MAX7031 [MAXIM]

Low-Cost, 308MHz, 315MHz, and 433.92MHz FSK Transceiver with Fractional-N PLL; 低成本, 308MHz , 315MHz的,和433.92MHz的FSK收发器,带有N分频PLL
MAX7031
型号: MAX7031
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Cost, 308MHz, 315MHz, and 433.92MHz FSK Transceiver with Fractional-N PLL
低成本, 308MHz , 315MHz的,和433.92MHz的FSK收发器,带有N分频PLL

文件: 总19页 (文件大小:651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3707; Rev 0; 5/05  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
General Description  
Features  
The MAX7031 crystal-based, fractional-N transceiver is  
designed to transmit and receive FSK data at factory-  
preset carrier frequencies of 308MHz, 315MHz, or  
433.92MHz with data rates up to 33kbps (Manchester  
encoded) or 66kbps (NRZ encoded). This device gen-  
erates a typical output power of +10dBm into a 50  
load, and exhibits typical sensitivity of -110dBm. The  
MAX7031 features separate transmit and receive pins  
(PAOUT and LNAIN) and provides an internal RF switch  
that can be used to connect the transmit and receive  
pins to a common antenna.  
+2.1V to +3.6V or +4.5V to +5.5V Single-Supply  
Operation  
Single-Crystal Transceiver  
Factory-Preset Frequency (No Serial Interface  
Required)  
FSK Modulation  
Factory-Preset FSK Frequency Deviation  
+10dBm Output Power into 50Load  
Integrated TX/RX Switch  
The MAX7031 transmit frequency is generated by a 16-  
bit, fractional-N, phase-locked loop (PLL), while the  
receiver’s local oscillator (LO) is generated by an inte-  
ger-N PLL. This hybrid architecture eliminates the need  
for separate transmit and receive crystal reference  
oscillators because the fractional-N PLL is preset to be  
10.7MHz above the receive LO. Retaining the fixed-N  
PLL for the receiver avoids the higher current-drain  
requirements of a fractional-N PLL and keeps the  
receiver current drain as low as possible.  
Integrated Transmit and Receive PLL, VCO, and  
Loop Filter  
> 45dB Image Rejection  
Typical RF Sensitivity*: -110dBm  
Selectable IF Bandwidth with External Filter  
RSSI Output with High Dynamic Range  
< 12.5mA Transmit-Mode Current  
< 6.7mA Receive-Mode Current  
< 800nA Shutdown Current  
The fractional-N architecture of the MAX7031 transmit  
PLL allows the transmit FSK signal to be preset for  
exact frequency deviations, and completely eliminates  
the problems associated with oscillator-pulling FSK sig-  
nal generation. All frequency-generation components  
are integrated on-chip, and only a crystal, a 10.7MHz IF  
filter, and a few discrete components are required to  
implement a complete antenna/digital data solution.  
Fast-On Startup Feature, < 250µs  
Small, 32-Pin, Thin QFN Package  
*0.2% BER, 4kbps Manchester-encoded data, 280kHz IF BW  
The MAX7031 is available in a small, 5mm x 5mm, 32-  
pin, thin QFN package, and is specified to operate in  
the automotive -40°C to +125°C temperature range.  
Consult factory for availability.  
Ordering Information  
TEMP  
RANGE  
PKG  
CODE  
PART  
PIN-PACKAGE  
Applications  
2-Way Remote Keyless Entry  
-40°C to  
+125°C  
MAX7031_ATJ__  
32 Thin QFN-EP** T3255-3  
Security Systems  
Home Automation  
**EP = Exposed paddle.  
Note: The MAX7031 is available with factory-preset operating  
frequencies. See the Selector Guide for complete part num-  
bers.  
Remote Controls  
Remote Sensing  
Smoke Alarms  
Garage-Door Openers  
Local Telemetry Systems  
Pin Configuration, Selector Guide, Typical Application  
Circuit, and Functional Diagram appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
ABSOLUTE MAXIMUM RATINGS  
HV to GND..........................................................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
A
IN  
PAV , AV , DV to GND................................-0.3V to +4.0V  
ENABLE, T/R, DATA, AGC0, AGC1,  
AUTOCAL to GND................................-0.3V to (HVIN + 0.3)V  
All Other Pins to GND ..............................-0.3V to (_VDD + 0.3)V  
32-Pin Thin QFN (derate 21.3mW/°C  
DD  
DD  
DD  
above +70°C).............................................................1702mW  
Operating Temperature Range .........................-40°C to +125°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, 50system impedance, PAV  
= AV  
= DV  
= HV = +2.1V to +3.6V, f = 308MHz, 315MHz, or  
DD  
DD  
DD  
IN  
RF  
433.92MHz, T = -40°C to +125°C, unless otherwise noted. Typical values are at PAV  
= AV  
= DV  
= HV = +2.7V, T = +25°C,  
A
DD  
DD  
DD  
IN  
A
unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
HV , PAV , AV , and DV connected  
DD  
MIN  
TYP  
MAX  
UNITS  
IN  
DD  
DD  
Supply Voltage (3V Mode)  
V
2.1  
2.7  
3.6  
V
DD  
to power supply  
PAV , AV , and DV unconnected  
DD  
DD  
DD  
Supply Voltage (5V Mode)  
HV  
4.5  
5.0  
5.5  
V
IN  
from HV , but connected together  
IN  
f
f
= 315MHz  
= 434MHz  
11.6  
12.4  
6.4  
19.1  
20.4  
8.4  
RF  
Transmit mode  
(Note 2)  
RF  
mA  
Receiver 315MHz  
Receiver 434MHz  
T
A
< +85°C,  
6.7  
8.7  
typ at +25°C  
(Note 3)  
Deep-sleep (3V mode)  
Deep-sleep (5V mode)  
Receiver 315MHz  
0.8  
8.8  
Supply Current  
I
µA  
DD  
2.4  
10.9  
8.7  
6.8  
mA  
T
A
< +125°C,  
Receiver 434MHz  
7.0  
8.8  
typ at +125°C  
(Note 2)  
Deep-sleep (3V mode)  
Deep-sleep (5V mode)  
8.0  
34.2  
39.3  
µA  
V
14.9  
3.0  
Voltage Regulator  
V
HV = 5V, I  
= 15mA  
LOAD  
REG  
IN  
DIGITAL I/O  
0.9  
x HV  
Input-High Threshold  
Input-Low Threshold  
V
(Note 2)  
(Note 2)  
V
V
IH  
IN  
0.1  
V
IL  
x HV  
IN  
AGC0-1, AUTOCAL, ENABLE, T/R, DATA  
(HV = 5.5V)  
Pulldown Sink Current  
Output Low Voltage  
Output High Voltage  
20  
µA  
V
IN  
V
I
= 500µA  
0.15  
OL  
SINK  
HV  
IN  
V
I
= 500µA  
V
OH  
SOURCE  
- 0.26  
2
_______________________________________________________________________________________  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, 50system impedance, PAV  
= AV  
= DV  
= HV = +2.1V to +3.6V, f = 308MHz, 315MHz. or  
DD  
DD  
DD IN RF  
433.92MHz, T = -40°C to +125°C, unless otherwise noted. Typical values are at PAV = AV = DV = HV = +2.7V, T = +25°C,  
A
DD  
DD  
DD  
IN  
A
unless otherwise noted.) (Note 1)  
PARAMETER  
GENERAL CHARACTERISTICS  
Frequency Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
308/315/433.92  
MHz  
dBm  
Maximum Input Level  
P
0
RFIN  
f
f
= 315MHz  
= 434MHz  
32  
RF  
Transmit Efficiency (Note 5)  
%
30  
RF  
ENABLE or T/R transition low to high,  
