MAX7300ATL [MAXIM]

2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or 28-Port I/O Expander; 2线接口, 2.5V至5.5V , 20端口或28端口I / O扩展器
MAX7300ATL
型号: MAX7300ATL
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or 28-Port I/O Expander
2线接口, 2.5V至5.5V , 20端口或28端口I / O扩展器

驱动程序和接口 接口集成电路
文件: 总20页 (文件大小:200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2413; Rev 7; 9/11  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
MAX730  
General Description  
Features  
The MAX7300 compact, serial-interfaced, I/O expan-  
sion peripheral provides microprocessors with up to 28  
ports. Each port is individually user configurable to  
either a logic input or logic output.  
o 400kbps I2C-Compatible Serial Interface  
o 2.5V to 5.5V Operation  
o -40°C to +125°C Temperature Range  
o 20 or 28 I/O Ports, Each Configurable as  
Each port can be configured as either a push-pull logic  
output capable of sinking 10mA and sourcing 4.5mA, or a  
Schmitt logic input with optional internal pullup. Seven  
ports feature configurable transition detection logic, which  
generates an interrupt upon change of port logic level.  
The MAX7300 is controlled through an I2C-compatible 2-  
wire serial interface, and uses four-level logic to allow 16  
I2C addresses from only two select pins.  
Push-Pull Logic Output  
Schmitt Logic Input  
Schmitt Logic Input with Internal Pullup  
o 11µA (max) Shutdown Current  
o Logic Transition Detection for Seven I/O Ports  
Ordering Information  
The MAX7300AAX and MAX7300ATL have 28 ports and  
are available in 36-pin SSOP and 40-pin TQFN pack-  
ages, respectively. The MAX7300AAI and MAX7300ATI  
have 20 ports and are available in 28-pin SSOP and  
TQFN packages. For an SPI-interfaced version, refer to  
the MAX7301 data sheet. For a pin-compatible port  
expander with additional 24mA constant-current LED  
drive capability, refer to the MAX6956 data sheet.  
PART  
MAX7300AAI  
MAX7300ATI  
MAX7300AAX  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
28 SSOP  
28 TQFN-EP*  
36 SSOP  
MAX7300ATL  
40 TQFN-EP*  
*EP = Exposed pad.  
Devices are also available in a lead(Pb)-free/RoHS-compliant pack-  
age. Specify lead-free by adding "+" to the part number when order-  
ing. Devices are also available in tape-and-reel packaging. Specify  
tape and reel by adding "T" to the part number when ordering.  
Applications  
Industrial Controllers  
White Goods  
Automotive  
System Monitoring  
Typical Operating Circuit  
Pin Configurations  
32  
30  
28  
26  
3V  
P4  
P5  
I/O 4  
36  
3
I/O 5  
V+  
GND  
TOP VIEW  
P6  
I/O 6  
47nF  
39k  
2
1
GND  
ISET  
P7  
I/O 7  
ISET  
GND  
GND  
AD0  
P12  
P13  
P14  
P15  
P16  
1
2
3
4
5
6
7
8
9
28 V+  
5
P8  
I/O 8  
7
27 AD1  
26 SCL  
25 SDA  
24 P31  
P9  
I/O 9  
9
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
I/O 10  
I/O 11  
I/O 12  
I/O 13  
I/O 14  
I/O 15  
35  
11  
6
AD1  
AD0  
SDA  
SCL  
4
33  
34  
MAX7300AAX  
8
DATA  
CLOCK  
10  
12  
13  
14  
15  
16  
17  
18  
19  
20  
MAX7300  
23 P30  
31  
29  
27  
25  
24  
23  
22  
21  
P31  
P30  
P29  
P28  
P27  
P26  
P25  
P24  
I/O 16  
I/O 17  
I/O 18  
I/O 19  
I/O 20  
I/O 21  
I/O 22  
22 P29  
21 P28  
20 P27  
19 P26  
18 P25  
17 P24  
16 P23  
15 P22  
P17 10  
P18 11  
P19 12  
P20 13  
P21 14  
I/O 23  
I/O 24  
I/O 25  
I/O 26  
I/O 27  
I/O 28  
I/O 29  
I/O 30  
I/O 31  
28 SSOP  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
ABSOLUTE MAXIMUM RATINGS  
Voltage (with respect to GND)  
36-Pin SSOP (derate 11.8mW/°C above +70°C) .........941mW  
V+.............................................................................-0.3V to +6V  
SCL, SDA, AD0, AD1................................................-0.3V to +6V  
All Other Pins................................................-0.3V to (V+ + 0.3V)  
P4–P31 Current ................................................................ 30mA  
GND Current .....................................................................800mA  
40-Pin TQFN (derate 26.3mW/°C above T = +70°C).2105mW  
Operating Temperature Range  
A
(T  
to T  
) ...............................................-40°C to +125°C  
MAX  
MIN  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow)  
Lead (Pb)-free packages..............................................+260°C  
Packages containing lead (Pb).....................................+240°C  
Continuous Power Dissipation (T = +70°C)  
A
28-Pin SSOP (derate 9.1mW/°C above +70°C) ...........727mW  
28-Pin TQFN (derate 21.3mW/°C above +70°C) .......1702mW  
MAX730  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(Typical Operating Circuit, V = 2.5V to 5.5V, T = T  
to T  
, unless otherwise noted.) (Note 1)  
MAX  
V+  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
8
UNITS  
Operating Supply Voltage  
V+  
2.5  
V
T
T
T
= +25°C  
5.5  
A
I
All digital inputs at  
V+ or GND  
SHDN  
Shutdown Supply Current  
Operating Supply Current  
= -40°C to +85°C  
10  
µA  
µA  
A
to T  
11  
MIN  
MAX  
T
= +25°C  
180  
170  
110  
240  
260  
A
A
All ports programmed  
as outputs high, no  
load, all other inputs  
at V+ or GND  
T
= -40°C to +85°C  
I
GPOH  
T
T
T
to T  
280  
210  
230  
MIN  
MAX  
= +25°C  
A
A
All ports programmed  
as outputs low, no  
load, all other inputs  
at V+ or GND  
= -40°C to +85°C  
Operating Supply Current  
I
µA  
µA  
GPOL  
T
T
T
to T  
240  
135  
140  
MIN  
MAX  
All ports programmed  
as inputs without  
pullup, ports, and all  
other inputs at V+ or  
GND  
= +25°C  
A
A
= -40°C to +85°C  
Operating Supply Current  
I
GPI  
T
