MAX8621YETG+ [MAXIM]

Power Supply Support Circuit, Adjustable, 6 Channel, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-24;
MAX8621YETG+
型号: MAX8621YETG+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Support Circuit, Adjustable, 6 Channel, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-24

便携式 便携式设备
文件: 总18页 (文件大小:360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3539; Rev 1; 8/05  
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
General Description  
Features  
The MAX8621Y/MAX8621Z power-management inte-  
grated circuits (PMICs) are designed for a variety of  
portable devices including cellular handsets. These  
PMICs include two high-efficiency step-down DC-DC  
converters, four low-dropout linear regulators (LDOs)  
with pin-programmable capability, one open-drain dri-  
ver, a 60ms (typ) reset timer, and power-on/off control  
logic. These devices offer high efficiency with a no-load  
supply current of 160µA, and their small thin QFN 4mm  
x 4mm package makes them ideal for portable devices.  
Two 500mA Step-Down Converters  
Up to 4MHz Switching Frequency  
Adjustable Output from 0.6V to 3.3V  
Four Low-Noise LDOs with Pin-Programmable  
Output Voltages  
One Open-Drain Driver  
60ms (typ) Reset Timer  
Power-On/Off Control Logic and Sequencing  
4mm x 4mm x 0.8mm 24-Pin Thin QFN  
The step-down DC-DC converters utilize a proprietary  
4MHz hysteretic-PWM control scheme that allows for  
ultra-small external components. Internal synchronous  
rectification improves efficiency and eliminates the  
external Schottky diode that is required in conventional  
step-down converters. The output voltage is adjustable  
from 0.6V to 3.3V. The output current is guaranteed up  
to 500mA.  
Ordering Information  
PART  
TEMP RANGE PIN-PACKAGE  
24 Thin QFN  
4mm x 4mm (T2444-4)  
MAX8621YETG  
-40°C to +85°C  
24 Thin QFN  
4mm x 4mm (T2444-4)  
The four LDOs offer low 45µV  
output noise and low  
RMS  
MAX8621YETG+  
MAX8621ZETG  
MAX8621ZETG+  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
dropout of only 100mV at 100mA. OUT1 and OUT2  
deliver 300mA (min) of continuous output current.  
OUT3 and OUT4 deliver 150mA (min) of continuous  
output current. The output voltages are pin selectable  
by SEL1 and SEL2 for flexibility. The MAX8621Y/  
MAX8621Z offer different sets of LDO output voltages.  
24 Thin QFN  
4mm x 4mm (T2444-4)  
24 Thin QFN  
4mm x 4mm (T2444-4)  
+ Denotes lead-free package.  
A microprocessor reset output (RESET) monitors OUT1  
and warns the system of impending power loss, allow-  
ing safe shutdown. RESET asserts during power-up,  
power-down, shutdown, and fault conditions where  
Typical Operating Circuit  
BUCK1  
1.375V, 500mA  
INPUT  
2.6V TO 5.5V  
LX1  
V
is below its regulation voltage.  
OUT1  
IN1  
A 200mA driver output is provided to control LED back-  
lighting or provide an open-drain connection for resis-  
tors such as in feedback networks.  
MAX8621Y  
MAX8621Z  
FB1  
IN2  
IN3  
PGND1  
LX2  
Applications  
BUCK2  
1.8V, 500mA  
Cellular Handsets  
Smart Phones, PDAs  
Digital Cameras  
MP3 Players  
PWRON  
FB2  
SEL1  
SEL2  
PGND2  
OUT1  
OUT1  
2.6V, 300mA  
EN2  
EN3  
Wireless LAN  
RESET  
OUT2  
RESET  
OUT2  
2.6V, 300mA  
Pin Configuration appears at end of data sheet.  
EN4  
OUT3  
1.8V, 150mA  
OUT3  
ENDR  
REFBP  
OUT4  
3V, 150mA  
OUT4  
DR  
INPUT  
GND  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
ABSOLUTE MAXIMUM RATINGS  
PWRON, IN1, IN2, IN3, RESET, FB1, FB2,  
ENDR, REFBP, SEL1, SEL2 to GND..................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
A
24-Pin 4mm x 4mm Thin QFN  
(derate 27.8mW/°C above +70°C)..........................2222.2mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
EN2, EN3, EN4, DR to GND.......................-0.3V to (V  
OUT1, OUT2, OUT3, OUT4 to GND...........-0.3V to (V  
PGND1, PGND2 to GND ......................................-0.3V to + 0.3V  
LX1, LX2 Current.......................................................... 1.5A  
LX1, LX2 to GND (Note 1) ..........................-0.3V to (V + 0.3V)  
+ 0.3V)  
+ 0.3V)  
IN3  
IN2  
RMS  
IN1  
DR Current......................................................................0.5A  
RMS  
Note 1: LX_ has internal clamp diodes to GND and IN1. Applications that forward-bias these diodes should take care not to exceed  
the IC’s package dissipation limits.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 3.7V, C  
= 10µF, C  
= C  
= 4.7µF, C  
= C  
= 4.7µF, C  
= C  
= 2.2µF, C = 0.01µF, T = -40°C to  
REFBP A  
IN  
IN1  
IN2  
IN3  
OUT1  
OUT2  
OUT3  
OUT4  
+85°C, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
Input Supply Range  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNIT  
V
After startup  
2.6  
Shutdown Supply Current  
V
= 4.2V (Note 3)  
2
15  
µA  
IN  
V
= 3.7V; BUCK1, BUCK2, OUT1, OUT2 on; other  
IN  
160  
275  
710  
300  
circuits off  
No-Load Supply Current  
µA  
µA  
V
= 3.7V, BUCK1 and BUCK2 on, all LDOs on  
IN  
IN  
V
= 3.7V, BUCK1 and BUCK2 with 500µA load each,  
Light-Load Supply Current  
OUT1 and OUT2 on, other circuits off  
UNDERVOLTAGE LOCKOUT  
Undervoltage Lockout (Note 4)  
V
V
rising  
falling  
2.70  
2.85  
2.35  
3.05  
2.55  
IN  
IN  
V
THERMAL SHUTDOWN  
Threshold  
T
rising  
+160  
15  
°C  
°C  
A
Hysteresis  
REFERENCE  
Reference Bypass Output  
Voltage  
T
= 0°C to +85°C  
1.235  
1.44  
1.250  
0.2  
1.265  
0.4  
V
A
REF Supply Rejection  
LOGIC AND CONTROL INPUTS  
Input Low Level  
2.6V V 5.5V  
mV/V  
IN  
PWRON, EN2, EN3, EN4; 2.6V V 5.5V  
V
V
IN  
PWRON, EN2, EN3, EN4; 2.6V V 4.2V  
1.12  
1.25  
IN  
Input High Level  
PWRON, EN2, EN3, EN4; 2.6V V 5.5V  
IN  
Logic Input Current  
EN3, EN4; 0V < V < 5.5V  
IN  
-1  
+1  
µA  
V
Tristate Low Input Threshold  
SEL_  
0.3  
0.7  
50  
1.0  
Tristate Low Input Threshold  
Hysteresis  
SEL_  
mV  
V
V
-