transmitter frequency settled to within  
50kHz of the desired carrier  
200  
ENABLE or T/R transition low to high,  
transmitter frequency settled to within 5kHz  
of the desired carrier  
Power-On Time  
t
µs  
350  
250  
ON  
ENABLE transition low to high, or T/R  
transition high to low, receiver startup time  
(Note 4)  
RECEIVER  
0.2% BER, 4kbps  
315MHz  
-110  
Manchester data rate,  
280kHz IF BW, FSK  
Sensitivity  
dBm  
dB  
434MHz  
-107  
46  
50kHz deviation  
Image Rejection  
POWER AMPLIFIER  
T
T
= +25°C (Note 3)  
4.6  
3.9  
10.0  
6.7  
15.5  
A
= +125°C, PAV  
= AV  
= DV  
=
DD  
A
DD  
DD  
HV = +2.1V (Note 2)  
Output Power  
P
K
IN  
dBm  
OUT  
T
= -40°C, PAV  
= AV  
= DV  
= HV  
DD IN  
A
DD  
DD  
13.1  
15.8  
= +3.6V (Note 3)  
Maximum Carrier Harmonics  
Reference Spur  
With output matching network  
-40  
-50  
dBc  
dBc  
PHASE-LOCKED LOOP  
Transmit VCO Gain  
340  
-68  
-98  
340  
-80  
-90  
200  
500  
MHz/V  
dBc/Hz  
MHz/V  
dBc/Hz  
VCO  
10kHz offset, 200kHz loop BW  
1MHz offset, 200kHz loop BW  
Transmit PLL Phase Noise  
Receive VCO Gain  
10kHz offset, 500kHz loop BW  
1MHz offset, 500kHz loop BW  
Transmit PLL  
Receive PLL Phase Noise  
Loop Bandwidth  
kHz  
Receive PLL  
_______________________________________________________________________________________  
3
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
AC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, 50system impedance, PAV  
= AV  
= DV  
= HV = +2.1V to +3.6V, f = 308MHz, 315MHz. or  
DD  
DD  
DD IN RF  
433.92MHz, T = -40°C to +125°C, unless otherwise noted. Typical values are at PAV = AV = DV = HV = +2.7V, T = +25°C,  
A
DD  
DD  
DD  
IN  
A
unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reference Frequency Input Level  
0.5  
V
P-P  
LOW-NOISE AMPLIFIER/MIXER (Note 7)  
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
= 315MHz  
= 434MHz  
= 315MHz  
= 434MHz  
= 315MHz  
= 434MHz  
1 - j4.7  
1 - j3.3  
50  
LNA Input Impedance  
Z
Normalized to 50  
High-gain state  
Low-gain state  
INLNA  
45  
Voltage-Conversion Gain  
dB  
13  
9
High-gain state  
Low-gain state  
-42  
-6  
Input-Referred 3rd-Order  
Intercept Point  
IIP3  
dBm  
Mixer Output Impedance  
330  
LO Signal Feedthrough to  
Antenna  
-100  
dBm  
RSSI  
Input Impedance  
330  
10.7  
10  
Operating Frequency  
3dB Bandwidth  
f
IF  
MHz  
MHz  
mV/dB  
Gain  
15  
FSK DEMODULATOR  
Conversion Gain  
2.0  
mV/kHz  
ANALOG BASEBAND  
Maximum Data Filter Bandwidth  
Maximum Data Slicer Bandwidth  
50  
kHz  
kHz  
100  
Maximum Peak Detector  
Bandwidth  
50  
kHz  
Manchester coded  
33  
66  
Maximum Data Rate  
kbps  
Nonreturn to zero (NRZ)  
CRYSTAL OSCILLATOR  
Crystal Frequency  
(f - 10.7)  
RF  
f
MHz  
XTAL  
/ 24  
50  
2
Maximum Crystal Inductance  
mH  
ppm/V  
pF  
Frequency Pulling by V  
DD  
Crystal Load Capacitance  
(Note 6)  
4.5  
4
_______________________________________________________________________________________  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
AC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, 50system impedance, PAV  
= AV  
= DV  
= HV = +2.1V to +3.6V, f = 308MHz, 315MHz. or  
DD  
DD  
DD IN RF  
433.92MHz, T = -40°C to +125°C, unless otherwise noted. Typical values are at PAV = AV = DV = HV = +2.7V, T = +25°C,  
A
DD  
DD  
DD  
IN  
A
unless otherwise noted.) (Note 1)  
Note 1: Supply current, output power, and efficiency are greatly dependent on board layout and PAOUT match.  
Note 2: 100% tested at T = +125°C. Guaranteed by design and characterization over temperature.  
A
Note 3: Guaranteed by design and characterization. Not production tested.  
Note 4: Time for final signal detection; does not include baseband filter settling.  
Note 5: Efficiency = P  
/ (V  
x I ).  
DD DD  
OUT  
Note 6: Dependent on PC board trace capacitance.  
Note 7: Input impedance is measured at the LNAIN pin. Note that the impedance at 315MHz includes the 12nH inductive degenera-  
tion from the LNA source to ground. The impedance at 434MHz includes a 10nH inductive degeneration connected from  
the LNA source to ground. The equivalent input circuit is 50in series with ~2.2pF. The voltage conversion is measured  
with the LNA input-matching inductor, the degeneration inductor, and the LNA/mixer tank in place, and does not include the  
IF filter insertion loss.  
Typical Operating Characteristics  
(Typical Operating Circuit, PAV  
= AV  
= DV  
= HV = +3.0V, f = 433.92MHz, IF BW = 280kHz. 4kbps Manchester  
DD IN RF  
DD  
DD  
encoded, 0.2% BER deviation = 50kHz, T = +25°C, unless otherwise noted.)  
A
RECEIVER  
SUPPLY CURRENT vs. RF FREQUENCY  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
FSK MODE  
DEEP-SLEEP CURRENT vs. TEMPERATURE  
7.0  
6.9  
6.8  
6.7  
6.6  
6.5  
6.4  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
18  
16  
14  
12  
10  
8
+125°C  
+125°C  
V
V
V
= +3.6V  
= +3.0V  
= +2.1V  
CC  
CC  
CC  
+85°C  
+85°C  
+25°C  
+25°C  
-40°C  
6
-40°C  
4
2
0
300  
325  
350  
375  
400  
425  
450  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
-10  
35  
60  
85  
110  
RF FREQUENCY (MHz)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, PAV  
= AV  
= DV  
= HV = +3.0V, f  
= 433.92MHz, IF BW = 280kHz. 4kbps Manchester  
RF  
DD  
DD  
DD  
IN  
encoded, 0.2% BER deviation = 50kHz, T  
= +25°C, unRlesEsCothEeIrVwiEseRnoted.)  
A
BIT-ERROR RATE  
SENSITIVITY vs. TEMPERATURE  
SENSITIVITY vs. FREQUENCY DEVIATION  
vs. AVERAGE INPUT POWER  
100  
-100  
-102  
-104  
-106  
-108  
-110  
-112  
-94  
-96  
280kHz IF BW  
280kHz IF BW  
0.2% BER  
280kHz IF BW  
0.2% BER  
10  
f
= 434MHz  
RF  
-98  
f
= 434MHz  
RF  
-100  
-102  
-104  
-106  
-108  
1
0.1  
0.2% BER  
f
= 315MHz  
RF  
f
= 315MHz  
RF  
0.01  
-116 -114 -112 -110 -108 -106 -104  
AVERAGE INPUT POWER (dBm)  
-40  
-15  
10  
35  
60  
85  
110  
1
10  
100  
TEMPERATURE (°C)  
FREQUENCY DEVIATION (kHz)  
RSSI vs. RF INPUT POWER  
RSSI AND DELTA vs. IF INPUT POWER  
FSK DEMODULATOR OUTPUT  
vs. IF FREQUENCY  
MAX7031 toc08  
3.5  
1.8  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
1.6  
1.2  
0.8  
0.4  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
1.5  
RSSI  
HIGH-GAIN MODE  
0.5  
-0.5  
-1.5  
-2.5  
-3.5  
AGC SWITCH  
POINT  
DELTA  
LOW-GAIN MODE  
AGC HYSTERESIS: 3dB  
-130 -110 -90 -70 -50 -30 -10  
RF INPUT POWER (dBm)  
10  
-90  
-70  
-50  
-30  
-10  
10  
