MAX681EPD [MAXIM]

+5V to 【10V Voltage Converters; + 5V至± 10V电压转换器
MAX681EPD
型号: MAX681EPD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

+5V to 【10V Voltage Converters
+ 5V至± 10V电压转换器

转换器
文件: 总8页 (文件大小:86K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0896; Rev 1; 7/96  
+5 V t o ±1 0 V Vo lt a g e Co n ve rt e rs  
0/MAX681  
________________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
95% Voltage-Conversion Efficiency  
85% Power-Conversion Efficiency  
+2V to +6V Voltage Range  
The MAX680/MAX681 a re monolithic , CMOS, d ua l  
charge-pump voltage converters that provide ±10V out-  
puts from a +5V input voltage. The MAX680/MAX681 pro-  
vide both a positive step-up charge pump to develop  
+10V from +5V input and an inverting charge pump to  
generate the -10V output. Both parts have an on-chip,  
8kHz oscillator. The MAX681 has the capacitors internal to  
the package, and the MAX680 requires four external  
capacitors to produce both positive and negative voltages  
from a single supply.  
Only Four External Capacitors Required (MAX680)  
No Capacitors Required (MAX681)  
500µA Supply Current  
Monolithic CMOS Design  
The output source impedances are typically 150, pro-  
viding useful output currents up to 10mA. The low quies-  
cent current and high efficiency make this device suitable  
for a variety of applications that need both positive and  
negative voltages generated from a single supply.  
_______________Ord e rin g In fo rm a t io n  
The MAX864/MAX865 are also recommended for new  
designs. The MAX864 operates at up to 200kHz and uses  
smaller capacitors. The MAX865 comes in the smaller  
µMAX package.  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 Narrow SO  
Dice  
MAX680CPA  
MAX680CSA  
MAX680C/D  
MAX680EPA  
MAX680ESA  
MAX680MJA  
MAX681CPD  
MAX681EPD  
0°C to +70°C  
0°C to +70°C  
________________________Ap p lic a t io n s  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
8 Plastic DIP  
8 Narrow SO  
8 CERDIP  
The MAX680/MAX681 can be used wherever a single  
positive supply is available and where positive and nega-  
tive voltages are required. Common applications include  
generating ±6V from a 3V battery and generating ±10V  
from the standard +5V logic supply (for use with analog  
14 Plastic DIP  
14 Plastic DIP  
-40°C to +85°C  
circuitry). Typical applications include:  
±6V from 3V Lithium Cell  
Hand-Held Instruments  
Data-Acquisition Systems  
Panel Meters  
Battery-Operated  
Equipment  
_________Typ ic a l Op e ra t in g Circ u it s  
Operational Amplifier  
Power Supplies  
+5V  
±10V from +5V Logic  
Supply  
V
CC  
4.7µF  
4.7µF  
C1+  
_________________P in Co n fig u ra t io n s  
4.7µF  
4.7µF  
MAX680  
+10V  
-10V  
GND  
V+  
V-  
C1-  
C1+  
TOP VIEW  
C2-  
GND  
V+  
C1-  
C1-  
C2+  
V
1
2
3
4
5
6
7
CC  
14  
1
2
3
4
8
7
6
5
V+  
C1-  
C2+  
C2-  
V-  
GND  
+5V  
V
13 CC  
C1+  
MAX680  
V
CC  
12  
11  
10  
9
V
CC  
+10V  
V
CC  
V+  
V-  
V
CC  
MAX681  
FOUR PINS REQUIRED  
(MAX681 ONLY)  
MAX681  
GND  
GND  
C2-  
C2-  
V-  
V+  
-10V  
GND  
GND  
GND  
DIP/SO  
GND  
8
+5V to ±10V CONVERTER  
DIP  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
+5 V t o ±1 0 V Vo lt a g e Co n ve rt e rs  
ABSOLUTE MAXIMUM RATINGS  
V
CC  
................................................................................... +6.2V  
Continuous Power Dissipation (T = +70°C)  
A
V+ ...................................................................................... +12V  
V- ..........................................................................................-12V  
V- Short-Circuit Duration ...........................................Continuous  
