MAX3440EASA+ [MAXIM]

±15kV ESD-Protected, ±60V Fault-Protected,; ± 15kV ESD保护, ± 60V故障保护,
MAX3440EASA+
型号: MAX3440EASA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

±15kV ESD-Protected, ±60V Fault-Protected,
± 15kV ESD保护, ± 60V故障保护,

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管 信息通信管理
文件: 总19页 (文件大小:305K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2666; Rev 2; 11/10  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
0–MAX34E  
General Description  
Features  
The MAX3440E–MAX3444E fault-protected RS-485 and  
J1708 transceivers feature 60V protection from signal  
faults on communication bus lines. Each device contains  
one differential line driver with three-state output and one  
differential line receiver with three-state input. The 1/4-unit-  
load receiver input impedance allows up to 128 trans-  
ceivers on a single bus. The devices operate from a 5V  
supply at data rates of up to 10Mbps. True fail-safe inputs  
guarantee a logic-high receiver output when the receiver  
inputs are open, shorted, or connected to an idle data line.  
15kV ESD Protection  
60V Fault Protection  
Guaranteed 10Mbps Data Rate  
(MAX3441E/MAX3443E)  
Hot Swappable for Telecom Applications  
True Fail-Safe Receiver Inputs  
Enhanced Slew-Rate-Limiting Facilitates  
Error-Free Data Transmission  
(MAX3440E/MAX3442E/MAX3444E)  
Hot-swap circuitry eliminates false transitions on the  
data bus during circuit initialization or connection to a  
live backplane. Short-circuit current-limiting and ther-  
mal shutdown circuitry protect the driver against exces-  
sive power dissipation, and on-chip 15kV ESD  
protection eliminates costly external protection devices.  
Allow Up to 128 Transceivers on the Bus  
-7V to +12V Common-Mode Input Range  
Automotive Temperature Range (-40°C to +125°C)  
Industry-Standard Pinout  
The MAX3440E–MAX3444E are available in 8-pin SO  
and PDIP packages and are specified over industrial  
and automotive temperature ranges.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
8 SO  
MAX3440EESA+  
MAX3440EEPA+  
MAX3440EASA+  
MAX3440EAPA+  
Applications  
RS-422/RS-485 Communications  
Truck and Trailer Applications  
Industrial Networks  
8 PDIP  
8 SO  
8 PDIP  
Telecommunications Systems  
Automotive Applications  
HVAC Controls  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Ordering Information continued at end of data sheet.  
Selector Guide  
DATA RATE  
(Mbps)  
LOW-POWER  
SHUTDOWN  
RECEIVER/DRIVER TRANSCEIVERS  
PART  
TYPE  
HOT SWAP  
ENABLE  
ON BUS  
MAX3440E  
MAX3441E  
MAX3442E  
MAX3443E  
MAX3444E  
RS-485  
RS-485  
RS-485  
RS-485  
J1708  
0.25  
2.5 to 10  
0.25  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
128  
128  
128  
128  
128  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
2.5 to 10  
0.25  
Yes  
Yes (only RE)  
-in Configurations and Typical Operating Circuits  
TOP VIEW  
DE/RE  
MAX3440E  
MAX3441E  
+
+
FAULT  
RO  
FAULT  
RO  
V
1
2
3
4
1
2
3
4
8
8
7
6
5
V
CC  
D
CC  
DI  
B
B
A
7
R
R
B
A
Rt  
Rt  
6
DE/RE  
DI  
DE/RE  
DI  
A
RO  
R
GND  
D
D
5
GND  
FAULT  
DIP/SO  
DIP/SO  
Pin Configurations and Typical Operating Circuits continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
ABSOLUTE MAXIMUM RATINGS  
Voltages Referenced to GND  
Operating Temperature Ranges  
V
........................................................................................+7V  
MAX344_EE_ _ ...............................................-40°C to +85°C  
MAX344_EA_ _ .............................................-40°C to +125°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
CC  
FAULT, DE/RE, RE, DE, DE, DI, TXD..........-0.3V to (V  
A, B (Note 1) ........................................................................ 60V  
RO ..............................................................-0.3V to (V + 0.3V)  
Short-Circuit Duration (RO, A, B) ...............................Continuous  
Continuous Power Dissipation (T = +70°C)  
+ 0.3V)  
CC  
CC  
A
SO (derate 5.9mW/°C above +70°C)...........................471mW  
PDIP (derate 9.09mW/°C above +70°C)......................727mW  
Note 1: A, B must be terminated with 54Ω or 100Ω to guarantee 60V fault protection.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
CC  
= +4.75V to +5.25V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.)  
CC A  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER  
0–MAX34E  
Figure 1, R = 100  
2
V
V
L
CC  
Differential Driver Output  
V
V
V
V
V
OD  
Figure 1, R = 54ꢀ  
1.5  
L
CC  
Change in Magnitude of  
Differential Output Voltage  
V  
Figure 1, R = 100or 54(Note 2)  
0.2  
3
OD  
L
Driver Common-Mode  
Output Voltage  