V
-
V
-
IN  
IN  
1.2V  
IN  
Tristate High Input Threshold  
SEL_  
0.8V  
0.4V  
2
_______________________________________________________________________________________  
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.7V, C  
= 10µF, C  
= C  
= 4.7µF, C  
= C  
= 4.7µF, C  
= C  
= 2.2µF, C = 0.01µF, T = -40°C to  
REFBP A  
IN  
IN1  
IN2  
IN3  
OUT1  
OUT2  
OUT3  
OUT4  
+85°C, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1600  
3.3  
UNIT  
Tristate High Input Threshold  
Hysteresis  
SEL_  
50  
mV  
PWRON, EN2 Pulldown Resistor  
400  
0.6  
800  
kΩ  
to GND  
STEP-DOWN DC-DC CONVERTER 1 (BUCK1)  
Supply Current  
I
= 0A, no switching  
40  
µA  
V
LOAD  
Output Voltage Range  
FB1 Threshold Voltage  
FB1 Threshold Line Regulation  
V
falling  
0.603  
0.3  
V
FB1  
2.6V V 5.5V  
%/V  
IN  
FB1 Threshold Voltage Hysteresis  
1
%
(% of V  
)
FB1  
Shutdown  
0.01  
0.01  
1000  
1000  
0.65  
0.35  
45  
FB1 Bias Current  
Current Limit  
µA  
mA  
V
= 0.5V  
FB1  
p-MOSFET switch (I  
)
670  
750  
1500  
1330  
1.5  
LIMP  
n-MOSFET rectifier (I  
)
LIMN  
p-MOSFET switch, I  
= -40mA  
LX1  
On-Resistance  
Ω
mA  
ns  
n-MOSFET rectifier, I  
= 40mA  
0.8  
LX1  
Rectifier Off-Current Threshold  
Minimum On- and Off-Times  
I
t
t
70  
LXOFF  
ON  
107  
95  
OFF  
STEP-DOWN DC-DC CONVERTER 2 (BUCK2)  
Supply Current  
I
= 0A, no switching  
40  
µA  
V
LOAD  
Output Voltage Range  
FB2 Threshold Voltage  
FB2 Threshold Line Regulation  
0.6  
3.3  
V
falling  
0.603  
0.3  
V
FB2  
2.6V V 5.5V  
%/V  
IN  
FB2 Threshold Voltage Accuracy  
(Falling) (% of VFB2)  
I
= 0A  
-2.5  
+2.5  
%
%
LOAD  
FB2 Threshold Voltage Hysteresis  
(% of VFB2)  
1
Shutdown  
= 0.5V  
0.01  
0.01  
1000  
1000  
0.65  
0.35  
45  
FB2 Bias Current  
Current Limit  
µA  
mA  
V
FB  
p-MOSFET switch  
n-MOSFET rectifier  
p-MOSFET switch, I  
670  
750  
1500  
1330  
1.5  
= -40mA  
LX2  
On-Resistance  
Ω
mA  
ns  
n-MOSFET rectifier, I  
= 40mA  
0.8  
LX2  
Rectifier Off-Current Threshold  
Minimum On- and Off-Times  
I
t
t
70  
LXOFF  
ON  
107  
95  
OFF  
_______________________________________________________________________________________  
3
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.7V, C  
= 10µF, C  
= C  
= 4.7µF, C  
= C  
= 4.7µF, C  
= C  
= 2.2µF, C = 0.01µF, T = -40°C to  
REFBP A  
IN  
IN1  
IN2  
IN3  
OUT1  
OUT2  
OUT3  
OUT4  
+85°C, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
OUT1 (LDO1)  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
T
T
= 0°C to +85°C  
-1.3  
+0.6  
0
+2.0  
+2.5  
A
I
= 1mA, 3.7V V 5.5V,  
IN  
LOAD  
relative to V  
Output Voltage Accuracy  
OUT(NOM)  
= -40°C to +85°C  
-2.3  
%
A
I
= 150mA, relative to V  
LOAD  
OUT(NOM)  
Output Current  
Current Limit  
300  
940  
420  
mA  
mA  
mV  
V
= 0V  
310  
550  
200  
OUT1  
= 200mA, T = +85°C  
LOAD A  
Dropout Voltage  
I
V
= greater of 3.7V or (V  
+ 0.7V),  
IN  
OUT(NOM)  
Load Regulation  
1.2  
60  
%
1mA < I  
< 300mA, V  
= V  
= 0V  
LOAD  
SEL1  
SEL2  
Power-Supply Rejection  
10Hz to 10kHz, C  
= 4.7µF, I  
= 30mA  
dB  
OUT1  
LOAD  
ΔV  
/ΔV  
IN2  
OUT1  
Output Noise Voltage (RMS)  
100Hz to 100kHz, C  
= 4.7µF, I  
= 30mA  
45  
4.7  
2.2  
21  
µV  
OUT1  
LOAD  
RMS  
0 < I  
0 < I  
< 300mA  
< 150mA  
LOAD  
LOAD  
Output Capacitor for Stable  
Operation  
µF  
Ground Current  
I
= 500µA  
µA  
LOAD  
OUT2 (LDO2)  
T
T
= 0°C to +85°C  
-1.3  
-2.3  
+0.6  
0
+2.0  
+2.5  
A
I
= 1mA, 3.7V V 5.5V,  
LOAD  
IN_  
relative to V  
Output Voltage Accuracy  
OUT(NOM)  
= -40°C to +85°C  
%
A
I
= 150mA, relative to V  
= 0V  
LOAD  
OUT(NOM)  
Output Current  
Current Limit  
300  
940  
420  
mA  
mA  
mV  
%
V
310  
550  
200  
1.2  
OUT2  
= 200mA , T = +85°C  
LOAD A  
Dropout Voltage  
Load Regulation  
I
1mA < I  
< 300mA, V  
= V  
= 0V  
LOAD  
SEL1  
SEL2  
Power-Supply Rejection  
10Hz to 10kHz, C  
= 4.7µF, I  
= 30mA  
60  
dB  
OUT2  
LOAD  
ΔV  
/ΔV  
IN2  
OUT2  
Output Noise Voltage (RMS)  
100Hz to 100kHz, C  
= 4.7µF, I  
= 30mA  
45  
4.7  
2.2  
21  
µV  
OUT2  
LOAD  
RMS  
0 < I  
0 < I  
< 300mA  
< 150mA  
LOAD  
LOAD  
Output Capacitor for Stable  
Operation  
µF  
Ground Current  
I
= 500µA  
µA  
%
LOAD  
OUT3 (LDO3)  
T
T
= 0°C to +85°C  
-1.3  
-2.3  
+0.3  
0
+2.0  
+2.5  
A
I
= 1mA, 3.7V V  
5.5V,  
LOAD  
IN_  
relative to V  
Output Voltage Accuracy  
OUT(NOM)  
= -40°C to +85°C  
A
I
= 75mA, relative to V  
LOAD  
OUT(NOM)  
Output Current  
Current Limit  
150  
650  
210  
mA  
mA  
mV  
%
V
= 0V  
165  
360  
100  
0.6  
OUT3  
= 100mA , T = +85°C  
LOAD A  
Dropout Voltage  
Load Regulation  
I
1mA < I  
< 150mA, V  
= V  
= 0V  
LOAD  
SEL1  
SEL2  
4
_______________________________________________________________________________________  
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.7V, C  
= 10µF, C  
= C  
= 4.7µF, C  
= C  
= 4.7µF, C  
= C  
= 2.2µF, C = 0.01µF, T = -40°C to  
REFBP A  
IN  
IN1  
IN2  
IN3  
OUT1  
OUT2  
OUT3  
OUT4  
+85°C, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
CONDITIONS  
= 2.2µF, I  
MIN  
TYP  
MAX  
UNIT  
Power-Supply Rejection  
10Hz to 10kHz, C  
= 30mA  
LOAD  
60  
45  
dB  
OUT3  
ΔV  
/ΔV  
IN2  
OUT3  
Output Noise Voltage (RMS)  
100Hz to 100kHz, C  
= 2.2µF, I  
= 30mA  
µV  
OUT3  
LOAD  
RMS  
Output Capacitor for Stable  
Operation  
0 < I  
< 150mA  
2.2  
µF  
LOAD  
OUT4 (LDO4)  
V
V
1.8V  
-1.3  
-1.30  
-2.3  
+0.3  
+0.3  
+2.0  
+2.35  
+2.5  
OUT(NOM)  
OUT(NOM)  
T = 0°C to  
A
+85°C  
I
V
V
= 1mA, 3.7V ≤  
5.5V, relative to  
LOAD  
= 1.5V  
IN_  
Output Voltage Accuracy  
%
OUT(NOM)  
T
A
= -40°C to +85°C  
I
= 75mA, relative to V  
0
LOAD  
OUT(NOM)  
Output Current  
Current Limit  
150  
650  
210  
mA  
mA  
mV  
%
V
= 0V  
165  
360  
100  
0.6  
OUT4  
= 100mA, T = +85°C  
LOAD A  
Dropout Voltage  
Load Regulation  
I
1mA < I  
< 150mA, V  
= V  
= 0  
LOAD  
SEL1  
