MAX3831UCB-T [MAXIM]

ATM/SONET/SDH Mux/Demux, 1-Func, PQFP64, 10 X 10 MM, 1 MM HEIGHT, MO-136AJ, TQFP-64;
MAX3831UCB-T
型号: MAX3831UCB-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ATM/SONET/SDH Mux/Demux, 1-Func, PQFP64, 10 X 10 MM, 1 MM HEIGHT, MO-136AJ, TQFP-64

时钟发生器
文件: 总16页 (文件大小:285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1534; Rev 1; 10/99  
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
General Description  
Features  
+3.3V Single Supply  
The MAX3831/MAX3832 are 4:1 multiplexers (muxes)  
and 1:4 demultiplexers (demuxes) with automatic chan-  
nel assignment. Operating from a single +3.3V supply,  
the mux receives four parallel, 622Mbps SDH/SONET  
channels. These channels are bit interleaved to gener-  
ate a serial data stream of 2.488Gbps for interfacing to  
an optical or an electrical driver. A 10-bit-wide elastic  
buffer tolerates up to ±±.ꢀns sꢁew between any parallel  
data input and the reference clocꢁ. An external  
1ꢀꢀMHz reference clocꢁ is required for the on-chip PLL  
to synthesize a high-frequency 2.488GHz clocꢁ for tim-  
ing the outgoing data streams.  
1.45W Power Dissipation (MAX3831)  
4-Channel Mux/Demux with Fully Integrated  
2.488GHz Clock Generator  
Frame Detection Maintains Channel Assignment  
±±.5ns ꢀlastic Store ꢁange  
2.5ps ꢁMS Serial-Data Output ꢁandom Jitter  
8ps Serial-Data Output Deterministic Jitter  
622Mbps LVDS Parallel Input/Output  
2.488Gbps Serial CML Input/Output  
The MAX3831/MAX3832’s demux receives 2.488Gbps  
serial data and the 2.488GHz clocꢁ from an external  
clocꢁ/data recovery device (MAX38±6), converting it to  
four 622Mbps LVDS outputs. The MAX3831 provides a  
622MHz LVDS clocꢁ output, and the MAX3832 pro-  
vides a 1ꢀꢀMHz LVDS clocꢁ output. An internal frame  
detector looꢁs for a 622Mbps SDH/SONET framing pat-  
tern and rolls the demux to maintain proper channel  
assignment at the outputs.  
On-Chip Pattern Generator Provides  
High-Speed BIST  
System Test Flexibility: System Loopback,  
Line Loopback  
Loss-of-Frame Indicator  
Applications  
ATM Switching Networꢁs  
SDH/SONET Bacꢁplanes  
High-Speed Parallel Linꢁs Line Extenders  
These devices also include an embedded pattern gen-  
erator that enables a full-speed, built-in self-test (BIST).  
Two different loopbacꢁ modes provide system test flexi-  
bility. A TTL loss-of-frame monitor is included. The  
MAX3831/MAX3832 are available in 64-pin TQFP-EP  
(exposed paddle) pacꢁages and are specified over the  
upper commercial (0°C to +8ꢀ°C) temperature range.  
Intraracꢁ/Subracꢁ  
Interconnects  
Dense Digital Cross-  
Connects  
Ordering Information  
PAꢁT  
TꢀMP. ꢁANGꢀ  
0°C to +8ꢀ°C  
0°C to +8ꢀ°C  
PIN-PACKAGꢀ  
64 TQFP-EP  
MAX3831UCB  
MAX3832UCB  
Pin Configuration appears at end of data sheet.  
64 TQFP-EP  
Typical Application Circuit  
+3.3V  
0.33µF  
TTL  
TTL  
TTL  
TTL  
0.1µF  
RSETES  
RCLKI+  
RCLKI-  
FIL+ FIL- TEST  
LOF PLBEN  
V
CC  
155MHz REF  
SCLKI-  
SCLKI+  
SDI-  
LVDS  
LVDS  
CML  
CLOCK INPUT  
MAX3876  
2.5Gbps  
CDR  
4
4
PDI1+ TO PDI4+  
2.5Gbps  
OPTICAL  
TRANSCEIVER  
CML  
PDI1- TO PDI4-  
SDI+  
MAX3831  
MAX3832  
4
4
CMOS  
OVERHEAD  
PDO1+ TO PDO4+  
PDO1- TO PDO4-  
PCLKO+  
SDO+  
SDO-  
LVDS  
LVDS  
TTL  
TTL  
LBEN  
PCLKO-  
GND  
RSETFR  
TRIEN  
TTL  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
ABSOLUTꢀ MAXIMUM ꢁATINGS  
Positive Supply Voltage (V )...............................-0.ꢀV to +ꢀ.0V  
Continuous Power Dissipation (T = +8ꢀ°C) (Note 1)  
A
CC  
Input Voltage (LVDS, TTL)..........................-0.ꢀV to (V  
+ 0.ꢀV)  
+ 0.ꢀV)  
+ 0.ꢀV)  
+ 0.ꢀV)  
+0.ꢀV)  
64-Pin TQFP-EP (derate 40.0mW/°C above +8ꢀ°C).........2.6W  
Operating Temperature Range...............................0°C to +8ꢀ°C  
Storage Temperature Range.............................-60°C to +1ꢀ0°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