10.4 10.5 10.6 10.7 10.8 10.9 11.0  
IF FREQUENCY (MHz)  
IF INPUT POWER (dBm)  
SYSTEM GAIN vs. IF FREQUENCY  
IMAGE REJECTION vs. TEMPERATURE  
NORMALIZED IF GAIN vs. IF FREQUENCY  
50  
40  
30  
20  
10  
0
48  
46  
44  
42  
0
-4  
UPPER SIDEBAND  
f
= 434MHz  
RF  
f
= 315MHz  
RF  
FROM RFIN  
45dB IMAGE  
-8  
TO MIXOUT  
REJECTION  
f
= 434MHz  
RF  
-12  
-16  
-20  
LOWER SIDEBAND  
-10  
-20  
0
5
10  
15  
20  
25  
30  
-40  
-15  
10  
35  
60  
85  
110  
1
10  
100  
IF FREQUENCY (MHz)  
TEMPERATURE (°C)  
IF FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, PAV  
= AV  
= DV  
= HV = +3.0V, f = 433.92MHz, IF BW = 280kHz. 4kbps Manchester  
RF  
DD  
DD  
DD  
IN  
encoded, 0.2% BER deviation = 50kHz, T = +25°C, unless otherwise noted.)  
A
RECEIVER  
S11 SMITH PLOT OF RFIN  
S11 vs. RF FREQUENCY  
0
-6  
434MHz  
-12  
433.92MHz  
-18  
-24  
400MHz  
500MHz  
200  
250  
300  
350  
400  
450  
500  
RF FREQUENCY (MHz)  
INPUT IMPEDANCE  
vs. INDUCTIVE DEGENERATION  
INPUT IMPEDANCE  
vs. INDUCTIVE DEGENERATION  
MAX7031 toc16  
MAX7031 toc15  
90  
80  
70  
60  
50  
40  
30  
20  
-150  
-160  
-170  
-180  
-190  
-200  
-210  
-220  
90  
80  
70  
60  
50  
40  
30  
20  
-220  
-230  
-240  
-250  
-260  
-270  
-280  
-290  
f
= 434MHz  
RF  
f
= 315MHz  
RF  
IMAGINARY  
IMPEDANCE  
IMAGINARY  
IMPEDANCE  
REAL IMPEDANCE  
REAL IMPEDANCE  
1
10  
100  
1
10  
INDUCTIVE DEGENERATION (nH)  
100  
INDUCTIVE DEGENERATION (nH)  
PHASE NOISE vs. OFFSET FREQUENCY  
PHASE NOISE vs. OFFSET FREQUENCY  
-50  
-60  
-50  
-60  
f = 434MHz  
RF  
f
= 315MHz  
RF  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
_______________________________________________________________________________________  
7
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, PAV  
= AV  
= DV  
= HV = +3.0V, f = 433.92MHz, IF BW = 280kHz. 4kbps Manchester  
RF  
DD  
DD  
DD  
IN  
encoded, 0.2% BER deviation = 50kHz, T = +25°C, unless otherwise noted.)  
A
TRANSMITTER  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. OUTPUT POWER  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
12  
17  
15  
13  
11  
9
16  
14  
12  
10  
8
f
= 434MHz  
f
= 315MHz  
RF  
RF  
f
= 315MHz  
RF  
11  
10  
9
T
= +85°C  
A
T
= +85°C  
A
T
= +125°C  
A
T
= +125°C  
8
A
T
= -40°C  
A
T
= -40°C  
A
7
T
= +25°C  
A
6
5
T
= +25°C  
A
4
-14  
-10  
-6  
-2  
2
6
10  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
AVERAGE OUTPUT POWER (dBm)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY CURRENT vs. OUTPUT POWER  
OUTPUT POWER vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. SUPPLY VOLTAGE  
14  
12  
10  
8
14  
12  
10  
8
14  
13  
12  
11  
10  
9
f
= 315MHz  
f
= 434MHz  
RF  
RF  
f
= 434MHz  
RF  
T
= -40°C  
A
T
= -40°C  
A
T
= +25°C  
A
T
= +25°C  
A
T
= +125°C  
A
8
T
= +125°C  
A
T
= +85°C  
7
A
6
6
T
= +85°C  
A
6
5
4
4
-14  
-10  
-6  
-2  
2
6
10  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
AVERAGE OUTPUT POWER (dBm)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
EFFICIENCY vs. SUPPLY VOLTAGE  
EFFICIENCY vs. SUPPLY VOLTAGE  
40  
35  
30  
25  
20  
40  
35  
30  
25  
20  
f
= 315MHz  
f
= 434MHz  
RF  
RF  
T
= -40°C  
A
T
= -40°C  
A
T
= +25°C  
A
T
= +25°C  
= +85°C  
A
T
A
T
= +85°C  
A
T
= +125°C  
A
T
= +125°C  
A
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
8
_______________________________________________________________________________________  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
ASK Transceiver with Fractional-N PLL  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, PAV  
= AV  
= DV  
= HV = +3.0V, f  
= 433.92MHz, IF BW = 280kHz. 4kbps Manchester  
RF  
DD  
DD  
DD  
IN  
= +25°C, uTnlResAs oNthSerMwisIeTnToEteRd.)  
encoded, 0.2% BER deviation = 50kHz, T  
A
PHASE NOISE vs. OFFSET FREQUENCY  
(TRANSMIT MODE)  
PHASE NOISE vs. OFFSET FREQUENCY  
(TRANSMIT MODE)  
-40  
-50  
-40  
-50  
f
= 315MHz  
f
= 434MHz  
RF  
RF  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
REFERENCE SPUR MAGNITUDE  
vs. SUPPLY VOLTAGE  
FREQUENCY STABILITY  
vs. SUPPLY VOLTAGE  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
10  
8
6
434MHz  
315MHz  
f
f
= 315MHz  
= 434MHz  
RF  
RF  
4
2
0
-2  
-4  
-6  
-8  
-10  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
9
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
Pin Description  
PIN  
NAME  
PAV  
FUNCTION  
Power-Amplifier Supply Voltage. Bypass to GND with 0.01µF and 220pF capacitors placed as close  
to the pin as possible.  
1
DD  
Envelope-Shaping Output. ROUT controls the power-amplifier envelope’s rise and fall times. Connect  
ROUT to the PA pullup inductor or optional power-adjust resistor. Bypass the inductor to GND as  
close to the inductor as possible with 680pF and 220pF capacitors as shown in the Typical  
Application Circuit.  
2
ROUT  
Transmit/Receive Switch Throw. Drive T/R high to short TX/RX1 to TX/RX2. Drive T/R low to disconnect  
TX/RX1 from TX/RX2. Functionally identical to TX/RX2.  
3
4
5
TX/RX1  
TX/RX2  
PAOUT  
Transmit/Receive Switch Pole. Typically connected to ground. See the Typical Application Circuit.  
Power-Amplifier Output. Requires a pullup inductor to the supply voltage (or ROUT if envelope  
shaping is desired), which can be part of the output-matching network to an antenna.  
Analog Power-Supply Voltage. AV  
is connected to an on-chip +3.0V regulator in 5V operation.  
DD  
6
7
8
AV  
DD  
Bypass AV  
to GND with a 0.1µF and 220pF capacitor placed as close to the pin as possible.  
DD  
LNAIN  
Low-Noise Amplifier Input. Must be AC-coupled.  
Low-Noise Amplifier Source for External Inductive Degeneration. Connect an inductor to GND to set  
the LNA input impedance.  
LNASRC  
Low-Noise Amplifier Output. Must be connected to AV  
to MIXIN+.  
through a parallel LC tank filter. AC-couple  
DD  
9
LNAOUT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
MIXIN+  
MIXIN-  
MIXOUT  
IFIN-  
Noninverting Mixer Input. Must be AC-coupled to the LNA output.  
Inverting Mixer Input. Bypass to AV with a capacitor as close to the LNA LC tank filter as possible.  
DD  
330Mixer Output. Connect to the input of the 10.7MHz filter.  
Inverting 330IF Limiter Amplifier Input. Bypass to GND with a capacitor.  
Noninverting 330IF Limiter Amplifier Input. Connect to the output of the 10.7MHz IF filter.  
Minimum-Level Peak Detector for Demodulator Output  
Maximum-Level Peak Detector for Demodulator Output  