V
Figure 1, R = 100or 54ꢀ  
V
CC  
/ 2  
OC  
L
Change in Magnitude of  
Common-Mode Voltage  
V  
Figure 1, R = 100or 54(Note 2)  
0.2  
OC  
L
DRIVER LOGIC  
Driver Input High Voltage  
Driver Input Low Voltage  
Driver Input Current  
V
2
V
V
DIH  
V
0.8  
±2  
DIL  
I
μA  
DIN  
0V V  
+12V  
+350  
Driver Short-Circuit Output Current  
(Note 3)  
OUT  
I
mA  
mA  
OSD  
-7V V  
V  
-350  
+25  
OUT  
CC  
(V - 1V) V  
CC  
+12V (Note 3)  
Driver Short-Circuit Foldback  
Output Current  
OUT  
I
OSDF  
-7V V  
+1V (Note 3)  
-25  
OUT  
RECEIVER  
V
= GND, V  
= -7V  
= 12V  
A, B  
250  
-150  
±6  
CC  
μA  
mA  
mV  
mV  
Input Current  
I
A, B  
V
A,B  
A, B  
A, B  
V
= ±60V  
Receiver Differential Threshold  
Voltage  
V
TH  
-7V V  
+12V  
-200  
-50  
CM  
Receiver Input Hysteresis  
V  
25  
TH  
2
_______________________________________________________________________________________  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
0–MAX34E  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
CC  
= +4.75V to +5.25V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.)  
CC A  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RECEIVER LOGIC  
Output High Voltage  
Output Low Voltage  
V
Figure 2, I  
= -1.6mA  
V - 0.6  
CC  
V
V
OH  
OH  
V
Figure 2, I = 1mA  
0.4  
OL  
OL  
Three-State Output Current at  
Receiver  
I
0V V  
V  
CC  
±1  
μA  
kꢀ  
mA  
OZR  
A, B  
Receiver Input Resistance  
R
-7V V  
+12V  
48  
IN  
CM  
Receiver Output Short-Circuit  
Current  
I
0V V V  
CC  
±95  
OSR  
RO  
CONTROL  
Control Input High Voltage  
V
DE, DE, RE, DE/RE  
DE, DE/RE, RE  
2
V
CIH  
Input Current Latch During First  
Rising Edge  
I
90  
μA  
IN  
SUPPLY CURRENT  
MAX3440E (DE/RE = V ),  
CC  
MAX3442E (DE = V  
RE = GND),  
MAX3444E (DE = RE = GND)  
,
CC  
30  
10  
No load,  
DI = V  
Normal Operation  
I
mA  
Q
CC  
or GND  
MAX3441E (DE/RE = V ),  
MAX3443E (DE = V  
CC  
,
CC  
RE = GND)  
DE = GND, RE = V (MAX3442E/  
MAX3443E)  
CC  
20  
10  
DE = GND, RE = V , T = +25°C  
CC  
A
Supply Current in Shutdown Mode  
I
μA  
SHDN  
(MAX3442E/MAX3443E)  
DE = RE = V (MAX3444E)  
100  
10  
CC  
DE = RE = V , T = +25°C (MAX3444E)  
CC  
A
Supply Current with Output Shorted  
to ±60V  
DE = GND, RE = GND, no load  
output in three-state (MAX3443E)  
I
15  
mA  
SHRT  
PROTECTION SPECIFICATIONS  
(V  
CC  
= +4.75V to +5.25V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V = +5V and T = +25°C.)  
MAX CC A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
= 0, R = 54ꢀ  
MIN  
TYP  
MAX  
UNITS  
Overvoltage Protection  
ESD Protection  
A, B; R  
A, B  
±60  
V
SOURCE  
L
Human Body Model  
±15  
kV  
FAULT DETECTION  
Receiver Differential Threshold  
Receiver Differential Threshold  
F
V
V
= 0V, high limit  
270  
450  
mV  
mV  
DIPH  
CM  
F
= 0V, low limit  
-450  
-270  
DIPL  
CM  
Fault-Detection Common-Mode  
Input Voltage Positive  
12  
V
V
Fault-Detection Common-Mode  
Input Voltage Negative  
-7  
_______________________________________________________________________________________  
3
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
SWITCHING CHARACTERISTICS (MAX3440E/MAX3442E/MAX3444E)  
(V  
CC  
= +4.75V to +5.25V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V = +5V and T = +25°C.)  
MAX CC A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MAX3440E/MAX3442E,  
MIN  
200  
250  
TYP  
MAX UNITS  
t
PLHA,  
Figure 3, R = 54, C = 50pF  
Driver Propagation Delay  
2000  
ns  
L
L
t
PLHB  
MAX3444E, R  
= 60, C  
= 100pF  
DIFF  
DIFF  
t
DPLH,  
Driver Differential Propagation Delay  
Figure 4, R = 54, C = 50pF  
2000  
2000  
ns  
ns  
L
L
t
DPHL  
Driver Differential Output  
Transition Time  
t
,t  
Figure 4, R = 54, C = 50pF  
L L  
LH HL  
R = 54, C = 50pF,  
L
L
t
,
SKEWAB  
Driver Output Skew  
t
t
= |t  
= |t  
- t  
PLHA PHLB  
|,  
|
350  
200  
ns  
ns  
SKEWAB  
SKEWBA  
t
SKEWBA  
- t  
PLHB PHLA  
R = 54, C = 50pF,  
L
L
Differential Driver Output Skew  
t
DSKEW  
t
= |t  
- t  
|
DSKEW  
DPLH DPHL  
Maximum Data Rate  
f
kbps  
ns  
MAX  
Driver Enable Time to Output High  
Driver Disable Time from Output High  
t
Figure 5, R = 500, C = 50pF  
2000  
2000  
PDZH  
PDHZ  
L
L
0–MAX34E  
t
Figure 5, R = 500, C = 50pF  
ns  
L
L
Driver Enable Time from Shutdown to  
Output High  
Figure 5, R = 500, C = 50pF  
L L  
(MAX3442E/MAX3444E)  
t
4.2  
μs  
PDHS  
Driver Enable Time to Output Low  
t
t
Figure 6, R = 500, C = 50pF  
2000  
2000  
ns  
ns  
PDZL  
PDLZ  
L
L
Driver Disable Time from Output Low  
Figure 6, R = 500, C = 50pF  
L L  
Driver Enable Time from Shutdown to  
Output Low  
Figure 6, R = 500, C = 50pF  
L L  
