MAX4885EETG+ [MAXIM]

Ultra-Low Capacitance 1:2 VGA Switch with ±15kV ESD; 超低电容1 : 2 VGA开关,具有± 15kV ESD保护
MAX4885EETG+
型号: MAX4885EETG+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra-Low Capacitance 1:2 VGA Switch with ±15kV ESD
超低电容1 : 2 VGA开关,具有± 15kV ESD保护

开关
文件: 总10页 (文件大小:110K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4269; Rev ꢁ; 1ꢁ/ꢁ8  
Ultra-Low Capacitance 1:2 VGA  
Switch with 15ꢀV ESD  
MAX485E  
General Description  
Features  
The MAX4885E integrates high-bandwidth analog  
switches and level-translating buffers to implement a  
complete 1:2 multiplexer for VGA signals. The device  
provides switching for RGB, display data channel (DDC).  
±±15kV HBVꢀESVꢁProteoꢂrꢃVrꢃVꢀꢄotPꢃnaalVꢅrꢆotꢇ  
TtPmꢂꢃnas  
±G zVHnꢃꢇwꢂꢇoh  
LrwV1Ω (olp)VOꢃ-ꢅtsꢂsonꢃetV(ꢅ,VG,VHVEꢂgꢃnas)  
LrwV6pFV(olp)VOꢃ-CnpneꢂonꢃetV(ꢅ,VG,VHVEꢂgꢃnas)  
LrwVꢅ,VG,VHVE5twV-10psV(olp)  
Horizontal and vertical synchronization (HSYNC/VSYNC)  
inputs feature level-shifting buffers to support low-volt-  
age CMOS or standard TTL-compatible graphics con-  
trollers, meeting the VESA requirement of 8mA. DDC,  
consisting of SDA_ and SCL_, is a bidirectional active-  
level translating switch that reduces capacitive load. The  
MAX4885E features high ESD protection to 15ꢀV  
Human Body Model (HBM) on all twelve externally rout-  
ed terminals. See the Pin Description section. All other  
pins are protected to 1ꢁꢀV Human Body Model (HBM).  
NtnPVZtPrVꢁrwtPVCrꢃsꢆmpoꢂrꢃV(<V2µA)  
UaoPn-Emnaa,V24-ꢁꢂꢃV(4mmVꢄV4mm)VTQFNVꢁne5ngt  
The MAX4885E is specified over the extended -4ꢁ°C to  
+85°C temperature range, and is available in the  
24-pin, 4mm x 4mm TQFN pacꢀage.  
Ordering Information  
ꢁAꢅT  
TꢀBꢁVꢅANGꢀ  
ꢁIN-ꢁACKAGꢀ  
Applications  
MAX4885EETG+  
-4ꢁ°C to +85°C  
24 TQFN-EP*  
Notebooꢀ Computers/Docꢀing Stations  
*EP = Exposed pad.  
Digital Projectors  
+Denotes lead-free pacꢀage/RoHS-compliant pacꢀage.  
Computer Monitors  
Servers/Storage  
KVM Switches  
Pin Configuration  
Typical Operating Circuit  
TOP VIEW  
+3.3V  
+5.0V  
18 17 16 15 14 13  
0.1µF  
0.1µF  
19  
12  
SCL2  
V1  
V
L
V
CC  
SCL1 20  
11 H1  
MAX4885E  
21  
22  
23  
24  
10  
9
3
2
2
3
2
2
SDA2  
SDA1  
GND  
R0, B0, G0  
H0, V0  
R1, G1, B1  
SDA1, SCL1  
H1, V1  
GRAPHICS  
CONTROLLER  
VGA  
PORT  
MAX4885E  
V
L
SDA0, SCL0  
EN  
V
8
CC  
2
3
2
*EP  
SEL  
V0  
7
DOCKING  
STATION  
+3.3V  
EN  
R2, G2, B2  
+
1
2
3
4
5
6
DOCKING  
STATION  
SDA2, SCL2  
SEL  
GND  
TQFN-ꢀꢁ  
*EXPOSED PAD. CONNECTED TO GROUND OR LEAVE UNCONNECTED.  
________________________________________________________________ BnꢄꢂmVIꢃotgPnotꢇVꢁPrꢇꢆeos  
±
FrPVpPꢂeꢂꢃg,VꢇtaꢂvtPl,VnꢃꢇVrPꢇtPꢂꢃgVꢂꢃfrPmnoꢂrꢃ,VpatnstVerꢃoneoVBnꢄꢂmVSꢂPteoVnoV±-888-629-4642,  
