MAX682 [MAXIM]

3.3V-Input to Regulated 5V-Output Charge Pumps; 3.3V ,输入为5V稳压输出电荷泵
MAX682
型号: MAX682
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

3.3V-Input to Regulated 5V-Output Charge Pumps
3.3V ,输入为5V稳压输出电荷泵

文件: 总12页 (文件大小:155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0177; Rev 1; 8/98  
3 .3 V-In p u t t o Re g u la t e d 5 V-Ou t p u t  
Ch a rg e P u m p s  
23/MAX684  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX682/MAX683/MAX684 charge-pump regula-  
tors generate 5V from a 2.7V to 5.5V input. They are  
specifically designed to serve as high-efficiency auxil-  
iary supplies in applications that demand a compact  
design. The MAX682, MAX683, and MAX684 deliver  
250mA, 100mA, and 50mA output current, respectively.  
Ultra-Small: 1µF Capacitors per 100mA of Output  
Current  
No Inductors Required  
1.1mm Height in µMAX Package (MAX683/MAX684)  
Up to 250mA Output Current (MAX682)  
Regulated ±4% Output Voltage  
These complete 5V regulators require only one resistor  
and three external capacitorsno inductors are need-  
ed. High switching frequencies (externally adjustable  
up to 2MHz) and a unique regulation scheme allow the  
use of capacitors as small as 1µF per 100mA of output  
current. The MAX683/MAX684 are offered in a space-  
saving 8-pin µMAX package that is only 1.1mm high,  
while the MAX682 is available in an 8-pin SO.  
50kHz to 2MHz Adjustable Switching Frequency  
2.7V to 5.5V Input Voltage  
100µA Quiescent Current in Pulse-Skipping Mode  
0.1µA Shutdown Current  
Ap p lic a t io n s  
Flash Memory Supplies  
Ord e rin g In fo rm a t io n  
Battery-Powered Applications  
Miniature Equipment  
PART  
MAX682ESA  
MAX683EUA  
MAX684EUA  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 SO  
PCMCIA Cards  
8 µMAX  
3.3V to 5V Local Conversion Applications  
Backup-Battery Boost Converters  
3V to 5V GSM SIMM Cards  
8 µMAX  
Typ ic a l Op e ra t in g Circ u it  
P in Co n fig u ra t io n s  
TOP VIEW  
CXN  
CXP  
SKIP  
SHDN  
IN  
1
2
3
4
8
7
6
5
OUT  
CXP SHDN  
CXN IN  
PGND GND  
SKIP  
1
2
3
4
8
7
6
5
OUT  
CXP  
MAX682  
INPUT  
2.7V TO 5.5V  
OUTPUT  
5V/250mA  
IN  
SKIP  
OUT  
MAX682  
MAX683  
MAX684  
CXN  
PGND  
R
EXT  
GND  
SHDN  
GND  
PGND  
SO  
µMAX  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
3 .3 V-In p u t t o Re g u la t e d 5 V-Ou t p u t  
Ch a rg e P u m p s  
ABSOLUTE MAXIMUM RATINGS  
Continuous Power Dissipation (T = +70°C)  
IN, OUT, SHDN, SKIP to GND.................................-0.3V to +6V  
PGND to GND.....................................................................±0.3V  
A
8-Pin SO (derate 5.9mW/°C above +70°C).................471mW  
8-Pin µMAX (derate 4.1mW/°C above +70°C) ............330mW  
Operating Temperature Range  
CXN to GND ................................................-0.3V to (V + 0.3V)  
IN  
CXP to GND..............................................-0.3V to (V  
+ 0.3V)  
OUT  
MAX68_E_A ....................................................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Continuous Output Current  
MAX682........................................................................300mA  
MAX683........................................................................150mA  