CC  
CC  
CC  
CML Input Voltage ..........................(V  
- 0.8V) to (V  
CC  
FIL+, FIL- Voltage.......................................-0.ꢀV to (V  
TTL Output Voltage ....................................-0.ꢀV to (V  
LVDS Output Voltage ..................................-0.ꢀV to (V  
CC  
CML Output Currents..........................................................22mA  
Note 1: Based on empirical data from the MAX3831/MAX3832 evaluation ꢁit.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ꢀLꢀCTꢁICAL CHAꢁACTꢀꢁISTICS  
CC  
(V  
= +3.0V to +3.6V, LVDS differential load = 100±1ꢂ, CML load = ꢀ0±1ꢂ to V , all TTL inputs are open, T = 0°C to  
CC A  
+8ꢀ°C, unless otherwise noted. Typical values are at T = +2ꢀ°C and V  
= +3.3V.)  
A
CC  
PAꢁAMꢀTꢀꢁ  
SYMBOL  
CONDITIONS  
MIN  
TYP  
440  
480  
MAX  
ꢀ80  
UNITS  
MAX3831  
MAX3832  
CML inputs and outputs open,  
Supply Current  
I
mA  
CC  
LVDS input V = 1.2V (Note 2)  
OS  
614  
LVDS INPUTS AND OUTPUTS  
Input Voltage Range  
V
0
2400  
+100  
mV  
mV  
mV  
IN  
Differential Input Threshold  
Threshold Hysteresis  
V
IDTH  
HYST  
-100  
V
90  
Input Impedance  
R
8ꢀ  
100  
2±0  
11ꢀ  
1.4±ꢀ  
400  
IN  
Input Common-Mode Current  
Output Voltage High  
I
LVDS input, V = 1.2V  
OS  
µA  
V
OS  
V
OH  
Output Voltage Low  
V
OL  
0.92ꢀ  
2ꢀ0  
V
Differential Output Voltage  
Figure 1  
mV  
V  
OD  
Change in Magnitude of  
Differential Output Voltage for  
Complementary States  
V  
±2ꢀ  
mV  
V
OD  
OS  
Output Offset Voltage  
V
1.12ꢀ  
1.2±ꢀ  
±2ꢀ  
Change in Magnitude of Output  
Offset Voltage for Complementary  
States  
V  
mV  
OS  
>1  
MΩ  
TRIEN = GND  
Differential Output Impedance  
80  
120  
12  
TRIEN = V  
CC  
Output Current  
Short outputs together (Note 3)  
mA  
CML INPUTS AND OUTPUTS  
Differential Output Voltage  
Differential Output Impedance  
Output Common-Mode Voltage  
V
640  
8ꢀ  
800  
100  
1000  
11ꢀ  
mVp-p  
ODp-p  
V
- 0.2  
V
CC  
V
-
V
+
CC  
CC  
0.4  
Single-Ended Input Voltage Range  
V
IS  
V
0.6  
400  
8ꢀ  
Differential Input Voltage Swing  
Differential Input Impedance  
Figure 2  
1200  
11ꢀ  
mVp-p  
100  
2
_______________________________________________________________________________________  
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
DC ꢀLꢀCTꢁICAL CHAꢁACTꢀꢁISTICS (continued)  
(V  
= +3.0V to +3.6V, LVDS differential load = 100±1ꢂ, CML load = ꢀ0±1ꢂ to V , all TTL inputs are open, T = 0°C to  
CC  
CC A  
+8ꢀ°C, unless otherwise noted. Typical values are at T = +2ꢀ°C and V  
= +3.3V.)  
A
CC  
PAꢁAMꢀTꢀꢁ  
TTL INPUTS AND OUTPUTS  
Input Voltage High  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
IH  
2.0  
V
V
Input Voltage Low  
V
IL  
0.8  
-ꢀ0  
Input Current High  
I
IH  
V
V
= 2.0V  
= 0  
-2ꢀ0  
-ꢀꢀ0  
2.4  
µA  
µA  
V
IH  
Input Current Low  
I
IL  
-100  
IL  
Output Voltage High  
Output Voltage Low  
Output Impedance  
V
OH  
I
I
= 20µA  
= 2mA  
OH  
OL  
V
OL  
0.4  
V
6
Ω  
TRIEN = GND  
Note 2: When TEST = GND, the pattern generator will consume an additional 30mA.  
Note 3: Guaranteed by design and characterization.  
AC ꢀLꢀCTꢁICAL CHAꢁACTꢀꢁISTICS  
CC  
(V  
= +3.0V to +3.6V, LVDS differential load = 100±1ꢂ, CML load = ꢀ0±1ꢂ to V , all TTL inputs are open, T = 0°C to  
CC A  
= +3.3V.) (Note 4)  
+8ꢀ°C, unless otherwise noted. Typical values are at T = +2ꢀ°C and V  
A
CC  
PAꢁAMꢀTꢀꢁ  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
4:1 MULTIPLꢀXꢀꢁ WITH CLOCK GꢀNꢀꢁATOꢁ  
Parallel Input Data Rate  
622.08  
±±.ꢀ  
Mbps  
ns  
Maximum Parallel Input Sꢁew  
Serial-Data Output Rate  
t
(Note ꢀ)  
es  
2.48832  
Gbps  
ps  
Serial-Data Output Rise/Fall Time  
t , t  
r
20ꢂ to 80ꢂ  
(Note 6)  
120  
3.ꢀ  
40  
f
ps  
RMS  
Serial-Data Output Random Jitter  
SRJ  
SDJ  
ps  
p-p  
Serial-Data Output Deterministic  
Jitter  
(Note ±)  
8
18  
