MAX472ESA+ [MAXIM]

暂无描述;
MAX472ESA+
型号: MAX472ESA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

放大器
文件: 总12页 (文件大小:122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0335; Rev 2; 12/96  
P re c is io n , Hig h -S id e  
Cu rre n t -S e n s e Am p lifie rs  
1/MAX472  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Complete High-Side Current Sensing  
Precision Internal Sense Resistor (MAX471)  
2% Accuracy Over Temperature  
The MAX471/MAX472 are complete, bidirectional, high-  
side current-sense amplifiers for portable PCs, tele-  
p hone s , a nd othe r s ys te ms whe re b a tte ry/DC  
power-line monitoring is critical. High-side power-line  
monitoring is especially useful in battery-powered sys-  
tems, since it does not interfere with the ground paths  
of the b a tte ry c ha rg e rs or monitors ofte n found in  
smart” batteries.  
Monitors Both Charge and Discharge  
3A Sense Capability with Internal Sense Resistor  
(MAX471)  
The MAX471 has an internal 35mcurrent-sense resis-  
tor and measures battery currents up to ±3A. For appli-  
cations requiring higher current or increased flexibility,  
the MAX472 functions with external sense and gain-set-  
ting resistors. Both devices have a current output that  
can be converted to a ground-referred voltage with a  
single resistor, allowing a wide range of battery volt-  
ages and currents.  
Higher Current-Sense Capability with External  
Sense Resistor (MAX472)  
100µA Max Supply Current  
18µA Max Shutdown Mode  
3V to 36V Supply Operation  
8-Pin DIP/SO Packages  
An open-collector SIGN output indicates current-flow  
direction, so the user can monitor whether a battery is  
being charged or discharged. Both devices operate  
from 3V to 36V, draw less than 100µA over tempera-  
ture, and include a 18µA max shutdown mode.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX471CPA  
MAX471CSA  
MAX471EPA  
MAX471ESA  
MAX472CPA  
MAX472CSA  
MAX472EPA  
MAX472ESA  
________________________Ap p lic a t io n s  
Portable PCs:  
8 Plastic DIP  
8 SO  
Notebooks/Subnotebooks/Palmtops  
Smart Battery Packs  
8 Plastic DIP  
8 SO  
Cellular Phones  
8 Plastic DIP  
8 SO  
Portable Phones  
Portable Test/Measurement Systems  
Battery-Operated Systems  
Energy Management Systems  
__________Typ ic a l Op e ra t in g Circ u it  
_________________P in Co n fig u ra t io n s  
I
TO  
RS+  
RS+  
RS-  
RS-  
TOP VIEW  
LOAD  
LOAD or CHARGER  
LOGIC  
SUPPLY  
SHDN  
RS+  
1
2
3
4
8
7
6
5
OUT  
RS-  
100k  
2k  
3V  
TO  
36V  
MAX471  
MAX471  
DISCHARGE/CHARGE  
SIGN  
OUT  
RS+  
RS-  
V
OUT  
(1V/A)  
GND  
SIGN  
SHDN GND  
I
LOAD  
2000  
DIP/SO  
MAX472 Pin Configuration continued on last page.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
P re c is io n , Hig h -S id e  
Cu rre n t -S e n s e Am p lifie rs  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, RS+, RS-, V to GND....................-0.3V, +40V  
CC  
Continuous Power Dissipation (T = +70°C)  
A
RMS Current, RS+ to RS- (MAX471 only)..........................±3.3A  
Peak Current, (RS+ to RS-) ......................................see Figure 5  
Differential Input Voltage, RG1 to RG2 (MAX472 only) .....±0.3V  
Voltage at Any Pin Except SIGN  
MAX471 (Note 1):  
Plastic DIP (derate 17.5mW/°C above +70°C) ..................1.4W  
SO (derate 9.9mW/°C above +70°C).............................791mW  
MAX472 :  
MAX471 only ...........................................-0.3V to (RS+ - 0.3V)  
Plastic DIP (derate 9.09mW/°C above +70°C) ..............727mW  
SO (derate 5.88mW/°C above +70°C)...........................471mW  
Operating Temperature Ranges  
MAX472 only ..........................................-0.3V to (V + 0.3V)  
CC  
Voltage at SIGN......................................................-0.3V to +40V  
Current into SHDN, GND, OUT, RG1, RG2, V ................±50mA  
Current into SIGN.................................................+10mA, -50mA  
MAX47_C_A........................................................0°C to +70°C  
MAX47_E_A .....................................................-40°C to +85°C  
Junction Temperature Range ............................-60°C to +150°C  
Storage Temperature Range .............................-60°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
