MAX475EPD [MAXIM]

Single/Dual/Quad, 10MHz Single-Supply Op Amps; 单/双/四路, 10MHz的单电源运算放大器
MAX475EPD
型号: MAX475EPD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single/Dual/Quad, 10MHz Single-Supply Op Amps
单/双/四路, 10MHz的单电源运算放大器

运算放大器
文件: 总12页 (文件大小:146K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0260; Rev 1; 3/95  
S in g le /Du a l/Qu a d , 1 0 MHz  
S in g le -S u p p ly Op Am p s  
3/MAX475  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
15V/µs Min Slew Rate  
The single MAX473, dual MAX474, and quad MAX475  
are single-supply (2.7V to 5.25V), unity-gain-stable op  
amps with rail-to-rail output swing. Each op amp guar-  
antees a 10MHz unity-gain bandwidth, 15V/µs slew  
rate, and 600drive capability while typically consum-  
ing only 2mA supply current. In addition, the input  
range includes the negative supply rail and the output  
swings to within 50mV of each supply rail.  
+3V Single-Supply Operation  
Guaranteed 10MHz Unity-Gain Bandwidth  
2mA Supply Current per Amplifier  
Input Range Includes Negative Rail  
Outputs Short-Circuit Protected  
Single-supply operation makes these devices ideal for  
low-power and low-voltage portable applications. With  
their fast slew rate and settling time, they can replace  
higher-current op amps in large-signal applications.  
The MAX473/MAX474/MAX475 are available in DIP and  
SO p a c ka g e s in the ind us try-s ta nd a rd op -a mp p in  
c onfig ura tions . The MAX473 a nd MAX474 a re a ls o  
offered in the µMAX package, the smallest 8-pin SO.  
Rail-to-Rail Output Swing (to within ±50mV)  
µMAX Package (the smallest 8-pin SO)  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX473CPA  
MAX473CSA  
MAX473CUA  
MAX473C/D  
MAX473EPA  
MAX473ESA  
MAX473MJA  
________________________Ap p lic a t io n s  
Portable Equipment  
0°C to +70°C  
0°C to +70°C  
8 µMAX  
Battery-Powered Instruments  
Signal Processing  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 Plastic DIP  
8 SO  
Discrete Filters  
8 CERDIP  
Signal Conditioning  
Ordering Information continued on last page.  
* Dice are specified at T = +25°C, DC parameters only.  
A
Servo-Loops  
__________Typ ic a l Op e ra t in g Circ u it  
_________________P in Co n fig u ra t io n s  
9.9k  
TOP VIEW  
82pF  
82pF  
3V  
9.9k  
3V  
1
2
3
4
8
7
6
5
NULL  
NULL  
IN-  
MAX473  
V
CC  
IN+  
OUT  
N.C.  
V
EE  
3V  
9.9k  
9.9k  
V
IN  
9.9k  
1/4 MAX475  
DIP/SO/µMAX  
100mVp-p  
1/4 MAX475  
1/4 MAX475  
OUTA  
INA-  
1
2
3
4
8
7
6
5
V
CC  
MAX474  
1V  
OUTB  
INB-  
1V  
127k  
A
INA+  
B
BANDPASS OUTPUT  
1Vp-p at 190kHz  
9.9k  
V
EE  
INB+  
f = 190kHz  
o
Q = 10  
1V  
DIP/SO/µMAX  
BANDPASS FILTER  
Pin Configurations continued on last page.  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
S in g le /Du a l/Qu a d , 1 0 MHz  
S in g le -S u p p ly Op Am p s  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V - V )......................................................7V  
