MAX9123EUE+TG60 [MAXIM]

Line Driver;
MAX9123EUE+TG60
型号: MAX9123EUE+TG60
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Driver

驱动 接口集成电路
文件: 总10页 (文件大小:214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1927; Rev 0; 2/01  
Quad LVDS Line Driver with  
Flow-Through Pinout  
General Description  
Features  
The MAX9123 quad low-voltage differential signaling  
(LVDS) differential line driver is ideal for applications  
requiring high data rates, low power, and low noise. The  
MAX9123 is guaranteed to transmit data at speeds up to  
800Mbps (400MHz) over controlled impedance media of  
approximately 100. The transmission media may be  
printed circuit (PC) board traces, backplanes, or cables.  
Flow-Through Pinout  
Simplifies PC Board Layout  
Reduces Crosstalk  
Pin Compatible with DS90LV047A  
Guaranteed 800Mbps Data Rate  
250ps Maximum Pulse Skew  
The MAX9123 accepts four LVTTL/LVCMOS input levels  
and translates them to LVDS output signals. Moreover,  
the MAX9123 is capable of setting all four outputs to a  
high-impedance state through two enable inputs, EN and  
EN, thus dropping the device to an ultra-low-power state  
of 16mW (typ) during high impedance. The enables are  
common to all four transmitters. Outputs conform to the  
ANSI TIA/EIA-644 LVDS standard. Flow-through pinout  
simplifies PC board layout and reduces crosstalk by sep-  
arating the LVTTL/LVCMOS inputs and LVDS outputs.  
Conforms to TIA/EIA-644 LVDS Standard  
Single +3.3V Supply  
16-Pin TSSOP and SO Packages  
Ordering Information  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 TSSOP  
16 SO  
The MAX9123 operates from a single +3.3V supply and is  
specified for operation from -40°C to +85°C. It is available  
in 16-pin TSSOP and SO packages. Refer to the MAX9121/  
MAX9122* data sheet for quad LVDS line receivers with  
integrated termination and flow-through pinout.  
MAX9123EUE  
MAX9123ESE  
Typical Applications Circuit  
Applications  
LVDS SIGNALS  
Digital Copiers  
Laser Printers  
DSLAMs  
MAX9122*  
MAX9123  
Network  
Switches/Routers  
Cell Phone Base  
Stations  
Backplane  
T
X
107  
107Ω  
107Ω  
107Ω  
R
X
Interconnect  
Add Drop Muxes  
Clock Distribution  
Digital Cross-Connects  
T
X
T
X
T
X
R
X
R
X
R
X
Pin Configuration  
LVTTL/CMOS  
DATA INPUT  
LVTTL/CMOS  
DATA OUTPUT  
TOP VIEW  
EN  
IN1  
IN2  
1
2
3
4
5
6
7
8
16 OUT1-  
15 OUT1+  
14 OUT2+  
V
CC  
MAX9123  
13 OUT2-  
12 OUT3-  
11 OUT3+  
10 OUT4+  
GND  
IN3  
IN4  
EN  
OUT4-  
9
TSSOP/SO  
100SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES  
* Future product—contact factory for availability.  
________________________________________________________________ Maxim Integrated Products  
1
For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Quad LVDS Line Driver with  
Flow-Through Pinout  
ABSOLUTE MAXIMUM RATINGS  
CC  
IN_, EN, EN to GND....................................-0.3V to (V  
OUT_+, OUT_- to GND..........................................-0.3V to +3.9V  
Short-Circuit Duration (OUT_+, OUT_-) .....................Continuous  
V
to GND...........................................................-0.3V to +4.0V  
Storage Temperature Range.............................-65°C to +150°C  
Maximum Junction Temperature .....................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Lead Temperature (soldering, 10s) .................................+300°C  
ESD Protection  
+ 0.3V)  
CC  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin TSSOP (derate 9.4mW/°C above +70°C) .........755mW  
Human Body Model, IN_, OUT_+, OUT_-....................... 4kV  
16-Pin SO (derate 8.7mW/°C above +70°C)................696mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, R = 1001ꢀ, T = -40°C to +85°C. Typical values are at V  