ps  
p-p  
1:4 DꢀMULTIPLꢀXꢀꢁ  
Serial-Data Input Rate  
Serial-Data Setup Time  
Serial-Data Hold Time  
Parallel-Data Output Rate  
2.48832  
Gbps  
ps  
t
Figure 3  
Figure 3  
100  
100  
SU  
t
ps  
H
PDO±  
622.08  
622.08  
1ꢀꢀ.ꢀ2  
90  
Mbps  
MAX3831  
MAX3832  
Parallel-Clocꢁ Output Frequency  
PCLKO±  
MHz  
PCLKO to PDO_ Delay  
t
MAX3831, Figure 3  
20ꢂ to 80ꢂ  
-100  
300  
3ꢀ0  
6ꢀ  
ps  
ps  
ps  
ps  
ns  
CLK-Q  
LVDS Output Rise/Fall Time  
LVDS Differential Sꢁew  
t
t
Any differential pair  
PDO1± to PDO4±  
SKEW1  
LVDS Channel-to-Channel Sꢁew  
LVDS Three-State Enable Time  
<100  
30  
SKEW2  
Note 4: AC characteristics are guaranteed by design and characterization.  
Note 5: Relative to the positive edge of the 1ꢀꢀMHz reference clocꢁ. PDI1 to PDI4 aligned to RCLKI at reset.  
Note 6: Measured with a reference clocꢁ jitter of <1ps  
.
RMS  
Note ±: Deterministic jitter is the arithmetic sum of pattern-dependent jitter and pulse-width distortion.  
_______________________________________________________________________________________  
3
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
PDO+  
V
V
R = 100Ω  
L
OD  
D
PDO-  
V
V
V
PDO-  
OH  
SINGLE-ENDED OUTPUT  
V
OS  
OL  
| OD|  
V
V
PDO+  
+V  
OD  
0V  
0V (DIFF)  
V
= V  
- V  
PDO+ PDO-  
ODp-p  
DIFFERENTIAL OUTPUT  
-V  
OD  
Figure 1. Definition of the LVDS Output  
SDI+  
200mV MIN  
600mV MAX  
SDI-  
(SDI+) - (SDI-)  
400mVp-p MIN  
1200mVp-p MAX  
V
ID  
Figure 2. Definition of the CML Input  
t
= 1 / f  
SCLK  
SCLK  
SCLKI  
t
t
H
SU  
SDI  
PCLKO  
t
CLK-Q  
PDO1–PDO4  
NOTE: SIGNAL SHOWN IS DIFFERENTIAL. FOR EXAMPLE, SCLKI = (SCLKI+) - (SCLKI-).  
Figure 3. Timing Parameters  
4
_______________________________________________________________________________________  
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
Typical Operating Characteristics  
(V  
= +3.3V, T = +2ꢀ°C, unless otherwise noted.)  
A
CC  
SERIAL-DATA OUTPUT JITTER  
SUPPLY CURRENT vs. TEMPERATURE  
SERIAL-DATA OUTPUT EYE DIAGRAM  
600  
500  
400  
300  
200  
100  
0
MAX3832  
MAX3831  
23  
2
-1 PRBS PATTERN  
WIDEBAND RMS  
JITTER = 2.48ps  
5ps/div  
50ps/div  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
SERIAL-DATA HOLD TIME  
ELASTIC STORE RANGE  
10  
8
100  
80  
60  
40  
20  
0
6
4
2
ERROR-FREE OPERATION  
0
-2  
-4  
-6  
-8  
-10  
CHANNEL ALIGNED TO RCLKI  
-20  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
DATA TO RCLKI DELAY AT RESET (ns)  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
MAX3831  
PARALLEL CLOCK-TO-DATA OUTPUT  
PROPAGATION DELAY vs. TEMPERATURE  
SERIAL-DATA SETUP TIME  
300  
250  
200  
150  
100  
50  
100  
80  
60  
40  
20  
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
Pin Description  
PIN  
NAMꢀ  
FUNCTION  
1, 16, 2ꢀ, 28,  
29, 32, 43, 48,  
49, 60, 63  
GND  
Supply Ground  
2, ꢀ, 10, 13,  
1±, 24, 38, ꢀꢀ,  
ꢀ9, 64  
V
CC  
+3.3V Supply Voltage  
3
4
SDO-  
Negative CML Serial-Data Output, 2.488Gbps  
Positive CML Serial-Data Output, 2.488Gbps  
SDO+  
Line Loopbacꢁ Enable. When this TTL input is forced low, the CML serial-data inputs (SDI±)  
route directly to the CML serial-data outputs (SDO±). No other inputs or outputs are affected.  
An internal 1ꢀꢁpull-up resistor pulls LBEN high for normal operation. See Test Loopbacks.  
6
LBEN  
TEST  
Self-Test Enable. When this TTL input is forced low, the built-in pattern generator generates  
a standard OC-12 SONET-liꢁe frame of 12 A1s, 12 A2s, and 9696 bytes of 2± - 1 pseudo-  
random bits. This also enables an internal serial-system-loopbacꢁ path. The CML inputs  
(SDI± and the SCLK±) and the LVDS inputs are ignored in this mode. An internal 1ꢀꢁpull-  
up resistor pulls TEST high for normal operation.  
±
8
SDI+  
SDI-  
Positive CML Serial-Data Input, 2.488Gbps  
9
Negative CML Serial-Data Input, 2.488Gbps  
11  
12  
