MAX3480EBCPI [MAXIM]

+-15kV ESD-Protected, Isolated, 3.3V RS-485/RS-422 Data Interfaces; + -15kV ESD保护,隔离, 3.3V的RS - 485 / RS - 422数据接口
MAX3480EBCPI
型号: MAX3480EBCPI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

+-15kV ESD-Protected, Isolated, 3.3V RS-485/RS-422 Data Interfaces
+ -15kV ESD保护,隔离, 3.3V的RS - 485 / RS - 422数据接口

文件: 总16页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1941; Rev 0; 4/01  
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
General Description  
____________________________Features  
The MAX3480EA/MAX3480EB are electrically isolated  
RS-485/RS-422 data-communications interfaces. The  
RS-485/RS-422 I/O pins are protected against ±±5ꢀk  
electrostatic discharge (ESD) shocꢀs, without latchup.  
Transceivers, optocouplers, and a transformer are all  
included in one low-cost, 28-pin DIP pacꢀage. A single  
+3.3k supply on the logic side powers both sides of the  
interface.  
Isolated Data Interface Guaranteed to 1260V  
RMS  
(1min)  
15kV ESD Protection for I/O Pins  
Slew-Rate-Limited Data Transmission (160kbps for  
MAX3480EB)  
High-Speed, Isolated, 2.5Mbps RS-485 Interface  
(MAX3480EA)  
The MAX3480EB features reduced-slew-rate drivers  
that minimize EMI and reduce reflections caused by  
improperly terminated cables, allowing error-free data  
transmission at data rates up to ±60ꢀbps. The  
MAX3480EA’s driver slew rate is not limited, allowing  
transmission rates up to 2.5Mbps.  
Single +3.3V Supply  
Current Limiting and Thermal Shutdown for  
Driver Overload Protection  
Standard 28-Pin DIP Package  
Drivers are short-circuit current limited and are protect-  
ed against excessive power dissipation by thermal  
shutdown circuitry that places the driver outputs into a  
high-impedance state. The receiver input has a fail-safe  
feature that guarantees a logic-high output if the input  
is open circuit.  
Allows Up to 128 Transceivers on the Bus  
The MAX3480EA/MAX3480EB are guaranteed to with-  
stand ±260k  
(±min) or ±520k  
(±s). Their isolated  
RMS  
RMS  
-in Configuration  
inputs and outputs meet RS-485/RS-422 specifications.  
TOP VIEW  
________________________Applications  
Isolated RS-485/RS-422 Data Interface  
Transceivers for EMI-Sensitive Applications  
Industrial-Control Local Area Networꢀs  
Automatic Test Equipment  
MAX3480EA  
MAX3480EB  
V
V
AC1  
AC2  
ISO V  
B
CC1  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
CC2  
D1  
3
CC1  
HkAC/Building Control Networꢀs  
Telecom  
D2  
4
ISO RO DRV  
GND1  
5
MAX845  
MAX485E  
MAX487E  
6
FS  
A
Ordering Information  
SD  
ISO DI IN  
7
DATA  
RATE  
(kbps)  
V
V
8
ISO DE IN  
ISO COM1  
CC3  
DI  
PIN-  
PACKAGE*  
TEMP.  
RANGE  
PART  
9
20  
19  
18  
17  
10  
ISO DI DRV  
CC4  
MAX3480EACPI  
0°C to +70°C 28 Plastic DIP  
2500  
2500  
250  
ISO V  
CC2  
DE 11  
MAX3480EAEPI -40°C to +85°C 28 Plastic DIP  
MAX3480EBCPI 0°C to +70°C 28 Plastic DIP  
ISO DE DRV  
GND2  
RO  
12  
13  
14  
MAX3480EBEPI -40°C to +85°C 28 Plastic DIP  
250  
16 ISO COM2  
ISO RO LED  
V
CC5  
15  
*See Reliability section at end of data sheet.  
ISOLATION BARRIER  
DIP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
ABSOLUTE MAXIMUM RATINGS  
With Respect to GND  
LED Forward Current (DI, DE, ISO RO LED) ......................50mA  
Supply Voltage (V  
Supply Voltage (V  
Control Input Voltage (SD, FS) ............-0.3V to (V  
Receiver Output Voltage (RO).............-0.3V to (V  
With Respect to ISO COM  
V
V
V
) .......-0.3V to +3.8V  
CC  
5
Continuous Power Dissipation (T = +70°C)  
28-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ..727mW  
Operating Temperature Ranges  
MAX3480E_CPI..................................................0°C to +70°C  
MAX3480E_EPI...............................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
CC3  
CC  
CC  
A
1,  
2,  
4,  
) ........................................-0.3V to +7V  
+ 0.3V)  
+ 0.3V)  
CC3  
CC5  
Control Input Voltage (ISO DE _)......-0.3V to (ISO V  
Driver Input Voltage (ISO DI _) .....-0.3V to (ISO V  
Receiver Output Voltage (ISO RO _) ..-0.3V to (ISO V  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