Inverting Data Slicer Input  
IFIN+  
PDMIN  
PDMAX  
DS-  
DS+  
Noninverting Data Slicer Input  
OP+  
Noninverting Op-Amp Input for the Sallen-Key Data Filter  
Data-Filter Feedback Node. Input for the feedback capacitor of the Sallen-Key data filter.  
Buffered Received-Signal-Strength-Indicator Output  
DF  
RSSI  
Transmit/Receive. Drive high to put the device in transmit mode. Drive low or leave unconnected to  
put the device in receive mode. It is internally pulled down.  
22  
23  
T/R  
Enable. Drive high for normal operation. Drive low or leave unconnected to put the device into  
shutdown mode.  
ENABLE  
24  
25  
DATA  
N.C.  
Receiver Data Output/Transmitter Data Input  
No Connection. Do not connect to this pin.  
Digital Power-Supply Voltage. Bypass to GND with a 0.01µF and 220pF capacitor placed as close to  
the pin as possible.  
26  
DV  
DD  
High-Voltage Supply Input. For 3V operation, connect HV to AV , PAV , and DV . For 5V  
IN  
DD  
DD  
DD  
27  
HV  
operation, tie only HV to 5V. Bypass HV to GND with a 0.01µF and 220pF capacitor placed as  
IN  
IN  
IN  
close to the pin as possible.  
10 ______________________________________________________________________________________  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
Pin Description (continued)  
PIN  
28  
29  
30  
31  
32  
EP  
NAME  
FUNCTION  
AUTOCAL Enable for FSK demodulator autocalibration (~1min cycle). Bypass to GND with a 10pF capacitor.  
AGC1  
AGC0  
XTAL1  
XTAL2  
GND  
AGC Enable/Dwell Time Control 1. See Table 1. Bypass to GND with a 10pF capacitor.  
AGC Enable/Dwell Time Control 0 (LSB). See Table 1. Bypass to GND with a 10pF capacitor.  
Crystal Input 1. Bypass to GND if XTAL2 is driven by an AC-coupled external reference.  
Crystal Input 2. XTAL2 can be driven from an external AC-coupled reference.  
Exposed Paddle. Solder evenly to the board’s ground plane for proper operation.  
where L  
PARASITICS  
= L5 + L  
and C  
= C9 +  
TOTAL  
PARASITICS  
TOTAL  
Detailed Description  
C
.
The MAX7031 308MHz, 315MHz, and 433.92MHz  
CMOS transceiver and a few external components pro-  
vide a complete transmit and receive chain from the  
antenna to the digital data interface. This device is  
designed for transmitting and receiving FSK data. All  
transmit frequencies are generated by a fractional-N-  
based synthesizer, allowing for very fine frequency  
L
and C  
include inductance and  
PARASITICS  
PARASITICS  
capacitance of the PC board traces, package pins,  
mixer input impedance, LNA output impedance, etc.  
These parasitics at high frequencies cannot be  
ignored, and can have a dramatic effect on the tank fil-  
ter center frequency. Lab experimentation should be  
done to optimize the center frequency of the tank. The  
parasitic capacitance is generally 5pF to 7pF.  
steps in increments of f  
/ 4096. The receive local  
XTAL  
oscillator (LO) is generated by a traditional integer-N-  
based synthesizer. Depending on component selec-  
tion, data rates as high as 33kbps (Manchester  
encoded) or 66kbps (NRZ encoded) can be achieved.  
Automatic Gain Control (AGC)  
When the AGC is enabled, it monitors the RSSI output.  
When the RSSI output reaches 1.28V, which corre-  
sponds to an RF input level of approximately -55dBm,  
the AGC switches on the LNA gain-reduction attenua-  
tor. The attenuator reduces the LNA gain by 36dB,  
thereby reducing the RSSI output by about 540mV to  
740mV. The LNA resumes high-gain mode when the  
RSSI output level drops back below 680mV (approxi-  
mately -59dBm at the RF input) for a programmable  
interval called the AGC dwell time (see Table 1). The  
AGC has a hysteresis of approximately 4dB. With the  
AGC function, the RSSI dynamic range is increased.  
AGC is not necessary for most FSK applications.  
Receiver  
Low-Noise Amplifier (LNA)  
The LNA is a cascode amplifier with off-chip inductive  
degeneration that achieves approximately 30dB of volt-  
age gain that is dependent on both the antenna-match-  
ing network at the LNA input, and the LC tank network  
between the LNA output and the mixer inputs.  
The off-chip inductive degeneration is achieved by  
connecting an inductor from LNASRC to AGND. This  
inductor sets the real part of the input impedances at  
LNAIN, allowing for a more flexible match for low-input  
impedances such as a PC board trace antenna. A  
nominal value for this inductor with a 50input imped-  
ance is 12nH at 315MHz and 10nH at 434MHz, but the  
inductance is affected by PC board trace length.  
LNASRC can be shorted to ground to increase sensitiv-  
ity by approximately 1dB, but the input match must  
then be reoptimized.  
AGC Dwell Time Settings  
The AGC dwell timer holds the AGC in a low-gain state  
for a set amount of time after the power level drops  
below the AGC switching threshold. After that set  
amount of time, if the power level is still below the AGC  
threshold, the LNA goes into high-gain state.  
The LC tank filter connected to LNAOUT consists of L5  
and C9 (see the Typical Application Circuit). Select L5  
and C9 to resonate at the desired RF input frequency.  
The resonant frequency is given by:  
1
f =  
2π L  
× C  
TOTAL  
TOTAL  
______________________________________________________________________________________ 11  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
then combines these signals to achieve a typical 46dB  
Table 1. AGC Dwell Time Settings for  
of image rejection over the full temperature range. Low-  
MAX7031  
side injection is required as high-side injection is not  
possible due to the on-chip image rejection. The IF out-  
put is driven by a source follower, biased to create a  
driving impedance of 330to interface with an off-chip  
330ceramic IF filter. The voltage conversion gain dri-  
ving a 330load is approximately 20dB. Note that the  
MIXIN+ and MIXIN- inputs are functionally identical.  
AGC1 AGC0  
DESCRIPTION  
AGC disabled, high gain selected  
K = 11, short dwell time  
0
0
1
1
0
1
0
1
K = 14, medium dwell time  
K = 20, long dwell time  
Integer-N, Phase-Locked Loop (PLL)  
The MAX7031 utilizes a fixed integer-N PLL to generate  
the receive LO. All PLL components, including the loop  
filter, voltage-controlled oscillator, charge pump, asyn-  
chronous 24x divider, and phase-frequency detector  
are internal. The loop bandwidth is approximately  
500kHz. The relationship between RF, IF, and reference  
