MAX4885EETG+T [MAXIM]

Multiplexers/Switches, 2 Func, 2 Channel, BICMOS, PQCC24,;
MAX4885EETG+T
型号: MAX4885EETG+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Multiplexers/Switches, 2 Func, 2 Channel, BICMOS, PQCC24,

复用器
文件: 总13页 (文件大小:367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0554; Rev 0; 5/06  
Complete VGA 1:2 or 2:1 Multiplexer  
General Description  
Features  
The MAX4885 integrates high-bandwidth analog  
switches and level-translating buffers to implement a  
complete 1:2 or 2:1 multiplexer for VGA signals. The  
device provides switching for RGB, display data chan-  
nel (DDC), and horizontal and vertical synchronization  
(HSYNC, VSYNC) signals. A low-noise charge pump  
with internal capacitors provides a boosted gate-drive  
voltage to improve performance of the RGB switches.  
+5V Single-Supply Operation  
Programmable Voltage Clamp for Open-Drain  
DDC Signals  
Low 5 (typ) On-Resistance (R, G, B Signals)  
Low 13pF (typ) On-Capacitance (R, G, B Signals)  
Break-Before-Make Switching Protects Against  
In the 1:2 multiplexer mode, HSYNC/VSYNC inputs fea-  
ture level-shifting buffers to support low-voltage CMOS  
or standard TTL-compatible graphics controllers. In the  
2:1 multiplexer mode, the output buffers for the  
HSYNC/VSYNC inputs are disabled, allowing bidirec-  
tional signaling. In both modes, DDC signals are volt-  
age-clamped to an external voltage to provide level  
translation and protection. The MAX4885 features a  
5µA shutdown mode and is ESD protected to ±8ꢀV  
Human Body Model (HBM) on externally routed pins.  
Circuit Shorts  
±±kV ꢀBM ꢁSD Protection on ꢁEternally Routeꢂ  
Pins  
Low 300µA Supply Current (Lower than 1µA with  
Charge Pump Disableꢂ)  
Space-Saving, Leaꢂ-Free, 32-Pin (5mm E 5mm)  
TQFN Package  
The MAX4885 is specified over the extended (-40°C to  
+85°C) temperature range, and is available in the 32-  
pin, 5mm x 5mm TQFN pacꢀage.  
Ordering Information  
Applications  
PKG  
CODꢁ  
PART  
TꢁMP RANGꢁ PIN-PACKAGꢁ  
Notebooꢀ Computers  
Digital Projectors  
Computer Monitors  
Servers  
MAX4885ETJ+ -40°C to +85°C 32 TQFN-EP*  
T3255-4  
*EP = Exposed pad.  
+Denotes lead-free package.  
KVM Switches  
Pin Configuration  
Typical Operating Circuit  
TOP VIEW  
24 23 22 21 20 19 18 17  
+3.3V  
16  
15  
G1 25  
R1 26  
G2  
R2  
+5V  
0.1 F  
0.1 F  
V
V+  
MAX4885  
CL  
14 DDCB2  
27  
28  
29  
30  
31  
32  
DDCB1  
DDCA1  
GND  
V+  
DDCA2  
GND  
13  
12  
3
2
3
2
R0, B0, G0  
H0, V0  
R1, G1, B1  
H1, V1  
MAX4885  
GRAPHICS  
CONTROLLER  
2
2
VGA  
PORT 1  
11 V+  
DDCA1, DDCB1  
DDCA0, DDCB0  
*EP  
3
10  
9
V
M
CL  
R2, G2, B2  
H2, V2  
DDCA2, DDCB2  
GND  
DOCKING  
STATION  
SEL  
M
EN  
VGA  
2
EN  
SEL  
PORT 2  
2
1
2
3
4
5
6
7
8
TQFN  
*EXPOSED PADDLE CONNECTED TO GND  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Complete VGA 1:2 or 2:1 Multiplexer  
ABSOLUTꢁ MAXIMUM RATINGS  
(All voltages referenced to GND.)  
Continuous Power Dissipation (T = +±0°C)  
A
V , V .....................................................................-0.3V to +6V  
R_, G_, B_, DDCA_, DDCB_, SEL, M,  
EN, QP (Note 1) ...........................................-0.3V to V+ + 0.3V  
H_, V_ .......................................................................-0.3V to +6V  