(MAX3442E/MAX3444E)  
t
4.2  
800  
μs  
ns  
ns  
PDLS  
Driver Time to Shutdown  
t
R = 500, C = 50pF (MAX3442E/MAX3444E)  
SHDN  
L
L
t
,
RPLH  
Receiver Propagation Delay  
Figure 7, C = 20pF, V = 2V, V = 0V  
CM  
2000  
L
ID  
t
RPHL  
Receiver Output Skew  
t
C = 20pF, t  
= |t - t |  
RPLH RPHL  
200  
ns  
ns  
RSKEW  
L
RSKEW  
Receiver Enable Time to Output High  
t
Figure 8, R = 1k, C = 20pF  
2000  
RPZH  
L
L
Receiver Disable Time from Output  
High  
t
Figure 8, R = 1k, C = 20pF  
2000  
4.2  
ns  
μs  
RPHZ  
L
L
Figure 8, R = 1k, C = 20pF  
L
L
Receiver Wake Time from Shutdown  
t
RPWAKE  
(MAX3442E/MAX3444E)  
Receiver Enable Time to Output Low  
Receiver Disable Time from Output Low  
t
Figure 8, R = 1k, C = 20pF  
2000  
2000  
ns  
ns  
RPZL  
L
L
t
Figure 8, R = 1k, C = 20pF  
L L  
RPLZ  
R = 500, C = 50pF  
(MAX3442E/MAX3444E)  
L
L
Receiver Time to Shutdown  
t
800  
ns  
SHDN  
4
_______________________________________________________________________________________  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
0–MAX34E  
SWITCHING CHARACTERISTICS (MAX3441E/MAX3443E)  
(V  
CC  
= +4.75V to +5.25V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.)  
CC A  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
Figure 3, R = 27, C = 50pF  
MIN  
TYP  
MAX UNITS  
t
PLHA,  
Driver Propagation Delay  
60  
60  
25  
ns  
ns  
ns  
L
L
t
PLHB  
t
DPLH,  
Driver Differential Propagation Delay  
Figure 4, R = 54, C = 50pF  
L L  
t
DPHL  
Driver Differential Output  
Transition Time  
t
,t  
Figure 4, R = 54, C = 50pF  
L L  
LH HL  
R = 54, C = 50pF,  
L
L
t
t
,
SKEWAB  
t
t
= |t  
= |t  
- t  
PLHA PHLB  
|,  
|
Driver Output Skew  
10  
10  
ns  
SKEWAB  
SKEWBA  
SKEWBA  
- t  
PLHB PHLA  
R = 54, C = 50pF,  
L
L
Differential Driver Output Skew  
t
DSKEW  
ns  
t
= |t  
- t  
|
DSKEW  
DPLH DPHL  
Maximum Data Rate  
f
10  
Mbps  
ns  
MAX  
Driver Enable Time to Output High  
Driver Disable Time from Output High  
t
Figure 5, R = 500, C = 50pF  
1200  
1200  
PDZH  
PDHZ  
L
L
t
Figure 5, R = 500, C = 50pF  
ns  
L
L
Driver Enable Time from Shutdown to  
Output High  
t
Figure 5, R = 500, C = 50pF (MAX3443E)  
4.2  
μs  
PDHS  
L
L
Driver Enable Time to Output Low  
t
t
Figure 6, R = 500, C = 50pF  
1200  
1200  
ns  
ns  
PDZL  
PDLZ  
L
L
Driver Disable Time from Output Low  
Figure 6, R = 500, C = 50pF  
L L  
Driver Enable Time from Shutdown to  
Output Low  
t
Figure 6, R = 500, C = 50pF (MAX3443E)  
4.2  
800  
85  
μs  
ns  
ns  
PDLS  
L
L
Driver Time to Shutdown  
t
Figure 6, R = 500, C = 50pF (MAX3443E)  
L L  
SHDN  
t
,
RPLH  
Receiver Propagation Delay  
Figure 7, C = 20pF, V = 2V, V  
= 0V  
L
ID  
CM  
t
RPHL  
Receiver Output Skew  
t
C = 20pF, t  
= |t - t |  
RPLH RPHL  
15  
ns  
ns  
RSKEW  
L
RSKEW  
Receiver Enable Time to Output High  
t
Figure 8, R = 1k, C = 20pF  
400  
RPZH  
L
L
Receiver Disable Time from Output  
High  
t
Figure 8, R = 1k, C = 20pF  
400  
4.2  
ns  
μs  
ns  
RPHZ  
L
L
Receiver Wake Time from Shutdown  
t
Figure 8, R = 1k, C = 20pF (MAX3443E)  
L L  
RPWAKE  
Receiver Enable Wake Time from  
Shutdown  
t
Figure 8, R = 1k, C = 20pF  
400  
RPSH  
L
L
Receiver Disable Time from Output Low  
Receiver Time to Shutdown  
t
Figure 8, R = 1k, C = 20pF  
400  
800  
ns  
ns  
RPLZ  
L
L
t
R = 500, C = 50pF (MAX3443E)  
SHDN  
L
L
Note 2: ΔV  
and ΔV  
are the changes in V  
and V , respectively, when the DI input changes state.  
OD  
OC  
OD OC  
Note 3: The short-circuit output current applies to peak current just before foldback current limiting; the short-circuit foldback output  
current applies during current limiting to allow a recovery from bus contention.  
_______________________________________________________________________________________  
5
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
Typical Operating Characteristics  
(V  
CC  
= +5V, T = +25°C, unless otherwise noted.)  
A
NO-LOAD SUPPLY CURRENT  
vs. TEMPERATURE  
NO-LOAD SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
6
10  
1
24  
DRIVER AND RECEIVER  
ENABLED  
5
4
3
2
1
0
DRIVER AND RECEIVER  
ENABLED  
20  
16  
DRIVER DISABLED,  
RECEIVER ENABLED  
12  
8
DRIVER DISABLED,  
RECEIVER ENABLED  
0.1  
0.01  
4
MAX3441E/MAX3443E  
MAX3440E/MAX3442E/MAX3444E  
MAX3442E/MAX3443E/MAX3444E  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RECEIVER OUTPUT CURRENT  
vs. OUTPUT LOW VOLTAGE  
RECEIVER OUTPUT CURRENT  
vs. OUTPUT HIGH VOLTAGE  
RECEIVER OUTPUT VOLTAGE  
vs. TEMPERATURE  
0–MAX34E  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
, I  
= +10mA  
OH OUT  
V
, I  
= -10mA  
OL OUT  
