MAX4581EEE [MAXIM]

Low-Voltage, CMOS Analog Multiplexers/Switches; 低电压, CMOS模拟多路复用器/开关
MAX4581EEE
型号: MAX4581EEE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Voltage, CMOS Analog Multiplexers/Switches
低电压, CMOS模拟多路复用器/开关

复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总16页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1328; Rev 1; 10/99  
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
12/MAX4583  
________________General Description  
____________________________Features  
Pin Compatible with Industry-Standard  
74HC4051/74HC4052/74HC4053 and  
MAX4051/MAX4052/MAX4053  
The MAX4581/MAX4582/MAX4583 are low-voltage,  
CMOS analog ICs configured as an 8-channel multiplexer  
(MAX4581), two 4-channel multiplexers (MAX4582), and  
three single-pole/double-throw (SPDT) switches  
(MAX4583).  
Offered in Automotive Temperature Range  
(-40°C to +125°C)  
These CMOS devices can operate continuously with  
2ꢀ to ꢁꢀ dual power supplies or a ꢂ2ꢀ to ꢂ12ꢀ sin-  
Guaranteed On-Resistance:  
80with ±5V Supplies  
®
gle supply. Each switch can handle Rail-to-Rail ana-  
150with Single +5V Supply  
log signals. The off-leakage current is only 1nA at  
ꢂ25°C or 5nA at ꢂ85°C.  
Guaranteed On-Resistance Match Between  
Channels  
All digital inputs have 0.8ꢀ to 2.4ꢀ logic thresholds,  
ensuring TTL/CMOS-logic compatibility when using a  
single ꢂ5ꢀ or dual 5ꢀ supplies.  
Guaranteed Low Off-Leakage Current:  
1nA at +25°C  
Guaranteed Low On-Leakage Current:  
1nA at +25°C  
________________________Applications  
Battery-Operated Equipment  
+2V to +12V Single-Supply Operation  
±2V to ±6V Dual-Supply Operation  
Audio and ꢀideo Signal Routing  
Low-ꢀoltage Data-Acquisition Systems  
Communications Circuits  
TTL/CMOS-Logic Compatible  
Low Distortion: < 0.02% (600)  
Low Crosstalk: < -96dB (50, MAX4582)  
High Off-Isolation: < -74dB (50)  
Automotive  
_______________Ordering Information  
PART  
TEMP. RANGE  
0°C to ꢂ70°C  
0°C to ꢂ70°C  
0°C to ꢂ70°C  
PIN-PACKAGE  
1ꢁ Plastic DIP  
1ꢁ Narrow SO  
1ꢁ TSSOP  
MAX4581CPE  
MAX4581CSE  
MAX4581CUE  
Ordering Information continued at end of data sheet.  
____________________________________Pin Configurations/Functional Diagrams  
TOP VIEW  
MAX4582  
MAX4583  
MAX4581  
Y0  
Y2  
Y1  
Y0  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
X4  
X6  
V
V
Y
X
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
16  
15  
14  
13  
12  
11  
10  
9
V
16  
15  
14  
CC  
CC  
CC  
X2  
X1  
X
X2  
X1  
Y
Z1  
X
Y3  
Z
X7  
X1  
X0  
A
13 X0  
12 X3  
Y1  
Z0  
X5  
X0  
Enable  
Enable  
Enable  
11 X3  
11  
10  
9
A
B
C
V
V
EE  
V
10  
9
A
B
B
LOGIC  
EE  
LOGIC  
EE  
GND  
GND  
GND  
C
DIP/SO/QSOP/TSSOP  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
________________________________________________________________ Maxim Integrated Products  
DIP/SO/QSOP/TSSOP  
DIP/SO/QSOP/TSSOP  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
ABSOLUTE MAXIMUM RATINGS  
ꢀoltages Referenced to ꢀ  
Narrow SO (derate 8.70mW/°C above ꢂ70°C)..............ꢁ9ꢁmW  
QSOP (derate 8.3mW/°C above ꢂ70°C) .......................ꢁꢁ7mW  
TSSOP (derate ꢁ.7mW/°C above ꢂ70°C)......................457mW  
Operating Temperature Ranges  
EE  
CC  
.........................................................................-0.3ꢀ to 13ꢀ  
ꢀoltage into Any Terminal (Note 1) ...(ꢀ - 0.3ꢀ) to (ꢀ ꢂ 0.3ꢀ)  
Continuous Current into Any Terminal.............................. 20mA  
EE  
CC  
Peak Current, X_, Y_, Z_  
(pulsed at 1ms, 10% duty cycle) ................................... 40mA  
ESD per Method 3015.7 ..................................................>2000ꢀ  
Continuous Power Dissipation (T = ꢂ70°C)  
Plastic DIP (derate 10.53mW/°C above ꢂ70°C)............842mW  
MAX458_C_ .........................................................0°C to ꢂ70°C  
MAX458_E_ ......................................................-40°C to ꢂ85°C  
MAX458_A_.....................................................-40°C to ꢂ125°C  
Storage Temperature Range.............................-ꢁ5°C to ꢂ150°C  
Lead Temperature (soldering, 10sec) .............................ꢂ300°C  
A
Note 1: ꢀoltages exceeding ꢀ  
or ꢀ on any signal terminal are clamped by internal diodes. Limit forward-diode current to maxi-  
EE  
CC  
mum current rating.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—Dual Supplies  
(ꢀ  
CC  
= 4.5ꢀ to 5.5ꢀ, ꢀ = -4.5ꢀ to -5.5ꢀ, ꢀ = 2.4ꢀ, ꢀ = 0.8ꢀ, T = T  
to T , unless otherwise noted. Typical values are at  
MAX  
EE  
_H  
_L  
A
MIN  
T
A
= ꢂ25°C.)  
MIN  
TYP  
(Note 2)  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
TEMP  
UNITS  
ANALOG SWITCH  
Analog-Signal Range  
ꢀ , ꢀ , ꢀ  
C, E, A  
EE  
CC  
X
Y
Z