rPVvꢂsꢂoVBnꢄꢂm'sVwtbsꢂotVnoVwww.mnꢄꢂm-ꢂe.erm.  
Ultra-Low Capacitance 1:2 VGA  
Switch with 15ꢀV ESD  
AHEOLUTꢀVBAXIBUBVꢅATINGE  
(All voltages referenced to GND.)  
Continuous Power Dissipation (T = +7ꢁ°C)  
A
V
, V .....................................................................-ꢁ.3V to +6V  
24-Pin TQFN (derate 27.8mW/°C above +7ꢁ°C) ........2222mW  
CC  
L
R_, G_, B_, SDA1, SCL1, SDA2, SCL2,  
Junction to Ambient Thermal Resistance (θ ) (Note 2)  
JA  
H1, V1, (Note 1) ........................................-ꢁ.3V to V  
Hꢁ, Vꢁ, SDAꢁ, SCLꢁ, EN, SEL.........................-ꢁ.3V to V + ꢁ.3V  
+ ꢁ.3V  
24-Pin TQFN..................................................................36°C/W  
CC  
L
Junction to Ambient Thermal Resistance (θ ) (Note 2)  
JC  
Continuous Current through RGB Switches ..................... 3ꢁmA  
Continuous Current through DDC Switches..................... 3ꢁmA  
Peaꢀ Current through RGB Switches  
(pulsed at 1ms, 1ꢁ% duty cycle)................................... 9ꢁmA  
Peaꢀ Current through DDC Switches (pulsed at 1ms,  
1ꢁ% duty cycle)............................................................ 9ꢁmA  
24-Pin TQFN....................................................................3°C/W  
Operating Temperature Range ...........................-4ꢁ°C to +85°C  
Storage Temperature Range.............................-65°C to +15ꢁ°C  
Junction Temperature......................................................+15ꢁ°C  
Lead Temperature (soldering, 1ꢁs) .................................+3ꢁꢁ°C  
MAX485E  
NrotV±: Signals exceeding V  
or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.  
CC  
NrotV2: Pacꢀage thermal resistances were obtained using the method described in JEDEC specifications. For detailed information  
on pacꢀage thermal considerations, refer to www.mnꢄꢂm-ꢂe.erm/ohtPmna-oꢆorPꢂna.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ꢀLꢀCTꢅICALVC AꢅACTꢀꢅIETICE  
(V = +5.ꢁV 1ꢁ%, V = +2V to +5.5V, T = T  
to T  
, unless otherwise noted. Typical values are at V = +5.ꢁV, V = +3.3V and  
CC  
L
A
MIN  
MAX  
CC  
L
T
A
= +25°C.) (Note 3)  
ꢁAꢅABꢀTꢀꢅ  
EYBHOL  
CONSITIONE  
BIN  
TYꢁ  
BAX  
UNITE  
EN = V  
L
V
Quiescent Supply Current  
I
V = +5.ꢁV  
CC  
1
µA  
CC  
CC  
EN = GND  
EN = V  
L
V Quiescent Supply Current  
L
I
V = +3.3V  
L
1
µA  
VL  
EN = GND  
ꢅGHVANALOGVEWITC ꢀE  
V
= +5.ꢁV, I = -1ꢁmA, V = +ꢁ.7V  
IN IN  
CC  
On-Resistance  
R
ON  
6
Ω
(Note 4)  
On-Resistance Matching  
On-Resistance Flatness  
ΔR  
V ꢁ.7V, I = -1ꢁmA  
ꢁ.5  
ꢁ.5  
Ω
Ω
ON  
IN  
IN  
R
V ꢁ.7V, I = -1ꢁmA  
IN IN  
FLAT(ON)  
V
V
= +5.5V, V = +ꢁ.3V or +5.5V,  
IN  
CC  
EN  