MIN  
to T  
145  
MAX  
INPUTS AND OUTPUTS  
Logic High Input Voltage  
Port Inputs  
0.7 x  
V+  
V
V
V
IH  
Logic Low Input Voltage  
Port Inputs  
0.3 x  
V+  
V
IL  
GPIO inputs without pullup,  
Input Leakage Current  
I
, I  
IH IL  
-100  
1
+100  
nA  
V
= V+ to GND  
PORT  
V
V
= 2.5V  
12  
80  
19  
120  
0.3  
30  
V+  
V+  
GPIO Input Internal Pullup to V+  
Hysteresis Voltage GPIO Inputs  
I
µA  
V
PU  
= 5.5V  
180  
V  
I
2
_______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
MAX730  
ELECTRICAL CHARACTERISTICS (continued)  
, unless otherwise noted.) (Note 1)  
MAX  
(Typical Operating Circuit, V = 2.5V to 5.5V, T = T  
to T  
V+  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GPIO outputs, I  
= 2mA,  
V+ -  
0.7  
SOURCE  
T
A
= -40°C to +85°C  
Output High Voltage  
V
V
OH  
GPIO outputs, I  
= 1mA,  
(Note 2)  
V+ -  
0.7  
SOURCE  
T
A
= T  
to T  
MIN  
MAX  
Port Sink Current  
I
V
= 0.6V  
2
10  
11  
18  
20  
mA  
mA  
OL  
PORT  
Output Short-Circuit Current  
I
Port configured output low, shorted to V+  
2.75  
OLSC  
Input High-Voltage SDA, SCL,  
AD0, AD1  
0.7 x  
V+  
V
V
V
IH  
Input Low-Voltage SDA, SCL,  
AD0, AD1  
0.3 x  
V+  
V
IL  
Input Leakage Current SDA, SCL  
Input Capacitance  
I
, I  
-50  
+50  
10  
nA  
pF  
V
IH IL  
(Note 2)  
= 6mA  
Output Low-Voltage SDA  
V
I
0.4  
OL  
SINK  
TIMING CHARACTERISTICS (Figure 2)  
(V = 2.5V to 5.5V, T = T  
to T , unless otherwise noted.) (Note 1)  
MAX  
V+  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Serial Clock Frequency  
f
400  
kHz  
SCL  
Bus Free Time Between a STOP  
and a START Condition  
t
1.3  
0.6  
0.6  
µs  
µs  
µs  
BUF  
Hold Time (Repeated) START  
Condition  
t
HD, STA  
Repeated START Condition  
Setup Time  
t
SU, STA  
STOP Condition Setup Time  
Data Hold Time  
t
0.6  
15  
µs  
ns  
ns  
µs  
µs  
SU, STO  
t
(Note 3)  
900  
HD, DAT  
Data Setup Time  
t
100  
1.3  
0.7  
SU, DAT  
SCL Clock Low Period  
SCL Clock High Period  
t
LOW  
t
HIGH  
Rise Time of Both SDA and SCL  
Signals, Receiving  
20 +  
t
(Notes 2, 4)  
(Notes 2, 4)  
300  
300  
ns  
ns  
R
0.1C  
b
Fall Time of Both SDA and SCL  
Signals, Receiving  
20 +  
0.1C  
t
F
b
20 +  
0.1C  
Fall Time of SDA Transmitting  
t
(Notes 2, 5)  
(Notes 2, 6)  
(Note 2)  
250  
50  
ns  
ns  
pF  
F,TX  
b
Pulse Width of Spike Suppressed  
t
0
SP  
Capacitive Load for Each Bus  
Line  
C
400  
b
_______________________________________________________________________________________  
3
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
TIMING CHARACTERISTICS (Figure 2) (continued)  
(V = 2.5V to 5.5V, T = T  
to T  
, unless otherwise noted.) (Note 1)  
MAX  
V+  
A
MIN  
Note 1: All parameters tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 2: Guaranteed by design.  
Note 3: A master device must provide a hold time of at least 300ns for the SDA signal (referred to V of the SCL signal) in order to  
IL  
bridge the undefined region of SCL’s falling edge.  
Note 4: C = total capacitance of one bus line in pF. t and t measured between 0.3V+ and 0.7V+.  
b
R
F
Note 5: I  
6mA. C = total capacitance of one bus line in pF. t and t measured between 0.3V+ and 0.7V+.  
SINK  
b R F  
MAX730  
Note 6: Input filters on the SDA and SCL inputs suppress noise spikes less than 50ns.  
__________________________________________Typical Operating Characteristics  
(R  
= 39k, T = +25°C, unless otherwise noted.)  
ISET  
A
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
OPERATING SUPPLY CURRENT  
OPERATING SUPPLY CURRENT vs. V+  
(OUTPUTS UNLOADED)  
vs. TEMPERATURE  
1
0.40  
0.36  
0.32  
0.28  
0.24  
0.20  
0.16  
0.12  
0.08  
0.04  
0
8
V
= 2.5V TO 5.5V  
V+  
NO LOAD  
V
= 5.5V  
V+  
7
6
5
4
3
ALL PORTS  
OUTPUT (0)  
V
V+  
= 3.3V  
ALL PORTS  
OUTPUT (1)  
ALL PORTS OUTPUT (1)  
ALL PORTS OUTPUT (0)  
V
= 2.5V  
V+  
ALL PORTS INPUT  
(PULLUPS DISABLED)  
ALL PORTS INPUT HIGH  
0.1  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
V+ (V)  
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
MAX730  
Typical Operating Characteristics (continued)  
(R  
= 39k, T = +25°C, unless otherwise noted.)  
A
ISET  
GPO SOURCE CURRENT vs. TEMPERATURE  
(OUTPUT = 1)  
GPO SINK CURRENT vs. TEMPERATURE  
(OUTPUT = 0)  
18  
16  
14  
12  
10  
8
9
8
7
6
5
4
3
2
V
= 1.4V  
PORT  
V
= 2.5V TO 5.5V, V  
= 0.6V  
V+  
PORT  
V
= 5.5V  
V+  
V
= 3.3V  
V+  
V
= 2.5V  
V+  
6
4
2
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
GPI PULLUP CURRENT  
vs. TEMPERATURE  
GPO SHORT-CIRCUIT CURRENT  
vs. TEMPERATURE  
1000  
100  
10  
100  
10  
1
V
= 5.5V  
V+  
GPO = 0, PORT  
SHORTED TO V+  
V
= 3.3V  
V+  
V
= 2.5V  
V+  
GPO = 1, PORT  
SHORTED TO GND  
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Pin Description  
PIN  
NAME  
FUNCTION  
28 SSOP 28 TQFN-EP 36 SSOP 40 TQFN-EP  
Bias Current Setting. Connect ISET to GND through a resistor  
1
2, 3  
4
26  
27, 28  
1
1
2, 3  
4
36  
ISET  
GND  
AD0  
(R ) value of 39kto 120k.  
ISET  
37, 38, 39  
Ground  
Address Input 0. Sets device slave address. Connect to either  
GND, V+, SCL, SDA to give four logic combinations. See Table 3.  
7
40  
I/O Ports. P12 to P31 can be configured as push-pull outputs,  
CMOS-logic inputs, or CMOS-logic inputs with weak pullup resistor.  
5–24  
2–21  
P12–P31  
P4–P31  
1–10, 12–19,  
21–30  
I/O Ports. P4 to P31 can be configured as push-pull outputs,  
CMOS-logic inputs, or CMOS-logic inputs with weak pullup resistor.  
5–32  
11, 20, 31  
25  
26  
22  
23  
33  
34  
N.C.  
SDA  
SCL  
No Connection. Not internally connected.  