Continuous Current Through RGB Switches ....................±±0mA  
Continuous Current Through HV, DDC Switches…..........±50mA  
Peaꢀ Current Through RGB Switches  
32-Pin TQFN (derate 21.3mW/°C above +±0°C) ........1±02mW  
+
CL  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
(pulsed at 1ms, 10% duty cycle).................................±140mA  
Peaꢀ Current Through HV, DDC Switches (pulsed at 1ms,  
10% duty cycle)..............................................................±100mA  
Note 1: Signals exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ꢁLꢁCTRICAL CꢀARACTꢁRISTICS  
(V+ = +5.0V ±10%, V = +3.3V ±10%, T = T  
to T  
, QP = GND, unless otherwise noted. Typical values are at V+ = +5.0V,  
MAX  
CL  
A
MIN  
V
= +3.3V and T = +25°C.)  
CL  
A
PARAMꢁTꢁR  
SYMBOL  
CONDITIONS  
MIN  
4.5  
TYP  
MAX  
5.5  
V+  
0.5  
1
UNITS  
V
Supply Voltage Range  
Clamp Voltage Range  
V+  
V
2.±  
V
CL  
QP = GND  
QP = V+  
0.3  
mA  
µA  
µA  
µA  
V
Quiescent Supply Current  
I
V+ = +5.5V  
= V+ = +5.5V  
+
+
V
V
Quiescent Supply Current  
I
V
CL  
1
CL  
CL  
Shutdown Current  
I
V+ = +5.5V, all digital inputs to V+ or GND  
5
+
+SHDN  
V
GND  
= V+ = +5.5V, all digital inputs to V+ or  
CL  
V
Shutdown Current  
I
1
µA  
CL  
CLSHDN  
RGB ANALOG SWITCꢀꢁS  
QP = GND  
QP = V+  
5
6
±.5  
10  
0V < V < +2.5V,  
IN  
On-Resistance  
R
ON  
I
IN  
= -40mA  
On-Resistance Matching  
On-Resistance Flatness  
Off-Leaꢀage Current  
On-Leaꢀage Current  
R
0V < V < +2.5V, I = -40mA  
0.5  
0.02  
1.5  
0.±5  
+1  
ON  
IN  
IN  
R
0V < V < +2.5V, I = -40mA  
IN IN  
FLAT(ON)  
I
R_, G_, B_ = 0V or +5.5V, EN = GND  
R_, G_, B_ = 0V or +5.5V, EN = V+  
-1  
-1  
µA  
µA  
L(OFF)  
I
+1  
L(ON)  
Q
QP = GND  
QP = V+  
10  
8
R_, G_, B_ = 0V,  
C = 1000pF  
L
Charge Injection  
pC  
ꢀV MULTIPLꢁXꢁR  
Input-Voltage Low  
Input-Voltage High  
High-Output Drive Current  
Low-Output Drive Current  
On-Resistance  
V
M = GND  
M = GND  
0.8  
V
ILHV  
V
2.0  
-16  
V
IHHV  
I
V
V
= V - 0.5V, M = GND  
mA  
mA  
OHHV  
OUT  
OUT  
+
I
= +0.5V, M = GND  
+16  
15  
OLHV  
R
ONHV  
H_ = V_ = +2.5V, I = -40mA, M = V+  
IN  
Charge Injection  
Q
H_, V_ = 0V, M = V+, C = 1000pF  
21  
pC  
L
2
_______________________________________________________________________________________  
Complete VGA 1:2 or 2:1 Multiplexer  
ꢁLꢁCTRICAL CꢀARACTꢁRISTICS (continueꢂ)  
(V+ = +5.0V ±10%, V = +3.3V ±10%, T = T  
to T  
, QP = GND, unless otherwise noted. Typical values are at V+ = +5.0V,  
MAX  
CL  
A
MIN  
V
= +3.3V and T = +25°C.)  
CL  
A
PARAMꢁTꢁR  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DDC MULTIPLꢁXꢁR  
On-Resistance  
R
V
V
< +0.4V, V = +3.0V, I = -20mA  
20  
+1  
ON(DDC)  
IN  
CL  
IN  
DDC Leaꢀage  
I
- 0.4V < V  
< V , V = V+  
-1  
µA  
pC  
L(DDC)  
Q
CL  
OUT  
CL IN  
Charge Injection  
DDCA_, DDCB_ = 0V, C = 1000pF  
L
10  
SWITCꢀ LOGIC (SꢁL, M, EN, QP)  
Input-Low Voltage  
V
V+ = +5.5V  
V+ = +4.5V  
0.8  
+1  
V
V
IL  
Input-High Voltage  
Input Leaꢀage Current  
ꢁSD PROTꢁCTION  
V
2.0  
-1  
IH  
I
V
= V+  
IN  
µA  
LEAK  
Human Body Model, all pins  
±2  
±8  
ꢀV  
ꢀV  
ESD Protection  
Human Body Model, R_, G_, B_, H_, V_,  
DDCA_, DDCB_  
AC ꢁLꢁCTRICAL CꢀARACTꢁRISTICS  
(V+ = +5.0V ±10%, V = +3.3V ±10%, T = T  
to T  
