MAX3293_11 [MAXIM]

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters; 20Mbps的, + 3.3V , SOT23 RS - 485 / RS - 422发射器
MAX3293_11
型号: MAX3293_11
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters
20Mbps的, + 3.3V , SOT23 RS - 485 / RS - 422发射器

文件: 总11页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2770; Rev 3; 3/11  
20Mbps, +3.3V, SOT23 RS-485/  
RS-422 Transmitters  
4/MAX3295  
General Description  
Features  
The MAX3293/MAX3294/MAX3295 low-power, high-  
speed transmitters for RS-485/RS-422 communication  
operate from a single +3.3V power supply. These  
devices contain one differential transmitter. The  
MAX3295 transmitter operates at data rates up to  
20Mbps, with an output skew of less than 5ns, and a  
guaranteed driver propagation delay below 25ns. The  
MAX3293 (250kbps) and MAX3294 (2.5Mbps) are  
slew-rate limited to minimize EMI and reduce reflections  
caused by improperly terminated cables.  
Space-Saving 6-Pin SOT23 Package  
250kbps/2.5Mbps/20Mbps Data Rates Available  
Operate from a Single +3.3V Supply  
ESD Protection  
9kV—Human Body Model  
Slew-Rate Limited for Errorless Data  
Transmission (MAX3293/MAX3294)  
1µA Low-Current Shutdown Mode  
-7V to +12V Common-Mode Input Voltage Range  
The MAX3293/MAX3294/MAX3295 output level is guar-  
anteed at +1.5V with a standard 54Ω load, compliant  
with RS-485 specifications. The transmitter draws 5mA  
of supply current when unloaded, and 1µA in low-  
power shutdown mode (DE = GND).  
Current Limiting and Thermal Shutdown for  
Driver-Overload Protection  
Hot-Swap Inputs for Telecom Applications  
Automotive Temperature Range (-40°C to +125°C)  
Hot-swap circuitry eliminates false transitions on the data  
cable during circuit initialization or connection to a live  
backplane, and short-circuit current limiting and thermal-  
shutdown circuitry protect the driver against excessive  
power dissipation.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
6 SOT23-6  
MAX3293AUT+T  
MAX3294AUT+T  
MAX3295AUT+T  
The MAX3293/MAX3294/MAX3295 are offered in a  
6-pin SOT23 package, and are specified over the  
automotive temperature range.  
6 SOT23-6  
6 SOT23-6  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
Applications  
RS-485/RS-422 Communications  
Selector Guide  
Clock Distribution  
Telecom Equipment  
Automotive  
MAXIMUM  
DATA RATE  
(Mbps)  
SLEW-  
RATE  
LIMITED  
TOP  
MARK  
PART  
Security Equipment  
Point-of-Sale Equipment  
Industrial Control  
ABNI or  
ABVH  
MAX3293AUT+T  
MAX3294AUT+T  
MAX3295AUT+T  
0.25  
2.5  
20  
Yes  
Yes  
No  
ABNJ or  
ABVI  
ABNK or  
ABVJ  
Typical Operating Circuit  
120Ω  
Z
DI  
RO  
D
R
Y
Pin Configuration appears at end of data sheet.  
DE  
MAX3293  
MAX3294  
MAX3295  
MAX3280E  
MAX3281E  
MAX3283E  
MAX3284E  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
20Mbps, +3.3V, SOT23 RS-485/  
RS-422 Transmitters  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND, unless otherwise noted.)  
Operating Temperature Ranges  
Supply Voltage (V ).............................................................+6V  
DE, DI .......................................................................-0.3V to +6V  