I2C-Compatible Serial-Data I/O  
I2C-Compatible Serial-Clock Input  
32  
33  
Address Input 1. Sets device slave address. Connect to either  
GND, V+, SCL, SDA to give four logic combinations. See Table 3.  
27  
28  
24  
25  
35  
36  
34  
35  
AD1  
V+  
Positive Supply Voltage. Bypass V+ to GND with minimum  
0.047µF capacitor.  
Exposed Pad (TQFN Only). EP is internally connected to GND.  
Connect to a large ground plane to maximize thermal  
EP  
performance. Not intended as an electrical connection point.  
registers 0x09 and 0x0A. If this is not done, the eight  
unused ports remain as unconnected inputs and quies-  
cent supply current rises, although there is no damage  
to the part.  
Detailed Description  
The MAX7300 general-purpose input/output (GPIO)  
peripheral provides up to 28 I/O ports, P4 to P31, con-  
trolled through an I2C-compatible serial interface. The  
ports can be configured to any combination of logic inputs  
and logic outputs, and default to logic inputs on power-up.  
Register Control of I/O Ports  
Across Multiple Drivers  
The MAX7300 offers 20 or 28 I/O ports, depending on  
package choice. Two addressing methods are avail-  
able. Any single port (bit) can be written (set/cleared)  
at once; or, any sequence of eight ports can be written  
(set/cleared) in any combination at once. There are no  
boundaries; it is equally acceptable to write P0 to P7,  
P1 to P8, or P31 to P38 (P32 to P38 are nonexistent, so  
the instructions to these bits are ignored).  
Figure 1 is the MAX7300 functional diagram. Any I/O port  
can be configured as a push-pull output (sinking 10mA,  
sourcing 4.5mA), or a Schmitt-trigger logic input. Each  
input has an individually selectable internal pullup resis-  
tor. Additionally, transition detection allows seven ports  
(P24 to P30) to be monitored in any maskable combina-  
tion for changes in their logic status. A detected transi-  
tion is flagged through a status register bit, as well as an  
interrupt pin (port P31), if desired.  
Shutdown  
When the MAX7300 is in shutdown mode, all ports are  
forced to inputs, and the pullup current sources are  
turned off. Data in the port and control registers remain  
unaltered, so port configuration and output levels are  
restored when the MAX7300 is taken out of shutdown.  
The MAX7300 can still be programmed while in shut-  
down mode. For minimum supply current in shutdown  
mode, logic inputs should be at GND or V+ potential.  
Shutdown mode is exited by setting the S bit in the con-  
figuration register (Table 8).  
The port configuration registers individually set the 28  
ports, P4 to P31, as GPIO. A pair of bits in registers  
0x09 through 0x0F sets each port’s configuration  
(Tables 1 and 2).  
The 36-pin MAX7300AAX and 40-pin MAX7300ATL have  
28 ports, P4 to P31. The 28-pin MAX7300ANI,  
MAX7300AAI, and MAX7300ATI have only 20 ports avail-  
able, P12 to P31. The eight unused ports should be  
configured as outputs on power-up by writing 0x55 to  
6
_______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
MAX730  
Table 1. Port Configuration Map  
REGISTER DATA  
D4 D3  
ADDRESS  
CODE (HEX)  
REGISTER  
D7  
D6  
D5  
D2  
D1  
D0  
Port Configuration for P7, P6, P5, P4  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
P7  
P6  
P5  
P4  
Port Configuration for P11, P10, P9, P8  
Port Configuration for P15, P14, P13, P12  
Port Configuration for P19, P18, P17, P16  
Port Configuration for P23, P22, P21, P20  
Port Configuration for P27, P26, P25, P24  
Port Configuration for P31, P30, P29, P28  
P11  
P15  
P19  
P23  
P27  
P31  
P10  
P14  
P18  
P22  
P26  
P30  
P9  
P8  
P13  
P17  
P21  
P25  
P29  
P12  
P16  
P20  
P24  
P28  
Table 2. Port Configuration Matrix  
PORT  
CONFIGURATION  
BIT PAIR  
PORT  
REGISTER  
ADDRESS  
CODE (HEX)  
MODE  
FUNCTION  
PIN BEHAVIOR  
(0x20–0x5F)  
UPPER  
LOWER  
DO NOT USE THIS SETTING  
Register bit = 0  
0x09 to 0x0F  
0x09 to 0x0F  
0
0
Active-low logic output  
Active-high logic output  
Output  
GPIO Output  
0
1
Register bit = 1  
GPIO Input  
without Pullup  
Input  
Input  
Schmitt logic input  
0x09 to 0x0F  
0x09 to 0x0F  
1
1
0
1
Register bit =  
input logic level  
GPIO Input with Pullup  
Schmitt logic input with pullup  
START and STOP Conditions  
Serial Interface  
Both SCL and SDA remain high when the interface is  
not busy. A master signals the beginning of a transmis-  
sion with a START (S) condition by transitioning SDA  
from high to low while SCL is high. When the master  
has finished communicating with the slave, it issues a  
STOP (P) condition by transitioning SDA from low to  
high while SCL is high. The bus is then free for another  
transmission (Figure 3).  
Serial Addressing  
The MAX7300 operates as a slave that sends and  
receives data through an I2C-compatible 2-wire inter-  
face. The interface uses a serial data line (SDA) and a  
serial clock line (SCL) to achieve bidirectional commu-  
nication between master(s) and slave(s). A master (typ-  
ically a microcontroller) initiates all data transfers to and  
from the MAX7300, and generates the SCL clock that  
synchronizes the data transfer (Figure 2).  
Bit Transfer  
One data bit is transferred during each clock pulse.  
The data on SDA must remain stable while SCL is high  
(Figure 4).  
The MAX7300 SDA line operates as both an input and  
an open-drain output. A pullup resistor, typically 4.7k,  
is required on SDA. The MAX7300 SCL line operates  
only as an input. A pullup resistor, typically 4.7k, is  