ꢂ25°C  
C, E, A  
50  
1
80  
= 4.5ꢀ; ꢀ = -4.5ꢀ;  
EE  
CC  
Switch On-Resistance  
R
ON  
I , I , I = 1mA; ꢀ , ꢀ , ꢀ = 3.5ꢀ  
X
Y
Z
X
Y
Z
100  
Switch On-Resistance  
Match Between  
Channels (Note 3)  
ꢂ25°C  
C, E, A  
4
CC  
= 4.5ꢀ; ꢀ = -4.5ꢀ;  
EE  
12/MAX4583  
R  
ON  
I , I , I = 1mA; ꢀ , ꢀ , ꢀ = 3.5ꢀ  
X
Y
Z
X
Y
Z
ꢂ25°C  
C, E, A  
4
10  
12  
Switch On-Resistance  
Flatness (Note 4)  
CC  
= 5ꢀ; ꢀ = -5ꢀ; I , I , I = 1mA;  
EE X Y Z  
R
FLAT(ON)  
ꢀ , ꢀ , ꢀ = 3ꢀ, 0ꢀ, -3ꢀ  
X
Y
Z
I
I
I
,
,
X_(OFF)  
Y_(OFF)  
ꢂ25°C  
C, E, A  
-1  
1
X_, Y_, Z_ Off Leakage  
(Note 5)  
= 5.5ꢀ; ꢀ = -5.5ꢀ;  
EE  
CC  
nA  
, ꢀ , ꢀ  
= 4.5ꢀ; ꢀ , ꢀ , ꢀ = 4.5ꢀ  
X_ Y_ Z_  
X Y Z  
-10  
10  
Z_(OFF)  
ꢂ25°C  
C, E, A  
ꢂ25°C  
C, E, A  
ꢂ25°C  
C, E, A  
ꢂ25°C  
C, E, A  
-2  
-100  
-1  
2
100  
1
MAX4581  
I
,
,
= 5.5ꢀ; ꢀ = -5.5ꢀ;  
CC EE  
X(OFF)  
X, Y, Z Off Leakage  
(Note 5)  
I
, ꢀ , ꢀ  
=
4.5ꢀ;  
nA  
nA  
Y(OFF)  
X_ Y_ Z_  
MAX4582  
MAX4583  
I
ꢀ , ꢀ , ꢀ = 4.5ꢀ  
X
Z(OFF)  
Y
Z
-50  
-2  
50  
2
MAX4581  
I
I
,
,
X(ON)  
Y(ON)  
-100  
-1  
100  
1
X, Y, Z On Leakage  
(Note 5)  
CC  
= 5.5ꢀ; ꢀ = -5.5ꢀ;  
EE  
ꢀ , ꢀ , ꢀ = 4.5ꢀ  
X
Y
Z
MAX4582  
MAX4583  
I
Z(ON)  
-50  
50  
DIGITAL I/O  
Logic Input Logic  
Threshold High  
, ꢀ  
,
AH BH  
C, E, A  
C, E, A  
1.5  
1.5  
2.4  
CH  
Logic Input Logic  
Threshold Low  
, ꢀ  
,
AL BL  
0.8  
CL  
2
_______________________________________________________________________________________  
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
12/MAX4583  
ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)  
(ꢀ  
= 4.5ꢀ to 5.5ꢀ, ꢀ = -4.5ꢀ to -5.5ꢀ, ꢀ = 2.4ꢀ, ꢀ = 0.8ꢀ, T = T  
= ꢂ25°C.)  
to T , unless otherwise noted. Typical values are at  
MAX  
CC  
EE  
_H  
_L  
A
MIN  
T
A
MIN  
TYP  
(Note 2)  
MAX  
PARAMETER  
SYMBOL  
, I  
CONDITIONS  
TEMP  
UNITS  
µA  
I
,
AH BH  
Input Current High  
Input Current Low  
ꢀ , ꢀ , ꢀ = 2.4ꢀ  
C, E, A  
C, E, A  
-1  
-1  
1
1
A
B
C
I
CH  
I
, I  
AL BL  
,
ꢀ , ꢀ , ꢀ = 0.8ꢀ  
µA  
A
B
C
I
CL  
SWITCH DYNAMIC CHARACTERISTICS  
T = ꢂ25°C  
A
100  
40  
200  
200  
100  
150  
200  
200  
, ꢀ , ꢀ = 3ꢀ; R = 300; C = 35pF;  
X_ Y_ Z_  
L
L
Inhibit Turn-On Time  
Inhibit Turn-Off Time  
Address Transition Time  
t
ns  
ns  
ns  
(ON)  
Figure 3  
C, E, A  
= ꢂ25°C  
T
A
, ꢀ , ꢀ = 3ꢀ; R = 300; C = 35pF;  
X_ Y_ Z_  
L
L
t
(OFF)  
Figure 3  
C, E, A  
= ꢂ25°C  
T
A
90  
, ꢀ , ꢀ  
=
3ꢀ; R = 300; C = 35pF;  
X_ Y_ Z_  
L
L
t
TRANS  
Figure 2  
C, E, A  
, ꢀ , ꢀ = 3ꢀ; R = 300; C = 35pF;  
X_ Y_ Z_  
L
L
Break-Before-Make Time  
Charge Injection (Note ꢁ)  
t
T
= ꢂ25°C  
4
20  
ns  
BBM  
A
A
Figure 4  
Q
C = 1nF, R = 0, ꢀ = 0ꢀ  
T
= ꢂ25°C  
= ꢂ25°C  
0.5  
5
pC  
S
S
C
C
C
,
,
X_(OFF)  
Y_(OFF)  
Z_(OFF)  
Input Off Capacitance  
Output Off Capacitance  
, ꢀ , ꢀ = 0ꢀ; f = 1MHz; Figure 7  
T
A
T
A
T
A
4
pF  
pF  
pF  
X_ Y_ Z_  
MAX4581  
18  
10  
C
C
,
,
X(OFF)  
Y(OFF)  
, ꢀ , ꢀ = 0ꢀ; f = 1MHz;  
X_ Y_ Z_  
MAX4582  
MAX4583  
MAX4581  
MAX4582  
MAX4583  
= ꢂ25°C  
= ꢂ25°C  
Figure 7  
C
Z(OFF)  
25  
C
C
,
,
X(ON)  
Y(ON)  
, ꢀ , ꢀ = 0ꢀ; f = 1MHz;  
X_ Y_ Z_  
Output On Capacitance  
Off Isolation  
17  
Figure 7  
C
Z(ON)  
12.5  
-73  
-9ꢁ  
-73  
R = 50, f = 1MHz, Figure ꢁ  
T
A
T
A
T
A
= ꢂ25°C  
= ꢂ25°C  
= ꢂ25°C  
dB  
pF  
ISO  
L
MAX4582  
MAX4583  
Channel-to-Channel  
Crosstalk  
R = 50, f = 1MHz, Figure ꢁ  
L
CT  
Total Harmonic  
Distortion  
THD  
R = ꢁ00, 5ꢀp-p, f = 20Hz to 20kHz  
L
T
A
= ꢂ25°C  
0.02  
%
POWER SUPPLY  
Power-Supply Range  
I
, ꢀ  
C, E, A  
= ꢂ25°C  
2
-1  
1
CC EE  
T
A
= 5.5ꢀ, ꢀ = -5.5ꢀ,  
CC  
EE  
Power-Supply Current  
, I  
CC EE  
µA  
ꢀ , ꢀ , ꢀ , ꢀ = ꢀꢂ or 0  
A
B
C
Enable  
C, E, A  
-10  
10  
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.  
Note 3: R = R - R  
.
ON(MIN)  
ON  
ON(MAX)  
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified  
analog signal ranges; i.e., ꢀ , ꢀ , ꢀ = 3ꢀ to 0 and 0 to -3ꢀ.  
X_ Y_ Z_  
Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at T = ꢂ25°C.  
A
Note 6: Guaranteed by design, not production tested.  
_______________________________________________________________________________________  
3
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
ELECTRICAL CHARACTERISTICS—Single +5V Supply  
(ꢀ  
CC  
= 4.5ꢀ to 5.5ꢀ, ꢀ = 0ꢀ, ꢀ = 2.4ꢀ, ꢀ = 0.8ꢀ, T = T  
to T , unless otherwise noted. Typical values are at T = ꢂ25°C.)  
MAX A  
EE  
_H  
_L  
A
MIN  
MIN  
TYP  
(Note 2)  
MAX  
PARAMETER  
ANALOG SWITCH  
SYMBOL  
CONDITIONS  
TEMP  
UNITS  
, ꢀ , ꢀ ,  
X_ Y_ Z_  
Analog-Signal Range  
Switch On-Resistance  
C, E, A  
EE  
CC  
ꢀ , ꢀ , ꢀ  
X
Y
Z
T
A
= ꢂ25°C  
90  
2
150  
200  
= 4.5ꢀ; I , I , I = 1mA;  
X Y Z  
CC  
R
ON  
ꢀ , ꢀ , ꢀ = 3.5ꢀ  
X
Y
Z
C, E, A  