Note 1: Due to special packaging considerations, MAX471 (DIP, SO) has a higher power dissipation rating than the MAX472. RS+  
and RS- must be soldered to large copper traces to achieve this dissipation rating.  
1/MAX472  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX471  
(RS+ = +3V to +36V, T = T  
A
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
MAX  
MIN  
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
36  
UNITS  
V
V
RS+  
3
Supply Current  
Sense Current  
I
I
= 0A, excludes I  
SIGN  
50  
113  
±3  
µA  
RS+  
LOAD  
I
A
RMS  
LOAD  
Sense Resistor  
R
35  
70  
0.510  
0.5125  
2.5  
m  
SENSE  
MAX471C  
0.490  
0.4875  
0.500  
0.500  
I
/
I
= 1A,  
OUT  
LOAD  
Current-Sense Ratio  
No-Load OUT Error  
Low-Level OUT Error  
mA/A  
I
RS+ = 10V  
MAX471E  
MAX471C  
MAX471E  
MAX471C  
MAX471E  
= 1A  
LOAD  
I
= 0A,  
LOAD  
µA  
RS+ = 10V  
3.0  
±2.5  
±3.0  
0.1  
I
= 30mA,  
LOAD  
µA  
RS+ = 10V  
3V RS+ 36V, I  
MAX471C  
Power-Supply Rejection Ratio  
PSRR  
%/V  
LOAD  
±4.0  
1.5  
±6.0  
±7.0  
1.0  
SIGN Threshold (I  
to switch SIGN)  
required  
LOAD  
mA  
MAX471E  
SIGN Output Leakage Current  
SIGN Sink Current  
V
36V  
µA  
mA  
µA  
V
SIGN =  
I
OL  
V
= 0.3V  
0.1  
2.4  
SIGN  
Shutdown Supply Current  
SHDN Input Low Voltage  
SHDN Input Low Current  
SHDN Input High Voltage  
SHDN Input High Current  
OUT Output Voltage Range  
OUT Output Resistance  
I
V
= 2.4V; V = 3V to 20V  
CC  
18.0  
0.3  
RS+(SHDN)  
SHDN  
V
IL  
I
IL  
V
= 0V  
1.0  
µA  
V
SHDN  
V
IH  
I
IH  
V
= 2.4V  
1.0  
µA  
V
SHDN  
V
0
1
V
- 1.5  
OUT  
OUT  
RS+  
R
I
= 3.0A, V  
= 0V to (V - 1.5V)  
RS+  
3
4
MΩ  
LOAD  
OUT  
I
= 50mA to 3.0A, R  
= 2k,  
LOAD  
OUT  
OUT Rise, Fall Time  
t , t  
µs  
µs  
R
F
C
= 50pF, 10% to 90%  
OUT  
OUT Settling Time to 1%  
of Final Value  
I
= 100mA to 3.0A, R = 2k,  
OUT  
LOAD  
t
s
15  
C
= 50pF  
OUT  
2
_______________________________________________________________________________________  
P re c is io n , Hig h -S id e  
Cu rre n t -S e n s e Am p lifie rs  
1/MAX472  
ELECTRICAL CHARACTERISTICS—MAX472  
(V = +3V to +36V, RG1 = RG2 = 200, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
CC  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
36  
UNITS  
V
Supply Voltage  
Supply Current  
V
CC  
3
I
CC  
I
= 0A, excludes I ; V = 3V to 20V  
SIGN CC  
20  
48  
µA  
LOAD  
MAX472C  
MAX472E  
120  
140  
35  
Input Offset Voltage  
(Note 2)  
V
µV  
OS  
Input Bias Current  
I
, I  
20  
µA  
µA  
RG1 RG2  
Input Bias-Current Matching  
I
OS  
I
- I  
±0.4  
±3.0  
±2  
RG1 GR2  
MAX472C  
MAX472E  
MAX472C  
MAX472E  
MAX472C  
MAX472E  
= 100mV  
MAX472C  
MAX472E  
V
SENSE  
= 100mV,  
OUT Current Accuracy  
No-Load OUT Error  
I
/I  
%
RG OUT  
V
CC  
= 10V (Note 3)  
±2.5  
2.5  
V
CC  
= 10V,  
µA  
V
SENSE  
= 0V  
3
±2.5  
±3.0  
0.1  
V
CC  
= 10V,  
Low-Level OUT Error  
µA  
%/V  
µV  
V
SENSE  
= 3mV  
Power-Supply Rejection Ratio  
PSRR  
3V V 36V, V  
CC SENSE  
60  
60  
120  
140  
1.0  
SIGN Threshold (V  
SENSE  
V
CC  
= 10V  
required to switch SIGN)  
SIGN Output Leakage Current  
SIGN Output Sink Current  
Shutdown Supply Current  
SHDN Input Low Voltage  
SHDN Input Low Current  
SHDN Input High Voltage  
SHDN Input High Current  
OUT Output Voltage Range  
OUT Output Resistance  
V
SIGN  
= 36V  
µA  
mA  
µA  
V
V
SIGN  
= 0.3V  
0.1  
2.4  
I
V
SHDN  
= 2.4V; V = 3V to 20V  
CC  
1.5  
18.0  
0.3  
CC(SHDN)  
V
IL  
I
IL  
V
SHDN  
= 0V  
1.0  
µA  
V
V
IH  
I
IH  
V
SHDN  
= 2.4V  
1.0  
µA  
V
V
0
1
V
CC  
- 1.5  
OUT  
OUT  
R
I
= 1.5mA  
3
4
MΩ  
OUT  
V
C
= 5mV to 150mV, R  
= 50pF, 10% to 90%  
= 2k,  
= 2k,  
SENSE  
OUT  
OUT Rise, Fall Time  
t , t  
R
µs  
F
OUT  
OUT Settling Time to 1%  
of Final Value  
V
SENSE  
= 5mV to 150mV, R  
OUT  
t
15  
µs  
s
C
= 50pF  
OUT  
Maximum Output Current  
I
1.5  
mA  
OUT  
Note 2: V is defined as the input voltage (V  
) required to give minimum I  
.
OS  
SENSE  
OUT  
Note 3: V  
is the voltage across the sense resistor.  
SENSE  
_______________________________________________________________________________________  
3
P re c is io n , Hig h -S id e  
Cu rre n t -S e n s e Am p lifie rs  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Typical Operating Circuit (MAX471) or circuit of Figure 4, RG1 = RG2 = 200, R  
= 2k(MAX472), T = +25°C, unless  
OUT  
A
otherwise noted.)  