14-Pin SO (derate 8.33mW/°C above +70°C)..............667mW  
14-Pin CERDIP (derate 9.09mW/°C above +70°C)......727mW  
Operating Temperature Ranges  
CC  
EE  
Input Voltage (IN+, IN-, IN_+, IN_-).........................(V + 0.3V)  
CC  
EE  
to (V - 0.3V)  
Output Short-Circuit Duration.....................................Continuous  
MAX47_C_ _ ......................................................0°C to +70°C  
MAX47_E_ _.....................................................-40°C to +85°C  
MAX47_MJ_...................................................-55°C to +125°C  
Junction Temperatures  
MAX47_C_ _/E_ _........................................................ +150°C  
MAX47_MJ_ ................................................................ +175°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ...727mW  
8-Pin SO (derate 5.88mW/°C above +70°C)................471mW  
8-Pin µMAX (derate 4.1mW/°C above +70°C) .............330mW  
8-Pin CERDIP (derate 8.00mW/°C above +70°C)........640mW  
14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)...800mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(+3V V +5V, V = 0V, V = 0.5V, V  
= 0.5V, T = +25°C, unless otherwise noted.)  
A
CC  
EE  
CM  
OUT  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
±0.70  
±0.70  
±0.80  
80  
MAX  
±2.0  
±2.0  
±2.5  
150  
UNITS  
MAX473  
MAX474  
MAX475  
Input Offset Voltage  
V
OS  
mV  
Input Bias Current  
Input Offset Current  
I
B
Current flows out of terminals  
0
nA  
nA  
3/MAX475  
I
OS  
±10  
±30  
High  
Low  
V
CC  
- 1.9  
V
- 1.7  
CC  
Common-Mode Voltage  
V
CM  
V
V
EE  
- 0.1  
V
EE  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
Input Noise-Voltage Density  
CMRR  
PSRR  
V
V (V - 1.9V)  
80  
80  
90  
dB  
dB  
EE  
CM  
CC  
V
CC  
= 2.7V to 6.0V  
90  
40  
nV/Hz  
e
f = 10kHz  
n
R
R
R
= no load  
= 10kΩ  
= 600Ω  
110  
105  
90  
L
L
L
0.3V V  
(V - 0.5V)  
CC  
OUT  
94  
82  
Large-Signal Gain  
(Note 1)  
A
VOL  
V
CC  
= 5V  
= 3V  
= 5V  
= 3V  
76  
dB  
Sinking 5mA  
V
CC  
100  
76  
V
CC  
Sourcing 5mA  
V
CC  
90  
V
V
+ - V - = +1V, R = no load  
V
CC  
- 0.05  
OH  
IN  
IN  
L
Output Voltage  
Slew Rate  
V
V
OL  
V
IN  
+ - V - = -1V, R = no load  
V
EE  
+ 0.05  
IN  
L
V
= 5V, R = 10k, C = 20pF,  
L L  
+ - V - = +1V step  
IN  
CC  
SR  
15  
10  
17  
V/µs  
MHz  
V
IN  
3V V 5V  
12  
10  
CC  
Unity-Gain Bandwidth  
(Note 2)  
GBW  
V
CC  
= 2.7V  
2
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d , 1 0 MHz  
S in g le -S u p p ly Op Am p s  
3/MAX475  
ELECTRICAL CHARACTERISTICS (continued)  
(+3V V +5V, V = 0V, V = 0.5V, V = 0.5V, T = +25°C, unless otherwise noted.)  
OUT A  
CC  
EE  
CM  
PARAMETER  
Settling Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
S
To 0.1%, C = 20pF  
400  
ns  
L
A
= +1, V = 1/2 V step, see Typical  
IN CC  
V
Power-Up Time  
Overshoot  
t
700  
ns  
%
PU  
Operating Characteristics  
C
C
= 150pF  
= 20pF  
10  
5
L
L
V
= 5V  
= 3V  
= 5V  
= 3V  
63  
58  
10  
12  
2.0  
CC  
R
C
= 10k,  