Y, Z .........................................................................-7V to +12.5V  
MAX32_ _AUT...............................................-40°C to +125°C  
Storage Temperature Range.............................-65°C to +160°C  
Junction Temperature .....................................................+160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
CC  
Maximum Continuous Power Dissipation (T = +70°C)  
A
SOT23 (derate 8.2mW/°C above +70°C).................654.1mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
CC  
= +3.3V 5ꢀ, T = T  
A
to T  
, unless otherwise noted. Typical values are at V  
= +3.3V and T = +25°C.) (Notes 1, 2)  
CC A  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
Supply Voltage  
V
3.135  
3.300  
3.465  
5
V
CC  
Supply Current in Normal  
Operation  
I
No load, DI = V  
or GND, DE = V  
CC  
mA  
µA  
Q
CC  
Supply Current in Shutdown Mode  
I
No load, DE = GND  
1
10  
SHDN  
DRIVER  
R = 50Ω (RS-422),  
+85°C  
2.0  
1.5  
V
V
CC  
CC  
T
A
Figure 1, DE = V  
,
CC  
Differential Driver Output  
V
V
OD  
DI = GND or V  
CC  
R = 27Ω (RS-485),  
+85°C  
T
A
Change in Magnitude of  
Differential Output Voltage  
Figure 1, R = 27Ω or 50Ω,  
DE = V (Note 3)  
4/MAX3295  
ΔV  
0.2  
+3  
0.2  
V
V
V
OD  
CC  
Driver Common-Mode Output  
Voltage  
Figure 1, R = 27Ω or 50Ω,  
DE = V , DI = V or GND  
V
-1  
OC  
CC  
CC  
Change in Magnitude of Common-  
Mode Voltage  
ΔV  
Figure 1, R = 27Ω or 50Ω (Note 3)  
OC  
DRIVER LOGIC  
Input High Voltage  
Input Low Voltage  
Input Current  
V
DE, DI  
DE, DI  
DE, DI  
2.0  
V
V
IH  
V
0.8  
+2  
IL  
I
-2  
µA  
IN  
Y, Z  
DE = GND,  
V
V
= +12V  
= -7V  
-20  
+20  
+20  
IN  
IN  
Output Leakage  
I
µA  
O
V
= GND or  
CC  
-20  
+3.3V  
(V - 1V) V  
+12V, output high  
+25  
Driver Short-Circuit Foldback  
Output Current  
CC  
OUT  
I
mA  
mA  
OSFD  
-7V V  
1V, output high  
-25  
OUT  
0 V  
+12V, output low  
OUT  
-250  
Driver Short-Circuit  
Output Current  
I
OSD  
-7V V  
V , output high  
+250  
OUT  
CC  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
ESD Protection  
T
160  
40  
9
°C  
°C  
kV  
TS  
T
TSH  
Y, Z  
Human Body Model  
2
_______________________________________________________________________________________  
20Mbps, +3.3V, SOT23 RS-485/  
RS-422 Transmitters  
4/MAX3295  
SWITCHING CHARACTERISTICS (MAX3293)  
(V  
CC  
= +3.3V 5ꢀ, T = +25°C, unless otherwise noted. Typical values are at V  
= +3.3V.)  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
400  
400  
400  
400  
TYP  
MAX  
1300  
1300  
1200  
1200  
UNITS  
t
t
PLH  
PHL  
Figures 2, 3; R  
C = 50pF  
L
= 54,  
DIFF  
DIFF  
DIFF  
Driver Propagation Delay  
ns  
t
R
Driver Differential Output Rise  
or Fall Time  
Figures 2, 3; R  
C = 50pF  
L
= 54,  
ns  
ns  
t
F
Figures 2, 3; R  
= 54, C = 50pF,  
L
Driver-Output Skew  
t
-400  
+400  
+100  
SKEW  
t
= | t  
- t  
| (Note 5)  
SKEW  
PLH PHL  
Differential Driver-Output Skew  
Maximum Data Rate  
t
Figures 2, 3; R  
Figures 2, 3; R  
= 54, C = 50pF  
-100  
250  
ns  
DSKEW  
DIFF  
L
= 54, C = 50pF  
kbps  
DIFF  
L
Figures 4, 5; S2 closed, R = 500,  
C = 100pF  
L
L
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
t
2000  
2000  
1000  
1000  
900  
ns  
ns  
