MAX7030LATJ-T [MAXIM]

Telecom IC, CMOS, PQCC32,;
MAX7030LATJ-T
型号: MAX7030LATJ-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Telecom IC, CMOS, PQCC32,

文件: 总20页 (文件大小:733K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3706; Rev 0; 5/05  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
General Description  
Features  
The MAX7030 crystal-based, fractional-N transceiver is  
designed to transmit and receive ASK/OOK data at fac-  
tory-preset carrier frequencies of 315MHz, 345MHz, or  
433.92MHz with data rates up to 33kbps (Manchester  
encoded) or 66kbps (NRZ encoded). This device gen-  
erates a typical output power of +10dBm into a 50  
load, and exhibits typical sensitivity of -114dBm. The  
MAX7030 features separate transmit and receive pins  
(PAOUT and LNAIN) and provides an internal RF switch  
that can be used to connect the transmit and receive  
pins to a common antenna.  
+2.1V to +3.6V or +4.5V to +5.5V Single-Supply  
Operation  
Single-Crystal Transceiver  
Factory-Preset Frequency (No Serial Interface  
Required)  
ASK/OOK Modulation  
+10dBm Output Power into 50Load  
Integrated TX/RX Switch  
The MAX7030 transmit frequency is generated by a 16-  
bit, fractional-N, phase-locked loop (PLL), while the  
receiver’s local oscillator (LO) is generated by an inte-  
ger-N PLL. This hybrid architecture eliminates the need  
for separate transmit and receive crystal reference  
oscillators because the fractional-N PLL is preset to be  
10.7MHz above the receive LO. Retaining the fixed-N  
PLL for the receiver avoids the higher current-drain  
requirements of a fractional-N PLL and keeps the  
receiver current drain as low as possible. All frequency-  
generation components are integrated on-chip, and  
only a crystal, a 10.7MHz IF filter, and a few discrete  
components are required to implement a complete  
antenna/digital data solution.  
Integrated Transmit and Receive PLL, VCO, and  
Loop Filter  
> 45dB Image Rejection  
Typical RF Sensitivity*: -114dBm  
Selectable IF Bandwidth with External Filter  
< 12.5mA Transmit-Mode Current  
< 6.7mA Receive-Mode Current  
< 800nA Shutdown Current  
Fast-On Startup Feature, <250µs  
Small, 32-Pin, Thin QFN Package  
*0.2% BER, 4kbps Manchester-encoded data, 280kHz IF BW  
The MAX7030 is available in a small, 5mm x 5mm, 32-  
pin thin QFN package, and is specified to operate over  
the automotive -40°C to +125°C temperature range.  
Ordering Information  
Consult factory for availability.  
PKG  
CODE  
Applications  
PART  
TEMP RANGE PIN-PACKAGE  
2-Way Remote Keyless Entry  
MAX7030_ATJ -40°C to +125°C 32 Thin QFN-EP** T3255-3  
Security Systems  
**EP = Exposed paddle.  
Note: The MAX7030 is available with factory-preset operating  
frequencies. See the Product Selector Guide for complete part  
numbers.  
Home Automation  
Remote Controls  
Remote Sensing  
Product Selector Guide  
Smoke Alarms  
Garage Door Openers  
Local Telemetry Systems  
PART  
CARRIER FREQUENCY (MHz)  
MAX7030LATJ  
MAX7030MATJ  
MAX7030HATJ  
315  
345  
433.92  
Pin Configuration, Typical Application Circuit, and  
Functional Diagram appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
ABSOLUTE MAXIMUM RATINGS  
HV to GND..........................................................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
A
IN  
PAV , AV , DV to GND................................-0.3V to +4.0V  
ENABLE, T/R, DATA, AGC0, AGC1,  
32-Pin Thin QFN (derate 21.3mW/°C  
DD  
DD  
DD  
above +70°C).............................................................1702mW  
Operating Temperature Range .........................-40°C to +125°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
AGC2 to GND .......................................-0.3V to (HV + 0.3V)  
IN  
DD  
All Other Pins to GND...............................-0.3V to (_V  
+ 0.3V)  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, 50system impedance, AV  
= DV  
= HV = PAV  
= +2.1V to +3.6V, f = 315MHz, 345MHz, or  
RF  
DD  
DD  
IN  
DD  
DD  
433.92MHz, T = -40°C to +125°C, unless otherwise noted. Typical values are at AV  
= DV  
= HV = PAV  
= +2.7V, T = +25°C,  
DD A  
A
DD  
IN  
unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
HV , PAV , AV , and DV connected  
DD  
MIN  
TYP  
MAX  
UNITS  
IN  
DD  
DD  
Supply Voltage (3V Mode)  
V
2.1  
2.7  
3.6  
V
DD  
to power supply  
PAV , AV , and DV unconnected  
DD  
DD  
DD  
Supply Voltage (5V Mode)  
HV  
4.5  
5.0  
5.5  
V
IN  
from HV , but connected together  
IN  
Transmit mode, PA off,  
at 0% duty  
cycle (Note 2)  
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
= 315MHz  
= 434MHz  
= 315MHz  
= 434MHz  
= 315MHz  
= 434MHz  
3.5  
4.3  
5.4  
6.7  
V
DATA  
Transmit mode, V  
DATA  
7.6  
12.3  
13.6  
19.1  
20.4  
at 50% duty cycle  
(Notes 3, 4)  
8.4  
mA  
Transmit mode, V  
DATA  
11.6  
12.4  
at 100% duty cycle  
(Note 2)  
Receiver 315MHz  
Receiver 434MHz  
6.1  
6.4  
7.9  
8.3  
Supply Current  
I
DD  
T
< +85°C,  
A
Deep-sleep  
(3V mode)  
typ at +25°C  
(Note 4)  
0.8  
2.4  
8.8  
µA  
Deep-sleep  
(5V mode)  
10.9  
Receiver 315MHz  
Receiver 434MHz  
6.4  
6.7  
8.2  
8.4  
mA  
T
< +125°C,  
A
Deep-sleep  
(3V mode)  
typ at +125°C  
(Note 2)  
8.0  
34.2  
39.3  
µA  
V
Deep-sleep  
(5V mode)  
14.9  
3.0  
Voltage Regulator  
V
HV = 5V, I  
= 15mA  
LOAD  
REG  
IN  
DIGITAL I/O  
0.9 x  
Input-High Threshold  
Input-Low Threshold  
V
(Note 2)  
(Note 2)  
V
V
IH  
HV  
IN  
0.1 x  
V
IL  
HV  
IN  
2
_______________________________________________________________________________________  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
DC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, 50system impedance, AV  
= DV  
= HV = PAV  
+2.1V to +3.6V, f  
= 315MHz, 345MHz, or  
DD  
DD  
IN  
DD  
DD  
=
RF  
= HV = PAV  
433.92MHz, T = -40°C to +125°C, unless otherwise noted. Typical values are at AV  
= DV  
+2.7V, T = +25°C,  
A
=
A
DD  
IN  
DD  
unless otherwise noted.) (Note 1)  
PARAMETER  
Pulldown Sink Current  
Output-Low Voltage  
Output-High Voltage  
SYMBOL  
CONDITIONS  
AGC0-2, ENABLE, T/R, DATA (HV = 5.5V)  
MIN  
TYP  
20  
MAX  
UNITS  
µA  
V
IN  
V
I
I
= 500µA  
0.15  
OL  
SINK  
SOURCE  
V
= 500µA  
HV - 0.26  
V
OH  
IN  
AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, 50system impedance, PAV  
= AV  
= DV  
= HV = +2.1V to +3.6V, f = 315MHz, 345MHz, or  
DD  
DD  
DD  
IN  
RF  
433.92MHz, T = -40°C to +125°C, unless otherwise noted. Typical values are at PAV  
= AV  
= DV  
= HV = +2.7V, T = +25°C,  
A
DD  
DD  
DD  
IN  
A
unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL CHARACTERISTICS  
315/345/  
433.92  
Frequency Range  
MHz  
dBm  
%