Switch On-Resistance  
Match Between  
Channels (Note 3)  
T
A
= ꢂ25°C  
8
10  
1
CC  
= 4.5ꢀ; I , I , I = 1mA;  
X Y Z  
R  
ON  
ꢀ , ꢀ , ꢀ = 3.5ꢀ  
X
Y
Z
C, E, A  
= ꢂ25°C  
I
I
I
,
,
X_(OFF)  
Y_(OFF)  
T
A
-1  
X_, Y_, Z_ Off  
Leakage (Note 5)  
CC  
= 5.5ꢀ; ꢀ , ꢀ , ꢀ = 1ꢀ, 4.5ꢀ;  
X_ Y_ Z_  
nA  
ꢀ , ꢀ , ꢀ = 4.5ꢀ, 1ꢀ  
X
Y
Z
C, E, A  
= ꢂ25°C  
-10  
10  
Z_(OFF)  
T
A
-2  
-100  
-1  
-50  
-2  
-100  
-1  
-50  
2
100  
1
50  
2
100  
1
50  
MAX4581  
I
I
,
,
ꢀ = 5.5ꢀ;  
CC  
X(OFF)  
Y(OFF)  
C, E, A  
= ꢂ25°C  
X, Y, Z Off Leakage  
(Note 5)  
, ꢀ , ꢀ = 1ꢀ, 4.5ꢀ;  
nA  
nA  
X_ Y_ Z_  
T
A
MAX4582  
MAX4583  
I
ꢀ , ꢀ , ꢀ = 4.5ꢀ, 1ꢀ  
X
Z(OFF)  
Y
Z
C, E, A  
= ꢂ25°C  
T
A
MAX4581  
I
,
,
X(ON)  
C, E, A  
T = ꢂ25°C  
A
X, Y, Z On Leakage  
(Note 5)  
CC  
= 5.5ꢀ;  
I
Y(ON)  
ꢀ , ꢀ , ꢀ = 4.5ꢀ, 1ꢀ  
X
Y
Z
MAX4582  
MAX4583  
I
Z(ON)  
C, E, A  
DIGITAL I/O  
Logic Input Logic  
Threshold High  
, ꢀ , ꢀ  
,
AH BH CH  
C, E, A  
C, E, A  
C, E, A  
C, E, A  
1.5  
1.5  
2.4  
12/MAX4583  
EnableH  
Logic Input Logic  
Threshold Low  
, ꢀ , ꢀ  
,
AL BL CL  
0.8  
-1  
EnableL  
I
, I , I  
,
AH BH CH  
Input Current High  
Input Current Low  
, ꢀ , ꢀ , ꢀ  
= 2.4ꢀ  
= 0.8ꢀ  
1
1
µA  
µA  
AL BL CL EnableL  
I
EnableH  
I
, I , I  
,
AL BL CL  
, ꢀ , ꢀ , ꢀ  
AL BL CL EnableL  
-1  
I
EnableL  
SWITCH DYNAMIC CHARACTERISTICS  
Charge Injection (Note ꢁ)  
Q
C = 1nF, R = 0, ꢀ = 2.5ꢀ  
T
T
= ꢂ25°C  
0.8  
100  
5
pC  
ns  
S
S
A
= ꢂ25°C  
200  
250  
100  
150  
200  
250  
ꢀ , ꢀ , ꢀ = 3ꢀ, R = 300, C = 35pF,  
X_ Y_ Z_ L L  
A
Enable Turn-On Time  
t
(ON)  
Figure 3  
C, E, A  
= ꢂ25°C  
T
A
40  
80  
, ꢀ , ꢀ = 3ꢀ, R = 300, C = 35pF,  
X_ Y_ Z_  
L
L
Enable Turn-Off Time  
t
ns  
ns  
ns  
(OFF)  
Figure 3  
C, E, A  
= ꢂ25°C  
T
A
Address Transition  
Time  
, ꢀ , ꢀ = 3ꢀ/0ꢀ, R = 300,  
X_ Y_ Z_  
L
t
TRANS  
C = 35pF, Figure 2  
L
C, E, A  
Break-Before-Make  
Time  
ꢀ , ꢀ , ꢀ = 3ꢀ, R = 300, C = 35pF,  
X_ Y_ Z_ L L  
t
T
A
= ꢂ25°C  
10  
30  
BBM  
Figure 4  
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.  
Note 3: R = R - R  
.
ON(MIN)  
ON  
ON(MAX)  
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified  
analog signal ranges; i.e., ꢀ , ꢀ , ꢀ = 3ꢀ to 0 and 0 to -3ꢀ.  
X_ Y_ Z_  
Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at T = ꢂ25°C.  
A
Note 6: Guaranteed by design, not production tested.  
4
_______________________________________________________________________________________  
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
12/MAX4583  
ELECTRICAL CHARACTERISTICS—Single +3V Supply  
(ꢀ  
CC  
= 2.7ꢀ to 3.ꢁꢀ, ꢀ = 0ꢀ, ꢀ = 2.0ꢀ, ꢀ = 0.5ꢀ, T = T  
to T , unless otherwise noted. Typical values are at T = ꢂ25°C.)  
MAX A  
EE  
_H  
_L  
A
MIN  
MIN  
TYP  
(Note 2)  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
TEMP  
UNITS  
POWER SUPPLY  
Power-Supply Range  
I
, ꢀ  
C, E, A  
= ꢂ25°C  
2
-1  
-10  
12  
1
10  
CC EE  
T
A
= 3.ꢁꢀ;  
CC  
Power-Supply Current  
ANALOG SWITCH  
Analog-Signal Range  
, I  
CC EE  
µA  
ꢀ , ꢀ , ꢀ , ꢀ  
A
= ꢀꢂ or 0  
B
C
Enable  
C, E, A  
, ꢀ , ꢀ ,  
X_ Y_ Z_  
ꢀ , ꢀ , ꢀ  
C, E, A  
EE  
CC  
X
Y
Z
T
= ꢂ25°C  
190  
450  
550  
= 2.7ꢀ; I , I , I = 0.1mA;  
X Y Z  
A
CC  
Switch On-Resistance  
R
ON  
ꢀ , ꢀ , ꢀ = 1.5ꢀ  
X
Y
Z
C, E, A  
I
I
I
,
,
X_(OFF)  
Y_(OFF)  
T
= ꢂ25°C  
-1  
1
A
X_, Y_, Z_ Off Leakage  
(Note 5)  
= 3.ꢁꢀ; ꢀ , ꢀ , ꢀ = 1ꢀ, 3ꢀ;  
X_ Y_ Z_  
CC  
nA  
nA  
ꢀ , ꢀ , ꢀ = 3ꢀ, 1ꢀ  
X
Y
Z
C, E, A  
= ꢂ25°C  
-10  
10  
Z_(OFF)  
T
A
-2  
-100  
-1  
-50  
-2  
-100  
-1  
-50  
2
100  
1
50  
2
100  
1
50  
MAX4581  
I
I
,
,
ꢀ = 3.ꢁꢀ;  
CC  
X(OFF)  
Y(OFF)  
C, E, A  
= ꢂ25°C  
X, Y, Z Off Leakage  
(Note ꢁ)  
, ꢀ , ꢀ = 1ꢀ, 3.0ꢀ;  
X_ Y_ Z_  
T
A
MAX4582  
MAX4583  
I
ꢀ , ꢀ , ꢀ = 3.0ꢀ, 1ꢀ  
X
Z(OFF)  
Y
Z
C, E, A  
= ꢂ25°C  
T
A
MAX4581  
I
,
,
X(ON)  
C, E, A  
T = ꢂ25°C  
A
C, E, A  
X, Y, Z On Leakage  
(Note ꢁ)  
CC  
= 3.ꢁꢀ;  
I
nA  
Y(ON)  
ꢀ , ꢀ , ꢀ = 3.0ꢀ, 1ꢀ  
X
Y
Z
MAX4582  
MAX4583  
I
Z(ON)  
DIGITAL I/O  
Logic Input Logic  
Threshold High  
, ꢀ , ꢀ  
,
AH BH CH  
C, E, A  
C, E, A  
C, E, A  
C, E, A  
1.0  
1.0  
2.0  
EnableH  
Logic Input Logic  
Threshold Low  
, ꢀ , ꢀ  
,
AL BL CL  
0.5  
-1  
EnableL  
I
, I , I  
,
AH BH CH  
Input Current High  
Input Current Low  
ꢀ , ꢀ , ꢀ = ꢀ  
= 2.0ꢀ  
= 0.5ꢀ  
1
1
µA  
µA  
A
B
C
Enable  
I
EnableH  
I
, I , I  
,
AL BL CL  
ꢀ , ꢀ , ꢀ = ꢀ  
-1  
A
B
C
Enable  
I
EnableL  
(Note ꢁ)  
SWITCH DYNAMIC CHARACTERISTICS  
T
= ꢂ25°C  
170  
50  
300  
400  
200  
300  
300  
400  
ꢀ , ꢀ , ꢀ = 1.5ꢀ; R = 300;  
X_ Y_ Z_ L  
A
Enable Turn-On Time  
t
ns  
ns  
(ON)  
C = 35pF; Figure 3  
L
C, E, A  
= ꢂ25°C  
T
A
, ꢀ , ꢀ = 1.5ꢀ; R = 300;  
L
X_ Y_ Z_  
L
Enable Turn-Off Time  
t
(OFF)  
C = 35pF; Figure 3  
