MAX44242_V01 [MAXIM]

20V, Low Input Bias-Current, Low-Noise, Dual Op Amplifier;
MAX44242_V01
型号: MAX44242_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

20V, Low Input Bias-Current, Low-Noise, Dual Op Amplifier

文件: 总11页 (文件大小:994K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Evaluation Kit  
Available  
Design  
Resources  
Tools and  
Models  
Support  
Click here to ask an associate for production status of specific part numbers.  
20V, Low Input Bias-Current,  
Low-Noise, Dual Op Amplifier  
MAX44242  
General Description  
The MAX44242 provides a combination of high voltage,  
low noise, low input bias current in a dual channel and  
features rail-to-rail at the output.  
Benefits and Features  
2.7V to 20V Single Supply or ±1.35V to ±10V Dual  
Supplies  
0.5pA (max) Input Bias Current  
This dual amplifier operates over a wide supply voltage  
range from a single 2.7V to 20V supply or split ±1.35V  
to ±10V supplies and consumes only 1.2mA quiescent  
supply current per channel.  
5nV/√Hz Input Voltage Noise  
10MHz Bandwidth  
8V/µs Slew Rate  
Rail-to-Rail Output  
The MAX44242 is a unity-gain stable amplifier with a  
gain-bandwidth product of 10MHz. The device outputs  
drive up to 200pF load capacitor without any external  
isolation resistor compensation.  
Integrated EMI Filters  
1.2mA Supply Current per Amplifier  
®
The MAX44242 is available in 8-pin SOT23 and µMAX  
Ordering Information appears at end of data sheet.  
packages and is rated for operation over the -40ºC to  
+125ºC automotive temperature range.  
Applications  
Chemical Sensor Interface  
Photodiode Sensor Interface  
Medical Pulse Oximetry  
Industrial: Process and Control  
Precision Instrumentation  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
Typical Application Circuit  
VDD  
PHOTODIODE  
IN-  
PHOTODIODE  
OUT  
IN-  
IN+  
OUT  
REF  
IN+  
MAX44242  
REF  
19-6827; Rev 3; 3/21  
©
2021 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.  
One Analog Way, Wilmington, MA 01887 U.S.A. Tel: 781.329.4700 © 2021 Analog Devices, Inc. All rights reserved.  
|
|
MAX44242  
20V, Low Input Bias-Current,  
Low-Noise, Dual Op Amplifier  
Absolute Maximum Ratings  
Supply Voltage (V  
to V )................................-0.3V to +22V  
Operating Temperature Range......................... -40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
SS  
All Other Pins ................................(V - 0.3V) to (V  
+ 0.3V)  
SS  
DD  
Short-Circuit Duration to V  
or V ...................................... 1s  
DD  
SS  
Continuous Input Current (Any Pins) ...............................±20mA  
Differential Input Voltage ...................................................... ±6V  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin SOT23 (derate 5.1mW/°C above +70°C) .......408.2mW  
8-Pin µMAX (derate 4.5mW/°C above +70°C)............362mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 1)  
Package Thermal Characteristics  
SOT23  
μMAX  
Junction-to-AmbientꢀThermalꢀResistanceꢀ(θ ) ........196°C/W  
Junction-to-AmbientꢀThermalꢀResistanceꢀ(θ ) ........221°C/W  
Junction-to-CaseꢀThermalꢀResistanceꢀ(θ )...............42°C/W  
JC  
JA  
JA  
Junction-to-CaseꢀThermalꢀResistanceꢀ(θ )...............70°C/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= 10V, V = 0V, V  
= V = V /2, R ꢀ=ꢀ10kΩꢀtoꢀV /2, T = -40°C to +125°C, unless otherwise noted. Typical values are  
DD  
SS  
IN+  
IN-  
DD  
L
DD  
A
at T = +25°C.) (Note 2)  
A