SEL2  
Power-Supply Rejection  
10Hz to 10kHz, C  
= 2.2µF, I  
= 30mA  
60  
45  
dB  
OUT4  
LOAD  
ΔV  
/ΔV  
IN2  
OUT4  
Output Noise Voltage (RMS)  
100Hz to 100kHz, C  
= 2.2µF, I  
= 30mA  
µV  
OUT4  
LOAD  
RMS  
Output Capacitor for Stable  
Operation  
0 < I  
< 150mA  
2.2  
µF  
LOAD  
DRIVER (DR)  
ENDR Turn-On Threshold  
ENDR Input Current  
DR Output Low Voltage  
DR Off-Current (Leakage)  
RESET  
I
= 1mA  
0.65  
0.2  
V
DR  
V
= 0V and 5.5V  
-1  
-1  
+1  
0.4  
+1  
µA  
V
ENDR  
I
= 150mA, V  
= 3.7V  
ENDR  
DR  
V
= V = 5.5V, V = 0V  
ENDR  
µA  
DR  
IN  
V
OUT1  
Output High Voltage  
V
- 0.3V  
Output Low Voltage  
I
= 1mA  
0.3  
90  
V
SINK  
RESET Threshold  
Percentage of nominal OUT1 rising when RESET falls  
From OUT1 87% until RESET = HIGH  
84  
8
87  
60  
14  
%
RESET Active Timeout Period  
Pullup Resistance to OUT1  
ms  
kΩ  
20  
Note 1: V , V , and V  
are shorted together and single input is referred to as V .  
IN  
IN1 IN2  
IN3  
Note 2: All units are 100% production tested at T = +85°C. Limits over the operating range are guaranteed by design.  
A
Note 3: OUT1, OUT2, OUT3, OUT4, LX1, and LX2 to ground.  
Note 4: When the input voltage is greater than 2.85V (typ), the UVLO comparator trips and the threshold is reduced to 2.35V (typ).  
This allows the system to start normally until the input voltage decays to 2.35V.  
_______________________________________________________________________________________  
5
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
Typical Operating Characteristics  
(Circuit of Figure 3, V  
= V  
= V  
= 3.6V, PWRON = IN, V  
= 1.375V, V  
= 1.8V, V  
= 2.6V, V  
= 2.6V, V  
IN1  
IN2  
IN3  
BUCK1  
BUCK2  
OUT1  
OUT2 OUT3  
= 1.8V, V  
= 3.0V, SEL1 = SEL2 = open, LX1 = LX2 = Murata LQH32CN2R2M53, T = +25°C, unless otherwise noted.)  
OUT4  
A
SUPPLY CURRENT  
vs. INPUT VOLTAGE  
STARTUP WAVEFORMS  
MAX8621 toc02  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
NO LOAD  
BUCK1, BUCK2, OUT1, OUT2: ON  
5V/div  
0
PWRON  
2V/div  
0
2V/div  
0
BUCK1  
BUCK2  
5V/div  
0
OUT1  
OUT2  
5V/div  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
50μs/div  
INPUT VOLTAGE (V)  
RESET WAVEFORMS  
SHUTDOWN WAVEFORMS  
MAX8621 toc04  
MAX8621 toc03  
5V/div  
0
PWRON  
PWRON  
2V/div  
0
2V/div  
0
2V/div  
0
BUCK1  
BUCK2  
OUT1  
2V/div  
0
LOAD = 1mA  
5V/div  
0
OUT1  
OUT2  
2V/div  
0
5V/div  
0
RESET  
10mA LOAD ON ALL FOUR OUTPUTS  
20ms/div  
100μs/div  
6
_______________________________________________________________________________________  
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
Typical Operating Characteristics (continued)  
(Circuit of Figure 3, V  
= V  
= V  
= 3.6V, PWRON = IN, V  
= 1.375V, V  
= 1.8V, V  
= 2.6V, V  
= 2.6V, V  
IN1  
IN2  
IN3  
BUCK1  
BUCK2  
OUT1  
OUT2 OUT3  
= 1.8V, V  
= 3.0V, SEL1 = SEL2 = open, LX1 = LX2 = Murata LQH32CN2R2M53, T = +25°C, unless otherwise noted.)  
OUT4  
A
OUT2 OUTPUT VOLTAGE ACCURACY  
vs. LOAD CURRENT  
OUT1 OUPUT VOLTAGE  
vs. INPUT VOLTAGE  
2.0  
1.5  
1.0  
0.5  
0
2.650  
2.625  
2.600  
2.575  
2.550  
2.525  
2.500  
LOAD = 0  
LOAD = 300mA  
FALLING  
-0.5  
-1.0  
-1.5  
-2.0  
RISING  
0
50  
100  
150  
200  
250  
300  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
OUT1 POWER-SUPPLY  
RIPPLE REJECTION vs. FREQUENCY  
OUT4 DROPOUT VOLTAGE  
vs. LOAD CURRENT  
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
60  
40  
20  
0
0.1  
1
10  
100  
1000  
0
50  
100  
150  
FREQUENCY (kHz)  
LOAD CURRENT (mA)  
EFFICICENCY vs. LOAD CURRENT  
EFFICICENCY vs. LOAD CURRENT  
(V  
= 1.8V)  
BUCK2  
(V  
= 1.375V)  
BUCK1  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
4.7μH  
2.2μH  
4.7μH  
2.2μH  
1μH  
1μH  
BUCK1, OUT1, OUT2:  
ON WITH NO LOAD  
BUCK2, OUT1, OUT2:  
ON WITH NO LOAD  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
_______________________________________________________________________________________  
7
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
Typical Operating Characteristics (continued)  
(Circuit of Figure 3, V  
= V  
= V  
= 3.6V, PWRON = IN, V  
= 1.375V, V  
= 1.8V, V  
= 2.6V, V  
= 2.6V, V  
IN1  
IN2  
IN3  
BUCK1  
BUCK2  
OUT1  
OUT2 OUT3  
= 1.8V, V  
= 3.0V, SEL1 = SEL2 = open, LX1 = LX2 = Murata LQH32CN2R2M53, T = +25°C, unless otherwise noted.)  
OUT4  
A
SWITCHING FREQUENCY  
vs. LOAD CURRENT  
BUCK1 LIGHT-LOAD WAVEFORMS  
MAX8621 toc12  
10  
1μH  
10mV/div  
AC-COUPLED  
V
BUCK1  
2.2μH  
4.7μH  
LOAD = 50mA  
1
200mA/div  
0
I
LX1  
5V/div  
0
V
LX1  
0.1  
0
100  
200  
300  
400  
500  
200ns/div  
LOAD CURRENT (mA)  
BUCK1 HEAVY-LOAD WAVEFORMS  
BUCK1 LOAD-TRANSIENT RESPONSE  
MAX8621 toc13  
MAX8621 toc14  
10mV/div  
AC-COUPLED  
50mV/div  
AC-COUPLED  
V
V
BUCK1  
BUCK1  
LOAD = 300mA  
500mA/div  
0
I
I
LX1  
LX1  
200mA/div  
0
400mA LOAD  
V
5V/div  
0
I
LX1  
BUCK1  
500mA/div  
0
200ns/div  
5μs/div  
BUCK1 OUTPUT VOLTAGE  
vs. LOAD CURRENT (VOLTAGE POSITIONING)  
1.44  
1.42  
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
0
100  
200  
300  
400  
500  
LOAD CURRENT (mA)  
8
_______________________________________________________________________________________  
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
Pin Description  
PIN NAME  
FUNCTION  
1
2
3
FB1  
FB2  
Voltage Feedback for Step-Down Converter 1. FB1 regulates to 0.6V nominal.  
Voltage Feedback for Step-Down Converter 2. FB2 regulates to 0.6V nominal.  
GND Ground. Ground for all LDOs and the control section.  
Reference Noise Bypass. Connect a 0.01µF ceramic capacitor from REFBP to GND. Not intended to drive resistive  
load. REFBP is high impedance in shutdown.  
4
5
6
7
REFBP  
EN4  
OUT4  
EN3  
Enable Input for OUT4. Drive EN4 high to turn on OUT4.  
150mA LDO4 output. Bypass OUT4 to GND with a 2.2µF ceramic capacitor. OUT4 is high impedance when  
disabled. OUT4 can only be activated if OUT1 is within 87% of regulation.  