C, E, A  
= ꢂ25°C  
T
A
130  
40  
Address Transition  
Time  
, ꢀ , ꢀ = 1.5ꢀ/0ꢀ; R = 300;  
L
X_ Y_ Z_  
L
t
ns  
ns  
TRANS  
C = 35pF; Figure 2  
C, E, A  
Break-Before-Make Time  
t
, ꢀ , ꢀ = 1.5ꢀ; R = 300; C = 35pF  
T
A
= ꢂ25°C  
15  
BBM  
X_ Y_ Z_  
L
L
POWER SUPPLY  
T
= ꢂ25°C  
-1  
-10  
1
10  
= 3.ꢁꢀ,  
CC  
A
Power-Supply Current  
I , I  
CC EE  
µA  
ꢀ , ꢀ , ꢀ , ꢀ  
A
= ꢀꢂ or 0  
B
C
Enable  
C, E, A  
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.  
Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at T = ꢂ25°C.  
A
Note 6: Guaranteed by design, not production tested.  
_______________________________________________________________________________________  
5
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
Typical Operating Characteristics  
(ꢀ  
CC  
= 5ꢀ, ꢀ = -5ꢀ, GND = 0ꢀ, T = ꢂ25°C, unless otherwise noted.)  
EE A  
ON-RESISTANCE vs.  
ON-RESISTANCE vs. V , V , V  
V , V , V AND TEMPERATURE  
ON-RESISTANCE vs. V , V , V  
X
Y
Z
X
Y
Z
X
Y
Z
(SINGLE SUPPLY)  
(DUAL SUPPLIES)  
(DUAL SUPPLIES)  
10,000  
1000  
65  
55  
45  
35  
25  
15  
5
T
= +85°C  
A
V
V
= 1.2V,  
= -1.2V  
V
CC  
= 1.2V  
CC  
EE  
V
CC  
= 2V  
V
V
= 2.7V,  
= -2.7V  
T
= +70°C  
CC  
EE  
A
1000  
100  
V
V
= 2V,  
= -2V  
V
CC  
= 2.7V  
CC  
EE  
V
= 3.3V  
CC  
100  
V
= 5V  
CC  
T
= +25°C  
A
V
= 7.5V  
CC  
T
= -40°C  
T
1
= 0°C  
A
A
V
CC  
= 3.3V,  
= -3.3V  
V
V
= 5V,  
= -5V  
CC  
EE  
V
EE  
V
= 10V  
CC  
10  
10  
0
1
2
3
4
5
6
7
8
9
10  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
-5 -4 -3 -2 -1  
0
2
3
4
5
V , V , V (V)  
V , V , V (V)  
V , V , V (V)  
X Y Z  
X
Y
Z
X
Y
Z
ON-RESISTANCE vs.  
V , V , V AND TEMPERATURE  
OFF LEAKAGE vs.  
TEMPERATURE  
X
Y
Z
(SINGLE SUPPLY)  
130  
110  
90  
100  
V
CC  
V
EE  
= 5.5V  
= -5.5V  
T
= +85°C  
A
T
= +70°C  
A
10  
T
= +25°C  
= -40°C  
A
12/MAX4583  
70  
1
0.1  
50  
T
= 0°C  
A
T
I , I , I  
X Y Z  
A
30  
I
, I , I  
X_ Y_ Z_  
10  
0.01  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
V , V , V (V)  
-50 -25  
0
25  
50  
75 100 125  
X
Y
Z
TEMPERATURE (°C)  
ON LEAKAGE vs.  
TEMPERATURE  
CHARGE INJECTION vs. V , V , V  
X
Y
Z
1.5  
1.0  
100,000  
10,000  
1,000  
V
V
= 5.5V  
= -5.5V  
CC  
EE  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
V
V
= 5V  
= 0V  
CC  
EE  
100  
10  
V
V
= 5V  
= -5V  
CC  
EE  
1
-5 -4 -3 -2 -1  
0
1
2
3
4
5
-50 -25  
0
25  
50  
75 100 125  
V , V , V (V)  
TEMPERATURE (°C)  
X
Y
Z
6
_______________________________________________________________________________________  
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
12/MAX4583  
Typical Operating Characteristics (continued)  
(ꢀ  
CC  
= 5ꢀ, ꢀ = -5ꢀ, GND = 0ꢀ, T = ꢂ25°C, unless otherwise noted.)  
EE  
A
SUPPLY CURRENT vs.  
TEMPERATURE  
FREQUENCY RESPONSE  
MAX4581-09  
100  
0
-10  
-20  
-30  
-40  
-50  
-60  
120  
100  
80  
60  
40  
20  
0
V
V
= 5V  
= -5V  
B C Enable  
CC  
EE  
ON LOSS  
V , V ,V ,V = 0V, 5V  
A
10  
1
I
OFF LOSS  
CC  
I
EE  
-70  
-80  
-20  
-40  
ON PHASE  
0.1  
0.01  
-90  
-60  
-100  
-110  
-120  
-80  
-110  
-120  
-50 -25  
0
25  
50  
75 100 125  
0.1  
1
10  
100  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
V
CC  
CURRENT vs. LOGIC LEVEL  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
(V , V , V , V  
)
A
B
C
Enable  
100  
10  
1
-1  
600IN AND OUT  
10  
-2  
10  
-3  
V
= 12V  
CC  
10  
-4  
10  
-5  
10  
1
0.1  
-6  
10  
V
CC  
= 5V  
-7  
10  
-8  
10  
-9  
10  
-10  
10  
-11  
10  
0.01  
0
1
2
3
4
5
6
7
8
9 10 11 12  
10  
100  
1k  
10k  
100k  
V , V , V , V  
FREQUENCY (Hz)  
A
B
C
Enable  
LOGIC-LEVEL THRESHOLD vs. V  
CC  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
1
2
3
4
5
6
7
8
9 10 11 12  
V
CC  
(V)  
_______________________________________________________________________________________  
7
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX4581  
MAX4582  
MAX4583  
13, 14, 15,  
12, 1, 5, 2, 4  
X0–X7  
Analog Switch Inputs 0–7  
Analog Switch Output  
Analog Switch “X” Inputs 0–3  
Analog Switch “X” Output  
Analog Switch “X” Normally Open Input  
Analog Switch “X” Normally Closed Input  
Analog Switch “Y” Normally Open Input  
Analog Switch “Y” Normally Closed Input  
3
14  
13  
12  
1
X
12, 14, 15, 11  
X0, X1, X2, X3  
13  
X
X1  
X0  
Y1  
Y0  
2
Digital Enable Input. Normally connect to GND. Can be driven  
to logic high to set all switches off.  
7
8
7
8
7
8
Enable  
Negative Analog Supply-ꢀoltage Input. Connect to GND for  
single-supply operation.  
EE  
Ground. Connect to digital ground. (Analog signals have no  
GND  
ground reference; they are limited to ꢀ  
and ꢀ .)  
CC  
EE  
11  
10  
9
10  
9
11  
10  
9
A
B
C
Digital Address “A” Input  
