MAX7300ANI [MAXIM]

2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or 28-Port I/O Expander; 2线接口, 2.5V至5.5V , 20端口或28端口I / O扩展器
MAX7300ANI
型号: MAX7300ANI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or 28-Port I/O Expander
2线接口, 2.5V至5.5V , 20端口或28端口I / O扩展器

文件: 总22页 (文件大小:347K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2413; Rev 1; 2/03  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
General Description  
Features  
400kbps I2C-Compatible Serial Interface  
The MAX7300 compact, serial-interfaced, I/O expan-  
sion peripheral provides microprocessors with up to 28  
ports. Each port is individually user configurable to  
either a logic input or logic output.  
2.5V to 5.5V Operation  
-40°C to +125°C Temperature Range  
Each port can be configured as either a push-pull logic  
output capable of sinking 10mA and sourcing 4.5mA, or a  
Schmitt logic input with optional internal pullup. Seven  
ports feature configurable transition detection logic, which  
generates an interrupt upon change of port logic level.  
The MAX7300 is controlled through an I2C™-compatible  
2-wire serial interface, and uses four-level logic to allow  
16 I2C addresses from only two select pins.  
20 or 28 I/O Ports, Each Configurable as  
Push-Pull Logic Output  
Schmitt Logic Input  
Schmitt Logic Input with Internal Pullup  
11µA (max) Shutdown Current  
Logic Transition Detection for Seven I/O Ports  
The MAX7300AAX and MAX7300AGL have 28 ports  
and are available in 36-pin SSOP and 40-pin QFN pack-  
ages, respectively. The MAX7300AAI and MAX7300ANI  
have 20 ports and are available in 28-pin SSOP and 28-  
pin DIP packages, respectively.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
28 DIP  
MAX7300ANI  
MAX7300AAI  
MAX7300AAX  
MAX7300AGL  
28 SSOP  
36 SSOP  
40 QFN  
Applications  
White Goods  
Automotive  
Industrial Controllers  
System Monitoring  
Typical Operating Circuit  
Pin Configurations  
3V  
36  
3
2
1
32  
30  
28  
26  
V+  
P4  
P5  
I/O 4  
I/O 5  
47nF  
TOP VIEW  
ISET  
GND  
GND  
AD0  
GND  
GND  
ISET  
P6  
P7  
I/O 6  
I/O 7  
1
2
3
4
5
6
7
8
9
28 V+  
5
39k  
P8  
I/O 8  
27 AD1  
26 SCL  
25 SDA  
24 P31  
7
9
P9  
I/O 9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
I/O 10  
I/O 11  
I/O 12  
I/O 13  
I/O 14  
I/O 15  
35  
11  
6
AD1  
AD0  
SDA  
SCL  
4
33  
34  
MAX7300AAX  
P12  
8
DATA  
CLOCK  
MAX7300  
10  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P13  
23 P30  
22 P29  
21 P28  
20 P27  
19 P26  
18 P25  
17 P24  
16 P23  
15 P22  
P14  
31  
29  
27  
25  
24  
23  
22  
21  
P31  
P30  
P29  
P28  
P27  
P26  
P25  
P24  
I/O 16  
I/O 17  
I/O 18  
I/O 19  
I/O 20  
I/O 21  
I/O 22  
P15  
P16  
P17 10  
P18 11  
P19 12  
P20 13  
P21 14  
I/O 23  
I/O 24  
I/O 25  
I/O 26  
I/O 27  
I/O 28  
I/O 29  
I/O 30  
I/O 31  
SSOP/DIP  
Pin Configurations continued at end of data sheet.  
2
I C is a trademark of Philips Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
ABSOLUTE MAXIMUM RATINGS  
Voltage (with respect to GND)  
Operating Teꢀperature Range  
(T to T ) ...............................................-40°C to +125°C  
Junction Teꢀperature......................................................+150°C  
Storage Teꢀperature Range.............................-65°C to +150°C  
Lead Teꢀperature (soldering, 10s) .................................+300°C  
V+.............................................................................-0.3V to +6V  
SCL, SDA, AD0, AD1................................................-0.3V to +6V  
All Other Pins................................................-0.3V to (V+ + 0.3V)  
P4P31 Current ................................................................ 30ꢀA  
GND Current .....................................................................800ꢀA  
MIN  
MAX  
Continuous Power Dissipation (T = +70°C)  
A
28-Pin PDIP (derate 20.8ꢀW/°C above +70°C).........1667ꢀW  
28-Pin SSOP (derate 9.5ꢀW/°C above +70°C) ...........762ꢀW  
36-Pin SSOP (derate 11.8ꢀW/°C above +70°C) .........941ꢀW  
40-Pin QFN (derate 23.25ꢀW/°C aboveT = +70°C)..1860ꢀW  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(Typical Operating Circuit, V+ = 2.5V to 5.5V, T = T  
to T  
, unless otherwise noted.) (Note 1)  
MAX  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
8
UNITS  
Operating Supply Voltage  
V+  
2.5  
V
T
T
T
= +25°C  
5.5  
A
I
All digital inputs at  
V+ or GND  
SHDN  
Shutdown Supply Current  
Operating Supply Current  
= -40°C to +85°C  
10  
µA  
µA  
A
to T  
11  
MIN  
MAX  
T
T
= +25°C  
180  
170  
110  
240  
260  
A
A
All ports prograꢀꢀed  
as outputs high, no  