required on SCL if there are multiple masters on the 2-  
wire interface, or if the master in a single-master system  
has an open-drain SCL output.  
Acknowledge  
The acknowledge bit is a clocked 9th bit, which the  
recipient uses to handshake receipt of each byte of  
data (Figure 5). Thus, each byte transferred effectively  
requires 9 bits. The master generates the 9th clock  
pulse, and the recipient pulls down SDA during the  
acknowledge clock pulse, such that the SDA line is sta-  
ble low during the high period of the clock pulse. When  
the master is transmitting to the MAX7300, the  
MAX7300 generates the acknowledge bit since the  
Each transmission consists of a START condition  
(Figure 3) sent by a master, followed by the MAX7300  
7-bit slave address plus R/W bit (Figure 6), a register  
address byte, one or more data bytes, and finally a  
STOP condition (Figure 3).  
_______________________________________________________________________________________  
7
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
CONFIGURATION  
PORT REGISTERS  
MASK REGISTER  
GPIO  
P4 TO P31  
CONFIGURATION  
REGISTERS  
PORT CHANGE  
DETECTOR  
MAX730  
DATA  
CE  
R/W  
8
GPIO DATA  
8
R/W  
COMMAND  
REGISTER DECODE  
AD0  
AD1  
ADDRESS  
MATCHER  
7
8
8
DATA BYTE  
COMMAND BYTE  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
7
TO/FROM DATA REGISTERS  
DATA BYTE  
TO COMMAND REGISTERS  
7-BIT DEVICE ADDRESS  
R/W  
SDA  
SCL  
COMMAND BYTE  
SLAVE ADDRESS BYTE  
Figure 1. MAX7300 Functional Diagram  
MAX7300 is the recipient. When the MAX7300 is trans-  
mitting to the master, the master generates the  
acknowledge bit since the master is the recipient.  
addresses (Table 3), and therefore a maximum of 16  
MAX7300 devices can share the same interface.  
Message Format for Writing  
the MAX7300  
Slave Address  
The MAX7300 has a 7-bit-long slave address (Figure 6).  
The eighth bit following the 7-bit slave address is the  
R/W bit. It is low for a write command and high for a  
read command.  
A write to the MAX7300 comprises the transmission of  
the MAX7300’s slave address with the R/W bit set to  
zero, followed by at least 1 byte of information. The first  
byte of information is the command byte. The com-  
mand byte determines which register of the MAX7300  
is to be written by the next byte, if received. If a STOP  
condition is detected after the command byte is  
received, then the MAX7300 takes no further action  
(Figure 7) beyond storing the command byte.  
The first 3 bits (MSBs) of the MAX7300 slave address  
are always 100. Slave address bits A3, A2, A1, and A0  
are selected by the address inputs, AD1 and AD0.  
These two input pins can be connected to GND, V+,  
SDA, or SCL. The MAX7300 has 16 possible slave  
8
_______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
MAX730  
SDA  
t
BUF  
t
t
SU, STA  
SU, DAT  
t
HD, STA  
t
LOW  
t
t
SU, STO  
HD, DAT  
SCL  
t
HIGH  
t
HD, STA  
t
t
F
R
REPEATED START CONDITION  
START CONDITION  
STOP CONDITION START CONDITION  
Figure 2. 2-Wire Serial Interface Timing Details  
SDA  
S
P
SCL  
START  
STOP  
CONDITION  
CONDITION  
Figure 3. Start and Stop Conditions  
SDA  
SCL  
DATA LINE STABLE; DATA VALID CHANGE OF DATA ALLOWED  
Figure 4. Bit Transfer  
Any bytes received after the command byte are consid-  
ered data bytes. The first data byte goes into the inter-  
nal register of the MAX7300 selected by the command  
byte (Figure 8). If multiple data bytes are transmitted  
before a STOP condition is detected, these bytes are  
generally stored in subsequent MAX7300 internal regis-  
ters because the command byte address generally  
autoincrements (Table 4).  
a write. The pointer generally autoincrements after each  
data byte is read using the same rules as for a write  
(Table 4). Thus, a read is initiated by first configuring the  
MAX7300’s command byte by performing a write (Figure  
7). The master can now read ‘n’ consecutive bytes from  
the MAX7300, with the first data byte being read from the  
register addressed by the initialized command byte  
(Figure 9). When performing read-after-write verification,  
remember to reset the command byte’s address  
because the stored control byte address generally has  
been autoincremented after the write (Table 4). Table 5  
is the register address map.  
Message Format for Reading  
The MAX7300 is read using the MAX7300’s internally  
stored command byte as address pointer, the same way  
the stored command byte is used as address pointer for  
_______________________________________________________________________________________  
9
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
START CONDITION  
CLOCK PULSE FOR ACKNOWLEDGMENT  
SCL  
1
2
8
9
SDA  
BY TRANSMITTER  
MAX730  
S
SDA  
BY RECEIVER  
Figure 5. Acknowledge  
SDA  
1
MSB  
0
0
A3  
A2  
A1  
A0  
LSB  
R/W  
ACK  
SCL  
Figure 6. Slave Address  
Operation with Multiple Masters  
If the MAX7300 is operated on a 2-wire interface with  
multiple masters, a master reading the MAX7300 should  
use a repeated start between the write, which sets the  
MAX7300’s address pointer, and the read(s) that takes  
the data from the location(s). This is because it is possi-  
ble for master 2 to take over the bus after master 1 has  
set up the MAX7300’s address pointer, but before  
master 1 has read the data. If master 2 subsequently  
changes, the MAX7300’s address pointer, then master  
1’s delayed read can be from an unexpected location.  
Initial Power-Up  
On initial power-up, all control registers are reset and  
