MAX8620YETD [MAXIM]

PMIC for Microprocessors or DSPs in Portable Equipment; PMIC用于便携式设备中的微处理器或DSP
MAX8620YETD
型号: MAX8620YETD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

PMIC for Microprocessors or DSPs in Portable Equipment
PMIC用于便携式设备中的微处理器或DSP

电源电路 电源管理电路 微处理器 集成电源管理电路 光电二极管 信息通信管理 便携式 便携式设备
文件: 总18页 (文件大小:409K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3564; Rev 0; 1/05  
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
General Description  
Features  
The MAX8620Y micro-power-management integrated  
circuit (µPMIC) powers low-voltage microprocessors or  
DSPs in portable devices. The µPMIC includes a high-  
efficiency step-down DC-DC converter, two low-  
dropout linear regulators (LDOs), a microprocessor  
reset output, and power-on/off control logic. This device  
maintains high efficiency at light loads with a low 115µA  
supply current, and its miniature TDFN package makes  
it ideal for portable devices.  
Three Regulators and a Reset in One Package  
High-Efficiency Step-Down Converter  
Up to 4MHz Fixed Switching Frequency  
500mA Guaranteed Output Current  
0.6V to 3.3V Adjustable Output Voltage  
±±2 ꢀnitial Accuracy  
Fast Voltage-Positioning Transient Response  
ꢀnternal Synchronous Rectifier  
Two 300mA LDO Regulators  
The MAX8620Y’s step-down DC-DC converter utilizes a  
proprietary 4MHz hysteretic-PWM control scheme that  
allows for ultra-small external components. Internal syn-  
chronous rectification improves efficiency and elimi-  
nates the external Schottky diode that is required in  
conventional step-down converters. The output voltage  
is adjustable from 0.6V to 3.3V, with guaranteed output  
current up to 500mA.  
±00mV Dropout at ±00mA Load  
Low 45µV  
Output Noise  
RMS  
32 Accuracy over Line, Load, and Temperature  
Overcurrent Protection  
Nine Pin-Selectable Output-Voltage Settings  
30ms (min) RESET Output Flag  
±.7V to 5.5V ꢀnput  
The MAX8620Y’s two LDOs offer low 45µV  
output  
115µA (typ) Supply Current at No Load  
Thermal-Overload Protection  
Tiny 3mm x 3mm x 0.8mm TDFN Package  
RMS  
noise and a low dropout of only 200mV at 200mA. Each  
LDO delivers at least 300mA of continuous output cur-  
rent. The output voltages are pin selectable from 1.8V  
to 3.3V for flexibility.  
Ordering Information  
A microprocessor reset output (RESET) monitors OUT1  
and warns the system of impending power loss allow-  
ing safe shutdown. RESET asserts during power-up,  
power-down, shutdown, and fault conditions where  
PꢀN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP RANGE  
V
is below its regulation voltage.  
14 TDFN-EP  
(T1433-2)  
OUT1  
MAX8620YETD -40°C to +85°C  
AAB  
Applications  
Typical Operating Circuit  
Cellular Handsets  
Smart Phones/PDA Phones  
PDAs  
V
IN  
1.80V, 2.60V, 2.80V, 2.85V,  
3.00V, OR 3.30V*  
300mA  
IN2  
IN1  
OUT1  
Wireless LAN  
1.80V, 2.50V, 2.60V,  
2.85V, OR 3.00V*  
300mA  
OUT2  
Microprocessor and DSP Solutions including  
MSM™, XScale™, ARM™, and OMAP™  
MAX8620Y  
V
LOGIC  
BP  
100k  
RESET  
EN2  
RESET  
LX  
OUT3  
0.6V TO 3.3V  
500mA  
HF_PWR  
PWR_ON  
SEL1  
Pin Configuration appears at end of data sheet.  
FB  
SEL2  
MSM is a trademark of QUALCOMM, Inc.  
XScale is a trademark of Intel Corp.  
GND  
ARM is a trademark of ARM Limited.  
OMAP is a trademark of Texas Instruments, Inc.  
*USE SEL1 AND SEL2 TO SET V  
AND V  
OUT2  
OUT1  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
ABSOLUTE MAXꢀMUM RATꢀNGS  
IN1, IN2, PWR_ON, RESET, EN2, SEL1, SEL2,  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
HF_PWR, FB, BP to GND ..................................-0.3V to +6.0V  
OUT1, OUT2 to GND .................................-0.3V to (V  
+ 0.3V)  
IN1  
LX Current ......................................................................1.5A  
RMS  
Continuous Power Dissipation (T = +70°C)  
A
14-Pin TDFN (derate 18.2mW/°C above +70°C) .......1454mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRꢀCAL CHARACTERꢀSTꢀCS  
(V  
= V  
= +3.7V, C = 10µF, C = 0.01µF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
IN1  
IN2  
IN  
BP  
A
A
(Note 1)  
PARAMETER  
Supply Voltage Range  
SYMBOL  
CONDꢀTꢀONS  
MꢀN  
TYP  
MAX  
UNꢀTS  
V
2.7  
5.5  
V
IN1  
V
= V  
= 4.2V, PWR_ON = HF_PWR =  
IN2  
IN1  
Shutdown Supply Current  
I
5.5  
115  
430  
10  
µA  
SHDN  
GND  
All outputs enabled, no load  
= V = 1.8V, I  
140  
Supply Current  
I
+ I  
IN2  
µA  
IN1  
V
= I  
OUT3  
=
OUT1  
OUT3  
OUT1  
500µA, OUT2 disabled  
UNDERVOLTAGE LOCKOUT  
V
V
= V  
= V  
rising  
falling  
2.70  
2.85  
2.35  
3.05  
IN1  
IN1  
IN2  
IN2  
UVLO Threshold  
V
V
UVLO  
THERMAL PROTECTꢀON  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
REFERENCE (BP)  
Temperature rising  
+160  
15  
°C  
°C  
Reference Bypass Output  
Voltage  
V
0 I 1µA  
1.231  
1.250  
1.269  
0.4  
V
V
BP  
BP  
LOGꢀC AND CONTROL ꢀNPUTS (PWR_ON, HF_PWR, EN2)  
PWR_ON, HF_PWR, EN2 Input  
Low Voltage  
V
V
= V  
= 2.7V to 4.2V (Note 2)  
IL  
IN1  
IN2  
PWR_ON, HF_PWR, EN2 Input  
High Voltage  
V
V
V
= V  
= 2.7V to 4.2V (Note 2)  
1.44  
-1  
V
µA  
s
IH  
IN1  
IN2  
Input Bias Current  
I
= V  
= V = 0V or 5.5V  
EN2  
+1  
INB  
PWR_ON  
HF_PWR  
