
CC  
CC  
For V  
For V  
- V < 3.0V  
0.095  
0.095  
0.095  
0.095  
0.095  
0.095  
CC  
CC  
EE  
Differential  
Input Voltage  
V
IHD -  
V
ILD  
EE  
EE  
V
- V 3.0V  
EE  
3.0  
3.0  
3.0  
Input High  
Current  
I
150  
+10  
150  
+10  
150  
+10  
µA  
µA  
µA  
IH  
CLK_ Input Low  
Current  
I
I
-10  
-10  
-10  
ILCLK  
ILCLK  
CLK_ Input Low  
Current  
-150  
-150  
-150  
_
OUTPUTS (Q_, Q )  
Single-Ended  
Output High  
Voltage  
V
V
V
V
V
V
CC  
- 0.900  
CC  
CC  
CC  
CC  
CC  
V
Figure 1  
V
OH  
- 1.025  
- 0.900  
- 1.025  
- 0.900  
- 1.025  
Single-Ended  
Output Low  
Voltage  
V
V
V
V
V
V
CC  
- 1.695  
CC  
CC  
CC  
CC  
CC  
V
Figure 1  
Figure 1  
V
OL  
- 1.93  
- 1.695  
- 1.93  
- 1.695  
- 1.93  
Differential  
Output Voltage  
V
-
OH  
670  
950  
670  
950  
670  
950  
mV  
V
OL  
REFERENCE (V  
)
BB  
V
V
V
V
V
V
CC  
- 1.325  
CC  
CC  
CC  
CC  
CC  
MAX9311  
MAX9313  
Reference  
Voltage Output  
(Note 5)  
- 1.525  
- 1.325  
- 1.525  
- 1.325  
- 1.525  
I
=
BB  
V
V
BB  
0.5mA  
V
V
V
V
V
V
CC  
- 1.26  
CC  
CC  
CC  
CC  
CC  
- 1.38  
- 1.26  
- 1.38  
- 1.26  
- 1.38  
POWER SUPPLY  
Supply Current  
(Note 6)  
I
75  
82  
95  
mA  
EE  
_______________________________________________________________________________________  
3
1:10 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
AC ELECTRICAL CHARACTERISTICS  
(V  
- V = 2.25V to 3.8V, outputs loaded with 501ꢀ to V  
- 2V, input frequency = 1.5GHz, input transition time = 125ps  
CC  
CC  
EE  
(20ꢀ to 80ꢀ), CLKSEL = high or low, V  
= V + 1.2V to V , V  
= V to V  
- 0.15V, V  
- V  
= 0.15V to the smaller of 3V or  
IHD  
EE  
CC ILD  
EE  
CC  
IHD  
ILD  
V
CC  
- V , unless otherwise noted. Typical values are at V  
- V = 3.3V, V  
= V -1V, V = V -1.5V.) (Note 7)  
CC  
IHD  
CC ILD CC  
EE  
EE  
-40°C  
+25°C  
+85°C  
PARAMETER SYMBOL CONDITIONS  
UNITS  
MA  
MIN  
TYP  
MAX  
MIN  
TYP  
MIN  
TYP  
MAX  
Differential  
Input-to-  
Output Delay  
t
t
,
PLHD  
Figure 2  
220  
321  
12  
380  
220  
312  
410  
260  
322  
400  
ps  
PHLD  
Output-to-  
Output Skew  
(Note 8)  
t
46  
12  
46  
10  
35  
ps  
ps  
SKOO  
Part-to-Part  
Skew (Note 9)  
t
30  
1.2  
1.2  
160  
2.5  
2.6  
30  
1.2  
1.2  
190  
2.5  
2.6  
30  
1.2  
1.2  
140  
2.5  
2.6  
SKPP  
f
= 1.5GHz,  
Clock pattern  
IN  
Added  
Random Jitter  
(Note 10)  
ps  
(RMS)  
t
RJ  
f
IN  
= 3.0GHz,  
Clock pattern  
Added  
Deterministic  
Jitter (Note 10)  
3Gbps,  
223 -1 PRBS  
pattern  
ps  
(p-p)  
t
80  
95  
80  
95  
80  
95  
DJ  
V
- V  
OL  
OH  
350mV, Clock  
pattern,  
2.0  
2.0  
3.0  
2.0  
Figure 2  
Switching  
Frequency  
f
GHz  
MAX  
V
- V  
OL  
OH  
500mV, Clock  
pattern,  
1.5  
1.5  
1.5  
Figure 2  
Output  
Rise/Fall Time  
(20ꢀ to 80ꢀ)  
t , t  
R
Figure 2  
100  
112  
140  
100  
116  
140  
100  
121  
140  
ps  
F
Note 1: Measurements are made with the device in thermal equilibrium.  
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.  
Note 3: Single-ended input operation using V is limited to V  
- V = 3.0V to 3.8V for the MAX9311 and V  
- V = 2.7V to 3.8V  
CC EE  
BB  
CC  
EE  
for the MAX9313.  
Note 4: DC parameters production tested at T = +25°C. Guaranteed by design and characterization over the full operating temper-  
A
ature range.  
Note 5: Use V only for inputs that are on the same device as the V reference.  
BB  
BB  
Note 6: All pins open except V  
and V  
.
CC  
EE  
Note 7: Guaranteed by design and characterization. Limits are set at 6 sigma.  
Note 8: Measured between outputs of the same part at the signal crossing points for a same-edge transition.  
Note 9: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge  
transition.  
Note 10:Device jitter added to the input signal.  
4
_______________________________________________________________________________________  
1:10 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
Typical Operating Characteristics  
(V  
CC  
= +3.3V, V = 0, V  
= V  
- 0.95V, V  
= V  
- 1.25V, input transition time = 125ps (20ꢀ to 80ꢀ), f = 1.5GHz, outputs  
CC IN  
EE  
IHD  
CC  
ILD  
loaded with 50to V  
- 2V, T = +25°C, unless otherwise noted.)  
CC  
A
SUPPLY CURRENT (I  
vs. TEMPERATURE  
)
OUTPUT AMPLITUDE (V - V )  
OH OL  
EE  
vs. FREQUENCY  
TRANSITION TIME vs. TEMPERATURE  
85  
80  
75  
70  
65  
60  
55  
50  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
130  
125  
120  
115  
110  
105  
100  
t
R
t
F
-40  
-15  
10  
35  
60  
85  
0
1000  
2000  
3000  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
PROPAGATION DELAY  
vs. HIGH VOLTAGE OF  
DIFFERENTIAL INPUT (V  
PROPAGATION DELAY  
vs. TEMPERATURE  
)
IHD  
313  
312  
311  
310  
309  
308  
307  
306  
305  
304  
303  
360  
340  
320  
300  
280  
260  
240  
220  
200  
V
V
= 150mV  
IHD - ILD  
t
PLHD  
t
PLHD  
t
PHLD  
t
PHLD  
V
= V - 0.95V  
CC  
CC  
IHD  
V
= V - 1.1V  
ILD  
1.0 1.4 1.8 2.2 2.6 3.0 3.4  
(V)  
3.8  
-40  
-15  
10  
35  
60  
85  
V
TEMPERATURE (°C)  