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
V
Guaranteed by PSRR  
2.7  
106  
100  
20  
V
DD  
T = +25ºC  
A
130  
1.2  
20  
V
V
= 2.7V to 20V,  
= 0V  
DD  
CM  
Power-Supply Rejection Ratio  
PSRR  
dB  
-40ºCꢀ≤ꢀT ꢀ≤ꢀꢀ+125ºC  
A
T
= +25ºC  
1.6  
1.8  
A
QuiescentꢀCurrentꢀPerꢀAmplifier  
I
R
ꢀ=ꢀinfinity  
LOAD  
mA  
µs  
DD  
-40ºCꢀ≤ꢀꢀT ꢀ≤ꢀ+125ºC  
A
Power-Up Time  
t
ON  
DC CHARACTERISTICS  
Input Common-Mode Range  
V
Guaranteed by CMRR test  
= +25ºC  
V
- 0.05  
V - 1.5  
DD  
V
CM  
SS  
94  
90  
T
A
111  
50  
V
CM  
to V  
= V - 0.05V  
SS  
Common-Mode Rejection Ratio  
CMRR  
dB  
- 1.5V  
DD  
-40ºCꢀ≤ꢀT ꢀ≤ꢀ+125ºC  
A
T
= +25ºC  
600  
A
InputꢀOffsetꢀVoltageꢀ  
V
µV  
OS  
-40ºCꢀ≤ꢀT ꢀ≤ꢀ+125ºC  
800  
2.5  
0.5  
10  
A
InputꢀOffsetꢀVoltageꢀDriftꢀ(Noteꢀ3)  
TC V  
OS  
0.25  
0.02  
µV/ºC  
T
= +25ºC  
A
Input Bias Current (Note 3)  
I
-40ºCꢀ≤ꢀT ꢀ≤ꢀ+85ºC  
pA  
B
A
-40ºCꢀ≤ꢀT ꢀ≤ꢀ+125ºC  
50  
A
Analog Devices  
2  
www.analog.com  
MAX44242  
20V, Low Input Bias-Current,  
Low-Noise, Dual Op Amplifier  
Electrical Characteristics (continued)  
(V  
= 10V, V = 0V, V  
= V = V /2, R ꢀ=ꢀ10kΩꢀtoꢀV /2, T = -40°C to +125°C, unless otherwise noted. Typical values are  
DD  
SS  
IN+  
IN-  
DD  
L
DD  
A
at T = +25°C.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
0.5  
10  
UNITS  
T
= +25°C  
0.04  
A
InputꢀOffsetꢀCurrentꢀ(Noteꢀ3)  
I
-40°Cꢀ≤ꢀT ꢀ≤ꢀ+85°C  
pA  
OS  
A
-40°Cꢀ≤ꢀT ꢀ≤ꢀ+125°C  
25  
A
T = +25°C  
A
134  
129  
145  
250mVꢀ≤ꢀV  
ꢀ≤ꢀ  
OUT  
Open Loop Gain  
A
dB  
VOL  
V
- 250mV  
DD  
Differential  
Common mode  
To V or V  
-40°Cꢀ≤ꢀT ꢀ≤ꢀ+125°C  
A
50  
200  
95  
Input Resistance  
R
GΩ  
mA  
mV  
IN  
Output Short-Circuit Current  
Output Voltage Low  
Noncontinuous  
DD SS  
R
R
R
R
ꢀ=ꢀ10kΩꢀtoꢀV /2  
DD  
25  
85  
LOAD  
LOAD  
LOAD  
LOAD  
V
V
- V  
OUT SS  
OL  
ꢀ=ꢀ2kΩꢀtoꢀV /2  
DD  
ꢀ=ꢀ10kΩꢀtoꢀV /2  
DD  
37  
Output Voltage High  
V
V
- V  
mV  
OH  
DD  
OUT  
ꢀ=ꢀ2kΩꢀtoꢀV /2  
135  
DD  
AC CHARACTERISTICS  
Input Voltage-Noise Density  
Input Voltage Noise  
Input Current-Noise Density  
Input Capacitance  
e
f = 1kHz  
5
1.6  
0.3  
4
nV/√Hz  
n
0.1Hzꢀ≤ꢀfꢀ≤ꢀ10Hz  
µV  
P-P  
I
f = 1kHz  
pA/√Hz  
pF  
N
C
IN  
Gain-Bandwidth Product  
Phase Margin  
GBW  
PM  
10  
60  
8
MHz  
deg  
C
= 20pF  
LOAD  
Slew Rate  
SR  
A
= 1V/V, V = 2V  
OUT P-P  
, 10% to 90%  
V/µs  
pF  
V
Capacitive Loading  
C
No sustained oscillation, A = 1V/V  
200  
-124  
-100  
35  
40  
50  
57  
1
LOAD  
V
f = 1kHz  
Total Harmonic Distortion Plus  
Noise  
V
A
= 2V ,  
P-P  
= +1V/V  
OUT  
THD+N  
dB  
V
f = 20kHz  
f = 400MHz  
f = 900MHz  
f = 1800MHz  
f = 2400MHz  
EMI Rejection Ratio  
Settling Time  
EMIRR  
V
= 100mV  
dB  
µs  
RF_PEAK  
To 0.01%, V  
= 2V step, A = -1V/V  
V
OUT  
Note 2: All devices are production tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 3: Guaranteed by design.  
Analog Devices  
3  
www.analog.com  
MAX44242  
20V, Low Input Bias-Current,  
Low-Noise, Dual Op Amplifier  
Typical Operating Characteristics  
(V  
= 10V, V = 0V, outputs have R ꢀ=ꢀ10kΩꢀtoꢀV /2. T ꢀ=ꢀ+25°C,ꢀunlessꢀotherwiseꢀspecified.)  
SS L DD A  
DD  
SUPPLY CURRENT PER AMPLIFIER  
INPUT OFFSET VOLTAGE DRIFT HISTOGRAM  
INPUT OFFSET VOLTAGE HISTOGRAM  
vs. TEMPERATURE  
toc01  
toc02  
toc03  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
HISTOGRAM  
HISTOGRAM  
VIN = VDD/2  
NO LOAD  
1300  
1200  
1100  
1000  
900  
VDD = 20V  
VDD = 15V  
VDD = 10V  
VDD = 5.5V  
6
4
VDD = 2.7V  
2
0
0
