MAX44245ASD+ [MAXIM]

Operational Amplifier, 4 Func, 10uV Offset-Max, BICMOS, PDSO14, ROHS COMPLIANT, SOP-14;
MAX44245ASD+
型号: MAX44245ASD+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Operational Amplifier, 4 Func, 10uV Offset-Max, BICMOS, PDSO14, ROHS COMPLIANT, SOP-14

放大器 信息通信管理 光电二极管
文件: 总15页 (文件大小:843K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
General Description  
Benefits and Features  
The MAX44244/MAX44245/MAX44248 family of parts  
provide ultra-precision, low-noise, zero-drift single/quad/  
dual operational amplifiers featuring very low-power  
operation with a wide supply range. The devices incor-  
porate a patented auto-zero circuit that constantly mea-  
sures and compensates the input offset to eliminate drift  
over time and temperature as well as the effect of 1/f  
noise. These devices also feature integrated EMI filters  
to reduce high-frequency signal demodulation on the  
output. The op amps operate from either a single 2.7V to  
36V supply or dual 1.35V to 18V supply. The devices  
are unity-gain stable with a 1MHz gain-bandwidth prod-  
uct and a low 90µA supply current per amplifier.  
Reduces Power for Sensitive Precision Applications  
Low 90µA Quiescent Current per Amplifier  
Eliminates the Cost of Calibration with Increased  
Accuracy with Maxim’s Patented Autozero Circuitry  
• Very Low Input Voltage Offset 7.5µV (max)  
• Low 30nV/NC Offset Drift (max)  
Low Noise Ideal for Sensor Interfaces and  
Transmitters  
50nV/√Hz at 1kHz  
• 0.5µV  
from 0.1Hz to 10Hz  
P-P  
1MHz Gain-Bandwidth Product  
• EMI Suppression Circuitry  
Rail-to-Rail Output  
The low offset and noise specifications and high supply  
range make the devices ideal for sensor interfaces and  
transmitters.  
Wide Supply for High-Voltage Front Ends  
• 2.7V to 36V Supply Range  
µMAX, SO, SOT23, TSSOP Packages  
The devices are available in FMAXM, SO, SOT23, and  
TSSOP packages and are specified over the -40NC to  
+125NC automotive operating temperature range.  
Applications  
Sensors Interfaces  
4mA to 20mA and 0 to10V Transmitters  
PLC Analog I/O Modules  
Weight Scales  
Ordering Information appears at end of data sheet.  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
Portable Medical Devices  
Typical Operating Circuit  
LP+  
V
REF  
MAX6033  
REF  
I
SIG  
R1  
(4-20mA)  
R2  
MAX5216  
DAC  
MAX44244  
R3  
FLOATING  
GROUND  
R
SENSE  
LP-  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-6367; Rev 5; 9/15  
 