From the rising edge of HF_PWR until the  
one-shot timer expires (Figure 4)  
HF_PWR Timer  
t
1.05  
1.31  
1.46  
HF  
LꢀNEAR REGULATORS (OUT1, OUT±)  
0°C to +85°C  
-1.3  
-1.5  
+1.8  
+1.8  
I
= 1mA, 3.7V V  
IN  
LOAD  
5.5V  
-40°C to +85°C  
OUT1, OUT2 Output-Voltage  
Accuracy  
V
V
,
OUT1  
%
OUT2  
1mA I  
300mA  
-1.2  
0
LOAD  
I
= 150mA  
LOAD  
OUT1, OUT2 Output Current  
OUT1, OUT2 Output Current Limit  
OUT1, OUT2 Dropout Voltage  
I
300  
310  
mA  
mA  
mV  
OUT_  
I
V
= 0V  
550  
200  
940  
380  
LIM_  
OUT_  
V
I
= 200mA, T = +85°C (Note 3)  
DO  
LOAD  
A
±
_______________________________________________________________________________________  
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
ELECTRꢀCAL CHARACTERꢀSTꢀCS (continued)  
(V  
IN1  
= V  
= +3.7V, C = 10µF, C = 0.01µF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
IN2 IN BP A A  
(Note 1)  
PARAMETER  
SYMBOL  
CONDꢀTꢀONS  
f = 10Hz to 10kHz, C = 4.7µF,  
MꢀN  
TYP  
MAX  
UNꢀTS  
OUT1, OUT2 Power-Supply  
Rejection Ratio  
OUT_  
60  
dB  
I
= 30mA  
LOAD_  
f = 100Hz to 100kHz, C  
= 4.7µF,  
OUT_  
45  
I
= 30mA  
LOAD_  
Output Noise Voltage  
µV  
RMS  
f = 100Hz to 100kHz, C  
= 4.7µF,  
OUT_  
100  
I
= 30mA, C open  
BP  
LOAD_  
STEP-DOWN CONVERTER (OUT3)  
Output Voltage Range  
V
0.6  
3.3  
V
V
OUT3  
FB Threshold Voltage  
V
V
V
falling  
0.6  
TH  
FB  
FB Threshold Line Regulation  
= V  
= 2.7V to 5.5V (Note 2)  
IN2  
0.08  
%/V  
IN1  
T
= +25°C  
-2  
-3  
+2  
+3  
A
A
FB Threshold Voltage Accuracy  
I
= 0mA  
%
%
OUT3  
(Falling) (% of V  
)
TH  
T
= -40°C to +85°C  
FB Threshold Voltage Hysteresis  
(% of V  
V
2
HYS  
)
TH  
OUT3 disabled  
= 0.5V  
10  
10  
FB Bias Current  
Current Limit  
I
µA  
mA  
FB  
V
FB  
I
pFET switch  
nFET rectifier  
675  
875  
950  
1000  
0.65  
0.35  
30  
1200  
1200  
1.5  
LIM3P  
I
LIM3N  
R
R
pFET switch, I = -200mA  
LX  
ONP  
On-Resistance  
mA  
ns  
nFET rectifier, I = +200mA  
0.8  
ONN  
LX  
Rectifier-Off Current Threshold  
Minimum On- and Off-Times  
I
60  
LXOFF  
t
107  
95  
ON  
t
OFF  
OPEN-DRAꢀN, ACTꢀVE-LOW RESET OUTPUT (RESET)  
RESET Output-Voltage Low  
V
I
= 500µA  
0.3  
V
OL  
SINK  
RESET Output Leakage Current  
V
= 5.5V  
100  
nA  
RESET  
Percent of the OUT1 regulation voltage  
(Note 4)  
RESET Threshold Voltage  
V
84  
30  
87  
60  
90  
%
THR  
RESET Timeout Period  
t
Figure 4  
ms  
RP  
LDO OUTPUT-VOLTAGE SELECT ꢀNPUTS (SEL1, SEL±)  
SEL_ Input Low Threshold  
1
V
V
SEL_ Input High Threshold  
V
- 0.2V  
IN_  
V
V
= V  
= 4.2V, V  
= 0V or V  
,
IN1  
IN2  
SEL1  
IN1  
SEL_ Input Bias Current  
0.1  
µA  
= 0V or V  
SEL2  
IN1  
Note 1: Specifications are 100% production tested at T = +25°C. Maximum and minimum limits over temperature are guaranteed  
A
by design and characterization.  
Note ±: After startup.  
Note 3: Guaranteed by design.  
Note 4: RESET asserts low when V  
drops below the specified percent of the OUT1 regulation voltage.  
OUT1  
_______________________________________________________________________________________  
3
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
Typical Operating Characteristics  
(V  
IN1  
= V  
= 3.7V, PWR_ON = IN1, L = 2.2µH (LQH31CN2R2M53), C = 150pF, V  
= V  
= 2.6V, V  
= 1.867V (R1 =  
OUT3  
IN2  
FF  
OUT1  
OUT2  
150k, R2 = 75k), C = 10µF, C = 0.01µF, C  
A
= C  
= 4.7µF, C = 2.2µF, RESET pulled up with 100kto OUT1,  
OUT3  
IN  
BP  
OUT1  
OUT2  
T
= +25°C, unless otherwise noted.)  
INPUT QUIESCENT CURRENT  
EFFICIENCY vs. LOAD CURRENT  
vs. INPUT VOLTAGE  
180  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
L = 4.7µH  
160  
140  
120  
100  
80  
L = 2.2µH  
L = 1.0µH  
60  
40  
20  
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
0.1  
1
10  
100  
1000  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
SWITCHING FREQUENCY vs. LOAD CURRENT  
EFFICIENCY vs. OUTPUT VOLTAGE  
10  
100  
L = 1.0µH  
95  
L = 4.7µH  
90  
85  
L = 2.2µH  
1
80  
75  
70  
65  
60  
L = 1.0µH  
L = 4.7µH  
L = 2.2µH  
0.1  
0
50 100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
OUTPUT VOLTAGE (V)  
LIGHT-LOAD SWITCHING WAVEFORMS  
HEAVY-LOAD SWITCHING WAVEFORMS  
MAX8620Y toc05  
MAX8620Y toc06  
V
LX  
V
LX  
2V/div  
2V/div  
V
OUT  
V
OUT  
20mV/div  
20mV/div  
AC-COUPLED  
AC-COUPLED  
I
L
200mA/div  
I
L
100mA/div  
200ns/div  
200ns/div  
4
_______________________________________________________________________________________  
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
Typical Operating Characteristics (continued)  
(V  
IN1  
= V  
= 3.7V, PWR_ON = IN1, L = 2.2µH (LQH31CN2R2M53), C = 150pF, V  
= V  
= 2.6V, V  
= 1.867V (R1 =  
OUT3  
IN2  
FF  
OUT1  
OUT2  
150k, R2 = 75k), C = 10µF, C = 0.01µF, C  
A
= C  
= 4.7µF, C = 2.2µF, RESET pulled up with 100kto OUT1,  
OUT3  
IN  
BP  
OUT1  
OUT2  
T
= +25°C, unless otherwise noted.)  
LOAD TRANSIENT (50mA TO 300mA)  
POWER-UP WAVEFORMS  
MAX8620Y toc07  
MAX8620Y toc08  
2V/div  
1V/div  
V
OUT3  
50mV/div  
AC-COUPLED  
V
IN  
1V/div  
1V/div  
V
V
V
OUT3  
OUT1  
OUT2  
200mA/div  
I
L
300mA  
200mA/div  
50mA  
I
LOAD  
2µs/div  
40µs/div  
PWR_ON STARTUP/SHUTDOWN WAVEFORMS  
RESET WAVEFORMS  
MAX8620Y toc09  
MAX8620Y toc10  
V