-250 -200 -150 -100 -50  
0
50 100 150 200 250  
-600 -400 -200  
0
200  
400  
600  
-50 -25  
0
25  
50  
75 100 125 150  
INPUT OFFSET VOLTAGE DRIFT (nV/°C)  
INPUT OFFSET VOLTAGE (μV)  
TEMPERATURE (°C)  
INPUT BIAS CURRENT  
vs. INPUT COMMON-MODE VOLTAGE  
vs. TEMPERATURE  
INPUT OFFSET VOLTAGE  
vs. INPUT COMMON-MODE VOLTAGE  
vs. TEMPERATURE  
COMMON-MODE REJECTION RATIO  
vs. TEMPERATURE  
toc04  
toc05  
toc06  
20  
300  
250  
200  
150  
100  
50  
140  
120  
100  
80  
VIN = VDD/2  
10k  
TA = +125°C  
0
-20  
TA = +125°C  
TA = +85°C  
TA = +25°C  
-40  
-60  
60  
TA = +105°C  
-80  
40  
-100  
-120  
-140  
0
TA = -40°C  
20  
-50  
-100  
TA = +85°C  
TA = +25°C  
0
-1  
1
3
5
7
9
0
2
4
6
8
10  
-50  
-25  
0
25  
50  
75  
100 125  
INPUT COMMON-MODE VOLTAGE (V)  
INPUT COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
POWER-SUPPLY REJECTION RATIO  
vs. TEMPERATURE  
AC CMRR  
vs. FREQUENCY  
toc08  
toc07  
150  
130  
110  
90  
140  
120  
100  
80  
60  
70  
40  
50  
20  
0
30  
1
100  
10000  
1000000  
-50  
-25  
0
25  
50  
75  
100 125  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Analog Devices  
4  
www.analog.com  
MAX44242  
20V, Low Input Bias-Current,  
Low-Noise, Dual Op Amplifier  
Typical Operating Characteristics (continued)  
(V  
= 10V, V = 0V, outputs have R ꢀ=ꢀ10kΩꢀtoꢀV /2. T ꢀ=ꢀ+25°C,ꢀunlessꢀotherwiseꢀspecified.)  
SS L DD A  
DD  
AC PSRR  
vs. FREQUENCY  
SMALL-SIGNAL RESPONSE  
vs. FREQUENCY  
AVOL  
vs. FREQUENCY  
toc09  
toc10  
toc11  
120  
100  
80  
10  
5
130  
110  
90  
0
70  
-5  
50  
60  
30  
-10  
-15  
-20  
10  
40  
-10  
-30  
100mVP-P  
INPUT  
20  
10  
1,000  
100,000  
10,000,000  
10  
1,000  
100,000  
10,000,000  
10  
1,000  
100,000  
10,000,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LARGE-SIGNAL RESPONSE  
vs. FREQUENCY  
INPUT VOLTAGE-NOISE DENSITY  
vs. FREQUENCY  
0.1 Hz to 10 Hz PEAK TO PEAK NOISE  
toc12  
toc14  
toc13  
5
40  
35  
30  
25  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
1μV/div  
2VP-P Input  
100,000 10,000,000  
en = 1.6μVP-P  
0
10  
1,000  
FREQUENCY (Hz)  
10  
100  
1000  
10000  
100000  
FREQUENCY (Hz)  
OUTPUT VOLTAGE HIGH (VDD - VOUT  
vs. OUTPUT SOURCE CURRENT  
)
INPUT CURRENT-NOISE DENSITY  
vs. FREQUENCY  
toc15  
toc16  
5
4
3
2
1
0
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
10  
100  
1000  
10000  
0
4
8
12  
16  
20  
FREQUENCY (Hz)  
OUTPUT SOURCE CURRENT (mA)  
Analog Devices  
5  
www.analog.com  
MAX44242  
20V, Low Input Bias-Current,  
Low-Noise, Dual Op Amplifier  
Typical Operating Characteristics (continued)  
(V  
= 10V, V = 0V, outputs have R ꢀ=ꢀ10kΩꢀtoꢀV /2. T ꢀ=ꢀ+25°C,ꢀunlessꢀotherwiseꢀspecified.)  
DD  
SS  
L
DD  
A
SMALL-SIGNAL RESPONSE  
OUTPUT VOLTAGE LOW (VOUT  
vs. OUTPUT SINK CURRENT  
)
OUTPUT VOLTAGE SWING HIGH  
vs. TEMPERATURE  
vs. TIME  
toc19  
toc17  
toc18  
600  
120  
100  
80  
60  
40  
20  
0
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VOUTN  
RL = 2kΩ  
VINSIDE  
VBACKUP  
RL = 10kΩ  
0
0
5
10  
15  
20  
25  
30  
-50  
-20  
10  
40  
70  
100  
130  
TEMPERATURE (°C)  
OUTPUT SINK CURRENT (mA)  
SMALL-SIGNAL RESPONSE  
vs. TIME  
LARGE-SIGNAL RESPONSE  
vs. TIME  
toc20  
toc21  
No LOAD  
VIN  
No LOAD  
VIN  
1V/div  
50mV/div  
VOUT  
VOUT  
1V/div  
50mV/div  
1μs/div  
1μs/div  
STABILITY  
STABILITY  
vs. CAPACITIVE LOAD AND  
RESISTIVE LOAD  
vs. CAPACITIVE LOAD AND  
ISOLATION RESISTOR  
toc23  
toc22  
100  
10  
100  
10  
UNSTABLE  
1