CC_  
CC_  
CC_  
Driver Output Voltage (A, B)..............................-8V to +12.5V  
Receiver Input Voltage (A, B)............................-8V to +12.5V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= V  
= V  
= V  
= +3.0V to +3.6V, FS = 0, T = T  
to T  
, unless otherwise noted. Typical values are at V  
=
CC  
CC1  
CC2  
CC4  
CC5  
A
MIN  
MAX  
CC  
+3.3V and T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
60  
MAX  
UNITS  
f
FS = 0  
FS = V  
SWL  
Switch Frequency  
kHz  
f
or open  
CC  
900  
130  
220  
80  
SWH  
R = ∞  
250  
200  
MAX3480EA,  
DE´ = V or open  
L
CC  
R = 54Ω  
L
Operating Supply Current  
I
mA  
CC  
R = ∞  
L
MAX3480EB,  
DE´ = V  
or open  
CC  
R = 54Ω  
L
180  
0.2  
Shutdown Supply Current (Note 3)  
FS Input Threshold  
I
SD = V  
High  
µA  
V
SHDN  
CC3  
V
2.4  
FSH  
V
Low  
0.8  
50  
FSL  
FSL  
FS Input Pullup Current  
FS Input Leakage Current  
Input High Voltage  
Input Low Voltage  
I
FS low  
µA  
pA  
V
I
FS high  
10  
FSM  
V
DE´, DI´, Figure 1  
DE´, DI´, Figure 1  
V
- 0.4  
CC  
IH  
V
0.4  
0.8  
V
IL  
Isolation Voltage  
V
ISO  
SDH  
T
= +25°C, 1min (Note 4)  
1260  
2.4  
V
A
RMS  
V
High  
Low  
1
1
Shutdown Input Threshold  
V
V
SDL  
Isolation Resistance  
Isolation Capacitance  
R
T
= +25°C, V =  
ISO  
50VDC  
100  
10,000  
10  
MΩ  
ISO  
ISO  
A
C
ƒ = 1MHz  
pF  
A, B, Y, and Z pins, tested at Human Body  
Model  
ESD Protection  
ESD  
15  
kV  
V
Differential Driver Output  
(No Load)  
V
8
OD1  
OD2  
R = 50(RS-422)  
R = 27(RS-485), Figure 3  
2
Differential Driver Output  
V
V
1.5  
5
Change in Magnitude of Driver  
Output Voltage for  
Complementary Output States  
Differential  
0.3  
R = 27or 50,  
Figure 3  
V  
V
OD  
Common mode  
0.3  
2
_______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V  
= V  
= V  
= +3.0V to +3.6V, FS = 0, T = T  
to T  
, unless otherwise noted. Typical values are at V  
=
CC  
CC1  
CC2  
CC4  
CC5  
A
MIN  
MAX  
CC  
+3.3V and T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
R = 27or 50, Figure 4  
MIN  
TYP  
MAX  
4
UNITS  
Driver Common-Mode Output  
V
V
OC  
V
V
V
V
= +12V  
= -7V  
0.25  
-0.2  
0.25  
-0.2  
IN  
IN  
IN  
IN  
MAX3480EA  
MAX3480EB  
DE´ = 0,  
= 0 or  
+3.6V  
Input Current (A, B)  
ISO I  
V
mA  
IN  
CC  
= +12V  
= -7V  
MAX3480EA  
MAX3480EB  
48  
48  
-7V V  
12V  
CM  
Receiver Input Resistance  
R
kΩ  
IN  
Receiver Differential Threshold  
Receiver Input Hysteresis  
V
-7V V  
12V  
-0.2  
0.2  
V
TH  
CM  
V  
V
= 0  
CM  
70  
mV  
V
TH  
Receiver Output Low Voltage  
Receiver Output High Current  
Driver Short-Circuit Current  
V
DI´ = V  
0.4  
OL  
CC  
I
V
= +3.6V, DI´ = 0  
OUT  
250  
µA  
mA  
OH  
ISO I  
-7V V 12V (Note 5)  
100  
OSD  
O
SWITCHING CHARACTERISTICS—MAX3480EA  
(V  
= V  
= V  
= V  
= V  
= +3.0V to +3.6V, FS = 0, T = T  
to T  
, unless otherwise noted. Typical values are at  
MAX  
CC  
CC1  
CC2  
CC4  
CC5  
A
MIN  
V
CC  
= +3.3V and T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
t
PLH  
PHL  
100  
100  
275  
275  
Driver Input to Output  
Propagation Delay  
Figures 4, 6; R  
= 54,  
DIFF  
ns  
C
L1  
= C = 100pF  
L2  
Figures 4, 6; R  
= 54,  
DIFF  
t
Driver Output Skew  
SKEW  
25  
15  
100  
50  
ns  
ns  
C
L1  
= C = 100pF (Note 5)  
L2  
Figures 4, 6; R  
= 54,  
DIFF  
t , t  
R F  
Driver Rise or Fall Time  
C
L1  
= C = 100pF  
L2  
t
t
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from High  
Driver Disable Time from Low  
ZH  
Figures 5, 7; C = 100pF, S2 closed  
0.5  
0.5  
0.6  
0.6  
100  
120  
1.8  
1.8  
1.8  
1.8  
225  
225  
µs  
µs  
µs  
µs  
L
t
ZL  
Figures 5, 7; C = 100pF, S1 closed  
L
HZ  
Figures 5, 7; C = 15pF, S2 closed  
L
t
LZ  
Figures 5, 7; C = 15pF, S1 closed  
L
t
PLH  
PHL  
Receiver Input to Output  
Propagation Delay  
Figures 4, 8; R  
= 54,  
DIFF  
ns  
C
L1  
= C = 100pF  
t
L2  
t
t
PLH - PHL Differential  
Figures 4, 8; R  
DIFF  
= 54,  
t
SKD  
MAX  
20  
100  
ns  
C
L1  
= C = 100pF  
Receiver Skew  
L2  
f
t
t
Maximum Data Rate  
SKEW, SKD 25% of data period  
2.5  
Mbps  