load, all other inputs  
at V+ or GND  
= -40°C to +85°C  
I
GPOH  
T
T
T
to T  
280  
210  
230  
MIN  
MAX  
= +25°C  
A
A
All ports prograꢀꢀed  
as outputs low, no  
load, all other inputs  
at V+ or GND  
= -40°C to +85°C  
Operating Supply Current  
I
µA  
µA  
GPOL  
T
T
T
to T  
240  
135  
140  
MIN  
MAX  
All ports prograꢀꢀed  
as inputs without  
pullup, ports, and all  
other inputs at V+ or  
GND  
= +25°C  
A
A
= -40°C to +85°C  
Operating Supply Current  
I
GPI  
T
to T  
145  
MIN  
MAX  
INPUTS AND OUTPUTS  
Logic High Input Voltage  
Port Inputs  
0.7 x  
V+  
V
V
V
IH  
Logic Low Input Voltage  
Port Inputs  
0.3 x  
V+  
V
IL  
GPIO inputs without pullup,  
= V+ to GND  
Input Leakage Current  
I , I  
IH IL  
-100  
1
+100  
nA  
V
PORT  
V+ = 2.5V  
V+ = 5.5V  
12  
80  
19  
120  
0.3  
30  
GPIO Input Internal Pullup to V+  
Hysteresis Voltage GPIO Inputs  
I
µA  
V
PU  
180  
V  
I
2
_______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
ELECTRICAL CHARACTERISTICS (continued)  
(Typical Operating Circuit, V+ = 2.5V to 5.5V, T = T  
to T  
, unless otherwise noted.) (Note 1)  
MAX  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GPIO outputs, I  
= 2ꢀA,  
V+ -  
0.7  
SOURCE  
T
= -40°C to +85°C  
A
Output High Voltage  
V
V
OH  
GPIO outputs, I  
= 1ꢀA,  
V+ -  
0.7  
SOURCE  
T
= T  
to T  
(Note 2)  
MAX  
A
MIN  
Port Sink Current  
I
V
= 0.6V  
2
10  
11  
18  
20  
ꢀA  
ꢀA  
OL  
PORT  
Output Short-Circuit Current  
I
Port configured output low, shorted to V+  
2.75  
OLSC  
Input High-Voltage SDA, SCL,  
AD0, AD1  
0.7 x  
V+  
V
V
V
IH  
Input Low-Voltage SDA, SCL,  
AD0, AD1  
0.3 x  
V+  
V
IL  
Input Leakage Current SDA, SCL  
Input Capacitance  
I
, I  
-50  
+50  
10  
nA  
pF  
V
IH IL  
(Note 2)  
= 6ꢀA  
Output Low-Voltage SDA  
V
I
0.4  
OL  
SINK  
TIMING CHARACTERISTICS (Figure 2)  
(V+ = 2.5V to 5.5V, T = T  
A
to T  
, unless otherwise noted.) (Note 1)  
MAX  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Serial Clock Frequency  
f
400  
kHz  
SCL  
Bus Free Tiꢀe Between a STOP  
and a START Condition  
t
1.3  
0.6  
0.6  
µs  
µs  
µs  
BUF  
Hold Tiꢀe (Repeated) START  
Condition  
t
HD, STA  
Repeated START Condition  
Setup Tiꢀe  
t
SU, STA  
STOP Condition Setup Tiꢀe  
Data Hold Tiꢀe  
t
0.6  
15  
µs  
ns  
ns  
µs  
µs  
SU, STO  
t
(Note 3)  
900  
HD, DAT  
Data Setup Tiꢀe  
t
100  
1.3  
0.7  
SU, DAT  
SCL Clock Low Period  
SCL Clock High Period  
t
LOW  
t
HIGH  
Rise Tiꢀe of Both SDA and SCL  
Signals, Receiving  
20 +  
t
(Notes 2, 4)  
(Notes 2, 4)  
300  
300  
ns  
ns  
R
0.1C  
b
Fall Tiꢀe of Both SDA and SCL  
Signals, Receiving  
20 +  
0.1C  
t
F
b
20 +  
0.1C  
Fall Tiꢀe of SDA Transꢀitting  
t
(Notes 2, 5)  
(Notes 2, 6)  
(Note 2)  
250  
50  
ns  
ns  
pF  
F,TX  
b
Pulse Width of Spike Suppressed  
t
SP  
0
Capacitive Load for Each Bus  
Line  
C
400  
b
_______________________________________________________________________________________  
3
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
TIMING CHARACTERISTICS (Figure 2) (continued)  
(V+ = 2.5V to 5.5V, T = T  
to T  
, unless otherwise noted.) (Note 1)  
MAX  
A
MIN  
Note 1: All paraꢀeters tested at T = +25°C. Specifications over teꢀperature are guaranteed by design.  
A
Note 2: Guaranteed by design.  
Note 3: A ꢀaster device ꢀust provide a hold tiꢀe of at least 300ns for the SDA signal (referred to V of the SCL signal) in order to  
IL  
bridge the undefined region of SCLs falling edge.  
Note 4: C = total capacitance of one bus line in pF. t and t ꢀeasured between 0.3V+ and 0.7V+.  
b
R
F
Note 5: I  
6ꢀA. C = total capacitance of one bus line in pF. t and t ꢀeasured between 0.3V+ and 0.7V+.  
SINK  
b R F  
Note 6: Input filters on the SDA and SCL inputs suppress noise spikes less than 50ns.  
__________________________________________Typical Operating Characteristics  
(R  
= 39k, T = +25°C, unless otherwise noted.)  
ISET  
A
OPERATING SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
OPERATING SUPPLY CURRENT vs. V+  
(OUTPUTS UNLOADED)  
1
0.40  
8
V+ = 2.5V TO 5.5V  
NO LOAD  
0.36  
0.32  
0.28  
0.24  
0.20  
0.16  
0.12  
0.08  
0.04  
0
V+ = 5.5V  
7
ALL PORTS  
V+ = 3.3V  
ALL PORTS  
OUTPUT (0)  
OUTPUT (1)  
6
ALL PORTS OUTPUT (1)  
ALL PORTS OUTPUT (0)  
5
V+ = 2.5V  
4
ALL PORTS INPUT  
(PULLUPS DISABLED)  
ALL PORTS INPUT HIGH  
0.1  
3
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
V+ (V)  
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Typical Operating Characteristics (continued)  
(R  
= 39k, T = +25°C, unless otherwise noted.)  
A
ISET  
GPO SOURCE CURRENT vs. TEMPERATURE  