= 20pF  
L
L
Phase Margin  
degrees  
V
CC  
V
CC  
R
C
= 10k,  
= 20pF  
L
L
Gain Margin  
dB  
mA  
V
V
CC  
Supply Current  
I
S
Per amplifier  
Single supply  
Dual supplies  
3.0  
5.25  
2.7  
Operating Supply-Voltage  
Range  
±1.35  
±2.625  
ELECTRICAL CHARACTERISTICS  
(+3V V +5V, V = 0V, V = 0.5V, V  
= 0.5V, T = 0°C to +70°C, unless otherwise noted.)  
A
CC  
EE  
CM  
OUT  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
±2.0  
±2.0  
±3.0  
175  
UNITS  
MAX473  
MAX474  
MAX475  
Input Offset Voltage  
V
OS  
mV  
Input Bias Current  
Input Offset Current  
I
B
Current flows out of terminals  
0
nA  
nA  
dB  
dB  
I
OS  
±35  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
CMRR  
PSRR  
V
EE  
V (V - 1.9V)  
78  
78  
94  
80  
CM  
CC  
V
CC  
= 2.7V to 6.0V  
R
R
= 10kΩ  
= 600Ω  
L
L
Large-Signal Gain  
(Note 1)  
0.4V V  
OUT  
A
VOL  
dB  
V
(V - 0.6V)  
CC  
V
OH  
V
IN  
+ - V - = +1V, R = no load  
V
- 0.07  
IN  
L
CC  
Output Voltage  
V
OL  
V + - V - = -1V, R = no load  
IN IN L  
V
EE  
+ 0.07  
V
V
IN  
= 5V, R = 10k, C = 20pF,  
L L  
+ - V - = +1V step  
IN  
CC  
Slew Rate  
SR  
12  
V/µs  
mA  
V
Supply Current  
I
S
Per amplifier  
Single supply  
Dual supplies  
3.3  
5.25  
2.7  
Operating Supply-Voltage  
Range  
±1.35  
±2.625  
_______________________________________________________________________________________  
3
S in g le /Du a l/Qu a d , 1 0 MHz  
S in g le -S u p p ly Op Am p s  
ELECTRICAL CHARACTERISTICS  
(+3V V +5V, V = 0V, V = 0.5V, V  
= 0.5V, T = -40°C to +85°C, unless otherwise noted.)  
A
CC  
EE  
CM  
OUT  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
±2.3  
±2.3  
±3.3  
200  
UNITS  
MAX473  
MAX474  
MAX475  
Input Offset Voltage  
V
OS  
mV  
Input Bias Current  
Input Offset Current  
I
B
Current flows out of terminals  
0
nA  
nA  
dB  
dB  
I
OS  
±50  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
CMRR  
PSRR  
V
EE  
V (V - 2.0V)  
72  
72  
94  
72  
CM  
CC  
V
CC  
= 2.7V to 6.0V  
R
R
= 10kΩ  
= 600Ω  
L
L
Large-Signal Gain  
(Note 1)  
0.4V V  
OUT  
A
VOL  
dB  
V
(V - 0.6V)  
CC  
V
OH  
V
IN  
+ - V - = +1V, R = no load  
V
- 0.08  
IN  
L
CC  
Output Voltage  
V
OL  
V + - V - = - 1V, R = no load  
IN IN L  
V
EE  
+ 0.08  
V
V
IN  
= 5V, R = 10k, C = 20pF,  
L L  
+ - V - = +1V step  
IN  
CC  
Slew Rate  
SR  
10  
V/µs  
mA  
V
Supply Current  
I
S
Per amplifier  
Single supply  
Dual supplies  
3.4  
5.25  
2.7  
Operating Supply-Voltage  
Range  
±1.35  
±2.625  
3/MAX475  
ELECTRICAL CHARACTERISTICS  
(+3V V +5V, V = 0V, V = 0.5V, V  
= 0.5V, T = -55°C to +125°C, unless otherwise noted.)  
A
CC  
EE  
CM  
OUT  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
±2.8  
±2.8  
±4.0  
225  
UNITS  
MAX473  
MAX474  
MAX475  
Input Offset Voltage  
V
OS  
mV  
Input Bias Current  
Input Offset Current  
I
B
Current flows out of terminals  
0
nA  
nA  
dB  
dB  
I
OS  
±60  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
CMRR  
PSRR  
V
EE  