Off-Leaꢀage Current  
I
-1  
-1  
+1  
+1  
µA  
µA  
L(OFF)  
= ꢁ or V  
L
V
V
= +5.5V, V = +ꢁ.3V or +5.5V,  
IN  
CC  
EN  
On-Leaꢀage Current  
 kVHUFFꢀꢅ  
I
L(ON)  
= V  
L
ꢁ.33 x  
Input Voltage Low  
V
V
V
ILHV  
V
L
ꢁ.66 x  
Input Voltage High  
V
IHHV  
V
L
Input Logic Hysteresis  
Input Leaꢀage Current  
High-Output Drive Current  
Low-Output Drive Current  
V
75  
mV  
µA  
HYST  
I
V
V
V
= +5.5V, V = +5.5V, V = ꢁ or V  
L
-1  
+1  
INHV  
CC  
L
IN  
I
3.ꢁV  
ꢁ.6V  
8.ꢁ  
8.ꢁ  
mA  
mA  
OHHV  
OHHV  
OLHV  
I
OLHV  
2
_______________________________________________________________________________________  
Ultra-Low Capacitance 1:2 VGA  
Switch with 15ꢀV ESD  
MAX485E  
ꢀLꢀCTꢅICALVC AꢅACTꢀꢅIETICEV(erꢃoꢂꢃꢆtꢇ)  
(V = +5.ꢁV 1ꢁ%, V = +2V to +5.5V, T = T  
to T  
, unless otherwise noted. Typical values are at V = +5.ꢁV, V = +3.3V and  
CC  
L
A
MIN  
MAX  
CC  
L
T
A
= +25°C.) (Note 3)  
ꢁAꢅABꢀTꢀꢅ  
EYBHOL  
CONSITIONE  
BIN  
TYꢁ  
BAX  
UNITE  
ESA_,VECL_  
Supply Voltage  
On-Resistance  
On-Capacitance  
V
2.ꢁ  
5.5  
V
Ω
L
R
ON  
C
ON  
V
= +ꢁ.4V, I  
=
2mA, V = +2.ꢁV  
1ꢁ  
15  
IN  
IN  
L
f = 1ꢁꢁꢀHz  
pF  
EN = GND, V = +5.5V, V = +3.6V,  
CC  
L
High-Impedance Input Leaꢀage  
Current  
SCLꢁ, SDAꢁ, SCL1, SCL2, SDA1, SDA2  
= GND or V (Note 5)  
I
-1  
-1  
+1  
+1  
µA  
µA  
INHIZ  
VL  
Off-Input Leaꢀage Current  
I
EN = V , V = +3.6V, V = V - ꢁ.2V  
L L IN L  
INOFF  
CONTꢅOLVLOGICV(EꢀL,VꢀN)  
ꢁ.33 x  
Input Voltage Low  
Input Voltage High  
V
V
V
ILLOG  
V
L
ꢁ.66 x  
V
I
IHLOG  
V
L
Input Logic Hysteresis  
Input Leaꢀage Current  
ꢀESVꢁꢅOTꢀCTION  
V
75  
mV  
µA  
HYST  
V
= +5.5V, V = +3.6V, V = ꢁ or V  
L
-1  
+1  
INLEK  
CC  
L
IN  
Human Body Model; R1, G1, B1, R2, G2,  
B2, SDA1, SCL1, SDA2, SCL2, H1, V1  
15  
1ꢁ  
ESD Protection  
ꢀV  
Human Body Model; all other pins  
ACVꢀLꢀCTꢅICALVC AꢅACTꢀꢅIETICE  
(V = +5.ꢁV 1ꢁ%, V = +2V to +5.5V, T = T  
to T  
, unless otherwise noted. Typical values are at V = +5.ꢁV, V = +3.3V and  
CC  
L
A
MIN  
MAX  
CC  
L
T
A
= +25°C.) (Note 3)  
ꢁAꢅABꢀTꢀꢅ  
EYBHOL  
CONSITIONE  
BIN  
TYꢁ  
BAX  
UNITE  
GHz  
dB  
Bandwidth  
f
R = R = 5ꢁΩ  
1
MAX  
S
L
Insertion Loss  
Crosstalꢀ  
I
f = 1MHz, R = R = 5ꢁΩ, Figure 1  
ꢁ.6  
-4ꢁ  
4.5  
6.4  
LOS  
S
L
V
f = 5ꢁMHz, R = R = 5ꢁΩ, Figure 1  
dB  
CT  
S
L
Off-Capacitance  
On-Capacitance  
C
f = 25ꢁMHz  
f = 25ꢁMHz  
pF  
OFF  
C
pF  
ON  
_______________________________________________________________________________________  
3
Ultra-Low Capacitance 1:2 VGA  
Switch with 15ꢀV ESD  
TIBINGVC AꢅACTꢀꢅIETICE  
(V = +5.ꢁV 1ꢁ%, V = +2V to +5.5V, T = T  
to T  
, unless otherwise noted. Typical values are at V = +5.ꢁV, V = +3.3V and  
CC  
L
A
MIN  