SUPPLY CURRENT vs.  
SUPPLY VOLTAGE  
SHUTDOWN CURRENT vs.  
SUPPLY VOLTAGE  
SIGN THRESHOLD vs.  
SUPPLY VOLTAGE  
65  
60  
2.5  
4
T
= -40°C  
A
T
= +85°C  
A
T
= -40°C  
A
3
2
2.0  
1.5  
1.0  
0.5  
0
55  
50  
45  
40  
35  
T
= +25°C  
A
T
A
= +25°C  
= +85°C  
1
T
A
= +25°C  
= +85°C  
0
T
A
T
= -40°C  
A
T
A
-1  
-2  
1/MAX472  
3
6
9
12 15 18 21 24 27 30 33 36  
(V)  
3
6
9
12 15 18 21 24 27 30 33 36  
(V)  
3
6
9
12 15 18 21 24 27 30 33 36  
(V)  
V
V
RS+  
V
RS+  
RS+  
MAX471  
MAX471  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
MAX471  
ERROR vs. LOAD CURRENT  
NO-LOAD OFFSET CURRENT vs.  
SUPPLY VOLTAGE  
40  
2.4  
15  
12  
9
I
= 1A  
VS+ = VS-  
LOAD  
2.2  
2.0  
1.8  
35  
30  
25  
20  
15  
10  
5
I
FROM RS- TO RS+  
LOAD  
T
= -40°C  
A
RS+  
RS–  
V = 0V TO 0.5V  
V = 0V TO 1V  
OUT  
6
GND  
A
5V  
1µF  
3
1.6  
1.4  
1.2  
1.0  
V
5Ω  
T
= +85°C  
0
A
-3  
-6  
-9  
T
= +25°C  
A
V = 0mV TO 50mV  
I
FROM RS+ TO RS-  
1
LOAD  
0.8  
0.6  
-12  
-15  
0
0.01  
0.10  
10  
0.01  
0.10  
1
10  
100  
1000  
3
6
9
12 15 18 21 24 27 30 33 36  
(V)  
I
(A)  
POWER-SUPPLY FREQUENCY (kHz)  
V
RS+  
LOAD  
MAX471  
MAX472  
MAX472  
ERROR vs. SUPPLY VOLTAGE  
RS+ TO RS- RESISTANCE vs.  
TEMPERATURE  
NO-LOAD OUTPUT ERROR vs.  
SUPPLY VOLTAGE  
40  
38  
3.0  
2.5  
1.10  
1.00  
0.90  
0.80  
0.70  
V
-V  
= 60mV,  
RG1 RG2  
RG1 = RG2 = 0  
RG1 = RG2 = 200Ω  
T
= +85°C  
A
T
A
= +85°C  
36  
34  
2.0  
1.5  
1.0  
0.5  
0
T
A
= +25°C  
T
= +25°C  
A
32  
30  
T
A
= -40°C  
T
= -40°C  
A
28  
3
6
9
12 15 18 21 24 27 30 33 36  
(V)  
-40 -20  
0
20  
40  
60  
80  
3
6
9
12 15 18 21 24 27 30 33 36  
(V)  
V
CC  
TEMPERATURE (°C)  
V
CC  
4
_______________________________________________________________________________________  
P re c is io n , Hig h -S id e  
Cu rre n t -S e n s e Am p lifie rs  
1/MAX472  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Typical Operating Circuit (MAX471) or circuit of Figure 4, RG1 = RG2 = 200, R  
= 2k(MAX472), T = +25°C, unless  
OUT  
A
otherwise noted.)  
MAX472  
ERROR vs. SENSE VOLTAGE  
25  
MAX471  
NOISE vs. LOAD CURRENT  
0.5  
0.4  
15  
V
-V  
RG1 RG2  
0.3  
5
0
0.2  
0.1  
-5  
V
-V  
RG2 RG1  
-15  
-25  
0
1A  
10mA  
0.1  
1
10  
100  
1000  
1mA  
100mA  
SENSE  
I
V
(mV)  
SENSE  
MAX471  
MAX471  
-100mA to +100mA TRANSIENT RESPONSE  
0mA to 100mA TRANSIENT RESPONSE  
LOAD  
CURRENT  
100mA/div  
0A  
LOAD  
CURRENT  
50mA/div  
0A  
V
OUT  
50mV/div  
V
OUT  
50mV/div  
SIGN  
50mV/div  
100µs/div  
100µs/div  
V
CC  
= 10V, R = 2k1%, SIGN PULL-UP = 50k1%  
OUT  
V
CC  
= 10V, R = 2k1%, SIGN PULL-UP = 50k1%  
OUT  
MAX471  
MAX471  
START-UP DELAY  
0A TO 3A TRANSIENT RESPONSE  
I
LOAD  
1A/div  
V
OUT  
500mV/div  
V
OUT  
V
SHDN  
10mV/div  
5V/div  
10µs/div  
10µs/div  
I
= 1A, R = 2k1%  
R
OUT  
= 2k1%  
LOAD  
OUT  
_______________________________________________________________________________________  
5
P re c is io n , Hig h -S id e  
Cu rre n t -S e n s e Am p lifie rs  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
MAX471  
MAX472  
Shutdown. Connect to ground for normal operation. When high, supply current is  
less than 5µA.  
1
1
SHDN  
RS+  
Battery (or power) side of the internal current-sense resistor. The “+indicates direction of  
flow for SIGN output only. Connect pins 2 and 3 together at the package.  
2, 3  
4
2
3
4
N.C.  
RG1  
GND  
No Connect—no internal connection  
Gain Resistor. Connect to battery side of current-sense resistor through the gain resistor.  
Ground or Battery Negative Terminal  
An open-collector logic output. For the MAX471, a low level indicates current is flowing from  
5
5
SIGN  
RS- to RS+. For the MAX472, a low level indicates a negative V  
(see Figure 2). SIGN is  
SENSE  
1/MAX472  
high impedance when SHDN is high. Leave open if SIGN is not needed.  
Load side of the internal current-sense resistor. The “-” indicates direction of flow for SIGN  
output only. Connect pins 6 and 7 together at the package.  
6, 7  
RS-  
6
7
RG2  
Gain Resistor. Connect to load side of current-sense resistor through the gain resistor.  
V
CC  
Power input for MAX472. Connect to sense resistor (R ) junction with RG1.  
SENSE  
Current output that is proportional to the magnitude of the sensed current flowing through  