2V/div  
2V/div  
1V/div  
PWR_ON  
V
PWR_ON  
1V/div  
1V/div  
1V/div  
V
V
V
OUT3  
OUT1  
OUT2  
V
RESET  
1V/div  
V
OUT1  
100µs/div  
10ms/div  
OUT2 SHUTDOWN WAVEFORMS  
HF_PWR STARTUP WAVEFORMS  
MAX8620Y toc11  
MAX8620Y toc12  
2V/div  
1V/div  
V
HF_PWR  
1V/div  
1V/div  
V
EN2  
V
OUT1  
1V/div  
V
OUT2  
V
RESET  
200µs/div  
10ms/div  
_______________________________________________________________________________________  
5
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
Typical Operating Characteristics (continued)  
(V  
IN1  
= V  
= 3.7V, PWR_ON = IN1, L = 2.2µH (LQH31CN2R2M53), C = 150pF, V  
= V  
= 2.6V, V  
= 1.867V (R1 =  
OUT3  
IN2  
FF  
OUT1  
OUT2  
150k, R2 = 75k), C = 10µF, C = 0.01µF, C  
A
= C  
= 4.7µF, C = 2.2µF, RESET pulled up with 100kto OUT1,  
OUT3  
IN  
BP  
OUT1  
OUT2  
T
= +25°C, unless otherwise noted.)  
OUT1/OUT2 VOLTAGE vs. INPUT VOLTAGE  
DROPOUT VOLTAGE vs. LOAD CURRENT  
2.80  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
400  
350  
300  
250  
200  
150  
100  
I
= 0mA  
LOAD  
I
= 300mA  
LOAD  
V
= 3V  
OUT_  
50  
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
50  
100  
150  
200  
250  
300  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
OUT1/OUT2 POWER-SUPPLY  
RIPPLE REJECTION vs. FREQUENCY  
OUT1/OUT2 LOAD REGULATION vs. LOAD CURRENT  
80  
70  
60  
50  
40  
30  
20  
10  
0
-0.1  
-0.3  
-0.5  
-0.7  
-0.9  
-1.1  
-1.3  
-1.5  
0.1  
1
10  
100  
1000  
0
50  
100  
150  
200  
250  
300  
FREQUENCY (kHz)  
LOAD CURRENT (mA)  
6
_______________________________________________________________________________________  
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
Pin Description  
PꢀN  
NAME  
FUNCTꢀON  
LDO Output-Voltage Select Input 1. SEL1 and SEL2 set the OUT1 and OUT2 voltages to one of nine  
combinations (Table 1).  
1
SEL1  
LDO Output-Voltage Select Input 2. SEL1 and SEL2 set the OUT1 and OUT2 voltages to one of nine  
combinations (Table 1).  
2
3
SEL2  
OUT2 Enable Input. Drive EN2 low to enable OUT2. Drive EN2 high to disable OUT2. If the MAX8620Y  
is placed into shutdown (PWR_ON = HF_PWR = low), OUT2 does not power regardless of the status  
of EN2 (Table 2, Figure 4).  
EN2  
Open-Drain, Active-Low Reset Output. RESET asserts low when V  
drops below 87% (typ) of  
OUT1  
regulation. RESET remains asserted for t after V  
also asserts when OUT1 is disabled (Figure 4). RESET deasserts if OUT1 is enabled and V  
rises above 87% (typ) of regulation. RESET  
OUT1  
RP  
4
RESET  
is  
OUT1  
above 87% of regulation after t  
.
RP  
Reference Bypass Capacitor Node. Bypass BP with a 0.01µF capacitor to GND. BP is high  
impedance when the MAX8620Y is disabled (PWR_ON = HF_PWR = low).  
5
6
BP  
Hands-Free Enable Input. Drive HF_PWR high or apply a pulse to enable the MAX8620Y. Power is  
enabled for 1.31s (typ) following a rising edge at HF_PWR (Table 2, Figure 4).  
HF_PWR  
Power-Enable Input. Drive PWR_ON high to enable the MAX8620Y (Table 2, Figure 4). Drive PWR_ON  
low to enter shutdown mode. In shutdown, the LX node is high impedance and both LDOs are  
disabled (depending on the state of HF_PWR).  
7
8
PWR_ON  
FB  
Step-Down Converter Output-Voltage Feedback Input. V regulates to 0.6V (typ). Connect FB to the  
FB  
center of an external resistor-divider between LX and GND to set V  
between 0.6V and 3.3V (see  
OUT3  
the Setting the Step-Down Output Voltage (OUT3) section).  
9
GND  
LX  
Ground. Connect GND to the exposed pad.  
Inductor Connection. LX is internally connected to the drain of the internal p-channel power MOSFET  
and the drain of the n-channel synchronous rectifier. LX is high impedance when OUT3 is disabled.  
10  
11  
12  
IN2  
IN1  
Power Input 2. Connect IN2 to IN1 as close to the device as possible.  
Power Input 1. Connect IN1 to IN2 as close to the device as possible. Bypass IN1 to GND with a 10µF  
ceramic capacitor, as close to the device as possible.  
300mA LDO Output 1. Bypass OUT1 to GND with a 4.7µF ceramic capacitor for 300mA applications,  
or a 2.2µF ceramic capacitor for 150mA applications. OUT1 is high impedance when disabled.  
13  
OUT1  
300mA LDO Output 2. Bypass OUT2 to GND with a 4.7µF ceramic capacitor for 300mA applications,  
or a 2.2µF ceramic capacitor for 150mA applications. OUT2 is high impedance when disabled.  
14  
EP  
OUT2  
EP  
Exposed Pad. Connect EP to GND.  
_______________________________________________________________________________________  
7
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
fixed frequency up to 4MHz, allowing for ultra-small  
external components. The step-down converter output  
current is guaranteed up to 500mA.  
Detailed Description  
The MAX8620Y µPMIC is designed to power low-core-  
voltage microprocessors or DSPs in portable devices.  
The µPMIC contains a fixed-frequency, high-efficiency  
step-down converter; two low-dropout regulators  
(LDOs); a 30ms (min) reset timer; and power-on/off  
control logic (Figure 1).  
When the step-down converter output voltage falls  
below the regulation threshold, the error comparator  
begins a switching cycle by turning the high-side pFET  
switch on. This switch remains on until the minimum on-  