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
ABSOLUTE MAXIMUM RATINGS  
V
to V ............................................................-0.3V to +40V  
Operating Temperature Range........................ -40NC to +125NC  
Storage Temperature ....................................... -65NC to +150NC  
Junction Temperature .....................................................+150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
DD  
SS  
Common-Mode Input Voltage........(V - 0.3V) to (V  
+ 0.3V)  
SS  
DD  
Differential Input Voltage IN_+, IN_- ......................................6V  
Continuous Input Current Into Any Pin ........................... Q20mA  
Output Voltage to V (OUT_) ................– 0.3V to (V  
+ 0.3V)  
SS  
DD  
Output Short-Circuit Duration (OUT_)..................................... 1s  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
SO-8  
Junction-to-Ambient Thermal Resistance (B ) ........132NC/W  
TSSOP  
Junction-to-Ambient Thermal Resistance (B ) ........110NC/W  
JA  
JA  
Junction-to-Case Thermal Resistance (B )...............38NC/W  
Junction-to-Case Thermal Resistance (B )...............30NC/W  
JC  
JC  
SO-14  
FMAX  
Junction-to-Ambient Thermal Resistance (B ) ........120NC/W  
Junction-to-Ambient Thermal Resistance (B ) .....206.3NC/W  
JA  
JA  
Junction-to-Case Thermal Resistance (B )...............37NC/W  
SOT23  
Junction-to-Case Thermal Resistance (B )...............42NC/W  
JC  
JC  
Junction-to-Ambient Thermal Resistance (B ) .....324.3NC/W  
JA  
Junction-to-Case Thermal Resistance (B )...............82NC/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
ELECTRICAL CHARACTERISTICS  
(V  
= 10V, V = 0V, V  
= V = V /2, R = 5kI to V /2, T = -40NC to +125NC, unless otherwise noted. Typical values are  
DD  
SS  
IN+  
IN-  
DD  
L
DD  
A
at +25NC.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
Supply Voltage Range  
V
Guaranteed by PSRR  
= +25NC, V = V = V /2 - 1V  
2.7  
140  
133  
36  
V
DD  
T
148  
100  
90  
Power-Supply Rejection Ratio  
(Note 3)  
A
IN+  
IN-  
DD  
PSRR  
dB  
-40NC < T < +125NC  
A
T
= +25NC  
160  
190  
130  
145  
Quiescent Current Per Amplifier  
(MAX4244 Only)  
A
I
I
FA  
FA  
DD  
DD  
-40NC < T < +125NC  
A
T
= +25NC  
Quiescent Current Per Amplifier  
(MAX44245/MAX44248 Only)  
A
-40NC < T < +125NC  
A
DC SPECIFICATIONS  
V
0.05  
-
V
1.5  
-
SS  
DD  
Input Common-Mode Range  
V
Guaranteed by CMRR test  
V
CM  
Maxim Integrated  
2
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 10V, V = 0V, V  
= V = V /2, R = 5kI to V /2, T = -40NC to +125NC, unless otherwise noted. Typical values are  
DD  
SS  
IN+  
IN-  
DD  
L
DD  
A
at +25NC.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
T
1.5V  
= +25NC, V  
= V - 0.05V to V  
-
A
CM  
SS  
DD  
126  
130  
Common-Mode Rejection Ratio  
(Note 3)  
CMRR  
dB  
-40NC < T < +125NC, V  
= V - 0.05V  
A
CM  
SS  
120  
to V  
- 1.5V  
DD  
T
= +25NC  
2
7.5  
10  
A
Input Offset Voltage (Note 3)  
V
FV  
nV/NC  
pA  
OS  
-40NC < T < +125NC  
A
Input Offset Voltage Drift  
(Note 3)  
TC V  
10  
30  
OS  
T
= +25NC  
150  
300  
700  
A
Input Bias Current (Note 3)  
Input Offset Current (Note 3)  
I
B
-40NC < T < +125NC  
A
T
= +25NC  
300  
150  
600  
A
I
pA  
OS  
-40NC < T < +125NC  
1400  
A
T
= +25NC  
140  
135  
A
V
V
0.5V  
+ 0.5V P  
SS  
Open-Loop Gain (Note 3)  
Output Short-Circuit Current  
A
PV -  
dB  
VOL  
OUT  
DD  
-40NC < T < +125NC  
A
To V  
or V , noncontinuous  
40  
mA  
DD  
SS  
T
= +25NC  
80  
110  
50  
V
V
-
A
DD  
-40NC < T < +125NC  
OUT  
A
Output Voltage Swing  
mV  
T
= +25NC  
V
-
A
OUT  
V
-40NC < T < +125NC  
75  
SS  
A
AC SPECIFICATIONS  
Input Voltage-Noise Density  
Input Voltage Noise  
e
f = 1kHz  