(OUTPUT = 1)  
GPO SINK CURRENT vs. TEMPERATURE  
(OUTPUT = 0)  
9
8
7
6
5
4
3
2
18  
16  
14  
12  
10  
8
V
= 1.4V  
PORT  
V+ = 2.5V TO 5.5V, V  
= 0.6V  
PORT  
V+ = 5.5V  
V+ = 3.3V  
V+ = 2.5V  
6
4
2
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
GPO SHORT-CIRCUIT CURRENT  
vs. TEMPERATURE  
GPI PULLUP CURRENT  
vs. TEMPERATURE  
100  
10  
1
1000  
100  
10  
V+ = 5.5V  
GPO = 0, PORT  
SHORTED TO V+  
V+ = 3.3V  
V+ = 2.5V  
GPO = 1, PORT  
SHORTED TO GND  
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Pin Description  
PIN  
NAME  
FUNCTION  
QFN  
SSOP/DIP  
SSOP  
Bias Current Setting. Connect ISET to GND through a resistor (R  
value of 39kto 120k.  
)
ISET  
1
2, 3  
4
1
2, 3  
4
36  
ISET  
GND  
AD0  
37, 38, 39  
Ground  
Address Input 0. Sets device slave address. Connect to either GND,  
V+, SCL, SDA to give four logic coꢀbinations. See Table 3.  
40  
I/O Ports. P12 to P31 can be configured as push-pull outputs, CMOS-  
logic inputs, or CMOS-logic inputs with weak pullup resistor.  
524  
P12P31  
P4P31  
110, 1219,  
2130  
I/O Ports. P4 to P31 can be configured as push-pull outputs, CMOS-  
logic inputs, or CMOS-logic inputs with weak pullup resistor.  
532  
32  
33  
25  
26  
33  
34  
SDA  
SCL  
I2C-Coꢀpatible Serial Data I/O  
I2C-Coꢀpatible Serial Clock Input  
Address Input 1. Sets device slave address. Connect to either GND,  
V+, SCL, SDA to give four logic coꢀbinations. See Table 3.  
27  
28  
35  
36  
34  
35  
AD1  
V+  
Positive Supply Voltage. Bypass V+ to GND with ꢀiniꢀuꢀ 0.047µF  
capacitor.  
0x0A. If this is not done, the eight unused ports reꢀain  
as floating inputs and quiescent supply current rises,  
although there is no daꢀage to the part.  
Detailed Description  
The MAX7300 general-purpose input/output (GPIO)  
peripheral provides up to 28 I/O ports, P4 to P31, con-  
trolled through an I2C-coꢀpatible serial interface. The  
ports can be configured to any coꢀbination of logic  
inputs and logic outputs, and default to logic inputs on  
power-up.  
Register Control of I/O Ports  
Across Multiple Drivers  
The MAX7300 offers 20 or 28 I/O ports, depending on  
package choice. Two addressing ꢀethods are avail-  
able. Any single port (bit) can be written (set/cleared)  
at once; or, any sequence of eight ports can be written  
(set/cleared) in any coꢀbination at once. There are no  
boundaries; it is equally acceptable to write P0 to P7,  
P1 to P8, or P31 to P38 (P32 to P38 are nonexistent, so  
the instructions to these bits are ignored).  
Figure 1 is the MAX7300 functional diagraꢀ. Any I/O port  
can be configured as a push-pull output (sinking 10ꢀA,  
sourcing 4.5ꢀA), or a Schꢀitt-trigger logic input. Each  
input has an individually selectable internal pullup resis-  
tor. Additionally, transition detection allows seven ports  
(P24 to P30) to be ꢀonitored in any ꢀaskable coꢀbina-  
tion for changes in their logic status. A detected transi-  
tion is flagged through a status register bit, as well as an  
interrupt pin (port P31), if desired.  
Shutdown  
When the MAX7300 is in shutdown ꢀode, all ports are  
forced to inputs, and the pullup current sources are  
turned off. Data in the port and control registers reꢀain  
unaltered, so port configuration and output levels are  
restored when the MAX7300 is taken out of shutdown.  
The MAX7300 can still be prograꢀꢀed while in shut-  
down ꢀode. For ꢀiniꢀuꢀ supply current in shutdown  
ꢀode, logic inputs should be at GND or V+ potential.  
Shutdown ꢀode is exited by setting the S bit in the con-  
figuration register (Table 8).  
The port configuration registers individually set the 28  
ports, P4 to P31, as GPIO. A pair of bits in registers  
0x09 through 0x0F sets each ports configuration  
(Tables 1 and 2).  
The 36-pin MAX7300AAX and 40-pin MAX7300AGL  
have 28 ports, P4 to P31. The 28-pin MAX7300ANI and  
MAX7300AAI have only 20 ports available, P12 to P31.  
The eight unused ports should be configured as out-  
puts on power-up by writing 0x55 to registers 0x09 and  
6
_______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Table 1. Port Configuration Map  
REGISTER DATA  
D4 D3  
ADDRESS  
CODE (HEX)  
REGISTER  
D7  
D6  
D5  
D2  
D1  
D0  
Port Configuration for P7, P6, P5, P4  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
P7  
P6  
P5  
P4  
Port Configuration for P11, P10, P9, P8  
Port Configuration for P15, P14, P13, P12  
Port Configuration for P19, P18, P17, P16  
Port Configuration for P23, P22, P21, P20  
Port Configuration for P27, P26, P25, P24  
Port Configuration for P31, P30, P29, P28  
P11  
P15  
