MAX8794ETB/V+T [MAXIM]

Regulator,;
MAX8794ETB/V+T
型号: MAX8794ETB/V+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Regulator,

稳压器 双倍数据速率
文件: 总13页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0584; Rev 0; 8/06  
Low-Voltage DDR Linear Regulator  
General Description  
Features  
The MAX8794 DDR linear regulator sources and sinks up  
to 3A peak (typ) using internal n-channel MOSFETs. This  
linear regulator delivers an accurate 0.5V to 1.5V output  
Internal Power MOSFETs with Current Limit (3A typ)  
Fast Load-Transient Response  
External Reference Input with Reference  
Output Buffer  
1.1V to 3.6V Power Input  
from a low-voltage power input (V = 1.1V to 3.6V). The  
IN  
MAX8794 uses a separate 3.3V bias supply to power the  
control circuitry and drive the internal n-channel MOSFETs.  
The MAX8794 provides current and thermal limits to pre-  
vent damage to the linear regulator. Additionally, the  
MAX8794 generates a power-good (PGOOD) signal to  
indicate that the output is in regulation. During startup,  
PGOOD remains low until the output is in regulation for 2ms  
(typ). The internal soft-start limits the input surge current.  
15mV (max) Load-Regulation Error  
Thermal-Fault Protection  
Shutdown Input  
Power-Good Window Comparator with 2ms (typ)  
Delay  
Small, Low-Profile, 10-Pin, 3mm x 3mm TDFN  
Package  
The MAX8794 powers the active-DDR termination bus  
that requires a tracking input reference. The MAX8794  
can also be used in low-power chipsets and graphics  
processor cores that require dynamically adjustable  
output voltages. The MAX8794 is available in a 10-pin,  
3mm x 3mm, TDFN package.  
Ceramic or Polymer Output Capacitors  
Applications  
Ordering Information  
Notebook/Desktop Computers  
TEMP PIN-  
RANGE PACKAGE  
TOP  
MARK  
PKG  
CODE  
PART  
DDR Memory Termination  
Active Termination Buses  
-40°C to 10 TDFN  
+85°C (3mm x 3mm)  
MAX8794ETB+  
ABD  
T1033-1  
Graphics Processor Core Supplies  
Chipset/RAM Supplies as Low as 0.5V  
+Denotes lead-free package.  
Pin Configuration  
Typical Operating Circuit  
V
IN  
(1.1V TO 3.6V)  
V
= V  
TT  
OUT  
IN  
OUT  
TOP VIEW  
OUTS  
V
BIAS  
1
2
3
4
5
10  
9
MAX8794  
REFOUT  
IN  
(2.7V TO 3.6V)  
V
OUT  
V
PGND  
AGND  
CC  
CC  
8
AGND  
REFIN  
PGND  
SHDN  
OUTS  
SHDN  
MAX8794  
7
PGOOD  
REFIN  
6
PGOOD  
V
DDQ  
(2.5V OR 1.8V)  
V
= V  
TTR  
REFOUT  
REFOUT  
TDFN  
3mm x 3mm  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Voltage DDR Linear Regulator  
ABSOLUTE MAXIMUM RATINGS  
IN to PGND............................................................-0.3V to +4.3V  
Continuous Power Dissipation (T = +70°C)  
A
OUT to PGND ..............................................-0.3V to (V + 0.3V)  
10-Pin 3mm x 3mm TDFN  
(derated 24.4mW/°C above +70°C)...........................1951mW  
Operating Temperature Range  
IN  
OUTS to AGND............................................-0.3V to (V + 0.3V)  
IN  
V
CC  
to AGND.........................................................-0.3V to +4.3V  
REFIN, REFOUT, SHDN, PGOOD to AGND...-0.3V to (V + 0.3V)  
MAX8794ETB...................................................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
PGND to AGND.....................................................-0.3V to +0.3V  
REFOUT Short Circuit to AGND .................................Continuous  
OUT Continuous RMS Current  
100s ................................................................................ 1.6A  
1s.................................................................................... 2.5A  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 1.8V, V  
Typical values are at T = +25°C.) (Note 1)  
= 3.3V, V  
= V  
= 1.25V, SHDN = V , circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.  
OUTS CC A  
IN  
CC  
REFIN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.1  
TYP  
MAX  
3.6  
3.6  
1.3  
600  
100  
10  
UNITS  
V
V
Power input  
Bias supply  
Load = 0, V  
IN  