50  
500  
0.1  
1
nV/Hz  
N
0.1Hz < f < 10Hz  
f = 1kHz  
nV  
P-P  
Input Current-Noise Density  
Gain-Bandwidth Product  
Slew Rate  
i
pA/Hz  
MHz  
V/Fs  
pF  
N
GBW  
SR  
A = 1V/V, V  
= 2V  
P-P  
0.7  
400  
V
OUT  
Capacitive Loading  
C
No sustained oscillation, A = 1V/V  
V
L
Total Harmonic Distortion Plus  
Noise  
THD+N  
V
= 2V , A = +1V/V, f = 1kHz  
-100  
dB  
OUT  
P-P  
V
f = 400MHz  
f = 900MHz  
f = 1800MHz  
f = 2400MHz  
75  
78  
80  
90  
EMI Rejection Ratio  
EMIRR  
V
= 100mV  
dB  
RF_PEAK  
Maxim Integrated  
3
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
ELECTRICAL CHARACTERISTICS  
(V  
= 30V, V = 0V, V  
= V = V /2, R = 5kI to V /2, T = -40NC to +125NC, unless otherwise noted. Typical values are  
DD  
SS  
IN+  
IN-  
DD  
L
DD  
A
at +25NC.) (Note 2)  
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
100  
90  
MAX  
UNITS  
T
= +25NC  
160  
190  
130  
145  
Quiescent Current Per Amplifier  
(MAX44244 Only)  
A
I
I
FA  
FA  
DD  
DD  
-40NC < T < +125NC  
A
T
= +25NC  
Quiescent Current Per Amplifier  
(MAX44245/MAX44248 Only)  
A
-40NC < T < +125NC  
A
DC SPECIFICATIONS  
V
0.05  
-
V
1.5  
-
SS  
DD  
Input Common-Mode Range  
V
Guaranteed by CMRR test  
V
CM  
T
1.5V  
= +25NC, V  
= V - 0.05V to V  
-
A
CM  
SS  
DD  
130  
126  
140  
2
Common-Mode Rejection Ratio  
(Note 3)  
CMRR  
dB  
-40NC < T < +125NC, V  
to V  
= V - 0.05V  
A
CM  
SS  
- 1.5V  
DD  
T
= +25NC  
7.5  
10  
A
Input Offset Voltage (Note 3)  
V
FV  
nV/°C  
pA  
OS  
-40NC < T < +125NC  
A
Input Offset Voltage Drift  
(Note 3)  
TC V  
10  
30  
OS  
T
= +25NC  
150  
300  
700  
600  
A
Input Bias Current (Note 3)  
Input Offset Current (Note 3)  
I
B
-40NC < T < +125NC  
A
T
= +25NC  
300  
150  
40  
A
I
pA  
OS  
-40NC < T < +125NC  
1400  
A
T
= +25NC  
146  
140  
V
+ 0.5V PV  
A
SS  
OUT  
Open-Loop Gain (Note 3)  
Output Short-Circuit Current  
A
dB  
VOL  
PV  
- 0.5V  
-40NC < T < +125NC  
DD  
A
To V  
or V , noncontinuous  
mA  
DD  
SS  
T
= +25NC  
200  
270  
140  
220  
V
V
-
A
DD  
-40NC < T < +125NC  
OUT  
A
Output Voltage Swing  
mV  
T
= +25NC  
V
-
A
OUT  
V
-40NC < T < +125NC  
SS  
A
AC SPECIFICATIONS  
Input Voltage-Noise Density  
Input Voltage Noise  
e
f = 1kHz  
50  
500  
0.1  
1
nV/Hz  
N
0.1Hz < f < 10Hz  
f = 1kHz  
nV  
P-P  
Input Current-Noise Density  
Gain-Bandwidth Product  
i
pA/Hz  
N
GBW  
MHz  
Maxim Integrated  
4
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 30V, V = 0V, V  
= V = V /2, R = 5kI to V /2, T = -40NC to +125NC, unless otherwise noted. Typical values are  
DD  
SS  
IN+  
IN-  
DD  
L
DD  
A
at +25NC.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.7  
MAX  
UNITS  
V/Fs  
pF  
Slew Rate  
SR  
A = 1V/V, V  
= 2V  
V
OUT P-P  
Capacitive Loading  
C
No sustained oscillation, A = 1V/V  
400  
L
V
Total Harmonic Distortion Plus  
Noise  
THD+N  
V
= 2V , A = +1V/V, f = 1kHz  
-100  
dB  
OUT  
P-P  
V
f = 400MHz  
f = 900MHz  
f = 1800MHz  
f = 2400MHz  
75  
78  
80  
90  
V
=
RF_PEAK  
EMI Rejection Ratio  
EMIRR  
dB  
100mV  
Note 2: All devices are 100% production tested at T = +25NC. Temperature limits are guaranteed by design.  
A
Note 3: Guaranteed by design.  
Note 4: At IN+ and IN-. Defined as 20log (V  
/δV ).  
OS  
RF_PEAK  
Typical Operating Characteristics  
(V= 10V, V = 0V, V  
= V = V /2, R = 5kω to V /2. Typical values are at T = +25°C.)  
DD SS IN+  
IN-  
DD  
L
DD  
A
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
INPUT OFFSET VOLTAGE HISTOGRAM  
INPUT OFFSET VOLTAGE DRIFT  
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
INPUT OFFSET VOLTAGE (µV)  
4
5
6
7
8
9
10 11 12 13 14  
0
10  
20  
30  
40  
INPUT OFFSET VOLTAGE DRIFT (nV/°C)  
SUPPLY VOLTAGE (V)  
Maxim Integrated  
5
 