Digital Address “B” Input  
Digital Address “C” Input  
1ꢁ  
1, 5, 2, 4  
3
15  
5
3
4
Y0, Y1, Y2, Y3  
Analog Switch “Y” Inputs 0–3  
Analog Switch “Y” Output  
Analog Switch “Z” Normally Closed Input  
Analog Switch “Z” Normally Open Input  
Analog Switch “Z” Output  
Y
Z0  
Z1  
Z
12/MAX4583  
1ꢁ  
1ꢁ  
CC  
Positive Analog and Digital Supply ꢀoltage Input  
Note: Input and output pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well  
in both directions.  
ꢀirtually all the analog leakage current comes from the  
__________Applications Information  
ESD diodes. Although the ESD diodes on a given signal  
Power-Supply Considerations  
pin are identical and therefore fairly well balanced, they  
are reverse biased differently. Each is biased by either  
Overview  
The MAX4581/MAX4582/MAX4583 construction is typi-  
cal of most CMOS analog switches. They have three  
or ꢀ  
and the analog signal. This means their  
EE  
CC  
leakages will vary as the signal varies. The difference in  
the two diode leakages to the ꢀ and ꢀ pins consti-  
CC  
EE  
supply pins: ꢀ , ꢀ , and GND. ꢀ  
and ꢀ are used  
EE  
CC EE  
CC  
tutes the analog-signal-path leakage current. All analog  
leakage current flows between each pin and one of the  
supply terminals, not to the other switch terminal. This is  
why both sides of a given switch can show leakage cur-  
rents of either the same or opposite polarity.  
to drive the internal CMOS switches and set the limits of  
the analog voltage on any switch. Reverse ESD-  
protection diodes are internally connected between  
each analog-signal pin and both ꢀ  
and ꢀ . If any  
EE  
CC  
analog signal exceeds ꢀ  
or ꢀ , one of these diodes  
CC  
EE  
will conduct. During normal operation, these and other  
reverse-biased ESD diodes leak, forming the only cur-  
There is no connection between the analog-signal  
paths and GND.  
rent drawn from ꢀ  
or ꢀ  
.
CC  
EE  
8
_______________________________________________________________________________________  
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
12/MAX4583  
Table 1. Truth Table/Switch Programming  
SELECT INPUTS  
ON SWITCHES  
MAX4582  
ENABLE  
INPUT  
C*  
B
A
MAX4581  
MAX4583  
H
L
X
X
X
All switches open  
All switches open  
All switches open  
X–X0,  
Y–Y0,  
Z–Z0  
X–X0,  
Y–Y0  
L
L
L
L
L
H
L
X–X0  
X–X1  
X–X2  
X–X3  
X–X4  
X–X5  
X–Xꢁ  
X–X7  
X–X1,  
Y–Y0,  
Z–Z0  
X–X1,  
Y–Y1  
L
L
L
L
L
L
X–X0,  
Y–Y1,  
Z–Z0  
X–X2,  
Y–Y2  
L
H
H
L
X–X1,  
Y–Y1,  
Z–Z0  
X–X3,  
Y–Y3  
L
H
L
X–X0,  
Y–Y0,  
Z–Z1  
X–X0,  
Y–Y0  
H
H
H
H
X–X1,  
Y–Y0,  
Z–Z1  
X–X1,  
Y–Y1  
L
H
L
X–X0,  
Y–Y1,  
Z–Z1  
X–X2,  
Y–Y2  
H
H
X–X1,  
Y–Y1,  
Z–Z1  
X–X3,  
Y–Y3  
L
H
X = Don’t care  
*C not present on MAX4582.  
Note: Input and output pins are identical and interchangeable. Either may be considered an input or output; signals pass equally  
well in either direction.  
and GND power the internal logic and logic-level  
Bipolar Supplies  
CC  
translators, and set the input logic limits. The logic-level  
These devices operate with bipolar supplies between  
translators convert the logic levels into switched ꢀ  
2ꢀ and 5ꢀ. The ꢀ  
and ꢀ supplies need not be  
EE  
CC  
CC  
and ꢀ  
signals to drive the gates of the analog sig-  
symmetrical, but their sum cannot exceed the ꢂ13ꢀ  
EE  
nals. This drive signal is the only connection between  
absolute maximum rating  
the logic supplies and signals and the analog supplies.  
Single Supply  
These devices operate from a single supply between  
ꢂ2ꢀ and ꢂ12ꢀ when ꢀ is connected to GND. All of  
EE  
the bipolar precautions must be observed. At room  
temperature, they actually “work” with a single supply  
near or below ꢂ1.7ꢀ, although as supply voltage  
decreases, switch on-resistance and switching times  
become very high.  
CC  
and ꢀ have ESD-protection diodes to GND.  
EE  
The logic-level thresholds are TTL/CMOS compatible  
when ꢀ is ꢂ5ꢀ. As ꢀ rises, the threshold increases  
slightly, so when ꢀ  
about 3.1ꢀ (above the TTL-guaranteed high-level mini-  
mum of 2.8ꢀ, but still compatible with CMOS outputs).  
CC  
CC  
reaches ꢂ12ꢀ the threshold is  
CC  
_______________________________________________________________________________________  
9
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
Overvoltage Protection  
Proper power-supply sequencing is recommended for  
all CMOS devices. Do not exceed the absolute maxi-  
mum ratings because stresses beyond the listed rat-  
ings can cause permanent damage to the devices.  
V
CC  
D1  
EXTERNAL  
BLOCKING DIODE  
Always sequence ꢀ  
on first, then ꢀ , followed by  
EE  
CC  
MAX4581  
MAX4582  
MAX4583  
the logic inputs and analog signals. If power-supply  