P19  
P23  
P27  
P31  
P10  
P14  
P18  
P22  
P26  
P30  
P9  
P8  
P13  
P17  
P21  
P25  
P29  
P12  
P16  
P20  
P24  
P28  
Table 2. Port Configuration Matrix  
PORT  
CONFIGURATION  
BIT PAIR  
PORT  
REGISTER  
ADDRESS  
CODE (HEX)  
MODE  
FUNCTION  
PIN BEHAVIOR  
UPPER  
LOWER  
DO NOT USE THIS SETTING  
0x09 to 0x0F  
0x09 to 0x0F  
0
0
Written Low  
Written High  
Active-low logic output  
Active-high logic output  
Output  
GPIO Output  
0
1
GPIO Input  
without Pullup  
Input  
Input  
Reading Port  
Reading Port  
Schꢀitt logic output  
0x09 to 0x0F  
0x09 to 0x0F  
1
1
0
1
GPIO Input with Pullup  
Schꢀitt logic input with pullup  
Start and Stop Conditions  
Serial Interface  
Serial Addressing  
Both SCL and SDA reꢀain high when the interface is  
not busy. A ꢀaster signals the beginning of a transꢀis-  
sion with a START (S) condition by transitioning SDA  
froꢀ high to low while SCL is high. When the ꢀaster  
has finished coꢀꢀunicating with the slave, it issues a  
STOP (P) condition by transitioning SDA froꢀ low to  
high while SCL is high. The bus is then free for another  
transꢀission (Figure 3).  
The MAX7300 operates as a slave that sends and  
receives data through an I2C-coꢀpatible 2-wire inter-  
face. The interface uses a serial data line (SDA) and a  
serial clock line (SCL) to achieve bidirectional coꢀꢀu-  
nication between ꢀaster(s) and slave(s). A ꢀaster (typ-  
ically a ꢀicrocontroller) initiates all data transfers to and  
froꢀ the MAX7300, and generates the SCL clock that  
synchronizes the data transfer (Figure 2).  
Bit Transfer  
One data bit is transferred during each clock pulse.  
The data on SDA ꢀust reꢀain stable while SCL is high  
(Figure 4).  
The MAX7300 SDA line operates as both an input and  
an open-drain output. A pullup resistor, typically 4.7k,  
is required on SDA. The MAX7300 SCL line operates  
only as an input. A pullup resistor, typically 4.7k, is  
required on SCL if there are ꢀultiple ꢀasters on the 2-  
wire interface, or if the ꢀaster in a single-ꢀaster systeꢀ  
has an open-drain SCL output.  
Acknowledge  
The acknowledge bit is a clocked 9th bit, which the  
recipient uses to handshake receipt of each byte of  
data (Figure 5). Thus, each byte transferred effectively  
requires 9 bits. The ꢀaster generates the 9th clock  
pulse, and the recipient pulls down SDA during the  
acknowledge clock pulse, such that the SDA line is sta-  
ble low during the high period of the clock pulse. When  
the ꢀaster is transꢀitting to the MAX7300, the  
MAX7300 generates the acknowledge bit since the  
Each transꢀission consists of a START condition  
(Figure 3) sent by a ꢀaster, followed by the MAX7300  
7-bit slave address plus R/W bit (Figure 6), a register  
address byte, one or ꢀore data bytes, and finally a  
STOP condition (Figure 3).  
_______________________________________________________________________________________  
7
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
CONFIGURATION  
PORT REGISTERS  
MASK REGISTER  
GPIO  
P4 TO P31  
CONFIGURATION  
REGISTERS  
PORT CHANGE  
DETECTOR  
DATA  
CE  
R/W  
8
GPIO DATA  
8
R/W  
COMMAND  
REGISTER DECODE  
AD0  
AD1  
ADDRESS  
MATCHER  
7
8
8
DATA BYTE  
COMMAND BYTE  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
7
TO/FROM DATA REGISTERS  
DATA BYTE  
TO COMMAND REGISTERS  
7-BIT DEVICE ADDRESS  
R/W  
SDA  
SCL  
COMMAND BYTE  
SLAVE ADDRESS BYTE  
Figure 1. MAX7300 Functional Diagram  
MAX7300 is the recipient. When the MAX7300 is trans-  
ꢀitting to the ꢀaster, the ꢀaster generates the  
acknowledge bit since the ꢀaster is the recipient.  
addresses (Table 3), and therefore a ꢀaxiꢀuꢀ of 16  
MAX7300 devices can share the saꢀe interface.  
Message Format for Writing  
the MAX7300  
Slave Address  
The MAX7300 has a 7-bit-long slave address (Figure 6).  
The eighth bit following the 7-bit slave address is the  
R/W bit. It is low for a write coꢀꢀand and high for a  
read coꢀꢀand.  
A write to the MAX7300 coꢀprises the transꢀission of  
the MAX7300s slave address with the R/W bit set to  
zero, followed by at least 1 byte of inforꢀation. The first  
byte of inforꢀation is the coꢀꢀand byte. The coꢀ-  
ꢀand byte deterꢀines which register of the MAX7300  
is to be written by the next byte, if received. If a STOP  
condition is detected after the coꢀꢀand byte is  
received, then the MAX7300 takes no further action  
(Figure 7) beyond storing the coꢀꢀand byte.  
The first 3 bits (MSBs) of the MAX7300 slave address  
are always 100. Slave address bits A3, A2, A1, and A0  
are selected by the address inputs, AD1 and AD0.  