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
Typical Operating Characteristics (continued)  
(V  
= 10V, V = 0V, V  
= V = V /2, R = 5kω to V /2. Typical values are at T = +25°C.)  
DD  
SS  
IN+  
IN-  
DD  
L
DD  
A
INPUT OFFSET VOLTAGE  
vs. COMMON-MODE VOLTAGE  
INPUT OFFSET VOLTAGE  
VS. TEMPERATURE  
SUPPLY CURRENT  
vs. TEMPERATURE  
2
1
3
2
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
1
0
-1  
-2  
-3  
-4  
0
-1  
-2  
-3  
-4  
-5  
-6  
-4  
-2  
0
2
4
6
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT BIAS CURRENT  
VS. COMMON-MODE VOLTAGE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
180  
160  
140  
120  
100  
80  
800  
600  
400  
200  
0
60  
40  
-200  
-400  
20  
0
0
2
4
6
8
10  
-50 -25  
0
25  
50  
75 100 125  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
COMMON-MODE REJECTION RATIO  
vs. TEMPERATURE  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-50 -25  
0
25  
50  
75 100 125  
10  
100  
1k  
10k  
100k  
1M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Maxim Integrated  
6
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
Typical Operating Characteristics (continued)  
(V  
= 10V, V = 0V, V  
= V = V /2, R = 5kω to V /2. Typical values are at T = +25°C.)  
DD  
SS  
IN+  
IN-  
DD  
L
DD  
OUTPUT VOLTAGE HIGH  
vs. TEMPERATURE  
A
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
OUTPUT VOLTAGE LOW  
vs. TEMPERATURE  
0
80  
70  
60  
50  
40  
30  
60  
50  
40  
30  
20  
10  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
20  
10  
0
10  
100  
1k  
10k  
100k  
1M  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE HIGH  
vs. SOURCE CURRENT  
OUTPUT VOLTAGE LOW  
vs. SINK CURRENT  
1000  
100  
10  
1000  
100  
10  
1
1
0.1  
1
10  
0.1  
1
10  
SOURCE CURRENT (mA)  
SINK CURRENT (mA)  
INPUT VOLTAGE NOISE  
vs. FREQUENCY  
INPUT VOLTAGE 0.1Hz TO 10Hz NOISE  
MAX44248 toc17  
200  
180  
160  
140  
120  
100  
80  
400nV/div  
60  
40  
20  
0
1s/div  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Maxim Integrated  
7
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
Typical Operating Characteristics (continued)  
(V  
= 10V, V = 0V, V  
= V = V /2, R = 5kω to V /2. Typical values are at T = +25°C.)  
DD  
SS  
IN+ IN- DD L DD A  
INPUT CURRENT NOISE  
vs. FREQUENCY  
LARGE-SIGNAL GAIN vs. FREQUENCY  
SMALL-SIGNAL GAIN vs. FREQUENCY  
140  
120  
100  
80  
140  
120  
100  
80  
10  
9
8
7
6
5
4
3
2
1
0
60  
60  
40  
40  
20  
20  
0
0
-20  
-40  
-20  
-40  
0.1  
1
10 100 1k  
FREQUENCY (Hz)  
10k 100k 1M  
0.1  
1
10 100 1k  
FREQUENCY (Hz)  
10k 100k 1M  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
LARGE-SIGNAL STEP RESPONSE  
SMALL-SIGNAL STEP RESPONSE  
MAX44248 toc22  
MAX44248 toc21  
V
IN  
2V/div  
V
IN  
100mV/div  
V
OUT  
V
OUT  
50mV/div  
500mV/div  
4µs/div  
4µs/div  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
POWER-UP TIME  
MAX44248 toc23  
0
-20  
V
DD  
10V/div  
-40  
R
= 1kI  
LOAD  
-60  
R
= 600I  
LOAD  
-80  
V
OUT  
2V/div  
-100  
-120  
-140  
R
= 5kI  
LOAD  
10  
100  
1k  
10k  
100k  
20µs/div  
FREQUENCY (Hz)  
Maxim Integrated  
8
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
Typical Operating Characteristics (continued)  
(V  
= 10V, V = 0V, V  
SS  
= V = V /2, R = 5kω to V /2. Typical values are at T = +25°C.)  
DD  
IN+  
IN-  
DD  
L
DD  
A
OUTPUT STABILITY  
vs. CAPACITIVE LOAD  
OUTPUT STABILITY  
vs. ISOLATION RESISTANCE  
10k  
1k  
10k  
1k  
UNSTABLE  
STABLE  
100  
10  
100  
10  
1
STABLE  
UNSTABLE  
1
100  
1000  
10,000  
100,000  
100  
1000  
10,000  
100,000  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
OUTPUT IMPEDANCE  
vs. FREQUENCY  
CROSSTALK vs. FREQUENCY  
0
-20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40  
-60  
-80  
-100  
-120  
-140  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
EMIRR vs. FREQUENCY  
120  
100  
80  
60  
40  
20  
0
10  
100  
1,000  
10,000  
FREQUENCY (MHz)  
Maxim Integrated  
9
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
Pin Configurations  
TOP VIEW  
+
OUTA  
1
2
3
5
4
V
DD  
+
N.C.  
INA-  
INA+  
1
2
3
4
8
7
6
5
N.C.  
MAX44244  
V
DD  
V
SS  
MAX44244  
OUTA  
N.C.  
V
SS  
INA+  
INA-  
µMAX  
SOT23  
+
+
OUTA  
INA-  
1
2
3
4
5
6
7
14 OUTD  
OUTA  
INA-  
1
2
3
4
5
6
7
14 OUTD  
13 IND-  
12 IND+  
13 IND-  
12 IND+  
INA+  
INA+  
MAX44245  
MAX44245  
V
11  
V
SS  
DD  
V
11 V  
SS  
DD  
INB+  
INB-  
10 INC+  
INB+  
INB-  
10 INC+  
9
8
INC-  
9
8
INC-  
OUTB  
OUTC  
OUTB  
OUTC  
TSSOP  
SO-14  
+
OUTA  
INA-  
1
2
3
4
8
7
6
5
V
DD  
+
OUTA  
1
2
3
4
8
7
6
5
V
DD  
MAX44248  
OUTB  
INB-  
INA-  
INA+  
OUTB  
INB-  
MAX44248  
INA+  
V
INB+  
SS  
µMAX  
V
SS  
INB+  
SO-8  
Maxim Integrated  
10  
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
Pin Description  
PIN  
MAX44245  
MAX44244  
MAX44248  
NAME  
FUNCTION  
SOT23  
µMAX  
6
SO-14  
TSSOP  
SO-8  
µMAX  
1
1
1
11  
3
1
11  
3
1
4
OUTA  
Channel A Output  
2
4
4
V
Negative Supply Voltage  
Channel A Positive Input  
Channel A Negative Input  
Positive Supply Voltage  
Channel B Positive Input  
Channel B Negative Input  
Channel B Output  
SS  
3
3
3
3
INA+  
INA-  
4
2
2
2
2
2
5
7
4
4
8
8
V
DD  
5
5
5
5
INB+  
INB-  
6
6
6
6
7
7
7
7