Input Voltage Range  
V
2.7  
CC  
CC  
Quiescent Supply Current (V  
)
I
> 0.45V  
REFIN  
0.7  
350  
50  
mA  
µA  
CC  
SHDN = GND, V  
> 0.45V  
REFIN  
Shutdown Supply Current (V  
)
I
CC(SHDN)  
CC  
SHDN = GND, REFIN = GND  
Load = 0  
Quiescent Supply Current (V  
)
I
IN  
0.4  
0.1  
0
mA  
µA  
IN  
Shutdown Supply Current (V  
)
I
SHDN = GND  
10  
IN  
IN(SHDN)  
T
T
= +25°C  
-4  
-6  
+4  
A
REFIN to OUTS,  
= 200mA  
Feedback-Voltage Error  
V
mV  
OUTS  
I
OUT  
= -40°C to +85°C  
+6  
A
Load-Regulation Error  
Line-Regulation Error  
OUTS Input Bias Current  
OUTPUT  
-1A I  
+1A  
-15  
+15  
mV  
mV  
µA  
OUT  
1.4V V 3.3V, I  
= 100mA  
1
IN  
OUT  
I
-1  
+1  
OUTS  
Output Adjust Range  
0.5  
1.5  
0.169  
0.20  
V
High-side MOSFET (source) (I  
= 0.1A)  
0.10  
0.10  
3
OUT  
OUT On-Resistance  
Low-side MOSFET (sink) (I  
= -0.1A)  
OUT  
Output Current Slew Rate  
C
= 100µF, I  
= 0.1A to 2A  
A/µs  
dB  
kΩ  
OUT  
OUT  
OUT Power-Supply Rejection  
Ratio  
10Hz < f < 10kHz, I  
= 200mA,  
OUT  
PSRR  
80  
12  
8
C
= 100µF  
OUT  
OUT to OUTS Resistance  
R
OUTS  
DISCHARGE  
Discharge MOSFET On-  
Resistance  
R
SHDN = GND  
2
_______________________________________________________________________________________  
Low-Voltage DDR Linear Regulator  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 1.8V, V  
Typical values are at T = +25°C.) (Note 1)  
= 3.3V, V  
= V  
= 1.25V, SHDN = V , circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.  
OUTS CC A  
IN  
CC  
REFIN  
A
PARAMETER  
REFERENCE  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
REFIN Voltage Range  
V
0.5  
-1  
1.5  
+1  
V
REFIN  
REFIN Input Bias Current  
I
µA  
REFIN  
REFIN Undervoltage-Lockout  
Voltage  
Rising edge, hysteresis = 75mV  
= 3.3V, I = 0  
0.35  
0.45  
V
V
V
REFIN  
+ 0.01  
REFIN  
REFOUT Voltage  
V
V
V
V
REFOUT  
CC  
REFOUT  
REFIN  
- 0.01  
REFOUT Load Regulation  
FAULT DETECTION  
V  
I
= 5mA  
-20  
+20  
mV  
REFOUT  
REFOUT  
Thermal-Shutdown Threshold  
T
Rising edge, hysteresis = 15°C  
Rising edge, hysteresis = 100mV  
+165  
2.55  
°C  
V
SHDN  
V
Undervoltage-Lockout  
CC  
V
2.45  
1.8  
2.65  
UVLO  
Threshold  
IN Undervoltage-Lockout  
Threshold  
Rising edge, hysteresis = 55mV  
0.9  
1.1  
4.2  
V
Current-Limit Threshold  
Soft-Start Current-Limit Time  
INPUTS AND OUTPUTS  
I
3
A
LIMIT  
t
200  
µs  
SS  
With respect to feedback threshold,  
hysteresis = 12mV  
PGOOD Lower Trip Threshold  
PGOOD Upper Trip Threshold  
PGOOD Propagation Delay  
-200  
100  
5
-150  
150  
10  
-100  
200  
35  
mV  
mV  
µs  
With respect to feedback threshold,  
hysteresis = 12mV  
OUTS forced 25mV beyond PGOOD trip  
threshold  
t
I
PGOOD  
Startup rising edge, OUTS within 100mV of  
the feedback threshold  
PGOOD Startup Delay  
2
3.5  
0.3  
1
ms  
V
PGOOD Output Low Voltage  
PGOOD Leakage Current  
I
= 4mA  
SINK  
OUTS = REFIN (PGOOD high impedance),  
PGOOD = V + 0.3V  
CC  
µA  
PGOOD  
Logic high  
Logic low  
2.0  
SHDN Logic Input Threshold  
SHDN Logic Input Current  
V
0.8  
-1  
SHDN = V  
or GND  
+1  
µA  
CC  
Note 1: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through cor-  
A
relation using statistical-quality-control (SQC) methods.  
_______________________________________________________________________________________  
3
Low-Voltage DDR Linear Regulator  
Typical Operating Characteristics  
(Circuit of Figure 1. T = +25°C, unless otherwise noted.)  
A
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
OUTPUT LOAD REGULATION  
OUTPUT LOAD REGULATION  
3.0  
2.5  
0.96  
0.94  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
V
= 0.9V  
V
= 1.25V  
REFIN  
REFIN  
V
= 0.9V  
OUT  
V
= 1.25V  
OUT  
2.0  
1.5  
1.0  
0.92  
0.90  
0.88  
V
= 1.5V  
IN  
V
= 1.25V  
IN  
THERMALLY LIMITED  
V
= 1.8V  
IN  
DROPOUT VOLTAGE LIMITED  
V
= 1.5V  
IN  
0.5  
0
0.86  
0.84  
1.0  
1.5  
2.0  
2.5  
3.0  
-3  
-2  
-1  
0
1
2
3
-3  
-2  
-1  
0
1
2
3