14  
1ꢀ  
SCLKI+  
SCLKI-  
PCLKO-  
PCLKO+  
N.C.  
Positive CML Serial-Clocꢁ Input, 2.488GHz  
Negative CML Serial-Clocꢁ Input, 2.488GHz  
Negative LVDS Parallel-Clocꢁ Output, 622.08MHz (MAX3831); 1ꢀꢀ.ꢀ2MHz (MAX3832)  
Positive LVDS Parallel-Clocꢁ Output, 622.08MHz (MAX3831); 1ꢀꢀ.ꢀ2MHz (MAX3832)  
No Connection  
18 23, 26, 2±  
Frame Reset. When this TTL input is forced low, the frame detector and pattern generator  
are reset. The LOF output is also asserted low. An internal 1ꢀꢁpull-up resistor pulls  
RSETFR high for normal operation.  
30  
RSETFR  
31  
33  
TTL Loss-of-Frame Output. Asserts low in a loss-of-frame condition.  
LOF  
TRIEN  
3-State Enable. When this TTL input is forced low, all TTL and LVDS outputs go into a high-  
impedance state. An internal 1ꢀꢁpull-up resistor pulls TRIEN high for normal operation.  
34, 36, 39, 41  
PDO4- to PDO1-  
Negative LVDS Parallel-Data Output, 622Mbps  
Positive LVDS Parallel-Data Output, 622Mbps  
Negative LVDS Parallel-Data Input, 622Mbps  
Positive LVDS Parallel-Data Input, 622Mbps  
3ꢀ, 3±, 40, 42 PDO4+ to PDO1+  
44, 46, ꢀ0, ꢀ2  
4ꢀ, 4±, ꢀ1, ꢀ3  
PDI4- to PDI1-  
PDI4+ to PDI1+  
Parallel System Loopbacꢁ Enable. When this TTL input is forced low, the LVDS parallel  
inputs route through the elastic store to the LVDS parallel outputs. This bypasses the high-  
speed mux and demux. An internal 1ꢀꢁpull-up resistor pulls PLBEN high for normal oper-  
ation.  
ꢀ4  
PLBEN  
ꢀ6  
ꢀ±  
RCLKI-  
Negative LVDS Reference Clocꢁ Input, 1ꢀꢀ.ꢀ2MHz  
Positive LVDS Reference Clocꢁ Input, 1ꢀꢀ.ꢀ2MHz  
RCLKI+  
6
_______________________________________________________________________________________  
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
Pin Description (continued)  
PIN  
NAMꢀ  
FUNCTION  
Elastic Store Reset. The elastic buffer is centered on a rising edge of RSETES, maximizing  
the elastic store range. Data must be present for 10µs before applying a pulse of at least  
10ns. An internal 1ꢀꢁpull-up resistor pulls RSETES high for normal operation.  
ꢀ8  
RSETES  
61  
62  
FIL-  
Negative PLL Filter Capacitor Input. Connect a 0.33µF capacitor between FIL+ and FIL-.  
Positive PLL Filter Capacitor Input. Connect a 0.33µF capacitor between FIL+ and FIL-.  
FIL+  
Ground. This must be soldered to a circuit board for proper thermal performance (see  
Package Information).  
EP  
Exposed Paddle  
Due to the inherent uncertainty of the data transitions  
_______________Detailed Description  
between the parallel-data inputs there is no bit or frame  
alignment between these inputs. However, the demux  
ensures proper channel assignment is maintained.  
The MAX3831/MAX3832 use a 4:1 mux and 1:4 demux  
with an elastic store buffer to simplify SDH/SONET  
interconnect I/O routing. The 622Mbps low-voltage dif-  
ferential signal (LVDS) parallel inputs pass through the  
10-bit elastic store buffer, which accommodates ±±.ꢀns  
sꢁew on any single input relative to the 1ꢀꢀMHz refer-  
ence clocꢁ input RCLKI. This reference clocꢁ is  
required to synthesize the internal 2.488GHz clocꢁ  
used to drive the elastic store and 4:1 multiplexer. All  
TTL and LVDS outputs can be placed in a high-imped-  
ance state. See Figure 4 for a functional diagram.  
Bit-Interleaved Multiplexer/  
Demultiplexer  
The MAX3831/MAX3832 use a bit interleave/deinterleave  
mux/demux. To guarantee channel assignment, one of  
the four channels is inverted before multiplexing to pro-  
vide a reference for the frame detector during demulti-  
plexing. After demultiplexing, the same channel is  
inverted bacꢁ to the original data format.  
The 4:1 mux bit-interleaves the parallel data, providing  
a 2.488Gbps CML serial output to the optical or electri-  
cal driver. The CML serial input receives the  
2.488Gbps data, the demux deinterleaves it to  
622Mbps and sends the data to the frame detector.  