Enable Input for OUT3. Drive EN3 high to turn on OUT3.  
Enable Input for OUT2. Drive EN2 high to disable OUT2. Drive EN2 low or leave open to enable OUT2. EN2 is  
internally pulled to GND by an 800kΩ (typ) pulldown resistor. If the MAX8621Y/MAX8621Z are placed into shutdown  
using PWRON (PWRON = low), OUT2 does not power regardless of the status of EN2.  
8
EN2  
300mA LDO2 Output. Bypass with a 4.7µF ceramic capacitor to GND. OUT2 is high impedance when disabled.  
OUT2 can only be activated if OUT1 is within 87% of regulation.  
9
OUT2  
IN2  
Supply Voltage to the Output MOSFET of All 4 LDOs. IN2 must be shorted to IN1 and IN3. Connect a 4.7µF ceramic  
capacitor from IN2 to GND.  
10  
Open-Drain, Active-Low Reset Output. RESET asserts low when V  
drops below 87% (typ) of regulation. RESET  
OUT1  
11 RESET  
deasserts 60ms after V  
rises above 87% (typ) of regulation (Figure 2).  
OUT1  
12  
13  
OUT1 300mA LDO1 Output. Bypass with a 4.7µF ceramic capacitor to GND. OUT1 is high impedance when disabled.  
150mA LDO3 Output. Bypass OUT3 to GND with a 2.2µF ceramic capacitor. OUT3 is high impedance when  
OUT3  
disabled. OUT3 can only be activated if OUT1 is within 87% of regulation.  
Power Enable Input. Drive PWRON high to enable the MAX8621Y/MAX8621Z. Drive PWRON low to enter shutdown  
mode. PWRON has an internal 800kΩ (typ) pulldown resistor.  
14 PWRON  
Enable Input for DR. Drive ENDR low for DR to go into high impedance. Drive ENDR high to activate DR, pulling  
DR low.  
15  
16  
17  
18  
19  
ENDR  
IN3  
Supply Voltage to the Control Section. IN3 must be shorted to IN1 and IN2. Connect a 4.7µF ceramic capacitor from  
IN3 to GND.  
LDO Output-Voltage Select Input 2. SEL1 and SEL2 set the OUT1, OUT2, OUT3, and OUT4 voltages to one of nine  
combinations (Table 1).  
SEL2  
SEL1  
DR  
LDO Output-Voltage Select Input 1. SEL1 and SEL2 set the OUT1, OUT2, OUT3, and OUT4 voltages to one of nine  
combinations (Table 1).  
200mA Driver Output. Connects to the open drain of an internal n-channel MOSFET whose gate is controlled by  
ENDR.  
20 PGND2 Power Ground for BUCK2 and DR Switch  
Inductor Connection for BUCK2. LX2 is internally connected to the drain of the internal p-channel MOSFET and the  
drain of the internal n-channel synchronous rectifier for BUCK2. LX2 is high impedance when BUCK2 is disabled.  
21  
22  
23  
LX2  
IN1  
LX1  
Supply Voltage to the Output Stage of BUCK1 and BUCK2. IN1 must be shorted to IN2 and IN3. Connect a 10µF  
ceramic capacitor from IN1 to GND.  
Inductor Connection for BUCK1. LX1 is internally connected to the drain of the internal p-channel MOSFET and the  
drain of the internal n-channel synchronous rectifier for BUCK1. LX1 is high impedance when BUCK1 is disabled.  
24 PGND1 Power Ground for BUCK1  
EP  
Exposed Paddle. Connect the exposed paddle to GND, PGND1, and PGND2.  
_______________________________________________________________________________________  
9
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
Transient Response graph in the Typical Operating  
Characteristics.  
Detailed Description  
The MAX8621Y/MAX8621Z power-management ICs are  
designed specifically to power a variety of portable  
devices including cellular handsets. Each device con-  
tains two 4MHz high-efficient step-down converters, four  
low-dropout linear regulators (LDOs), a 60ms (typ) reset  
timer, a 200mA open-drain output driver, and power-  
on/off control logic (Figure 3).  
Low-Dropout Linear Regulators  
Each MAX8621Y/MAX8621Z contains four low-dropout,  
low-quiescent-current, high-accuracy linear regulators  
(LDOs). OUT1 and OUT2 supply loads up to 300mA,  
while OUT3 and OUT4 supply loads up to 150mA. The  
LDO output voltages are set using SEL1 and SEL2 (see  
Table 1). The LDOs include an internal reference, error  
amplifier, p-channel pass transistor, internal program-  
mable voltage-divider, and an OUT1 power-good com-  
parator. Each error amplifier compares the reference  
voltage to a feedback voltage and amplifies the differ-  
ence. If the feedback voltage is lower than the refer-  
ence voltage, the pass-transistor gate is pulled lower,  
allowing more current to pass to the outputs and  
increasing the output voltage. If the feedback voltage is  
too high, the pass-transistor gate is pulled up, allowing  
less current to pass to the output.  
Step Down DC-DC Control Scheme  
The MAX8621Y/MAX8621Z step-down converters are  
optimized for high-efficiency voltage conversion over a  
wide load range, while maintaining excellent transient  
response, minimizing external component size, and  
minimizing output voltage ripple. The DC-DC convert-  
ers (BUCK1 and BUCK2) also feature an optimized on-  
resistance internal MOSFET switch and synchronous  
rectifier to maximize efficiency. The MAX8621Y/  
MAX8621Z utilize a proprietary hysteretic-PWM control  
scheme that switches with nearly fixed frequency up to  
4MHz, allowing for ultra-small external components.  
The step-down converter output current is guaranteed  
up to 500mA, while consuming 40µA (typ).  
DR Driver  
Each MAX8621Y/MAX8621Z includes a 1.3Ω n-channel  
MOSFET open-drain output that is controlled by ENDR.  
This output can be used to drive LEDs (see the Typical  
Operating Circuit) and allow adjustable output voltages  
(see Figure 1).  
When the step-down converter output voltage falls below  
the regulation threshold, the error comparator begins a  
switching cycle by turning the high-side p-channel  
MOSFET switch on. This switch remains on until the mini-  
Programming LDO Output Voltages  
(SEL1, SEL2)  
mum on-time (t ) expires and the output voltage is in  
ON  
regulation or the current-limit threshold (I  
) is exceed-  
LIMP  
As shown in Table 1, the LDO output voltages, OUT1,  
OUT2, OUT3, and OUT4 are pin-programmable by the  
logic states of SEL1 and SEL2. SEL1 and SEL2 are  