_______________________________________________________________________________________  
3
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
SWITCHING CHARACTERISTICSMAX3480EB  
(V  
= V  
= V  
= V  
= V  
= +3.0V to +3.6V, FS = 0, T = T  
to T  
, unless otherwise noted. Typical values are at  
MAX  
CC  
CC1  
CC2  
CC4  
CC5  
A
MIN  
V
CC  
= +3.3V and T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
t
1.5  
1.2  
3.0  
3.0  
PLH  
Driver Input to Output  
Propagation Delay  
Figures 4, 6; R  
= 54,  
= 54,  
= 54,  
DIFF  
µs  
C
L1  
= C = 100pF  
L2  
PHL  
Figures 4, 6; R  
DIFF  
Driver Output Skew  
t
300  
1.0  
1200  
2.0  
ns  
µs  
SKEW  
C
L1  
= C = 100pF  
L2  
Figures 4, 6; R  
DIFF  
Driver Rise or Fall Time  
t , t  
R
F
C
L1  
= C = 100pF  
L2  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
t
Figures 5, 7; C = 100pF, S2 closed  
1.2  
1.0  
1.5  
2.0  
0.6  
1.4  
4.5  
4.5  
4.5  
4.5  
3.0  
3.0  
µs  
µs  
µs  
µs  
L
ZH  
t
Figures 5, 7; C = 100pF, S1 closed  
L
ZL  
t
Figures 5, 7; C = 15pF, S1 closed  
L
LZ  
t
Figures 5, 7; C = 15pF, S2 closed  
L
HZ  
t
PLH  
PHL  
Receiver Input to Output  
Propagation Delay  
Figures 4, 8; R  
= 54,  
DIFF  
µs  
C
L1  
= C = 100pF  
L2  
t
t
t
PLH - PHL Differential  
Figures 4, 8; R  
DIFF  
= 54,  
t
f
750  
1500  
ns  
SKD  
C
L1  
= C = 100pF  
Receiver Skew  
L2  
Maximum Data Rate  
t
, t  
25% of data period  
160  
kbps  
SKEW SKD  
MAX  
Note 1: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to  
logic-side ground (GND1, GND2), unless otherwise specified.  
Note 2: For DE and DI pin descriptions, see Detailed Block Diagram and Typical Application Circuit (Figure 1 for  
´
´
MAX3480EA/MAX3480EB).  
Note 3: Shutdown supply current is the current at V  
when shutdown is enabled.  
CC1  
Note 4: Limit guaranteed by applying 1520V  
for 1s. Test voltage is applied between all pins on one side of the package to all  
RMS  
pins on the other side of the package. For example, between pins 1 and 14, and 15 and 28.  
Note 5: Applies to peak current. See Typical Operating Characteristics and Applications Information.  
4
_______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
__________________________________________Typical Operating Characteristics  
(V  
= +3.3V, T = +25°C, Figure 1, unless otherwise noted.)  
CC_  
A
DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
OUTPUT CURRENT  
vs. DRIVER OUTPUT HIGH VOLTAGE  
OUTPUT CURRENT  
vs. DRIVER OUTPUT LOW VOLTAGE  
vs. TEMPERATURE  
3.0  
2.9  
-100  
-90  
180  
160  
140  
120  
100  
80  
DI´ = HIGH OR OPEN  
R = 54Ω  
L
2.8  
2.7  
2.6  
-80  
-70  
-60  
2.5  
2.4  
2.3  
2.2  
-50  
-40  
-30  
-20  
60  
40  
20  
0
2.1  
2.0  
-10  
0
-40  
-20  
0
20  
40  
60  
80  
-6  
-4  
-2  
0
2
4
6
0
2
4
6
8
10  
12  
TEMPERATURE (°C)  
OUTPUT HIGH VOLTAGE (V)  
OUTPUT LOW VOLTAGE (V)  
RECEIVER OUTPUT LOW VOLTAGE  
vs. TEMPERATURE  
RECEIVER OUTPUT HIGH VOLTAGE  
vs. TEMPERATURE  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
5.00  
4.75  
4.50  
4.25  
4.00  
3.75  
3.50  
MEASURED AT ISO RO DRV  
MEASURED AT ISO RO DRV  
I
RO  
= 8mA  
I
RO  
= 8mA  
0.1  
0
3.25  
3.00  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT CURRENT  
OUTPUT CURRENT  
vs. RECEIVER OUTPUT LOW VOLTAGE  
vs. RECEIVER OUTPUT HIGH VOLTAGE  
80  
70  
60  
50  
40  
30  
20  
80  
MEASURED AT ISO RO DRV  
MEASURED AT ISO RO DRV  
70  
60  
50  
40  
30  
20  
10  
0
10  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
OUTPUT LOW VOLTAGE (V)  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
_______________________________________________________________________________________  
5
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, T = +25°C, Figure 1, unless otherwise noted.)  
A
CC_  
MAX3480EA DRIVER INPUT (AB)  
AND RECEIVER OUTPUT (RO)  
MAX3480EA DRIVER ENABLE (AB)  
AND RECEIVER OUTPUT (RO)  
MAX3480EA  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
MAX3480EA/EB toc08  
MAX3480EA/EB toc09  
350  
300  
250  
200  
150  
100  
50  
DI´ INPUT,  
DE´ INPUT,  
DE´ HIGH, 50LOAD  
2V/div  
1V/div  
DE  
´ HIGH, 100LOAD  
A
A, 1V/div  
B, 2V/div  
2V/div  
DE´  
LOW, DI  