The frame detector monitors one 622Mbps channel and  
rolls the demux into the proper channel assignment.  
The MAX3831/MAX3832 include high-speed, built-in  
self-test (BIST), which also allows testing of the  
622Mbps parallel-system loopbacꢁ and the 2.488Gbps  
line loopbacꢁ.  
Frame Detector  
After a 2.ꢀGbps serial data is bit deinterleaved into four  
622Mbps channels, an SDH/SONET frame detector  
monitors the fourth channel, looꢁing for the 32-bit pat-  
tern (A1A1A2A2) in the OC-12 header. To maintain cor-  
rect channel assignment, the demux outputs rotate until  
this 32-bit overhead pattern is reliably detected. A loss-  
of-frame output, LOF, indicates when the received data  
is in or out of frame. When LOF goes high, the frame  
pattern is detected and the demux outputs are correct-  
ly assigned. When LOF is low, the frame detection cir-  
cuitry is searching for the correct frame. A RSETFR  
(TTL, active low) is included to reset the frame detector  
when necessary.  
Elastic Store Buffer  
Each parallel-data input, PDI1 to PDI4, passes through  
its respective 10-bit elastic store buffer. Following an  
elastic store reset, this buffer accommodates ±±.ꢀns of  
sꢁew on any input relative to the 1ꢀꢀMHz reference  
clocꢁ. Figure ꢀ illustrates the elastic store buffer rela-  
tionship with RCLKI. The Elastic Store Range graph in  
the Typical Operating Characteristics shows the  
amount of data sꢁew tolerated.  
The frame detector uses an algorithm to detect an in-  
frame condition and a loss-of-frame condition; this algo-  
rithm is implemented to meet the SONET in-frame and  
false-frame specs. The frame_search state will occur  
upon start-up or reset. In this state, the frame detector  
scans through the incoming serial data searching for the  
framing pattern in the channel 4 output of the demux.  
While in this state, if the framing pattern is not found  
within 2ꢀ0µs, the demux channels are shifted (rolled)  
and the frame search continues (Figure 6).  
Following a 10µs power-up period, the locations of the  
individual data-channel bit transitions are acquired,  
guaranteeing data preservation. The output of this  
blocꢁ passes directly into the 4:1 mux. After power-up,  
the elastic store buffer must be reset by applying a low  
pulse on RSETES for at least 10ns.  
In-frame will be declared if two consecutive framing  
patterns are found at the correct byte locations within  
the SONET frame (9±20 bytes). If this pattern is not pre-  
________________________________________________________________________________________  
±
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
TRIEN  
TEST  
FIL+  
FIL-  
RSETES  
155MHz  
(155MHz)  
RCLKI+  
MAX3831  
MAX3832  
LVDS  
FREQUENCY  
GENERATOR  
RCLKI-  
622MHz  
PATTERN  
GENERATOR  
2.488GHz  
LBEN  
CK  
PDI1+  
PDI1-  
ES  
ES  
LVDS  
LVDS  
SDO+  
SDO-  
4:1  
MUX  
PDI2+  
PDI2-  
LINE LOOPBACK  
PDI3+  
PDI3-  
ES  
ES  
2.488Gbps  
SYSTEM LOOPBACK  
LVDS  
LVDS  
TEST  
PDI4+  
PDI4-  
622Mbps PARALLEL LOOPBACK  
D
PDO1+  
PDO1-  
LVDS  
LVDS  
2.488Gbps  
SDI+  
SDI-  
PDO2+  
PDO2-  
1:4  
DEMUX  
PDO3+  
PDO3-  
LVDS  
LVDS  
2.488GHz  
CK  
SCLKI+  
SCLKI-  
PDO4+  
PDO4-  
ROTATE  
FRAME  
CLOCK  
GENERATOR  
PLBEN  
PCLKO+  
622MHz  
DETECTOR  
LVDS  
*
PCLKO-  
RSETFR  
LOF  
*MAX3831: f  
= 622MHz, MAX3832: f  
= 155MHz  
PCLKO  
PCLKO  
Figure 4. Functional Diagram  
sent at the correct location (false frame), the state  
machine will return to the frame_search state described  
above. While in the in_frame state, each frame will be  
checꢁed for a framing pattern at the correct location.  
Four consecutive false frames will cause the state  
machine to return to the frame_search state described  
above. The false-frame counter is reset with three or  
fewer consecutive false frames.  
DATA INPUT  