trilevel inputs: IN, open, and GND. The input voltage,  
ed. Once off, the high-side switch remains off until the  
minimum off-time (t ) expires and the output voltage  
OFF  
again falls below the regulation threshold. During this off  
period, the low-side synchronous rectifier turns on and  
remains on until either the high-side switch turns on or  
the inductor current reduces to the rectifier-off current  
V , must be greater than the selected OUT1, OUT2,  
IN  
OUT3, and OUT4 voltages. The logic states of SEL1  
and SEL2 can be programmed only during power-up.  
Once the OUT_ voltages are programmed, their values  
do not change by changing SEL_ unless the  
MAX8621Y/MAX8621Z power is cycled.  
threshold (I  
= 45mA (typ)). The internal synchro-  
LXOFF  
nous rectifier eliminates the need for an external  
Schottky diode.  
Voltage-Positioning Load Regulation  
The MAX8621Y/MAX8621Z use a unique step-down  
converter feedback network. By taking feedback from  
the LX node through R1, the usual phase lag due to the  
output capacitor is removed, making the loop exceed-  
ingly stable and allowing the use of a very small ceramic  
output capacitor. This configuration causes the output  
voltage to shift by the inductor series resistance multi-  
plied by the load current. This output voltage shift is  
known as voltage-positioning load regulation. Voltage-  
positioning load regulation greatly reduces overshoot  
during load transients, which effectively halves the  
peak-to-peak output-voltage excursions compared to  
traditional step-down converters. See the Buck1 Load-  
L1  
2.2μH  
BUCK1  
1.38V OR 1.8V  
LX1  
R1  
150kΩ  
C6  
150pF  
MAX8621Y  
MAX8621Z  
FB1  
DR  
R2  
115kΩ  
R5  
215kΩ  
1.38/1.8  
ENDR  
Figure 1. Adjusting BUCK1 Output Voltage Using DR  
10 ______________________________________________________________________________________  
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
Table 1. SEL1 and SEL2, MAX8621Y/MAX8621Z Output Voltage Selection  
MAX8621Y  
MAX8621Z  
SEL1  
SEL2  
OUT1 (V)  
3.3  
OUT2 (V)  
OUT3 (V)  
2.85  
3.3  
OUT4 (V)  
2.85  
2.85  
3.0  
OUT1 (V)  
2.8  
OUT2 (V)  
OUT3 (V)  
3.0  
OUT4 (V)  
3.0  
IN  
IN  
3.3  
3.3  
2.6  
2.6  
2.6  
2.6  
2.6  
2.6  
3.1  
2.9  
2.5  
IN  
OPEN  
GND  
IN  
3.0  
2.6  
3.0  
3.0  
IN  
2.5  
3.3  
2.85  
3.0  
2.6  
2.9  
2.9  
OPEN  
OPEN  
OPEN  
GND  
GND  
GND  
2.85  
3.3  
3.3  
2.5  
2.6  
3.0  
3.3  
OPEN  
GND  
IN  
3.3  
2.8  
3.0  
2.6  
1.8  
3.0  
3.3  
3.3  
3.0  
3.0  
2.6  
2.8  
3.0  
3.3  
2.85  
2.85  
2.85  
3.3  
2.85  
3.3  
2.9  
1.8  
1.5  
OPEN  
GND  
2.85  
3.3  
3.3  
3.0  
2.9  
2.9  
3.0  
3.0  
3.0  
2.9  
2.9  
over time. For the same reason, OUT2, OUT3, and OUT4  
can be turned on by EN2, EN3, and EN4 signals, but  
only after OUT1 has reached 87% of its final value. Note  
that OUT2 typically requires a longer time to enable than  
OUT3 and OUT4 (45µs versus 15µs). All regulators can  
be turned off at the same time when PWRON is low, but  
BUCK1 remains on for approximately another 120µs  
after PWRON goes low.  
Power-Supply Sequence  
BUCK1 is always first on and last off in the MAX8621Y/  
MAX8621Zs’ power sequence. BUCK1 turns on approxi-  
mately 40µs after PWRON is enabled. BUCK2 turns on  
approximately 40µs after BUCK1, and OUT1 turns on  
65µs after BUCK2. These delays have been added to  
sequence the turn-on of the step-down converters and  
LDOs so that the initial current surges are distributed  
PWRON  
REF  
40μs  
BUCK1  
120μs  
40μs  
BUCK2  
65μs  
87% REGULATION  
OUT1  
87% REGULATION  
60ms  
RESET  
45μs  
OUT2  
EN3  
(EN4)  
15μs  
OUT3  
(OUT4)  
EN2  
Figure 2. Power-On/Off Sequence Diagram  
______________________________________________________________________________________ 11  
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
PWRON  
Drive PWRON low or leave PWRON open to place the  
MAX8621Y/MAX8621Z in power-down mode and  
reduce supply current to 5µA (typ). In power-down, the  
control circuitry, internal-switching p-channel MOSFET,  
and the internal synchronous rectifier (n-channel  
MOSFET) turn off (BUCK1 and BUCK2), and LX_  
becomes high impedance. In addition, all four LDOs  
are disabled. Connect PWRON to IN or logic-high to  
enable the MAX8621Y/MAX8621Z. EN2 enables and  
disables OUT2 when PWRON is high.  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipa-  
tion in the MAX8621Y/MAX8621Z. Independent thermal-  
protection circuits monitor the step-down converters  
and the linear-regulator circuits. When the junction tem-  
perature exceeds T = +160°C, the thermal-overload  
J
protection circuit disables the corresponding circuitry,  
allowing the IC to cool. The LDO thermal-overload pro-  
tection circuit enables the LDOs after the LDO junction  
temperature cools down, resulting in pulsed LDO out-  
puts during continuous thermal-overload conditions. The  
step-down converter’s thermal-overload protection  
circuitry enables the step-down converter after the  
junction temperature cools down. Thermal-overload  
protection safeguards the MAX8621Y/MAX8621Z in the  
event of fault conditions. For continuous operation, do  
not exceed the absolute maximum junction-temperature  
OUT2 Enable (EN2)  
Drive EN2 high to disable OUT2. Drive EN2 low or  
leave open to enable OUT2. EN2 is internally pulled to  
GND by an 800kΩ (typ) pulldown resistor. If the  
MAX8621Y/MAX8621Z are powered down using  
PWRON (PWRON = low), OUT2 does not power  
regardless of the status of EN2.  
rating of T = +150°C.  
J
Applications Information  
Reset Output (RESET)  
The reset circuit is active both at power-up and power-  
Step-Down DC-DC Converter  
down. RESET asserts low when V  
drops below  
OUT1  
Setting the Step-Down Output Voltage  
Select an output voltage for BUCK1 between 0.6V and  
3.3V by connecting FB1 to a resistive voltage-divider  