´
LOW, R = ∞  
L
B
RO,  
74HC240,  
2V/div  
DE´ LOW, DI´ HIGH, R = ∞  
L
0
100ns/div  
3.0  
3.2  
3.4  
3.6  
3.8  
100ns/div  
CIRCUIT OF FIGURE 2, TERMINATION: 100Ω  
SUPPLY VOLTAGE (V)  
CIRCUIT OF FIGURE 2, TERMINATION: 100Ω  
MAX3480EB DRIVER ENABLE (DE´)  
MAX3480EB DRIVER INPUT (AB)  
MAX3480EB  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
AND DRIVER OUTPUT (AB)  
AND RECEIVER OUTPUT (RO)  
MAX3480EA/EB toc12  
MAX3480EA/EB toc11  
300  
250  
DI´ INPUT,  
DE´  
DE´ HIGH, 50LOAD  
2V/div  
1V/div  
DE´ HIGH,  
A
200  
150  
100  
50  
100LOAD  
2V/div  
B
A
2V/div  
DE´ LOW, DI´ LOW, R = ∞  
L
B
2V/div  
DE´ LOW, DI´ HIGH, R = ∞  
L
RO,  
74HC240,  
2V/div  
0
20µs/div  
3.0  
3.2  
3.4  
3.6  
3.8  
1µs/div  
SUPPLY VOLTAGE (V)  
DRIVER ENABLE TIME  
vs. TEMPERATURE  
DRIVER ENABLE TIME  
vs. TEMPERATURE  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
MAX3480EB  
MAX3480EB  
R = 54Ω, DI´ = 0  
L
R = 54, DI´ = 0V MEASURED FROM  
L
MEASURED FROM DE´  
DE´ TO VALID OUTPUT  
TO VALID OUTPUT  
1.0  
0.5  
MAX3480EA  
MAX3480EA  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
______________________________________________________________-in Description  
PIN  
NAME  
FUNCTION  
PINS ON THE NONISOLATED SIDE  
1
2
V
V
Logic-Side (Nonisolated Side) +3.3V Supply Voltage Input. Connect to pins 2, 10, and 14.  
Logic-Side (Nonisolated Side) +3.3V Supply Voltage Input. Connect to pins 1, 10, and 14.  
Boost-Voltage Generator Outputs. See Figures 1 and 2.  
CC1  
CC2  
3, 4  
D1, D2  
GND1,  
GND2  
5, 12  
6
Logic-Side Ground Inputs. Must be connected; not internally connected.  
Frequency Switch Input. If V = V , switch frequency is high; if FS = 0, switch frequency is low  
FS  
CC  
FS  
(normal connection).  
7
8
SD  
Power-Supply Shutdown Input. Must be connected to logic ground.  
V
Boosted V+ Voltage Input. Must be connected as shown in Figures 1 and 2.  
CC3  
DI  
Driver Input. With DE´ high, a low on DI´ forces output A low and output B high. Similarly, a high on  
DI´ forces output A high and output B low. Drives internal LED cathode through R1 (Table 1).  
9
10  
V
Logic-Side (Nonisolated Side) +3.3V Supply Voltage Input. Connect to pins 1, 2, and 14.  
CC4  
Driver-Enable Input. The driver outputs, A and B, are enabled by bringing DE´ high. The driver  
outputs are high impedance when DE´ is low. If the driver outputs are enabled, the device functions  
as a line driver. While the driver outputs are high impedance, the device functions as a line receiver.  
Drives internal LED cathode through R2 (Table 1).  
11  
DE  
Receiver Output. If A > B by 200mV, RO is low; if A < B by 200mV, RO is high. Open collector; must  
13  
14  
RO  
have pullup (R3) to V  
(Table 1).  
CC  
V
Logic-Side (Nonisolated Side) +3.3V Supply Voltage Input. Connect to pins 1, 2, and 10.  
CC5  
_______________________________________________________________________________________  
7
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
_________________________________________________-in Description (continued)  
PIN  
NAME  
FUNCTION  
PINS ON THE ISOLATED RS-485/RS-422 SIDE  
ISO RO  
LED  
Isolated Receiver-Output LED Anode (Input). If A > B by 200mV, ISO RO LED is high; if A < B by  
200mV, ISO RO LED is low.  
15  
16  
ISO COM2  
Isolated-Supply Common Input. Connect to ISO COM1.  
Isolated Driver-Enable Drive Input. The driver outputs, A and B, are enabled by bringing DE´ high.  
The driver outputs are high impedance when DE´ is low. If the driver outputs are enabled, the  
device functions as a line driver. While the driver outputs are high impedance, the device functions  
as a line receiver. Open collector output; must have pullup (R4 in Figure 1) to ISO VCC and be  
connected to ISO DE IN for normal operation (Table 1).  
ISO DE  
DRV  
17  
18  
19  
ISO V  
Isolated-Supply Positive Input Voltage. Connect to ISO V  
.
CC1  
CC2  
Isolated Driver-Input Drive. With DE´ high, a low on DI´ forces output A low and output B high.  
Similarly, a high on DI´ forces output A high and output B low. Open-collector output; must have  