ns  
ns  
ns  
ZH  
Figures 4, 5; S1 closed, R = 500,  
L
t
ZL  
LZ  
HZ  
C = 100pF  
L
Figures 4, 5; S1 closed, R = 500,  
L
t
C = 100pF  
L
Figures 4, 5; S2 closed, R = 500,  
L
t
C = 100pF  
L
Device-to-Device Propagation  
Delay Matching  
Same power supply, maximum temperature  
difference between devices = +30°C (Note 5)  
SWITCHING CHARACTERISTICS (MAX3294)  
(V  
CC  
= +3.3V 5ꢀ, T = +25°C, unless otherwise noted. Typical values are at V  
= +3.3V.)  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
24  
TYP  
MAX  
70  
UNITS  
t
t
PLH  
PHL  
Figures 2, 3; R  
C = 50pF  
L
= 54,  
DIFF  
DIFF  
DIFF  
Driver Propagation Delay  
ns  
24  
70  
t
R
10  
70  
Driver Differential Output Rise  
or Fall Time  
Figures 2, 3; R  
C = 50pF  
L
= 54,  
ns  
ns  
t
F
10  
70  
Figures 2, 3; R  
= 54, C = 50pF,  
L
Driver-Output Skew  
t
-40  
+40  
+6  
SKEW  
t
= | t  
- t  
| (Note 5)  
SKEW  
PLH PHL  
Differential Driver-Output Skew  
Maximum Data Rate  
t
Figures 2, 3; R  
Figures 2, 3; R  
= 54, C = 50pF  
-6  
ns  
DSKEW  
DIFF  
L
= 54, C = 50pF  
2.5  
Mbps  
DIFF  
L
Figures 4, 5; S2 closed, R = 500,  
C = 100pF  
L
L
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
t
400  
400  
100  
100  
46  
ns  
ns  
ns  
ns  
ns  
ZH  
Figures 4, 5; S1 closed, R = 500,  
L
t
ZL  
LZ  
HZ  
C = 100pF  
L
Figures 4, 5; S1 closed, R = 500,  
L
t
C = 100pF  
L
Figures 4, 5; S2 closed, R = 500,  
L
t
C = 100pF  
L
Device-to-Device Propagation  
Delay Matching  
Same power supply, maximum temperature  
difference between devices = +30°C (Note 5)  
_______________________________________________________________________________________  
3
20Mbps, +3.3V, SOT23 RS-485/  
RS-422 Transmitters  
SWITCHING CHARACTERISTICS (MAX3295)  
(V  
CC  
= +3.3V 5ꢀ, T = +25°C, unless otherwise noted. Typical values are at V  
= +3.3V.)  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
25  
UNITS  
t
t
PLH  
PHL  
Driver Propagation Delay  
Figures 2, 3; R  
Figures 2, 3;  
= 54, C = 50pF  
ns  
DIFF  
L
25  
T
A
T
A
T
A
T
A
= -40°C to +125°C  
< +85°C  
18.5  
15  
t
R
Driver Differential Output Rise  
or Fall Time  
R
DIFF  
= 54,  
ns  
= -40°C to +125°C  
< +85°C  
18.5  
15  
C = 50pF  
L
t
F
Figures 2, 3; R  
= 54, C = 50pF,  
L
|
DIFF  
- t  
Driver-Output Skew  
t
5
5
ns  
ns  
SKEW  
t
= | t  
SKEW  
PLH PHL  
Differential Driver-Output Skew  
t
Figures 2, 3; R  
= 54, C = 50pF  
L
DSKEW  
DIFF  
DIFF  
Figures 2, 3; R  
= 54, C = 50pF,  
L
20  
16  
T
A
+85°C  
Maximum Data Rate  
Mbps  
Figures 2, 3; R  
= 54, C = 50pF  
L
DIFF  
Figures 4, 5; S2 closed, R = 500,  
C = 100pF  
L
L
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
t
400  
400  
100  
100  
25  
ns  
ns  
ns  
ns  
ns  
ZH  
Figures 4, 5; S1 closed, R = 500,  
L
t
ZL  
LZ  
HZ  
C = 100pF  
L
Figures 4, 5; S1 closed, R = 500,  
L
t
C = 100pF  
L
Figures 4, 5; S2 closed, R = 500,  
L
t
C = 100pF  
L
4/MAX3295  
Device-to-Device Propagation  
Delay Matching  
Same power supply, maximum temperature  
difference between devices = +30°C (Note 5)  
Note 1: Devices production tested at +25°C. Limits over the operating temperature range are guaranteed by design.  