frequencies is given by:  
The MAX7031 uses the two AGC control pins (AGC0  
and AGC1) to enable or disable the AGC and set three  
user-controlled dwell timer settings. The AGC dwell  
time is dependent on the crystal frequency and the bit  
settings of the AGC control pins. To calculate the dwell  
time, use the following equation:  
K
2
Dwell Time =  
f
= (f - f ) / 24  
RF IF  
REF  
f
XTAL  
Intermediate Frequency (IF)  
where K is an integer in decimal, determined by the  
control pin settings shown in Table 1.  
The IF section presents a differential 330load to pro-  
vide matching for the off-chip ceramic filter. The inter-  
nal six AC-coupled limiting amplifiers produce an  
overall gain of approximately 65dB, with a bandpass fil-  
ter-type response centered near the 10.7MHz IF fre-  
quency with a 3dB bandwidth of approximately 10MHz.  
The RSSI circuit demodulates the IF to baseband by  
producing a DC output proportional to the log of the IF  
signal level with a slope of approximately 15mV/dB.  
For example, a receiver operating at 315MHz has a  
crystal oscillator frequency of 12.679MHz. For K = 11  
(AGC setting = 0, 1), the dwell timer is 162µs; for K =  
14 (AGC setting = 1, 0), the dwell timer is 1.3ms; for K  
= 20 (AGC setting = 1, 1), the dwell time is 83ms.  
Mixer  
A unique feature of the MAX7031 is the integrated  
image rejection of the mixer. This eliminates the need  
for a costly front-end SAW filter for many applications.  
The advantage of not using a SAW filter is increased  
sensitivity, simplified antenna matching, less board  
space, and lower cost.  
FSK Demodulator  
The FSK demodulator uses an integrated 10.7MHz PLL  
that tracks the input RF modulation and converts the  
frequency deviation into a voltage difference. The PLL  
is illustrated in Figure 1. The input to the PLL comes  
from the output of the IF limiting amplifiers. The PLL  
control voltage responds to changes in the frequency  
of the input signal with a nominal gain of 2.0mV/kHz.  
For example, an FSK peak-to-peak deviation of 50kHz  
The mixer cell is a pair of double-balanced mixers that  
perform an IQ downconversion of the RF input to the  
10.7MHz intermediate frequency (IF) with low-side  
injection (i.e., f = f - f ). The image-rejection circuit  
LO  
RF IF  
FSK  
DEMOD  
MAX7031  
TO FSK BASEBAND FILTER  
AND DATA SLICER  
PHASE  
DETECTOR  
IF  
CHARGE  
PUMP  
LOOP  
FILTER  
100k  
100kΩ  
LIMITING  
AMPS  
10.7MHz VCO  
2.0mV/kHz  
DS+  
OP+  
DF  
C
C
F1  
F2  
Figure 1. FSK Demodulator PLL Block Diagram  
Figure 2. Sallen-Key Lowpass Data Filter  
12 ______________________________________________________________________________________  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
MAX7031  
MAX7031  
PEAK  
DET  
PEAK  
DET  
DATA  
SLICER  
DATA  
SLICER  
DATA  
DS-  
DS+  
R
DATA  
PDMAX  
PDMIN  
R
R
C
C
C
Figure 3. Generating Data Slicer Threshold Using a Lowpass  
Filter  
Figure 4. Generating Data Slicer Threshold Using the Peak  
Detectors  
generates a 100mV  
control voltage is then filtered and sliced by the base-  
band circuitry.  
signal on the control line. This  
The configuration shown in Figure 2 can create a  
Butterworth or Bessel response. The Butterworth filter  
offers a very-flat-amplitude response in the passband  
and a rolloff rate of 40dB/decade for the two-pole filter.  
The Bessel filter has a linear phase response, which  
works well for filtering digital data. To calculate the  
value of the capacitors, use the following equations,  
along with the coefficients in Table 2:  
P-P  
The FSK demodulator PLL requires calibration to over-  
come variations in process, voltage, and temperature.  
This is done by using the AUTOCAL pin, or by cycling  
the ENABLE pin. If the AUTOCAL pin is a logic 1, cali-  
bration occurs approximately every minute. If the  
AUTOCAL pin is a logic 0, calibration occurs only after  
the MAX7031 is enabled.  
b
C
C
=
F1  
a(100k)(π)(f )  
c
Data Filter  
The data filter for the demodulated data is implemented  
as a 2nd-order, lowpass Sallen-Key filter. The pole  
locations are set by the combination of two on-chip  
resistors and two external capacitors. Adjusting the  
value of the external capacitors changes the corner fre-  
quency to optimize for different data rates. Set the cor-  
ner frequency in kHz to approximately 2 times the  
fastest expected Manchester data rate in kbps from the  
transmitter (1.0 times the fastest expected NRZ data  
rate). Keeping the corner frequency near the data rate  
rejects any noise at higher frequencies, resulting in an  
increase in receiver sensitivity.  
a
=
F2  
4(100k)(π)(f )  
c
where f is the desired 3dB corner frequency.  
C
For example, choose a Butterworth filter response with  
a corner frequency of 5kHz:  
1.000  
C
C
=
450pF  
F1  
F2  
(1.414)(100k)(3.14)(5kHz)  
1.414  
=
225pF  
(4)(100k)(3.14)(5kHz)  
Choosing standard capacitor values changes C to  
F1  
470pF and C to 220pF. In the Typical Application  
F2  
and C  
Table 2. Coefficients to Calculate C  
F1  
Circuit, C  
are named C16 and C17,  
F2  
F1  
and C  
F2  
respectively.  
FILTER TYPE  
a
b
Butterworth  
(Q = 0.707)  
1.414  
1.000  
Bessel  
(Q = 0.577)  
1.3617  
0.618  
______________________________________________________________________________________ 13  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
Data Slicer  
The data slicer takes the analog output of the data filter  
and converts it to a digital signal. This is achieved by  
using a comparator and comparing the analog input to  
a threshold voltage. The threshold voltage is set by the  
voltage on the DS- pin, which is connected to the nega-  
tive input of the data-slicer comparator.  
switch occurs, or by forcing the peak detectors to track  
the baseband filter output voltage until all internal cir-  
cuits are stable following an enable pin low-to-high  
transition. The peak detectors exhibit a fast attack/slow  
decay response. This feature allows for an extremely  
fast startup or AGC recovery.  
Transmitter  
Numerous configurations can be used to generate the  
data-slicer threshold. For example, the circuit in Figure  
3 shows a simple method using only one resistor and  
one capacitor. This configuration averages the analog  
output of the filter and sets the threshold to approxi-  
mately 50% of that amplitude. With this configuration,  
the threshold automatically adjusts as the analog signal  