between LX1 and GND. Choose R2 (Figure 3) for a rea-  
sonable bias current in the resistive divider. A wide range  
of resistor values is acceptable, but a good starting point  
is to choose R2 as 100kΩ. Then, R1 (Figure 3) is given by:  
87% (typ) of regulation. RESET deasserts 60ms after  
V
rises above 87% (typ) of regulation. RESET is  
OUT1  
pulled up through an internal 14kΩ resistor to OUT1.  
Undervoltage Lockout  
Initial power-up of the MAX8621Y/MAX8621Z occurs  
when V is greater than 2.85V (typ) and PWRON  
IN  
asserts. Once V exceeds 2.85V (typ), the undervolt-  
IN  
V
V
OUT  
age lockout has 0.5V of hysteresis, allowing the V  
IN  
R1=R2  
1  
FB  
operating range to drop down to 2.35V (typ) without  
shutting down.  
where V = 0.6V. For BUCK2, R3 and R4 are calculated  
FB  
using the same methods.  
Current Limiting  
The MAX8621Y/MAX8621Z OUT1 and OUT2 LDOs limit  
their output current to 550mA (typ). OUT3 and OUT4  
LDOs limit their output current to 360mA (typ). If the LDO  
output current exceeds the current limit, the correspond-  
ing LDO output voltage drops. The step-down converters  
(BUCK1 and BUCK2) limit the p-channel MOSFET to  
670mA (min) and the n-channel MOSFET to 750mA (min).  
Input Capacitor  
The input capacitor, C , reduces the current peaks  
IN1  
drawn from the battery or input power source and  
reduces switching noise in the IC. The impedance of  
C
at the switching frequency should be kept very  
IN1  
low. Ceramic capacitors with X5R or X7R dielectrics are  
highly recommended due to their small size, low ESR,  
and small temperature coefficients. Due to the  
MAX8621Y/MAX8621Z step-down converter’s fast soft-  
start, the input capacitance can be very low. Use a  
10µF ceramic capacitor or an equivalent amount of  
multiple capacitors in parallel between IN1 and ground.  
Reference Bypass Capacitor  
Node (REFBP)  
An external 0.01µF bypass capacitor and an internal  
100kΩ (typ) resistor at REFBP create a lowpass filter for  
LDO noise reduction. OUT1, OUT2, OUT3, and OUT4  
exhibit 45µV  
of output voltage noise with C  
=
OUT4  
RMS  
REFBP  
= C  
Connect C  
as close to the IC as possible to minimize  
IN1  
0.01µF, C  
= 2.2µF.  
= C  
= 4.7µF, and C  
OUT1  
OUT2  
OUT3  
the impact of PC board trace inductance. Use a 4.7µF  
ceramic capacitor from IN2 to ground and a second  
4.7µF ceramic capacitor from IN3 to ground.  
12 ______________________________________________________________________________________  
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
Inductor Selection  
The MAX8621Y/MAX8621Z step-down converters oper-  
ate with inductors between 1µH and 4.7µH. Low-induc-  
tance values are physically smaller but require faster  
switching, resulting in some efficiency loss. See the  
Typical Operating Characteristics for efficiency and  
switching frequency vs. inductor value plots. The  
inductor’s DC current rating needs to be only 100mA  
greater than the application’s maximum load current  
because the step-down converter features zero-current  
overshoot during startup and load transients.  
For output voltages above 2.0V, when light-load effi-  
ciency is important, the minimum recommended induc-  
tor is 2.2µH. For optimum voltage-positioning load  
transients, choose an inductor with DC series resis-  
tance in the 50mΩ to 150mΩ range. For higher efficien-  
cy at heavy loads (above 200mA) or minimal load  
regulation (but some transient overshoot), the resis-  
tance should be kept below 100mΩ. For light-load  
applications up to 200mA, much higher resistance is  
acceptable with very little impact on performance. See  
Table 2 for some suggested inductors.  
Table 2. Suggested Inductors  
INDUCTANCE  
ESR  
(Ω)  
CURRENT RATING  
(mA)  
MANUFACTURER  
SERIES  
CB2012  
LB2012  
DIMENSIONS  
(µH)  
2.2  
4.7  
0.23  
0.40  
410  
300  
2.0 x 1.25 x 1.25  
= 3.1mm3  
1.0  
2.2  
0.15  
0.23  
300  
240  
2.0 x 1.25 x 1.25  
= 3.1mm3  
1.0  
1.5  
2.2  
3.3  
0.09  
0.11  
0.13  
0.20  
455  
350  
315  
280  
2.0 x 1.6 x 1.8  
= 5.8mm3  
LB2016  
LB2518  
Taiyo Yuden  
1.0  
1.5  
2.2  
3.3  
0.06  
0.07  
0.09  
0.11  
500  
400  
340  
270  
2.5 x 1.8 x 2.0  
= 9mm3  
1.0  
1.5  
2.2  
3.3  
4.7  
0.08  
0.11  
0.13  
0.16  
0.20  
775  
660  
600  
500  
430  
2.5 x 1.8 x 2.0  
= 9mm3  
LBC2518  
1.0  
2.2  
4.7  
0.06  
0.10  
0.15  
1000  
790  
650  
3.2 x 2.5 x 1.7  
= 14mm3  
LQH32C_53  
LQM43FN  
D310F  
Murata  
2.2  
4.7  
0.10  
0.17  
400  
300  
4.5 x 3.2 x 0.9  
= 13mm3  
1.5  
2.2  
3.3  
0.13  
0.17  
0.19  
1230  
1080  
1010  
3.6 x 3.6 x 1.0  
= 13mm3  
TOKO  
1.5  
2.2  
2.7  
3.3  
0.10  
0.12  
0.15  
0.17  
1290  
1140  
980  
3.6 x 3.6 x 1.2  
= 16mm3  
D312C  
900  
1.5  
2.2  
3.3  
4.7  
0.05  
0.08  
0.10  
0.14  
900  
780  
600  
500  
3.2 x 3.2 x 1.2  
= 12mm3  
Sumida  
CDRH2D11  
______________________________________________________________________________________ 13  
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
Output Capacitor  
The output capacitors, C7 and C9 in Figure 3, are  
required to keep the output voltage ripple small and to  
ensure regulation loop stability. C7 and C9 must have  
low impedance at the switching frequency. Ceramic  
capacitors with X5R or X7R dielectric are highly recom-  
mended due to their small size, low ESR, and small  
temperature coefficients. Due to the unique feedback  
network, the output capacitance can be very low. For  
most applications, a 2.2µF capacitor is sufficient. For  
optimum load-transient performance and very low out-  
put ripple, the output capacitor value in µF should be  
equal or larger than the inductor value in µH.  
Thermal Considerations  
The MAX8621Y/MAX8621Z total power dissipation, P ,  
D
is estimated using the following equations:  
P = P  
+ P  
+ P  
D
LOSS(BUCK1)  
LOSS(BUCK2) LOSS(OUT1)  
+ P  
+ P  
+ P  
LOSS(OUT2)  