DATA OUTPUT OF ELASTIC STORE  
AT t = t  
o
PDI1  
A0  
A1  
A0  
B0  
B1  
B2  
B1  
C0  
D1  
PDI2  
C0  
C1  
PDI3  
PDI4  
D0  
D1  
RSETES  
10ns  
+t  
Built-In Self-Test  
with On-Chip Serial Loopback  
RCLKI  
es  
DATA OUTPUT OF ELASTIC STORE  
AT t > t  
An on-chip pattern generator can be enabled to pro-  
duce a 622Mbps SDH/SONET-liꢁe transport overhead  
followed by a pseudorandom bit sequence. This consists  
of 12 A1s, 12 A2s, and a pseudorandom bit stream  
(PRBS = 2± - 1). When TEST is low, this pattern is distrib-  
uted to all parallel inputs, bypassing the LVDS input  
buffers. Note, this pattern is sꢁewed by one 622MHz  
o
A0  
A1  
A0  
PDI1  
PDI2  
PDI3  
PDI4  
-t  
es  
B1  
B2  
B1  
C0  
D1  
C0  
C1  
D0  
D1  
Figure 5. Example of Elastic Store Function  
_______________________________________________________________________________________  
8
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
FRAME DETECT  
START-UP OR RESET  
START 250µs TIMER  
FRAME_SEARCH  
NO  
YES  
TIMER  
TIMED OUT?  
ROLL DATA  
LOF = 0  
FRAME  
PATTERN  
DETECTED?  
NO  
YES  
1 FRAME DETECTED  
RESET BYTE  
AND FRAME  
FRAME  
PATTERN  
DETECTED?  
NO  
NO  
YES  
FRAME  
PATTERN  
DETECTED?  
YES  
YES  
YES  
IN_FRAME  
NO  
FRAME  
PATTERN  
DETECTED?  
LOF = 1  
NO  
FRAME  
PATTERN  
DETECTED?  
FRAME  
PATTERN  
DETECTED?  
NO  
YES  
Figure 6. Frame Detection Flow Diagram  
_______________________________________________________________________________________  
9
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
clocꢁ cycle between each channel. In this test mode, ser-  
ial data is internally looped bacꢁ to the demux. All frame  
V
CC  
V
CC  
detect logic is exercised using this mode. The CML  
inputs (SDI± and SCLKI±) and LVDS inputs (PDI_±) are  
ignored in this mode. After the BIST mode is enabled, the  
loss-of-frame flag LOF goes high, indicating that the self-  
test has passed. In normal operation, TEST is left open  
(internally pulled high), disabling the pattern generator  
and accepting data from the parallel input channels.  
50Ω  
50Ω  
50Ω  
50Ω  
SDO+ SDI+  
SDO- SDI-  
Test Loopbacks  
Two additional test loopbacꢁs are provided: parallel  
system loopbacꢁ and serial line loopbacꢁ.  
Parallel System Loopback  
In parallel system loopbacꢁ, four 622Mbps parallel  
input channels are phase aligned by an associated 10-  
bit elastic store and routed to the output LVDS buffers.  
This loopbacꢁ is controlled by setting PLBEN low.  
Normal data transmission is resumed when PLBEN  
goes high (internally pulled high).  
MAX3831  
MAX3832  
MAX3876  
Serial Line Loopback  
Serial line loopbacꢁ is used for testing the performance  
of the optical transceiver and the transmission linꢁ. The  
received 2.488Gbps data stream is routed to the trans-  
mit CML output buffer. Line loopbacꢁ is enabled when  
LBEN is asserted low. When LBEN is left open (internally  
pulled high), normal serial-data transmission resumes.  
Figure 7. CML-to-CML Interface  
__________Applications Information  
Low-Voltage Differential  
Signal Inputs/Outputs  
The MAX3831/MAX3832 have LVDS inputs and outputs  
for interfacing with high-speed digital circuitry. All LVDS  
inputs and outputs are compatible with the IEEE-1ꢀ96.3  
LVDS specification. This technology uses 2ꢀ0mV to  
400mV differential low-voltage amplitudes to achieve  
fast transition times, minimize power dissipation, and  
improve noise immunity.  
LVDS Parallel Interface  
The MAX3831 parallel interface includes four OC-12  
data inputs, a 1ꢀꢀMHz reference clocꢁ input, four  
622Mbps parallel-data outputs, and a 622MHz parallel-  
clocꢁ output (MAX3832, f  
= 1ꢀꢀMHz). All parallel  
PCLKO  
inputs and outputs are LVDS compatible to minimize  
power dissipation, speed transition time, and improve  
noise immunity. The 1ꢀꢀMHz input signal at RCLKI  