varies, minimizing the possibility for errors in the digital  
data. The values of R and C affect how fast the thresh-  
old tracks the analog amplitude. Be sure to keep the  
corner frequency of the RC circuit much lower (about  
10 times) than the lowest expected data rate.  
Power Amplifier (PA)  
The PA of the MAX7031 is a high-efficiency, open-  
drain, Class C amplifier. The PA with proper output-  
matching network can drive a wide range of antenna  
impedances, which includes a small-loop PC board  
trace and a 50antenna. The output-matching network  
for a 50antenna is shown in the Typical Application  
Circuit. The output-matching network suppresses the  
carrier harmonics and transforms the antenna imped-  
ance to an optimal impedance at PAOUT (pin 5). The  
optimal impedance at PAOUT is 250.  
When the output-matching network is properly tuned,  
the PA transmits power with a high overall efficiency of  
up to 32%. The efficiency of the PA itself is more than  
46%. The output power is set by an external resistor at  
PAOUT, and is also dependent on the external antenna  
and antenna-matching network at the PA output.  
With this configuration, a long string of NRZ zeros or  
ones can cause the threshold to drift. This configuration  
works best if a coding scheme, such as Manchester  
coding, which has an equal number of zeros and ones,  
is used.  
Figure 4 shows a configuration that uses the positive and  
negative peak detectors to generate the threshold. This  
configuration sets the threshold to the midpoint between  
a high output and a low output of the data filter.  
Envelope Shaping  
The MAX7031 features an internal envelope-shaping  
resistor, which connects between the open-drain output  
of the PA and the power supply. The envelope-shaping  
resistor slows the turn-on/turn-off of the PA. Envelope  
shaping is not necessary for FSK. For most applica-  
Peak Detectors  
The maximum peak detector (PDMAX) and minimum  
peak detector (PDMIN), with resistors and capacitors  
shown in Figure 4, create DC output voltages equal to  
the high- and low-peak values of the filtered demodulat-  
ed signal. The resistors provide a path for the capaci-  
tors to discharge, allowing the peak detectors to  
dynamically follow peak changes of the data filter out-  
put voltages.  
tions, the PA pullup inductor should be tied to PAV  
instead of ROUT.  
DD  
Fractional-N Phase-Locked Loop (PLL)  
The MAX7031 utilizes a fully integrated, fractional-N  
PLL for its transmit frequency synthesizer. All PLL com-  
ponents, including the loop filter, are integrated inter-  
nally. The loop bandwidth is approximately 200kHz.  
The maximum and minimum peak detectors can be  
used together to form a data slicer threshold voltage at  
a value midway between the maximum and minimum  
voltage levels of the data stream (see the Data Slicer  
section and Figure 4). Set the RC time constant of the  
peak-detector combining network to at least 5 times the  
data period.  
Power-Supply Connections  
The MAX7031 can be powered from a 2.1V to 3.6V sup-  
ply or a 4.5V to 5.5V supply. If a 4.5V to 5.5V supply is  
used, then the on-chip linear regulator reduces the 5V  
supply to the 3V needed to operate the chip.  
To operate the MAX7031 from a 3V supply, connect  
If there is an event that causes a significant change in  
the magnitude of the baseband signal, such as an AGC  
gain switch or a power-up transient, the peak detectors  
may “catch” a false level. If a false peak is detected,  
the slicing level is incorrect. The MAX7031 peak detec-  
tors correct these problems by temporarily tracking the  
incoming baseband filter voltage when an AGC state  
PAV , AV , DV , and HV to the 3V supply. When  
DD  
DD  
DD  
IN  
using a 5V supply, connect the supply to HV only and  
IN  
connect AV , PAV , and DV together. In both  
DD  
DD  
DD  
cases, bypass PAV , DV , and HV to GND with a  
DD  
DD  
IN  
0.01µF and 220pF capacitor and bypass AV  
with a 0.1µF and 220pF capacitor. Bypass T/R,  
to GND  
DD  
14 ______________________________________________________________________________________  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
ENABLE, DATA, AGC0-1, and AUTOCAL with 10pF  
capacitors to GND. Place all bypass capacitors as  
close to the respective pins as possible.  
In actuality, the oscillator pulls every crystal. The crys-  
tal’s natural frequency is really below its specified fre-  
quency, but when loaded with the specified load  
capacitance, the crystal is pulled and oscillates at its  
specified frequency. This pulling is already accounted  
for in the specification of the load capacitance.  
Transmit/Receive Antenna Switch  
The MAX7031 features an internal SPST RF switch that,  
when combined with a few external components, allows  
the transmit and receive pins to share a common  
antenna (see the Typical Application Circuit). In receive  
mode, the switch is open and the power amplifier is  
shut down, presenting a high impedance to minimize  
the loading of the LNA. In transmit mode, the switch  
closes to complete a resonant tank circuit at the PA  
output and forms an RF short at the input to the LNA. In  
this mode, the external passive components couple the  
output of the PA to the antenna to protect the LNA input  
from strong transmitted signals.  
Additional pulling can be calculated if the electrical  
parameters of the crystal are known. The frequency  
pulling is given by:  
C
2
1
+ C  
1
6
m
f
=
x 10  
P
C
C
+ C  
SPEC  
CASE  
LOAD  
CASE  
where:  
f is the amount the crystal frequency is pulled in ppm.  
P
Cm is the motional capacitance of the crystal.  
The switch state is controlled by the T/R pin (pin 22).  
Drive T/R high to put the device in transmit mode; drive  
T/R low to put the device in receive mode.  
C
C
C
is the case capacitance.  
CASE  
SPEC  
LOAD  
is the specified load capacitance.  
is the actual load capacitance.  
Crystal Oscillator (XTAL)  
The XTAL oscillator in the MAX7031 is designed to pre-  
sent a capacitance of approximately 3pF between the  
XTAL1 and XTAL2 pins. In most cases, this corre-  
sponds to a 4.5pF load capacitance applied to the  
external crystal when typical PC board parasitics are  
added. It is very important to use a crystal with a  
load capacitance that is equal to the capacitance of  
the MAX7031 crystal oscillator plus PC board para-  
sitics. If a crystal designed to oscillate with a different  