These two input pins can be connected to GND, V+,  
SDA, or SCL. The MAX7300 has 16 possible slave  
8
_______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
SDA  
t
BUF  
t
t
SU, STA  
SU, DAT  
t
HD, STA  
t
LOW  
t
t
SU, STO  
HD, DAT  
SCL  
t
HIGH  
t
HD, STA  
t
t
F
R
REPEATED START CONDITION  
START CONDITION  
STOP CONDITION START CONDITION  
Figure 2. 2-Wire Serial Interface Timing Details  
SDA  
S
P
SCL  
START  
CONDITION  
STOP  
CONDITION  
Figure 3. Start and Stop Conditions  
SDA  
SCL  
DATA LINE STABLE; DATA VALID CHANGE OF DATA ALLOWED  
Figure 4. Bit Transfer  
Any bytes received after the coꢀꢀand byte are consid-  
ered data bytes. The first data byte goes into the inter-  
nal register of the MAX7300 selected by the coꢀꢀand  
byte (Figure 8). If ꢀultiple data bytes are transꢀitted  
before a STOP condition is detected, these bytes are  
generally stored in subsequent MAX7300 internal regis-  
ters because the coꢀꢀand byte address generally  
autoincreꢀents (Table 4).  
a write. The pointer generally autoincreꢀents after each  
data byte is read using the saꢀe rules as for a write  
(Table 4). Thus, a read is initiated by first configuring the  
MAX7300s coꢀꢀand byte by perforꢀing a write (Figure  
7). The ꢀaster can now read nconsecutive bytes froꢀ  
the MAX7300, with the first data byte being read froꢀ the  
register addressed by the initialized coꢀꢀand byte  
(Figure 9). When perforꢀing read-after-write verification,  
reꢀeꢀber to reset the coꢀꢀand bytes address  
because the stored control byte address generally has  
been autoincreꢀented after the write (Table 4). Table 5  
is the register address ꢀap.  
Message Format for Reading  
The MAX7300 is read using the MAX7300s internally  
stored coꢀꢀand byte as address pointer, the saꢀe way  
the stored coꢀꢀand byte is used as address pointer for  
__________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
START CONDITION  
CLOCK PULSE FOR ACKNOWLEDGMENT  
SCL  
1
2
8
9
SDA  
BY TRANSMITTER  
S
SDA  
BY RECEIVER  
Figure 5. Acknowledge  
SDA  
1
MSB  
0
0
A3  
A2  
A1  
A0  
LSB  
R/W  
ACK  
SCL  
Figure 6. Slave Address  
Operation with Multiple Masters  
If the MAX7300 is operated on a 2-wire interface with  
ꢀultiple ꢀasters, a ꢀaster reading the MAX7300 should  
use a repeated start between the write, which sets the  
MAX7300s address pointer, and the read(s) that takes  
the data froꢀ the location(s). This is because it is possi-  
ble for ꢀaster 2 to take over the bus after ꢀaster 1 has  
set up the MAX7300s address pointer, but before  
ꢀaster 1 has read the data. If ꢀaster 2 subsequently  
changes, the MAX7300s address pointer, then ꢀaster  
1s delayed read can be froꢀ an unexpected location.  
Initial Power-Up  
On initial power-up, all control registers are reset and  
the MAX7300 enters shutdown ꢀode (Table 6).  
Transition (Port Data Change) Detection  
Port transition detection allows seven ꢀaskable ports  
P24 to P30 to be continuously ꢀonitored for changes in  
their logic status (Figure 10). Enable transition detec-  
tion by setting the M bit in the configuration register  
(Table 9) after setting the ꢀask register. If port 31 is  
configured as an output (Tables 1 and 2), then P31  
autoꢀatically becoꢀes an interrupt request (IRQ) out-  
put to flag detected transitions. Port 31 can be config-  
ured and used as a general-purpose input port instead,  
if not required for use as the IRQ output.  
Command Address Autoincrementing  
Address autoincreꢀenting allows the MAX7300 to be  
configured with the shortest nuꢀber of transꢀissions  
by ꢀiniꢀizing the nuꢀber of tiꢀes the coꢀꢀand  
address needs to be sent. The coꢀꢀand address  
stored in the MAX7300 generally increꢀents after each  
data byte is written or read (Table 4).  
The ꢀask register deterꢀines which of the seven ports  
P24 to P30 are ꢀonitored (Table 10). Set the appropri-  
ate ꢀask bit to enable that port for transition detect.  
Clear the ꢀask bit if transitions on that port are to be  
ignored by the transition detection logic. Ports are ꢀon-  
itored regardless of their I/O configuration, both input  
and output.  
10 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
D15 D14 D13 D12 D11 D10 D9 D8  
COMMAND BYTE IS STORED ON RECEIPT OF STOP CONDITION  
ACKNOWLEDGE FROM MAX7300  
SLAVE ADDRESS  
S
0
A
COMMAND BYTE  
A
P
ACKNOWLEDGE FROM MAX7300  
R/W  
Figure 7. Command Byte Received  
ACKNOWLEDGE FROM MAX7300  
ACKNOWLEDGE FROM MAX7300  
HOW COMMAND BYTE AND DATA BYTE MAP INTO MAX7300’s REGISTER  
ACKNOWLEDGE FROM MAX7300  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
S
SLAVE ADDRESS  
0
A
A
DATA BYTE  
A
P