sequencing is not possible, add two small signal diodes  
(D1, D2) in series with the supply pins for overvoltage  
protection (Figure 1).  
V
CC  
*
*
*
X, Y, Z  
X_, Y_, Z_  
Adding diodes reduces the analog-signal range to one  
*
diode drop below ꢀ  
and one diode drop above ꢀ  
,
EE  
CC  
but does not affect the devices’ low switch resistance  
and low leakage characteristics. Device operation is  
V
EE  
unchanged, and the difference between ꢀ  
and ꢀ  
EE  
CC  
should not exceed 13ꢀ. These protection diodes are  
not recommended when using a single supply if signal  
levels must extend to ground.  
D2  
EXTERNAL  
BLOCKING DIODE  
V
EE  
High-Frequency Performance  
In 50systems, signal response is reasonably flat up  
to 50MHz (see Typical Operating Characteristics).  
Above 20MHz, the on response has several minor  
peaks which are highly layout dependent. The problem  
is not turning the switch on, but turning it off. The off-  
state switch acts like a capacitor and passes higher  
frequencies with less attenuation. At 10MHz, off isola-  
tion is about -50dB in 50systems, becoming worse  
(approximately 20dB per decade) as frequency in-  
creases. Higher circuit impedances also degrade off  
isolation. Adjacent channel attenuation is about 3dB  
above that of a bare IC socket and is entirely due to  
capacitive coupling.  
*INTERNAL PROTECTION DIODES  
Figure 1. Overvoltage Protection Using External Blocking  
Diodes  
The pin designations and logic diagrams in this data  
sheet conform to the original 1972 specifications pub-  
lished by RCA for the CD4051/CD4052/CD4053. These  
designations differ from the standard Maxim switch and  
mux designations as found all other Maxim data sheets  
(including the MAX4051/MAX4052/MAX4053) and may  
cause confusion. Designers who feel more comfortable  
with Maxim’s standard designations are advised that  
the pin designations and logic diagrams on the  
MAX4051/MAX4052/MAX4053 data sheet may be freely  
applied to the MAX4581/MAX4582/MAX4583.  
12/MAX4583  
Pin Nomenclature  
The MAX4581/MAX4582/MAX4583 are pin-compatible  
with the industry-standard 74HC4051/74HC4052/  
74HC4053 and the MAX4051/MAX4052/MAX4053.  
They function identically and have identical logic dia-  
grams, although these parts differ electrically.  
10 ______________________________________________________________________________________  
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
12/MAX4583  
______________________________________________Test Circuits/Timing Diagrams  
V
CC  
V
CC  
V , V , V  
50%  
A
B
C
V , V , V  
V
A
B
C
CC  
X0  
A
B
C
V
V
CC  
0V  
X1–X6  
50Ω  
V
X0  
90%  
X7  
X
EE  
MAX4581  
GND  
V
OUT  
Enable  
0V  
V
90%  
V
OUT  
EE  
35pF  
35pF  
35pF  
V
X7  
t
300Ω  
V
EE  
t
TRANS  
TRANS  
V
CC  
V
CC  
50%  
V , V  
A
B
V , V  
V
A
B
CC  
X , Y  
A
B
0
0
V
V
CC  
0V  
X1, X2, Y1, Y2  
50Ω  
V
X0  
,
V
Y0  
90%  
MAX4582  
X3, Y3  
X, Y  
EE  
Enable  
0V  
V
OUT  
GND  
V
V
90%  
OUT  
EE  
V
,
Y3  
X3  
300Ω  
V
V
EE  
t
t
TRANS  
TRANS  
V
CC  
V
CC  
V
CC  
V , V , V  
50%  
A
B
C
V , V , V  
A
B
C
X1, Y1, Z1  
A, B, C  
Enable  
V
V
EE  
0V  
V
X0  
V
Y0  
,
,
50Ω  
MAX4583  
V
Z0  
90%  
X2, Y2, Z2  
CC  
X, Y, Z  
0V  
V
OUT  
GND  
90%  
V
EE  
V
OUT  
V
X1  
V
Y1  
,
,
300Ω  
V
Z1  
V
EE  
t
t
TRANS  
TRANS  
V
= 0V FOR SINGLE-SUPPLY OPERATION.  
EE  
TEST EACH SECTION INDIVIDUALLY.  
Figure 2. Address Transition Times  
______________________________________________________________________________________ 11  
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
_________________________________Test Circuits/Timing Diagrams (continued)  
V
CC  
V
CC  
V
Enable  
50%  
V
CC  
X0  
A
B
C
V
CC  
0V  
X1–X7  
V
X0  
90%  
MAX4581  
V
Enable  
V
OUT  
V
OUT  
Enable  
X
90%  
GND  
V
EE  
35pF  
50Ω  
50Ω  
50Ω  
0V  
300Ω  
V
EE  
t
t
OFF  
ON  
V
CC  
V
CC  
50%  
V
Enable  
V
CC  
X0, Y0  
A
B
V
CC  
0V  
X1–X3, Y1–Y3  
V
,
X0  
V
Y0  
90%  
MAX4582  
V
Enable  
Enable  
X, Y  
V
OUT  
V
OUT  
GND  
90%  
V
EE  
35pF  
0V  
300Ω  
V
EE  
t
t
OFF  
ON  
12/MAX4583  
V
CC  
V
CC  
V
50%  
Enable  
V
CC  
X1, Y1, Z1  
A
B
C
V
V
CC  
0V  
V
V
,
,
X0  
Y0  
MAX4583  
V
Z0  
X0, Y0, Z0  
90%  
EE  
V
Enable  
Enable  
X, Y, Z  
V
OUT  
V
OUT  
GND  
V
90%  
EE  
35pF  
V
V
,
X1  
,
Y1  
300Ω  
V
V
Z1  
EE  
t
t
OFF  
ON  
V
EE  
= 0V FOR SINGLE-SUPPLY OPERATION.  
TEST EACH SECTION INDIVIDUALLY.  
Figure 3. Inhibit Switching Times  
12 ______________________________________________________________________________________  
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
12/MAX4583  
_________________________________Test Circuits/Timing Diagrams (continued)  
V