INPUT VOLTAGE (V)  
I
(A)  
I
(A)  
OUT  
OUT  
BIAS CURRENT (I  
vs. INPUT VOLTAGE (V )  
)
IN  
INPUT CURRENT (I )  
BIAS CURRENT (I  
vs. LOAD CURRENT (I  
)
CC  
IN  
CC  
vs. INPUT VOLTAGE (V )  
)
IN  
OUT  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
250  
200  
150  
100  
50  
V
= 1.5V  
IN  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
= 1.25V  
= 0.90V  
OUT  
OUT  
V
= 1.25V  
OUT  
V
= 1.25V  
OUT  
V
= 0.90V  
OUT  
ENTERING  
DROPOUT  
DROPOUT  
INPUT UVLO  
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
(V)  
0
0
-2  
-1  
0
1
2
0
0.5 1.0  
1.5 2.0  
(V)  
2.5 3.0 3.5  
V
IN  
I
(A)  
OUT  
V
IN  
INPUT CURRENT (I )  
IN  
vs. SINK LOAD CURRENT (I  
DROPOUT VOLTAGE  
vs. OUTPUT CURRENT  
POWER GROUND CURRENT (I  
vs. SOURCE LOAD CURRENT (I  
)
)
PGND  
OUT  
)
OUT  
7
6
5
4
3
2
1
0
0.30  
0.25  
0.20  
0.15  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 1.5V  
IN  
V
= 1.5V  
IN  
V
= 1.25V  
OUT  
ENTERING  
DROPOUT  
V
= 0.90V  
OUT  
V
= 1.25V  
OUT  
V
= 1.25V  
OUT  
V
= 0.9V  
OUT  
0.10  
0.05  
0
V
= 0.90V  
0.5  
OUT  
-2.0  
-1.5  
-1.0  
(A)  
-0.5  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
1.0  
(A)  
1.5  
2.0  
I
OUTPUT CURRENT (A)  
I
OUT  
OUT  
4
_______________________________________________________________________________________  
Low-Voltage DDR Linear Regulator  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1. T = +25°C, unless otherwise noted.)  
A
REFOUT VOLTAGE ERROR  
vs. REFOUT LOAD CURRENT  
STARTUP WAVEFORM  
MAX8794 toc11  
20  
5V  
SHDN  
15  
10  
5
0V  
1.25V  
V
OUT  
0
0V  
-5  
4V  
-10  
-15  
-20  
PGOOD  
0V  
-10  
-5  
0
5
10  
500µs/div  
REFOUT LOAD CURRENT (mA)  
SHUTDOWN WAVEFORM  
SOURCE LOAD TRANSIENT  
MAX8794 toc12  
MAX8794 toc13  
5V  
SHDN  
0V  
R
= 100Ω  
LOAD  
2V  
1V  
OUT  
0V  
V
OUT  
AC-COUPLED  
1mV/div  
V
4V  
1A  
PGOOD  
0V  
I
OUT  
0A  
100µs/div  
20.0µs/div  
SOURCE/SINK LOAD TRANSIENT  
LINE TRANSIENT  
MAX8794 toc14  
MAX8794 toc15  
3.3V  
V
(1V/div)  
V
IN  
OUT  
AC-COUPLED  
5mV/div  
1.5V  
V
(10mV/div)  
OUT  
+1.5A  
AC-COUPLED  
0.9V  
I
OUT  
-1.5A  
I
= 100mA  
OUT  
4.00µs/div  
40µs/div  
_______________________________________________________________________________________  
5
Low-Voltage DDR Linear Regulator  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1. T = +25°C, unless otherwise noted.)  
A
DYNAMIC OUTPUT-VOLTAGE TRANSIENT  
DYNAMIC OUTPUT-VOLTAGE TRANSIENT  
MAX8794 toc17  
MAX8794 toc16  
V
= 1.5V  
V = 1.8V  
IN  
2.5V  
2.5V  
IN  
V
V
DDQ  
DDQ  
1.8V  
1.8V  
1.2V  
REFOUT  
1.2V  
V
REFOUT  
V
0.9V  
1.2V  
0.9V  
1.2V  
V
V
OUT  
OUT  
0.9V  
0.9V  
20.0µs/div  
20.0µs/div  
SOURCE CURRENT-LIMIT  
DISTRIBUTION  
SINK CURRENT-LIMIT  
DISTRIBUTION  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
SAMPLE SIZE = 200  
SAMPLE SIZE = 200  
+25°C  
+85°C  
+25°C  
+85°C  
2.0  
2.5  
3.0  
3.5  
4.0  
-4.0  
-3.5  
-3.0  
-2.5  
-2.0  
SOURCE CURRENT LIMIT (A)  
SINK CURRENT LIMIT (A)  
6
_______________________________________________________________________________________  
Low-Voltage DDR Linear Regulator  
Pin Description  
PIN  
NAME  
FUNCTION  
Buffered Reference Output. The output of the unity-gain reference input buffer sources and sinks over  
5mA. Bypass REFOUT to AGND with a 0.33µF or greater ceramic capacitor.  
1
REFOUT  
Analog Supply Input. Connect to the system supply voltage (+3.3V). Bypass V  
greater ceramic capacitor.  
to AGND with a 1µF or  
CC  
2
V
CC  
3
4
AGND  
REFIN  
Analog Ground. Connect the backside pad to AGND.  
External Reference Input. REFIN sets the output regulation voltage (V  
= V  
).  
REFIN  
OUTS  
Open-Drain Power-Good Output. PGOOD is low when the output voltage is more than 150mV (typ) above  
or below the regulation point, during soft-start, and when shut down. 2ms after the output reaches the  
regulation voltage during startup, PGOOD becomes high impedance.  
5
PGOOD  