pullup (R5 in Figure 1) to ISO VCC and be connected to ISO DI IN for normal operation (Table 1).  
ISO DI DRV  
Isolated-Supply Common Output. Connect to ISO COM2. If RS-485 wires have a shield, connect  
ISO COM1 to shield through 100resistor.  
20  
ISO COM1  
21  
22  
ISO DE IN  
ISO DI IN  
A
Isolated Driver-Enable Input. Connect to ISO DE DRV for normal operation.  
Isolated Driver Input. Connect to ISO DI DRV for normal operation.  
Noninverting Driver Output and Noninverting Receiver Input  
23  
24  
ISO RO DRV Isolated Receiver-Output Drive. Connect to ISO RO LED through R6 (Table 1 and Figure 1).  
25  
B
Inverting Driver Output and Inverting Receiver Input  
Isolated Supply Positive Output Voltage. Connect to ISO V  
Internal Connections. Leave these pins unconnected.  
26  
ISO V  
.
CC2  
CC1  
27, 28  
AC2, AC1  
Note: For DE and DI pin descriptions, see Detailed Block Diagram.  
´
´
8
_______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
isolation barrier (Figure 1). Power is transferred from the  
_______________Detailed Description  
logic side (nonisolated side) to the isolated side of the  
barrier through a center-tapped transformer. Signals  
cross the barrier through high-speed optocouplers. A  
single +3.3V supply on the logic side powers both  
sides of the interface.  
The MAX3480EA/MAX3480EB are electrically isolated,  
RS-485/RS-422 data-communications interface solu-  
tions. Transceivers, optocouplers, a power driver, and a  
transformer are in one standard 28-pin DIP package.  
Signals and power are internally transported across the  
ISO V  
CC1  
V
CC3  
D1  
D2  
MAX3480EA: MAX485E  
MAX3480EB: MAX487E  
MAX845  
Q
B
N
ISO DI IN  
D
OSC  
1.1MHz/  
1.6MHz  
T
F/F  
FS  
A
ISO DE IN  
Q
N
ISO RO DRV  
R
RE  
GND1  
SD  
ISO COM1  
EXTERNAL RS-485/RS-422 WIRING  
TERMINATING RESISTOR  
(ONE RESISTOR ON EACH END)  
MAX3480EA/EB  
V
IN  
V
V
CC1  
AC1 (MAKE NO CONNECTION)  
AC2 (MAKE NO CONNECTION)  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
TWISTED PAIR  
TO OTHER TRANSCEIVERS  
+3.0V TO +3.6V  
CC2  
D1  
D2  
C1  
22µF  
D1, D2  
1N914  
C2  
0.1µF  
ISO V  
CC1  
R
R
L
L
3
B
B
4
BOOSTED V+  
R7*  
SHIELD (OPTIONAL)  
ISO RO DRV  
GND1  
FS  
C3  
5
A
0.01µF  
TWISTED PAIR  
TO OTHER TRANSCEIVERS  
MAX485E  
MAX487E  
MAX845  
A
6
R6*  
SD  
ISO DI IN  
SH  
7
V
CC3  
DI  
ISO DE IN  
ISO COM1  
ISO DI DRV  
8
R1*  
R2*  
SHIELD (OPTIONAL)  
R4*  
R5*  
9
DI´  
V
CC4  
DE  
10  
11  
12  
13  
14  
NOTE: RESISTOR R8 PROTECTS THE  
MAX3480E FROM TRANSIENT  
CURRENTS BETWEEN SHIELD AND  
A AND B.  
LOGIC  
I/O  
ISO V  
CC2  
DE´  
R8  
100Ω  
GND2  
RO  
ISO DE DRV  
ISO COM2  
ISO RO LED  
RO  
R3*  
V
CC5  
ISOLATION BARRIER  
ISOLATION COMMON  
C4  
270pF  
4kV  
*SEE TABLE 1.  
LOGIC GROUND  
Figure 1. Detailed Block Diagram  
Table 1. Pullup and LED Drive Resistors  
PART  
R1 ()  
R2 ()  
R3 ()  
R4 ()  
3600  
R5 ()  
1000  
R6 ()  
R7 ()  
Open  
430  
MAX3480EA  
MAX3480EB  
100  
100  
680  
200  
200  
100  
100  
2000  
3600  
3600  
_______________________________________________________________________________________  
9
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
The MAX3480EB features reduced-slew-rate drivers  
that minimize EMI and reduce reflections caused by  
improperly terminated cables, allowing error-free trans-  
mission at data rates up to 160kbps. The MAX3480EAs  
driver slew rates are not limited, allowing transmission  
rates up to 2.5Mbps.  
shutdown circuitry that puts the driver outputs into a  
high-impedance state. The receiver input has a fail-safe  
feature that guarantees a logic-high output if the input  
is open circuit.  
The driver outputs are enabled by bringing DE´ high.  
Driver-enable times are typically 500ns for the  
MAX3480EA and 1µs for the MAX3480EB. Allow time  
for the devices to be enabled before sending data.  
When enabled, driver outputs function as line drivers.  
Driver outputs are high impedance when DE´ is low.  
While outputs are high impedance, they function as line  
receivers.  
The frequency-select FS is connected to GND_ in normal  
operation, which selects a switching frequency of  
approximately 600kHz. Connect to high for a higher  