COMMAND BYTE  
1 BYTE  
R/W  
AUTOINCREMENT MEMORY WORD ADDRESS  
Figure 8. Command and Single Data Byte Received  
The MAX7300 ꢀaintains an internal 7-bit snapshot reg-  
ister to hold the coꢀparison copy of the logic states of  
ports P24 to P30. The snapshot register is updated with  
the condition of P24 to P31 whenever the configuration  
register is written with the M bit set. The update action  
occurs regardless of the previous state of the M bit so  
that it is not necessary to clear the M bit and then reset  
it in order to update the snapshot register.  
Applications Information  
Low-Voltage Operation  
The MAX7300 operates down to 2V supply voltage  
(although the sourcing and sinking currents are not  
guaranteed), providing that the MAX7300 is powered up  
initially to at least 2.5V to trigger the devices internal  
reset.  
When the data change detection bit is set, the MAX7300  
continuously coꢀpares the snapshot register against  
the changing states of P24 to P31. When a difference  
occurs, the IRQ bit (ꢀask register bit D7) is set and IRQ  
port P31 goes high if it is configured as an output.  
Power-Supply Considerations  
The MAX7300 operates with power-supply voltages of  
2.5V to 5.5V. Bypass the power supply to GND with a  
0.047µF capacitor as close to the device as possible.  
Add a 1µF capacitor if the MAX7300 is far away froꢀ  
the boards input bulk decoupling capacitor.  
The IRQ bit and IRQ output reꢀain set until the ꢀask  
register is next read or written, so if the IRQ is set, then  
the ꢀask register reads with bit D7 set. Writing the  
ꢀask register clears the IRQ bit and resets the IRQ out-  
put, regardless of the value of bit D7 written.  
Chip Information  
TRANSISTOR COUNT: 33,559  
PROCESS: CMOS  
External Component R  
ISET  
to set  
The MAX7300 uses an external resistor, R  
ISET,  
internal biasing. Use a resistor value of 39k.  
______________________________________________________________________________________ 11  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
ACKNOWLEDGE FROM MAX7300  
ACKNOWLEDGE FROM MAX7300  
HOW COMMAND BYTE AND DATA BYTE MAP INTO MAX7300s REGISTER  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
ACKNOWLEDGE FROM MAX7300  
SLAVE ADDRESS  
COMMAND BYTE  
DATA BYTE  
S
0
A
A
A
P
nBYTES  
R/W  
AUTOINCREMENT MEMORY WORD ADDRESS  
Figure 9. ‘n’ Data Bytes Received  
Table 3. MAX7300 Address Map  
PIN  
DEVICE ADDRESS  
CONNECTION  
AD1  
GND  
GND  
GND  
GND  
V+  
AD0  
GND  
V+  
A6  
A5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
SDA  
SCL  
GND  
V+  
V+  
V+  
SDA  
SCL  
GND  
V+  
V+  
SDA  
SDA  
SDA  
SDA  
SCL  
SCL  
SCL  
SCL  
SDA  
SCL  
GND  
V+  
SDA  
SCL  
Table 4. Autoincrement Rules  
COMMAND BYTE ADDRESS RANGE  
x0000000 to x1111110  
x1111111  
AUTOINCREMENT BEHAVIOR  
Coꢀꢀand address autoincreꢀents after byte read or written  
Coꢀꢀand address reꢀains at x1111111 after byte written or read  
12 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Table 5. Register Address Map  
COMMAND ADDRESS  
HEX  
CODE  
REGISTER  
D15  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
D14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D13  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
D12  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
D11  
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
D10  
0
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
D9  
0
0
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
D8  
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
No-Op  
0x00  
0x04  
0x06  
0x07  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
Configuration  
Transition Detect Mask  
Factory Reserved; do not write to this port  
Port Configuration P7, P6, P5, P4  
Port Configuration P11, P10, P9, P8  
Port Configuration P15, P14, P13, P12  
Port Configuration P19, P18, P17, P16  
Port Configuration P23, P22, P21, P20  
Port Configuration P27, P26, P25, P24  
Port Configuration P31, P30, P29, P28  
Port 0 only (virtual port, no action)  
Port 1 only (virtual port, no action)  
Port 2 only (virtual port, no action)  
Port 3 only (virtual port, no action)  
Port 4 only  
Port 5 only  
Port 6 only  
Port 7 only  
Port 8 only  
Port 9 only  
Port 10 only  
Port 11 only  
Port 12 only  
Port 13 only  
Port 14 only  
Port 15 only  
Port 16 only  
Port 17 only  
Port 18 only  
Port 19 only  
Port 20 only  
Port 21 only  
Port 22 only  
Port 23 only  
Port 24 only  
Port 25 only  
______________________________________________________________________________________ 13  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Table 5. Register Address Map (continued)  
COMMAND ADDRESS  