Output Sense Input. The OUTS regulation level is set by the voltage at REFIN. Connect OUTS to the  
remote DDR termination bypass capacitors. OUTS is internally connected to OUT through a 12kΩ  
resistor.  
6
7
OUTS  
Shutdown Control Input. Connect to V  
for normal operation. Connect to analog ground to shut down the  
CC  
SHDN  
linear regulator. The reference buffer remains active in shutdown.  
Power Ground. Internally connected to the output sink MOSFET.  
Output of the Linear Regulator  
8
9
PGND  
OUT  
IN  
10  
Power Input. Internally connected to the output source MOSFET.  
_______________________________________________________________________________________  
7
Low-Voltage DDR Linear Regulator  
Detailed Description  
V
= V = V  
TT  
/ 2  
DDQ  
OUT  
The MAX8794 is a low-voltage, low-dropout DDR termi-  
V
=
IN  
IN  
OUT  
1.1V TO 3.6V  
nation linear regulator with an external bias supply  
input and a buffered reference output (see Figures 1  
C
C
10µF  
OUT1  
100µF  
IN2  
and 2). V  
is powered by a 2.7V to 3.6V supply that is  
CC  
MAX8794  
commonly available in laptop and desktop computers.  
The 3.3V bias supply drives the gate of the internal  
pass transistor, while a lower voltage input at the drain  
3.3V BIAS  
SUPPLY  
V
PGND  
AGND  
CC  
C1  
R3  
100kΩ  
1.0µF  
of the transistor (IN) is regulated to provide V  
. By  
OUT  
using separate bias and power inputs, the MAX8794  
can drive an n-channel high-side MOSFET and use a  
lower input voltage to provide better efficiency.  
POWER-GOOD  
PGOOD  
SHDN  
OUTS  
ON  
OFF  
The MAX8794 regulates its output voltage to the volt-  
age at REFIN. When used in DDR applications as a ter-  
mination supply, the MAX8794 delivers 1.25V or 0.9V at  
3A peak (typ) from an input voltage of 1.1V to 3.6V. The  
MAX8794 sinks up to 3A peak (typ) as required in a ter-  
mination supply. The MAX8794 provides shoot-through  
protection, ensuring that the source and sink MOSFETs  
do not conduct at the same time, yet produces a fast  
source-to-sink load transient.  
R1  
10kΩ  
V
= V  
TTR  
REFOUT  
C
V
DDQ  
REFIN  
REFOUT  
C
REFIN  
R2  
10kΩ  
REFOUT  
0.33µF  
1000pF  
Figure 1. Standard Application Circuit  
V
CC  
3.3V BIAS  
SUPPLY  
INPUT  
1.1V TO 3.6V  
SOFT-  
START  
IN  
EN  
UVLO  
SHDN  
REFIN  
OFF ON  
THERMAL  
SHDN  
V
DDQ  
OUT  
V
TT  
Gm  
PGND  
12kΩ  
REFOUT  
AGND  
V
TTR  
OUTS  
REFIN  
+150mV  
EN  
8Ω  
REFIN  
-150mV  
PGOOD  
POWER-  
GOOD  
DELAY  
LOGIC  
MAX8794  
Figure 2. Functional Diagram  
_______________________________________________________________________________________  
8
Low-Voltage DDR Linear Regulator  
The MAX8794 features an open-drain PGOOD output  
connected to ceramic bypass capacitors (0.33µF to  
that transitions high 2ms after the output initially reach-  
es regulation. PGOOD goes low within 10µs of when  
the output goes out of regulation by 150mV. The  
MAX8794 features current- and thermal-limiting circuitry  
to prevent damage during fault conditions.  
1.0µF). REFOUT is active when V  
> 0.45V and  
REFIN  
V
CC  
is above V . REFOUT is independent of SHDN.  
UVLO  
Shutdown  
Drive SHDN low to disable the error amplifier, gate-  
drive circuitry, and pass transistor (Figure 2). In shut-  
down, OUT is terminated to GND with an 8MOSFET.  
REFOUT is independent of SHDN. Connect SHDN to  
3.3V Bias Supply (V  
)
CC  
The V  
input powers the control circuitry and provides  
CC  
the gate drive to the pass transistor. This improves effi-  
ciency by allowing V to be powered from a lower sup-  
V
CC  
for normal operation.  
IN  
Current Limit  
ply voltage. Power V  
supply. Current drawn from the V  
from a well-regulated 3.3V  
CC  
The MAX8794 features source and sink current limits to  
protect the internal n-channel MOSFETs. The source-  
and-sink MOSFETs have a typical 3A current limit (1.8A  
min). This current limit prevents damage to the internal  
power transistors, but the device can enter thermal  