MAX  
CC  
L
T
A
= +25°C.) (Note 3)  
ꢁAꢅABꢀTꢀꢅ  
EYBHOL  
CONSITIONE  
BIN  
TYꢁ  
BAX  
UNITE  
ps  
ꢅGHVANALOGVEWITC ꢀE  
Sꢀew between any two ports: R_, G_, B_,  
Figure 2  
Output Sꢀew Between Ports  
t
5ꢁ  
15  
SKEW  
 kVHUFFꢀꢅ  
MAX485E  
Propagation Delay  
t
R = 1ꢀΩ, C = 1ꢁpF, Figure 2  
ns  
PD  
L
L
NrotV3: All devices are 1ꢁꢁ% production tested at T = +25°C. Specifications over the full temperature range are guaranteed by design.  
A
NrotV4: On-resistance guarantees the low-static logic level.  
NrotV1: SDA_, SCL_ off-input leaꢀage current guarantees the high-static logic level.  
Typical Operating Characteristics  
(V  
= +5.ꢁV, V = +3.3V and T = +25°C, unless otherwise noted.)  
L A  
CC  
HV BUFFER OUTPUT VOLTAGE  
HIGH vs. TEMPERATURE  
R
vs. V  
*
R
vs. V  
*
ON  
R0  
ON  
SDA0  
(RGB SWITCHES)  
(DDC SWITCHES)  
8
7
6
5
4
3
10  
60  
45  
30  
15  
0
SDA0, SCL0 ARE  
INTERCHANGEABLE  
I
= 8mA  
*R0, G0, B0 ARE INTERCHANGEABLE  
OUT  
9
8
7
6
5
4
3
2
1
0
T
A
= +85°C  
T
A
= +25°C  
V = +3.3V  
L
V = +5.0V  
L
T
A
= +85°C  
T
= +85°C  
= +25°C  
= -40°C  
A
T
A
= +25°C  
T
A
T
A
= -40°C  
T
A
T
A
= -40°C  
-40  
-15  
10  
35  
60  
85  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
(V)  
1
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
(V)  
TEMPERATURE (°C)  
V
R0  
V
SDA0  
4
_______________________________________________________________________________________  
Ultra-Low Capacitance 1:2 VGA  
Switch with 15ꢀV ESD  
MAX485E  
Typical Operating Characteristics (continued)  
(V  
= +5.ꢁV, V = +3.3V and T = +25°C, unless otherwise noted.)  
L A  
CC  
HV BUFFER OUTPUT VOLTAGE  
LOW vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
1.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
I
= 8mA  
OUT  
0.8  
0.6  
0.4  
0.2  
0.0  
I
CC  
I
VL  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
ON-RESPONSE vs. FREQUENCY  
CROSSTALK vs. FREQUENCY  
0
-1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
1
Ultra-Low Capacitance 1:2 VGA  
Switch with 15ꢀV ESD  
Timing Circuits/Timing Diagrams  
+5V  
10nF  
NETWORK  
ANALYZER  
V
OUT  
50Ω  
50Ω  
V
CC  
INSERTION-LOSS = 20log ✕  
CROSSTALK = 20log ✕  
V
V
0 OR V  
IN  
CC  
SEL  
V
IN  
R0, G0, B0  
V
OUT  
MAX4885E  
V
IN  
MEAS  
REF  
R1, G1, B1  
8
OUT  
R2, G2, B2  
GND  
50Ω  
50Ω  
50Ω  
MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS.  
INSERTION-LOSS IS MEASURED BETWEEN R0 AND R1 OR R2 ON EACH SWITCH.  
CROSSTALK IS MEASURED FROM ONE CHANNEL TO THE OTHER CHANNEL.  
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.  
Figure 1. Insertion-Loss and Crosstalꢀ  
1V  
R = 1kΩ  
L
C = 10pF  
L
50%  
50%  
INPUT  
0
V
OH  
t
t
PHL  
PLH  
