MAX2820AETM+TD [MAXIM]

2.4GHz 802.11b Zero-IF Transceivers; 2.4GHz的802.11b的零中频收发器
MAX2820AETM+TD
型号: MAX2820AETM+TD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2.4GHz 802.11b Zero-IF Transceivers
2.4GHz的802.11b的零中频收发器

文件: 总26页 (文件大小:605K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2493; Rev 5; 5/05  
2.4GHz 802.11b Zero-IF Transceivers  
General Description  
Features  
The MAX2820/MAX2820A and MAX2821/MAX2821A  
single-chip zero-IF transceivers are designed for the  
802.11b (11Mbps) applications operating in the  
2.4GHz to 2.5GHz ISM band. The transceivers are  
nearly identical, except the MAX2821 and MAX2821A  
also provide a low-power shutdown mode and an ana-  
log voltage reference output. The MAX2820A/  
MAX2821A are cost-reduced versions, virtually identi-  
cal in pinout and performance to the MAX2820/  
MAX2821. The transceivers include all the circuitry  
required to implement an 802.11b RF-to-baseband  
transceiver solution, providing a fully integrated  
receive path, transmit path, VCO, frequency synthesis,  
and baseband/control interface. Only a PA, RF switch,  
RF BPF, and a small number of passive components are  
needed to form the complete radio front-end solution.  
2.4GHz to 2.5GHz ISM Band Operation  
802.11b (11Mbps CCK and 22Mbps PBCC) PHY  
Compatible  
Complete RF-to-Baseband Transceiver  
Direct-Conversion Upconverters and  
Downconverters  
Monolithic Low-Phase-Noise VCO  
Integrated Baseband Lowpass Filters  
Integrated PLL with 3-Wire Serial Interface  
Digital Bias Control for External PA  
Transmit Power Control (Range > 25dB)  
Receive Baseband AGC (Range > 65dB)  
Complete Baseband Interface  
Digital Tx/Rx Mode Control  
Analog Receive Level Detection  
The ICs eliminate the need for external IF and base-  
band filters by utilizing a direct-conversion radio archi-  
tecture and monolithic baseband filters for both  
receiver and transmitter. They are specifically opti-  
mized for 802.11b (11Mbps CCK) applications. The  
baseband filtering and Rx and Tx signal paths support  
the CCK modulation scheme for BER = 10-5 at the  
required sensitivity levels.  
-97dBm Rx Sensitivity at 1Mbps  
-87dBm Rx Sensitivity at 11Mbps  
+2dBm Transmit Power (11Mbps CCK)  
Single +2.7V to +3.6V Supply  
The devices are suitable for the full range of 802.11b  
data rates (1Mbps, 2Mbps, 5.5Mbps, and 11Mbps) and  
also the higher-rate 22Mbps PBCCTM standard. The  
MAX2820 and MAX2821 are available in a 7mm × 7mm  
48-lead QFN package. The MAX2820, MAX2821,  
MAX2820A, and MAX2821A are available in a 48-lead  
thin QFN package.  
Low-Current Shutdown Mode (MAX2821 only)  
Very Small 48-Pin QFN Package(s)  
Ordering Information  
Applications  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
48 Thin QFN  
Lead Free  
802.11b 11Mbps WLAN  
MAX2820ETM-TD  
MAX2820ETM+TD  
MAX2820AETM-TD  
MAX2820AETM+TD  
MAX2821ETM-TD  
MAX2821ETM+TD  
MAX2821AETM-TD  
MAX2821AETM+TD  
+
802.11b 22Mbps PBCC High-Data-Rate WLAN  
802.11a + b Dual-Band WLAN  
2.4GHz ISM Band Radios  
48 Thin QFN  
Lead Free  
48 Thin QFN  
Lead Free  
48 Thin QFN  
Lead Free  
PBCC is a trademark of Texas Instruments, Inc.  