R . A 2kresistor from this pin to ground will result in a voltage equal to 1V/Amp of  
SENSE  
8
8
OUT  
sensed current in the MAX471.  
I
= (I  
x R  
) / RG1  
SENSE  
OUT  
LOAD  
_______________De t a ile d De s c rip t io n  
The MAX471 and MAX472 current-sense amplifiers  
unique topology allows a simple design to accurately  
monitor current flow. The MAX471/MAX472 contain two  
amplifiers operating as shown in Figures 1 and 2. The  
battery/load current flows from RS+ to RS- (or vice  
Cu rre n t Ou t p u t  
The output voltage equation for the MAX471/MAX472 is  
given below. In the MAX471, the current-gain ratio has  
b e e n p re s e t to 500µA/A s o tha t a n outp ut re s is tor  
) of 2kyields 1V/A for a full-scale value of +3V  
at ±3A. Other full-scale voltages can be set with differ-  
ent R values, but the output voltage can be no  
(R  
OUT  
versa) through R  
. Current flows through either  
SENSE  
RG1 and Q1 or RG2 and Q2, depending on the sense-  
resistor current direction. Internal circuitry, not shown in  
Figures 1 and 2, prevents Q1 and Q2 from turning on at  
the s a me time . The MAX472 is id e ntic a l to the  
OUT  
greater than V  
for the MAX472.  
- 1.5V for the MAX471 or V  
- 1.5V  
RG_  
RS+  
V
= (R  
x R  
x I  
) / RG  
OUT  
SENSE  
OUT LOAD  
MAX471, except that R  
and gain-setting resistors  
SENSE  
where V  
= the desired full-scale output voltage,  
OUT  
RG1 and RG2 are external (Figure 2).  
I
= the full-scale current being sensed, R  
=
LOAD  
SENSE  
To analyze the circuit of Figure 1, assume that current  
flows from RS+ to RS- and that OUT is connected to  
GND through a resistor. In this case, amplifier A1 is  
the current-sense resistor, R  
= the voltage-setting  
resistor, and RG = the gain-setting resistor (RG = RG1  
= RG2).  
OUT  
active and output current I  
flows from the emitter of  
OUT  
The above equation can be modified to determine the  
Q1. Since no current flows through RG2 (Q2 is off), the  
negative input of A1 is equal to V - (I  
R
required for a particular full-scale range:  
OUT  
x
LOAD  
SOURCE  
R
). The open-loop gain of A1 forces its positive  
SENSE  
R
= (V  
x RG) / (I  
x R  
)
SENSE  
OUT  
OUT  
LOAD  
input to essentially the same level as the negative input.  
The re fore , the d rop a c ros s RG1 e q ua ls I  
R
For the MAX471, this reduces to:  
= V / (I  
x
LOAD  
R
x 500µA/A)  
LOAD  
OUT  
OUT  
. Then, since I  
flows through Q1 and RG  
SENSE  
OUT  
(ignoring the extremely low base currents), I  
x RG1  
OUT  
OUT is a high-impedance current-source output that  
can be connected to other MAX471/MAX472 OUT pins  
= I  
x R  
, or:  
SENSE  
LOAD  
6
_______________________________________________________________________________________  
P re c is io n , Hig h -S id e  
Cu rre n t -S e n s e Am p lifie rs  
1/MAX472  
R
SENSE  
6, 7  
2, 3  
RS+  
RS-  
RG1  
RG2  
A1  
A2  
Q1  
Q2  
8
5
OUT  
SIGN  
COMP  
MAX471  
Figure 1. MAX471 Functional Diagram  
R
SENSE  
POWER SOURCE  
OR  
TO LOAD/CHARGER  
V
SENSE  
BATTERY  
RG1  
RG2  
3
6
A1  
A2  
7
V
CC  
Q1  
Q2  
8
5
OUT  
COMP  
SIGN  
MAX472  
Figure 2. MAX472 Functional Diagram  
_______________________________________________________________________________________  
7
P re c is io n , Hig h -S id e  
Cu rre n t -S e n s e Am p lifie rs  
R
SENSE  
RS+  
RS+  
RS-  
RS-  
TO LOAD/CHARGER  
POWER  
SOURCE  
OR  
3V  
TO  
36V  
MAX471  
GND  
SIGN  
OUT  
LOGIC  
SUPPLY  
RG2  
RG1  
BATTERY  
LOGIC  
SUPPLY  
TO LOAD/  
CHARGER  
100k  
3V  
TO  
36V  
100k  
MAX472  
OUT  
1
8
7
6
5
SHDN  
N.C.  
RS+  
RS+  
RS-  
RS-  
V
CC  
2
3
4
R
OUT  
RG2  
RG1  
MAX471  
GND  
SIGN  
OUT  
SIGN  
GND  
1/MAX472  
V
OUT  
1k  
Figure 3. Paralleling MAX471s to Sense Higher Load Current  
Figure 4. MAX472 Standard Application Circuit  
for c urre nt s umming . A s ing le s c a ling re s is tor is  
required when summing OUT currents from multiple  
devices (Figure 3). Current can be integrated by con-  
necting OUT to a capacitive load.  
S h u t d o w n  
When SHDN is high, the MAX471/MAX472 are shut  
down and consume less than 18µA. In shutdown mode,  
SIGN is high impedance and OUT turns off.  
S IGN Ou t p u t  
The current at OUT indicates magnitude. The SIGN out-  
put indicates the currents direction. Operation of the  
SIGN comparator is straightforward. When Q1 (Figures  