0.9V  
0
50%  
50%  
OUTPUT  
t
t
= |t - t  
|
SKEW  
PLH PHL  
= MAX (t , t  
)
PD  
PLH PHL  
Figure 2. Propagation Delay and Sꢀew Waveforms  
6
_______________________________________________________________________________________  
Ultra-Low Capacitance 1:2 VGA  
Switch with 15ꢀV ESD  
MAX485E  
Pin Description  
ꢁIN  
1
NABꢀ  
SDAꢁ  
SCLꢁ  
Rꢁ  
FUNCTION  
SDA I/O  
2
SCL I/O  
3
RGB Analog I/O  
RGB Analog I/O  
RGB Analog I/O  
4
Gꢁ  
5
Bꢁ  
6
Hꢁ  
Horizontal Sync Input  
Vertical Sync Input  
7
Vꢁ  
8
V
Supply Voltage. V  
= +5.ꢁV 1ꢁ%. Bypass V  
to GND with a ꢁ.1µF or larger ceramic capacitor.  
CC  
CC  
CC  
9
V
Supply Voltage. +2V V +5.5V. Bypass V to GND with a ꢁ.1µF or larger ceramic capacitor.  
L L  
L
1ꢁ  
11  
12  
13  
14  
15  
16  
17  
18  
19  
2ꢁ  
21  
22  
23  
24  
GND  
H1  
Ground  
Horizontal Sync Output*  
Vertical Sync Output*  
RGB Analog I/O*  
RGB Analog I/O*  
RGB Analog I/O*  
RGB Analog I/O*  
RGB Analog I/O*  
RGB Analog I/O*  
SCL I/O*  
V1  
B2  
B1  
G2  
G1  
R2  
R1  
SCL2  
SCL1  
SDA2  
SDA1  
EN  
SCL I/O*  
SDA I/O*  
SDA I/O*  
Enable Input. Drive EN high for normal operation. Drive EN low to disable the device.  
Select Input. Logic input for switching RGB and DDC swiches.  
SEL  
EP  
Exposed Pad. Connect exposed pad to ground or leave unconnected.  
*Terminal as 15ꢀV ESD protection—Human Body Model.  
mouse (KVM) applications, V is normally set to +5V  
L
because low-voltage clamping is not required, as spec-  
ified by the VESA standard.  
Detailed Description  
The MAX4885E integrates high-bandwidth analog  
switches and level-translating buffers to implement a  
complete 1:2 multiplexer for VGA signals. The device  
provides switching for RGB, HSYNC, VSYNC, SDA_  
and SCL_ signals.  
Drive EN logic-low to shut down the MAX4885E. In shut-  
down mode, all switches are high impedance, providing  
high-signal rejection. The RGB, HSYNC, VSYNC, SDA_,  
and SCL_ outputs are ESD protected to 15ꢀV by the  
Human Body Model.  
The HSYNC and VSYNC inputs feature level-shifting  
buffers to support TTL output logic levels from low-volt-  
age graphics controllers. These buffered switches may  
be driven from as little as +2.ꢁV up to +5.5V. RGB sig-  
nals are routed with the same high-performance analog  
switches, and SDA_, SCL_ signals are voltage clamped  
to a diode drop less than V . Voltage clamping pro-  
L
vides protection and compatibility with SDA_ and SCL_  
signals and low-voltage ASICs. In ꢀeyboard/video/  
RGB Switches  
The MAX4885E provides three SPDT high-bandwidth  
switches to route standard VGA R, G, and B signals  
(see Table 1). The R, G, and B analog switches are  