Maximum Input Level  
P
0
RFIN  
f
f
f
f
= 315MHz (Note 6)  
32  
30  
24  
22  
RF  
RF  
RF  
RF  
Transmit Efficiency 100% Duty  
Cycle  
= 434MHz (Note 6)  
= 315MHz (Note 6)  
= 434MHz (Note 6)  
Transmit Efficiency 50% Duty  
Cycle  
%
ENABLE or T/R transition low to high,  
transmitter frequency settled to within  
50kHz of the desired carrier  
200  
350  
250  
ENABLE or T/R transition low to high,  
transmitter frequency settled to within 5kHz  
of the desired carrier  
Power-On Time  
t
µs  
ON  
ENABLE transition low to high, or T/R  
transition high to low, receiver startup time  
(Note 5)  
RECEIVER  
0.2% BER, 4kbps Manchester  
data rate, 280kHz IF BW,  
average RF power  
315MHz  
434MHz  
-114  
Sensitivity  
dBm  
dB  
-113  
46  
Image Rejection  
POWER AMPLIFIER  
T
T
= +25°C (Note 4)  
4.6  
3.9  
10.0  
6.7  
15.5  
15.8  
A
A
= +125°C, PAV  
= AV  
= DV  
=
DD  
DD  
DD  
Output Power  
P
HV = +2.1V (Note 2)  
T
HV = +3.6V (Note 4)  
dBm  
OUT  
IN  
= -40°C, PAV  
= AV  
= DV  
=
DD  
A
DD  
DD  
13.1  
IN  
Modulation Depth  
82  
-40  
-50  
dB  
Maximum Carrier Harmonics  
Reference Spur  
With output-matching network  
dBc  
dBc  
_______________________________________________________________________________________  
3
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
AC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, 50system impedance, PAV  
= AV  
= DV  
= HV = +2.1V to +3.6V, f = 315MHz, 345MHz, or  
DD  
DD  
DD  
IN  
RF  
433.92MHz, T = -40°C to +125°C, unless otherwise noted. Typical values are at PAV  
= AV  
= DV  
= HV = +2.7V, T = +25°C,  
A
DD  
DD  
DD  
IN  
A
unless otherwise noted.) (Note 1)  
PARAMETER  
PHASE-LOCKED LOOP  
Transmit VCO Gain  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
K
340  
-68  
-98  
340  
-80  
-90  
200  
500  
0.5  
MHz/V  
dBc/Hz  
MHz/V  
dBc/Hz  
VCO  
10kHz offset, 200kHz loop BW  
1MHz offset, 200kHz loop BW  
Transmit PLL Phase Noise  
Receive VCO Gain  
10kHz offset, 500kHz loop BW  
1MHz offset, 500kHz loop BW  
Transmit PLL  
Receive PLL Phase Noise  
Loop Bandwidth  
kHz  
Receive PLL  
Reference Frequency Input Level  
V
P-P  
LOW-NOISE AMPLIFIER/MIXER (Note 8)  
f
f
f
f
f
f
= 315MHz  
1 - j4.7  
1- j3.3  
50  
RF  
RF  
RF  
RF  
RF  
RF  
LNA Input Impedance  
Z
Normalized to 50Ω  
High-gain state  
Low-gain state  
INLNA  
= 434MHz  
= 315MHz  
= 434MHz  
= 315MHz  
= 434MHz  
45  
Voltage-Conversion Gain  
dB  
13  
9
High-gain state  
Low-gain state  
-42  
-6  
Input-Referred, 3rd-Order  
Intercept Point  
IIP3  
dBm  
Mixer-Output Impedance  
330  
LO Signal Feedthrough to  
Antenna  
-100  
dBm  
RSSI  
Input Impedance  
330  
10.7  
10  
Operating Frequency  
3dB Bandwidth  
f
MHz  
MHz  
mV/dB  
IF  
Gain  
15  
ANALOG BASEBAND  
Maximum Data-Filter Bandwidth  
Maximum Data-Slicer Bandwidth  
50  
kHz  
kHz  
100  
Maximum Peak-Detector  
Bandwidth  
50  
kHz  
Manchester coded  
33  
66  
Maximum Data Rate  
kbps  
Nonreturn to zero (NRZ)  
4
_______________________________________________________________________________________  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
AC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, 50system impedance, PAV  
= AV  
= DV  
= HV = +2.1V to +3.6V, f = 315MHz, 345MHz, or  
DD  
DD  
DD  
IN  
RF  
433.92MHz, T = -40°C to +125°C, unless otherwise noted. Typical values are at PAV  
= AV  
= DV  
= HV = +2.7V, T = +25°C,  
A
DD  
DD  
DD  
IN  
A
unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CRYSTAL OSCILLATOR  
(f -10.7)  
RF  
Crystal Frequency  
f
MHz  
XTAL  
/ 24  
Maximum Crystal Inductance  
50  
2
mH  
ppm/V  
pF  
Frequency Pulling by V  
DD  
Crystal Load Capacitance  
(Note 7)  
4.5  
Note 1: Supply current, output power, and efficiency are greatly dependent on board layout and PAOUT match.  
Note 2: 100% tested at T = +125°C. Guaranteed by design and characterization overtemperature.  
A
Note 3: 50% duty cycle at 10kHz ASK data (Manchester coded).  
Note 4: Guaranteed by design and characterization. Not production tested.  
Note 5: Time for final signal detection; does not include baseband filter settling.  
Note 6: Efficiency = P  
/ (V  
x I ).  
DD DD  
OUT  
Note 7: Dependent on PC board trace capacitance.  
Note 8: Input impedance is measured at the LNAIN pin. Note that the impedance at 315MHz includes the 12nH  
inductive degeneration from the LNA source to ground. The impedance at 434MHz includes a 10nH induc-  
tive degeneration connected from the LNA source to ground. The equivalent input circuit is 50in series  
with ~2.2pF. The voltage conversion is measured with the LNA input-matching inductor, the degeneration  
inductor, and the LNA/mixer tank in place, and does not include the IF filter insertion loss.  
Typical Operating Characteristics  
(Typical Operating Circuit, PAV  
= AV  
= DV  
= HV = +3.0V, f = 433.92MHz, IF BW = 280kHz, 4kbps Manchester encoded,  
DD  
DD  
DD IN RF  
0.2% BER, T = +25°C, unless otherwise noted.)  
A
RECEIVER  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. RF FREQUENCY  
DEEP-SLEEP CURRENT vs. TEMPERATURE  
7.0  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6.0  
18  
16  
14  
12  
10  
8
+125°C  
+125°C  
6.8  
V
V
V
= +3.6V  
= +3.0V  
= +2.1V  
CC  
CC  
CC  
6.6  
+85°C  
6.4  
+85°C  
6.2  
+25°C  
+25°C  
6
6.0  
-40°C  
4
5.8  
5.6  
-40°C  
2
0
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
300  
325  
350  
375  
400  
425  
450  
-40  
-15  
-10  
35  
60  
85  
110  
SUPPLY VOLTAGE (V)  
RF FREQUENCY (MHz)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, PAV  
= AV  
= DV  
= HV = +3.0V, f = 433.92MHz, IF BW = 280kHz, 4kbps Manchester encoded,  
DD  
DD  
DD IN RF  
0.2% BER, T = +25°C, unless otherwise noted.)  
A
RECEIVER  
BIT-ERROR RATE  
vs. AVERAGE INPUT POWER  
100  
SENSITIVITY vs. TEMPERATURE  
RSSI vs. RF INPUT POWER  
-102  
-105  
-108  
-111  
-114  
-117  
-120  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10  
HIGH-GAIN MODE  
f
RF  
= 434MHz  
f
= 434MHz  
RF  
1
0.1  
0.2% BER  
AGC SWITCH  
POINT  
f
RF  
= 315MHz  
LOW-GAIN MODE  
f
= 315MHz  
-115  
RF  
AGC HYSTERESIS: 3dB  
0.01  
-121  
-119  
-117  
-113  
-111  
-40  
-15  
10  
35  
60  
85  
110  
-130 -110 -90 -70 -50 -30 -10  
RF INPUT POWER (dBm)  
10  
AVERAGE INPUT POWER (dBm)  
TEMPERATURE (°C)  
SYSTEM GAIN vs. IF FREQUENCY  
IMAGE REJECTION vs. TEMPERATURE  
RSSI AND DELTA vs. IF INPUT POWER  
MAX7030 toc07  
50  
40  
30  
20  
10  
0
48  
46  
44  
42  
3.5  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
UPPER SIDEBAND  
f
RF  
= 433MHz  
2.5  
1.5  
RSSI  
f
RF  
= 315MHz  
FROM RFIN  
48dB IMAGE  
0.5  
TO MIXOUT  
REJECTION  
f
RF  
= 434MHz  