requires a duty cycle between 40ꢂ and 60ꢂ.  
For proper operation, the parallel clocꢁ and data LVDS  
outputs (PCLKO+, PCLKO-, PDO_+, PDO_-) require  
100differential DC termination between the inverting  
and noninverting outputs. Do not terminate these out-  
puts to ground. The parallel-data LVDS inputs (PDI_+,  
PDI_-) are internally terminated with 100differential  
input resistance and therefore do not require external  
termination.  
The LVDS outputs go into a high-impedance state when  
TRIEN is forced low. This simplifies system checꢁs by  
allowing vectors to be forced on the LVDS outputs.  
CML Serial Interface  
The MAX3831/MAX3832 provide a 2.488Gbps serial-  
data stream to a driver and accept 2.488Gbps serial  
data and a 2.488GHz clocꢁ signal from an external  
clocꢁ and data recovery device (MAX38±6). The high-  
speed interface is CML compatible, resulting in lower  
system power dissipation and excellent performance  
(Figure ±).  
Interfacing with PECL/ECL  
Input Levels  
When interfacing with differential PECL input levels, it is  
important to attenuate the signal while still maintaining  
ꢀ0termination (Figures 8 and 9). Observe the com-  
mon-mode input voltage specifications. AC-coupling is  
required if a V  
other than 3.3V is used to maintain the  
CC  
input common-mode level (Figure 8).  
10 ______________________________________________________________________________________  
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
V
CC  
V
= 3.3V  
CC  
V
= 3.3V  
CC  
50Ω  
50Ω  
0.1µF  
0.1µF  
50Ω  
50Ω  
25Ω  
SDI+  
SDI-  
PECL  
LEVELS  
82Ω  
82Ω  
SDI+  
SDI-  
R *  
T
82Ω  
82Ω  
100Ω  
PECL  
OUTPUT  
25Ω  
R *  
T
MAX3831  
MAX3832  
MAX3831  
MAX3832  
*SELECT R SUCH THAT THE CORRECT PECL COMMON-MODE LEVEL  
T
IS ACHIEVED (TYPICAL PECL OUTPUT CURRENT = 14mA).  
Figure 8. PECL-to-CML Interface  
Figure 9. Direct Coupling of a PECL Output into the MAX3831/  
MAX3832  
Layout Techniques  
For best performance, use good high-frequency layout  
techniques. Filter voltage supplies, ꢁeep ground con-  
nections short, and use multiple vias where possible.  
Use controlled-impedance transmission lines to inter-  
face with the MAX3831/MAX3832 high-speed inputs  
and outputs.  
Place power-supply decoupling as close to V  
as  
CC  
possible. To reduce feedthrough, taꢁe care to isolate  
the input signals from the output signals.  
______________________________________________________________________________________ 11  
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
Pin Configuration  
TOP VIEW  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
GND  
1
2
48 GND  
V
CC  
47 PDI3+  
46 PDI3-  
45 PDI4+  
44 PDI4-  
43 GND  
SDO-  
SDO+  
3
4
V
5
CC  
6
LBEN  
TEST  
SDI+  
SDI-  
7
42 PDO1+  
41 PDO1-  
40 PDO2+  
39 PDO2-  
8
MAX3831  
MAX3832  
9
V
10  
CC  
SCLKI+ 11  
SCLKI- 12  
38 V  
CC  
37 PDO3+  
36 PDO3-  
35 PDO4+  
34 PDO4-  
33 TRIEN  
V
CC  
13  
PCLKO- 14  
PCLKO+ 15  
GND 16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
TQFP-ꢀP  
___________________Chip Information  
TRANSISTOR COUNT: 14,134  
12 ______________________________________________________________________________________  
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
Package Information  
______________________________________________________________________________________ 13  
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
Package Information (continued)  
14 ______________________________________________________________________________________  
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
NOTꢀS  
______________________________________________________________________________________ 15  
+3.3V, 2.5Gbps, SDH/SONET, 4-Channel  
Interconnect Mux/Demux ICs with Clock Generator  
NOTꢀS  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3831UCB-TD