V
CC  
CC  
V , V , V  
V , V  
A
B
C
V
CC  
V
CC  
A
B
X0–X7  
X0–X3,  
Y0–Y3  
A
B
C
A
B
V
CC  
V
CC  
50Ω  
50Ω  
MAX4582  
MAX4581  
V
OUT  
Enable  
Enable  
X
X, Y  
V
EE  
V
OUT  
GND  
GND  
V
EE  
35pF  
35pF  
300Ω  
300Ω  
V
EE  
V
EE  
V
CC  
t < 20ns  
t < 20ns  
F
R
V , V , V  
V
V+  
0V  
A
B
C
CC  
V , V , V  
C
50%  
A
B
X0, X1, Y0,  
Y1, Z0, Z1  
A, B, C  
Enable  
V
CC  
50Ω  
V , V , V  
X
Y
Z
MAX4583  
80%  
X, Y, Z  
V
OUT  
GND  
V
EE  
35pF  
V
OUT  
300Ω  
V
EE  
0V  
V
= 0V FOR SINGLE-SUPPLY OPERATION.  
EE  
t
BBM  
TEST EACH SECTION INDIVIDUALLY.  
Figure 4. Break-Before-Make Interval  
V
CC  
V
CC  
V
CC  
V
Enable  
X_, Y_, Z_  
A
B
C
0V  
CHANNEL  
SELECT  
MAX4581  
MAX4582  
MAX4583  
V  
OUT  
V
OUT  
V
Enable  
V
OUT  
Enable  
X, Y, Z  
GND  
V
EE  
C = 1000pF  
L
50Ω  
V  
IS THE MEASURED VOLTAGE DUE TO CHARGE  
OUT  
V
EE  
TRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF.  
V
= 0V FOR SINGLE-SUPPLY OPERATION.  
EE  
Q = V  
X C  
L
OUT  
TEST EACH SECTION INDIVIDUALLY.  
Figure 5. Charge Injection  
______________________________________________________________________________________ 13  
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
_________________________________Test Circuits/Timing Diagrams (continued)  
V
CC  
10nF  
NETWORK  
ANALYZER  
V
IN  
V
50Ω  
50Ω  
OUT  
V
CC  
OFF ISOLATION = 20log  
V
X_, Y_, Z_  
A
B
C
IN  
CHANNEL  
SELECT  
V
MAX4581  
MAX4582  
MAX4583  
OUT  
ON LOSS = 20log  
V
IN  
V
OUT  
MEAS.  
REF.  
Enable  
X, Y, Z  
V
OUT  
CROSSTALK = 20log  
GND  
V
EE  
V
IN  
50Ω  
50Ω  
10nF  
V
EE  
MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS.  
OFF ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH.  
ON LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH.  
CROSSTALK (MAX4582/MAX4583) IS MEASURED FROM ONE CHANNEL (A, B, C) TO ALL OTHER CHANNELS.  
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.  
Figure ꢁ. Off Isolation, On Loss, and Crosstalk  
12/MAX4583  
V
CC  
V
CC  
X_, Y_, Z_  
A
B
C
CHANNEL  
SELECT  
MAX4581  
MAX4582  
MAX4583  
1MHz  
Enable  
X, Y, Z  
CAPACITANCE  
ANALYZER  
GND  
V
EE  
V
EE  
Figure 7. Capacitance  
14 ______________________________________________________________________________________  
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
12/MAX4583  
_Ordering Information (continued)  
PART  
TEMP. RANGE  
0°C to ꢂ70°C  
PIN-PACKAGE  
1ꢁ QSOP  
PART  
TEMP. RANGE  
-40°C to ꢂ85°C  
-40°C to ꢂ85°C  
-40°C to ꢂ125°C  
-40°C to ꢂ125°C  
0°C to ꢂ70°C  
PIN-PACKAGE  
1ꢁ TSSOP  
MAX4581CEE  
MAX4581C/D  
MAX4581EPE  
MAX4581ESE  
MAX4581EUE  
MAX4581EEE  
MAX4581ASE  
MAX4581AUE  
MAX4582CPE  
MAX4582CSE  
MAX4582CUE  
MAX4582CEE  
MAX4582C/D  
MAX4582EPE  
MAX4582ESE  
MAX4582EUE  
MAX4582EEE  
MAX4582ASE  
MAX4582AUE  
MAX4583CPE  
MAX4583CSE  
MAX4583CUE  
MAX4583CEE  
MAX4583C/D  
MAX4583EPE  
MAX4583ESE  
MAX4583EUE  
MAX4583EEE  
MAX4583ASE  
MAX4583AUE  
0°C to ꢂ70°C  
Dice*  
1ꢁ QSOP  
-40°C to ꢂ85°C  
-40°C to ꢂ85°C  
-40°C to ꢂ85°C  
-40°C to ꢂ85°C  
-40°C to ꢂ125°C  
-40°C to ꢂ125°C  
0°C to ꢂ70°C  
1ꢁ Plastic DIP  
1ꢁ Narrow SO  
1ꢁ TSSOP  
1ꢁ Narrow SO  
1ꢁ TSSOP  
1ꢁ Plastic DIP  
1ꢁ Narrow SO  
1ꢁ TSSOP  
1ꢁ QSOP  
0°C to ꢂ70°C  
1ꢁ Narrow SO  
1ꢁ TSSOP  
0°C to ꢂ70°C  
0°C to ꢂ70°C  
1ꢁ QSOP  
1ꢁ Plastic DIP  
1ꢁ Narrow SO  
1ꢁ TSSOP  
0°C to ꢂ70°C  
Dice*  
0°C to ꢂ70°C  
-40°C to ꢂ85°C  
-40°C to ꢂ85°C  
-40°C to ꢂ85°C  
-40°C to ꢂ85°C  
-40°C to ꢂ125°C  
-40°C to ꢂ125°C  
1ꢁ Plastic DIP  
1ꢁ Narrow SO  
1ꢁ TSSOP  
0°C to ꢂ70°C  
0°C to ꢂ70°C  
1ꢁ QSOP  
0°C to ꢂ70°C  
Dice*  
1ꢁ QSOP  
-40°C to ꢂ85°C  
-40°C to ꢂ85°C  
1ꢁ Plastic DIP  
1ꢁ Narrow SO  
1ꢁ Narrow SO  
1ꢁ TSSOP  
*Contact factory for availability.  
__________________________________________________________Chip Topographies  
MAX4581  
MAX4582  
X6 X4  
V
CC  
X2  
Y2 Y0  
V
CC  
X2  
X1  
X1  
X
X
Y
N.C.  
X7  
Y3  
X0  
X3  
X0  
X3  
X5  
Y1  
0.069"  
(1.75mm)  
0.069"  
(1.75mm)  
A
A
Enable  
Enable  
V
EE  
GND  
0.053"  
(1.35mm)  
B
N.C.  
V
GND  
0.053"  
(1.35mm)  
C
B
EE  
N.C. = NO CONNECTION  
TRANSISTOR COUNT: 219  
SUBSTRATE CONNECTED TO ꢀꢂ.  
TRANSISTOR COUNT: 219  
SUBSTRATE CONNECTED TO ꢀꢂ.  
______________________________________________________________________________________ 15  
Low-Voltage, CMOS Analog  
Multiplexers/Switches  
____Chip Topographies (continued)  
MAX4583  
Y0 Y1  
V
CC  
Y
X
Z1  
Z
N.C.  
X1  
X0  
Z0  
0.069"  
(1.75mm)  
A
Enable  
V
EE  
GND  
0.053"  
(1.35mm)  
C
B
N.C. = NO CONNECTION  
TRANSISTOR COUNT: 219  
SUBSTRATE CONNECTED TO ꢀꢂ.  
12/MAX4583  
________________________________________________________Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4581EEE+T