, QP = GND. Typical values are at V+ = +5.0V, V = +3.3V and T =  
MAX CL A  
CL  
A
MIN  
+25°C, unless otherwise noted.) (Note 2)  
PARAMꢁTꢁR  
Bandwidth  
SYMBOL  
CONDITIONS  
MIN  
TYP  
350  
350  
0.85  
1
MAX  
UNITS  
QP = GND  
QP = V+  
f
R = R = 50  
MHz  
MAX  
S
L
QP = GND  
QP = V+  
1.2  
1.6  
1MHz < f < 50MHz,  
R = R = 50  
Insertion Loss  
Crosstalꢀ  
I
dB  
dB  
pF  
LOS  
S
L
1MHz < f < 50MHz, V = 0.±V  
,
IN  
P-P  
V
-40  
5
CT  
R = R = 50  
S
L
f = 1MHz,  
QP = GND or V+  
Off-Capacitance  
C
OFF  
QP = GND  
QP = V+  
13  
1±  
50  
On-Capacitance  
C
f = 1 MHz  
pF  
µV  
ON  
Charge-Pump Noise  
V
V
= +1.0V, R = R = 50  
200  
NQP  
IN  
S
L
_______________________________________________________________________________________  
3
Complete VGA 1:2 or 2:1 Multiplexer  
TIMING CꢀARACTꢁRISTICS  
(V+ = +5.0V ±10%, V = +3.3V ±10%, T = T  
to T  
, QP = GND. Typical values are at V+ = +5.0V, V = +3.3V and T =  
MAX CL A  
CL  
A
MIN  
+25°C, unless otherwise noted.) (Note 2)  
PARAMꢁTꢁR  
Charge-Pump Startup Time  
RGB ANALOG SWITCꢀꢁS  
Turn-On Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
150  
µs  
QPON  
t
V
V
= +1.0V, R = 100 , Figure 1  
±
µs  
µs  
ns  
ON  
IN  
IN  
L
Turn-Off Time  
t
= +1.0V, R = 100 , Figure 1  
0.1  
0.1  
OFF  
L
Propagation Delay  
t
C = 10pF, Figure 2, R = R = 50  
L L S  
PD  
C = 10pF, Sꢀew between any two ports: R,  
L
Output Sꢀew Between Ports  
t
30  
ps  
SKEW  
G, B. Figure 2, R = R = 50  
S
L
ꢀV MULTIPLꢁXꢁR  
Turn-On Time  
t
M = 0, Figure 1  
M = 0, Figure 1  
5
µs  
µs  
ON  
Turn-Off Time  
t
0.1  
6
OFF  
M = GND  
M = V+  
16  
Propagation Delay  
t
C = 10pF  
L
ns  
PD  
0.1  
DDC MULTIPLꢁXꢁR  
Turn-On Time  
t
V
V
= +1.0V, R = 100 , Figure 1  
5
µs  
µs  
ns  
ON  
IN  
IN  
L
Turn-Off Time  
t
= +1.0V, R = 100 , Figure 1  
0.1  
OFF  
L
Propagation Delay  
t
C = 10pF, Figure 2  
0.25  
PD  
L
Note 2: Timing parameters are guaranteed by design and correlation over the full operating temperature range.  
Typical Operating Characteristics  
(V+ = +5.0V, V = +3.3V and T = +25°C, unless otherwise noted.)  
CL  
A
R
vs. V *  
R0  
R
vs. V *  
R0  
ON  
R
vs. V *  
R0  
ON  
ON  
(HV SWITCHES)  
(RGB SWITCHES)  
(RGB SWITCHES)  
35  
30  
25  
20  
15  
10  
5
12  
10  
8
10  
9
8
7
6
5
4
3
2
1
0
QP = 1  
QP = 0 OR 1  
T
= +85 C  
A
T
= +25 C  
= -40 C  
A
T
= +85 C  
A
T
= +25 C  
A
T
A
6
T
= +25 C  
A
4
T
= +85 C  
A
T
= -40 C  
A
2
T
= -40 C  
A
0
0
0
1
2
3
4
0
1
2
3
4
5
0
1
2
3
4
5
V
(V)  
V
(V)  
R0  
R0  
V (V)  
R0  
*R0, G0, B0 ARE INTERCHANGEABLE.  
*R0, G0, B0 ARE INTERCHANGEABLE.  
*R0, G0, B0 ARE INTERCHANGEABLE.  
4
_______________________________________________________________________________________  
Complete VGA 1:2 or 2:1 Multiplexer  
Typical Operating Characteristics (continued)  
(V+ = +5.0V, V = +3.3V and T = +25°C, unless otherwise noted.)  
CL  
A
R
vs. V  
*
HV BUFFER OUTPUT VOLTAGE  
HIGH vs. TEMPERATURE  
HV BUFFER OUTPUT VOLTAGE  
LOW vs. TEMPERATURE  
ON  
DDAC0  
(DDC SWITCHES)  
75  
60  
45  
30  
15  
0
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I = 16mA  
I = 16mA  
V
A
= +3.3V  
V
= +5.0V  
CL  
CL  
T
= +85 C  
= +25 C  
T
= +85 C  
= +25 C  
A
T
T
A
A
T
= -40 C  
T
= -40 C  
A
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