V (V - 2.15V)  
70  
70  
90  
70  
CM  
CC  
V
CC  
= 2.7V to 6.0V  
R
R
= 10kΩ  
= 600Ω  
L
Large-Signal Gain  
(Note 1)  
0.5V V  
OUT  
A
VOL  
dB  
V
(V - 0.6V)  
CC  
L
V
OH  
V
IN  
+ - V - = +1V, R = no load  
V
- 0.1  
IN  
L
CC  
Output Voltage  
V
OL  
V + - V - = -1V, R = no load  
IN IN L  
V
EE  
+ 0.1  
V
V
IN  
= 5V, R = 10k, C = 20pF,  
L L  
+ - V - = +1V step  
IN  
CC  
Slew Rate  
SR  
9
V/µs  
mA  
Supply Current  
I
S
Per amplifier  
Single supply  
Dual supplies  
3.6  
5.25  
2.7  
Operating Supply-Voltage  
Range  
V
±1.35  
±2.625  
Note 1: Gain decreases to zero as the output swings beyond the specified limits.  
Note 2: Guaranteed by correlation to slew rate.  
4
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d , 1 0 MHz  
S in g le -S u p p ly Op Am p s  
3/MAX475  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = 5V, V = 0V, T = +25°C, unless otherwise noted.)  
CC  
EE  
A
SUPPLY CURRENT PER AMPLIFIER  
vs. SUPPLY VOLTAGE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
3.0  
120  
3.0  
2.5  
2.0  
1.5  
1.0  
100  
80  
V
= 5V  
= 3V  
CC  
2.5  
2.0  
1.5  
1.0  
60  
V
CC  
40  
0.5  
0
20  
0
2
3
4
5
6
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
V
-V (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CC EE  
GAIN-BANDWIDTH PRODUCT  
vs. TEMPERATURE  
MAXIMUM OUTPUT VOLTAGE  
vs. LOAD RESISTANCE  
SLEW RATE vs. TEMPERATURE  
20  
16  
5.2  
A
V
CC  
= 5V  
VCL = 40dB  
V
= 5V  
CC  
5.1  
5.0  
4.9  
4.8  
17  
14  
15  
14  
V
CC  
V
CC  
= 3V  
1V  
11  
8
13  
12  
R
L
4.7  
-60  
-20  
20  
60  
100  
140  
0.1  
1
10  
100  
1000  
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
LOAD RESISTANCE (k)  
TEMPERATURE (°C)  
MAXIMUM OUTPUT VOLTAGE  
vs. LOAD RESISTANCE  
MINIMUM OUTPUT VOLTAGE  
vs. LOAD RESISTANCE  
3.1  
0.5  
V
CC  
V
CC  
= 3V  
R
1V  
L
0.4  
0.3  
0.2  
0.1  
3.0  
2.9  
2.8  
V
CC  
1V  
V
CC  
= 5V  
V
= 3V  
1
CC  
R
L
2.7  
0.1  
0
1
10  
100  
1000  
0.1  
10  
100  
1000 10,000  
LOAD RESISTANCE (k)  
LOAD RESISTANCE (k)  
_______________________________________________________________________________________  
5
S in g le /Du a l/Qu a d , 1 0 MHz  
S in g le -S u p p ly Op Am p s  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 5V, V = 0V, T = +25°C, unless otherwise noted.)  
CC  
EE  
A
MINIMUM OUTPUT VOLTAGE  
vs. TEMPERATURE  
MAXIMUM OUTPUT VOLTAGE  
vs. TEMPERATURE  
OPEN-LOOP VOLTAGE GAIN  
vs. LOAD RESISTANCE  
20  
125  
115  
105  
95  
50  
40  
30  
20  
1V  
V
CC  
V
= 3V  
= 5V  
CC  
15  
10  
V
CC  
V
= 5V  
= 3V  
CC  
V
CC  
= 5V  
= 3V  
1V  
V
CC  
V
CC  
5
0
V
CC  
10  
0
85  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
0.1  
1
10  
100  
1000 10,000  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LOAD RESISTANCE (k)  
VOLTAGE-NOISE DENSITY  
vs. FREQUENCY  
OVERSHOOT vs. CAPACITIVE LOAD  
= NO LOAD  
OPEN-LOOP GAIN vs. TEMPERATURE  
130  
1000  
40  
30  
INPUT REFERRED  
R
L
R
= 10kΩ  
L
4
110  
90  
R
L
= 600Ω  
100  