REGISTER  
HEX  
CODE  
D15  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
D14  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
D13  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D12  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
D11  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
D10  
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D9  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D8  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Port 26 only  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
Port 27 only  
Port 28 only  
Port 29 only  
Port 30 only  
Port 31 only  
4 ports 47 (data bits D0D3)  
5 ports 48 (data bits D0D4)  
6 ports 49 (data bits D0D5)  
7 ports 410 (data bits D0D6)  
8 ports 411  
8 ports 512  
8 ports 613  
8 ports 714  
8 ports 815  
8 ports 916  
8 ports 1017  
8 ports 1118  
8 ports 1219  
8 ports 1320  
8 ports 1421  
8 ports 1522  
8 ports 1623  
8 ports 1724  
8 ports 1825  
8 ports 1926  
8 ports 2027  
8 ports 2128  
8 ports 2229  
8 ports 2330  
8 ports 2431  
7 ports 2531  
6 ports 2631  
5 ports 2731  
4 ports 2831  
3 ports 2931  
2 ports 3031  
1 port 31 only  
Note: Unused bits read as zero.  
14 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Table 6. Power-Up Configuration  
ADDRESS  
CODE  
(HEX)  
REGISTER DATA  
REGISTER  
FUNCTION  
POWER-UP CONDITION  
D7 D6  
D5 D4  
D3  
D2 D1  
D0  
Port Register  
Bits 4 to 31  
0x24 to  
0x3F  
GPIO Output Low  
X
X
X
X
X
X
X
0
Configuration  
Register  
Shutdown Enabled  
Transition Detection Disabled  
0x04  
0
0
X
X
X
X
X
0
Input Mask  
Register  
All Clear (Masked Off)  
0x06  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
X
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
Port  
Configuration  
P7, P6, P5, P4: GPIO Inputs without Pullup  
P11, P10, P9, P8: GPIO Inputs without Pullup  
P15, P14, P13, P12: GPIO Inputs without Pullup  
P19, P18, P17, P16: GPIO Inputs without Pullup  
P23, P22, P21, P20: GPIO Inputs without Pullup  
P27, P26, P25, P24: GPIO Inputs without Pullup  
P31, P30, P29, P28: GPIO Inputs without Pullup  
Port  
Configuration  
Port  
Configuration  
Port  
Configuration  
Port  
Configuration  
Port  
Configuration  
Port  
Configuration  
X = unused bits; if read, zero results.  
______________________________________________________________________________________ 15  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Table 7. Configuration Register Format  
REGISTER DATA  
ADDRESS CODE  
(HEX)  
FUNCTION  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Configuration Register  
0x04  
M
0
X
X
X
X
X
S
Table 8. Shutdown Control (S Data Bit D0) Format  
REGISTER DATA  
ADDRESS CODE  
FUNCTION  
(HEX)  
D7  
M
D6  
0
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
0
Shutdown  
0x04  
0x04  
Norꢀal Operation  
M
0
X
X
X
X
X
1
Table 9. Transition Detection Control (M Data Bit D7) Format  
REGISTER DATA  
ADDRESS CODE  
(HEX)  
FUNCTION  
D7  
0
D6  
0
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
S
Disabled  
Enabled  
0x04  
0x04  
1
0
X
X
X
X
X
S
Table 10. Transition Detection Mask Register  
REGISTER  
ADDRESS  
(HEX)  
REGISTER DATA  
READ/  
WRITE  
FUNCTION  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Port  
30  
ꢀask  
Port  
29  
ꢀask  
Port  
28  
ꢀask  
Port  
27  
ꢀask  
Port  
26  
ꢀask  
Port  
25  
ꢀask  
Port  
24  
ꢀask  
Read  
Write  
IRQ Status*  
Unchanged  
Mask  
Register  
0x06  
*IRQ is automatically cleared after it is read.  
16 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
GPIO INPUT  
GPIO IN  
CONDITIONING  
GPIO/PORT  
GPIO/PORT OUT  
OUTPUT LATCH  
IRQ STATUS STORED AS MSB OF MASK REGISTER  
P31  
CLOCK PULSE AFTER EACH READ ACCESS TO MASK REGISTER  
R
S
IRQ  
OUTPUT LATCH  
CONFIGURATION REGISTER M BIT = 1  
GPIO IN  
GPIO INPUT  
D
D
Q
Q
CONDITIONING  
P30  
P29  
GPIO/PORT OUT  
MASK REGISTER BIT 6  
MASK REGISTER BIT 5  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
GPIO/PORT OUT  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
D
D
Q
Q
CONDITIONING  
P28  
P27  
GPIO/PORT OUT  
MASK REGISTER BIT 4  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
OR  
MASK REGISTER BIT 3  
GPIO/PORT OUT  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
D
D
Q
Q
CONDITIONING  
P26  
P25  
GPIO/PORT OUT  
MASK REGISTER BIT 2  
MASK REGISTER BIT 1  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
GPIO/PORT OUT  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
D
Q
P24  
GPIO/PORT OUT  
MASK REGISTER LSB  
GPIO/PORT OUTPUT LATCH  