V
(V)  
DDAC0  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
*DDAC0 AND DDCB0 ARE INTERCHANGEABLE.  
HV LEAKAGE CURRENT  
vs TEMPERATURE  
DDC LEAKAGE CURRENT  
vs. TEMPERATURE  
RGB LEAKAGE CURRENT  
vs. TEMPERATURE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
QP = 0  
ON LEAKAGE  
OFF LEAKAGE  
ON LEAKAGE  
OFF LEAKAGE  
ON LEAKAGE  
OFF LEAKAGE  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
RGB CHARGE INJECTION  
vs. COM VOLTAGE  
t
ON  
vs. TEMPERATURE  
(RGB SWITCHES)  
SUPPLY CURRENT  
vs. TEMPERATURE  
15  
12  
9
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
QP = 0  
QP = 0  
6
QP = 1  
QP = 1  
3
QP = 0  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
(V)  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
V
TEMPERATURE ( C)  
TEMPERATURE ( C)  
COM  
_______________________________________________________________________________________  
5
Complete VGA 1:2 or 2:1 Multiplexer  
Typical Operating Characteristics (continued)  
(V+ = +5.0V, V = +3.3V and T = +25°C, unless otherwise noted.)  
CL  
A
t
ON  
vs. TEMPERATURE  
(HV, DDC SWITCHES)  
t
vs. TEMPERATURE  
(RGB SWITCHES)  
t
vs. TEMPERATURE  
(HV, DDC SWITCHES)  
OFF  
OFF  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
150  
125  
100  
75  
30  
25  
20  
15  
10  
5
HV  
QP = 1  
DDC  
50  
QP = 0  
25  
0
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
RGB PROPAGATION DELAY  
vs. TEMPERATURE  
CROSSTALK vs. FREQUENCY  
ON-RESPONSE vs. FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
1000  
800  
600  
400  
200  
0
0
QP = 0 OR 1  
-1  
-2  
-3  
-4  
-5  
-6  
QP = 1  
QP = 0  
t
PHL  
t
PLH  
0
50 100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
-40  
-15  
10  
35  
60  
85  
0
100  
200  
300  
400  
TEMPERATURE ( C)  
FREQUENCY (MHz)  
OFF-ISOLATION vs. FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
QP = 0 OR 1  
0
50 100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Complete VGA 1:2 or 2:1 Multiplexer  
Timing Circuits/Timing Diagrams  
V+  
MAX4885  
t
< 5ns  
r
f
V+  
0V  
t < 5ns  
LOGIC  
INPUT  
V+  
50%  
50%  
R0, G0, B0  
R1, G1, B1  
R2, G2, B2  
V
N_  
V
OUT  
t
OFF  
R
C
L
L
SEL  
V
OUT  
0.9 x V  
0.9 x V  
OUT  
0UT  
GND  
LOGIC  
INPUT  
SWITCH  
OUTPUT  
0V  
C INCLUDES FIXTURE AND STRAY CAPACITANCE.  
L
IN DEPENDS ON SWITCH CONFIGURATION;  
INPUT POLARITY DETERMINED BY SENSE OF SWITCH.  
R
L
V
= V  
N_  
OUT  
(
)
ON  
R + R  
L
Figure 1. Switching Time  
1V  
R
= R = 50  
L
S
C = 10pF  
L
50%  
50%  
INPUT  
0V  
V
OH  
t
t
PHL  
PLH  
0.9V  
50%  
50%  
OUTPUT  
= | t - t  
0V  
t
t
|
PLH PHL  
SKEW  
= MAX (t , t  
)
PD  
PLH PHL  
Figure 2. Propagation Delay and Skew Waveforms  
V+  
MAX4885  
V
OUT  
V+  
V
OUT  
R
GEN  
R0, G0, B0  
R1, G1, B1  
R2, G2, B2  
V
OUT  
IN  
OFF  
OFF  
OFF  
OFF  
C
L
ON  
ON  
V
GEN  
GND  
SEL  
V
TO V  
IH  
IL  
IN  
Q = (  
V
)(C )  
OUT L  
LOGIC INPUT WAVEFORMS INVERTED FOR SWITCHES  
THAT HAVE THE OPPOSITE LOGIC SENSE.  
Figure 3. Charge Injection  
_______________________________________________________________________________________  
7
Complete VGA 1:2 or 2:1 Multiplexer  
Timing Circuits/Timing Diagrams (continued)  
+5V  
10nF  
V
V
OUT  
OFF-ISOLATION = 20log  
ON-LOSS = 20log ✕  
IN  
NETWORK  
ANALYZER  
V
50  