the MAX7300 enters shutdown mode (Table 6).  
Transition (Port Data Change) Detection  
Port transition detection allows any combination of the  
seven ports P24–P30 to be continuously monitored for  
changes in their logic status (Figure 10). A detected  
change is flagged on the transition detection mask reg-  
ister INT status bit, D7 (Table 10). If port P31 is config-  
ured as an output (Tables 1 and 2), then P31 also  
automatically becomes an active-high interrupt output  
(INT), which follows the condition of the INT status bit.  
Port P31 is set as output by writing bit D7 = 0 and bit  
D6 = 1 to the port configuration register (Table 1). Note  
that the MAX7300 does not identify which specific  
port(s) caused the interrupt, but provides an alert that  
one or more port levels have changed.  
Command Address Autoincrementing  
Address autoincrementing allows the MAX7300 to be  
configured with the shortest number of transmissions  
by minimizing the number of times the command  
address needs to be sent. The command address  
stored in the MAX7300 generally increments after each  
data byte is written or read (Table 4).  
The mask register contains 7 mask bits that select  
which of the seven ports P24–P30 are to be monitored  
(Table 10). Set the appropriate mask bit to enable that  
port for transition detect. Clear the mask bit if transi-  
10 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
MAX730  
D15 D14 D13 D12 D11 D10 D9 D8  
COMMAND BYTE IS STORED ON RECEIPT OF STOP CONDITION  
ACKNOWLEDGE FROM MAX7300  
SLAVE ADDRESS  
S
0
A
COMMAND BYTE  
A
P
ACKNOWLEDGE FROM MAX7300  
R/W  
Figure 7. Command Byte Received  
ACKNOWLEDGE FROM MAX7300  
ACKNOWLEDGE FROM MAX7300  
HOW COMMAND BYTE AND DATA BYTE MAP INTO MAX7300’s REGISTER  
ACKNOWLEDGE FROM MAX7300  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
S
SLAVE ADDRESS  
0
A
A
DATA BYTE  
A
P
COMMAND BYTE  
1 BYTE  
R/W  
AUTOINCREMENT MEMORY WORD ADDRESS  
Figure 8. Command and Single Data Byte Received  
tions on that port are to be ignored. Transition detection  
works regardless of whether the port being monitored is  
set to input or output, but generally, it is not particularly  
useful to enable transition detection for outputs.  
The only way to clear INT is to access (read or write)  
the transition detection mask register (Table 10). So if  
the transition detection mask register is read twice in  
succession after a transition event, the first time reads  
with bit D7 set (identifying the event), and the second  
time reads with bit D7 clear.  
To use transition detection, first set up the mask regis-  
ter and configure port P31 as an output, as described  
above. Then enable transition detection by setting the  
M bit in the configuration register (Table 9). Whenever  
the configuration register is written with the M bit set,  
the MAX7300 updates an internal 7-bit snapshot regis-  
ter, which holds the comparison copy of the logic states  
of ports P24 through P30. The update action occurs  
regardless of the previous state of the M bit, so that it is  
not necessary to clear the M bit and then set it again to  
update the snapshot register.  
Transition detection is a one-shot event. When INT has  
been cleared after responding to a transition event, tran-  
sition detection is automatically disabled, even though  
the M bit in the configuration register remains set (unless  
cleared by the user). Reenable transition detection by  
writing the configuration register with the M bit set to  
take a new snapshot of the seven ports P24 to P30.  
External Component R  
ISET  
to set  
The MAX7300 uses an external resistor, R  
ISET,  
When the configuration register is written with the M bit  
set, transition detection is enabled and remains  
enabled until either the configuration register is written  
with the M bit clear, or a transition is detected. The INT  
status bit (transition detection mask register bit D7)  
goes low. Port P31 (if enabled as INT output) also goes  
low, if it was not already low.  
internal biasing. Use a resistor value of 39k.  
Applications Information  
Low-Voltage Operation  
The MAX7300 operates down to 2V supply voltage  
(although the sourcing and sinking currents are not guar-  
anteed), providing that the MAX7300 is powered up ini-  
tially to at least 2.5V to trigger the device’s internal reset.  
Once transition detection is enabled, the MAX7300  
continuously compares the snapshot register against  
the changing states of P24 through P31. If a change on  
any of the monitored ports is detected, even for a short  
time (like a pulse), the INT status bit (transition detec-  
tion mask register bit D7) is set. Port P31 (if enabled as  
INT output) also goes high. The INT output and INT sta-  
tus bit are not cleared if more changes occur or if the  
data pattern returns to its original snapshot condition.  
Serial Interface Latency  
When a MAX7300 register is written through the I2C  
interface, the register is updated on the rising edge of  
SCL during the data byte’s acknowledge bit (Figure 5).  
The delay from the rising edge of SCL to the internal  
register being updated can range from 50ns to 350ns.  
______________________________________________________________________________________ 11  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
ACKNOWLEDGE FROM MAX7300  
ACKNOWLEDGE FROM MAX7300  
HOW COMMAND BYTE AND DATA BYTE MAP INTO MAX7300’s REGISTER  
ACKNOWLEDGE FROM MAX7300  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
SLAVE ADDRESS  
COMMAND BYTE  