MAX684..........................................................................75mA  
Output Short-Circuit Duration ...............................................5sec  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 3V, V  
= 0V, C = 1µF, C = 0.47µF, C  
= 2µF, I  
= 22µA; I  
= 250mA for MAX682, I  
= 100mA for MAX683,  
IN  
SKIP  
IN  
X
OUT  
SHDN  
MAX  
MAX  
I
= 50mA for MAX684; T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
MAX  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Regulation with V > 3.6V requires  
IN  
SKIP = high  
Input Voltage Range  
V
IN  
2.7  
5.5  
V
Input Undervoltage Lockout  
Threshold  
2.0  
2.35  
100  
2.6  
V
Input Undervoltage Lockout  
Hysteresis  
mV  
23/MAX684  
0 < I  
I  
;
LOAD  
MAX  
Output Voltage  
V
OUT  
3.0V IN 3.6V for SKIP = 0,  
4.80  
5.05  
5.20  
V
3.0V IN 5.5V for SKIP = IN  
MAX682  
MAX683  
MAX684  
250  
100  
50  
Maximum Output Current  
I
mA  
MAX  
0.1  
7.5  
2.5  
1.7  
-3  
0.18  
SKIP = 0, V = 3.6V  
IN  
MAX682  
MAX683  
MAX684  
No-Load Input Current  
I
mA  
Q
SKIP = V = 3.6V  
IN  
Load Regulation  
V  
%
V
SKIP = high, 0 I  
I  
MAX  
LDR  
LOAD  
V
0.35  
750  
50  
SHDN Logic Low Input  
SHDN On Bias Voltage  
SHDN Input Current Range  
INL, SHDN  
V
T
A
= +25°C  
630  
1
690  
mV  
µA  
ON, SHDN  
I
(Note 2)  
SHDN  
0°C < T < +85°C  
850  
750  
160  
150  
1000  
1000  
200  
200  
0.1  
1200  
1300  
250  
270  
5
A
I
= 22µA  
=4.4µA  
SHDN  
-40°C < T < +85°C  
A
Switching Frequency (Note 2)  
kHz  
0°C < T < +85°C  
A
I
SHDN  
-40°C < T < +85°C  
A
Shutdown Supply Current  
Shutdown Exit Time  
I
µA  
µs  
Q, SHDN  
SHDN = 0, V = 5.5V, V  
= 0  
IN  
OUT  
t
R
= 5V/I  
L
50  
START  
MAX  
2
_______________________________________________________________________________________  
3 .3 V-In p u t t o Re g u la t e d 5 V-Ou t p u t  
Ch a rg e P u m p s  
23/MAX684  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3V, V  
= 0V, C = 1µF, C = 0.47µF, C  
= 2µF, I  
= 22µA; I  
= 250mA for MAX682, I  
= 100mA for MAX683,  
IN  
SKIP  
IN  
X
OUT  
SHDN  
MAX  
MAX  
I
= 50mA for MAX684; T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
MAX  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
0.8  
SKIP Input Voltage Low  
SKIP Input Voltage High  
SKIP Input Leakage Current  
INL, SKIP  
V
V
= 5.5V  
2.4  
-1  
INH, SKIP  
IN  
I
V
IN  
= 5.5V, V = 0V or 5.5V  
SKIP  
1
µA  
SKIP  
Note 1: Specifications to -40°C are guaranteed by design and not production tested.  
Note 2: Current into SHDN determines oscillator frequency: R (k) = 45000 (V - 0.69V) / f (kHz)  
OSC  
EXT  
IN  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Circuit of Figure 5, V = 3.3V, component values from Tables 2 and 3, T = +25°C, unless otherwise noted.)  
IN  
A
NO-LOAD SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
OUTPUT VOLTAGE vs. LOAD CURRENT  
(SKIP = LOW)  
OUTPUT VOLTAGE vs. LOAD CURRENT  
(SKIP = HIGH)  
5.50  
5.25  
5.00  
5.50  
5.25  
5.00  
10  
8
SKIP = HIGH  
SKIP = HIGH  
I
= 22µA  
SHDN  
I
= 22µA  
SHDN  
MAX682  
MAX684  
6
MAX684  
MAX683  
MAX682  
MAX683  
4.75  
4.50  
4.75  
4.50  
4
MAX682  
MAX683  
MAX684  
2
4.25  
4.00  
4.25  
4.00  
0
2
3
4
5
6
1
10  
100  
1000  
1
10  
100  
1000  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