1 and 2) conducts, the output of A1 is high while A2s  
output is zero. Under this condition, a high SIGN output  
indicates positive current flow (from RS+ to RS-). In bat-  
tery-operated systems, this is useful for determining  
whether the battery is charging or discharging. The  
SIGN output may not correctly indicate if the load cur-  
__________Ap p lic a t io n s In fo rm a t io n  
MAX4 7 1  
The MAX471 obtains its power from the RS- pin. This  
includes MAX471 current consumption in the total sys-  
tem current measured by the MAX471. The small drop  
across R  
mance.  
does not affect the MAX471s perfor-  
SENSE  
Resistor Selection  
Since OUT delivers a current, an external voltage gain-  
rent is such that I  
is less than 3.5µA. The MAX471s  
OUT  
setting resistor (R to ground) is required at the OUT  
OUT  
SIGN output accurately indicates the direction of cur-  
rent flow for load currents greater than 7mA.  
pin in order to get a voltage. R  
is internal to the  
SENSE  
MAX471. RG1 and RG2 are factory trimmed for an out-  
put current ratio (output current to load current) of  
500µA/A. Since they are manufactured of the same  
material and in very close proximity on the chip, they  
provide a high degree of temperature stability. Choose  
SIGN is an open-collector output (sinks current only),  
allowing easy interface with logic circuits powered from  
any voltage. Connect a 100kpull-up resistor from  
SIGN to the logic supply. The convention chosen for  
the polarity of the SIGN output ensures that it draws no  
current when the battery is being discharged. If current  
direction is not needed, float the SIGN pin.  
R
for the desired full-scale output voltage up to RS-  
OUT  
- 1.5V (see the Current Output section).  
8
_______________________________________________________________________________________  
P re c is io n , Hig h -S id e  
Cu rre n t -S e n s e Am p lifie rs  
1/MAX472  
Peak Sense Current  
The MAX471s maximum sense current is 3ARMS. For  
power-up, fault conditions, or other infrequent events,  
larger peak currents are allowed, provided they are  
short—that is, within a safe operating region, as shown  
in Figure 5.  
Table 1 shows suggested component values and indi-  
cates the resulting scale factors for various applications  
required to sense currents from 100mA to 10A.  
Higher or lower sense-current circuits can also be built.  
Select components and calculate circuit errors using  
the guidelines and formulas in the following section.  
50  
R
SENSE  
Small  
Outline  
fuse  
DIP  
45  
Choose R  
based on the following criteria:  
SENSE  
fuse  
time  
T = +25°C  
A
40  
35  
30  
25  
20  
15  
10  
5
a) Voltage Loss: A high R  
value will cause the  
power-source voltage to degrade through IR loss.  
SENSE  
time  
For least voltage loss, use the lowest R value.  
SENSE  
b) Accuracy: A hig h R  
va lue a llows lowe r  
SENSE  
currents to be measured more accurately. This is  
because offsets become less significant when the  
sense voltage is larger.  
c) Efficiency and Power Dissipation: At high current  
levels, the I2R losses in R  
may be significant.  
SENSE  
0
Ta ke this into c ons id e ra tion whe n c hoos ing the  
resistor value and power dissipation (wattage) rat-  
ing. Also, if the sense resistor is allowed to heat up  
excessively, its value may drift.  
10µ  
100µ  
PULSE WIDTH (sec)  
DIP safe  
Small Outline safe  
1m  
10m  
operating region  
operating region  
d) Inductance: If there is a large high-frequency com-  
Figure 5. MAX471 Pulse Current Safe Operation for 10,000  
Pulses and Fuse Time for Continuous Current. Pulse tests done  
with 250mW average power dissipation.  
ponent to I , you will want to keep inductance  
SENSE  
low. Wire-wound resistors have the highest induc-  
tance, while metal film is somewhat better. Low-  
inductance metal-film resistors are available. Instead  
of being spiral wrapped around a core, as in metal-  
film or wire-wound resistors, these are a straight  
band of metal. They are made in values under 1.  
MAX4 7 2  
R
, RG1, and RG2 are externally connected on  
SENSE  
the MAX472. V  
c a n b e c onne c te d to e ithe r the  
CC  
load/charge or power-source/battery side of the sense  
re s is tor. Conne c t V to the loa d /c ha rg e s id e of  
e) Cost: If the cost of R  