load capacitance is used, the crystal is pulled away  
from its stated operating frequency, introducing an  
error in the reference frequency. Crystals designed to  
operate with higher differential load capacitance  
always pull the reference frequency higher.  
When the crystal is loaded as specified, i.e., C  
SPEC  
=
LOAD  
C
, the frequency pulling equals zero.  
Chip Information  
Pin Configuration  
PROCESS: CMOS  
TOP VIEW  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
N.C.  
DV  
PDMAX  
PDMIN  
IFIN+  
16  
15  
14  
13  
DD  
HV  
IN  
AUTOCAL  
IFIN-  
12 MIXOUT  
MAX7031  
AGC1  
AGC0  
XTAL1  
XTAL2  
11  
MIXIN-  
10  
MIXIN+  
9
LNAOUT  
1
7
8
2
3
4
6
5
THIN QFN  
______________________________________________________________________________________ 15  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
Typical Application Circuit  
AGC0  
AGC1  
AUTOCAL  
V
DD  
Y1  
V
DD  
3.0V  
C18  
C19  
C20  
C21  
DD  
C23  
C24  
V
DD  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
PAV  
24  
23  
22  
21  
DATA  
DATA  
ENABLE  
T/R  
C22  
ROUT  
ENABLE  
R3*  
TRANSMIT/  
RECEIVE  
3
4
5
TX/RX1  
TX/RX2  
C2  
C1  
RSSI  
DF  
L1  
MAX7031  
20  
19  
PAOUT  
C3  
C5  
V
DD  
L2  
EXPOSED  
PADDLE  
6
OP+  
DS+  
DS-  
C4  
AV  
DD  
C16  
C17  
C6  
L6  
C7  
18  
17  
C8  
L3  
7
8
LNAIN  
LNASRC  
L4  
9
10  
11  
12  
13  
C13  
15  
16  
14  
R1  
C15  
C10  
C12  
V
C9  
DD  
L5  
R2  
IN GND  
Y2  
OUT  
C14  
C11  
*OPTIONAL POWER-ADJUST RESISTOR  
Selector Guide  
CARRIER  
FSK DEVIATION  
PART  
MAX7031LATJ  
FREQUENCY (MHz) FREQUENCY (kHz)  
308  
315  
51.413  
15.477  
49.528  
17.221  
51.663  
MAX7031MATJ15  
MAX7031MATJ50  
MAX7031HATJ17  
MAX7031HATJ51  
315  
433.92  
433.92  
16 ______________________________________________________________________________________  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
Table 3. Component Values for Typical Application Circuit  
VALUE FOR  
433.92MHz RF  
VALUE FOR  
315MHz RF  
COMPONENT  
DESCRIPTION  
C1  
C2  
220pF  
680pF  
6.8pF  
6.8pF  
10pF  
220pF  
680pF  
12pF  
10%  
10%  
C3  
5%  
C4  
10pF  
5%  
C5  
22pF  
5%  
C6  
220pF  
0.1µF  
220pF  
0.1µF  
10%  
C7  
10%  
C8  
100pF  
1.8pF  
100pF  
220pF  
100pF  
1500pF  
0.047µF  
0.047µF  
470pF  
220pF  
220pF  
0.01µF  
100pF  
100pF  
220pF  
0.01µF  
0.01µF  
22nH  
100pF  
2.7pF  
100pF  
220pF  
100pF  
1500pF  
0.047µF  
0.047µF  
470pF  
220pF  
220pF  
0.01µF  
100pF  
100pF  
220pF  
0.01µF  
0.01µF  
27nH  
5%  
C9  
0.1pF  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
L1  
5%  
10%  
5%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
5%  
5%  
10%  
10%  
10%  
Coilcraft 0603CS  
Coilcraft 0603CS  
Coilcraft 0603CS  
Coilcraft 0603CS  
Murata LQW18A  
Coilcraft 0603CS  
5%  
L2  
22nH  
30nH  
L3  
22nH  
30nH  
L4  
10nH  
12nH  
L5  
16nH  
30nH  
L6  
68nH  
100nH  
100kΩ  
100kΩ  
0Ω  
R1  
100kΩ  
100kΩ  
0Ω  
R2  
5%  
R3  
Crystal, 4.5pF load  
capacitance  
Y1  
17.63416MHz  
12.67917MHz  
Y2  
10.7MHz ceramic filter  
10.7MHz ceramic filter  
Murata SFECV10.7 series  
Note: Component values vary depending on PC board layout.  
______________________________________________________________________________________ 17  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
Functional Diagram  
LNAOUT MIXIN+ MIXIN-  
10 11  
MIXOUT  
12  
IFIN+ IFIN-  
9
14  
13  
IF LIMITING  
AMPS  
0°  
7
8
LNAIN  
LNA  
FSK  
DEMODULATOR  
Σ
LNASRC  
90°  
RSSI  
DF  
20  
I
Q
100kΩ  
100kΩ  
RX VCO  
19  
21  
OP+  
RX  
RSSI  
FREQUENCY  
DIVIDER  
DATA FILTER  
18 DS+  
XTAL1  
XTAL2  
31  
32  
TX  
CRYSTAL  
OSCILLATOR  
PHASE  
DETECTOR  
FREQUENCY  
DIVIDER  
15 PDMIN  
CHARGE  
PUMP  
PDMAX  
DS-  
16  
17  
TX VCO  
∆Σ  
MODULATOR  
3.0V  
REGULATOR  
HV  
IN  
27  
6
LOOP FILTER  
RX  
DATA  
AV  
DD  
EXPOSED  
PADDLE  
AGC0  
30  
29  
28  
24  
MAX7031  
PA  
AGC1  
DIGITAL LOGIC  
AUTOCAL  
DATA  
23  
ENABLE  
5
2
1
3
22  
T/R  
26  
DV  
4
ROUT  
PAV  
PAOUT  
TX/RX1  
TX/RX2  
DD  
DD  
18 ______________________________________________________________________________________  
Low-Cost, 308MHz, 315MHz, and 433.92MHz  
FSK Transceiver with Fractional-N PLL  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
AAAAA  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45°  
DETAIL A  
e/2  
PIN # 1  
I.D.  
e
(ND-1) X  
e
DETAIL B  
e
L
C
L
C
L
L1  
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
1
-DRAWING NOT TO SCALE-  
I
21-0140  
2
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
MIN. NOM. MAX. MIN. NOM. MAX.  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
40L 5x5  
L
DOWN  
BONDS  
ALLOWED  
YES  
NO  
exceptions  
PKG.  
CODES  
±0.15  
A
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05  
0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF.  
T1655-2  
T1655-3  
**  
**  
**  
**  
A1  
0
0
0
0
0
A3  
b
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
NO  
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
T2055-3  
T2055-4  
T2055-5  
T2855-3  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
D
E
NO  
**  
YES  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
e
0.80 BSC.  
0.25  
0.65 BSC.  
0.25  
0.50 BSC.  
0.25  
0.50 BSC.  
0.25  
0.40 BSC.  
3.15 3.25 3.35 3.15 3.25 3.35  
YES  
YES  
NO  
**  
**  
**  
k
-
-
-
-
-
-
-
-
0.25 0.35 0.45  
T2855-4  
T2855-5  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
L
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
0.30 0.40 0.50  
NO  
YES  
YES  
T2855-6  
T2855-7  
**  
**  
N
ND  
NE  
16  
4
4
20  
5
28  
7
32  
8
8
40  
10  
10  
2.80  
2.60 2.70  
2.60 2.70 2.80  
5
7
T2855-8  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
-----  
JEDEC  
T2855N-1 3.15 3.25 3.35 3.15 3.25 3.35  
NO  
YES  
NO  
YES  
NO  
**  
**  
**  
**  
**  
**  
3.20  
3.00 3.10 3.20  
T3255-3  
T3255-4  
T3255-5  
3.00 3.10  
3.00 3.10 3.20 3.00 3.10 3.20  
3.20  
NOTES:  
3.00 3.10  
3.00 3.10 3.20  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
T4055-1 3.20 3.30 3.40 3.20 3.30 3.40  
YES  
**SEE COMMON DIMENSIONS TABLE  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN  
0.25 mm AND 0.30 mm FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR  
T2855-3 AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ±0.05.  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
I
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX7031ATJ