-0.5  
-1.5  
-2.5  
-3.5  
DELTA  
LOWER SIDEBAND  
-10  
-20  
0
5
10  
15  
20  
25  
30  
-40  
-15  
10  
35  
60  
85  
110  
-90  
-70  
-50  
-30  
-10  
10  
IF FREQUENCY (MHz)  
TEMPERATURE (°C)  
IF INPUT POWER (dBm)  
NORMALIZED IF GAIN vs. IF FREQUENCY  
S11 vs. RF FREQUENCY  
S11 SMITH PLOT OF R  
FIN  
0
-4  
0
-6  
-8  
433MHz  
-12  
-18  
-24  
433.92MHz  
-12  
-16  
-20  
400MHz  
500MHz  
1
10  
100  
200  
250  
300  
350  
400  
450  
500  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, PAV = AV = DV = HV = +3.0V, f = 433.92MHz, IF BW = 280kHz, 4kbps Manchester encoded,  
DD  
DD  
DD  
IN  
RF  
0.2% BER, T = +25°C, unless otherwise noted.)  
A
RECEIVER  
INPUT IMPEDANCE  
INPUT IMPEDANCE  
vs. INDUCTIVE DEGENERATION  
vs. INDUCTIVE DEGENERATION  
MAX7030 toc14  
MAX7030 toc13  
90  
80  
70  
60  
50  
40  
30  
20  
-150  
-160  
-170  
-180  
-190  
-200  
-210  
-220  
90  
80  
70  
60  
50  
40  
30  
20  
-220  
f
RF  
= 434MHz  
f
= 315MHz  
RF  
-230  
-240  
-250  
-260  
-270  
-280  
-290  
IMAGINARY  
IMPEDANCE  
IMAGINARY  
IMPEDANCE  
REAL IMPEDANCE  
REAL IMPEDANCE  
1
10  
INDUCTIVE DEGENERATION (nH)  
100  
1
10  
INDUCTIVE DEGENERATION (nH)  
100  
PHASE NOISE vs. OFFSET FREQUENCY  
PHASE NOISE vs. OFFSET FREQUENCY  
-50  
-60  
-50  
-60  
f
= 315MHz  
f
= 433MHz  
RF  
RF  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
_______________________________________________________________________________________  
7
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, PAV = AV = DV = HV = +3.0V, f = 433.92MHz, IF BW = 280kHz, 4kbps Manchester encoded,  
DD  
DD  
DD  
IN  
RF  
0.2% BER, T = +25°C, unless otherwise noted.)  
A
TRANSMITTER  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
17  
15  
13  
11  
9
16  
f
= 315MHz  
f
RF  
= 434MHz  
f
= 315MHz  
RF  
RF  
PA OFF  
PA ON  
PA ON  
WITHOUT ENVELOPE SHAPING  
WITHOUT ENVELOPE SHAPING  
14  
12  
10  
8
T
= +85°C  
T
= +125°C  
A
A
T
A
= +85°C  
T
A
= +85°C  
T
= -40°C  
A
T
A
= +125°C  
T
A
= +125°C  
T
A
= -40°C  
T
A
= +25°C  
T
A
= +25°C  
T
A
= -40°C  
T
= +25°C  
A
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. OUTPUT POWER  
SUPPLY CURRENT vs. OUTPUT POWER  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
f
= 434MHz  
f
= 315MHz  
f
RF  
= 434MHz  
RF  
RF  
PA OFF  
PA ON  
PA ON  
T
= +125°C  
A
ENVELOPE SHAPING ENABLED  
ENVELOPE SHAPING ENABLED  
T
A
= +85°C  
PA ON  
PA ON  
8
7
8
T
A
= +25°C  
6
7
50% DUTY CYCLE  
50% DUTY CYCLE  
T
A
= -40°C  
5
6
4
5
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
-14  
-10  
-6  
-2  
2
6
10  
-14  
-10  
-6  
-2  
2
6
10  
SUPPLY VOLTAGE (V)  
AVERAGE OUTPUT POWER (dBm)  
AVERAGE OUTPUT POWER (dBm)  
SUPPLY CURRENT AND OUTPUT POWER  
SUPPLY CURRENT AND OUTPUT POWER  
vs. EXTERNAL RESISTOR  
vs. EXTERNAL RESISTOR  
MAX7030 toc23-1  
MAX7030 toc23-2  
18  
16  
14  
12  
10  
8
16  
12  
8
18  
16  
14  
12  
10  
8
16  
12  
8
POWER  
POWER  
4
4
CURRENT  
0
0
CURRENT  
-4  
-8  
-12  
-16  
-4  
-8  
-12  
-16  
6
6
4
4
f
= 315MHz  
f
= 433MHz  
RF  
RF  
PA ON  
PA ON  
2
2
0.1  
1
10  
100  
1k  
10k  
0.1  
1
10  
100  
1k  
10k  
EXTERNAL RESISTOR ()  
EXTERNAL RESISTOR ()  
8
_______________________________________________________________________________________  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, PAV = AV = DV = HV = +3.0V, f = 433.92MHz, IF BW = 280kHz, 4kbps Manchester encoded,  
DD  
DD  
DD  
IN  
RF  
0.2% BER, T = +25°C, unless otherwise noted.)  
A
TRANSMITTER  
OUTPUT POWER vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. SUPPLY VOLTAGE  
14  
12  
10  
8
14  
14  
12  
10  
8
f
= 434MHz  
f
= 315MHz  
f
= 315MHz  
RF  
RF  
RF  
PA ON  
PA ON  
PA ON  
ENVELOPE SHAPING DISABLED  
ENVELOPE SHAPING DISABLED  
ENVELOPE SHAPING ENABLED  
12  
10  
8
T
= -40°C  
T
A
= -40°C  
A
T
A
= -40°C  
T
= +25°C  
A
T
= +25°C  
T
= +25°C  
A
A
T
= +125°C  
A
T
A
= +125°C  
T
A
= +125°C  
T
= +85°C  
A
T
A
= +85°C  
T
A
= +85°C  
6
6
6
4
4
4
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
OUTPUT POWER vs. SUPPLY VOLTAGE  
EFFICIENCY vs. SUPPLY VOLTAGE  
EFFICIENCY vs. SUPPLY VOLTAGE  
14  
12  
10  
8
40  
35  
30  
25  
20  
40  
35  
30  
25  
20  
f
= 434MHz  
f
= 315MHz  
f
= 434MHz  
RF  
RF  
RF  
T
= -40°C  
A
PA ON  
PA ON  
PA ON  
T
= -40°C  
A
ENVELOPE SHAPING ENABLED  
T
= +25°C  
= +85°C  
A
T
A
= -40°C  
T
A
= +25°C  
= +85°C  
T
A
= +25°C  
T
T
A
A
T
A
= +125°C  
T
A
= +125°C  
T
= +125°C  
A
T
A
= +85°C  
6
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
EFFICIENCY vs. SUPPLY VOLTAGE  
EFFICIENCY vs. SUPPLY VOLTAGE  
PHASE NOISE vs. OFFSET FREQUENCY  
30  
25  
20  
15  
10  
30  
25  
20  
15  
-40  
-50  
f
= 315MHz  
RF  
f
= 434MHz  
RF  
f
RF  
= 315MHz  
50% DUTY CYCLE  
50% DUTY CYCLE  
T
= -40°C  
A
T
= -40°C  
-60  
A
-70  
T
A
= +25°C  
T = +25°C  
A
-80  
-90  
-100  
-110  
-120  
-130  
-140  
T
A
= +85°C  
T
A
= +125°C  
T
A
= +85°C  
T
A
= +125°C  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
100  
1k  
10k  
100k  
1M  
10M  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
OFFSET FREQUENCY (Hz)  
_______________________________________________________________________________________  
9
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, PAV  
= AV  
= DV  
= HV = +3.0V, f = 433.92MHz, IF BW = 280kHz, 4kbps Manchester encoded,  
DD  
DD  
DD IN RF  
0.2% BER, T = +25°C, unless otherwise noted.)  
A
TRANSMITTER  
REFERENCE SPUR MAGNITUDE  
vs. SUPPLY VOLTAGE  
PHASE NOISE vs. OFFSET FREQUENCY  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-40  
f
= 434MHz  
RF  
-50  
-60  
434MHz  
315MHz  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
100  
1k  
10k  
100k  
1M  
10M  
SUPPLY VOLTAGE (V)  
OFFSET FREQUENCY (Hz)  
FREQUENCY STABILITY  
vs. SUPPLY VOLTAGE  
10  
8
6
f
= 434MHz  
= 315MHz  
4
RF  
RF  
2
0
-2  
-4  
-6  
-8  
-10  
f
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
SUPPLY VOLTAGE (V)  
10 ______________________________________________________________________________________  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
Pin Description  
PIN  
NAME  
PAV  
FUNCTION  
Power-Amplifier Supply Voltage. Bypass to GND with 0.01µF and 220pF capacitors placed as close  
to the pin as possible.  
1
DD  
Envelope-Shaping Output. ROUT controls the power-amplifier envelope’s rise and fall times. Connect  
ROUT to the PA pullup inductor or optional power-adjust resistor. Bypass the inductor to GND as  
close to the inductor as possible with 680pF and 220pF capacitors, as shown in the Typical  
Application Circuit.  
2
ROUT  
Transmit/Receive Switch Throw. Drive T/R high to short TX/RX1 to TX/RX2. Drive T/R low to disconnect  