NO-LOAD SUPPLY CURRENT vs.  
SHUTDOWN PIN INPUT CURRENT  
OSCILLATOR FREQUENCY vs.  
SHUTDOWN PIN INPUT CURRENT  
OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE  
100  
10  
1
10M  
1M  
5.50  
SKIP = HIGH  
MAX682  
SKIP = LOW  
5.25  
5.00  
4.75  
4.50  
4.25  
4.00  
3.75  
3.50  
MAX683  
SKIP = HIGH  
100k  
10k  
MAX684  
0.1  
0.1  
1
10  
100  
2
3
4
5
6
0.1  
1
10  
100  
SHDN INPUT CURRENT (µA)  
SUPPLY VOLTAGE (V)  
SHDN INPUT CURRENT (µA)  
_______________________________________________________________________________________  
3
3 .3 V-In p u t t o Re g u la t e d 5 V-Ou t p u t  
Ch a rg e P u m p s  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 5, V = 3.3V, component values from Tables 2 and 3, T = +25°C, unless otherwise noted.)  
IN  
A
MAX682 EFFICIENCY  
MAX684 EFFICIENCY  
MAX683 EFFICIENCY  
vs. LOAD CURRENT (SKIP = LOW)  
vs. LOAD CURRENT (SKIP = LOW)  
vs. LOAD CURRENT (SKIP = LOW)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN  
= 3.0V  
V
= 3.0V  
V = 3.0V  
IN  
IN  
V
IN  
= 3.3V  
V = 3.3V  
IN  
V
IN  
= 3.3V  
V
IN  
= 3.6V  
V
IN  
= 3.6V  
V = 3.6V  
IN  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX682 EFFICIENCY  
vs. LOAD CURRENT (SKIP = HIGH)  
MAX683 EFFICIENCY  
vs. LOAD CURRENT (SKIP = HIGH)  
MAX684 EFFICIENCY  
vs. LOAD CURRENT (SKIP = HIGH)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.0V  
IN  
V
IN  
= 3.0V  
23/MAX684  
V
IN  
= 3.0V  
V
= 3.3V  
IN  
V
= 3.3V  
IN  
V
= 3.3V  
IN  
V
= 5.0V  
IN  
V
IN  
= 5.0V  
V
= 5.0V  
IN  
I
= 22µA  
I
= 22µA  
I
= 22µA  
SHDN  
SHDN  
SHDN  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
LOAD CURRENT (mA)  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUTPUT WAVEFORM  
(SKIP = HIGH)  
OUTPUT WAVEFORM  
(SKIP = LOW)  
MAX682 TOC16  
MAX682 TOC17  
50mV/div  
50mV/div  
200ns/div  
200ns/div  
SKIP = HIGH, I  
= 22µA, I  
= 250mA, MAX682  
SHDN  
LOAD  
SKIP = LOW, I  
= 250mA, MAX682  
LOAD  
4
_______________________________________________________________________________________  
3 .3 V-In p u t t o Re g u la t e d 5 V-Ou t p u t  
Ch a rg e P u m p s  
23/MAX684  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 5, V = 3.3V, component values from Tables 2 and 3, T = +25°C, unless otherwise noted.)  
IN  
A
SHUTDOWN TIMING  
LINE-TRANSIENT RESPONSE  
LOAD-TRANSIENT RESPONSE  
MAX682 TOC18  
MAX682 TOC20  
MAX682 TOC19  
A
A
B
A
B
B
100µs/div  
2ms/div  
A: INPUT VOLTAGE: V = 3.1V TO 3.6V, 500mV/div  
2ms/div  
A: LOAD CURRENT: I = 5mA TO 250mA, 500mA/div  
LOAD  
A: OUTPUT VOLTAGE: SKIP = HIGH, R = 5V / I , 2V/div  
L
MAX  
IN  
B: SHDN VOLTAGE: 1V/div  
B: OUTPUT VOLTAGE: SKIP = HIGH, I  
= 22µA,  
SHDN  
B: OUTPUT VOLTAGE: SKIP = HIGH, I  
= 22µA,  
SHDN  
I
= 250mA, 50mV/div, MAX682  
LOAD  
100mV/div, MAX682  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
When SKIP = low, the regulator operates in low-quiescent-current skip mode. When SKIP = high, the  
regulator operates in constant-frequency mode, minimizing output ripple and noise. SKIP must be tied  
high for input voltages above 3.6V.  
1
SKIP  
Shutdown Input. Drive SHDN through an external resistor. When SHDN = low, the device turns off. When  
2
3
SHDN  
current is sourced into SHDN through R  