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT LOW VOLTAGE (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT HIGH VOLTAGE (V)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
DRIVER OUTPUT CURRENT  
vs. DIFFERENTIAL OUTPUT VOLTAGE  
DIFFERENTIAL OUTPUT VOLTAGE  
vs. TEMPERATURE  
A, B CURRENT  
vs. A, B VOLTAGE (TO GROUND)  
80  
3.5  
3.0  
2000  
1600  
1200  
800  
70  
60  
50  
40  
30  
20  
10  
0
R = 100Ω  
L
R = 54Ω  
L
2.5  
400  
2.0  
1.5  
1.0  
0.5  
R = 54Ω  
L
0
-400  
-800  
-1200  
-1600  
-2000  
DRIVER DISABLED,  
RECEIVER ENABLED  
MAX3441E/MAX3443E  
0
0
0.5 1.0  
1.5  
2.0 2.5 3.0 3.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-60 -50 -40 -30 -20 -10  
0 10 20 30 40 50 60  
DIFFERENTIAL OUTPUT VOLTAGE (V - V ) (V)  
TEMPERATURE (°C)  
A, B VOLTAGE (V)  
A
B
6
_______________________________________________________________________________________  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
0–MAX34E  
Test Circuits and Waveforms  
R
L
2
A
B
V
OD  
DI  
D
R
L
V
OC  
V
2
CC  
Figure 1. Driver V  
and V  
OC  
OD  
A
ID  
B
RO  
V
R
0
V
OH  
V
OL  
I
I
OH  
OL  
(+)  
(-)  
Figure 2. Receiver V  
and V  
OH  
OL  
3V  
0
V
OM  
DI  
1.5V  
1.5V  
R
L
A
B
2
S1  
t
t
PHLA  
DI  
PLHA  
OUT  
D
V
OH  
OL  
GENERATOR  
(NOTE 4)  
50Ω  
C = 50pF  
L
(NOTE 5)  
V
V
V
OM  
OM  
A
B
V
CC  
V
t
t
PHLB  
PLHB  
V
OH  
+ V  
2
OL  
V
=
1.5V  
OM  
V
V
OH  
V
OM  
OM  
OL  
Figure 3. Driver Propagation Times  
3V  
0
1.5V  
1.5V  
DPLH  
DI  
A
C
C
L
DI  
D
OUT  
t
DPHL  
t
R
L
GENERATOR  
(NOTE 4)  
B
50Ω  
2.0V  
90%  
90%  
V
CC  
50%  
10%  
50%  
10%  
L
(A–B)  
-2.0V  
C = 50pF (NOTE 5)  
L
t
t
HL  
LH  
Figure 4. Driver Differential Output Delay and Transition Times  
_______________________________________________________________________________________  
7
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
Test Circuits and Waveforms (continued)  
3V  
A
B
S1  
DI  
A, B  
0 OR 3V  
D
DE  
1.5V  
1.5V  
PDZH  
t
0
DE  
R = 500Ω  
L
t
t
PDHZ  
PDHS  
C = 50pF  
L
(NOTE 5)  
GENERATOR  
(NOTE 4)  
V
OH  
50Ω  
0.25V  
A, B  
V
OM  
V
OH  
+ V  
2
OL  
V
OM  
=
1.5V  
0
Figure 5. Driver Enable and Disable Times  
V
CC  
3V  
0
0–MAX34E  
R = 500Ω  
L
1.5V  
1.5V  
PDZL  
DE  
A
S1  
t
t
DI  
A, B  
0 OR 3V  
D
t
PDLS  
PDLZ  
B
DE  
C = 50pF  
L
(NOTE 5)  
V
CC  
OL  
GENERATOR  
(NOTE 4)  
A, B  
V
OM  
50Ω  
0.25V  
V
Figure 6. Driver Enable and Disable Times  
2.0V  
0
A
R
O
V
ID  
R
(A–B)  
1.0V  
1.0V  
GENERATOR  
(NOTE 4)  
50Ω  
B
C = 20pF  
(NOTE 5)  
L
t
t
RPLH  
RPHL  
V
0
CC  
1.0V  
0
V
OM  
V
OM  
RO  
Figure 7. Receiver Propagation Delay  
8
_______________________________________________________________________________________  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
0–MAX34E  
Test Circuits and Waveforms (continued)  
S1  
S3  
1.5V  
A
B
V
CC  
1kΩ  
R
O
-1.5V  
V
ID  
R
S2  
C = 20pF  
L
(NOTE 5)  
GENERATOR  
(NOTE 4)  
50Ω  
3V  
0
3V  
0
S1 OPEN  
S2 CLOSED  
S1 CLOSED  
S2 OPEN  
RE  
RE  
RO  
RE  
RO  
1.5V  
1.5V  
V
= 1.5V  
V
= -1.5V  
S3  
S3  
t
RPZH  
t
t
RPZL  
RPSL  
t
t
RPSH  
RPWAKE  
V
0
OH  
V
V
CC  
RO  
1.5V  
1.5V  
OL  
3V  
0
3V  
0
S1 OPEN  
S2 CLOSED  
S1 CLOSED  
S2 OPEN  
RE  
1.5V  
1.5V  
V
= 1.5V  
V
= -1.5V  
S3  
S3  
t
RPHZ  
t
RPLZ  
V
0
OH  
V
V
CC  
OL  
RO  
0.5V  
0.5V  
Figure 8. Receiver Enable and Disable Times  
Note 4: The input pulse is supplied by a generator with the following characteristics: f = 5MHz, 50% duty cycle; tr 6ns; Z = 50Ω.  
0
Note 5: C includes probe and stray capacitance.  
L
_______________________________________________________________________________________  
9
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
-in Description  
PIN  
NAME  
FUNCTION  
MAX3440E  
MAX3441E  
MAX3442E  
MAX3443E  
MAX3444E  
Fault output. 1 = fault; 0 = normal operation  
A or B under the following conditions:  
A-B differential <200mV  
A shorted to B  
1
FAULT  
A shorted to a voltage within the common-mode range  
(detected only when the driver is enabled)  
B shorted to a voltage within the common-mode range  
(detected only when the driver is enabled)  
A or B outside the common-mode range  
Receiver Output. If receiver enabled and (A-B) -50mV,  
RO = high; if (A-B) -200mV, RO = low.  
2
1
2
1
2
RO  
RE  
Receiver Output Enable. Pull RE low to enable RO.  
Driver Output Enable. Pull DE low to enable the outputs.  
Force DE high to three-state the outputs. Drive RE and DE  
high to enter low-power shutdown mode.  
3
3
3
DE  
DE/RE  
DE  
0–MAX34E  
Driver/Receiver Output Enable. Pull DE/RE low to three-  
state the driver output and enable RO. Force DE/RE high  
to enable driver output and three-state RO.  