TX/RX1 from TX/RX2. Functionally identical to TX/RX2.  
3
4
5
TX/RX1  
TX/RX2  
PAOUT  
Transmit/Receive Switch Pole. Typically connected to ground. See the Typical Application Circuit.  
Power-Amplifier Output. Requires a pullup inductor to the supply voltage (or ROUT if envelope  
shaping is desired), which can be part of the output-matching network to an antenna.  
Analog Power-Supply Voltage. AV  
is connected to an on-chip +3.0V regulator in 5V operation.  
DD  
6
7
8
AV  
DD  
Bypass AV  
to GND with a 0.1µF and 220pF capacitor placed as close to the pin as possible.  
DD  
LNAIN  
Low-Noise Amplifier Input. Must be AC-coupled.  
Low-Noise Amplifier Source for External Inductive Degeneration. Connect an inductor to GND to set  
the LNA input impedance.  
LNASRC  
Low-Noise Amplifier Output. Must be connected to AV  
to MIXIN+.  
through a parallel LC tank filter. AC-couple  
DD  
9
LNAOUT  
10  
11  
12  
MIXIN+  
MIXIN-  
Noninverting Mixer Input. Must be AC-coupled to the LNA output.  
Inverting Mixer Input. Bypass to AV with a capacitor as close to the LNA LC tank filter as possible.  
DD  
MIXOUT  
330Mixer Output. Connect to the input of the 10.7MHz filter.  
13  
14  
15  
16  
17  
IFIN-  
IFIN+  
PDMIN  
PDMAX  
DS-  
Inverting 330IF Limiter-Amplifier Input. Bypass to GND with a capacitor.  
Noninverting 330IF Limiter-Amplifier Input. Connect to the output of the 10.7MHz IF filter.  
Minimum-Level Peak Detector for Demodulator Output  
Maximum-Level Peak Detector for Demodulator Output  
Inverting Data Slicer Input  
18  
DS+  
Noninverting Data Slicer Input  
19  
20  
OP+  
DF  
Noninverting Op-Amp Input for the Sallen-Key Data Filter  
Data-Filter Feedback Node. Input for the feedback capacitor of the Sallen-Key data filter.  
No Connection. Do not connect to this pin.  
21, 25  
N.C.  
Transmit/Receive. Drive high to put the device in transmit mode. Drive low or leave unconnected to  
put the device in receive mode. It is internally pulled down.  
22  
T/R  
Enable. Drive high for normal operation. Drive low or leave unconnected to put the device into shut-  
down mode.  
23  
24  
26  
ENABLE  
DATA  
Receiver Data Output/Transmitter Data Input  
Digital Power-Supply Voltage. Bypass to GND with a 0.01µF and 220pF capacitor placed as close to  
the pin as possible.  
DV  
DD  
High-Voltage Supply Input. For 3V operation, connect HV to AV , DV , and PAV . For 5V  
IN  
DD  
DD  
DD  
27  
HV  
operation, connect only HV to 5V. Bypass HV to GND with a 0.01µF and 220pF capacitor placed  
IN  
IN  
IN  
as close to the pin as possible.  
______________________________________________________________________________________ 11  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
Pin Description (continued)  
PIN  
28  
29  
30  
31  
32  
EP  
NAME  
AGC2  
AGC1  
AGC0  
XTAL1  
XTAL2  
GND  
FUNCTION  
AGC Enable/Dwell Time Control 2 (MSB). See Table 1. Bypass to GND with a 10pF capacitor.  
AGC Enable/Dwell Time Control 1. See Table 1. Bypass to GND with a 10pF capacitor.  
AGC Enable/Dwell Time Control 0 (LSB). See Table 1. Bypass to GND with a 10pF capacitor.  
Crystal Input 1. Bypass to GND if XTAL2 is driven by an AC-coupled external reference.  
Crystal Input 2. XTAL2 can be driven from an external AC-coupled reference.  
Exposed Paddle. Solder evenly to the board’s ground plane for proper operation.  
The LC tank filter connected to LNAOUT consists of L5  
and C9 (see the Typical Application Circuit). Select L5  
Detailed Description  
The MAX7030 315MHz, 345MHz, and 433.92MHz  
CMOS transceiver and a few external components pro-  
vide a complete transmit and receive chain from the  
antenna to the digital data interface. This device is  
designed for transmitting and receiving ASK data. All  
transmit frequencies are generated by a fractional-N-  
based synthesizer, allowing for very fine frequency  
and C9 to resonate at the desired RF input frequency.  
The resonant frequency is given by:  
1
f =  
2π L  
× C  
TOTAL  
TOTAL  
where L  
PARASITICS  
= L5 + L  
and C  
= C9 +  
TOTAL  
PARASITICS  
TOTAL  
steps in increments of f  
/ 4096. The receive LO is  
XTAL  
C
.
generated by a traditional integer-N-based synthesizer.  
Depending on component selection, data rates as high  
as 33kbps (Manchester encoded) or 66kbps (NRZ  
encoded) can be achieved.  
L
and C  
include inductance and  
PARASITICS  
PARASITICS  
capacitance of the PC board traces, package pins,  
mixer-input impedance, LNA-output impedance, etc.  
These parasitics at high frequencies cannot be  
ignored, and can have a dramatic effect on the tank fil-  
ter center frequency. Lab experimentation should be  
done to optimize the center frequency of the tank. The  
total parasitic capacitance is generally between 5pF  
and 7pF.  
Receiver  
Low-Noise Amplifier (LNA)  
The LNA is a cascode amplifier with off-chip inductive  
degeneration that achieves approximately 30dB of volt-  
age gain that is dependent on both the antenna-match-  
ing network at the LNA input and the LC tank network  
between the LNA output and the mixer inputs.  
Automatic Gain Control (AGC)  
When the AGC is enabled, it monitors the RSSI output.  
When the RSSI output reaches 1.28V, which corre-  
sponds to an RF input level of approximately -55dBm,  
the AGC switches on the LNA gain-reduction attenua-  
tor. The attenuator reduces the LNA gain by 36dB,  
thereby reducing the RSSI output by about 540mV to  
740mV. The LNA resumes high-gain mode when the  
RSSI output level drops back below 680mV (approxi-  
mately -59dBm at the RF input) for a programmable  
interval called the AGC dwell time (see Table 1). The  
AGC has a hysteresis of approximately 4dB. With the  
AGC function, the RSSI dynamic range is increased,  
allowing the MAX7030 to reliably produce an ASK out-  
put for RF input levels up to 0dBm with a modulation  
depth of 18dB. AGC is not required and can be dis-  
abled (see Table 1).  
The off-chip inductive degeneration is achieved by  
connecting an inductor from LNASRC to AGND. This  
inductor sets the real part of the input impedance at  
LNAIN, allowing for a more flexible match for low-input  
impedances such as a PC board trace antenna. A  
nominal value for this inductor with a 50input imped-  
ance is 12nH at 315MHz and 10nH at 434MHz, but the  
inductance is affected by PC board trace length.  
LNASRC can be shorted to ground to increase sensitiv-  
ity by approximately 1dB, but the input match must  
then be reoptimized.  
12 ______________________________________________________________________________________  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
For Manchester Code (50% duty cycle), set the dwell  