, the device activates, and the SHDN pin input current sets the  
EXT  
oscillators switching frequency. R  
(k) = 45000 (V - 0.69V) / f  
(kHz).  
EXT  
IN  
OSC  
Input Supply Pin. Can range from 2.7V to 5.5V for SKIP = high, and 2.7V to 3.6V for SKIP = low. Bypass to  
PGND with a suitable value capacitor (see Capacitor Selection section).  
IN  
4
5
6
7
8
GND  
PGND  
CXN  
Ground Pin. Connect to PGND through a short trace.  
Power Ground Pin  
Negative Terminal of the Charge-Pump Transfer Capacitor  
Positive Terminal of the Charge-Pump Transfer Capacitor  
Fixed 5V Power Output. Bypass to PGND with output filter capacitor.  
CXP  
OUT  
_______________________________________________________________________________________  
5
3 .3 V-In p u t t o Re g u la t e d 5 V-Ou t p u t  
Ch a rg e P u m p s  
De t a ile d De s c rip t io n  
The MAX682/MAX683/MAX684 charge pumps provide  
S2  
IN  
OUT  
a regulated 5V output from a 2.7V to 5.5V input. They  
deliver a maximum of 250mA, 100mA, or 50mA load  
current, respectively. Designed specifically for com-  
C
X
S1  
pact applications, a complete regulator circuit requires  
only three small external capacitors and one resistor.  
C
IN  
C
OUT  
An externally adjustable switching frequency and inno-  
vative control scheme allow the circuit to be optimized  
for efficiency, size, or output noise. The devices also  
contain a shutdown feature.  
OSC  
The MAX682/MAX683/MAX684 c ons is t of a n e rror  
amplifier, a 1.23V bandgap reference, an internal resis-  
tive feedback network, an oscillator, high-current MOS-  
FET switches, and shutdown and control logic (Figure  
1). Figure 2 shows an idealized unregulated charge-  
pump voltage doubler. The oscillator runs at a 50%  
duty cycle. During one half of the period, the transfer  
Figure 2. Unregulated Voltage Doubler  
S2  
capacitor (C ) charges to the input voltage. During the  
X
IN  
OUT  
other half, the doubler stacks the voltage across C  
X
and the input voltage, and transfers the sum of the two  
voltages to the output filter capacitor (C ). Rather  
C
X
S1  
OUT  
tha n s imp ly d oub ling the inp ut volta g e , the  
MAX682/MAX683/MAX684 provide a regulated fixed  
output voltage (5V) using either skip mode or constant-  
frequency mode. Skip mode and constant-frequency  
mode are externally selected via the SKIP input pin.  
23/MAX684  
C
IN  
EN  
OSCILLATOR  
OUT  
IN  
Figure 3. Skip-Mode Regulation  
S k ip Mo d e  
In skip mode (SKIP = low), the error amplifier disables  
switching when it detects an output higher than 5V. The  
device then skips switching cycles until the output volt-  
age drops. Then the error amplifier reactivates the  
oscillator. Figure 3 illustrates the regulation scheme.  
This regulation method minimizes operating current  
because the device does not switch continuously. SKIP  
is a logic input and should not remain floating.  
1.23V  
SKIP  
CONTROL  
LOGIC  
CXP  
SHDN  
SWITCHES  
SHDN  
CXN  
OSC  
Co n s t a n t -Fre q u e n c y Mo d e  
When SKIP is high, the charge pump runs continuously  
at the selected frequency. Figure 4 shows a block dia-  
gram of the device in constant-frequency mode. The  
PGND  
error amplifier controls the charge on C by driving the  
X
gate of the N-channel FET. When the output voltage  