shutdown if the power dissipation increases the die  
temperature above +165°C (see the Thermal-Overload  
Protection section).  
supply remains rel-  
CC  
atively constant with variations in V and load current.  
IN  
Bypass V  
with a 1µF or greater ceramic capacitor as  
CC  
close to the device as possible.  
V
Undervoltage Lockout (UVLO)  
CC  
The V  
input UVLO circuitry ensures that the regulator  
CC  
starts up with adequate voltage for the gate-drive cir-  
cuitry to bias the internal pass transistor. The UVLO  
Soft-Start Current Limit  
Soft-start gradually increases the internal source current  
limit to reduce input surge currents at startup. Full-  
source current limit is available after the 200µs soft-start  
timer has expired. The soft-start current limit is given by:  
threshold is 2.55V (typ). V  
level for proper operation.  
must remain above this  
CC  
Power-Supply Input (IN)  
IN provides the source current for the linear regulator’s  
output, OUT. IN connects to the drain of the internal  
n-channel power MOSFET. IN can be as low as 1.1V,  
minimizing power dissipation. The input UVLO prohibits  
operation below 0.8V (typ). Bypass IN with a 10µF or  
greater capacitor as close to the device as possible.  
I
× t  
LIMIT  
I
=
LIMIT(SS)  
t
SS  
where I  
and t  
are from the Electrical Charac-  
SS  
LIMIT  
teristics. Figure 3 shows the MAX8794 PGOOD and  
soft-start waveform.  
Reference Input (REFIN)  
The MAX8794 regulates OUTS to the voltage set at  
REFIN, making the MAX8794 ideal for memory applica-  
tions where the termination supply must track the sup-  
ply voltage. Typically, REFIN is set by an external  
resistive voltage-divider connected to the memory sup-  
Thermal-Overload Protection  
Thermal-overload protection prevents the linear regulator  
from overheating. When the junction temperature  
exceeds +165°C, the linear regulator and reference  
buffer are disabled, allowing the device to cool. Normal  
operation resumes once the junction temperature cools  
by 15°C. Continuous short-circuit conditions result in a  
pulsed output until the overload is removed. A continuous  
thermal-overload condition results in a pulsed output. For  
continuous operation, do not exceed the absolute maxi-  
mum junction-temperature rating of +150°C.  
ply (V  
) as shown in Figure 1.  
DDQ  
The maximum output voltage of 1.5V is limited by the  
gate-drive voltage of the internal n-channel power  
transistor.  
Buffered Reference Output (REFOUT)  
REFOUT is a unity-gain transconductance amplifier that  
generates the DDR reference supply. It sources and  
sinks greater than 5mA. The reference buffer is typically  
_______________________________________________________________________________________  
9
Low-Voltage DDR Linear Regulator  
200µs  
SHDN  
CURRENT LIMIT  
OUTPUT OVERLOAD  
CONDITION  
POWER-GOOD  
WINDOW  
OUT  
2ms STARTUP  
DELAY  
PGOOD  
10µs  
PROPAGATION  
DELAY  
10µs  
PROPAGATION  
DELAY  
Figure 3. MAX8794 PGOOD and Soft-Start Waveforms  
Power-Good (PGOOD)  
The MAX8794 provides an open-drain PGOOD output  
that goes high 2ms (typ) after the output initially reach-  
es regulation during startup. PGOOD transitions low  
10µs after the output goes out of regulation by 150mV,  
or when the device enters shutdown. Connect a pullup  
REFERENCE  
VOLTAGE  
(V  
)
REF  
resistor from PGOOD to V  
for a logic-level output.  
CC  
R1  
Use a 100kresistor to minimize current consumption.  
MAX8794  
C
REFIN  
Applications Information  
REFIN  
Dynamic Output-Voltage Transitions  
By changing the voltage at REFIN, the MAX8794 can  
be used in applications that require dynamic output-  
voltage changes between two set points (graphics  
processors). Figure 4 shows a dynamically adjustable  
resistive voltage-divider network at REFIN. Using an  
external signal MOSFET, a resistor can be switched in  
and out of the REFIN resistor-divider, changing the volt-  
age at REFIN. The two output voltages are determined  