UNSTABLE  
1
0.1  
0.1  
0.01  
STABLE  
0.01  
0.001  
STABLE  
100  
1000  
10000  
100000  
100  
1000  
10000  
100000  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Analog Devices  
6  
www.analog.com  
MAX44242  
20V, Low Input Bias-Current,  
Low-Noise, Dual Op Amplifier  
Typical Operating Characteristics (continued)  
(V  
= 10V, V = 0V, outputs have R ꢀ=ꢀ10kΩꢀtoꢀV /2. T ꢀ=ꢀ+25°C,ꢀunlessꢀotherwiseꢀspecified.)  
DD  
SS  
L
DD  
A
TOTAL HARMONIC DISTORTION  
vs. INPUT FREQUENCY  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
vs. AMPLITUDE  
toc25  
toc26  
0
0
-20  
2VP-P INPUT  
-10  
-20  
RLOAD = 10kΩ  
-30  
-40  
-40  
-50  
1kHz INPUT  
FREQUENCY  
-60  
-60  
-70  
-80  
-80  
R
LOAD = 1kΩ  
-90  
RLOAD = 600Ω  
R
LOAD = 10kΩ  
20kHz INPUT  
FREQUENCY  
-100  
-110  
-120  
-100  
-120  
10  
100  
1000  
10000  
100000  
0
2
4
6
8
10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
CROSSTALK  
vs. FREQUENCY  
EMIRR  
vs. FREQUENCY  
toc27  
toc29  
0
-20  
100  
80  
60  
40  
20  
0
-40  
-60  
-80  
-100  
-120  
1
10  
100  
1000 10000 100000 1000000  
10  
100  
1000  
10000  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Analog Devices  
7  
www.analog.com  
MAX44242  
20V, Low Input Bias-Current,  
Low-Noise, Dual Op Amplifier  
Pin Configuration  
TOP VIEW  
+
MAX44242  
1
2
3
4
8
7
6
5
OUTA  
INA-  
INA+  
VSS  
VDD  
OUTB  
INB-  
INB+  
8µMAX/SOT-23  
Pin Description  
PIN  
1
NAME  
OUTA  
INA-  
FUNCTION  
Channel A Output  
2
Channel A Negative Input  
Channel A Positive Input  
3
INA+  
4
V
Negative Supply Voltage. Connect V to ground if single supply is used.  
SS  
SS  
5
INB+  
INB-  
Channel B Positive Input  
Channel B Negative Input  
Channel B Output  
6
7
OUTB  
8
V
Positive Supply Voltage  
DD  
Integrated EMI Filter  
Detailed Description  
Electromagnetic interference (EMI) noise occurs at higher  
frequency that results in malfunction or degradation of  
electrical equipment.  
Combining high input impedance, low input bias current,  
wide bandwidth, and fast settling time, the MAX44242 is  
an ideal amplifier for driving precision analog-to-digital  
inputs and buffering digital-to-analog converter outputs.  
The MAX44242 has an input EMI filter to avoid the output  
from getting affected by radio frequency interference. The  
EMI filter, composed of passive devices, presents signifi-  
cant higher impedance to higher frequencies.  
Input Bias Current  
The MAX44242 features a high-impedance CMOS input  
stage and a special ESD structure that allows low input  
bias current operation at low-input, common-mode volt-  
ages. Low input bias current is useful when interfacing  
with high-ohmic or capacitive sensors and is beneficial for  
designing transimpedance amplifiers for photodiode sen-  
sors. This makes the device ideal for ground-referenced  
medical and industrial sensor applications.  
High Supply Voltage Range  
The device features 1.2mA current consumption per  
channel and a voltage supply range from either 2.7V to  
20V single supply or ±1.35V to ±10V split supply.  
Analog Devices  
8  
www.analog.com  
MAX44242  
20V, Low Input Bias-Current,  
Low-Noise, Dual Op Amplifier  
apply a small gain to the input voltage signal. Due to the  
extremely high impedance of the sensor output, a low  
input bias current with minimal temperature variation is  
very important for these applications.  
Typical Application Circuit  
High-Impedance Sensor Application  