becomes an issue, you  
SENSE  
CC  
may want to use an alternative solution, as shown in  
Figure 6. This solution uses the PC board traces to  
create a sense resistor. Because of the inaccuracies  
of the copper resistor,” you will need to adjust the  
full-scale current value with a potentiometer. Also,  
the resistance temperature coefficient of copper is  
fairly high (approximately 0.4%/°C), so systems that  
experience a wide temperature variance should take  
this into account.  
R
if you want to include the MAX472 current drain  
SENSE  
in the measured current.  
Suggested Component Values  
for Various Applications  
The general circuit of Figure 4 is useful in a wide variety  
of applications. It can be used for high-current applica-  
tions (greater than 3A), and also for those where the full-  
scale load current is less than the 3A of the MAX471.  
Table 1. Suggested Component Values for the MAX472  
CURRENT-  
SENSE  
RESISTOR,  
SCALE  
FACTOR,  
FULL-SCALE  
LOAD  
CURRENT,  
GAIN-SETTING  
RESISTORS,  
RG1 = RG2  
()  
OUTPUT  
RESISTOR,  
FULL-SCALE  
OUTPUT  
VOLTAGE,  
TYPICAL ERROR AT X%  
OF FULL LOAD (%)  
V
/I  
OUT SENSE  
R
OUT  
R
(V/A)  
SENSE  
I
(A)  
(k)  
V
OUT  
(V)  
SENSE  
1%  
14  
14  
13  
12  
10%  
2.5  
100%  
0.9  
(m)  
500  
50  
0.1  
1
200  
200  
100  
50  
10  
10  
5
2.5  
2.5  
2.5  
2
25  
2.5  
0.5  
0.2  
2.5  
0.9  
5
10  
2.0  
1.1  
10  
5
2
2.0  
1.6  
_______________________________________________________________________________________  
9
P re c is io n , Hig h -S id e  
Cu rre n t -S e n s e Am p lifie rs  
In Figure 6, assume the load current to be measured is  
10A and that you have determined a 0.3 inch wide, 2  
ounce copper to be appropriate. The resistivity of 0.1  
inch wide, 2 ounce copper is 30m/ft (see Note 4). For  
TO LOAD/CHARGER  
0.3" COPPER  
R
SENSE  
0.3" COPPER  
3V  
0.1" COPPER  
10A you may want R  
= 5mfor a 50mV drop at  
SENSE  
full scale. This resistor will require about 2 inches of 0.1  
inch wide copper trace.  
POWER  
SOURCE  
OR  
RG1  
RG2  
TO  
36V  
BATTERY  
RG1 and RG2  
Once R  
is chosen, RG1 and RG2 can be chosen  
SENSE  
to define the current-gain ratio (R  
/RG). Choose  
SENSE  
RG = RG1 = RG2 based on the following criteria:  
MAX472  
a) 1Input Resistance. The minimum RG value is lim-  
ited by the 1input resistance, and also by the out-  
put current limitation (see below). As RG is reduced,  
the input resistance becomes a larger portion of the  
total gain-setting resistance. With RG = 50, the  
input resistance produces a 2% difference between  
the expected and actual current-gain ratio. This is a  
gain error that does not affect linearity and can be  
OUT  
1
2
3
4
8
7
6
5
SHDN  
N.C.  
V
CC  
1.5k  
1k  
RG2  
RG1  
1/MAX472  
SIGN  
GND  
removed by adjusting RG or R  
.
OUT  
Figure 6. MAX472 Connections Showing Use of PC Board  
Trace  
b) Efficiency. As RG is reduced, I  
gets larger for a  
OUT  
given load current. Power dissipated in R  
is not  
OUT  
going to the load, and therefore reduces overall effi-  
ciency. This is significant only when the sense cur-  
rent is small.  
make sure RG is small enough that I and I  
not add any appreciable errors. The full-scale error  
is given by:  
do  
B
OS  
c) Maximum Output Current Limitation. I  
is limit-  
OUT  
(RG1 - RG2) x I + I x RG  
B
OS  
x R  
SENSE  
% Error =  
x 100  
ed to 1.5mA, requiring RG V  
/ 1.5mA. For  
SENSE  
I
FS  
V
SENSE  
= 60mV, RG must be 40.  
where RG1 and RG2 are the gain resistors, I is the  
B
d) Headroom. The MAX472 requires a minimum of  
bias current, I is the bias-current mismatch, I is the  
OS  
FS  
1.5V between the lower of the voltage at RG1 or  
full-scale current, and R  
is the sense resistor.  
SENSE  
RG2 (V  
) and V . As RG becomes larger, the  
OUT  
RG_  
voltage drop across RG also becomes larger for a  
given I . This voltage drop further limits the maxi-  
Assuming a 5A load current, 10mR  
, and 100Ω  
SENSE  
RG, the current-gain ratio is 100µA/A, yielding a full-  
scale I of 500µA. Using the maximum values for I  
OUT  
mum full-scale V . Assuming the drop across  
OUT  
OUT  
B
R
is small and V is connected to either side  
(20µA) and I  
(2µA), and 1% resistors for RG1 and  
SENSE  
CC  
OS  
of R  
, V  
(max) = V - (1.5V + I  
(max) x  