DATA BYTE  
S
0
A
A
A
P
‘n’ BYTES  
R/W  
AUTOINCREMENT MEMORY WORD ADDRESS  
Figure 9. ‘n’ Data Bytes Received  
MAX730  
Table 3. MAX7300 Address Map  
PIN  
DEVICE ADDRESS  
CONNECTION  
AD1  
GND  
GND  
GND  
GND  
V+  
AD0  
GND  
V+  
A6  
A5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
SDA  
SCL  
GND  
V+  
V+  
V+  
SDA  
SCL  
GND  
V+  
V+  
SDA  
SDA  
SDA  
SDA  
SCL  
SCL  
SCL  
SCL  
SDA  
SCL  
GND  
V+  
SDA  
SCL  
Table 4. Autoincrement Rules  
COMMAND BYTE ADDRESS RANGE  
x0000000 to x1111110  
x1111111  
AUTOINCREMENT BEHAVIOR  
Command address autoincrements after byte read or written  
Command address remains at x1111111 after byte written or read  
PC Board Layout Considerations  
Power-Supply Considerations  
The MAX7300 operates with power-supply voltages of  
2.5V to 5.5V. Bypass the power supply to GND with a  
0.047µF capacitor as close to the device as possible.  
Add a 1µF capacitor if the MAX7300 is far away from  
the board’s input bulk decoupling capacitor.  
Ensure that all the MAX7300 GND connections are  
used. For TQFN versions, connect the underside  
exposed pad to GND. A ground plane is not necessary,  
but may be useful to reduce supply impedance if the  
MAX7300 outputs are to be heavily loaded. Keep the  
track length from the ISET pin to the R  
resistor as  
ISET  
short as possible, and take the GND end of the register  
either to the ground plane or directly to the GND pins.  
12 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
MAX730  
Table 5. Register Address Map  
COMMAND ADDRESS  
HEX  
CODE  
REGISTER  
D15  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
D14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D13  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
D12  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
D11  
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
D10  
0
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
D9  
0
0
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
D8  
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
No-Op  
0x00  
0x04  
0x06  
0x07  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
Configuration  
Transition Detect Mask  
Factory Reserved; do not write to this port  
Port Configuration P7, P6, P5, P4  
Port Configuration P11, P10, P9, P8  
Port Configuration P15, P14, P13, P12  
Port Configuration P19, P18, P17, P16  
Port Configuration P23, P22, P21, P20  
Port Configuration P27, P26, P25, P24  
Port Configuration P31, P30, P29, P28  
Port 0 only (virtual port, no action)  
Port 1 only (virtual port, no action)  
Port 2 only (virtual port, no action)  
Port 3 only (virtual port, no action)  
Port 4 only (data bit D0. D7-D1 read as 0)  
Port 5 only (data bit D0. D7-D1 read as 0)  
Port 6 only (data bit D0. D7-D1 read as 0)  
Port 7 only (data bit D0. D7-D1 read as 0)  
Port 8 only (data bit D0. D7-D1 read as 0)  
Port 9 only (data bit D0. D7-D1 read as 0)  
Port 10 only (data bit D0. D7-D1 read as 0)  
Port 11 only (data bit D0. D7-D1 read as 0)  
Port 12 only (data bit D0. D7-D1 read as 0)  
Port 13 only (data bit D0. D7-D1 read as 0)  
Port 14 only (data bit D0. D7-D1 read as 0)  
Port 15 only (data bit D0. D7-D1 read as 0)  
Port 16 only (data bit D0. D7-D1 read as 0)  
Port 17 only (data bit D0. D7-D1 read as 0)  
Port 18 only (data bit D0. D7-D1 read as 0)  
Port 19 only (data bit D0. D7-D1 read as 0)  
Port 20 only (data bit D0. D7-D1 read as 0)  
Port 21 only (data bit D0. D7-D1 read as 0)  
Port 22 only (data bit D0. D7-D1 read as 0)  
Port 23 only (data bit D0. D7-D1 read as 0)  
Port 24 only (data bit D0. D7-D1 read as 0)  
Port 25 only (data bit D0. D7-D1 read as 0)  
______________________________________________________________________________________ 13  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Table 5. Register Address Map (continued)  
COMMAND ADDRESS  
REGISTER  
HEX  
CODE  
D15  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
D14  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
D13  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D12  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
D11  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
D10  
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D9  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D8  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Port 26 only (data bit D0. D7-D1 read as 0)  
Port 27 only (data bit D0. D7-D1 read as 0)  
Port 28 only (data bit D0. D7-D1 read as 0)  
Port 29 only (data bit D0. D7-D1 read as 0)  
Port 30 only (data bit D0. D7-D1 read as 0)  
Port 31 only (data bit D0. D7-D1 read as 0)  
4 ports 4–7 (data bits D0–D3. D4–D7 read as 0)  
5 ports 4–8 (data bits D0–D4. D5–D7 read as 0)  
6 ports 4–9 (data bits D0–D5. D6–D7 read as 0)  
7 ports 4–10 (data bits D0–D6. D7 reads as 0)  
8 ports 4–11 (data bits D0–D7)  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
MAX730  
8 ports 5–12 (data bits D0–D7)  
8 ports 6–13 (data bits D0–D7)  
8 ports 7–14 (data bits D0–D7)  
8 ports 8–15 (data bits D0–D7)  
8 ports 9–16 (data bits D0–D7)  
8 ports 10–17 (data bits D0–D7)  
8 ports 11–18 (data bits D0–D7)  
8 ports 12–19 (data bits D0–D7)  
8 ports 13–20 (data bits D0–D7)  
8 ports 14–21 (data bits D0–D7)  
8 ports 15–22 (data bits D0–D7)  
8 ports 16–23 (data bits D0–D7)  
8 ports 17–24 (data bits D0–D7)  
8 ports 18–25 (data bits D0–D7)  
8 ports 19–26 (data bits D0–D7)  
8 ports 20–27 (data bits D0–D7)  
8 ports 21–28 (data bits D0–D7)  
8 ports 22–29 (data bits D0–D7)  
8 ports 23–30 (data bits D0–D7)  