High impedance sources like pH sensor, photodiodes in  
applications require negligible input leakage currents to  
the input transimpedance/buffer structure. The MAX44242  
benefits with clean and precise signal conditioning due to  
its input structure.  
Transimpedance Amplifier  
As shown in Figure 2, the noninverting pin is biased at 2V  
with C2 added to bypass high-frequency noise. This bias  
voltage to reverse biases the photodiode D1 at 2V which  
is often enough to minimize the capacitance across the  
The device interfaces to both current-output sensors  
(photodiodes) (Figure 1), and high-impedance voltage  
sources (piezoelectric sensors). For current output sen-  
sors, a transimpedance amplifier is the most noise-effi-  
cient method for converting the input signal to a voltage.  
High-value feedback resistors are commonly chosen to  
create large gains, while feedback capacitors help stabi-  
lize the amplifier by cancelling any poles introduced in the  
feedback loop by the highly capacitive sensor or cabling.  
A combination of low-current noise and low-voltage noise  
is important for these applications. Take care to calibrate  
out photodiode dark current if DC accuracy is important.  
The high bandwidth and slew rate also allow AC signal  
processing in certain medical photodiode sensor applica-  
tions such as pulse-oximetry. For voltage-output sensors,  
a noninverting amplifier is typically used to buffer and/or  
junction. Hence, the reverse current (I ) produced by the  
R
photodiode as light photons are incident on it, a propor-  
tional voltage is produced at the output of the amplifier by  
the given relation:  
V
= I × R1  
R
OUT  
The addition of C1 is to compensate for the instability  
caused due to the additional capacitance at the input  
(junction capacitance C and input capacitance of the op  
j
amp C ), which results in loss of phase margin. More  
IN  
information about stabilizing the transimpedance amplifier  
can be found in Application Note 5129: Stabilize Your  
Transimpedance Amplifier.  
C1  
15nF  
R1  
100kΩ  
+5V  
MAX44242  
5V  
R2  
30kΩ  
R3  
C2  
20kΩ  
10nF  
Figure 1. High-Impedance Source/Sensor Preamp Application  
Analog Devices  
9  
www.analog.com  
MAX44242  
20V, Low Input Bias-Current,  
Low-Noise, Dual Op Amplifier  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PIN-  
TOP  
PART  
TEMP RANGE  
PACKAGE MARK  
MAX44242AKA+ -40ºC to +125ºC  
MAX44242AUA+ -40ºC to +125ºC  
8 SOT23  
8 µMAX  
AETK  
PACKAGE  
TYPE  
PACKAGE OUTLINE  
LAND  
PATTERN NO.  
+Denotes lead(Pb)-free/RoHS-compliant package.  
CODE  
K8+5  
U8+1  
NO.  
8 SOT23  
8 µMAX  
21-0078  
21-0036  
90-0176  
90-0092  
Chip Information  
PROCESS: BiCMOS  
Analog Devices  
10  
www.analog.com  
MAX44242  
20V, Low Input Bias-Current,  
Low-Noise, Dual Op Amplifier  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
12/13  
11/15  
4/18  
0
1
2
3
Initial release  
8
Updated Pin Configuration diagram  
Updated Typical Application Circuit  
1
3/21  
Updated Electrical Characteristics table  
3
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is  
assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that  
may result from its use.Specifications subject to change without notice. No license is granted by implicationor  
otherwise under any patent or patent rights of Analog Devices. Trademarks andregistered trademarks are the  
property of their respective owners.  
Analog Devices  
11  
w w w . a n a l o g . c o m  