time (t ) expires and the output voltage is in regula-  
ON  
Step-Down DC-DC Control Scheme  
The MAX8620Y step-down converter is optimized for  
high-efficiency voltage conversion over a wide load  
range while maintaining excellent transient response,  
minimizing external component size, and minimizing  
output voltage ripple. The DC-DC converter (OUT3)  
also features an optimized on-resistance internal  
MOSFET switch and synchronous rectifier to maximize  
efficiency. The MAX8620Y utilizes a proprietary hys-  
teretic-PWM control scheme that switches with nearly  
tion or the current-limit threshold (I  
) is exceeded.  
LIM3P  
Once off, the high-side switch remains off until the mini-  
mum off-time (t ) expires and the output voltage  
OFF  
again falls below the regulation threshold. During this  
off period, the low-side synchronous rectifier turns on  
and remains on until either the high-side switch turns  
on or the inductor current reduces to the rectifier-off  
current threshold (I  
= 30mA (typ)). The internal  
LXOFF  
synchronous rectifier eliminates the need for an exter-  
nal Schottky diode.  
V
IN  
C
IN  
IN1  
IN2  
pFET  
nFET  
MAX8620Y  
L
STEP-DOWN  
CONVERTER  
CONTROL  
LX  
FB  
OUT3  
R1  
R2  
C
OUT3  
C
FF  
CONTROL  
PWR_ON  
0.6V  
LOGIC  
ENABLE  
UVLO  
OUT1  
OUT1  
PU  
LDO1  
CONTROL  
HF_PWR  
ONE-  
C
OUT1  
R
SHOT  
TIMER  
RESET  
OUT2  
RESET  
RESET  
SEL1  
SEL2  
OUTPUT-  
VOLTAGE  
SELECT  
OUT2  
LDO2  
CONTROL  
C
OUT2  
IN1  
EN2  
BP  
EN2  
REFERENCE  
C
BP  
GND  
GND  
Figure 1. Functional Diagram  
_______________________________________________________________________________________  
8
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
compares the reference voltage to a feedback voltage  
and amplifies the difference. If the feedback voltage is  
lower than the reference voltage, the pass-transistor  
gate is pulled lower, allowing more current to pass to  
the outputs and increasing the output voltage. If the  
feedback voltage is too high, the pass-transistor gate is  
pulled up, allowing less current to pass to the output.  
Voltage-Positioning Load Regulation  
As seen in Figure 2, the MAX8620Y uses a unique step-  
down converter feedback network. By taking feedback  
from the LX node through R1, the usual phase lag due  
to the output capacitor is removed, making the loop  
exceedingly stable and allowing the use of a very small  
ceramic output capacitor. This configuration causes the  
output voltage to shift by the inductor series resistance  
multiplied by the load current. This output-voltage shift  
is known as voltage-positioning load regulation.  
Voltage-positioning load regulation greatly reduces  
overshoot during load transients, which effectively  
halves the peak-to-peak output-voltage excursions  
compared to traditional step-down converters. See the  
Load-Transient Response graph in the Typical  
Operating Characteristics section.  
Table 1. MAX86±0Y Output-Voltage  
Selection  
SEL1  
IN1  
SEL±  
IN1  
OUT1  
3.00V  
2.85V  
3.00V  
3.30V  
2.80V  
3.30V  
2.85V  
2.60V  
1.80V  
OUT±  
2.50V  
2.85V  
3.00V  
2.50V  
2.60V  
1.80V  
2.60V  
2.60V  
2.60V  
IN1  
OPEN  
GND  
IN1  
IN1  
OPEN  
OPEN  
OPEN  
GND  
GND  
GND  
Two low-dropout, low-quiescent-current, high-accuracy  
linear regulators supply loads up to 300mA each. The  
LDO output voltages are set using SEL1 and SEL2 (see  
Table 1). As shown in Figure 3, the LDOs include an  
internal reference, error amplifiers, p-channel pass tran-  
sistors, internal-programmable voltage-dividers, and an  
OUT1 power-good comparator. Each error amplifier  
OPEN  
GND  
IN1  
OPEN  
GND  
2.6V  
300mA  
I/O  
IN2  
IN1  
OUT1  
C
4.7µF  
OUT1  
100kΩ  
C
10µF  
IN  
Li+  
CELL  
RESET IN  
CORE  
RESET  
LX  
L
OUT3,  
500mA  
2.2µH  
MAX8620Y  
BP  
R1  
150kΩ  
C
150pF  
FF  
C
2.2µF  
OUT3  
C
BP  
0.01µF  
FB  
DSP  
OR  
µP  
R2  
75kΩ  
SEL2  
SEL1  
2.6V  
300mA  
ANALOG  
OUT2  
C
OUT2  
POWER-ON  
KEY  
4.7µF  
HF_PWR  
EN2  
V
BATT  
ON/OFF  
PWR_ON  
1MΩ  
GND  
Figure 2. Typical MAX8620Y DSP or µP Application  
_______________________________________________________________________________________  
9
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
IN1  
MAX8620Y  
P
MOS DRIVER  
WITH I  
LIMIT  
PWR_ON  
ERROR-  
AMP 2  
OUT2  
ON/OFF  
LOGIC  
HF_PWR  
P
OUT1  
MOS DRIVER  
ERROR-  
AMP 1  
WITH I  
LIMIT  
EN2  
RESET  
1.25V  
REF  
LDO THERMAL  
SENSOR  
POK  
TIMER  
87%  
REGULATION  
BP  
GND  
Figure 3. Linear-Regulator Functional Diagram  
PWR_ON is high (Table 2). OUT1, OUT2, and OUT3 are  
all disabled when PWR_ON is low. HF_PWR can tem-  
porarily bring the MAX8620 out of power-down mode  
when PWR_ON is low (see the HF_PWR section). In  
power-down, the control circuitry, internal-switching p-  
channel MOSFET, and the internal synchronous rectifier  
(n-channel MOSFET) turn off, and LX becomes high  
impedance. In addition, both LDOs are disabled.  
LDO Output-Voltage  
Selection (SEL1, SEL2)  
As shown in Table 1, the LDO output voltages, OUT1  
and OUT2, are set according to the logic states of  
SEL1 and SEL2. SEL1 and SEL2 are trilevel inputs: IN1,  
open, and GND. The input voltage, V , must be a  