8 ports 24–31 (data bits D0–D7)  
7 ports 25–31 (data bits D0–D6. D7 reads as 0)  
6 ports 26–31 (data bits D0–D5. D6–D7 read as 0)  
5 ports 27–31 (data bits D0–D4. D5–D7 read as 0)  
4 ports 28–31 (data bits D0–D3. D4–D7 read as 0)  
3 ports 29–31 (data bits D0–D2. D3–D7 read as 0)  
2 ports 30–31 (data bits D0–D1. D2–D7 read as 0)  
1 port 31 only (data bits D0. D1–D7 read as 0)  
Note: Unused bits read as zero.  
14 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
MAX730  
Table 6. Power-Up Configuration  
ADDRESS  
CODE  
(HEX)  
REGISTER DATA  
REGISTER  
FUNCTION  
POWER-UP CONDITION  
D7 D6  
D5 D4  
D3  
D2 D1  
D0  
Port Register  
Bits 4 to 31  
0x24 to  
0x3F  
GPIO Output Low  
X
X
X
X
X
X
X
0
Configuration  
Register  
Shutdown Enabled  
Transition Detection Disabled  
0x04  
0
0
X
X
X
X
X
0
Input Mask  
Register  
All Clear (Masked Off)  
0x06  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
X
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
Port  
Configuration  
P7, P6, P5, P4: GPIO Inputs without Pullup  
P11, P10, P9, P8: GPIO Inputs without Pullup  
P15, P14, P13, P12: GPIO Inputs without Pullup  
P19, P18, P17, P16: GPIO Inputs without Pullup  
P23, P22, P21, P20: GPIO Inputs without Pullup  
P27, P26, P25, P24: GPIO Inputs without Pullup  
P31, P30, P29, P28: GPIO Inputs without Pullup  
Port  
Configuration  
Port  
Configuration  
Port  
Configuration  
Port  
Configuration  
Port  
Configuration  
Port  
Configuration  
X = unused bits; if read, zero results.  
______________________________________________________________________________________ 15  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Table 7. Configuration Register Format  
REGISTER DATA  
ADDRESS CODE  
(HEX)  
FUNCTION  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Configuration Register  
0x04  
M
0
X
X
X
X
X
S
Table 8. Shutdown Control (S Data Bit D0) Format  
MAX730  
REGISTER DATA  
ADDRESS CODE  
FUNCTION  
(HEX)  
D7  
M
D6  
0
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
0
Shutdown  
0x04  
0x04  
Normal Operation  
M
0
X
X
X
X
X
1
Table 9. Transition Detection Control (M Data Bit D7) Format  
REGISTER DATA  
ADDRESS CODE  
(HEX)  
FUNCTION  
D7  
0
D6  
0
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
S
Disabled  
Enabled  
0x04  
0x04  
1
0
X
X
X
X
X
S
Table 10. Transition Detection Mask Register  
REGISTER  
REGISTER DATA  
READ/  
WRITE  
FUNCTION  
ADDRESS  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Port  
30  
mask  
Port  
29  
mask  
Port  
28  
mask  
Port  
27  
mask  
Port  
26  
mask  
Port  
25  
mask  
Port  
24  
mask  
Read  
Write  
INT Status*  
Unchanged  
Mask  
Register  
0x06  
*INT is automatically cleared after it is read.  
16 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
MAX730  
GPIO INPUT  
GPIO IN  
CONDITIONING  
GPIO/PORT  
GPIO/PORT OUT  
OUTPUT LATCH  
INT STATUS STORED AS MSB OF MASK REGISTER  
P31  
CLOCK PULSE AFTER EACH READ ACCESS TO MASK REGISTER  
R
S
INT  
OUTPUT LATCH  
CONFIGURATION REGISTER M BIT = 1  
GPIO IN  
GPIO INPUT  
D
D
Q
Q
CONDITIONING  
P30  
P29  
GPIO/PORT OUT  
MASK REGISTER BIT 6  
MASK REGISTER BIT 5  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
GPIO/PORT OUT  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
D
D
Q
Q
P28  
P27  
GPIO/PORT OUT  
MASK REGISTER BIT 4  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
OR  
MASK REGISTER BIT 3  
GPIO/PORT OUT  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
D
D
Q
Q
P26  
P25  
GPIO/PORT OUT  
MASK REGISTER BIT 2  
MASK REGISTER BIT 1  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
GPIO/PORT OUT  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
D
Q
P24  
GPIO/PORT OUT  
MASK REGISTER LSB  
GPIO/PORT OUTPUT LATCH  
CLOCK PULSE WHEN WRITING CONFIGURATION REGISTER WITH M BIT SET  
Figure 10. Maskable GPIO Ports P24 to P31  
______________________________________________________________________________________ 17  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Pin Configurations (continued)  
TOP VIEW  
ISET  
GND  
GND  
AD0  
P8  
1
2
3
4
5
6
7
8
9
36 V+  
35 AD1  
34 SCL  
33 SDA  
32 P4  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
N.C.  
SDA  
SCL  
AD1  
V+  
20 N.C.  
P25  
18 P24  
17  
MAX730  
19  
P23  
16 P22  
15 P21  
14 P20  
13 P19  
12 P18  
MAX7300  
P12  
P9  
31 P31  
30 P5  
MAX7300  
ISET  
GND  
GND  
GND  
P13  
P10  
P30  
29  
28 P6  
11  
AD0  
N.C.  
P14 10  
P11 11  
P15 12  
P16 13  
P17 14  
P18 15  
P19 16  
P20 17  
P21 18  
27 P29  
26 P7  
25 P28  
24 P27  
23 P26  
22 P25  
21 P24  
20 P23  
19 P22  
40 TQFN-EP  
TOP VIEW  
SDA 22  
SCL 23  
AD1 24  
14 P24  
13 P23  
12 P22  
36 SSOP  
V+ 25  
ISET 26  
GND 27  
GND 28  
11 P21  
10 P20  
MAX7300  
9
8
P19  
P18  
28 TQFN-EP  
18 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
MAX730  
Package Information  
Chip Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: CMOS  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
28 SSOP  
28 TQFN-EP  
36 SSOP  
A28+1  
T2855+6  
A36+4  
21-0056  
21-0140  
21-0040  
21-0141  
90-0095  
90-0026  
90-0098  
90-0055  
40 TQFN-EP  
T4066+5  
______________________________________________________________________________________ 19  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
Updated Ordering Information, Absolute Maximum Ratings, Pin Description, Table  
1, and Package Information sections  
1
9/11  
1, 2, 6, 7, 19  
MAX730  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in  
the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX7300ATL+T