Table 1. AGC Dwell Time Settings for  
time to at least twice the bit period. For nonreturn-to-  
MAX7030  
zero (NRZ) data, set the dwell to greater than the peri-  
od of the longest string of zeros or ones. For example,  
AGC2 AGC1 AGC0  
DESCRIPTION  
using Manchester Code at 315MHz (f  
=
XTAL  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AGC disabled, high gain selected  
12.679MHz) with a data rate of 2kbps (bit period =  
250µs), the dwell time needs to be greater than 500µs:  
K = 11  
K = 13  
K = 15  
K = 17  
K = 19  
K = 21  
K = 23  
K 3.3 x log (500µs x 12.679) 12.546  
10  
Choose the AGC pin settings for K to be the next odd-  
integer value higher than 12.546, which is 13. This says  
that AGC1 is set high and AGC0 and AGC2 are set low.  
Mixer  
A unique feature of the MAX7030 is the integrated  
image rejection of the mixer. This eliminates the need  
for a costly front-end SAW filter for many applications.  
The advantage of not using a SAW filter is increased  
sensitivity, simplified antenna matching, less board  
space, and lower cost.  
AGC Dwell-Time Settings  
The AGC dwell timer holds the AGC in low-gain state  
for a set amount of time after the power level drops  
below the AGC switching threshold. After that set  
amount of time, if the power level is still below the AGC  
threshold, the LNA goes into high-gain state. This is  
important for ASK since the modulated data may have  
a high level above the threshold and low level below  
the threshold, which without the dwell timer would  
cause the AGC to switch on every bit.  
The mixer cell is a pair of double-balanced mixers that  
perform an IQ downconversion of the RF input to the  
10.7MHz intermediate frequency (IF) with low-side  
injection (i.e., f = f - f ). The image-rejection circuit  
LO  
RF IF  
then combines these signals to achieve a typical 46dB  
of image rejection over the full temperature range. Low-  
side injection is required as high-side injection is not  
possible due to the on-chip image rejection. The IF out-  
put is driven by a source follower, biased to create a  
driving impedance of 330to interface with an off-chip  
330ceramic IF filter. The voltage-conversion gain dri-  
ving a 330load is approximately 20dB. Note that the  
MIXIN+ and MIXIN- inputs are functionally identical.  
The MAX7030 uses the three AGC control pins (AGC0,  
AGC1, AGC2) to set seven user-controlled, dwell-timer  
settings. The AGC dwell time is dependent on the crys-  
tal frequency and the bit settings of the AGC control  
pins. To calculate the dwell time, use the following  
equation:  
K
2
Dwell Time =  
f
Integer-N Phase-Locked Loop (PLL)  
The MAX7030 utilizes a fixed-integer-N PLL to generate  
the receive LO. All PLL components, including the loop  
filter, voltage-controlled oscillator, charge pump, asyn-  
chronous 24x divider, and phase-frequency detector  
are integrated internally. The loop bandwidth is approx-  
imately 500kHz. The relationship between RF, IF, and  
reference frequencies is given by:  
XTAL  
where K is an odd integer in decimal from 11 to 23, deter-  
mined by the control pin settings shown in Table 1.  
To calculate the value of K, use the following equation  
and use the next integer higher than the calculated  
result:  
K 3.3 x log (Dwell Time x f  
)
XTAL  
10  
f
= (f - f ) / 24  
RF IF  
REF  
______________________________________________________________________________________ 13  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
Intermediate Frequency (IF)  
The IF section presents a differential 330load to pro-  
vide matching for the off-chip ceramic filter. The internal  
six AC-coupled limiting amplifiers produce an overall  
gain of approximately 65dB, with a bandpass filter type  
response centered near the 10.7MHz IF frequency with  
a 3dB bandwidth of approximately 10MHz. For ASK  
data, the RSSI circuit demodulates the IF to baseband  
by producing a DC output proportional to the log of the  
IF signal level with a slope of approximately 15mV/dB.  
Data Slicer  
The data slicer takes the analog output of the data filter  
and converts it to a digital signal. This is achieved by  
using a comparator and comparing the analog input to  
a threshold voltage. The threshold voltage is set by the  
voltage on the DS- pin, which is connected to the nega-  
tive input of the data slicer comparator.  
Numerous configurations can be used to generate the  
data-slicer threshold. For example, the circuit in Figure  
2 shows a simple method using only one resistor and  
one capacitor. This configuration averages the analog  
output of the filter and sets the threshold to approxi-  
mately 50% of that amplitude. With this configuration,  
the threshold automatically adjusts as the analog signal  
varies, minimizing the possibility for errors in the digital  
data. The values of R and C affect how fast the thresh-  
old tracks the analog amplitude. Be sure to keep the  
corner frequency of the RC circuit much lower (about  
10 times) than the lowest expected data rate.  
Data Filter  
The data filter for the demodulated data is implemented  
as a 2nd-order, lowpass, Sallen-Key filter. The pole  
locations are set by the combination of two on-chip  
resistors and two external capacitors. Adjusting the  
value of the external capacitors changes the corner fre-  
quency to optimize for different data rates. Set the cor-  
ner frequency in kHz to approximately 3 times the  
fastest expected Manchester data rate in kbps from the  
transmitter (1.5 times the fastest expected NRZ data  
rate). Keeping the corner frequency near the data rate  
rejects any noise at higher frequencies, resulting in an  
increase in receiver sensitivity.  
With this configuration, a long string of NRZ zeros or  
ones can cause the threshold to drift. This configuration  
works best if a coding scheme, such as Manchester  
coding, which has an equal number of zeros and ones,  
is used.  
The configuration shown in Figure 1 can create a  
Butterworth or Bessel response. The Butterworth filter  
offers a very-flat-amplitude response in the passband  
and a rolloff rate of 40dB/decade for the two-pole filter.  
The Bessel filter has a linear phase response, which  
works well for filtering digital data. To calculate the  
value of the capacitors, use the following equations,  
along with the coefficients in Table 2:  
Figure 3 shows a configuration that uses the positive and  
negative peak detectors to generate the threshold. This  
configuration sets the threshold to the midpoint between  
a high output and a low output of the data filter.  
MAX7030  
RSSI  
b
C
C
=
F1  
F2  
a(100k)(π)(f )  
c
100k  
100kΩ  