LOSS(OUT3) LOSS(OUT4)  
P
= P  
× 1η/100  
LOSS(BUCK1)  
IN(BUCK1)  
(
)
2
I  
× R  
BUCK1  
DC(INDUCTOR)  
P
= P  
× 1η/100  
LOSS(BUCK2)  
IN(BUCK2)  
(
)
2
I  
× R  
BUCK2  
DC(INDUCTOR)  
Feed-Forward Capacitor  
P
=I  
× V V  
LOSS(OUT1) OUT1  
(
IN  
OUT1  
)
The feed-forward capacitors, C (C6 and C8 in Figure  
FF  
3), set the feedback loop response, control the switch-  
ing frequency, and are critical in obtaining the best effi-  
ciency possible. Choose a small ceramic X7R  
capacitor with value given by:  
P
=I  
× V V  
LOSS(OUT2) OUT2  
(
IN  
OUT2  
)
)
)
P
=I  
× V V  
LOSS(OUT3) OUT3  
(
IN  
OUT3  
P
=I  
× V V  
LOSS(OUT4) OUT4  
(
IN  
OUT4  
L1  
R1  
C6 =  
×10Siemens  
where P  
is the input power for BUCK1, η is the  
IN(BUCK1)  
step-down converter efficiency, and R  
the inductor’s DC resistance.  
is  
DC(INDUCTOR)  
Select the closest standard value to C as possible.  
FF  
For BUCK2, C8, R3, and L1 are calculated using the  
same methods.  
For example, operating with V = 3.7V, V  
BUCK2  
OUT4  
330mA, I  
and η = 80%, P  
= 1.376V,  
IN  
OUT2  
BUCK1  
V
V
= 1.8V, V  
= V  
= 2.6V, V  
= 1.8V,  
OUT1  
OUT3  
= 3V, I  
OUT3  
= I  
= 300mA, I  
= I  
=
BUCK1  
= I  
IN(BUCK2)  
BUCK2  
OUT1  
OUT2  
= 100mA, P  
= 516mW  
LDO Output Capacitor and  
Regulator Stability  
OUT4  
IN(BUCK1)  
= 651mW and η = 83%:  
= 363mW  
LOSS(OUT2)  
Connect a 4.7µF ceramic capacitor between OUT1 and  
ground, and a second 4.7µF ceramic capacitor  
between OUT2 and ground for 300mA applications. For  
150mA applications, 2.2µF ceramic capacitors can be  
used for OUT1 and OUT2. Connect a 2.2µF ceramic  
capacitor between OUT3 and ground, and a second  
2.2µF ceramic capacitor between OUT4 and ground.  
P
= P  
LOSS(OUT1)  
P
= 190mW  
= 70mW  
= 94mW  
LOSS(OUT3)  
P
LOSS(OUT4)  
P
LOSS(BUCK1)  
The LDO output capacitor’s (C  
) equivalent series  
OUT  
P
= 102mW  
resistance (ESR) affects stability and output noise. Use  
output capacitors with an ESR of 0.1Ω or less to ensure  
stability and optimum transient response. Surface-  
mount ceramic capacitors have very low ESR and are  
commonly available in values up to 10µF. Connect  
LOSS(BUCK2)  
P
= 363mW + 363mW +190mW + 70mW  
+ 94mW +102mW = 1182mW  
D
C
as close to the IC as possible to minimize the  
impact of PC board trace inductance.  
OUT_  
14 ______________________________________________________________________________________  
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
INPUT  
2.6V TO 5.5V  
C3  
C2  
4.7μF  
4.7μF  
IN3  
IN2  
INP  
OUT1  
IN  
OUT  
UVLO  
C5  
4.7μF  
REF  
14kΩ  
LDO1  
GND  
EN  
REFBP  
GND  
9-BIT SEL  
C4  
0.01μF  
REF  
RESET  
RESET  
INPUT  
2.6V TO 5.5V  
DR  
IN1  
1.3Ω, 200mA  
INP  
IN  
C1  
10μF  
N
L1  
P
2.2μH  
LX1  
STEP-DOWN  
DC-DC (1, BUCK1)  
BUCK1  
LX  
REF  
EN  
R1  
150kΩ  
PGND1  
PGND2  
C7  
2.2μF  
C6  
150pF  
ENDR  
N
PGND  
FB  
FB1  
IN1  
R2  
115kΩ  
INP  
IN  
INP  
L2  
2.2μH  
OUT3  
P
IN  
OUT  
C11  
2.2μF  
LX2  
STEP-DOWN  
DC-DC (2, BUCK2)  
BUCK2  
LX  
REF  
EN  
R3  
150kΩ  
C8  
150pF  
C9  
2.2μF  
N
REF  
EN  
LDO3  
PGND2  
FB2  
PGND  
FB  
R4  
9-BIT SEL  
75kΩ  
GND  
INP  
IN  
EN3  
OUT2  
OUT  
C10  
4.7μF  
INP  
REF  
OUT4  
LDO2  
IN  
OUT  
C12  
2.2μF  
EN  
REF  
EN  
LDO4  
9-BIT SEL  
GND  
EN2  
9-BIT SEL  
GND  
800kΩ  
EN4  
SEL1  
SEL2  
VOLTAGE  
SELECTOR  
PWRON  
ON/OFF CONTROL  
800kΩ  
THERMAL  
SHUTDOWN  
MAX8621Y  
MAX8621Z  
Figure 3. Functional Diagram and Typical Application Schematic  
______________________________________________________________________________________ 15  
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
The die junction temperature can be calculated as follows:  
Connect GND and PGND_ to the ground plane. The  
external feedback network should be very close to the  
FB pin, within 0.2in (5mm). Keep noisy traces, such as  
the LX node, as short as possible. Connect GND to the  
exposed paddle directly under the IC. Refer to the  
MAX8621Y/MAX8621Z evaluation kit for an example PC  
board layout and routing.  
T = T +P × θ  
JA  
J
A
D
When operating at an ambient temp of +70°C under the  
above conditions:  
°C  
W
T = 70°C +1.182W 36  
= 112.6°C  
J
Chip Information  
TRANSISTOR COUNT: 5850  
T should not exceed +150°C in normal operating con-  
J
ditions.  
PROCESS: BiCMOS  
Printed Circuit Board Layout and Routing  
High switching frequencies and relatively large peak  
currents make the PC board layout a very important  
aspect of design. Good design minimizes excessive  
EMI on the feedback paths and voltage gradients in the  
ground plane, both of which can result in instability or  
Pin Configuration  
TOP VIEW  
regulation errors. Connect C  
close to IN_ and GND.  
IN_  
Connect the inductor and output capacitors (C  
) as  
OUT_  
18 17 16 15 14 13  
close to the IC as possible and keep the traces short,  
direct, and wide.  
OUT1  
RESET  
IN2  
DR 19  
12  
11  
10  
9
The traces between C , C , and FB_ are sensitive  
OUT_ FF_  
PGND2 20  
to inductor magnetic field interference. Route these  
traces between ground planes or keep the traces away  
from the inductors.  
21  
22  
23  
24  
LX2  
IN1  
MAX8621Y  
MAX8621Z  
OUT2  
EN2  
LX1  
8
EN3  
7
PGND1  
3
4
5
6
1
2
A "+" SIGN WILL REPLACE THE FIRST PIN INDICATOR ON LEAD-FREE PACKAGES.  
16 ______________________________________________________________________________________  
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE,  
12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm  
1
E
21-0139  
2
______________________________________________________________________________________ 17  
Dual Step-Down DC-DC Power-Management ICs  
for Portable Devices  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE,  
12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm  
2
E
21-0139  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX8621YETG+T