Note 2: All currents into the device are positive; all currents out of the device are negative. All voltages are referenced to device  
ground, unless otherwise noted.  
Note 3: ΔV  
and ΔV  
are the changes in V  
and V , respectively, when the DI input changes state.  
OD  
OC  
OD OC  
Note 4: The maximum current applies to peak current just prior to foldback current limiting.  
Note 5: Guaranteed by design; not production tested.  
4
_______________________________________________________________________________________  
20Mbps, +3.3V, SOT23 RS-485/  
RS-422 Transmitters  
4/MAX3295  
Test Circuits and Timing Diagrams  
Y
R
R
V
CC  
S1  
S2  
R
L
OUTPUT  
UNDER TEST  
V
OD  
C
L
V
OC  
Z
Figure 1. Driver DC Test Load  
Figure 4. Enable/Disable Timing Test Load  
3V  
DE  
1.5V  
1.5V  
3V  
DE  
0V  
t
t
, t  
LZ  
ZL(SHDN) ZL  
C
C
L
Y
Y, Z  
DI  
R
DIFF  
V
+ 0.25V  
- 0.25V  
OL  
V
ID  
2.3V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
V
OL  
Z
L
Y, Z  
0V  
2.3V  
t
V
OH  
t
, t  
HZ  
ZH(SHDN) ZH  
Figure 2. Driver Timing Test Circuit  
Figure 5. Driver Enable and Disable Times  
f = 1MHz, t 3ns, t 3ns  
R
F
3V  
0V  
DI  
1.5V  
1.5V  
t
t
PHL  
PLH  
1/2 V  
O
Z
V
O
Y
1/2 V  
O
V
= V (Y) - V (Z)  
DIFF  
V
0V  
O
90%  
90%  
V
DIFF  
10%  
10%  
-V  
O
t
t
R
F
|
t
= | t - t  
PLH PHL  
SKEW  
Figure 3. Driver Propagation Delays  
_______________________________________________________________________________________  
5
20Mbps, +3.3V, SOT23 RS-485/  
RS-422 Transmitters  
Typical Operating Characteristics  
(V  
CC  
= +3.3V, T = +25°C, unless otherwise noted.)  
A
SHUTDOWN SUPPLY CURRENT  
MAX3295  
SUPPLY CURRENT vs. DATA RATE  
SUPPLY CURRENT vs. TEMPERATURE  
vs. TEMPERATURE  
2.0  
1.5  
2.0  
1.6  
1.2  
0.8  
0.4  
0
25  
DE = V  
NO LOAD  
DE = V  
NO LOAD  
NO SWITCHING  
DE = GND  
CC  
CC  
T = +85°C  
20  
15  
10  
5
A
T = +125°C  
A
1.0  
0.5  
0
T = +25°C  
A
T = -40°C  
A
0
-40  
-10  
20  
50  
80  
110  
-40  
-10  
20  
50  
80  
110  
0
5
10  
DATA RATE (Mbps)  
15  
20  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT CURRENT  
vs. DIFFERENTIAL OUTPUT VOLTAGE  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
vs. TEMPERATURE  
DRIVER-OUTPUT CURRENT  
vs. DRIVER-OUTPUT LOW VOLTAGE  
140  
120  
100  
80  
50  
40  
30  
20  
10  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
R
R
= 100Ω  
= 54Ω  
DIFF  
4/MAX3295  
60  
DIFF  
40  
20  
0
0
2
4
6
8
10  
12  
1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
-40  
-10  
20  
50  
80  
110  
OUTPUT LOW VOLTAGE (V)  
TEMPERATURE (°C)  
DRIVER PROPAGATION DELAY  
vs. TEMPERATURE  
DRIVER-OUTPUT CURRENT  
vs. DRIVER-OUTPUT HIGH VOLTAGE  
OUTPUT SKEW vs. TEMPERATURE  
20  
0
40  
30  
4
3
R
= 54Ω  
DIFF  
C = 50pF  
L
-20  
-40  
-60  
-80  
-100  
-120  
t
t
PHL  
20  
10  
0
2
1
0
PLH  
-7  
-5  
-3  
-1  
1
3
5
-40  
-10  
20  
50  
80  
110  
-40  
-10  
20  
50  
80  
110  
OUTPUT HIGH VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
20Mbps, +3.3V, SOT23 RS-485/  
RS-422 Transmitters  
4/MAX3295  
Typical Operating Characteristics (continued)  
(V  
CC  
= +3.3V, T = +25°C, unless otherwise noted.)  
A
UNLOADED DRIVER-OUTPUT  
WAVEFORM (f = 16Mbps)  
ENABLE RESPONSE TIME  
DRIVER PROPAGATION DELAY  
IN  
MAX3293-95 toc11  
MAX3293-95 toc10  