900kHz switching frequency.  
Drivers are short-circuit current limited and are protect-  
ed against excessive power dissipation by thermal  
EXTERNAL RS-485/RS-422 WIRING  
TERMINATING RESISTOR  
(ONE RESISTOR ON EACH END)  
MAX3480EA/EB  
V
IN  
V
V
CC1  
CC2  
D1  
AC1 (MAKE NO CONNECTION)  
AC2 (MAKE NO CONNECTION)  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
TWISTED PAIR  
TO OTHER TRANSCEIVERS  
+3.0V TO +3.6V  
C1  
22µF  
6V  
D1, D2  
1N914  
C2  
0.1µF  
ISO V  
CC1  
R
R
L
3
B
B
D2  
4
BOOSTED V+  
SHIELD (OPTIONAL)  
R7*  
GND1  
ISO RO DRV  
C3  
0.01µF  
5
A
TWISTED PAIR  
TO OTHER TRANSCEIVERS  
MAX485E  
MAX487E  
MAX845  
FS  
A
6
74HC240  
16  
14  
4
6
SD  
ISO DI IN  
SH  
7
L
R6*  
V
CC3  
DI  
V
ISO DE IN  
ISO COM1  
ISO DI DRV  
8
R1*  
R2*  
18  
2
R4*  
R5*  
SHIELD (OPTIONAL)  
8
DRIVER INPUT  
12  
5
DI  
9
3
CC4  
DE  
17  
15  
10  
11  
12  
13  
14  
DE  
DRIVER ENABLE  
NOTE: RESISTOR R8 PROTECTS  
THE MAX3480E FROM TRANSIENT  
CURRENTS BETWEEN SHIELD AND  
A AND B.  
ISO V  
CC2  
13  
7
R8  
100Ω  
GND2  
RO  
ISO DE DRV  
ISO COM2  
ISO RO LED  
20  
9
R3*  
V
11  
RECEIVER OUTPUT  
CC5  
RO  
10  
ISOLATION COMMON  
ISOLATION BARRIER  
*SEE TABLE 1.  
C4  
270pF  
4kV  
LOGIC GROUND  
Figure 2. Typical Application Circuit  
10 ______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
_________________________________________________________________Test Circuits  
ISOLATION BARRIER  
ISOLATION BARRIER  
+3.3V  
A
+3.3V  
DE  
C
´
L1  
R
R
R3  
A
A
R
DIFF  
V
OD  
D
R
RO  
V
DI  
ID  
´
B
B
V
OC  
C
L2  
B
Figure 3. Driver DC Test Load  
Figure 4. Driver/Receiver Timing Test Circuit  
ISO V  
ISO V  
CC1,  
CC2  
S1  
S2  
500Ω  
OUTPUT  
UNDER TEST  
C
L
Figure 5. Driver Timing Test Load  
_______________________________________________________ꢀwitching Waveforms  
V
_ - 0.4V  
CC  
V
_ - 0.4V  
CC  
V
CC  
_ - 0.4V  
2
V
_ - 0.4V  
2
CC  
V
CC  
_ - 0.4V  
2
V
_ - 0.4V  
2
CC  
DE  
´
DI  
´
0
0
t
t
PHL  
PLH  
1/2 V  
O
t
t
LZ  
ZL  
A, B  
B
A
2.3V  
V
V
+ 0.5V  
- 0.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
OL  
V
O
V
OL  
1/2 V  
O
A, B  
V
= V - V  
A B  
DIFF  
V
O
2.3V  
OH  
V
DIFF  
90%  
90%  
0
0
10%  
10%  
-V  
O
t
t
HZ  
ZH  
t
R
t
F
t
t
- t  
SKEW = | PLH PHL |  
Figure 6. Driver Propagation Delays and Transition Times  
Figure 7. Driver Enable and Disable Times  
______________________________________________________________________________________ 11  
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
The MAX3480EA/MAX3480EB withstand 1260V  
__ꢀwitching Waveforms (continued)  
RMS  
(1 min) or 1560V  
(1s). The isolated outputs of these  
RMS  
devices meet all RS-485/RS-422 specifications.  
Boost koltage  
The MAX3480EA/MAX3480EB require external diodes  
on the primary of the transformer to develop the boost  
voltage for the power oscillator. In normal operation,  
whenever one of the oscillator outputs (D1 and D2)  
goes low, the other goes to approximately double the  
supply voltage. Since the circuit is symmetrical, the two  
outputs can be combined with diodes, filtered, and  
used to power the oscillator itself.  
V
OH  
RO  
1.5V  
1.5V  
0
V
OUTPUT  
OL  
t
t
PLH  
PHL  
V
ID  
ID  
V - V  
B
A
0
-V  
INPUT  
= |t - t  
t
|
SKD  
PLH PHL  
The diodes on the primary side may be any fast-switch-  
ing, small-signal diodes, such as the 1N914, 1N4148,  
or CMPD2838. The nominal value of the primary filter  
capacitor C3 is 0.01µF.  
Figure 8. Receiver Propagation Delays  
Driver Output -rotection  
There are two mechanisms to prevent excessive output  
current and power dissipation caused by faults or by  
bus contention. A foldback current limit on the output  
stage provides immediate protection against short cir-  
cuits over the whole common-mode voltage range (see  
Typical Operating Characteristics). In addition, a ther-  
mal shutdown circuit forces the driver outputs into a  
high-impedance state if the die temperature rises  
excessively.  
Function Tables  
Table 2. Transmitting  
INPUTS  
OUTPUTS  
B
A
DE´  
DI´  
1
1
0
1
1
0
Resistor R8 (Figures 1 and 2) provides additional pro-  