IHD  
_______________________________________________________________________________________  
5
1:10 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 9, 16,  
25, 32  
Positive Supply Voltage. Bypass from V  
CC  
capacitors as close to the device as possible with the smaller value capacitor closest to the device.  
to V with 0.1µF and 0.01µF ceramic capacitors. Place the  
EE  
V
CC  
Clock Select Input (Single-Ended). Drive low to select the CLK0, CLK0 input. Drive high to select the  
2
CLKSEL CLK1, CLK1 input. The CLKSEL threshold is V . If CLKSEL is not driven by a logic signal, use a 1kΩ  
BB  
pulldown to V to select CLK0, CLK0, or a 1kpullup to V to select CLK1, CLK1.  
EE  
CC  
3
4
CLK0  
Noninverting Differential Clock Input 0. Internal 75kpulldown resistor.  
CLK0  
Inverting Differential Clock Input 0. Internal 75kpullup and pulldown resistors.  
Reference Output Voltage. Connect to the inverting or noninverting clock input to provide a reference for  
single-ended operation. When used, bypass with a 0.01µF ceramic capacitor to V ; otherwise, leave open.  
CC  
5
V
BB  
6
CLK1  
Noninverting Differential Clock Input 1. Internal 75kpulldown resistor.  
Inverting Differential Clock Input 1. Internal 75kpullup and pulldown resistors.  
Negative Supply Voltage  
7
CLK1  
8
V
EE  
10  
11  
12  
13  
14  
15  
17  
18  
19  
20  
21  
22  
23  
24  
26  
27  
28  
29  
30  
31  
Q9  
Q9  
Q8  
Q8  
Q7  
Q7  
Q6  
Q6  
Q5  
Q5  
Q4  
Q4  
Q3  
Q3  
Q2  
Q2  
Q1  
Q1  
Q0  
Q0  
Inverting Q9 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q9 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q8 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q8 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q7 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q7 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q6 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q6 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q5 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q5 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q4 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q4 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q3 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q3 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q2 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q2 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q1 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q1 Output. Typically terminate with 50resistor to V - 2V.  
CC  
Inverting Q0 Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Noninverting Q0 Output. Typically terminate with 50resistor to V - 2V.  
CC  
6
_______________________________________________________________________________________  
1:10 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
When using the V  
reference output, bypass it with a  
BB  
Detailed Description  
0.01µF ceramic capacitor to V . If the V reference is  
CC  
BB  
The MAX9311/MAX9313 are low skew, 1-to-10 differen-  
tial drivers designed for clock and data distribution.  
not used, it can be left open. The V  
source or sink 0.5mA, which is sufficient to drive two  
reference can  
BB  
A 2:1 mux selects between the two differential inputs,  
CLK0, CLK0 and CLK1, CLK1. The 2:1 mux is switched  
by the single-ended CLKSEL input. A logic low selects  
the CLK0, CLK0 input. A logic high selects the CLK1,  
CLK1 input. The logic threshold for CLKSEL is set by an  
inputs. Use V  
only for inputs that are on the same  
BB  
device as the V reference.  
BB  
The maximum magnitude of the differential input from  
CLK_ to CLK_ is 3.0V or V  
This limit also applies to the difference between any ref-  
erence voltage input and a single-ended input.  
- V , whichever is less.  
EE  
CC  
internal V  
voltage reference. The CLKSEL input can  
BB  
be driven to V  
and V or by a single-ended LVPECL/  
EE  
CC  
The differential inputs have bias resistors that drive the  
outputs to a differential low when the inputs are open.  
The inverting inputs (CLK0 and CLK1) are biased with a  
LVECL signal. The selected input is reproduced at 10  
differential outputs.  
For interfacing to differential HSTL and LVPECL signals,  
these devices operate over a +2.25V to +3.8V supply  
range, allowing high-performance clock or data distribu-  
tion in systems with a nominal +2.5V or +3.3V supply.  
For differential LVECL operation, these devices operate  
from a -2.25V to -3.8V supply.  
75kpullup to V  
and a 75kpulldown to V . The  
EE  
CC  
noninverting inputs (CLK0 and CLK1) are biased with a  
75kpulldown to V . The single-ended CLKSEL input  
EE  
does not have a bias resistor. If not driven, pull CLKSEL  
up or down with a 1kHz resistor (see Pin Description).  
Specifications for the high and low voltages of a differen-  
The differential inputs can be configured to accept sin-  
tial input (V  
and V ) and the differential input volt-  
ILD  
ILD  
IHD  
IHD  