Driver Output Enable. Force DE high to enable driver. Pull  
DE low to three-state the driver output. Drive RE high and  
pull DE low to enter low-power shutdown mode.  
Driver Input. A logic-low on DI forces the noninverting  
output low and the inverting output high. A logic-high on  
DI forces the noninverting output high and the inverting  
output low.  
4
4
4
DI  
J1708 Input. A logic-low on TXD forces outputs A and B  
to the dominant state. A logic-high on TXD forces outputs  
A and B to the recessive state.  
TXD  
5
6
7
8
5
6
7
8
5
6
7
8
GND  
A
Ground  
Noninverting Receiver Input/Driver Output  
Inverting Receiver Input/Driver Output  
B
V
Positive Supply, V  
= +4.75V to +5.25V  
CC  
CC  
10 ______________________________________________________________________________________  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
0–MAX34E  
Function Tables  
Table 1. MAX3440E/MAX3441E Fault Table  
INPUTS  
OUTPUTS  
A-B  
DIFFERENTIAL  
INPUT VOLTAGE  
FAULT  
CONDITIONED  
BY DELAY  
FAULT CONDITION  
COMMON-MODE  
VOLTAGE  
V
RO  
ID  
0.45V  
1
1
1
0
Normal operation  
Indeterminate  
<0.45V and 0.27V  
<0.27V and -0.05V  
Indeterminate  
1
Low-input differential voltage  
Indeterminate  
(Note 1)  
-0.05V and -0.2V  
1
Low-input differential voltage  
Low-input differential voltage  
Indeterminate  
12V and -7V  
-0.2V and >-0.27V  
0
1
-0.27V and >-0.45V  
0
Indeterminate  
-0.45V  
0
0
1
X
<-7V or >+12V  
Indeterminate  
Outside common-mode voltage range  
X = Don’t care.  
Note 1: Receiver output may oscillate with this differential input condition.  
Table 3. MAX3442E/MAX3443E  
(RS-485/RS-422)  
Table 2. MAX3440E/MAX3441E  
(RS-485/RS-422)  
TRANSMITTING  
INPUTS  
OUTPUTS  
RE  
0
DE  
0
DI  
X
0
A
B
TRANSMITTING  
High-Z  
High-Z  
INPUTS  
OUTPUTS  
0
1
0
1
1
0
DE/RE  
DI  
X
A
B
0
1
1
0
1
1
High-Z  
High-Z  
1
0
X
0
Shutdown Shutdown  
0
0
1
1
0
1
1
0
1
1
0
1
1
1
1
X = Don’t care.  
X = Don’t care.  
Table 5. MAX3440E/MAX3441E  
(RS-485/RS-422)  
Table 4. MAX3444E (J1708) Application  
TRANSMITTING  
RECEIVING  
INPUTS  
OUTPUTS  
CONDITIONS  
INPUTS  
OUTPUTS  
TXD  
DE  
1
A
B
DE/RE  
(A - B)  
-0.05V  
-0.2V  
RO  
0
1
0
1
High-Z  
High-Z  
0
High-Z  
High-Z  
1
0
1
1
0
0
1
0
Dominant state  
Recessive state  
0
1
Open/shorted  
X
0
High-Z  
High-Z  
High-Z  
X = Don’t care.  
______________________________________________________________________________________ 11  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
Function Tables (continued)  
Table 6. MAX3442E/MAX3443E  
(RS-485/RS-422)  
Table 7. MAX3444E (RS-485/RS-422)  
RECEIVING  
INPUTS  
DE  
RECEIVING  
OUTPUTS  
INPUTS  
OUTPUTS  
RE  
(A - B)  
RO  
RE  
DE  
X
(A - B)  
RO  
0
X
X
X
1
0
-0.05V  
1
0
-0.05V  
1
0
-0.2V  
0
1
0
X
-0.2V  
0
1
0
Open/shorted  
0
X
Open/shorted  
1
X
X
High-Z  
Shutdown  
1
0
X
X
High-Z  
Shutdown  
1
1
1
X = Don’t care.  
X = Don’t care.  
Lowꢀ-ower Shutdown  
Detailed Description  
(MAX3442E/MAX3443E/MAX3444E)  
The MAX3442E/MAX3443E/MAX3444E offer a low-power  
shutdown mode. Force DE low and RE high to shut down  
the MAX3442E/MAX3443E. Force DE and RE high to  
shut down the MAX3444E. A time delay of 50ns prevents  
the device from accidentally entering shutdown due to  
logic skews when switching between transmit and  
receive modes. Holding DE low and RE high for at least  
800ns guarantees that the MAX3442E/MAX3443E enter  
shutdown. In shutdown, the devices consume a maxi-  
mum 20µA supply current.  
The MAX3440E–MAX3444E fault-protected transceivers  
for RS-485/RS-422 and J1708 communication contain  
one driver and one receiver. These devices feature fail-  
safe circuitry, which guarantees a logic-high receiver  
output when the receiver inputs are open or shorted, or  
when they are connected to a terminated transmission  
line with all drivers disabled (see the True Fail-Safe  
section). All devices have a hot-swap input structure  
that prevents disturbances on the differential signal  
lines when a circuit board is plugged into a hot back-  
plane (see the Hot-Swap Capability section). The  
MAX3440E/MAX3442E/MAX3444E feature a reduced  
slew-rate driver that minimizes EMI and reduces reflec-  
tions caused by improperly terminated cables, allowing  
error-free data transmission up to 250kbps (see the  
Reduced EMI and Reflections section). The MAX3441E/  
MAX3443E drivers are not slew-rate limited, allowing  
transmit speeds up to 10Mbps.  
0–MAX34E  
ꢁ0k Fault -rotection  
The driver outputs/receiver inputs of RS-485 devices in  
industrial network applications often experience voltage  
faults resulting from shorts to the power grid that  
exceed the -7V to +12V range specified in the EIA/TIA-  