by the following equations:  
R2  
R3  
V
OUT(LOW)  
V
OUT(HIGH)  
R2  
V
V
=
V
REF  
OUT(LOW)  
OUT(HIGH)  
)
(
R1 + R2  
R2  
R1 + R2  
V
= V  
REF  
OUT(LOW)  
(R2 + R3)  
= V  
REF  
R1 + (R2 + R3)  
R2 +R3  
(
)
V
= V  
REF  
OUT(HIGH)  
R1 + R2 +R3  
(
)
Figure 4. Dynamic Output-Voltage Change  
10 ______________________________________________________________________________________  
Low-Voltage DDR Linear Regulator  
For a step-voltage change at REFIN, the rate of change  
of the output voltage is limited by the total output  
capacitance, the current limit, and the load during the  
transition. Adding a capacitor across REFIN and AGND  
filters noise and controls the rate of change of the  
REFIN voltage during dynamic transitions. With the  
additional capacitance, the REFIN voltage slews  
between the two set points with a time constant given  
SAFE OPERATING REGION  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
DROPOUT VOLTAGE  
LIMITED  
MAXIMUM CURRENT LIMIT  
° °  
= 0 C TO +70 C  
T
A
by R  
x C  
, where R  
is the equivalent parallel  
EQ  
REFIN  
EQ  
resistance seen by the slew capacitor.  
V
- V  
OUT(MIN)  
IN(MAX)  
Operating Region and Power Dissipation  
The maximum power dissipation of the MAX8794  
depends on the thermal resistance of the 10-pin TDFN  
package and the circuit board, the temperature differ-  
ence between the die and ambient air, and the rate of  
airflow. The power dissipated in the device is:  
°
= +100 C  
T
A
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
INPUT-OUTPUT DIFFERENTIAL VOLTAGE (V)  
P
= I  
SINK  
x (V – V  
)
SRC  
P
SRC  
= I  
IN  
OUT  
x V  
SINK OUT  
Figure 5. Power Operating Region—Maximum Output Current  
vs. Input-Output Differential Voltage  
The resulting maximum power dissipation is:  
V
= R  
x I  
DROPOUT  
DS(ON) OUT  
T
- T  
A
J(MAX)  
For low output-voltage applications, the sink current is  
P
=
DIS(MAX)  
limited by the output voltage and the R  
MOSFET.  
of the  
θ
+ θ  
CA  
DS(ON)  
JC  
where T  
is the maximum junction temperature  
J(MAX)  
Input Capacitor Selection  
(+150°C), T is the ambient temperature, θ  
is the  
JC  
A
Bypass IN to PGND with a 10µF or greater ceramic  
thermal resistance from the die junction to the package  
case, and θ is the thermal resistance from the case  
through the PC board, copper traces, and other materi-  
als to the surrounding air. For optimum power dissipa-  
tion, use a large ground plane with good thermal  
contact to the backside pad, and use wide input and  
output traces.  
capacitor. Bypass V  
to AGND with a 1µF ceramic  
CC  
CA  
capacitor for normal operation in most applications.  
Typically, the LDO is powered from the output of a  
step-down controller (memory supply) that has addi-  
tional bulk capacitance (polymer or tantalum) and dis-  
tributed ceramic capacitors.  
When 1in2 of copper is connected to the device, the  
maximum allowable power dissipation of a 10-pin TDFN  
package is 1951mW. The maximum power dissipation is  
Output Capacitor Selection  
The MAX8794 output stability is independent of the out-  
put capacitance for C  
from 10µF to 220µF.  
OUT  
derated by 24.4mW/°C above T = +70°C. Extra copper  
A
Capacitor ESR between 2mand 50mis needed to  
maintain stability. Within the recommended capaci-  
tance and ESR limits, the output capacitor should be  
chosen to provide good transient response:  
on the PC board increases thermal mass and reduces  
thermal resistance of the board. Refer to the MAX8794  
evaluation kit for a layout example.  
The MAX8794 delivers up to 3A and operates with input  
voltages up to 3.6V, but not simultaneously. High output  
currents can only be achieved when the input-output  
differential voltages are low (Figure 5).  
I  
x ESR = V  
OUT(P-P)  
is the maximum peak-to-peak load-  
OUT(P-P)  
where I  
OUT(P-P)  
current step (typically equal to the maximum source  
load plus the maximum sink load), and V is  