MAX3293-95 toc12  
DE  
0V  
DI  
0V  
Y-Z  
0V  
Y, Z  
0V  
Y, Z  
0V  
40ns/div  
20ns/div  
20ns/div  
Y, Z: 1V/div  
DI: 2V/div  
Y, Z: 1V/div  
Y, Z, DE: 2V/div  
LOADED DRIVER-OUTPUT WAVEFORM  
EYE DIAGRAM (f = 20Mbps)  
(f = 16Mbps)  
IN  
IN  
MAX3293-95 toc14  
MAX3293-95 toc13  
Y, Z  
0V  
Y, Z  
0V  
10ns/div  
20ns/div  
Y, Z: 500mV/div  
Y, Z: 500mV/div  
Pin Description  
PIN  
NAME  
FUNCTION  
Driver Input. A logic low on DI forces the noninverting output (Y) low and the inverting output (Z)  
high. A logic high on DI forces the noninverting output (Y) high and the inverting output (Z) low.  
1
2
3
DI  
V
Positive Supply. V  
= +3.3V 5ꢀ. Bypass V  
to GND with a 0.1µF capacitor.  
CC  
CC  
CC  
Driver Output Enable. Force DE high to enable driver. Pull DE low to disable the driver. Hot-swap  
input, see the Hot-Swap Capability section.  
DE  
4
5
6
Z
GND  
Y
Inverting RS-485/RS-422 Output  
Ground  
Noninverting RS-485/RS-422 Output  
_______________________________________________________________________________________  
7
20Mbps, +3.3V, SOT23 RS-485/  
RS-422 Transmitters  
cause coupling of V  
or GND to DE. These factors  
CC  
Detailed Description  
could improperly enable the driver.  
The MAX3293/MAX3294/MAX3295 are low-power  
transmitters for RS-485/RS-422 communication. The  
MAX3295 operates at data rates up to 20Mbps, the  
MAX3294 up to 2.5Mbps (slew-rate limited), and the  
MAX3293 up to 250kbps (slew-rate limited). These  
devices are enabled using an active-high driver enable  
(DE) input. When disabled, outputs enter a high-imped-  
ance state, and the supply current reduces to 1µA.  
The MAX3293/MAX3294/MAX3295 eliminate all above  
issues with hot-swap circuitry. When V  
rises, an  
CC  
internal pulldown circuit holds DE low for approximately  
10µs. After the initial power-up sequence, the pulldown  
circuit becomes transparent, resetting the hot-swap tol-  
erable input.  
The MAX3293/MAX3294/MAX3295 have a hot-swap  
input structure that prevents disturbance on the differ-  
ential signal lines when a circuit board is plugged into  
a “hot” backplane (see the Hot-Swap Capability sec-  
tion). Drivers are also short-circuit current limited and  
are protected against excessive power dissipation by  
thermal-shutdown circuitry.  
V
CC  
10μs  
TIMER  
Driver  
The driver accepts a single-ended, logic-level input  
(DI) and translates it to a differential RS-485/RS-422  
level output (Y and Z). Driving DE high enables the dri-  
ver, while pulling DE low places the driver outputs  
(Y and Z) into a high-impedance state (see Table 1).  
TIMER  
Low-Power Shutdown  
Force DE low to disable the MAX3293/MAX3294/  
MAX3295. In shutdown mode, the device consumes a  
maximum of 10µA of supply current.  
5.6kΩ  
DE  
EN  
(HOT SWAP)  
2mA  
100μA  
4/MAX3295  
Hot-Swap Capability  
M1  
M2  
Hot-Swap Input  
When circuit boards are inserted into a “hot” or pow-  
ered backplane, disturbances to the enable can lead to  
data errors. Upon initial circuit board insertion, the  
processor undergoes its power-up sequence. During  
this period, the output drivers are high impedance and  
are unable to drive the DE input of the MAX3293/  