falls, the gate drive increases, resulting in a larger volt-  
age across C . This regulation scheme minimizes out-  
X
put ripple. Since the device switches continuously, the  
Figure 1. Functional Block Diagram  
6
_______________________________________________________________________________________  
3 .3 V-In p u t t o Re g u la t e d 5 V-Ou t p u t  
Ch a rg e P u m p s  
23/MAX684  
max) of supply current in this mode and the output pre-  
sents a 50kimpedance to ground. The device exits  
shutdown once SHDN is forward biased (minimum of  
1µA of current). The typical no-load shutdown exit time  
is 50µs.  
IN  
OUT  
S2  
C
X
S1  
When SHDN is pulled high through an external resistor  
C
IN  
OSC  
to V , the b ia s c urre nt into SHDN d e te rmine s the  
IN  
C
OUT  
charge-pump frequency. To select the frequency, cal-  
culate the external resistor value, R , using the fol-  
EXT  
lowing formula:  
N-CHANNEL  
R
= 45000 (V - 0.69V) / f  
IN OSC  
EXT  
where R  
is in kand f  
is in kHz. Program the  
EXT  
OSC  
frequency in the 50kHz to 2MHz range. This frequency  
range corresponds to SHDN input currents between  
1µA and 50µA. Proper operation of the oscillator is not  
guaranteed beyond these limits. Currents lower than  
1µA may shut down the device. The forward-biased  
diode voltage from the SHDN input to GND has a tem-  
perature coefficient of -2mV/°C.  
Figure 4. Constant-Frequency-Mode Regulation  
Table 1. Tradeoffs Between Operating  
Modes  
Un d e rvo lt a g e Lo c k o u t  
The MAX682/MAX683/MAX684 have an undervoltage-  
lockout feature that deactivates the devices when the  
input voltage falls below 2.25V. Regulation at low input  
voltages cannot be maintained. This safety feature  
ensures that the device shuts down before the output  
voltage falls out of regulation by a considerable amount  
(typically 10% with no load). Once deactivated, hys-  
teresis holds the device in shutdown until the input volt-  
age rises 100mV above the lockout threshold.  
CONSTANT-  
FREQUENCY MODE  
SKIP MODE  
(SKIP = LOW)  
FEATURE  
(SKIP = HIGH)  
Best Light-Load  
Efficiency  
Smallest External  
Component Size  
Output Ripple  
Amplitude and  
Frequency  
Relatively large  
Relatively small  
amplitude, variable amplitude, constant  
frequency  
frequency  
Ap p lic a t io n s In fo rm a t io n  
Load Regulation  
Very Good  
Good  
Ca p a c it o r S e le c t io n  
The MAX682/MAX683/MAX684 require only three exter-  
nal capacitors (Figure 5). Their values are closely linked  
to the output current capacity, oscillator frequency, out-  
put noise content, and mode of operation.  
output noise contains well-defined frequency compo-  
nents, and the circuit requires much smaller external  
capacitors for a given output ripple. However, constant-  
frequency mode, due to higher operating current, is  
less efficient at light loads than skip mode. Note: For  
input voltages above 3.6V, the devices must operate in  
constant-frequency mode. Table 1 summarizes the  
tradeoffs between the two operating modes.  
Generally, the transfer capacitor (C ) will be the small-  
X
est, and the input capacitor (C ) is twice as large as  
IN  
C . Hig he r s witc hing fre q ue nc ie s a llow the us e of  
X