Power Supply Support Circuit, Adjustable, 6 Channel, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-24
MAXIM

MAX8621YETG-T

Power Supply Support Circuit, Adjustable, 6 Channel, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, TQFN-24
MAXIM

MAX8621ZETG

Dual Step-Down DC-DC Power-Management ICs for Portable Devices
MAXIM

MAX8621ZETG+

Power Supply Support Circuit, Adjustable, 6 Channel, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-24
MAXIM

MAX8621ZETG+T

Power Supply Support Circuit, Adjustable, 6 Channel, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-24
MAXIM

MAX8621ZETG-T

Power Supply Support Circuit, Adjustable, 6 Channel, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, TQFN-24
MAXIM

MAX8622ETB+

1.76 A SWITCHING REGULATOR, 300 kHz SWITCHING FREQ-MAX, PDSO8, 3 X 3 MM, 0.80 MM HEIGHT, TDFN-8
ROCHESTER

MAX8622ETB+T

Switching Regulator, 1.76A, 300kHz Switching Freq-Max, BICMOS, PDSO10, TDFN-10
MAXIM

MAX8625

升压/降压DC-DC转换器
MAXIM

MAX8625A

High-Efficiency, Seamless Transition, Step-Up/Down DC-DC Converter
MAXIM

MAX8625AETD+

High-Efficiency, Seamless Transition, Step-Up/Down DC-DC Converter
MAXIM

MAX8625AETD+T

暂无描述
MAXIM