RG2 (RG1 - RG2 = 2), the worst-case error at full  
SENSE OUT  
CC  
OUT  
RG).  
e) Output Offset Error at Low Load Currents. Large  
RG values reduce I for a given load current. As  
scale calculates to:  
2x 20µA + 100x 2µA  
= 0.48%  
OUT  
5mx 5A  
I
gets smaller, the 2.5µA max output offset-error  
OUT  
The error may be reduced by: a) better matching of  
RG1 and RG2, b) increasing R  
RG.  
current becomes a larger part of the overall output  
current. Keeping the gain high by choosing a low  
value for RG minimizes this offset error.  
, or c) decreasing  
SENSE  
f) Input Bias Current and Input Bias Current  
Mismatching. The size of RG also affects the errors  
introduced by the input bias and input bias mis -  
matching currents. After selecting the ratio, check to  
Current-Sense Adjustment  
(Resistor Range, Output Adjust)  
Choose R  
Choos e R  
after selecting R  
, RG1, and RG2.  
OUT  
OUT  
SENSE  
to ob ta in the full-s c a le volta g e you  
Note 4: Printed Circuit Design, by Gerald L. Ginsberg; McGraw-Hill, Inc.; page 185.  
10 ______________________________________________________________________________________  
P re c is io n , Hig h -S id e  
Cu rre n t -S e n s e Am p lifie rs  
1/MAX472  
re q uire , g ive n the full-s c a le I  
d e te rmine d b y  
The MAX471/MAX472 require no special bypassing,  
and respond quickly to transient changes in line cur-  
rent. If the noise at OUT caused by these transients is a  
problem, you may want to place a 1µF capacitor at the  
OUT pin to ground. You can also place a large capaci-  
OUT  
R
, RG1, and RG2. The high compliance of OUT  
SENSE  
permits using R  
values up to 10kwith minimal  
OUT  
error. Values above 10kare not usually recommend-  
ed. The impedance of OUT’s load (e.g., the input of an  
op amp or ADC) must be much greater than R  
tor at the RS- terminal (or load” side of the MAX472) to  
decouple the load and, thereby, reduce the current  
tra ns ie nts . The s e c a p a c itors a re not re q uire d for  
MAX471/MAX472 operation or stability, and their use  
will not degrade performance.  
OUT  
(e.g., 100 x R  
) to avoid degrading the measure-  
OUT  
ment accuracy.  
High-Current Measurement  
The MAX472 can achieve higher current measurements  
than the MAX471 can. Low-value sense resistors may  
be paralleled to obtain even lower values, or the PC  
board trace may be adjusted for any value.  
For the MAX472, the RG1 and RG2 inputs can be fil-  
tered by placing a capacitor (e.g., 1µF) between them  
to average the sensed current.  
An alternative method is to connect several MAX471s in  
p a ra lle l a nd c onne c t the hig h-imp e d a nc e c urre nt-  
source OUT pins together to indicate the total system  
current (Figure 3). Pay attention to layout to ensure  
equal IR drops in the paralleled connection. This is  
necessary to achieve equal current sharing.  
MAX4 7 1 La yo u t  
The MAX471 must be soldered in place, since sockets  
can cause uneven current sharing between the RS+  
pins (pins 2 and 3) and the RS- pins (pins 6 and 7),  
resulting in typical errors of 0.5%.  
In order to dissipate sense-resistor heat from large  
sense currents, solder the RS+ pins and the RS- pins to  
large copper traces. Keep the part away from other  
heat-generating devices. This procedure will ensure  
continuous power dissipation rating.  
P o w e r-S u p p ly Byp a s s in g a n d Gro u n d in g  
The MAX471 has been designed as a high side” (posi-  
tive te rmina l) c urre nt monitor to e a s e the ta s k of  
grounding any battery charger, thermistor, etc. that  
ma y b e a p a rt of the b a tte ry p a c k. Ground ing the  
MAX471 requires no special precautions; follow the  
same cautionary steps that apply to the system as a  
whole. High-current systems can experience large volt-  
age drops across a ground plane, and this drop may  
add to or subtract from V . For highest current-mea-  
OUT  
surement accuracy, use a single-point starground.  
______________________________________________________________________________________ 11  
P re c is io n , Hig h -S id e  
Cu rre n t -S e n s e Am p lifie rs  
____P in Co n fig u ra t io n s (c o n t in u e d )  
SHDN  
N.C.  
1
2
3
4
8
7
6
5
OUT  
V
CC  
MAX472  
RG1  
RG2  
GND  
SIGN  
DIP/SO  
1/MAX472  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX473