50  
OUT  
V+  
V
V
0V OR V+  
IN  
SEL  
V
IN  
R0, G0, B0  
V
V
OUT  
CROSSTALK = 20log ✕  
MAX4885  
IN  
MEAS  
50  
REF  
R1, G1, B1  
OUT  
R2, G2, B2  
GND  
50  
50  
MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS.  
OFF-ISOLATION IS MEASURED BETWEEN R0 AND R1 OR R2 ON EACH SWITCH.  
ON-LOSS IS MEASURED BETWEEN R0 AND R1 OR R2 ON EACH SWITCH.  
CROSSTALK IS MEASURED FROM ONE CHANNEL TO THE OTHER CHANNEL.  
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.  
Figure 4. On-Loss, Off-Isolation, and Crosstalk  
Pin Description  
PIN  
NAMꢁ  
FUNCTION  
Charge-Pump Enable, Active Low. Drive QP low for normal operation. Drive QP high to disable the  
internal charge pump.  
1
QP  
2
3
4
5
6
±
8
R0  
G0  
RGB Analog I/O  
RGB Analog I/O  
RGB Analog I/O  
Horizontal Sync I/O  
Vertical Sync I/O  
DDC I/O  
B0  
H0  
V0  
DDCA0  
DDCB0  
DDC I/O  
Enable Input, Active Low. Drive EN low for normal operation. Drive EN high to disable the device. All  
I/Os are high-impedance and charge pump is off when the device is disabled.  
9
EN  
DDC Clamp Voltage. Open-drain DDCA_ and DDCB_ outputs are clamped to one diode-drop below  
10  
V
V
. +2.±V < V < V+. Connect V to +3.3V for voltage clamping, or connect to V+ to disable  
CL CL CL  
CL  
clamping. Bypass V to GND with a 0.1µF or larger ceramic capacitor.  
CL  
11, 21, 30  
V+  
GND  
DDCA2  
DDCB2  
R2  
Supply Voltage. V+ = +5.0V ± 10%. Bypass each to GND with a 0.1µF or larger ceramic capacitor.  
12, 20, 29  
Ground  
13  
14  
15  
16  
1±  
DDC I/O  
DDC I/O  
RGB Analog I/O  
RGB Analog I/O  
RGB Analog I/O  
G2  
B2  
±
_______________________________________________________________________________________  
Complete VGA 1:2 or 2:1 Multiplexer  
Pin Description (continued)  
PIN  
18  
19  
22  
23  
24  
25  
26  
2±  
28  
NAMꢁ  
H2  
FUNCTION  
Horizontal Sync I/O  
Vertical Sync I/O  
Vertical Sync I/O  
Horizontal Sync I/O  
RGB Analog I/O  
RGB Analog I/O  
RGB Analog I/O  
DDC I/O  
V2  
V1  
H1  
B1  
G1  
R1  
DDCB1  
DDCA1  
DDC I/O  
Mode Select. Drive M low for 1:2 multiplexer mode. Drive M high for 2:1 multiplexer mode. See Tables  
1, 2, and 3.  
31  
M
32  
EP  
SEL  
EP  
Select. Logic input for switching RGB, HV, and DDC switches. See Tables 1, 2, and 3.  
Exposed Pad. Connect exposed pad to ground.  
Detailed Description  
Table 1. RGB Truth Table  
The MAX4885 integrates high-bandwidth analog  
switches and level-translating buffers to implement a  
complete 1:2 or 2:1 multiplexer for VGA signals. The  
device provides switching for RGB, HSYNC, VSYNC,  
and DDC signals. A low-noise charge pump with inter-  
nal capacitors provides a boosted gate-drive voltage to  
improve performance of the RGB switches.  
EN  
SꢁL  
FUNCTION  
R0 to R1  
G0 to G1  
B0 to B1  
0
0
R0 to R2  
G0 to G2  
B0 to B2  
0
1
X
The device provides two modes of operation: 1:2 and  
2:1. In 1:2 mode (M = 0), the HSYNC and VSYNC  
inputs feature level-shifting buffers to support TTL out-  
put logic levels from low-voltage graphics controllers.  
These buffered switches may be driven from as little as  
+2.0V up to +5.5V. In 2:1 mode (M=1), the output  
buffers for the HSYNC and VSYNC signals are dis-  
abled. In both modes, RGB signals are routed with the  