identical, and any of the three switches can be used to  
route red, green, or blue video signals.  
_______________________________________________________________________________________  
7
Ultra-Low Capacitance 1:2 VGA  
Switch with 15ꢀV ESD  
outputs by the Human Body Model (HBM). See the Pin  
TnbatV±.VꢅGHVTPꢆohVTnbat  
Description section. For optimum ESD performance,  
ꢀN  
EꢀL  
FUNCTION  
bypass each V  
pin to ground with a ꢁ.1µF or larger  
CC  
ceramic capacitor.  
Rꢁ to R1  
Gꢁ to G1  
Bꢁ to B1  
1
 ꢆmnꢃVHrꢇlVBrꢇtaV( HB)  
Several ESD testing standards exist for measuring the  
robustness of ESD structures. The ESD protection of  
the MAX4885E is characterized with the Human Body  
Model. Figure 3 shows the model used to simulate an  
ESD event resulting from contact with the human body.  
The model consists of a 1ꢁꢁpF storage capacitor that is  
charged to a high voltage, then discharged through a  
1.5ꢀΩ resistor. Figure 4 shows the current waveform  
when the storage capacitor is discharged into a low  
impedance.  
Rꢁ to R2  
Gꢁ to G2  
Bꢁ to B2  
1
1
X
R_, B_, and G_, high impedance  
MAX485E  
X = Don’t care.  
TnbatV2.V kVTPꢆohVTnbat  
ꢀN  
FUNCTION  
ESD Test Conditions  
ESD performance depends on a variety of conditions.  
Please contact Maxim for a reliability report document-  
ing test setup, methodology, and results.  
H_, V_ = ꢁ  
X = Don’t care.  
TnbatV3.VSSCVTPꢆohVTnbat  
Applications Information  
ꢀN  
EꢀL  
FUNCTION  
The MAX4885E provides the level shifting necessary to  
drive two standard VGA ports from a graphics con-  
troller as low as +2.2V. Internal buffers drive the  
HSYNC and VSYNC signals to VGA standard TTL lev-  
els. The DDC multiplexer provides level shifting by  
SDAꢁ to SDA1  
SCLꢁ to SCL1  
1
SDAꢁ to SDA2  
SCLꢁ to SCL2  
1
1
X
clamping signals to a diode drop less than V (see the  
L
SDA_, SCL_, high impedance  
Typical Operating Circuit). Connect V to +3.3V for nor-  
L
mal operation, or to V  
DDC signals.  
to disable voltage clamping for  
CC  
X = Don’t care.  
Power-Supply Decoupling  
pin and V to ground with a ꢁ.1µF  
or larger ceramic capacitor as close as possible to the  
device.  
Horizontal/Vertical Sync Level Shifter  
HSYNC/VSYNC are buffered to provide level shifting  
and drive capability to meet the VESA specification.  
Bypass each V  
CC  
L
Display-Data Channel Multiplexer  
The MAX4885E provides two voltage-clamped switches  
to route DDC signals (see Table 3). Each switch clamps  
signals to a diode drop less than the voltage applied on  
PCB Layout  
High-speed switches such as the MAX4885E require  
proper PCB layout for optimum performance. Ensure  