the allowable peak-to-peak voltage tolerance.  
OUT(P-P)  
Dropout Operation  
A regulator’s minimum input-to-output voltage differen-  
tial (dropout voltage) determines the lowest usable sup-  
ply voltage. Because the MAX8794 uses an n-channel  
pass transistor, the dropout voltage is a function of the  
Using larger output capacitance can improve efficiency  
in applications where the source and sink currents  
change rapidly. The capacitor acts as a reservoir for  
the rapid source and sink currents, so no extra current  
is supplied by the MAX8794 or discharged to ground,  
improving efficiency.  
drain-to-source on-resistance (R  
multiplied by the load current (see the Typical  
Operating Characteristics):  
= 0.25max)  
DS(ON)  
______________________________________________________________________________________ 11  
Low-Voltage DDR Linear Regulator  
Noise, PSRR, and Transient Response  
The MAX8794 operates with low-dropout voltage and  
low quiescent current in notebook computers while  
maintaining good noise, transient response, and AC-  
rejection specifications. Improved supply-noise rejec-  
tion and transient response can be achieved by  
increasing the values of the input and output capaci-  
tors. Use passive filtering techniques when operating  
from noisy sources.  
PC Board Layout Guidelines  
The MAX8794 requires proper layout to achieve the  
intended output power level and low noise. Proper lay-  
out involves the use of a ground plane, appropriate  
component placement, and correct routing of traces  
using appropriate trace widths. Refer to the MAX8794  
evaluation kit for a layout example:  
1) Minimize high-current ground loops. Connect the  
ground of the device, the input capacitor, and the  
output capacitor together at one point.  
The MAX8794 load-transient response graphs (see the  
Typical Operating Characteristics) show two compo-  
nents of the output response: a DC shift from the output  
impedance due to the load-current change and the  
transient response. A typical transient response for a  
step change in the load current from -1.5A to +1.5A is  
10mV. Increasing the output capacitor’s value and  
decreasing the ESR attenuate the overshoot.  
2) To optimize performance, a ground plane is essen-  
tial. Use all available copper layers in applications  
where the device is located on a multilayer board.  
3) Connect the input filter capacitor less than 10mm  
from IN. The connecting copper trace carries large  
currents and must be at least 2mm wide, preferably  
5mm wide.  
4) Connect the backside pad to a large ground plane.  
Use as much copper as necessary to decrease the  
thermal resistance of the device. In general, more  
copper provides better heatsinking capabilities.  
Chip Information  
TRANSISTOR COUNT: 3496  
PROCESS: BiCMOS  
12 ______________________________________________________________________________________  
Low-Voltage DDR Linear Regulator  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
H
21-0137  
2
PACKAGE VARIATIONS  
COMMON DIMENSIONS  
MIN. MAX.  
SYMBOL  
PKG. CODE  
T633-1  
N
6
D2  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
b
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.95 REF  
1.95 REF  
2.00 REF  
2.00 REF  
2.40 REF  
2.40 REF  
0.40±0.05  
0.40±0.05  
0.30±0.05  
0.30±0.05  
0.30±0.05  
A
0.70  
2.90  
2.90  
0.00  
0.20  
0.80  
3.10  
3.10  
0.05  
0.40  
T633-2  
6
D
E
0.95 BSC  
T833-1  
8
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
T833-2  
8
A1  
L
T833-3  
8
T1033-1  
T1033-2  
T1433-1  
T1433-2  
10  
10  
14  
14  
1.50±0.10 2.30±0.10 0.50 BSC MO229 / WEED-3 0.25±0.05  
k
0.25 MIN.  
0.20 REF.  
1.50±0.10 2.30±0.10  
0.25±0.05  
0.20±0.05  
0.20±0.05  
A2  
0.50 BSC MO229 / WEED-3  
1.70±0.10 2.30±0.10 0.40 BSC  
1.70±0.10 2.30±0.10 0.40 BSC  
- - - -  
- - - -  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
H
21-0137  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX8794ETV+