MAX3294/MAX3295 to a defined logic level. Leakage  
currents up to 10µA from the high-impedance output  
could cause DE to drift to an incorrect logic state.  
Additionally, parasitic circuit board capacitance could  
Figure 6. Simplified Structure of the Driver Enable Input (DE)  
DIFFERENTIAL POWER-UP GLITCH  
(0.1V/μs)  
2V/div  
0V  
V
CC  
10mV/div  
AC-COUPLED  
Table 1. MAX3293/MAX3294/  
MAX3295 (RS-485/RS-422) Transmitting  
Function Table  
Y
Z
10mV/div  
AC-COUPLED  
INPUTS  
OUTPUTS  
DE  
0
DI  
X
Y
Z
20mV/div  
Y-Z  
Shutdown  
Shutdown  
1
1
0
1
0
1
1
0
4μs/div  
X = Don’t care.  
Figure 7. Differential Power-Up Glitch (0.1V/µs)  
8
_______________________________________________________________________________________  
20Mbps, +3.3V, SOT23 RS-485/  
RS-422 Transmitters  
4/MAX3295  
Hot-Swap Input Circuitry  
off. When M1 turns off, DE reverts to a standard, high-  
impedance CMOS input. Whenever V  
1V, the hot-swap input is reset.  
The MAX3293/MAX3294/MAX3295 enable input fea-  
tures hot-swap capability. At the input, there are two  
drops below  
CC  
NMOS devices, M1 and M2 (Figure 6). When V  
CC  
Hot-Swap Line Transient  
During a hot-swap event when the driver is connected to  
the line and is powered up, the driver must not cause the  
differential signal to drop below 200mV. Figures 7, 8, and  
9 show the results of the MAX3295 during power-up for  
ramps from zero, an internal 10µs timer turns on M2  
and sets the SR latch, which also turns on M1.  
Transistors M2, a 2mA current sink, and M1, a 100µA  
current sink, pull DE to GND through a 5.6kΩ resistor.  
M2 is designed to pull DE to the disabled state against  
an external parasitic capacitance up to 100pF that may  
drive DE high. After 10µs, the timer deactivates M2  
while M1 remains on, holding DE low against three-  
state leakages that can drive DE high. M1 remains on  
until an external source overcomes the required input  
current. At this time, the SR latch resets and M1 turns  
three different V  
ramp rates (0.1V/µs, 1V/µs, and  
CC  
10V/µs). The photos show the V  
ramp, the single-  
CC  
ended signal on each side of the 100Ω termination, as  
well as the differential signal across the termination.  
ESD Protection  
Human Body Model  
Figure 10 shows the Human Body Model, and Figure 11  
shows the current waveform it generates when dis-  
charged into low impedance. This model consists of a  
100pF capacitor charged to the ESD voltage of interest,  
which is then discharged into the device through a  
1.5kΩ resistor.  
DIFFERENTIAL POWER-UP GLITCH  
(1V/μs)  
2V/div  
0V  
V
CC  
100mV/div  
AC-COUPLED  
Y
Z
R
C
R
D
1MΩ  
1.5kΩ  
100mV/div  
AC-COUPLED  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
200mV/div  
Y-Z  
C
100pF  
STORAGE  
CAPACITOR  
s
SOURCE  
1μs/div  
Figure 8. Differential Power-Up Glitch (1V/µs)  
Figure 10. Human Body ESD Test  
DIFFERENTIAL POWER-UP GLITCH  
(10V/μs)  
2V/div  
0V  
V
CC  
I
r
I
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
P
50mV/div  
AMPERES  
AC-COUPLED  
Y
Z
36.8%  
50mV/div  
AC-COUPLED  
10%  
0V  
0V  
TIME  
Y-Z  
100mV/div  
t
RL  
t
DL  
CURRENT WAVEFORM  
200ns/div  
Figure 9. Differential Power-Up Glitch (10V/µs)  
Figure 11. Current Waveform  