a
=
4(100k)(π)(f )  
c
DS+  
OP+  
DF  
C
F2  
C
F1  
where f is the desired 3dB corner frequency.  
C
For example, choose a Butterworth filter response with  
a corner frequency of 5kHz:  
Figure 1. Sallen-Key Lowpass Data Filter  
1.000  
C
=
450pF  
F1  
C
Table 2. Coefficients to Calculate CF1  
and CF2  
(1.414)(100k)(3.14)(5kHz)  
1.414  
=
225pF  
F2  
(4)(100k)(3.14)(5kHz)  
FILTER TYPE  
a
b
Butterworth  
(Q = 0.707)  
Choosing standard capacitor values changes C to  
F1  
1.414  
1.000  
470pF and C to 220pF. In the Typical Application Circuit,  
F2  
C
and C are named C16 and C17, respectively.  
F1  
F2  
Bessel  
(Q = 0.577)  
1.3617  
0.618  
14 ______________________________________________________________________________________  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
MAX7030  
MAX7030  
DATA  
SLICER  
PEAK  
DET  
PEAK  
DET  
DATA  
SLICER  
DATA  
DS-  
DS+  
R
C
DATA  
PDMAX  
PDMIN  
R
R
C
C
Figure 2. Generating Data-Slicer Threshold Using a Lowpass  
Filter  
Peak Detectors  
The maximum peak detector (PDMAX) and minimum  
peak detector (PDMIN), with resistors and capacitors  
shown in Figure 3, create DC output voltages equal to  
the high- and low-peak values of the filtered demodulat-  
ed signal. The resistors provide a path for the capaci-  
tors to discharge, allowing the peak detectors to  
dynamically follow peak changes of the data filter out-  
put voltages.  
Figure 3. Generating Data-Slicer Threshold Using the Peak  
Detectors  
trace and a 50antenna. The output-matching network  
for a 50antenna is shown in the Typical Application  
Circuit. The output-matching network suppresses the  
carrier harmonics and transforms the antenna imped-  
ance to an optimal impedance at PAOUT (pin 5). The  
optimal impedance at PAOUT is 250.  
When the output-matching network is properly tuned,  
the PA transmits power with a high overall efficiency of  
up to 32%. The efficiency of the PA itself is more than  
46%. The output power is set by an external resistor at  
PAOUT, and is also dependent on the external antenna  
and antenna-matching network at the PA output.  
The maximum and minimum peak detectors can be  
used together to form a data slicer threshold voltage at  
a value midway between the maximum and minimum  
voltage levels of the data stream (see the Data Slicer  
section and Figure 3). Set the RC time constant of the  
peak detector combining network to at least 5 times the  
data period.  
Envelope Shaping  
The MAX7030 features an internal envelope-shaping  
resistor, which connects between the open-drain output  
of the PA and the power supply (see the Typical  
Application Circuit). The envelope-shaping resistor  
slows the turn-on/turn-off of the PA in ASK mode, and  
results in a smaller spectral width of the modulated PA  
output signal.  
If there is an event that causes a significant change in  
the magnitude of the baseband signal, such as an AGC  
gain-switch or a power-up transient, the peak detectors  
may “catch” a false level. If a false peak is detected,  
the slicing level is incorrect. The MAX7030 peak detec-  
tors correct these problems by temporarily tracking the  
incoming baseband filter voltage when an AGC state  
switch occurs, or forcing the peak detectors to track the  
baseband filter output voltage until all internal circuits  
are stable following an enable pin low-to-high transition  
and also T/R pin high-to-low transition. The peak detec-  
tors exhibit a fast attack/slow decay response. This fea-  
ture allows for an extremely fast startup or AGC  
recovery.  
Fractional-N Phase-Locked Loop (PLL)  
The MAX7030 utilizes a fully integrated, fractional-N,  
PLL for its transmit frequency synthesizer. All PLL com-  
ponents, including the loop filter, are integrated inter-  
nally. The loop bandwidth is approximately 200kHz.  
Power-Supply Connections  
The MAX7030 can be powered from a 2.1V to 3.6V sup-  
ply or a 4.5V to 5.5V supply. If a 4.5V to 5.5V supply is  
used, then the on-chip linear regulator reduces the 5V  
supply to the 3V needed to operate the chip.  
Transmitter  
Power Amplifier (PA)  
The PA of the MAX7030 is a high-efficiency, open-  
drain, class-C amplifier. The PA with proper output-  
matching network can drive a wide range of antenna  
impedances, which includes a small-loop PC board  
To operate the MAX7030 from a 3V supply, connect  
PAV , AV , DV , and HV to the 3V supply. When  
DD  
DD  
DD  
IN  
using a 5V supply, connect the supply to HV only and  
IN  
______________________________________________________________________________________ 15  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
connect AV , PAV , and DV together. In both  
DD  
In actuality, the oscillator pulls every crystal. The crys-  
tal’s natural frequency is really below its specified fre-  
quency, but when loaded with the specified load  
capacitance, the crystal is pulled and oscillates at its  
specified frequency. This pulling is already accounted  
for in the specification of the load capacitance.  
DD  
DD  
cases, bypass DV , HV , and PAV to GND with  
DD  
IN  
DD  
0.01µF and 220pF capacitors and bypass AV  
to  
DD  
GND with 0.1µF and 220pF capacitors. Bypass T/R,  
ENABLE, DATA, and AGC0-2 with 10pF capacitors to  
GND. Place all bypass capacitors as close to the  
respective pins as possible.  
Additional pulling can be calculated if the electrical  
parameters of the crystal are known. The frequency  
pulling is given by:  
Transmit/Receive Antenna Switch  
The MAX7030 features an internal SPST RF switch that,  
when combined with a few external components, allows  
the transmit and receive pins to share a common  
antenna (see the Typical Application Circuit). In receive  
mode, the switch is open and the power amplifier is  
shut down, presenting a high impedance to minimize  
the loading of the LNA. In transmit mode, the switch  
closes to complete a resonant tank circuit at the PA  
output and forms an RF short at the input to the LNA. In  
this mode, the external passive components couple the  
output of the PA to the antenna and protect the LNA  
input from strong transmitted signals.  
C
2
1
+ C  
1
6
m
f
=
x 10  
P
C
C
+ C  
SPEC  
CASE  
LOAD  
CASE  
where:  
f is the amount the crystal frequency is pulled in ppm.  
p
C
C
C
C
is the motional capacitance of the crystal.  
is the case capacitance.  
m
CASE  
SPEC  
LOAD  
is the specified load capacitance.  
is the actual load capacitance.  
The switch state is controlled by the T/R pin (pin 22).  
Drive T/R high to put the device in transmit mode; drive  
T/R low to put the device in receive mode.  
When the crystal is loaded as specified, i.e.,  
C