70  
20  
10  
0
V
= 3V  
CC  
0.5V STEP  
50  
V
= 5V  
CC  
1.0V STEP  
30  
10  
10  
10  
100  
1k  
10k  
100k  
1
10  
100  
1000  
-60  
-20  
20  
60  
100  
140  
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
TEMPERATURE (°C)  
TOTAL HARMONIC DISTORTION  
AND NOISE vs. FREQUENCY  
CURRENT-NOISE DENSITY  
vs. FREQUENCY  
-60  
-65  
100  
INPUT REFERRED  
A = +1  
V
V
= 1.5Vp-p  
IN  
-70  
-75  
-80  
-85  
-90  
10  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
6
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d , 1 0 MHz  
S in g le -S u p p ly Op Am p s  
3/MAX475  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 5V, V = 0V, T = +25°C, unless otherwise noted.)  
CC  
EE  
A
UNITY-GAIN FOLLOWER  
FREQUENCY RESPONSE  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
UNITY-GAIN FOLLOWER  
FREQUENCY RESPONSE  
180  
144  
108  
72  
80  
1
0
180  
144  
108  
72  
V
R
= 5V  
= 10k20pF  
CC  
V
R
L
= 3V  
CC  
= 10k20pF  
1
0
L
II  
II  
70  
GAIN  
60  
50  
40  
30  
GAIN  
-1  
-2  
36  
36  
V
= 3V ± 300mV  
CC  
0
-1  
-2  
0
PHASE  
PHASE  
-36  
-72  
-108  
-144  
-180  
-36  
-72  
-108  
-144  
-180  
-3  
-4  
V
= 5V ± 250mV  
CC  
-3  
20  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1000  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
GAIN AND PHASE vs. FREQUENCY  
= 3V  
GAIN AND PHASE vs. FREQUENCY  
V = 5V  
CC  
180  
144  
108  
72  
180  
144  
108  
72  
V
CC  
40  
40  
GAIN  
GAIN  
20  
0
20  
0
36  
36  
PHASE  
PHASE  
0
0
-36  
-72  
-108  
-144  
-180  
-36  
-72  
-108  
-144  
-180  
-20  
-40  
-20  
-40  
10k  
10k  
10k  
20pF  
10k  
20pF  
100  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
0.1Hz to 10Hz VOLTAGE NOISE  
POWER-UP TIME  
A
B
1k  
1k  
100k  
10pF  
500ns/div  
A : V , 5V/div  
B : V , 1V/div  
OUT  
CC  
1sec/div  
_______________________________________________________________________________________  
7
S in g le /Du a l/Qu a d , 1 0 MHz  
S in g le -S u p p ly Op Am p s  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 5V, V = 0V, T = +25°C, unless otherwise noted.)  
CC  
EE  
A
SMALL-SIGNAL TRANSIENT RESPONSE  
SMALL-SIGNAL TRANSIENT RESPONSE  
(V = 5V)  
CC  
(V = 3V)  
CC  
A
A
0.5V  
0.5V  
B
B
0.5V  
0.5V  
200ns/div  
200ns/div  
V
CC  
= 5V, A = +1, R = 10k, C = 220pF  
V
CC  
= 3V, A = +1, R = 10k, C = 100pF  
V
L
L
V
L
L
A : V , 50mV/div  
IN  
A : V , 50mV/div  
IN  
B : V , 50mV/div  
OUT  
B : V , 50mV/div  
OUT  
3/MAX475  
LARGE-SIGNAL TRANSIENT RESPONSE  
OVERDRIVING THE OUTPUT  
A
A
1.5V  
0.5V  
B
B
0.5V  
0V  
200ns/div  
200ns/div  
V
CC  
= 5V, A = +1, R = 10k, C = 220pF  
V
CC  
= 5V, V - = 2.0V, R = 10k, C = 33pF  
V
L
L
IN  
L
L
A : V , 1V/div  
IN  
A : V +, 1V/div  
IN  
B : V , 500mV/div  
OUT  
B : V , 1V/div  
OUT  
8
_______________________________________________________________________________________  
S in g le /Du a l/Qu a d , 1 0 MHz  
S in g le -S u p p ly Op Am p s  
3/MAX475  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