_______________________________________________________________________________________  
9
20Mbps, +3.3V, SOT23 RS-485/  
RS-422 Transmitters  
Reduced EMI and Reflections  
Driver-Output Protection  
Two mechanisms prevent excessive output current and  
power dissipation caused by faults or by bus contention.  
The first, a foldback current limit on the output stage,  
provides immediate protection against short circuits over  
the whole common-mode voltage range (see the Typical  
Operating Characteristics). The second, a thermal-shut-  
down circuit, forces the driver outputs into a high-imped-  
ance state if the die temperature exceeds +160°C.  
(MAX3293/MAX3294)  
The MAX3293/MAX3294 are slew-rate limited, minimiz-  
ing EMI and reducing reflections caused by improperly  
terminated cables. Figure 12 shows Fourier analysis of  
the MAX3295 transmitting a 125kHz signal. High-fre-  
quency harmonics with large amplitudes are evident.  
Figure 13 shows the same information, but for the slew-  
rate-limited MAX3293, transmitting the same signal.  
The high-frequency harmonics have much lower ampli-  
tudes, and the potential for EMI is significantly reduced.  
To minimize reflections, the line should be terminated at  
both ends in its characteristic impedance, and stub  
lengths off the main line should be kept as short as  
possible. The slew-rate-limited MAX3293 and MAX3294  
are more tolerant of imperfect termination.  
Chip Information  
PROCESS: BiCMOS  
DRIVER-OUTPUT WAVEFORM AND  
FFT PLOT OF MAX3295  
DRIVER-OUTPUT WAVEFORM AND  
FFT PLOT OF MAX3293  
4/MAX3295  
10dB/div  
10dB/div  
Figure 12. Driver-Output Waveform and FFT Plot of MAX3295  
Transmitting a 125kHz Signal  
Figure 13. Driver-Output Waveform and FFT Plot of MAX3293  
Transmitting a 125kHz Signal  
Pin Configuration  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
TOP VIEW  
+
DI  
1
2
3
6
5
4
Y
MAX3293  
MAX3294  
MAX3295  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
V
GND  
Z
CC  
PATTERN NO.  
6 SOT23  
U6CN+2  
21-0058  
90-0175  
DE  
SOT23-6  
10 ______________________________________________________________________________________  
20Mbps, +3.3V, SOT23 RS-485/  
RS-422 Transmitters  
4/MAX3295  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
3
3/11  
Added lead-free parts to the Ordering Information and Selector Guide tables  
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 11  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX3293_14

20Mbps, 3.3V, SOT23 RS-485/RS-422 Transmitters
MAXIM

MAX3294

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters
MAXIM

MAX3294AUT

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters
MAXIM

MAX3294AUT+T

20Mbps, 3.3V, SOT23 RS-485/ RS-422 Transmitters
MAXIM

MAX3294AUT+TCGD

Line Driver
MAXIM

MAX3294AUT-T

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters
MAXIM

MAX3295

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters
MAXIM

MAX3295AUT

PLASTIC ENCAPSULATED DEVICES
MAXIM

MAX3295AUT+T

20Mbps, 3.3V, SOT23 RS-485/ RS-422 Transmitters
MAXIM

MAX3295AUT-T

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters
MAXIM

MAX3295AUT/V+

Line Driver,
MAXIM

MAX3295AUT/V+T

20Mbps, 3.3V, SOT23 RS-485/RS-422 Transmitters
MAXIM