Low-Voltage DDR Linear Regulator
MAXIM

MAX8794_07

Low-Voltage DDR Linear Regulator
MAXIM

MAX8794_10

Low-Voltage DDR Linear Regulator
MAXIM

MAX8795A

TFT-LCD DC-DC Converter with Operational Amplifiers
MAXIM

MAX8795A+

Switching Regulator, Current-mode, 1.6A, 1400kHz Switching Freq-Max, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-2, TQFN-32
MAXIM

MAX8795AETJ

TFT-LCD DC-DC Converter with Operational Amplifiers
MAXIM

MAX8795AETJ+

TFT-LCD DC-DC Converter with Operational Amplifiers
MAXIM

MAX8795AETJ+T

Switching Regulator, Current-mode, 3.5A, 1400kHz Switching Freq-Max, BICMOS, 5 X 5 MM, 0.80 HEIGHT, ROHS COMPLIANT, MO-220WHHD-2, TQFN-32
MAXIM

MAX8795AGCJ

TFT-LCD DC-DC Converter with Operational Amplifiers
MAXIM

MAX8795AGCJ+

TFT-LCD DC-DC Converter with Operational Amplifiers
MAXIM

MAX8795AGCJ+T

Switching Regulator/Controller, Current-mode, 1400kHz Switching Freq-Max, BICMOS, PQFP32,
MAXIM

MAX8795AGCJ/V

TFT-LCD DC-DC Converter with Operational Amplifiers
MAXIM