IN1  
dropout voltage (V ) greater than the selected OUT1  
DO  
and OUT2 voltages.  
OUT2 Enable (EN2)  
Drive EN2 low to enable OUT2. Drive EN2 high to dis-  
able OUT2. If the MAX8620Y is placed into power-  
down using PWR_ON (PWR_ON = low), OUT2 does not  
power regardless of the status of EN2 (Table 2).  
Power-Enable Input (PWR_ON)  
Drive PWR_ON low to place the MAX8620Y in power-  
down mode and reduce supply current to 5.5µA (typ).  
Connect PWR_ON to IN1 = IN2 or logic-high to enable  
the MAX8620Y. EN2 enables and disables OUT2 when  
10 ______________________________________________________________________________________  
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
Table ±. MAX86±0Y Power Modes  
PWR_ON  
HF_PWR*  
EN2  
1
0
1
0
OUT1 AND OUT3  
Enabled  
OUT±  
1
1
0
0
0
X
X
1
1
0
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
Enabled  
Enabled  
Disabled  
X
*A rising edge at HF_PWR initiates a 1.31s one-shot timer. The status of HF_PWR shown in Table 2 indicates whether the one-shot  
period has expired as follows:  
1 = During t  
HP  
0 = t has expired  
HP  
Hands-Free Enable Input (HF_PWR)  
A rising edge at HF_PWR generates an internal one-  
shot pulse that enables the MAX8620Y for 1.31s (t ). If  
Power-Supply Sequencing  
The step-down converter output (OUT3) always powers  
up first and powers down last (Figure 4). OUT1 powers  
approximately 70µs after OUT3, and OUT2 powers  
HF  
HF_PWR remains high after t expires, the MAX8620Y  
HF  
,
reenters shutdown. During t  
OUT3 and OUT1 are  
approximately 50µs after V  
reaches 87% (typ) of  
OUT1  
HF  
enabled so the microprocessor (µP) can initialize and  
assert a logic-high at PWR_ON. OUT2 enables during  
HF  
its regulation voltage. When PWR_ON goes low, OUT1  
turns off, then OUT2 turns off, then OUT3 turns off 50µs  
after PWR_ON goes low.  
t
if EN2 is low. Once PWR_ON is high, the status of  
HF_PWR is ignored. If PWR_ON remains low after t  
expires, the MAX8620Y reenters shutdown.  
HF  
50µs  
HF_PWR  
PWR_ON  
OUT3  
t
HF  
t
SU1  
V
THR  
OUT1  
OUT2  
RESET  
EN2  
t
SU2  
t
RP  
Figure 4. MAX8620Y Power-Supply Sequencing  
______________________________________________________________________________________ 11  
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
event of fault conditions. For continuous operation, do  
not exceed the absolute-maximum junction-tempera-  
ture rating of T = +150°C.  
Reset Output (RESET)  
RESET is an open-drain, active-low output that indi-  
cates the status of OUT1. RESET is typically pulled up  
through a 100kresistor to the system logic voltage.  
RESET asserts at power-up. The reset timer begins  
J
Applications Information  
once V  
reaches 87% of regulation. RESET  
OUT1  
Power-On Closed-Loop System  
When the MAX8620Y is used in conjunction with a  
microcontroller, HF_PWR and PWR_ON can implement  
a short-key power-on closed-loop system (Figure 5).  
The MAX8620Y detects a rising edge at HF_PWR and  
generates an internal 1.31s (typ) one-shot pulse that  
begins power sequencing and temporarily enables  
OUT1, OUT2, and OUT3 (depending on the state of  
EN2). The 1.31s of power provides time for the proces-  
sor to initialize and assert a logic-high at PWR_ON.  
Once PWR_ON is driven high, OUT3, OUT1, and OUT2  
(depending on the state of EN2) remain enabled. If the  
microcontroller does not drive PWR_ON high during  
deasserts 60ms after V  
rises above 87% (typ) of  
OUT1  
regulation (see the Typical Operating Characteristics).  
RESET also asserts when OUT1 is disabled.  
Reference Bypass Capacitor Node (BP)  
An optional 0.01µF bypass capacitor at BP creates a  
lowpass filter for LDO noise reduction. OUT1 and OUT2  
exhibit 45µV  
of output-voltage noise with C  
OUT1  
=
BP  
RMS  
0.01µF and C  
= C  
= 4.7µF.  
OUT2  
Undervoltage Lockout  
must exceed the 2.85V typical undervolt-  
V
= V  
IN2  
IN1  
age-lockout threshold (V  
) before the MAX8620Y  
UVLO  
t
, the MAX8620Y disables OUT1, OUT2, and OUT3,  
HF  
enables OUT3 to begin power-supply sequencing (see  
the Power-Supply Sequencing section). The UVLO  
threshold hysteresis is typically 0.5V.  
and reenters shutdown.  
Current Limiting  
The MAX8620Y 300mA LDOs limit their output current to  
I
I
= 550mA (typ). If the LDO output current exceeds  
, the corresponding LDO output voltage drops. The  
LIM_  
LIM_  
step-down converter limits I  
to 675mA (min).  
LIM3P  
V
CORE  
POWER-ON  
KEY  
V
I/O  
µP  
MAX8620Y  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipa-  
tion in the MAX8620Y. Independent thermal-protection  
circuits monitor the step-down converter and the linear-  
regulator circuits. When the MAX8620Y junction temper-  
V
ANA  
HF_PWR  
PWR_ON  
PWR HOLD  
1MΩ  
ature exceeds T = +160°C, the thermal-overload  
J
protection circuit disables the corresponding circuitry,  
allowing the IC to cool. The thermal-overload protection  
circuitry enables the MAX8620Y after the junction tem-  
perature cools by 15°C, resulting in a pulsed output dur-  
ing continuous thermal-overload conditions. Thermal-  
overload protection safeguards the MAX8620Y in the  
POWER-HOLD SIGNAL  