Interface Circuit, CMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220WJJD-2, TQFN-40
MAXIM

MAX7300_11

2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or 28-Port I/O Expander
MAXIM

MAX7301

4-Wire-Interfaced, 2.5V to 5.5V, 20-Port and 28-Port I/O Expander
MAXIM

MAX7301AAI

4-Wire-Interfaced, 2.5V to 5.5V, 20-Port and 28-Port I/O Expander
MAXIM

MAX7301AAI+

4-Wire-Interfaced, 2.5V to 5.5V, 20-Port and 28-Port I/O Expander
MAXIM

MAX7301AAI-T

Interface Circuit, CMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM

MAX7301AAX

4-Wire-Interfaced, 2.5V to 5.5V, 20-Port and 28-Port I/O Expander
MAXIM

MAX7301AAX+

4-Wire-Interfaced, 2.5V to 5.5V, 20-Port and 28-Port I/O Expander
MAXIM

MAX7301AAX+T

Interface Circuit, CMOS, PDSO36, 0.300 INCH, 0.80 MM PITCH, ROHS COMPLIANT, SSOP-36
MAXIM

MAX7301AAX-T

Interface Circuit, CMOS, PDSO36, 0.300 INCH, 0.80 MM PITCH, SSOP-36
MAXIM

MAX7301AAXT

4-Wire-Interfaced, 2.5V to 5.5V, 20-Port and 28-Port I/O Expander
MAXIM

MAX7301AGL

4-Wire-Interfaced, 2.5V to 5.5V, 20-Port and 28-Port I/O Expander
MAXIM