tection by current limiting between the shield and the  
two signal wires. In the event that shielded cable is  
used and an external voltage or transient is inadver-  
tently applied between the shield and the signal wires,  
the MAX3480EA/MAX3480EB can be damaged.  
Although unlikely, this condition can occur during  
installation.  
1
0
0
X
High-Z  
High-Z  
X = Don't care  
High-Z = High impedance  
Table 3. Receiving  
The MAX3480EA/MAX3480EB provide electrical iso-  
lation between logic ground and signal paths; they  
do not provide isolation from external shields and  
the signal paths. When in doubt, do not connect the  
shield. The MAX3480EA/MAX3480EB can be dam-  
aged if resistor R8 is shorted out.  
INPUTS  
OUTPUT  
–  
A-B  
RO  
DE´  
0
+0.2V  
-0.2V  
0
1
0
0
Applications Information  
The MAX3480EA/MAX3480EB provide extra protection  
against ESD. The MAX3480EA/MAX3480EB are intend-  
ed for harsh environments where high-speed commu-  
nication is important. These devices eliminate the  
need for transient suppressor diodes or the use of  
discrete protection components. The standard (non-E)  
MAX3480A/MAX3480B are recommended for applica-  
tions where cost is critical.  
0
Inputs open  
12 ______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
R
R
D
1500Ω  
C
1MΩ  
I 100%  
P
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
AMPERES  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
s
36.8%  
100pF  
SOURCE  
10%  
0
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 9. Human Body ESD Test Model  
Figure 10. Human Body Model Current Waveform  
100pF capacitor charged to the ESD voltage of interest,  
which is then discharged into the test device through a  
1.5kresistor.  
±±15k EꢀD -rotection  
As with all Maxim devices, ESD-protection structures  
are incorporated on all pins to protect against electro-  
static discharges encountered during handling and  
assembly. The driver outputs and receiver inputs have  
extra protection against static electricity. Maxims engi-  
neers developed state-of-the-art structures to protect  
these pins against ESD of 15kV without damage. The  
ESD structures withstand high ESD in all states: normal  
operation, shutdown, and power-down. After an ESD  
event, Maxims MAX3480EA/MAX3480EB keep working  
without latchup. An isolation capacitor of 270pF 4kV  
should be placed between ISO COM and logic ground  
for optimal performance against an ESD pulse with  
respect to logic ground.  
Machine Model  
The Machine Model for ESD tests all pins using a 200pF  
storage capacitor and zero discharge resistance. Its  
objective is to simulate the stress caused by contact that  
occurs with handling and assembly during manufactur-  
ing. Of course, all pins require this protection during  
manufacturingnot just inputs and outputs. Therefore,  
after PC board assembly, the Machine Model is less rel-  
evant to l/O ports.  
The MAX3480EA/MAX3480EB are designed for bidirec-  
tional data communications on multipoint bus-transmis-  
sion lines. Figure 11 shows a typical network application  
circuit. To minimize reflections, terminate the line at both  
ends with its characteristic impedance, and keep stub  
lengths off the main line as short as possible. The slew-  
rate-limited MAX3480EB is more tolerant of imperfect ter-  
mination and stubs off the main line.  
ESD protection can be tested in various ways; the  
transmitter outputs and receiver inputs of this product  
family are characterized for protection to 15kV using  
the Human Body Model.  
The MAX3480EA/MAX3480EB are specified and char-  
acterized using the resistor values shown in Table 1.  
Altering the recommended values can degrade perfor-  
mance.  
EꢀD Test Conditions  
The +15kV ESD test specifications apply only to the A, B,  
Y, and Z I/O pins. The test surge may be referenced to  
either the ISO COM or to the nonisolated GND (this pre-  
supposes that a bypass capacitor is installed between  
The DI and DE inputs are the cathodes of LEDs whose  
anodes are connected to V . These points are best  
CC  
V
and the nonisolated GND).  
CC2  