Figure 5. Short-Key Power-On Closed-Loop System  
1± ______________________________________________________________________________________  
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
If a long-key press is preferred, see Figure 6. PWR_ON  
must remain high until a microprocessor asserts a logic-  
high signal when using this circuit. If a system includes  
multiple power-on sources, use a diode OR configura-  
tion, as shown in Figure 7.  
current, I , is typically 10nA. Select R2 so the resistor-  
FB  
divider bias current dominates I by a factor of 10. A  
FB  
wide range of resistor values is acceptable, but a good  
starting point is to choose R2 = 100k. R1 is given by:  
V
OUT3  
R1=R2  
1  
V
FB  
where V = 0.6V.  
FB  
V
CORE  
V
can be set between 0.6V and 3.3V, but the step-  
POWER-ON  
KEY  
OUT3  
V
I/O  
down converter dropout voltage and inductor voltage  
drop impact how close V can be to V . Total  
µP  
MAX8620Y  
V
ANA  
OUT3  
IN2  
PWR_ON  
dropout voltage is a function of the pFET on-resistance,  
the DCR of the inductor, and the load as follows:  
PWR HOLD  
1MΩ  
V
= I  
× R  
(
+DCR  
)
OUT3(DO)  
OUT3  
ONP INDUCTOR  
For example, with 300mA load:  
POWER-HOLD SIGNAL  
V
= 300mA × 0.65Ω + 50mΩ = 210mV  
(
)
OUT3(DO)  
Figure 6. Long-Key Power-On Closed Loop  
As a result, V  
OUT3  
= V  
must exceed the desired  
IN2  
IN1  
V
by 210mV to maintain regulation.  
Inductor Selection  
The MAX8620Y step-down converter operates with induc-  
tors between 1µH and 4.7µH. Low inductance values are  
physically smaller but require faster switching, which  
results in some efficiency loss. See the Typical Operating  
Characteristics section for efficiency and switching fre-  
quency versus inductor value plots. The inductor’s DC  
current rating needs to be only 100mA greater than the  
application’s maximum load current because the  
MAX8620Y step-down converter features zero-current  
overshoot during startup and load transients.  
V
CORE  
V
MAX8620Y  
I/O  
AC ADAPTER  
µP  
V
ANA  
HF_PWR  
PWR_ON  
HANDS-FREE KIT  
PWR HOLD  
POWER-ON  
KEY  
1MΩ  
For output voltages above 2.0V, when light-load effi-  
ciency is important, the minimum recommended induc-  
tor is 2.2µH. For optimum voltage-positioning load  
transients, choose an inductor with DC series resis-  
tance in the 50mto 150mrange (Table 3). For high-  
er efficiency at heavy loads (above 200mA) or minimal  
load regulation (but some transient overshoot), the  
resistance should be kept below 100m. For light-load  
applications up to 200mA, much higher resistance is  
acceptable with very little impact on performance.  
POWER-HOLD SIGNAL  
Figure 7. Multiple Power-On Inputs  
Setting the Step-Down Output Voltage  
(OUT3)  
Select a step-down converter output voltage between  
0.6V and 3.3V by connecting a resistor voltage-divider  
between LX, FB, and GND (see Figure 2). The FB bias  
______________________________________________________________________________________ 13  
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
Table 3. Suggested ꢀnductors  
ꢀNDUCTANCE  
(µH)  
ESR  
()  
CURRENT RATꢀNG  
(mA)  
MANUFACTURER  
SERꢀES  
DꢀMENSꢀONS (mm)  
1.0  
2.2  
0.15  
0.23  
300  
240  
2.0 x 1.25 x 1.25  
= 3.1mm3  
LB2012  
1.0  
1.5  
2.2  
3.3  
0.09  
0.11  
0.13  
0.20  
455  
350  
315  
280  
2.0 x 1.6 x 1.8  
= 5.8mm3  
LB2016  
LB2518  
1.0  
1.5  
2.2  
3.3  
0.06  
0.07  
0.09  
0.11  
500  
400  
340  
270  
2.5 x 1.8 x 2.0  
= 9mm3  
Taiyo Yuden  
1.0  
1.5  
2.2  
3.3  
4.7  
0.08  
0.11  
0.13  
0.16  
0.20  
775  
660  
600  
500  
430  
2.5 x 1.8 x 2.0  
= 9mm3  
LBC2518  
2.2  
4.7  
0.23  
0.40  
410  
300  
2.0 x 1.25 x 1.25  
= 3.1mm3  
CB2012  
CB2016  
CB2518  
2.2  
4.7  
0.13  
0.25  
510  
340  
2.0 x 1.6 x 1.8  
= 5.8mm3  
2.2  
4.7  
0.09  
0.13  
510  
340  
2.5 x 1.8 x 2.0  
= 9mm3  
1.0  
2.2  
4.7  
0.06  
0.10  
0.15  
1000  
790  
650  
3.2 x 2.5 x 1.7  
= 14mm3  
LQH32C_53  
LQM43FN  
D310F  
Murata  
2.2  
4.7  
0.10  
0.17  
400  
300  
4.5 x 3.2 x 0.9  
= 13mm3  
1.5  
2.2  
3.3  
0.13  
0.17  
0.19  
1230  
1080  
1010  
3.6 x 3.6 x 1.0  
= 13mm3  
TOKO  
1.5  
2.2  
2.7  
3.3  
0.10  
0.12  
0.15  
0.17  
1290  
1140  
980  
3.6 x 3.6 x 1.2  
= 16mm3  
D312C  
900  
1.5  
2.2  
3.3  
4.7  
0.05  
0.08  
0.10  
0.14  
900  
780  
600  
500  
3.2 x 3.2 x 1.2  
= 12mm3  
Sumida  
CDRH2D11  
14 ______________________________________________________________________________________  
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
lent series resistance (ESR) affects stability and output  
noise. Use output capacitors with an ESR of 0.1or  
less to ensure stability and optimum transient response.  
Surface-mount ceramic capacitors have very low ESR  
and are commonly available in values up to 10µF.  
Capacitor Selection  
Step-Down Converter Output Capacitor  
The output capacitor, C  
, is required to keep the  
OUT3  
output voltage ripple small and to ensure regulation  
loop stability. C must have low impedance at the  
OUT3  
Connect C  
as close as possible to the MAX8620Y  
OUT  
switching frequency. Ceramic capacitors with X5R or  
X7R dielectric are highly recommended due to their  
small size, low ESR, and small temperature coefficients.  