Low-Cost, 308MHz, 315MHz, and 433.92MHz FSK Transceiver with Fractional-N PLL
MAXIM

MAX7031HATJ17

SPECIALTY TELECOM CIRCUIT, QCC32, 5 X 5 MM, 0.80 MM HEIGHT, MO-220-WHHD-2, QFN-32
ROCHESTER

MAX7031HATJ17+

Telecom Circuit, 1-Func, CMOS, 5 X 5 MM, ROHS COMPLIANT, QFN-32
MAXIM

MAX7031HATJ17+T

Telecom Circuit, 1-Func, CMOS, 5 X 5 MM, 0.8 MM, HEIGHT, MO-220-WHHD-2, QFN-32
MAXIM

MAX7031HATJ17-T

Telecom Circuit, 1-Func, CMOS, 5 X 5 MM, 0.8 MM, HEIGHT, MO-220-WHHD-2, QFN-32
MAXIM

MAX7031HATJ51

Telecom Circuit, 1-Func, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220-WHHD-2, QFN-32
MAXIM

MAX7031HATJ51+

Telecom Circuit, 1-Func, CMOS, 5 X 5 MM, ROHS COMPLIANT, QFN-32
MAXIM

MAX7031HATJ51+T

Telecom Circuit, 1-Func, CMOS, 5 X 5 MM, 0.8 MM, HEIGHT, MO-220-WHHD-2, QFN-32
MAXIM

MAX7031HATJ51-T

Telecom Circuit, 1-Func, CMOS, 5 X 5 MM, 0.8 MM, HEIGHT, MO-220-WHHD-2, QFN-32
MAXIM

MAX7031LATJ+

暂无描述
MAXIM

MAX7031LATJ+T

Telecom Circuit, 1-Func, CMOS, 5 X 5 MM, 0.8 MM, HEIGHT, MO-220-WHHD-2, QFN-32
MAXIM

MAX7031MATJ15+

Telecom Circuit, 1-Func, CMOS, 5 X 5 MM, ROHS COMPLIANT, QFN-32
MAXIM