OUTB  
OUTC  
INC-  
8
8
Channel C Output  
9
9
Channel C Negative Input  
Channel C Positive Input  
Channel D Positive Input  
Channel D Negative Input  
Channel D Output  
10  
12  
13  
14  
10  
12  
13  
14  
INC+  
IND+  
IND-  
OUTD  
No Connection. Not internally  
connected.  
1, 5, 8  
N.C.  
Detailed Description  
Applications Information  
The MAX44244/MAX44245/MAX44248 are high-precision  
amplifiers with less than 2FV (typ) input-referred  
offset and low input voltage-noise density at 10Hz.  
1/f noise, in fact, is eliminated to improve the performance  
in low-frequency applications. These characteristics are  
achieved through an auto-zeroing technique that cancels  
the input offset voltage and 1/f noise of the amplifier.  
The devices feature ultra-high precision operational  
amplifiers with a high supply voltage range designed  
for load cell, medical instrumentation, and precision  
instrument applications.  
4–20mA Current-Loop Communication  
Industrial environments typically have a large amount of  
broadcast electromagnetic interference (EMI) from high-  
voltage transients and switching motors. This combined  
with long cables for sensor communication leads to  
high-voltage noise on communication lines. Current-Loop  
communication is resistant to this noise because the EMI  
induced current is low. This configuration also allows for  
low-power sensor applications to be powered from the  
communication lines.  
External Noise Suppression in EMI Form  
These devices have input EMI filters to prevent effects  
of radio frequency interference on the output. The EMI  
filters comprise passive devices that present significant  
higher impedance to higher frequency signals. See the  
EMIRR vs. Frequency graph in the Typical Operating  
Characteristics section for details.  
The Typical Operating Circuit shows how the device can  
be used to make a current loop driver.  
High Supply Voltage Range  
The devices feature 90µA current consumption per chan-  
nel and a voltage supply range from either 2.7V to 36V  
single supply or 1.35V to 18V split supply.  
The circuit uses low-power components such as the  
MAX44244 op amp, the 16-bit MAX5216 DAC, and the  
high-precision 60µA-only MAX6033 reference. In this  
Maxim Integrated  
11  
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
circuit, both the DAC and the reference are referred to  
a high-accuracy internal oscillator that requires no  
external components.  
the local ground. The MAX44244 op-amp inputs are  
capable of swinging to the negative supply (which is the  
local ground in this case). R3 acts as a current mirror with  
Layout Guidelines  
The MAX44244/MAX44245/MAX44248 feature ultra-low  
input offset voltage and noise. Therefore, to get optimum  
performance follow the layout guidelines.  
R
. Therefore, if R  
= 50Ω (i.e. 20mA will drop  
SENSE  
SENSE  
1V) and if the current through R3 is 10µA when I  
is  
OUT  
20mA (0.05% error) then R3 = 100kΩ. R1 is chosen along  
with the reference voltage to provide the 4mA offset. R2  
= 512kΩ for 20mA full scale or R2 = 614kΩ for 20% over-  
Avoid temperature tradients at the junction of two  
dissimilar metals. The most common dissimilar metals  
used on a PCB are solder-to-component lead and  
solder-to-board trace. Dissimilar metals create a local  
thermocouple. A variation in temperature across the  
board can cause an additional offset due to Seebeck  
effect at the solder junctions. To minimize the Seebeck  
effect, place the amplifier away from potential heat  
sources on the board, if possible. Orient the resistors  
such that both the ends are heated equally. It is a good  
practice to match the input signal path to ensure that the  
type and number of thermoelectric juntions remain the  
same. For example, consider using dummy 0ω resistors  
oriented in such a way that the thermoelectric source, due  
to the real resistors in the signal path, are cancelled. It is  
recommended to flood the PCB with ground plane. The  
ground plane ensures that heat is distributed uniformly  
reducing the potential offset voltage degradation due to  
Seebeck effect.  
range. R  
is ratiometric with R3, R1 independently  
SENSE  
sets the offset current and R2 independently sets the  
DAC scaling.  
Driving High-Performance ADCs  
The MAX44244/MAX44245/MAX44248’s low input offset  
voltage and low noise make these amplifiers ideal for  
ADC buffering. Weight scale applications require a low-  
noise, precision amplifier in front of an ADC. Figure 1  
details an example of a load cell and amplifier driven  
from the same 5V supply, along with a 16-bit delta sigma  
ADC such as the MAX11205.  
The MAX11205 is an ultra-low-power (< 300FA, max  
active current), high-resolution, serial output ADC. It  
provides the highest resolution per unit power in the  
industry and is optimized for applications that require  
very high dynamic range with low power such as sensors  
on a 4–20mA industrial control loop. The devices provide  
5V  
5V  
½ MAX44248  
AMP A  
V
DD  
5V  
MICRO-  
CONTROLLER  
R
R
F
V
DD  
SCLK  
RDY/DOUT  
MAX11205  
SCK  
V
V
IN+  
IN-  
MISO  
R
G
F
V
SS  
5V  
V
SS  
AMP B  
½ MAX44248  
Figure 1. Weight Application  
Maxim Integrated  
12  
 