Pin Configuration/Functional Diagram and Typical  
Application Circuit appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2.4GHz 802.11b Zero-IF Transceivers  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
Pins to GND ...................................................-0.3V to +4.2V  
DIN, RF_GAIN, RX_1K to GND................-0.3V to (V  
+ 0.3V)  
CC  
RF Inputs: RX_RFP, RX_RFN to GND.........-0.3V to (V  
RF Outputs: TX_RFP, TX_RFN to GND..................-0.3V to +4.2V  
Baseband Inputs: TX_BBIP, TX_BBIN, TX_BBQP,  
+ 0.3V)  
Bias Voltages: RBIAS, BYP ..................................+0.9V to +1.5V  
Short-Circuit Duration Digital Outputs: DOUT, RX_DET.........10s  
RF Input Power: RX_RFN, RX_RFP.................................+10dBm  
CC  
TX_BBQN to GND ...................................-0.3V to (V + 0.3V)  
Continuous Power Dissipation (T = +70°C)  
CC  
A
Baseband Outputs: RX_BBIP, RX_BBIN, RX_BBQP,  
48-Lead QFN (derate 27.0mW/°C above +70°C)...........2162mW  
48-Lead Thin QFN (derate 38.5mW/°C  
RX_BBQN to GND...................................-0.3V to (V  
Analog Inputs: RX_AGC, TX_GC, TUNE, ROSCN,  
ROSCP to GND .......................................-0.3V to (V  
Analog Outputs: PA_BIAS, CP_OUT, VREF  
to GND.....................................................-0.3V to (V  
Digital Inputs: RX_ON, TX_ON, SHDNB, CSB, SCLK,  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
CC  
above +70°C)...................................................................3077mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
CAUTION! ESD SENSITIVE DEVICE  
DC ELECTRICAL CHARACTERISTICS  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, RF_GAIN = V , 0V V  
+2.0V, 0V V  
+2.0V, RBIAS = 12k, no  
CC  
IH  
TX_GC  
RX_AGC  
input signals at RF and baseband inputs, all RF inputs and outputs terminated into 50, receiver baseband outputs are open, trans-  
mitter baseband inputs biased at +1.2V, registers set to default power-up settings, T = -40°C to +85°C, unless otherwise noted.  
A
Typical values are at V  
= +2.7V, T = +25°C, unless otherwise noted.) (Note 1)  
CC  
A
PARAMETERS  
Supply Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2.7  
3.6  
V
Shutdown-Mode Supply Current  
(MAX2821 and MAX2821A)  
SHDNB = V , RX_ON = V ,  
IL IL  
T
= -40°C to +85°C  
2
50  
µA  
mA  
mA  
mA  
A
TX_ON = V  
IL  
T
A
T
A
T
A
T
A
T
A
T
A
= +25°C  
25  
35  
40  
SHDNB = V , RX_ON = V ,  
IH  
IL  
Standby-Mode Supply Current  
Receive-Mode Supply Current  
Transmit-Mode Supply Current  
TX_ON = V  
IL  
= -40°C to +85°C  
= +25°C  
80  
70  
100  
110  
85  
SHDNB = V , RX_ON = V  
,
IH  
IH  
TX_ON = V  
IL  
= -40°C to +85°C  
= +25°C  
SHDNB = V , RX_ON = V ,  
IH  
IL  
TX_ON = V  
IH  
= -40°C to +85°C  
90  
LOGIC INPUTS: SHDNB, RX_ON, TX_ON, SCLK, DIN, CSB, RF_GAIN  
Digital Input Voltage High (V  
)
V
V
- 0.5  
CC  
V
IH  
Digital Input Voltage Low (V )  
0.5  
+5  
+5  
V
IL  
Digital Input Current High (I  
)
-5  
-5  
µA  
µA  
IH  
Digital Input Current Low (I )  
IL  
LOGIC OUTPUTS: DOUT, RX_DET  
Digital Output Voltage High (V  
)
Sourcing 100µA  
Sinking 100µA  
- 0.5  
CC  
V
V
OH  
Digital Output Voltage Low (V  
RX BASEBAND I/O  
)
OL  
0.5  
RX_AGC Input Resistance  
0V V  
+2.0V  
50  
kΩ  
V
RX_AGC  
RX I/Q Common-Mode Voltage  
RX I/Q Output DC Offsets  
1.25  
15  
mV  
VOLTAGE REFERENCE (MAX2821/MAX2821A)  
Reference Voltage Output  
Output Impedance  
T
= -40°C to +85°C, I  
=
LOAD  
2mA  
1.1  
1.2  
25  
1.3  
V
A
2
_______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
DC ELECTRICAL CHARACTERISTICS (continued)  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, RF_GAIN = V , 0V V  
+2.0V, 0V V  
+2.0V, RBIAS = 12k, no  
CC  
IH  
TX_GC  
RX_AGC  
input signals at RF and baseband inputs, all RF inputs and outputs terminated into 50, receiver baseband outputs are open, trans-  
mitter baseband inputs biased at +1.2V, registers set to default power-up settings, T = -40°C to +85°C, unless otherwise noted.  