driven by a +3.3V CMOS-logic gate with a series  
resistor to limit the current. The resistor values shown  
in Table 1 are recommended when the 74HC240 gate  
or equivalent is used. DI and DE are intended to be  
Human Body Model  
Figure 9 shows the Human Body Model, and Figure 10  
shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of a  
______________________________________________________________________________________ 13  
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
driven through a series current-limiting resistor.  
Directly grounding these pins destroys the device.  
closely represent those of discrete optocouplers, rather  
than the more robust characteristics of monolithic sili-  
con ICs. The reliability testing programs for these multi-  
component devices may be viewed on the Maxim  
website (www.maxim-ic.com) under Technical Support,  
Technical Reference, Multichip Products.  
Reliability  
These products contain transformers, optocouplers,  
and capacitors, in addition to several monolithic ICs  
and diodes. As such, the reliability expectations more  
Table 4. Maxims 15kV ESD-Protected Isolated RS-485 Product Family  
GUARANTEED  
DATA RATE  
(Mbps)  
SUPPLY  
VOLTAGE  
(V)  
NO. OF  
Tx/Rx  
FULL/HALF  
DUPLEX  
SLEW-RATE  
LIMITED  
NO. OF Tx/Rx  
ON BUS  
PART  
MAX1480EA  
MAX1480EC  
MAX1490EA  
MAX1490EB  
MAX3480EA  
MAX3480EB  
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
2.50  
0.25  
2.50  
0.25  
2.50  
0.25  
Half  
Half  
Full  
Full  
Half  
Half  
No  
Yes  
No  
32  
32  
5.0  
5.0  
5.0  
5.0  
3.3  
3.3  
32  
Yes  
No  
32  
32  
Yes  
128  
14 ______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
TERMINATING RESISTOR  
(ONE RESISTOR ON EACH END)  
B
DI  
D
120Ω  
DE  
A
A
B
A
B
RO  
R
RE  
R
R
RE  
RE  
D
D
RO DE  
DI  
RO DE  
DI  
TERMINATING RESISTOR  
(ONE RESISTOR ON EACH END)  
MAX3480EA/EB  
V
IN  
V
V
CC1  
CC2  
D1  
AC1 (MAKE NO CONNECTION)  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
+3.0V TO +3.6V  
C2  
C1  
22µF  
6V  
0.1µF  
D1, D2  
1N914  
AC2 (MAKE NO CONNECTION)  
ISO V  
CC1  
3
B
D2  
B
4
BOOSTED V+  
R7*  
ISO RO DRV  
A
GND1  
FS  
C3  
0.01µF  
120Ω  
5
A
MAX485E  
MAX487E  
MAX845  
6
74HC240  
16  
14  
4
6
8
R6*  
ISO DI IN  
ISO DE IN  
ISO COM1  
ISO DI DRV  
SD  
SH  
7
SHIELD  
(OPTIONAL)  
R4*  
V
CC3  
8
18  
2
R1*  
R2*  
DRIVER INPUT  
12  
5
DI  
DI  
9
R5*  
3
V
CC4  
DE  
17  
15  
13  
10  
11  
12  
13  
14  
DE  
DRIVER ENABLE  
ISO V  
CC2  
7
R8  
100Ω  
GND2  
RO  
ISO DE DRV  
ISO COM2  
20  
R3*  
V
CC5  
RECEIVER OUTPUT  
9
11  
ISO RO LED  
RO  
NOTE: RESISTOR R8  
PROTECTS THE MAX3480E  
FROM TRANSIENT  
CURRENTS BETWEEN  
SHIELD AND A AND B.  
10  
ISOLATION  
COMMON  
ISOLATION BARRIER  
C4  
270pF  
4kV  
*SEE TABLE 1.  
LOGIC GROUND  
Figure 11. Typical RS-485/RS-422 Network  
______________________________________________________________________________________ 15  
±±15k EꢀDꢁ-rotected, Isolated, 3.3k  
Rꢀꢁ481/Rꢀꢁ422 Data Interfaces  
-ac5age Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated -roducts, ±20 ꢀan Gabriel Drive, ꢀunnyvale, CA 94086 408ꢁ737ꢁ7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3480EBCPI+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, Hybrid, PDIP28, 0.600 INCH, PLASTIC, MS-011AB, DIP-28
MAXIM

MAX3480EBEPI

+-15kV ESD-Protected, Isolated, 3.3V RS-485/RS-422 Data Interfaces
MAXIM

MAX3480EBEPI+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, Hybrid, PDIP28, 0.600 INCH, PLASTIC, MS-011AB, DIP-28
MAXIM

MAX3480ESA

Telecommunication IC
MAXIM

MAX3483

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers
MAXIM

MAX3483AE

3.3V-Powered, ±20kV ESD-Protected
MAXIM

MAX3483AEASA+

Line Transceiver,
MAXIM

MAX3483AE_V01

3.3V-Powered, ±20kV ESD-Protected,20Mbps and Slew-Rate-Limited RS-485/RS-422 Transceivers
MAXIM

MAX3483C

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers
MAXIM

MAX3483C/D

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers
MAXIM

MAX3483CPA

3.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers
MAXIM

MAX3483CPA+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDIP8, 0.300 INCH, PLASTIC, DIP-8
MAXIM