CLOCK PULSE WHEN WRITING CONFIGURATION REGISTER WITH M BIT SET  
Figure 10. Maskable GPIO Ports P24 to P31  
______________________________________________________________________________________ 17  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Pin Configurations (continued)  
TOP VIEW  
ISET  
GND  
GND  
AD0  
P8  
1
2
3
4
5
6
7
8
9
36 V+  
35 AD1  
34 SCL  
33 SDA  
32 P4  
P8  
P12  
P9  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
P4  
P31  
P5  
3
P13  
P10  
P14  
P11  
P15  
P16  
P17  
4
P30  
P6  
5
MAX7300  
MAX7300  
6
P29  
P7  
P28  
P27  
P26  
P12  
P9  
31 P31  
30 P5  
7
8
P13  
P10  
P30  
29  
9
10  
28 P6  
P14 10  
P11 11  
P15 12  
P16 13  
P17 14  
P18 15  
P19 16  
P20 17  
P21 18  
27 P29  
26 P7  
25 P28  
24 P27  
23 P26  
22 P25  
21 P24  
20 P23  
19 P22  
QFN  
SSOP  
18 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Package Information  
(The package drawing(s) in this data sheet ꢀay not reflect the ꢀost current specifications. For the latest package outline inforꢀation,  
go to www.maxim-ic.com/packages.)  
2
1
INCHES  
MILLIMETERS  
MAX  
MAX  
1.99  
0.21  
0.38  
0.20  
DIM  
A
MIN  
0.068  
MIN  
1.73  
0.05  
0.25  
0.09  
INCHES  
MAX  
MILLIMETERS  
MAX  
MIN  
MIN  
N
0.078  
14L  
16L  
20L  
A1  
B
D
D
D
D
D
0.239 0.249  
0.239 0.249  
0.278 0.289  
0.317 0.328  
6.07  
6.07  
7.07  
8.07  
6.33  
6.33  
7.33  
0.002 0.008  
0.010 0.015  
0.004 0.008  
C
8.33 24L  
E
H
SEE VARIATIONS  
0.205 0.212 5.20  
0.0256 BSC  
D
0.397 0.407 10.07 10.33 28L  
E
5.38  
e
0.65 BSC  
H
0.301 0.311 7.65  
0.025 0.037 0.63  
7.90  
0.95  
8∞  
L
0∞  
8∞  
0∞  
N
A
C
B
L
e
A1  
D
NOTES:  
1. D&E DO NOT INCLUDE MOLD FLASH.  
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED .15 MM (.006").  
3. CONTROLLING DIMENSION: MILLIMETERS.  
4. MEETS JEDEC MO150.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, SSOP, 5.3 MM  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
5. LEADS TO BE COPLANAR WITHIN 0.10 MM.  
1
21-0056  
C
1
______________________________________________________________________________________ 19  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Package Information (continued)  
(The package drawing(s) in this data sheet ꢀay not reflect the ꢀost current specifications. For the latest package outline inforꢀation,  
go to www.maxim-ic.com/packages.)  
20 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Package Information (continued)  
(The package drawing(s) in this data sheet ꢀay not reflect the ꢀost current specifications. For the latest package outline inforꢀation,  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 21  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port I/O Expander  
Package Information (continued)  
(The package drawing(s) in this data sheet ꢀay not reflect the ꢀost current specifications. For the latest package outline inforꢀation,  
go to www.maxim-ic.com/packages.)  
36  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.104  
0.011  
0.017  
0.013  
MIN  
2.44  
0.10  
0.30  
0.23  
MAX  
2.65  
0.29  
0.44  
0.32  
0.096  
0.004  
0.012  
0.009  
A1  
B
C
e
0.0315 BSC  
0.291 0.299  
0.80 BSC  
E
H
E
7.40  
10.11  
0.51  
7.60  
10.51  
1.02  
H0.4140.398  
L
0.020  
0.598  
0.040  
0.612  
D
15.20  
15.55  
1
TOP VIEW  
D
A1  
A
C
e
0-8∞  
B
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 36L SSOP, 0.80 MM PITCH  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0040  
E
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxiꢀ Integrated Products  
Printed USA  
is a registered tradeꢀark of Maxiꢀ Integrated Products.  

相关型号:

MAX7300ATI

2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or 28-Port I/O Expander
MAXIM

MAX7300ATI+

暂无描述
MAXIM

MAX7300ATI+T

Interface Circuit, CMOS, ROHS COMPLIANT, TQFN-28
MAXIM

MAX7300ATI-T

Interface Circuit, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220WHHD-2 TQFN-28
MAXIM

MAX7300ATL

2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or 28-Port I/O Expander
MAXIM

MAX7300ATL+T

Interface Circuit, CMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220WJJD-2, TQFN-40
MAXIM

MAX7300_11

2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or 28-Port I/O Expander
MAXIM

MAX7301

4-Wire-Interfaced, 2.5V to 5.5V, 20-Port and 28-Port I/O Expander
MAXIM

MAX7301AAI

4-Wire-Interfaced, 2.5V to 5.5V, 20-Port and 28-Port I/O Expander
MAXIM

MAX7301AAI+

4-Wire-Interfaced, 2.5V to 5.5V, 20-Port and 28-Port I/O Expander
MAXIM

MAX7301AAI-T

Interface Circuit, CMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM

MAX7301AAX

4-Wire-Interfaced, 2.5V to 5.5V, 20-Port and 28-Port I/O Expander
MAXIM