= +3.3V, T = +25°C, unless otherwise  
CC A  
CC  
L
A
noted.) (Notes 1, 2)  
MAX  
UNITS  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
368  
1
LVDS OUTPUT (OUT_+, OUT_-)  
Differential Output Voltage  
V
Figure 1  
Figure 1  
Figure 1  
Figure 1  
250  
450  
35  
mV  
mV  
V
OD  
Change in Magnitude of V  
Between Complementary Output  
States  
OD  
V  
OD  
Offset Voltage  
V
1.125  
0.90  
1.25  
4
1.375  
25  
OS  
Change in Magnitude of V  
Between Complementary Output  
States  
OS  
V  
mV  
OS  
Output High Voltage  
Output Low Voltage  
V
1.6  
V
V
OH  
V
OL  
Differential Output Short-Circuit  
Current (Note 3)  
I
Enabled, V  
= 0  
OD  
-9  
-9  
mA  
mA  
µA  
OSD  
OUT_+ = 0 at IN_ = V  
= 0, enabled  
or OUT_- = 0 at IN_  
CC  
Output Short-Circuit Current  
Output High-Impedance Current  
Power-Off Output Current  
I
I
-3.8  
OS  
EN = low and EN = high, OUT_+ = 0 or V  
OUT_- = 0 or V  
,
CC  
-10  
-20  
10  
20  
OZ  
, R = ∞  
L
CC  
V
= 0 or open, OUT_+ = 0 or 3.6V, OUT_-  
CC  
I
µA  
OFF  
= 0 or 3.6V, R = ∞  
L
INPUTS (IN_, EN, EN)  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Current  
V
2.0  
GND  
-20  
V
V
V
IH  
CC  
V
0.8  
20  
IL  
I
IN_, EN, EN = 0 or V  
µA  
IN  
CC  
SUPPLY CURRENT  
No-Load Supply Current  
Loaded Supply Current  
I
R = , IN_ = V or 0 for all channels  
CC  
9.2  
11  
30  
mA  
mA  
CC  
L
I
R = 100, IN_ = V or 0 for all channels  
22.7  
CCL  
L
CC  
Disabled, IN_ = V or 0 for all channels,  
CC  
Disabled Supply Current  
I
4.9  
6
mA  
CCZ  
EN = 0, EN = V  
CC  
2
_______________________________________________________________________________________  
Quad LVDS Line Driver with  
Flow-Through Pinout  
SWITCHING CHARACTERISTICS  
(V  
= +3.0V to +3.6V, R = 1001ꢀ, C = 15pF, T = -40°C to +85°C. Typical values are at V  
= +3.3V, T = +25°C, unless  
CC A  
CC  
L
L
A
otherwise noted.) (Notes 4, 5, 6)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Differential Propagation Delay  
High to Low  
t
Figures 2 and 3  
0.7  
0.7  
1.7  
ns  
PHLD  
PLHD  
Differential Propagation Delay  
Low to High  
t
Figures 2 and 3  
Figures 2 and 3  
Figures 2 and 3  
1.7  
ns  
ns  
ns  
Differential Pulse Skew (Note 7)  
t
t
0.04  
0.25  
0.35  
SKD1  
SKD2  
Differential Channel-to-Channel  
Skew (Note 8)  
0.07  
0.13  
0.43  
Differential Part-to-Part Skew  
(Note 9)  
t
t
Figures 2 and 3  
Figures 2 and 3  
0.8  
1.0  
ns  
ns  
SKD3  
SKD4  
Differential Part-to-Part Skew  
(Note 10)  
Rise Time  
t
t
Figures 2 and 3  
Figures 2 and 3  
Figures 4 and 5  
Figures 4 and 5  
Figures 4 and 5  
Figures 4 and 5  
0.2  
0.2  
0.39  
0.39  
2.7  
1.0  
1.0  
5
ns  
ns  
ns  
ns  
ns  
ns  
TLH  
THL  
PHZ  
Fall Time  
Disable Time High to Z  
Disable Time Low to Z  
Enable Time Z to High  
Enable Time Z to Low  
t
t
2.7  
5
PLZ  
t
2.3  
7
PZH  
t
2.3  
7
PZL  
Maximum Operating Frequency  
(Note 11)  
f
400  
MHz  
MAX  
Note 1: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are 100ꢀ tested  
at T = +25°C.  
A
Note 2: Currents into the device are positive, and current out of the device is negative. All voltages are referenced to ground except  
V
OD  
.
Note 3: Guaranteed by correlation data.  
Note 4: AC parameters are guaranteed by design and characterization.  
Note 5: C includes probe and jig capacitance.  
L
Note 6: Signal generator conditions for dynamic tests: V = 0, V  
= 3V, f = 100MHz, 50ꢀ duty cycle, R = 50, t 1ns, t ≤  
O R F  
OL  
OH  
1ns (0ꢀ to 100ꢀ).  
Note 7: t  
Note 8: t  
is the magnitude difference of differential propagation delay. t  
= |t  
PHLD  
- t  
|.  
SKD1  
SKD2  
SKD1  
PHLD PLHD  
is the magnitude difference of t  
or t  
of one channel to the t  
or t  