same high-performance analog switches, and DDC sig-  
nals are voltage clamped to a diode drop less than  
1
R_, B_, and G_, High Impedance  
X = Don’t Care  
RGB Switches  
The MAX4885 provides three SPDT high-bandwidth  
switches to route standard VGA R, G, and B signals  
(see Table 1). A boosted gate-drive voltage is generat-  
ed by an internal charge pump to improve performance  
of the RGB switches. The R, G, and B analog switches  
are identical, and any of the three switches can be  
used to route red, green, or blue video signals. The  
RGB switches function with reduced performance with  
the charge pump disabled.  
V
. Voltage clamping provides protection and com-  
CL  
patibility with DDC signals and low-voltage ASICs. In  
ꢀeyboard/video/mouse (KVM) applications, V is nor-  
CL  
mally set to +5V because low-voltage clamping is not  
required, as specified by the VESA standard.  
Drive EN logic high to shut down the MAX4885. In shut-  
down mode, supply current is reduced to 5µA and all  
switches are high impedance, providing high-signal  
rejection. The RGB, HSYNC, VSYNC, and DDC switches  
are ESD protected to ±8ꢀV by the Human Body Model.  
Charge Pump  
A low-noise charge pump with internal capacitors pro-  
vides a doubled voltage for driving the RGB analog  
switches. Noise voltage from the charge pump is less  
than 50µV  
The noise level is more than 80dB below  
P-P.  
the signal level, maꢀing the charge pump suitable for  
_______________________________________________________________________________________  
9
Complete VGA 1:2 or 2:1 Multiplexer  
standard VGA signals. The charge pump can be dis-  
Table 2. ꢀV Truth Table  
abled to eliminate charge-pump noise; however, RGB  
switch performance is slightly degraded. Connect QP  
to ground for normal operation.  
EN  
M
SꢁL  
FUNCTION  
1:2 Mode  
Buffers Enabled  
H0 to H1  
V0 to V1  
Horizontal/Vertical Sync Multiplexer  
0
0
0
1:2 Multiplexer Mode  
The MAX4885 provides two modes of operation for the  
HSYNC and VSYNC signals. In 1:2 mode (M = 0), the  
HSYNC/VSYNC inputs are buffered to provide level shift-  
ing and drive capability to meet the VESA specification.  
1:2 Mode  
Buffers Enabled  
H0 to H2  
0
0
0
1
1
0
V0 to V2  
2:1 Multiplexer Mode  
In 2:1 mode (M = 1), the HSYNC/VSYNC output buffers  
are disabled, and switches pass signals directly. The  
HSYNC and VSYNC switches/buffers are identical, and  
either input can be used to route HSYNC and  
VSYNC signals.  
2:1 Mode  
Buffers Disabled  
H0 to H1  
V0 to V1  
2:1 Mode  
Buffers Disabled  
H0 to H2  
Display Data Channel Multiplexer  
The MAX4885 provides two voltage-clamped switches  
to route DDC signals (see Table 3). Each switch  
clamps signals to a diode drop less than the voltage  
0
1
1
X
1
X
V0 to V2  
applied on V . Supply +3.3V on V  
to provide volt-  
CL  
CL  
H_, V_  
High Impedance  
age clamping for VESA I2C-compatible signals. If volt-  
age clamping is not required, connect V to V+. The  
CL  
X = Don’t Care  
DDCA and DDCB switches are identical, and each  
switch can be used to route either DDC signal.  
Table 3. DDC Truth Table  
ESD Protection  
As with all Maxim devices, ESD-protection structures  
are incorporated on all pins to protect against electro-  
static discharges encountered during handling and  