V+ Current ..........................................................................75mA  
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) . ....727mW  
8-Pin Narrow SO (derate 5.88mW/°C above +70°C) .....471mW  
8-Pin CERDIP (derate 8.00mW/°C above +70°C) ..........640mW  
14-Pin Plastic DIP (derate 10.00mW/°C above +70°C) ...800mW  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
V
V/T ..........................................................................1V/µs  
CC  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +5V, test circuit Figure 1, T = +25°C, unless otherwise noted.)  
CC  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
6
V
CC  
= 3V, T = +25°C, R =  
0.5  
1
A
L
V
= 5V, T = +25°C, R = ∞  
A L  
1
2
2.5  
3
CC  
V
CC  
= 5V, 0°C T +70°C, R = ∞  
A L  
Supply Current  
mA  
V
CC  
= 5V, -40°C T +85°C, R = ∞  
A L  
V
CC  
= 5V, -55°C T +125°C, R = ∞  
A L  
3
Supply-Voltage Range  
MIN T MAX, R = 10kΩ  
2.0  
1.5 to 6.0  
150  
6.0  
250  
V
A
L
I + = 10mA, I - = 0mA, V = 5V,  
L
L
CC  
T
A
= +25°C  
I + = 5mA, I - = 0mA, V = 2.8V,  
L
L
CC  
180  
300  
Positive Charge-Pump  
Output Source Resistance  
T
A
= +25°C  
0°C T +70°C  
325  
350  
400  
A
I + = 10mA,  
L
I - = 0mA,  
L
-40°C T +85°C  
A
V
CC  
= 5V  
-55°C T +125°C  
A
I - = 10mA, I + = 0mA, V+ = 10V,  
L
L
90  
150  
175  
T
A
= +25°C  
I - = 5mA, I + = 0mA, V+ = 5.6V,  
L
L
110  
Negative Charge-Pump  
Output Source Resistance  
T
A
= +25°C  
0°C T +70°C  
200  
200  
250  
A
I - = 10mA,  
I + = 0mA,  
L
V+ = 10V  
L
-40°C T +85°C  
A
-55°C T +125°C  
A
Oscillator Frequency  
Power Efficiency  
4
8
kHz  
%
R
= 10kΩ  
85  
99  
97  
L
V+, R = ∞  
95  
90  
L
Voltage-Conversion  
Efficiency  
%
V-, R = ∞  
L
2
_______________________________________________________________________________________  
+5 V t o ±1 0 V Vo lt a g e Co n ve rt e rs  
0/MAX681  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
OUTPUT RESISTANCE  
vs. SUPPLY VOLTAGE  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
250  
10  
9
2.0  
1.5  
1.0  
C1-C4 = 10µF  
V- vs. I +  
I - = 0  
L
L
200  
R
+
8
OUT  
V+ vs. I +  
I - = 0  
L
L
150  
100  
7
R = ∞  
L
V+ vs. I -  
I + = 0  
L
L
6
R
-
OUT  
0.5  
0
V- vs. I -  
I + = 0  
L
L
50  
0
5
4
3.0  
5.0  
5
15  
3.0  
5.0  
2.0  
4.0  
6.0  
0
10  
20  
2.0  
4.0  
6.0  
OUTPUT SOURCE RESISTANCE  
vs. TEMPERATURE  
OUTPUT RIPPLE vs.  
OUTPUT VOLTAGE vs. OUTPUT CURRENT  
(FROM V+ TO V-)  
OUTPUT CURRENT (I + OR I -)  
L
L
200  
150  
100  
200  
150  
100  
10  
9
V
CC  
= 5V  
V
= 5V  
CC  
V-  
MAX680, MAX681  
MAX681  
V-  
V+  
R
+
OUT  
V+  
8
7
R
OUT  
-
V+  
V-  
MAX680  
6
C3, C4 = 10µF  
50  
0
50  
0
MAX680  
C3, C4 = 100µF  
5
4
V+ AND V-  
15  
20  
C1C4 = 10µF  
5
-50 -25  
0
25  
50  
75 100 125  
0
10  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
_______________________________________________________________________________________  
3
+5 V t o ±1 0 V Vo lt a g e Co n ve rt e rs  
_______________De t a ile d De s c rip t io n  
The MAX681 contains all circuitry needed to implement  
a dual charge pump. The MAX680 needs only four  
c a p a c itors . The s e ma y b e ine xp e ns ive e le c trolytic  
capacitors with values in the 1µF to 100µF range. The  
MAX681 contains two 1.5µF capacitors as C1 and C2,  
and two 2.2µF capacitors as C3 and C4. See Typical  
Operating Characteristics.  
V
IN  
CC  
C1  
4.7µF  
Figure 2a shows the idealized operation of the positive  
voltage converter. The on-chip oscillator generates a  
50% duty-cycle clock signal. During the first half of the  
cycle, switches S2 and S4 are open, S1 and S3 are  