485 standard. In these applications, ordinary RS-485  
devices (typical absolute maximum -8V to +12.5V)  
require costly external protection devices. To reduce  
system complexity and eliminate this need for external  
protection, the driver outputs/receiver inputs of the  
MAX3440E–MAX3444E withstand voltage faults up to  
60V with respect to ground without damage.  
Protection is guaranteed regardless whether the device  
is active, shut down, or without power.  
Driver  
The driver accepts a single-ended, logic-level input  
(DI) and transfers it to a differential, RS-485/RS-422  
level output (A and B). Deasserting the driver enable  
places the driver outputs (A and B) into a high-imped-  
ance state.  
Receiver  
The receiver accepts a differential, RS-485/RS-422  
level input (A and B), and transfers it to a single-ended,  
logic-level output (RO). Deasserting the receiver enable  
places the receiver inputs (A and B) into a high-imped-  
ance state (see Tables 1–7).  
True FailꢀSafe  
The MAX3440E–MAX3444E use a -50mV to -200mV  
differential input threshold to ensure true fail-safe  
receiver inputs. This threshold guarantees the receiver  
outputs a logic-high for shorted, open, or idle data  
lines. The -50mV to -200mV threshold complies with  
the 200mV threshold EIA/TIA-485 standard.  
12 ______________________________________________________________________________________  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
0–MAX34E  
Human Body Model  
Figure 9a shows the Human Body Model, and Figure  
9b shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of  
a 100pF capacitor charged to the ESD voltage of inter-  
est, which is then discharged into the device through a  
1.5kΩ resistor.  
±±15k ESD -rotection  
As with all Maxim devices, ESD-protection structures  
are incorporated on all pins to protect against ESD  
encountered during handling and assembly. The  
MAX3440E–MAX3444E receiver inputs/driver outputs  
(A, B) have extra protection against static electricity  
found in normal operation. Maxim’s engineers have  
developed state-of-the-art structures to protect these  
pins against 15kV ESD without damage. After an ESD  
event, the MAX3440E–MAX3444E continue working  
without latchup.  
Driver Output -rotection  
Two mechanisms prevent excessive output current and  
power dissipation caused by faults or bus contention.  
The first, a foldback current limit on the driver output  
stage, provides immediate protection against short cir-  
cuits over the whole common-mode voltage range. The  
second, a thermal shutdown circuit, forces the driver out-  
puts into a high-impedance state if the die temperature  
exceeds +160°C. Normal operation resumes when the  
die temperature cools to +140°C, resulting in a pulsed  
output during continuous short-circuit conditions.  
ESD protection can be tested in several ways. The  
receiver inputs are characterized for protection to  
15kV using the Human Body Model.  
ESD Test Conditions  
ESD performance depends on a number of conditions.  
Contact Maxim for a reliability report that documents  
test setup, methodology, and results.  
R
R
C
D
1.5kΩ  
1MΩ  
I
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
P
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
AMPERES  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
36.8%  
C
100pF  
STORAGE  
CAPACITOR  
s
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 9b. Human Body Model Current Waveform  
Figure 9a. Human Body ESD Test Model  
______________________________________________________________________________________ 13  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
HotꢀSwap Capability  
__________Applications Information  
Hot-Swap Inputs  
±28 Transceivers on the Bus  
Inserting circuit boards into a hot, or powered, back-  
The MAX3440E–MAX3444E transceivers 1/4-unit-load  
plane may cause voltage transients on DE, DE/RE, RE,  
receiver input impedance (48kΩ) allows up to 128  
and receiver inputs A and B that can lead to data errors.  
transceivers connected in parallel on one communica-  
For example, upon initial circuit board insertion, the  
tion line. Connect any combination of these devices,  
processor undergoes a power-up sequence. During this  
and/or other RS-485 devices, for a maximum of 32-unit  
period, the high-impedance state of the output drivers  
loads to the line.  
makes them unable to drive the MAX3440E–MAX3444E  
enable inputs to a defined logic level. Meanwhile, leak-  
Reduced EMI and Reflections  
age currents of up to 10µA from the high-impedance out-  
The MAX3440E/MAX3442E/MAX3444E are slew-rate  