Single/Dual/Quad, 10MHz Single-Supply Op Amps
MAXIM

MAX473-MAX475

Single/Dual/Quad, 10MHz Single-Supply Op Amps
MAXIM

MAX4730

Low-Voltage 3.5ohm, SPDT, CMOS Analog Switches
MAXIM

MAX4730ELT+T

SPDT, 1 Func, 1 Channel, CMOS, 1.5 X 1.0 MM, 0.80 MM HEIGHT, UDFN-6
MAXIM

MAX4730ELT-T

Low-Voltage 3.5ohm, SPDT, CMOS Analog Switches
MAXIM

MAX4730EXT+T

暂无描述
MAXIM

MAX4730EXT-T

Low-Voltage 3.5ohm, SPDT, CMOS Analog Switches
MAXIM

MAX4731

50 зDual SPST Analog Switches in UCSP
MAXIM

MAX4731EBL

50ヘ, Dual SPST Analog Switches in UCSP
MAXIM

MAX4731EBL+

SPST, 2 Func, 1 Channel, CMOS, 1.52 X 1.52 MM, UCSP-9
MAXIM

MAX4731EBL+T

SPST, 2 Func, 1 Channel, CMOS, 1.52 X 1.52 MM, UCSP-9
MAXIM

MAX4731EBL-T

Analog Switch
MAXIM