of another channel on the same  
PHLD  
PLHD  
PLHD  
device.  
Note 9: t is the magnitude difference of any differential propagation delays between devices at the same V  
and within 5°C  
CC  
SKD3  
of each other.  
Note 10:t is the magnitude difference of any differential propagation delays between devices operating over the rated supply  
SKD4  
and temperature ranges.  
Note 11: f signal generator conditions: V = 0, V  
= 3V, f = 400MHz, 50ꢀ duty cycle, R = 50, t 1ns, t 1ns (0ꢀ to  
MAX  
OL  
OH  
O
R
F
100ꢀ). Transmitter output criteria: duty cycle = 45ꢀ to 55ꢀ, V  
250mV.  
OD  
_______________________________________________________________________________________  
3
Quad LVDS Line Driver with  
Flow-Through Pinout  
Typical Operating Characteristics  
(V  
= +3.3V, R = 100, C = 15pF, T = +25°C, unless otherwise noted.)  
CC  
L
L
A
OUTPUT LOW VOLTAGE  
vs. POWER-SUPPLY VOLTAGE  
OUTPUT HIGH VOLTAGE  
vs. POWER-SUPPLY VOLTAGE  
OUTPUT SHORT-CIRCUIT CURRENT  
vs. POWER-SUPPLY VOLTAGE  
-3.700  
-3.695  
-3.690  
-3.685  
-3.680  
-3.675  
-3.670  
-3.665  
-3.660  
-3.655  
-3.650  
1.100  
1.100  
1.098  
1.096  
1.094  
1.092  
1.090  
V
GND  
= V or  
CC  
IN  
1.098  
1.096  
1.094  
1.092  
1.090  
3.0  
3.3  
3.6  
3.0  
3.3  
3.6  
3.0  
3.3  
3.6  
POWER-SUPPLY VOLTAGE (V)  
POWER-SUPPLY VOLTAGE (V)  
POWER-SUPPLY VOLTAGE (V)  
DIFFERENTIAL OUTPUT VOLTAGE  
vs. POWER SUPPLY  
OUTPUT HIGH-IMPEDANCE STATE CURRENT  
DIFFERENTIAL OUTPUT VOLTAGE  
vs. LOAD RESISTOR  
vs. POWER-SUPPLY VOLTAGE  
0
390  
385  
380  
375  
370  
365  
360  
355  
350  
600  
550  
500  
450  
400  
350  
300  
V
GND  
= V or  
CC  
IN  
-50  
-100  
-150  
-200  
-250  
3.0  
3.3  
3.6  
3.0  
3.3  
3.6  
90  
100  
110  
120  
130  
140  
150  
POWER-SUPPLY VOLTAGE (V)  
LOAD RESISTOR ()  
POWER-SUPPLY VOLTAGE (V)  
POWER-SUPPLY CURRENT  
vs. POWER-SUPPLY VOLTAGE  
OFFSET VOLTAGE  
vs. POWER-SUPPLY VOLTAGE  
POWER-SUPPLY CURRENT  
vs. FREQUENCY  
40  
38  
35  
33  
30  
28  
25  
23  
20  
1.260  
1.256  
1.252  
1.248  
1.244  
1.240  
25.0  
24.0  
23.0  
22.0  
21.0  
20.0  
V
IN  
= 0 to 3V  
FREQ = 1MHz  
IN  
V
= 0 to 3V  
ALL SWITCHING  
ONE SWITCHING  
100  
3.0  
3.3  
3.6  
0.1  
1
10  
1000  
3.0  
3.3  
POWER-SUPPLY VOLTAGE (V)  
3.6  
POWER-SUPPLY VOLTAGE (V)  
FREQUENCY (MHz)  
4
_______________________________________________________________________________________  
Quad LVDS Line Driver with  
Flow-Through Pinout  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, R = 100, C = 15pF, T = +25°C, unless otherwise noted.)  
CC  
L
L
A
POWER-SUPPLY CURRENT  
vs. AMBIENT TEMPERATURE  
DIFFERENTIAL PROPAGATION DELAY  
vs. AMBIENT TEMPERATURE  
DIFFERENTIAL PROPAGATION DELAY  
vs. POWER SUPPLY  
1.600  
1.500  
1.400  
1.300  
1.200  
1.100  
25.0  
1.600  
1.550  
1.500  
1.450  
1.400  
1.350  
1.300  
1.250  
1.200  
FREQ = 1MHz  
= 0 to 3V  
FREQ = 1MHz  
V
IN  
24.0  
23.0  
22.0  
21.0  
20.0  
t
t
PLHD  
PLHD  
t
PHLD  
t
PHLD  
FREQ = 1MHz  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
3.0  
3.3  
3.6  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
POWER-SUPPLY VOLTAGE (V)  
DIFFERENTIAL SKEW  
vs. POWER-SUPPLY VOLTAGE  
DIFFERENTIAL SKEW  
vs. AMBIENT TEMPERATURE  
100  
80  
60  
40  
20  
0
200  
175  
150  
125  
100  
75  
FREQ = 1MHz  
FREQ = 1MHz  
50  
25  
0
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
POWER-SUPPLY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
TRANSITION TIME  
vs. AMBIENT TEMPERATURE  
TRANSITION TIME  
vs. POWER-SUPPLY VOLTAGE  
600  
550  
500  
450  
400  
350  
300  
250  
200  
400  
390  
380  
370  
360  
350  
340  
FREQ = 1MHz  
FREQ = 1MHz  
t
t
TLH  
t
TLH  
t
THL  
THL  
-40  
-15  
10  
35  
60  
85  
3.0  
3.3  