Due to the unique feedback network, the output capac-  
itance can be very low. For most applications, a 2.2µF  
capacitor is sufficient. For optimum load-transient per-  
formance and very low output ripple, the output capaci-  
tor value in µFs should be equal to or larger than the  
inductor value in µHs.  
to minimize the impact of PC board trace inductance.  
Power Dissipation and Thermal  
Considerations  
The MAX8620Y total power dissipation, P , is estimat-  
D
ed using the following equations:  
P
= P  
+ P  
+ P  
D
LOSS(OUT1)  
LOSS(OUT2) LOSS(OUT3)  
P
= I  
V
V  
V  
(
)
Input Capacitor  
LOSS(OUT1)  
(OUT1) IN  
OUT1  
The input capacitor, C , reduces the current peaks  
IN  
P
= I  
V
(
)
LOSS(OUT2)  
(OUT2) IN  
OUT2  
drawn from the battery or input power source and  
reduces switching noise in the IC. The impedance of  
η
100  
2
P
= P  
1 −  
I  
(OUT3)  
LOSS(OUT3)  
IN(OUT3)  
C
IN  
at the switching frequency should be kept very low.  
Ceramic capacitors with X5R or X7R dielectrics are  
highly recommended due to their small size, low ESR,  
and small temperature coefficients. Use a 10µF ceram-  
ic capacitor or equivalent amount of multiple capacitors  
× R  
DC(INDUCTOR)  
`
where P  
is the input power for OUT3, η is the  
IN(OUT3)  
step-down converter efficiency, and R  
the inductor’s DC resistance.  
is  
DC(INDUCTOR)  
in parallel between IN1 and GND. Connect C as  
IN  
close as possible to the MAX8620Y to minimize the  
impact of PC board trace inductance.  
The die junction temperature can be calculated as follows:  
Feed-Forward Capacitor  
The feed-forward capacitor, C , sets the feedback  
FF  
T
= T + P × θ  
J
A
D
JA  
loop response, controls the switching frequency, and is  
critical in obtaining the best efficiency possible.  
Choose a small ceramic C0G (NPO) or X7R capacitor  
with a value given by:  
where θ = 55°C/W at +70°C.  
T should not exceed +150°C in normal operating con-  
J
ditions.  
JA  
PC Board Layout and Routing  
High switching frequencies and relatively large peak  
currents make the PC board layout a very important  
aspect of design. Good design minimizes excessive  
EMI on the feedback paths and voltage gradients in the  
ground plane, both of which can result in instability or  
L
R1  
C
=
×10S  
FF  
where R1 is the resistor between LX and FB (Figure 2).  
Select the closest standard value to C as possible.  
FF  
regulation errors. Connect C close to IN1 and GND.  
IN  
LDO Output Capacitors  
For applications that require greater than 150mA of out-  
put current, connect a 4.7µF ceramic capacitor  
between the LDO output and GND. For applications  
that require less than 150mA of output current, connect  
a 2.2µF ceramic capacitor between the LDO output  
Connect the inductor and output capacitors (C  
) as  
OUT3  
close to the IC as possible and keep the traces short,  
direct, and wide.  
The traces between C , C , and FB are sensitive  
OUT3 FF  
to inductor magnetic-field interference. Route these  
traces between ground planes or keep the traces away  
from the inductor.  
and GND. The LDO output capacitor’s (C  
) equiva-  
OUT_  
______________________________________________________________________________________ 15  
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
Connect GND to the ground plane. The external feed-  
back network should be very close to the FB pin, within  
Pin Configuration  
0.2in (5mm). Keep noisy traces, such as the LX node,  
TOP VIEW  
as short as possible. Connect GND to the exposed  
paddle directly under the IC. Figure 8 and the  
MAX8620Y evaluation kit illustrate examples of PC  
board layout and routing schemes.  
14 13 12 11 10  
9
8
MAX8620Y  
SEL1  
SEL2  
1
2
3
4
5
6
7
IN  
C1  
EN2  
U1  
GND  
R1 L1  
C4  
OUT3  
3mm x 3mm x 0.8mm  
TDFN  
RESET  
HF_PWR  
PWR_ON  
Chip Information  
TRANSISTOR COUNT: 4481  
Figure 8. Recommended PC Board Layout  
PROCESS: BiCMOS  
16 ______________________________________________________________________________________  
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D2  
D
A2  
PIN 1 ID  
N
0.35x0.35  
b
[(N/2)-1] x e  
REF.  
PIN 1  
INDEX  
AREA  
E
E2  
DETAIL A  
e
A1  
k
C
C
L
L
A
L
L
e
e
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
-DRAWING NOT TO SCALE-  
21-0137  
G
2
______________________________________________________________________________________ 17  
µPMIC for Microprocessors or DSPs  
in Portable Equipment  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
DOWNBONDS  
ALLOWED  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
b
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.95 REF  
1.95 REF  
2.00 REF  
2.40 REF  
2.40 REF  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
0.40±0.05  
0.40±0.05  
0.30±0.05  
0.30±0.05  
0.30±0.05  
NO  
NO  
T633-2  
6
T833-1  
8
NO  
T833-2  
8
NO  
T833-3  
8
YES  
NO  
T1033-1  
T1433-1  
T1433-2  
10  
14  
14  
1.50±0.10 2.30±0.10 0.50 BSC MO229 / WEED-3 0.25±0.05  
1.70±0.10 2.30±0.10 0.40 BSC  
1.70±0.10 2.30±0.10 0.40 BSC  
- - - -  
- - - -  
0.20±0.05  
0.20±0.05  
YES  
NO  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
21-0137  
G
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX8620YETD+T