assembly. Additionally, the MAX4885 is protected to  
±8ꢀV on RGB, HSYNC, VSYNC, and DDC switches by  
the Human Body Model (HBM). For optimum ESD per-  
formance, bypass each V+ pin to ground with a 0.1µF  
or larger ceramic capacitor.  
EN  
SꢁL  
FUNCTION  
DDCA0 to DDCA1  
DDCB0 to DDCB1  
0
0
DDCA0 to DDCA2  
DDCB0 to DDCB2  
0
1
X
DDCA_, DDCB_  
High Impedance  
1
X = Don’t Care  
Human Body Model (HBM)  
Several ESD testing standards exist for measuring the  
robustness of ESD structures. The ESD protection of  
the MAX4885 is characterized with the Human Body  
Model. Figure 5 shows the model used to simulate an  
ESD event resulting from contact with the human body.  
The model consists of a 100pF storage capacitor that is  
charged to a high voltage, then discharged through a  
1.5ꢀ resistor. Figure 6 shows the current waveform  
when the storage capacitor is discharged into a low  
impedance.  
Applications Information  
1:2 Multiplexer for Low-Voltage Graphics  
Controllers  
The MAX4885 provides the level shifting necessary to  
drive two standard VGA ports from a graphics con-  
troller as low as +2.2V. In 1:2 mode, internal buffers  
drive the HSYNC and VSYNC signals to VGA standard  
TTL levels. The DDC multiplexer provides level shifting  
by clamping signals to a diode drop less than V (see  
the Typical Operating Circuit). Connect V  
for normal operation, or to V+ to disable voltage clamp-  
ing for DDC signals.  
CL  
ESD Test Conditions  
ESD performance depends on a variety of conditions.  
Please contact Maxim for a reliability report document-  
ing test setup, methodology, and results.  
to +3.3V  
CL  
10 ______________________________________________________________________________________  
Complete VGA 1:2 or 2:1 Multiplexer  
R
C
R
D
1M  
1500  
I 100%  
P
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
AMPERES  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
36.8%  
C
100pF  
STORAGE  
CAPACITOR  
s
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 5. Human Body ESD Test Model  
Figure 6. HBM Discharge Current Waveform  
2:1 Multiplexer  
PC Board Layout  
In 2:1 mode, HSYNC and VSYNC buffers are disabled,  
allowing bidirectional signaling. The DDC multiplexer  
provides level shifting by clamping signals to a diode  
High-speed switches such as the MAX4885 require  
proper PC board layout for optimum performance.  
Ensure that impedance-controlled PC board traces for  
high-speed signals are matched in length and as short  
as possible. Connect the exposed pad to a solid  
ground plane.  
drop less than V (see the Typical Operating Circuit).  
CL  
Connect V  
to V+ to disable voltage clamping for  
CL  
DDC signals.  
Chip Information  
PROCESS: BiCMOS  
Power-Supply Decoupling  
Bypass each V+ pin and V to ground with a 0.1µF or  
CL  
larger ceramic capacitor as close to the device as pos-  
sible.  
CONNECT EXPOSED PAD TO GND  
______________________________________________________________________________________ 11  
Complete VGA 1:2 or 2:1 Multiplexer  
Functional Diagram  
MAX4885  
M
H1  
V1  
*
*
H0  
H2  
V2  
V0  
SEL  
R1  
G1  
B1  
R2  
G2  
B2  
R0  
G0  
B0  
RGB  
CHARGE  
PUMP  
QP  
EN  
DDCA1  
DDCB1  
DDCA0  
DDCB0  
DDCA2  
DDCB2  
VOLTAGE  
CLAMP  
V
CL  