ATM/SONET/SDH Mux/Demux, 1-Func, PQFP64, 10 X 10 MM, 1 MM HEIGHT, MO-136AJ, TQFP-64
MAXIM

MAX3832

2x4-Channel.Simultaneous-Sampling.14-Bit DAS[MAX125/MAX126/MAX125/MAX126/MAX125/MAX126/MAX125ACAX/MAX125ACAX-T/MAX125AEAX/MAX125AEAX-T/MAX125BC/D/MAX125BCAX/MAX125BCAX-T/MAX125BEAX/MAX125BEAX-T/MAX125CC/D/MAX125CCAX/MAX125CCAX-T/MAX125CEAX/MAX125CEAX-T/MAX125EVB16/MAX125EVKIT/MAX126ACAX/MAX126ACAX-T/MAX126AEAX/MAX126AEAX-T/MAX126BC/D/MAX126BCAX/MAX126BCAX-T/MAX126BEAX/MAX126BEAX-T/MAX126CC/D/MAX126CCAX/MAX126CCAX-T/MAX126CEAX/MAX126CEAX-T/MAX126EVB16/MAX126EVKIT ]
MAXIM

MAX3832EVKIT

Evaluation Kit for the MAX3831/MAX3832
MAXIM

MAX3832UCB

+3.3V, 2.5Gbps, SDH/SONET, 4-Channel Interconnect Mux/Demux ICs with Clock Generator
MAXIM

MAX3832UCB-T

Mux/Demux, 1-Func, PQFP64, 10 X 10 MM, 1 MM HEIGHT, MO-136AJ, TQFP-64
MAXIM

MAX383C/D

Precision, Low-Voltage Analog Switches
MAXIM

MAX383CPE

Precision, Low-Voltage Analog Switches
MAXIM

MAX383CPE+

SPDT, 2 Func, 1 Channel, CMOS, PDIP16, 0.300 INCH, PLASTIC, DIP-16
MAXIM

MAX383CSE

Precision, Low-Voltage Analog Switches
MAXIM

MAX383CSE+

SPDT, 2 Func, 1 Channel, CMOS, PDSO16, 0.150 INCH, SO-16
MAXIM

MAX383CSE-T

SPDT, 2 Func, 1 Channel, CMOS, PDSO16, 0.150 INCH, SO-16
MAXIM

MAX383EJE

Precision, Low-Voltage Analog Switches
MAXIM