closed, and capacitor C1 is charged to the input volt-  
MAX680  
8
7
1
2
V+ OUT  
C1-  
V+  
I +  
L
C2+  
C1+  
C3  
10µF  
C2  
4.7µF  
R +  
L
6
5
3
4
C2-  
V-  
V
CC  
age V . During the second half-cycle, S1 and S3 are  
CC  
op e n, S2 a nd S4 a re c los e d , a nd C1 is tra ns la te d  
GND  
GND  
upward by V volts. Assuming ideal switches and no  
6
CC  
I -  
L
load on C3, charge is transferred onto C3 from C1 such  
C4  
10µF  
R -  
L
that the voltage on C3 will be 2V , generating the  
CC  
positive supply.  
V- OUT  
Figure 2b shows the negative converter. The switches  
of the negative converter are out of phase from the pos-  
itive converter. During the second half of the clock  
cycle, S6 and S8 are open and S5 and S7 are closed,  
charging C2 from V+ (pumped up to 2V by the posi-  
tive charge pump) to GND. In the first half of the clock  
CC  
Figure 1. Test Circuit  
a)  
b)  
V+  
V+  
S6  
S1  
C1+ S2  
S5  
C2+  
V
GND  
V-  
CC  
C2  
C3  
C1  
R +  
I +  
L
L
R -  
L
I -  
L
C4  
S3  
S4  
S7  
S8  
V
CC  
GND  
GND  
C1-  
C2-  
8kHz  
Figure 2. Idealized Voltage Quadrupler: a) Positive Charge Pump; b) Negative Charge Pump  
4
_______________________________________________________________________________________  
+5 V t o ±1 0 V Vo lt a g e Co n ve rt e rs  
0/MAX681  
cycle, S5 and S7 are open, S6 and S8 are closed, and  
________________________Ap p lic a t io n s  
the charge on C2 is transferred to C4, generating the  
negative supply. The eight switches are CMOS power  
MOSFETs . S1, S2, S4, a nd S5 a re P-c ha nne l  
s witc he s , while S3, S6, S7, a nd S8 a re N-c ha nne l  
switches.  
P o s it ive a n d Ne g a t ive Co n ve rt e r  
The most common application of the MAX680/MAX681  
is as a dual charge-pump voltage converter that pro-  
vides positive and negative outputs of two times a posi-  
tive input voltage. For applications where PC board  
space is at a premium, the MAX681, with its capacitors  
internal to the package, offers the smallest footprint.  
The simple circuit shown in Figure 3 performs the same  
function using the MAX680 with external capacitors C1  
and C3 for the positive pump and C2 and C4 for the  
negative pump. In most applications, all four capacitors  
a re low-c os t, 10µF or 22µF p ola rize d e le c trolytic s .  
When using the MAX680 for low-current applications,  
1µF can be used for C1 and C2 charge-pump capaci-  
tors, and 4.7µF for C3 and C4 reservoir capacitors.  
C1 and C3 must be rated at 6V or greater, and C2 and  
C4 must be rated at 12V or greater.  
__________Effic ie n c y Co n s id e ra t io n s  
Theoretically, a charge-pump voltage multiplier can  
approach 100% efficiency under the following con-  
ditions:  
• The charge-pump switches have virtually no offset  
and extremely low on-resistance  
• Minimal power is consumed by the drive circuitry  
• The impedances of the reservoir and pump capaci-  
tors are negligible  
For the MAX680/MAX681, the energy loss per clock  
cycle is the sum of the energy loss in the positive and  
negative converters as below:  
LOSS  
= LOSS  
+ LOSS  
POS NEG  
TOT  
=
12 C1 (V+)2 – (V+)(VCC  
)
[
] +  
12 C2 (V+)2 – (V-)2  
[
]
There will be a substantial voltage difference between  
(V+ - V ) a nd V for the p os itive p ump , a nd  
CC  
CC  
between V+ and V-, if the impedances of pump capaci-  
tors C1 and C2 are high relative to their respective out-  
put loads.  
C1  
22µF  
MAX680  
8
7
1
2
V+ OUT  
C1-  
V+  
Larger C3 and C4 reservoir capacitor values reduce  
output ripple. Larger values of both pump and reservoir  
capacitors improve efficiency.  
C2+  