12 ______________________________________________________________________________________  
Complete VGA 1:2 or 2:1 Multiplexer  
Package Information  
(The pacꢀage drawing(s) in this data sheet may not reflect the most current specifications. For the latest pacꢀage outline information,  
go to www.maEim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
AAAAA  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45°  
DETAIL A  
e/2  
PIN # 1  
I.D.  
e
(ND-1) X  
e
DETAIL B  
e
L
C
L
C
L
L1  
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
1
-DRAWING NOT TO SCALE-  
I
21-0140  
2
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
MIN. NOM. MAX. MIN. NOM. MAX.  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
40L 5x5  
L
DOWN  
BONDS  
ALLOWED  
YES  
NO  
exceptions  
PKG.  
CODES  
±0.15  
A
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05  
0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF.  
T1655-2  
T1655-3  
**  
**  
**  
**  
A1  
0
0
0
0
0
A3  
b
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
NO  
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
T2055-3  
T2055-4  
T2055-5  
T2855-3  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
D
E
NO  
**  
YES  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
e
0.80 BSC.  
0.25  
0.65 BSC.  
0.25  
0.50 BSC.  
0.25  
0.50 BSC.  
0.25  
0.40 BSC.  
3.15 3.25 3.35 3.15 3.25 3.35  
YES  
YES  
NO  
**  
**  
**  
k
-
-
-
-
-
-
-
-
0.25 0.35 0.45  
T2855-4  
T2855-5  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
L
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
0.30 0.40 0.50  
NO  
YES  
YES  
T2855-6  
T2855-7  
**  
**  
N
ND  
NE  
16  
4
4
20  
5
28  
7
32  
8
8
40  
10  
10  
2.80  
2.60 2.70  
2.60 2.70 2.80  
5
7
T2855-8  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
-----  
JEDEC  
T2855N-1 3.15 3.25 3.35 3.15 3.25 3.35  
NO  
YES  
NO  
YES  
NO  
**  
**  
**  
**  
**  
**  
3.20  
3.00 3.10 3.20  
T3255-3  
T3255-4  
T3255-5  
3.00 3.10  
3.00 3.10 3.20 3.00 3.10 3.20  
3.20  
NOTES:  
3.00 3.10  
3.00 3.10 3.20  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
T4055-1 3.20 3.30 3.40 3.20 3.30 3.40  
YES  
**SEE COMMON DIMENSIONS TABLE  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN  
0.25 mm AND 0.30 mm FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR  
T2855-3 AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ±0.05.  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
I
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2006 Maxim Integrated Products  
Boblet  
Printed USA  
is a registered trademarꢀ of Maxim Integrated Products, Inc.  

相关型号:

MAX4885ETJ

Complete VGA 1:2 or 2:1 Multiplexer
MAXIM

MAX4885ETJ+

Complete VGA 1:2 or 2:1 Multiplexer
MAXIM

MAX4885ETJ-T

Video Multiplexer, 1 Func, 2 Channel, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220WHHD-2, TQFN-32
MAXIM

MAX4886

Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch
MAXIM

MAX4886ETJ

Audio/Video Switch
MAXIM

MAX4886ETJ-T

Audio/Video Switch
MAXIM

MAX4886ETO+

Quad, High-Speed HDMI/DVI 2:1 Digital Video Switch
MAXIM

MAX4886ETO+CFR

Audio/Video Switch,
MAXIM

MAX4886ETO+T

暂无描述
MAXIM

MAX4886ETO+TCFR

Audio/Video Switch,
MAXIM

MAX4887

Triple Video Switch
MAXIM

MAX4887ETE

Triple Video Switch
MAXIM