Single-Ended Multiplexer, 1 Func, 8 Channel, CMOS, PDSO16, QSOP-16
MAXIM

MAX4581EEE-T

Single-Ended Multiplexer, 1 Func, 8 Channel, CMOS, PDSO16, QSOP-16
MAXIM

MAX4581EGE

ANALOG MUX|SINGLE|8-CHANNEL|CMOS|LLCC|16PIN|PLASTIC
MAXIM

MAX4581EGE+

Single-Ended Multiplexer, 1 Func, 8 Channel, BICMOS, ROHS COMPLIANT, QFN-16
MAXIM

MAX4581EGE+T

Single-Ended Multiplexer,
MAXIM

MAX4581EPE

Low-Voltage, CMOS Analog Multiplexers/Switches
MAXIM

MAX4581EPE+

暂无描述
MAXIM

MAX4581ESE

Low-Voltage, CMOS Analog Multiplexers/Switches
MAXIM

MAX4581ESE+T

Single-Ended Multiplexer, 1 Func, 8 Channel, CMOS, PDSO16, SO-16
MAXIM

MAX4581ESE-T

Single-Ended Multiplexer, 1 Func, 8 Channel, CMOS, PDSO16, SOP-16
MAXIM

MAX4581ETE+

Single-Ended Multiplexer, 1 Func, 8 Channel, BICMOS, PQCC16,
MAXIM

MAX4581EUE

Low-Voltage, CMOS Analog Multiplexers/Switches
MAXIM