MAX473  
MAX474  
MAX475  
Offset Null Input. Connect to one end of 2kpotentiometer for offset voltage  
trimming. Connect wiper to V . See Figure 1.  
EE  
1, 8  
NULL  
2
1
2
1
2
OUTA  
IN-  
Amplifier A Output  
Inverting Input  
3
INA-  
IN+  
Amplifier A Inverting Input  
3
3
Noninverting Input  
4
INA+  
Amplifier A Noninverting Input  
Negative Power-Supply Pin. Connect to ground or a negative voltage.  
No Connect—not internally connected  
Amplifier B Noninverting Input  
Amplifier Output  
4
11  
5
V
EE  
5
5
N.C.  
INB+  
OUT  
INB-  
6
6
6
7
Amplifier B Inverting Input  
7
7
OUTB  
Amplifier B Output  
8
4
V
CC  
Positive Power-Supply Pin. Connect to (+) terminal of power supply.  
Amplifier C Output  
8
OUTC  
INC-  
9
Amplifier C Inverting Input  
10  
12  
13  
14  
INC+  
IND+  
IND-  
Amplifier C Noninverting Input  
Amplifier D Noninverting Input  
Amplifier D Inverting Input  
OUTD  
Amplifier D Output  
The MAX473/MAX474/MAX475 are bipolar op amps  
__________Ap p lic a t io n s In fo rm a t io n  
with low input bias currents. The bias currents at both  
inputs flow out of the device. Matching the resistance  
at the op amps inputs significantly reduces the offset  
error caused by the bias currents. Place a resistor (R3)  
from the noninverting input to ground when using the  
inverting configuration (Figure 2a); place R3 in series  
with the noninverting input when using the noninverting  
configuration (Figure 2b). Select R3 such that the paral-  
lel combination of R2 and R1 equals R3. Adding R3 will  
slightly increase the op amps voltage noise.  
P o w e r S u p p lie s  
The MAX473/MAX474/MAX475 operate from a single  
2.7V to 5.25V power supply, or from dual supplies of  
± 1.35V to ± 2.625V. For s ing le -s up p ly op e ra tion,  
bypass the power supply with 0.1µF. If operating from  
dual supplies, bypass each supply to ground. With  
0.1µF b yp a s s c a p a c ita nc e , c ha nne l s e p a ra tion  
(MAX474/MAX475) is typically better than 120dB with  
s ig na l fre q ue nc ie s up to 300kHz. Inc re a s ing the  
bypass capacitance (e.g. 10µF || 0.1µF) maintains  
channel separation at higher frequencies.  
Ou t p u t Lo a d in g a n d S t a b ilit y  
The MAX473/MAX474/MAX475 op amps are unity-gain  
stable. Any op amps stability depends on the configu-  
ration, closed-loop gain, and load capacitance. The  
unity-gain, noninverting buffer is the most sensitive gain  
configuration, and driving capacitive loads decreases  
stability.  
Min im izin g Offs e t s  
The MAX473s ma ximum offs e t volta g e is ± 2mV  
(T = +25°C). If additional offset adjustment is required,  
A
connect a 2ktrim potentiometer between pins 1, 8, and  
4 (Figure 1). Input offset voltage for the dual MAX474  
and quad MAX475 cannot be externally trimmed.  
_______________________________________________________________________________________  
9
S in g le /Du a l/Qu a d , 1 0 MHz  
S in g le -S u p p ly Op Am p s  
R2  
R1  
V