limited, minimizing EMI and reducing reflections  
caused by improperly terminated cables. Figure 11  
shows the driver output waveform and its Fourier analy-  
sis of a 125kHz signal transmitted by a MAX3443E.  
High-frequency harmonic components with large ampli-  
tudes are evident.  
put, or capacitively coupled noise from V  
or GND,  
CC  
could cause an input to drift to an incorrect logic state.  
To prevent such a condition from occurring, the  
MAX3440E–MAX3443E feature hot-swap input circuitry  
on DE, DE/RE, and RE to guard against unwanted dri-  
ver activation during hot-swap situations. The  
MAX3444E has hot-swap input circuitry only on RE.  
Figure 12 shows the same signal displayed for a  
MAX3442E transmitting under the same conditions.  
Figure 12’s high-frequency harmonic components are  
much lower in amplitude, compared with Figure 11’s,  
and the potential for EMI is significantly reduced.  
When V  
rises, an internal pulldown (or pullup for RE)  
CC  
circuit holds DE low for at least 10µs, and until the cur-  
rent into DE exceeds 200µA. After the initial power-up  
sequence, the pulldown circuit becomes transparent,  
resetting the hot-swap tolerable input.  
0–MAX34E  
Hot-Swap Input Circuitry  
At the driver-enable input (DE), there are two NMOS  
devices, M1 and M2 (Figure 10). When V  
ramps from  
CC  
V
CC  
zero, an internal 15µs timer turns on M2 and sets the  
SR latch, which also turns on M1. Transistors M2, a  
2mA current sink, and M1, a 100µA current sink, pull  
DE to GND through a 5.6kΩ resistor. M2 pulls DE to the  
disabled state against an external parasitic capaci-  
tance up to 100pF that may drive DE high. After 15µs,  
the timer deactivates M2 while M1 remains on, holding  
DE low against three-state leakage currents that may  
drive DE high. M1 remains on until an external current  
source overcomes the required input current. At this  
time, the SR latch resets M1 and turns off. When M1  
turns off, DE reverts to a standard, high-impedance  
15μs  
TIMER  
TIMER  
5.6kΩ  
DE  
CMOS input. Whenever V  
is reset.  
drops below 1V, the input  
CC  
(HOT SWAP)  
2mA  
A complementary circuit for RE uses two PMOS  
devices to pull RE to V  
100μA  
.
CC  
M1  
M2  
Figure 10. Simplified Structure of the Driver Enable Pin (DE)  
14 ______________________________________________________________________________________  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
0–MAX34E  
In general, a transmitter’s rise time relates directly to  
the length of an unterminated stub, which can be dri-  
ven with only minor waveform reflections. The following  
equation expresses this relationship conservatively:  
J±708 Applications  
The MAX3444E is designed for J1708 applications. To  
configure the MAX3444E, connect DE and RE to GND.  
Connect the signal to be transmitted to TXD. Terminate  
the bus with the load circuit as shown in Figure 15. The  
drivers used by SAE J1708 are used in a dominant-  
mode application. DE is active low; a high input on DE  
places the outputs in high impedance. When the driver is  
disabled (TXD high or DE high), the bus is pulled high by  
external bias resistors R1 and R2. Therefore, a logic level  
high is encoded as recessive. When all transceivers are  
idle in this configuration, all receivers output logic high  
because of the pullup resistor on A and pulldown resistor  
on B. R1 and R2 provide the bias for the recessive state.  
C1 and C2 combine to form a 6MHz lowpass filter, effec-  
tive for reducing FM interference. R2, C1, R4, and C2  
combine to form a 1.6MHz lowpass filter, effective for  
reducing AM interference. Because the bus is untermi-  
nated, at high frequencies, R3 and R4 perform a  
pseudotermination. This makes the implementation more  
flexible, as no specific termination nodes are required at  
the ends of the bus.  
Length = t  
/ (10 x 1.5ns/ft)  
RISE  
where t  
is the transmitter’s rise time.  
RISE  
For example, the MAX3442E’s rise time is typically  
800ns, which results in excellent waveforms with a stub  
length up to 53ft. A system can work well with longer  
unterminated stubs, even with severe reflections, if the  
waveform settles out before the UART samples them.  
RSꢀ481 Applications  
The MAX3440E–MAX3443E transceivers provide bidi-  
rectional data communications on multipoint bus trans-  
mission lines. Figures 13 and 14 show a typical network  
applications circuit. The RS-485 standard covers line  
lengths up to 4000ft. To minimize reflections and  
reduce data errors, terminate the signal line at both  
ends in its characteristic impedance, and keep stub  
lengths off the main line as short as possible.  