POWER-SUPPLY VOLTAGE (V)  
3.6  
AMBIENT TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Quad LVDS Line Driver with  
Flow-Through Pinout  
Pin Description  
PIN  
NAME  
EN  
FUNCTION  
Driver Enable Input. The driver is disabled when EN is low. EN is internally pulled down. When EN =  
high and EN = low or open, the outputs are active. For other combinations of EN and EN, the  
outputs are disabled and are high impedance.  
1
2, 3, 6, 7  
IN_  
LVTTL/LVCMOS Driver Inputs  
4
V
Power-Supply Input. Bypass V  
Ground  
to GND with 0.1µF and 0.001µF ceramic capacitors.  
CC  
CC  
5
GND  
EN  
8
Driver Enable Input. The transmitter is disabled when EN is high. EN is internally pulled down.  
Inverting LVDS Driver Outputs  
9, 12, 13, 16  
10, 11, 14, 15  
OUT_-  
OUT_+  
Noninverting LVDS Driver Outputs  
Termination  
Detailed Description  
Because the MAX9123 is a current-steering device, no  
output voltage will be generated without a termination  
resistor. The termination resistors should match the dif-  
ferential impedance of the transmission line. Output  
voltage levels depend upon the value of the termination  
resistor. The MAX9123 is optimized for point-to-point  
interface with 100termination resistors at the receiver  
inputs. Termination resistance values may range  
between 90and132, depending on the characteris-  
tic impedance of the transmission medium.  
The LVDS interface standard is a signaling method  
intended for point-to-point communication over a con-  
trolled-impedance medium as defined by the  
ANSI/TIA/EIA-644 and IEEE 1596.3 standards. The  
LVDS standard uses a lower voltage swing than other  
common communication standards, achieving higher  
data rates with reduced power consumption while  
reducing EMI emissions and system susceptibility to  
noise.  
The MAX9123 is an 800Mbps quad differential LVDS  
driver that is designed for high-speed, point-to-point,  
and low-power applications. This device accepts  
LVTTL/LVCMOS input levels and translates them to  
LVDS output signals.  
Table 1. Input/Output Function Table  
ENABLES  
EN  
INPUTS  
OUTPUTS  
EN  
H
IN_  
L
OUT_+  
OUT_ -  
The MAX9123 generates a 2.5mA to 4.0mA output cur-  
rent using a current-steering configuration. This current-  
steering approach induces less ground bounce and no  
shoot-through current, enhancing noise margin and sys-  
tem speed performance. The driver outputs are short-  
circuit current limited, and enter a high-impedance state  
when the device is not powered or is disabled.  
L or open  
L or open  
L
H
L
H
H
H
All other combinations  
of ENABLE pins  
Dont  
care  
Z
Z
Applications Information  
The current-steering architecture of the MAX9123  
requires a resistive load to terminate the signal and  
complete the transmission loop. Because the device  
switches current and not voltage, the actual output volt-  
age swing is determined by the value of the termination  
resistor at the input of an LVDS receiver. Logic states  
are determined by the direction of current flow through  
the termination resistor. With a typical 3.7mA output  
current, the MAX9123 produces an output voltage of  
370mV when driving a 100load.  
Power-Supply Bypassing  
with high-frequency, surface-mount  
Bypass V  
CC  
ceramic 0.1µF and 0.001µF capacitors in parallel as  
close to the device as possible, with the smaller valued  
capacitor closest to V  
.
CC  
Differential Traces  
Output trace characteristics affect the performance of  
the MAX9123. Use controlled-impedance traces to  
match trace impedance to the transmission medium.  
6
_______________________________________________________________________________________  
Quad LVDS Line Driver with  
Flow-Through Pinout  
C
L
OUT_+  