C1+  
C3  
22µF  
C2  
22µF  
6
5
3
4
V
CC  
IN  
C2-  
V-  
V
CC  
________Ma x im u m Op e ra t in g Lim it s  
GND  
GND  
The MAX680/MAX681 have on-chip zener diodes that  
C4  
22µF  
clamp V  
to approximately 6.2V, V+ to 12.4V, and  
CC  
V- to -12.4V. Never exceed the maximum supply volt-  
a g e : e xc e s s ive c urre nt ma y b e s hunte d b y the s e  
diodes, potentially damaging the chip. The MAX680/  
MAX681 operate over the entire operating temperature  
range with an input voltage of +2V to +6V.  
V- OUT  
Figure 3. Positive and Negative Converter  
_______________________________________________________________________________________  
5
+5 V t o ±1 0 V Vo lt a g e Co n ve rt e rs  
22µF  
22µF  
22µF  
22µF  
MAX680  
MAX680  
8
7
8
7
1
2
1
2
V+ OUT  
C1-  
C1-  
V+  
V+  
C2+  
C1+  
C2+  
C1+  
22µF  
22µF  
6
5
6
5
3
4
3
4
V
CC  
IN  
C2-  
V-  
C2-  
V-  
V
CC  
V
CC  
GND  
GND  
GND  
0/MAX681  
V- OUT  
Figure 4. Paralleling MAX680s For Lower Source Resistance  
The MAX680/MAX681 are not voltage regulators: the  
outp ut s ourc e re s is ta nc e of e ithe r c ha rg e p ump is  
The positive output voltage will be:  
V+ = 2V – V  
+
CC  
DROP  
approximately 150at room temperature with V  
at  
CC  
The negative output voltage will be:  
5V. Under light load with an input V  
of 5V, V+ will  
CC  
approach +10V and V- will be at -10V. However both,  
V+ and V- will droop toward GND as the current drawn  
from either V+ or V- increases, since the negative con-  
verter draws its power from the positive converters out-  
put. To predict output voltages, treat the chips as two  
separate converters and analyze them separately. First,  
V- = (V+ - V  
) = - (2V - V  
+ - V  
-)  
DROP  
CC  
DROP  
DROP  
The positive and negative charge pumps are tested  
and specified separately to provide the separate values  
of output source resistance for use in the above formu-  
las. When the positive charge pump is tested, the neg-  
ative charge pump is unloaded. When the negative  
charge pump is tested, the positive supply V+ is from  
a n e xte rna l s ourc e , is ola ting the ne g a tive c ha rg e  
pump.  
the droop of the negative supply (V  
) equals the  
DROP-  
current drawn from V- - (I -) times the source resistance  
L
of the negative converter (RS-):  
V
- = I - x RS-  
L
DROP  
Calculate the ripple voltage on either output by noting  
that the current drawn from the output is supplied by  
the reservoir capacitor alone during one half-cycle of  
the clock. This results in a ripple of:  
Likewise, the positive supply droop (V  
the current drawn from the positive supply (I +) times  
the p os itive c onve rte rs s ourc e re s is ta nc e (RS+ ),  
except that the current drawn from the positive supply  
is the sum of the current drawn by the load on the posi-  
+) equals  
L
DROP  
1
1
1
V
= ⁄ IOUT ( ⁄ f  
)( ⁄ CR)  
RIPPLE  
PUMP  
2
For the nomina l f  
of 8kHz with 10µF re s e rvoir  
PUMP  
tive supply (I +) plus the current drawn by the negative  
L
capacitors, the ripple will be 30mV with I  
at 5mA.  
OUT  
converter (I -):  
L
Re me mb e r tha t in mos t a p p lic a tions , the p os itive  
charge pumps I is the load current plus the current  
(V  
+) = I + x RS+ = (I + + I -) x RS+  
L L L  
DROP  
OUT  
taken by the negative charge pump.  
6
_______________________________________________________________________________________  
+5 V t o ±1 0 V Vo lt a g e Co n ve rt e rs  
0/MAX681  
no external setting resistors, minimizing part count. The  
combined quiescent current of the MAX680/MAX681,  
MAX663, and MAX664 is less than 500µA, while the out-  