LOAD  
= C  
, the frequency pulling equals zero.  
SPEC  
Crystal Oscillator (XTAL)  
The XTAL oscillator in the MAX7030 is designed to pre-  
sent a capacitance of approximately 3pF between the  
XTAL1 and XTAL2 pins. In most cases, this corre-  
sponds to a 4.5pF load capacitance applied to the  
external crystal when typical PC board parasitics are  
added. It is very important to use a crystal with a  
load capacitance that is equal to the capacitance of  
the MAX7030 crystal oscillator plus PC board para-  
sitics. If a crystal designed to oscillate with a different  
load capacitance is used, the crystal is pulled away  
from its stated operating frequency, introducing an  
error in the reference frequency. Crystals designed to  
operate with higher differential load capacitance  
always pull the reference frequency higher.  
Pin Configuration  
TOP VIEW  
24 23 22 21 20 19 18 17  
N.C.  
25  
26  
27  
PDMAX  
15 PDMIN  
16  
DV  
DD  
HV  
IN  
IFIN+  
IFIN-  
14  
13  
AGC2 28  
AGC1 29  
AGC0 30  
MAX7030  
12 MIXOUT  
11  
10 MIXIN+  
LNAOUT  
MIXIN-  
XTAL1  
31  
XTAL2 32  
9
1
2
3
4
5
6
7
8
THIN QFN  
16 ______________________________________________________________________________________  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
Table 3. Component Values for Typical Application Circuit  
VALUE FOR  
433.92MHz RF  
VALUE FOR  
315MHz RF  
COMPONENT  
DESCRIPTION  
C1  
C2  
220pF  
680pF  
220pF  
680pF  
10%  
10%  
C3  
6.8pF  
12pF  
5%  
C4  
6.8pF  
10pF  
5%  
C5  
10pF  
22pF  
5%  
C6  
220pF  
220pF  
10%  
C7  
0.1µF  
0.1µF  
10%  
C8  
100pF  
100pF  
5%  
C9  
1.8pF  
2.7pF  
0.1pF  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
L1  
100pF  
100pF  
5%  
220pF  
220pF  
10%  
100pF  
100pF  
5%  
1500pF  
0.047µF  
0.047µF  
470pF  
1500pF  
0.047µF  
0.047µF  
470pF  
10%  
10%  
10%  
10%  
220pF  
220pF  
10%  
220pF  
220pF  
10%  
0.01µF  
100pF  
0.01µF  
100pF  
10%  
5%  
100pF  
100pF  
5%  
220pF  
220pF  
10%  
10%  
0.01µF  
0.01µF  
22nH  
0.01µF  
0.01µF  
27nH  
10%  
Coilcraft 0603CS  
Coilcraft 0603CS  
Coilcraft 0603CS  
Coilcraft 0603CS  
Murata LQW18A  
Coilcraft 0603CS  
5%  
L2  
22nH  
30nH  
L3  
22nH  
30nH  
L4  
10nH  
12nH  
L5  
16nH  
30nH  
L6  
68nH  
100nH  
100kΩ  
100kΩ  
0Ω  
R1  
100kΩ  
100kΩ  
0Ω  
R2  
5%  
R3  
Y1  
17.63416MHz  
10.7MHz ceramic filter  
12.67917MHz  
10.7MHz ceramic filter  
Crystal, 4.5pF load capacitance  
Murata SFECV10.7 series  
Y2  
Note: Component values vary depending on PC board layout.  
______________________________________________________________________________________ 17  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
Typical Application Circuit  
AGC0  
AGC1  
AGC2  
V
DD  
Y1  
V
DD  
3.0V  
C18  
C19  
C20  
C21  
DD  
C23  
C24  
V
DD  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
PAV  
24  
23  
22  
21  
DATA  
DATA  
ENABLE  
T/R  
C22  
ROUT  
ENABLE  
R3*  
TRANSMIT/  
RECEIVE  
3
4
5
TX/RX1  
TX/RX2  
C2  
C1  
N.C.  
DF  
L1  
MAX7030  
20  
19  
PAOUT  
C3  
C5  
V
DD  
L2  
EXPOSED  
PADDLE  
6
OP+  
DS+  
DS-  
C4  
AV  
DD  
C16  
C17  
C6  
L6  
C7  
18  
17  
C8  
L3  
7
8
LNAIN  
LNASRC  
L4  
9
10  
11  
12  
13  
C13  
15  
16  
14  
R1  
C15  
C10  
C12  
V
C9  
DD  
L5  
R2  
IN GND  
Y2  
OUT  
C14  
C11  
*OPTIONAL POWER-ADJUST RESISTOR  
Chip Information  
PROCESS: CMOS  
18 ______________________________________________________________________________________  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
Functional Diagram  
LNAOUT MIXIN+ MIXIN-  
10 11  
MIXOUT  
12  
IFIN+ IFIN-  
14  
9
13  
IF LIMITING  
AMPS  
0°  
7
8
LNAIN  
LNA  
Σ
LNASRC  
90°  
RSSI  
DF  
20  
19  
I
Q
100kΩ  
100kΩ  
RX VCO  
OP+  
RX  
FREQUENCY  
DIVIDER  
DATA FILTER  
18 DS+  
XTAL1  
XTAL2  
31  
32  
TX  
CRYSTAL  
OSCILLATOR  
PHASE  
DETECTOR  
FREQUENCY  
DIVIDER  
15 PDMIN  
CHARGE  
PUMP  
PDMAX  
DS-  
16  
17  
TX VCO  
∆Σ  
MODULATOR  
3.0V  
REGULATOR  
HV  
IN  
27  
6
LOOP FILTER  
RX  
DATA  
AV  
DD  
EXPOSED  
PADDLE  
AGC0  
AGC1  
AGC2  
DATA  
30  
29  
28  
24  
MAX7030  
PA  
DIGITAL LOGIC  
23  
ENABLE  
5
2
1
3
22  
26  
4
ROUT  
PAV  
PAOUT  
TX/RX1  
TX/RX2  
T/R DV  
DD  
DD  
______________________________________________________________________________________ 19  
Low-Cost, 315MHz, 345MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
XXXXX  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45°  
DETAIL A  
e/2  
PIN # 1  
I.D.  
e
(ND-1) X  
e
DETAIL B  
e
L
C
C
L
L1  
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
1
21-0140  
H
-DRAWING NOT TO SCALE-  
2
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
MIN. NOM. MAX. MIN. NOM. MAX. ±0.15  
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
40L 5x5  
DOWN  
BONDS  
ALLOWED  
L
PKG.  
CODES  
A
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
T1655-1  
T1655-2  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
**  
**  
**  
**  
A1  
A3  
b
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
YES  
NO  
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
T2055-2  
T2055-3  
T2055-4  
T2055-5  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
D
E
**  
**  
e
0.80 BSC.  
0.25  
0.65 BSC.  
0.25  
0.50 BSC.  
0.25  
0.50 BSC.  
0.25  
0.40 BSC.  
YES  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
k
-
-
-
-
-
-
-
-
0.25 0.35 0.45  
T2855-1  
T2855-2  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
NO  
NO  
L
**  
**  
**  
**  
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
0.30 0.40 0.50  
40  
T2855-3  
T2855-4  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
YES  
YES  
NO  
N
ND  
NE  
16  
20  
28  
32  
4
4
5
5
7
7
8
8
10  
10  
T2855-5  
T2855-6  
T2855-7  
T2855-8  
**  
**  
**  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
-----  
JEDEC  
NO  
YES  
2.80  
3.35  
3.35  
3.20  
2.60 2.70  
3.15 3.25  
2.60 2.70 2.80  
3.15 3.25 3.35  
3.15 3.25 3.35  
3.00 3.10 3.20  
0.40  
YES  
NO  
NO  
NOTES:  
T2855N-1 3.15 3.25  
**  
**  
**  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
T3255-2  
T3255-3  
T3255-4  
3.00 3.10  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
NO  
**  
**  
**  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
NO  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
T4055-1 3.20 3.30 3.40 3.20 3.30 3.40  
YES  
**SEE COMMON DIMENSIONS TABLE  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN  
0.25 mm AND 0.30 mm FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1,  
T2855-3, AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ±0.05.  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
H
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX7030MATJ