gle-ended inputs when operating at approximately V  
-
CC  
age (V  
- V ) apply simultaneously (V  
cannot be  
IHD  
ILD  
V
EE  
= +3.0V to +3.8V for the MAX9311 or V  
- V  
=
CC  
EE  
higher than V ).  
+2.7V to +3.8V for the MAX9313. This is accomplished  
Output levels are referenced to V  
LVPECL or LVECL, depending on the level of the V  
and are considered  
CC  
by connecting the on-chip reference voltage, V , to an  
BB  
CC  
input as a reference. For example, the differential CLK0,  
supply. With V  
EE  
outputs are LVECL when V  
connected to a positive supply and  
CC  
CLK0 input is converted to a noninverting, single-ended  
V
connected to GND, the outputs are LVPECL. The  
input by connecting V  
to CLK0 and connecting the  
BB  
is connected to GND and  
CC  
single-ended input to CLK0. Similarly, an inverting input  
V
EE  
is connected to a negative supply.  
is obtained by connecting V to CLK0 and connecting  
BB  
the single-ended input to CLK0. With a differential input  
A single-ended input of at least V  
95mV or a differen-  
BB  
configured as single-ended (using V ), the single-  
BB  
tial input of at least 95mV switches the outputs to the  
and V levels specified in the DC Electrical  
ended input can be driven to V  
and V or with a sin-  
CC  
EE  
V
OH  
OL  
gle-ended LVPECL/LVECL signal.  
When a differential input is configured as a single-ended  
input (using V ), the approximate supply range is V  
Characteristics table.  
Applications Information  
-
CC  
EE  
BB  
V
EE  
= +3.0V to +3.8V for the MAX9311 and V  
- V  
=
CC  
Supply Bypassing  
to V with high-frequency surface-mount  
+2.7V to +3.8V for the MAX9313. This is because one of  
the inputs must be V + 1.2V or higher for proper oper-  
Bypass V  
CC  
EE  
EE  
ceramic 0.1µF and 0.01µF capacitors in parallel as close  
to the device as possible, with the 0.01µF value capaci-  
tor closest to the device. Use multiple parallel vias for  
ation of the input stage. V must be at least V + 1.2V  
BB  
EE  
because it becomes the high-level input when the other  
(single-ended) input swings below it. Therefore, mini-  
low inductance. When using the V  
reference output,  
BB  
mum V = V + 1.2V.  
BB  
EE  
bypass it with a 0.01µF ceramic capacitor to V  
(if the  
CC  
V
BB  
reference is not used, it can be left open).  
The minimum V  
output for the MAX9311 is V  
-
CC  
BB  
1.525V and the minimum V output for the MAX9313 is  
BB  
Traces  
V
- 1.38V. Substituting the minimum V  
output for  
CC  
BB  
Input and output trace characteristics affect the perfor-  
mance of the MAX9311/MAX9313. Connect each signal  
of a differential input or output to a 50characteristic  
impedance trace. Minimize the number of vias to prevent  
impedance discontinuities. Reduce reflections by main-  
taining the 50characteristic impedance through con-  
nectors and across cables. Reduce skew within a  
each device into V = V + 1.2V results in a minimum  
BB  
EE  
supply of 2.725V for the MAX9311 and 2.58V for the  
MAX9313. Rounding up to standard supplies gives the  
single-ended operating supply ranges of V  
- V  
=
CC  
EE  
3.0V to 3.8V for the MAX9311 and V  
3.8V for the MAX9313.  
- V = 2.7V to  
CC  
EE  
_______________________________________________________________________________________  
7
1:10 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
differential pair by matching the electrical length of the  
traces.  
Chip Information  
TRANSISTOR COUNT: 250  
Output Termination  
Terminate outputs through 50to V - 2V or use an  
CC  
equivalent Thevenin termination. When a single-ended  
signal is taken from a differential output, terminate both  
outputs. For example, if Q0 is used as a single-ended  
output, terminate both Q0 and Q0.  
CLK_  
CLK_  
V
IH  
V
BB  
V
IL  
(CONNECTED TO CLK_)  
V
Q_  
Q_  
OH  
V
- V  
OH OL  
V
OL  
Figure 1. Switching with Single-Ended Input  
CLK_  
CLK_  
V
IHD  
V
- V  
IHD ILD  
V
ILD  
t
t
PLHD  
PHLD  
V
V
Q_  
Q_  
OH  
OL  
V
- V  
OL  
OH  
80%  
0 (DIFFERENTIAL)  
80%  
0 (DIFFERENTIAL)  
20%  
20%  
(Q_) - (Q_)  
t
t
F
R
Figure 2. Differential Transition Time and Propagation Delay Timing Diagram  
8
_______________________________________________________________________________________  
1:10 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
Functional Diagram  
Q0  
Q0  
V
CC  
Q1  
Q1  
Q2  
75k  
CLK0  
CLK0  
Q2  
Q3  
75kΩ  
75kΩ  
Q3  
Q4  
V
V
V
EE  
EE  
0
1
Q4  
Q5  
CC  
Q5  
Q6  
75kΩ  
CLK1  
CLK1  
Q6  
Q7  
75kΩ  
75kΩ  
Q7  
Q8  
V
V
EE  
EE  
CLKSEL  
Q8  
Q9  
V
BB  
Q9  
_______________________________________________________________________________________  
9
1:10 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
10 ______________________________________________________________________________________  
1:10 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 11  
1:10 Differential LVPECL/LVECL/HSTL  
Clock and Data Drivers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9313ECJ+T