smaller C and C . The output capacitor (C ) can  
X
IN  
OUT  
be anywhere from 5-times to 50-times larger than C ,  
depending on the mode of operation and ripple toler-  
ance. In continuous switching mode, smaller output rip-  
Fre q u e n c y S e le c t io n a n d S h u t d o w n  
The SHDN pin on the MAX682/MAX683/MAX684 per-  
forms a dual function: it shuts down the device and  
determines the oscillator frequency. The SHDN input  
looks like a d iode to ground a nd should be d rive n  
through a resistor.  
X
ple allows smaller C  
. In skip mode, a larger C  
OUT  
is  
OUT  
required to maintain low output ripple. Tables 2 and 3  
show capacitor values recommended for lowest sup-  
ply-current operation (skip mode) and smallest size oper-  
ation (constant-frequency mode), respectively.  
Driving SHDN low p la c e s the d e vic e in s hutd own  
mode. This disables all switches, the oscillator, and  
control logic. The device typically draws 0.1µA (5µA  
_______________________________________________________________________________________  
7
3 .3 V-In p u t t o Re g u la t e d 5 V-Ou t p u t  
Ch a rg e P u m p s  
Table 2. Recommended Capacitor Values  
for Quiescent Current (Skip Mode)  
7
CXP  
R
EXT  
ON  
V
ON  
2
C
X
OFF  
SHDN  
MAX682  
MAX683  
MAX684  
V
OUT  
RIPPLE  
(mV)  
C
(µF)  
6
8
OUT  
OUTPUT C  
C
X
CXN  
OUT  
IN  
PART  
3
1
(mA)  
(µF) (µF)  
IN  
IN  
TANTALUM CERAMIC  
OUT  
SKIP  
GND  
PGND  
5
MAX682  
MAX683  
250  
2.2  
1
1
47  
22  
10  
100  
100  
C
IN  
C
OUT  
4
100  
0.47  
4.7  
MAX684  
50  
0.47 0.22  
10  
2.2  
100  
Figure 5. Standard Operating Circuit  
5V/500mA  
3.3V  
IN  
Table 3. Recommended Capacitor Values  
for Smallest Size (Constant-Frequency  
IN  
SKIP  
OUT  
IN  
SKIP  
OUT  
Mode, I  
= 22µA, 1MHz)  
SHDN  
CERAMIC  
V
OUT  
RIPPLE  
(mV)  
OUTPUT  
(mA)  
C
(µF)  
C
X
IN  
PART  
C
(µF)  
OUT  
100k  
100k  
(µF)  
0.47  
0.22  
MAX682  
MAX682  
1µF  
4.7µF  
SHDN  
SHDN  
CXP  
1µF  
MAX682  
MAX683  
250  
100  
1
2.2  
80  
80  
CXP  
23/MAX684  
0.47µF  
0.47µF  
0.47  
1
CXN  
CXN  
GND PGND  
GND PGND  
MAX684  
50  
0.22  
0.1  
0.47  
80  
Figure 6. Paralleling Two MAX682s  
Table 4. Recommended Capacitor  
Manufacturers  
where ESR  
is the ESR of the output filter capaci-  
COUT  
TX  
tance, and R is the open-loop output transfer resist-  
ance of the IC. R is typically 0.8for the MAX682,  
1.6for the MAX683, and 3for the MAX684. In con-  
PHONE  
NUMBER  
TX  
VALUE  
DESCRIPTION MANUFACTURER  
stant-frequency mode, output ripple is dominated by  
595D-series  
tantalum  
surface mount  
C
and is approximately:  
OUT  
47µF to  
10µF  
Sprague  
(603) 224-1961  
V
I
/ (2 x f  
x C  
)
OUT  
RIPPLE(const-freq)  
OUT  
OSC  
All capacitors must maintain a low (<100m) equiva-  
lent series resistance (ESR). Table 4 lists the manufac-  
ture rs of re c omme nd e d c a p a c itors . Surfa c e -mount  
tantalum capacitors will work well for most applications.  
Ceramic capacitors will provide the lowest ripple due to  
their typically lower ESR.  
47µF to TPS-series  
AVX  
TDK  
(803) 946-0690  
(847) 390-4373  
10µF  
surface mount  
0.1µF to Ceramic  
2.2µF  
surface mount  
In addition, the following two equations approximate  
output ripple for each mode. In skip mode, output rip-  