IN  
2k  
V
OUT  
1
8
NULL  
NULL  
R3  
MAX473  
R3 = R2 R1  
Figure 2a. Reducing Offset Error Due to Bias Current:  
Inverting Configuration  
4
V
EE  
Figure 1. Offset Null Circuit  
R3  
V
IN  
V
OUT  
The MAX473/MAX474/MAX475 have excellent phase  
margin (the difference between 180° and the unity-gain  
phase angle). It is typically 63° with a load of 10kin  
parallel with 20pF. Generally, higher phase margins  
indicate greater stability.  
3/MAX475  
R2  
R1  
Capacitive loads form an RC network with the op amps  
output resistance, causing additional phase shift that  
re d uc e s the p ha s e ma rg in. Fig ure 3 s hows the  
MAX473/MAX474/MAX475 output response when dri-  
ving a 390pF load in parallel with 10k.  
R3 = R2 R1  
Figure 2b. Reducing Offset Error Due to Bias Current:  
Noninverting Configuration  
When driving large capacitive loads, add an output iso-  
la tion re s is tor, a s s hown in Fig ure 4. This re s is tor  
imp rove s the p ha s e ma rg in b y is ola ting the loa d  
capacitance from the amplifier output. Figure 5 shows  
the MAX473/MAX474/MAX475 driving a capacitive load  
of 1000pF using the circuit of Figure 4.  
input frequencies above f , the pole introduces addi-  
o
tional phase shift, which reduces the overall bandwidth  
and adversely affects stability. Choose feedback resis-  
tors small enough so they do not adversely affect the  
op amps operation at the frequencies of interest.  
Fe e d b a c k Re s is t o rs  
The feedback resistors appear as a resistance network  
to the op amps feedback input (Figure 2). This resis-  
tance, combined with the op amps input and stray  
capacitance (total input capacitance), forms a pole that  
adds unwanted phase shift when either the total input  
capacitance or feedback resistance is too large. For  
example, using the noninverting configuration with a  
gain of 10, if the total capacitance at the negative input  
Ove rd rivin g t h e Ou t p u t s  
The output voltage swing for specified operation is from  
(V + 0.3V) to (V - 0.5V) (see Electrical Characteristics).  
Exercising the outputs beyond these limits drives the out-  
put transistors toward saturation, resulting in bandwidth  
degradation, response-time increase, and gain decrease  
(which affects linearity). Operation in this region causes a  
slight distortion in the output waveform, but does not  
adversely affect the op amp.  
EE  
CC  
is 10pF and the effective resistance (R1 R2) is 9k,  
||  
this RC network introduces a pole at f = 1.8MHz. At  
o
10 ______________________________________________________________________________________  
S in g le /Du a l/Qu a d , 1 0 MHz  
S in g le -S u p p ly Op Am p s  
3/MAX475  
Driving 390pF in parallel with 10k,  
= 5V, buffer configuration  
V
CC  
Figure 3. MAX474 Driving 390pF  
Figure 5. The MAX473 easily drives 1000pF using the  
Capacitive-Load Driving Circuit (Figure 4).  
100  
SMALL-SIGNAL  
GAIN BANDWIDTH  
10  
MAX473/MAX474/  
MAX475  
R
L
10Ω  
V
OUT  
1