20dB/div  
2V/div  
20dB/div  
2V/div  
0
500kHz/div  
5.00MHz  
0
500kHz/div  
5.00MHz  
Figure 11. Driver Output Waveform and FFT Plot of MAX3443E  
Transmitting a 125kHz Signal  
Figure 12. Driver Output Waveform and FFT Plot of MAX3442E  
Transmitting a 125kHz Signal  
______________________________________________________________________________________ 15  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
120Ω  
120Ω  
DE/RE  
DI  
B
A
B
A
DI  
D
D
DE/RE  
B
A
B
A
RO  
RO  
R
R
FAULT  
FAULT  
R
R
D
D
MAX3440E  
MAX3441E  
DE/RE  
DI  
DI  
RO  
DE/RE RO  
FAULT  
FAULT  
Figure 13. MAX3440E/MAX3441E Typical RS-485 Network  
0–MAX34E  
120Ω  
120Ω  
DE  
DI  
B
B
A
DI  
D
D
DE  
A
B
A
B
A
RO  
RE  
RO  
RE  
R
R
R
R
D
D
MAX3442E  
MAX3443E  
DE  
DI  
DI  
RO  
DE  
RO  
RE  
RE  
Figure 14. MAX3442E/MAX3443E Typical RS-485 Network  
16 ______________________________________________________________________________________  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
0–MAX34E  
Ordering Information (continued)  
DE  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +125°C  
0°C to +70°C  
PIN-PACKAGE  
8 SO  
MAX3441EESA+  
MAX3441EEPA+  
MAX3441EASA+  
MAX3441EAPA+  
MAX3442EESA+  
MAX3442EEPA+  
MAX3442EASA+  
MAX3442EAPA+  
MAX3443ECSA+  
MAX3443ECPA+  
MAX3443EESA+  
MAX3443EEPA+  
MAX3443EASA+  
MAX3443EAPA+  
MAX3444EESA+  
MAX3444EEPA+  
MAX3444EASA+  
MAX3444EAPA+  
R1  
8 PDIP  
8 SO  
4.7kΩ  
R3  
47Ω  
Tx  
D
TXD  
8 PDIP  
8 SO  
B
A
C1  
2.2nF  
J1708 BUS  
8 PDIP  
8 SO  
C2  
2.2nF  
MAX3444E  
8 PDIP  
8 SO  
R4  
47Ω  
0°C to +70°C  
8 PDIP  
8 SO  
R2  
4.7kΩ  
Rx  
R
RO  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +125°C  
8 PDIP  
8 SO  
RE  
8 PDIP  
8 SO  
V
CC  
8 PDIP  
8 SO  
Figure 15. J1708 Application Circuit  
8 PDIP  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
-in Configurations and Typical Operating Circuits (continued)  
TOP VIEW  
DE  
MAX3442E  
MAX3443E  
+
+
RO  
RE  
DE  
DI  
R
R
RO  
RE  
DE  
DI  
1
2
3
4
1
2
3
4
V
CC  
8
8
7
6
5
V
D
CC  
DI  
B
B
A
7
B
Rt  
Rt  
6
A
A
RO  
R
D
D
GND  
5
GND  
RE  
DIP/SO  
DIP/SO  
DE  
+
+
MAX3444E  
R
R
V
RO  
RE  
1
2
3
4
RO  
1
2
3
4
8
8
7
6
5
V
CC  
D
CC  
TXD  
RO  
B
B
A
7
B
RE  
DE  
Rt  
Rt  
6
A
DE  
A
R
TXD  
GND  
TXD  
D
D
5
GND  
RE  
DIP/SO  
DIP/SO  
______________________________________________________________________________________ 17  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
Chip Information  
-ac5age Information  
For the latest package outline information and land patterns,  
go to www.maxim-ic.com/packages. Note that a “+”, “#”, or  
“-” in the package code indicates RoHS status only. Package  
drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
8 SO  
S8+4  
21-0041  
90-0096  
0–MAX34E  
18 ______________________________________________________________________________________  
±±15k ESDꢀ-rotected, ±ꢁ0k Faultꢀ-rotected,  
±0Mbps, FailꢀSafe RSꢀ481/J±708 Transceivers  
0–MAX34E  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
10/02  
Initial release  
Corrected the supply current units from μA to mA for the Shutdown Supply Current  
vs. Temperature graph in the Typical Operating Characteristics section; updated the  
outputs in Table 4; updated Figure 15  
1
2
12/05  
11/10  
6, 11, 17  
Added lead(Pb)-free parts to the Ordering Information table; added the soldering  
temperature to the Absolute Maximum Ratings section; updated Table 4 outputs  
1, 2, 11, 17  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated -roducts, ±20 San Gabriel Drive, Sunnyvale, CA 9408ꢁ 408ꢀ737ꢀ7ꢁ00 ____________________ 19  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX3440EASA-T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO8, 0.150 INCH, MS-012A, SOIC-8
MAXIM

MAX3440EEPA

【15kV ESD-Protected, 【60V Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers
MAXIM

MAX3440EEPA+

±15kV ESD-Protected, ±60V Fault-Protected,
MAXIM

MAX3440EESA

【15kV ESD-Protected, 【60V Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers
MAXIM

MAX3440EESA+

±15kV ESD-Protected, ±60V Fault-Protected,
MAXIM

MAX3440EESA+T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO8, 0.150 INCH, MS-012A, SOIC-8
MAXIM

MAX3440EESA-T

暂无描述
MAXIM

MAX3440E_10

±15kV ESD-Protected, ±60V Fault-Protected,
MAXIM

MAX3441E

【15kV ESD-Protected, 【60V Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers
MAXIM

MAX3441EAPA

【15kV ESD-Protected, 【60V Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers
MAXIM

MAX3441EAPA+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
MAXIM

MAX3441EASA

【15kV ESD-Protected, 【60V Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers
MAXIM