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
Chip Information  
Package Information  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
Ordering Information  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
PIN-  
TOP  
PART  
TEMP RANGE  
PACKAGE MARK  
21-0057  
21-0041  
21-0036  
21-0041  
21-0066  
90-0174  
90-0096  
90-0092  
90-0112  
90-0113  
5 SOT23  
8 SO  
U5+1  
S8+4  
MAX44244AUK+  
MAX44244AUA+  
MAX44245ASD+  
MAX44245AUD+  
MAX44248AUA+  
MAX44248ASA+  
-40°C to +125°C 5 SOT23  
-40°C to +125°C 8 µMAX  
-40°C to +125°C 14 SO  
-40°C to +125°C 14 TSSOP  
-40°C to +125°C 8 µMAX  
-40°C to +125°C 8 SO  
AFMR  
8 µMAX  
14 SO  
U8+1  
S14M+4  
U14M+1  
14 TSSOP  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Maxim Integrated  
13  
 
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
7/12  
Initial release  
Added the MAX44244/MAX44245 to data sheet. Updated the Electrical  
Characteristics, Absolute Maximum Ratings, Pin Description, and Pin  
Configurations.  
1
6/13  
1–13  
Released the MAX44244 for introduction. Revised the Electrical  
Characteristics  
2
9/13  
2–5, 13  
3
4
5
6/14  
12/14  
9/15  
Corrected Figure 1 and Package Information  
Updated Benefits and Features section  
Updated Typical Operating Circuit  
12, 13  
1
1
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
14  
©
2015 Maxim Integrated  
The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.  
MAX44244/MAX44245/MAX44248  
36V, Precision, Low-Power, 90µA,  
Single/Quad/Dual Op Amps  
Maxim Integrated  
15  