ple is dominated by ESR, and is approximately:  
If the source impedance or inductance of the input sup-  
ply is large, additional input bypassing (2.2µF to 22µF)  
may be needed. This additional capacitance need not  
be a low-ESR type.  
V
(2V - V  
)ESR  
/ R  
RIPPLE(SKIP)  
IN  
OUT  
COUT TX  
8
_______________________________________________________________________________________  
3 .3 V-In p u t t o Re g u la t e d 5 V-Ou t p u t  
Ch a rg e P u m p s  
23/MAX684  
P o w e r Dis s ip a t io n  
The power dissipated in the MAX682/MAX683/MAX684  
depends on output current and is accurately described  
by:  
P a ra lle lin g De vic e s  
The MAX682/MAX683/MAX684 can be paralleled to  
yield higher load currents. The circuit of Figure 6 can  
deliver 500mA at 5V. It uses two MAX682s in parallel.  
The devices can share the output capacitors, but each  
P
= I  
(2V - V  
)
DISS  
OUT  
IN  
OUT  
one requires its own transfer capacitor (C ) and input  
X
P
must be less than that allowed by the package  
DISS  
capacitor. For best performance, the paralleled devices  
should operate in the same mode (skip or constant fre-  
quency).  
rating. See the Absolute Maximum Ratings for 8-pin  
µMAX (MAX683/MAX684) and SO (MAX682) power-  
dissipation limits and deratings.  
Ch ip In fo rm a t io n  
La yo u t Co n s id e ra t io n s  
All capacitors should be soldered in close proximity to  
the IC. Connect ground and power ground through a  
short, low-impedance trace. If a high-value resistor is  
driving the shutdown input and is picking up noise (i.e.,  
frequency jitter at CXP and CXN), bypass SHDN to  
GND with a small capacitor (0.01µF).  
TRANSISTOR COUNT: 659  
SUBSTRATE CONNECTED TO GND  
P a c k a g e In fo rm a t io n  
_______________________________________________________________________________________  
9
3 .3 V-In p u t t o Re g u la t e d 5 V-Ou t p u t  
Ch a rg e P u m p s  
P a c k a g e In fo rm a t io n  
23/MAX684  
10 ______________________________________________________________________________________  
3 .3 V-In p u t t o Re g u la t e d 5 V-Ou t p u t  
Ch a rg e P u m p s  
23/MAX684  
NOTES  
______________________________________________________________________________________ 11  
3 .3 V-In p u t t o Re g u la t e d 5 V-Ou t p u t  
Ch a rg e P u m p s  
NOTES  
23/MAX684  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX6820

SOT23 Power-Supply Sequencers
MAXIM

MAX6820UT

暂无描述
MAXIM

MAX6820UT+

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, PDSO6, SOT-23, 6 PIN
MAXIM

MAX6820UT+T

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, PDSO6, MO-178AB, SOT-23, 6 PIN
MAXIM

MAX6820UT-T

Power Supply Switching Circuit
MAXIM

MAX6821

Low-Voltage SOT23 レP Supervisors with Manual Reset and Watchdog Timer
MAXIM

MAX6821LUK

Power Management Circuit, BICMOS, PDSO5
MAXIM

MAX6821LUK+

Power Management Circuit, BICMOS, PDSO5,
MAXIM

MAX6821LUK+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO5, LEAD FREE, SOT-23, 5 PIN
MAXIM

MAX6821LUK-T

Low-Voltage SOT23 レP Supervisors with Manual Reset and Watchdog Timer
MAXIM

MAX6821LUK-T

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO5, SOT-23, 5 PIN
ROCHESTER

MAX6821MUK+

Power Management Circuit, BICMOS, PDSO5,
MAXIM