相关型号:

MAX44243ASD+

36V, Low-Noise, Precision, Single/Quad/Dual Op Amps
MAXIM

MAX44243AUD+

Operational Amplifier, 4 Func, 5uV Offset-Max, BICMOS, PDSO14, ROHS COMPLIANT, TSSOP-14
MAXIM

MAX44244

36V, Precision, Low-Power, 90μA, Single/Quad/Dual Op Amps
MAXIM

MAX44244AUA+

36V, Precision, Low-Power, 90μA, Single/Quad/Dual Op Amps
MAXIM

MAX44244AUK+

36V, Precision, Low-Power, 90μA, Single/Quad/Dual Op Amps
MAXIM

MAX44244_V01

36V, Precision, Low-Power, 90μA, Single/Quad/Dual Op Amps
MAXIM

MAX44245

36V, Precision, Low-Power, 90μA, Single/Quad/Dual Op Amps
MAXIM

MAX44245ASD+

Operational Amplifier, 4 Func, 10uV Offset-Max, BICMOS, PDSO14, ROHS COMPLIANT, SOP-14
MAXIM

MAX44245AUD+

36V, Precision, Low-Power, 90μA, Single/Quad/Dual Op Amps
MAXIM

MAX44245AUD+T

Operational Amplifier, 4 Func, 10uV Offset-Max, BICMOS, PDSO14, ROHS COMPLIANT, TSSOP-14
MAXIM

MAX44246

36V, Low-Noise, Precision, Dual Op Amp
MAXIM

MAX44246ASA+

36V, Low-Noise, Precision, Dual Op Amp
MAXIM