相关型号:

MAX44245AUD+

36V, Precision, Low-Power, 90μA, Single/Quad/Dual Op Amps
MAXIM

MAX44245AUD+T

Operational Amplifier, 4 Func, 10uV Offset-Max, BICMOS, PDSO14, ROHS COMPLIANT, TSSOP-14
MAXIM

MAX44246

36V, Low-Noise, Precision, Dual Op Amp
MAXIM

MAX44246ASA+

36V, Low-Noise, Precision, Dual Op Amp
MAXIM

MAX44246AUA+

36V, Low-Noise, Precision, Dual Op Amp
MAXIM

MAX44246_12

36V, Low-Noise, Precision, Dual Op Amp
MAXIM

MAX44246_13

36V, Low-Noise, Precision, Dual Op Amp
MAXIM

MAX44248

36V, Precision, Low-Power, 90μA, Single/Quad/Dual Op Amps
MAXIM

MAX44248ASA+

36V, Precision, Low-Power, 90μA, Single/Quad/Dual Op Amps
MAXIM

MAX44248AUA+

Operational Amplifier, 2 Func, 10uV Offset-Max, BICMOS, PDSO8, ROHS COMPLIANT, UMAX-8
MAXIM

MAX44250

20V, Ultra-Precision, Low-Noise Op Amps
MAXIM

MAX44250AUA

20V, Ultra-Precision, Low-Noise Op Amps
MAXIM