FULL-POWER  
V
IN  
BANDWIDTH  
C
L
0.1  
0
1
2
3
4
OUTPUT VOLTAGE SWING (Vp-p)  
Figure 4. Capacitive-Load Driving Circuit  
Figure 6. Full-Power Bandwidth vs. Peak-to-Peak AC Voltage  
Fu ll-P o w e r Ba n d w id t h  
The MAX473/MAX474/MAX475s fast 15V/µs slew rate  
maximizes full-power bandwidth (FPBW). The FPBW is  
given by:  
La yo u t  
A good layout improves performance by decreasing  
the a mount of s tra y c a p a c ita nc e a t the a mp lifie rs  
inputs and output. Since stray capacitance might be  
unavoidable, minimize trace lengths and resistor leads,  
and place external components as close to the pins as  
possible.  
SR  
FPBW (Hz) = —————————————  
π [V  
peak-to-peak(max)]  
OUT  
where the slew rate (SR) is 15V/µs min. Figure 6 shows  
the full-power bandwidth as a function of the peak-to-  
peak AC output voltage.  
______________________________________________________________________________________ 11  
S in g le /Du a l/Qu a d , 1 0 MHz  
S in g le -S u p p ly Op Am p s  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
_________________Ch ip To p o g ra p h ie s  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX473  
MAX474CPA  
MAX474CSA  
MAX474CUA  
MAX474C/D  
MAX474EPA  
MAX474ESA  
MAX474MJA  
MAX475CPD  
MAX475CSD  
MAX475EPD  
MAX475ESD  
MAX475MJD  
0°C to +70°C  
0°C to +70°C  
8 µMAX  
NULL  
NULL  
IN-  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
8 Plastic DIP  
8 SO  
V
CC  
IN+  
0. 065"  
(1. 651mm)  
8 CERDIP  
14 Plastic DIP  
14 SO  
0°C to +70°C  
V
EE  
OUT  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
14 Plastic DIP  
14 SO  
14 CERDIP  
0. 052"  
(1. 321mm)  
*
Dice are specified at T = +25°C, DC parameters only.  
A
TRANSISTOR COUNT: 185  
SUBSTRATE CONNECTED TO V  
EE  
____P in Co n fig u ra t io n s (c o n t in u e d )  
MAX474  
3/MAX475  
V
CC  
TOP VIEW  
OUTA  
INA-  
OUTD  
IND-  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUTB  
INB-  
OUTA  
A
B
D
C
INA+  
IND+  
V
CC  
V
EE  
MAX475  
INA-  
0. 084"  
INB+  
INB-  
INC+  
INC-  
(2. 134mm)  
INA+  
INB+  
OUTB  
OUTC  
8
DIP/SO  
V
EE  
0. 058"  
(1. 473mm)  
TRANSISTOR COUNT: 355  
SUBSTRATE CONNECTED TO V  
EE  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1995 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX475ESD

Single/Dual/Quad, 10MHz Single-Supply Op Amps
MAXIM

MAX475ESD

QUAD OP-AMP, 3300uV OFFSET-MAX, 12MHz BAND WIDTH, PDSO14, 0.150 INCH, SO-14
ROCHESTER

MAX475MJD

Single/Dual/Quad, 10MHz Single-Supply Op Amps
MAXIM

MAX4760

High-Bandwidth, Quad DPDT Switches
MAXIM

MAX4760-MAX4761

High-Bandwidth, Quad DPDT Switches
MAXIM

MAX4760A

High-Bandwidth, Quad DPDT Switches
MAXIM

MAX4760AEBX+T

DPDT, 4 Func, 2 Channel, CMOS, PBGA36, 3 X 3 MM, UCSP-36
MAXIM

MAX4760AETX+T

High-Bandwidth, Quad DPDT Switches
MAXIM

MAX4760AEWX+T

High-Bandwidth, Quad DPDT Switches
MAXIM

MAX4760EBX+

Multiplexers/Switches, 4 Func, CMOS, PBGA36,
MAXIM

MAX4760EBX+T

High-Bandwidth, Quad DPDT Switches
MAXIM
MAXIM