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL
MAXIM

MAX7030MATJ+

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL
MAXIM

MAX7030MATJ-T

暂无描述
MAXIM

MAX7030_09

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL
MAXIM

MAX7030_10

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL
MAXIM

MAX7030_ATJ+

Low-Cost, 315MHz, 345MHz, and 433.92MHz ASK Transceiver with Fractional-N PLL
MAXIM

MAX7030_V4

Low-Cost, 315MHz and 433.92MHz ASK Transceiver with Fractional-N PLL
MAXIM

MAX7031

Low-Cost, 308MHz, 315MHz, and 433.92MHz FSK Transceiver with Fractional-N PLL
MAXIM

MAX7031ATJ

Low-Cost, 308MHz, 315MHz, and 433.92MHz FSK Transceiver with Fractional-N PLL
MAXIM

MAX7031HATJ17

SPECIALTY TELECOM CIRCUIT, QCC32, 5 X 5 MM, 0.80 MM HEIGHT, MO-220-WHHD-2, QFN-32
ROCHESTER

MAX7031HATJ17+

Telecom Circuit, 1-Func, CMOS, 5 X 5 MM, ROHS COMPLIANT, QFN-32
MAXIM

MAX7031HATJ17+T

Telecom Circuit, 1-Func, CMOS, 5 X 5 MM, 0.8 MM, HEIGHT, MO-220-WHHD-2, QFN-32
MAXIM