Power Supply Support Circuit, Fixed, 2 Channel, BICMOS, PDSO14, 3 X 3 MM, 0.80 MM HEIGHT, TINY, TDFN-14
MAXIM

MAX8621Y

Dual Step-Down DC-DC Power-Management ICs for Portable Devices
MAXIM

MAX8621YETG

Dual Step-Down DC-DC Power-Management ICs for Portable Devices
MAXIM

MAX8621YETG+

Power Supply Support Circuit, Adjustable, 6 Channel, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-24
MAXIM

MAX8621YETG+T

Power Supply Support Circuit, Adjustable, 6 Channel, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-24
MAXIM

MAX8621YETG-T

Power Supply Support Circuit, Adjustable, 6 Channel, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, TQFN-24
MAXIM

MAX8621ZETG

Dual Step-Down DC-DC Power-Management ICs for Portable Devices
MAXIM

MAX8621ZETG+

Power Supply Support Circuit, Adjustable, 6 Channel, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-24
MAXIM

MAX8621ZETG+T

Power Supply Support Circuit, Adjustable, 6 Channel, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-24
MAXIM

MAX8621ZETG-T

Power Supply Support Circuit, Adjustable, 6 Channel, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, TQFN-24
MAXIM

MAX8622ETB+

1.76 A SWITCHING REGULATOR, 300 kHz SWITCHING FREQ-MAX, PDSO8, 3 X 3 MM, 0.80 MM HEIGHT, TDFN-8
ROCHESTER

MAX8622ETB+T

Switching Regulator, 1.76A, 300kHz Switching Freq-Max, BICMOS, PDSO10, TDFN-10
MAXIM