that impedance-controlled PCB traces for high-speed  
signals are matched in length and as short as possible.  
Connect the exposed pad to a solid ground plane.  
V . Supply +3.3V on V to provide voltage clamping for  
L
L
VESA I2C-compatible signals. If voltage clamping is not  
required, connect V to V . The SDA_ and SCL_  
L
CC  
switches are identical, and each switch can be used to  
route either SDA_ and SCL_ signals.  
Chip Information  
ESD Protection  
As with all Maxim devices, ESD-protection structures  
are incorporated on all pins to protect against electro-  
static discharges encountered during handling and  
assembly. Additionally, the MAX4885E is protected to  
15ꢀV on RGB, HSYNC, VSYNC, SDA_ and SCL_  
PROCESS: BiCMOS  
8
_______________________________________________________________________________________  
Ultra-Low Capacitance 1:2 VGA  
Switch with 15ꢀV ESD  
MAX485E  
R
C
R
D
1MΩ  
1500Ω  
I
P
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
R
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
AMPERES  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
36.8%  
C
100pF  
STORAGE  
CAPACITOR  
s
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 3. Human Body ESD Test Model  
Figure 4. HBM Discharge Current Waveform  
Functional Diagram  
MAX4885E  
R1  
G1  
B1  
R0  
G0  
B0  
R2  
G2  
B2  
EN  
SEL  
SDA1  
SCL1  
SDA0  
SCL0  
BIDIRECTIONAL  
LEVEL SHIFTER  
SDA2  
SCL2  
H1  
V1  
H0  
V0  
_______________________________________________________________________________________  
9
Ultra-Low Capacitance 1:2 VGA  
Switch with 15ꢀV ESD  
Pacꢀage Information  
For the latest pacꢀage outline information and land patterns, go to www.mnꢄꢂm-ꢂe.erm/pne5ngts.  
ꢁACKAGꢀVTYꢁꢀ  
ꢁACKAGꢀVCOSꢀ  
SOCUBꢀNTVNO.  
2±-0±39  
24 TQFN-EP  
T2444-4  
MAX485E  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
±0 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2ꢁꢁ8 Maxim Integrated Products  
is a registered trademarꢀ of Maxim Integrated Products, Inc.  

相关型号:

MAX4885EETG+T

Multiplexers/Switches, 2 Func, 2 Channel, BICMOS, PQCC24,
MAXIM

MAX4885ETJ

Complete VGA 1:2 or 2:1 Multiplexer
MAXIM

MAX4885ETJ+

Complete VGA 1:2 or 2:1 Multiplexer
MAXIM

MAX4885ETJ-T

Video Multiplexer, 1 Func, 2 Channel, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220WHHD-2, TQFN-32
MAXIM

MAX4886

Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch
MAXIM

MAX4886ETJ

Audio/Video Switch
MAXIM

MAX4886ETJ-T

Audio/Video Switch
MAXIM

MAX4886ETO+

Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch
MAXIM

MAX4886ETO+CFR

Audio/Video Switch,
MAXIM

MAX4886ETO+T

暂无描述
MAXIM

MAX4886ETO+TCFR

Audio/Video Switch,
MAXIM

MAX4887

Triple Video Switch
MAXIM