put current capability is 5mA. The MAX680/MAX681  
input can vary from 3V to 6V without affecting regulation  
appreciably. With higher input voltage, more current can  
be drawn from the MAX680/MAX681 outputs. With 5V at  
P a ra lle lin g De vic e s  
Paralleling multiple MAX680/MAX681s reduces the out-  
put resistance of both the positive and negative con-  
verters. The effective output resistance is the output  
resistance of a single device divided by the number of  
devices. As Figure 4 shows, each MAX680 requires  
s e p a ra te p ump c a p a c itors C1 a nd C2, b ut a ll c a n  
share a single set of reservoir capacitors.  
V
, 10mA can be drawn from both regulated outputs  
CC  
simultaneously. Assuming 150source resistance for  
both converters, with (I + + I -) = 20mA, the positive  
±5 V Re g u la t e d S u p p lie s fro m  
a S in g le 3 V Ba t t e ry  
Figure 5 shows a complete ±5V power supply using one  
3V battery. The MAX680/MAX681 provide +6V at V+,  
which is regulated to +5V by the MAX666, and -6V,  
which is regulated to -5V by the MAX664. The MAX666  
and MAX664 are pretrimmed at wafer sort and require  
L
L
charge pump will droop 3V, providing +7V for the nega-  
tive charge pump. The negative charge pump will droop  
another 1.5V due to its 10mA load, leaving -5.5V at V-  
sufficient to maintain regulation for the MAX664 at this  
current.  
LOW-BATTERY  
WARNING AT 3.5V  
LBO  
LBI  
SENSE  
2MΩ  
MAX666  
100µF  
+12V TO +6V  
V
CC  
+5V  
VIN  
VOUT  
1.2MΩ  
6V TO 3V  
100µF  
GND SDN VSET  
MAX680  
C1+  
0.1µF  
10µF  
10µF  
V+  
C1-  
GND  
C2+  
100µF  
V-  
0.1µF  
C2-  
GND SDN  
MAX664  
V
SET  
GND  
100µF  
V
IN  
-12V TO -6V  
VOUT1  
VOUT2  
SENSE  
-5V  
Figure 5. Regulated +5V and -5V from a Single Battery  
_______________________________________________________________________________________  
7
+5 V t o ±1 0 V Vo lt a g e Co n ve rt e rs  
___________________Ch ip To p o g ra p h y  
C1-  
V+  
+  
C2+  
0. 116"  
(2. 95mm)  
0/MAX681  
C2-  
V-  
GND  
0. 72"  
(1. 83mm)  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.053  
MAX  
0.069  
0.010  
0.019  
0.010  
0.157  
MIN  
1.35  
0.10  
0.35  
0.19  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
4.00  
A
D
A1 0.004  
B
C
E
e
0.014  
0.007  
0.150  
0°-8°  
A
0.101mm  
0.004in.  
0.050  
1.27  
e
H
L
0.228  
0.016  
0.244  
0.050  
5.80  
0.40  
6.20  
1.27  
A1  
C
B
L
INCHES  
MILLIMETERS  
DIM PINS  
Narrow SO  
SMALL-OUTLINE  
PACKAGE  
MIN MAX  
MIN  
MAX  
5.00  
8.75  
8
0.189 0.197 4.80  
D
D
D
E
H
14 0.337 0.344 8.55  
16 0.386 0.394 9.80 10.00  
(0.150 in.)  
21-0041A  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8
___________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1989 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX682

3.3V-Input to Regulated 5V-Output Charge Pumps
MAXIM

MAX6820

SOT23 Power-Supply Sequencers
MAXIM

MAX6820UT

暂无描述
MAXIM

MAX6820UT+

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, PDSO6, SOT-23, 6 PIN
MAXIM

MAX6820UT+T

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, PDSO6, MO-178AB, SOT-23, 6 PIN
MAXIM

MAX6820UT-T

Power Supply Switching Circuit
MAXIM

MAX6821

Low-Voltage SOT23 レP Supervisors with Manual Reset and Watchdog Timer
MAXIM

MAX6821LUK

Power Management Circuit, BICMOS, PDSO5
MAXIM

MAX6821LUK+

Power Management Circuit, BICMOS, PDSO5,
MAXIM

MAX6821LUK+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO5, LEAD FREE, SOT-23, 5 PIN
MAXIM

MAX6821LUK-T

Low-Voltage SOT23 レP Supervisors with Manual Reset and Watchdog Timer
MAXIM

MAX6821LUK-T

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO5, SOT-23, 5 PIN
ROCHESTER