Low Skew Clock Driver, 9313 Series, 20 True Output(s), 0 Inverted Output(s), PQFP32, LQFP-32
MAXIM

MAX9313EGJ

1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
MAXIM

MAX9313EGJ+

Low Skew Clock Driver, 9313 Series, 20 True Output(s), 0 Inverted Output(s), QFN-32
MAXIM

MAX9313EHJ

1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
MAXIM

MAX9313EHJ-T

Low Skew Clock Driver, 9313 Series, 10 True Output(s), 0 Inverted Output(s), PQFP32, 5 X 5 MM, 1 MM HEIGHT, MO-136AA, TQFP-32
MAXIM

MAX9314

Dual 1:5 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
MAXIM

MAX9314ECJ

Dual 1:5 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
MAXIM

MAX9314EHJ

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), PQFP32, 5 X 5 MM, 1 MM HEIGHT, TQFP-32
MAXIM

MAX9315

1:5 Differential LVPECL/LVECL/HSTL Clock and Data Driver
MAXIM

MAX9315EUP

1:5 Differential LVPECL/LVECL/HSTL Clock and Data Driver
MAXIM

MAX9315EUP+

Line Driver, 1 Func, 5 Driver, BIPolar, PDSO20, 4.40 MM, TSSOP-20
MAXIM

MAX9315EUP+T

Line Driver, 1 Func, 5 Driver, BIPolar, PDSO20, 4.40 MM, TSSOP-20
MAXIM