OUT_ +  
R /2  
L
V
IN_  
CC  
IN_  
R
L
V
OS  
V
OD  
GENERATOR  
GND  
R /2  
L
OUT_ -  
50  
C
L
OUT_-  
Figure 2. Driver Propagation Delay and Transition Time Test  
Circuit  
Figure 1. Driver V  
and V Test Circuit  
OS  
OD  
3V  
1.5V  
1.5V  
IN_  
0
t
t
PHLD  
PLHD  
OUT_ -  
OUT_+  
V
OH  
OL  
0 DIFFERENTIAL  
80%  
0
V
80%  
-)  
0
V
DIFF  
= (V  
+) - (V  
OUT_  
OUT_  
0
V
DIFF  
20%  
20%  
t
t
THL  
TLH  
Figure 3. Driver Propagation Delay and Transition Time Waveforms  
Eliminate reflections and ensure that noise couples as  
common mode by running the differential trace pairs  
close together. Reduce skew by matching the electrical  
length of the traces. Excessive skew can result in a  
degradation of magnetic field cancellation.  
less EMI due to canceling effects. Balanced cables  
tend to pick up noise as common mode, which is  
rejected by the LVDS receiver.  
Board Layout  
For LVDS applications, a four-layer PC board that pro-  
vides separate power, ground, LVDS signals, and input  
signals is recommended. Isolate the LVTTL/LVCMOS  
and LVDS signals from each other to prevent coupling.  
Maintain the distance between the differential traces to  
avoid discontinuities in differential impedance. Avoid  
90° turns and minimize the number of vias to further  
prevent impedance discontinuities.  
Cables and Connectors  
Transmission media should have a nominal differential  
impedance of 100. To minimize impedance disconti-  
nuities, use cables and connectors that have matched  
differential impedance.  
Chip Information  
TRANSISTOR COUNT: 1246  
PROCESS: CMOS  
Avoid the use of unbalanced cables such as ribbon or  
simple coaxial cable. Balanced cables such as twisted  
pair offer superior signal quality and tend to generate  
_______________________________________________________________________________________  
7
Quad LVDS Line Driver with  
Flow-Through Pinout  
Functional Diagram  
C
L
OUT1+  
OUT_+  
IN1  
IN2  
IN3  
IN4  
V
CC  
IN_  
R
R
L/2  
OUT1-  
OUT2+  
GND  
+1.2V  
EN  
EN  
GENERATOR  
L/2  
50Ω  
OUT_-  
1/4 MAX9123  
C
L
OUT2-  
OUT3+  
Figure 4. Driver High-Impedance Delay Test Circuit  
OUT3-  
OUT4+  
OUT4-  
EN  
EN  
EN WHEN EN = 0 OR OPEN  
3V  
0
1.5V  
1.5V  
1.5V  
3V  
0
1.5V  
PHZ  
EN WHEN EN = V  
CC  
t
t
PZH  
OUT_+ WHEN IN_ = V  
CC  
V
OH  
OUT_- WHEN IN_ = 0  
50%  
50%  
50%  
50%  
1.2V  
1.2V  
OUT_+ WHEN IN_ = 0  
OUT_- WHEN IN_ = V  
V
OL  
CC  
t
t
PZL  
PLZ  
Figure 5. Driver High-Impedance Delay Waveform  
_______________________________________________________________________________________  
8
Quad LVDS Line Driver with  
Flow-Through Pinout  
Package Information  
_______________________________________________________________________________________  
9
Quad LVDS Line Driver with  
Flow-Through Pinout  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
10 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9123EUE-T

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, 4.40 MM, TSSOP-16
MAXIM

MAX9124

Quad LVDS Line Driver
MAXIM

MAX9124ESE

Quad LVDS Line Driver
MAXIM

MAX9124ESE+T

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, 0.150 INCH, SOIC-16
MAXIM

MAX9124ESE-T

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, 0.150 INCH, SOIC-16
MAXIM

MAX9124EUE

Quad LVDS Line Driver
MAXIM

MAX9124EUE+

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, 4.40 MM, TSSOP-16
MAXIM

MAX9124EUE+T

暂无描述
MAXIM

MAX9124EUE-T

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, 4.40 MM, TSSOP-16
MAXIM

MAX9124EVKIT

Evaluation Kit for the MAX9124/MAX9125/MAX9126
MAXIM

MAX9125

Quad LVDS Line Receivers with Integrated Termination
MAXIM

MAX9125ESE

Quad LVDS Line Receivers with Integrated Termination
MAXIM