A
Typical values are at V  
= +2.7V, T = +25°C, unless otherwise noted.) (Note 1)  
CC  
A
PARAMETERS  
TX BASEBAND I/O  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TX BB Input Common-Mode  
Range  
1.0  
1.2  
-10  
1.4  
V
TX BBI and BBQ Input Bias  
Current  
µA  
TX BB Input Impedance  
Differential resistance  
0V V +2.0V  
100  
10  
kΩ  
µA  
kΩ  
TX_GC Input Bias Current  
TX_GC Input Impedance  
TX_GC  
Resistance  
250  
REFERENCE OSCILLATOR INPUT  
Reference Oscillator Input  
Impedance  
20  
kΩ  
AC ELECTRICAL CHARACTERISTICS—RECEIVE MODE  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, f and f = 2400MHz to 2499MHz, f  
= 22MHz or 44MHz, receive baseband  
CC  
RF  
LO  
OSC  
outputs = 500mV , SHDNB = RX_ON = V , TX_ON = V , CSB = V , SCLK = DIN = V , RF_GAIN = V , 0V V +2.0V,  
P-P  
IH  
IL  
IH  
IL  
IH  
RX_AGC  
RBIAS = 12k, I = +2mA, BW  
= 45kHz, differential RF input matched to 50, registers set to default power-up settings, T =  
CP  
PLL  
A
+25°C, unless otherwise noted. Typical values are at V  
= +2.7V, f = 2437MHz, f  
= 22MHz, unless otherwise noted.) (Note 1)  
OSC  
CC  
LO  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RECEIVER CASCADE PERFORMANCE (RF INPUT TO BASEBAND OUTPUT)  
RF Frequency Range  
LO Frequency Range  
2400  
2400  
97  
2499  
2499  
MHz  
MHz  
T
T
= +25°C  
105  
RF_GAIN = V  
,
,
A
IH  
IH  
V
= 0V  
RX_AGC  
= -40°C to +85°C  
95  
A
RF_GAIN = V  
T
T
T
= +25°C  
33  
75  
2
A
A
A
V
= +2.0V  
RX_AGC  
Voltage Gain (Note 2)  
dB  
RF_GAIN = V ,  
IL  
= +25°C  
= +25°C  
V
= 0V  
RX_AGC  
RF_GAIN = V ,  
IL  
V
= +2.0V  
RX_AGC  
RF Gain Step  
From RF_GAIN = V to RF_GAIN =V  
30  
3.5  
4.5  
34  
dB  
dB  
IH  
IL  
RF_GAIN = V , RX gain 80dB  
IH  
DSB Noise Figure (Note 3)  
RF_GAIN = V , RX gain = 50dB  
IH  
RF_GAIN = V , RX gain = 50dB  
IL  
Adjacent Channel Rejection  
RX gain = 70dB (Note 4)  
49  
dB  
RF_GAIN = V , RX gain = 80dB  
-14  
18  
IH  
Input Third-Order Intercept Point (Note 5)  
dBm  
RF_GAIN = V , RX gain = 50dB  
IL  
RF_GAIN = V , RX gain = 80dB  
22  
IH  
Input Second-Order Intercept Point (Note 6)  
dBm  
RF_GAIN = V , RX gain = 50dB  
60  
IL  
_______________________________________________________________________________________  
3
2.4GHz 802.11b Zero-IF Transceivers  
AC ELECTRICAL CHARACTERISTICSRECEIVE MODE (continued)  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, f and f = 2400MHz to 2499MHz, f  
= 22MHz or 44MHz, receive baseband  
CC  
RF  
LO  
OSC  
outputs = 500mV , SHDNB = RX_ON = V , TX_ON = V , CSB = V , SCLK = DIN = V , RF_GAIN = V , 0V V +2.0V,  
P-P  
IH  
IL  
IH  
IL  
IH  
RX_AGC  
RBIAS = 12k, I = +2mA, BW  
= 45kHz, differential RF input matched to 50, registers set to default power-up settings, T =  
CP  
PLL  
A
+25°C, unless otherwise noted. Typical values are at V  
= +2.7V, f = 2437MHz, f  
= 22MHz, unless otherwise noted.) (Note 1)  
OSC  
CC  
LO  
PARAMETER  
CONDITIONS  
MIN  
TYP  
-65  
15  
MAX  
UNITS  
dBm  
dB  
LO Leakage  
Input Return Loss  
With external match  
RECEIVER BASEBAND  
BASEBAND FILTER RESPONSE  
MAX2820/  
MAX2821  
Default bandwidth setting  
BW (2:0) = (010)  
7
8
-3dB Frequency  
MHz  
MAX2820A/  
MAX2821A  
At 12.5MHz  
At 16MHz  
At 20MHz  
At 30MHz  
At 12.5MHz  
At 16MHz  
At 20MHz  
At 30MHz  
40  
65  
70  
85  
28  
52  
70  
85  
MAX2820/  
MAX2821  
Attenuation Relative to Passband  
dB  
MAX2820A/  
MAX2821A  
BASEBAND OUTPUT CHARACTERISTICS  
RX I/Q Gain Imbalance  
-1  
-5  
+1  
+5  
dB  
RX I/Q Phase Quadrature Imbalance  
RX I/Q Output 1dB Compression  
RX I/Q Output THD  
Degrees  
Differential voltage into 5kΩ  
1
V
P-P  
V
= 500mV  
at 5.5MHz, Z = 5k||5pF  
-35  
dBc  
OUT  
P-P  
L
BASEBAND AGC AMPLIFIER  
AGC Range  
V
= 0 to +2.0V  
70  
60  
dB  
RX_AGC  
AGC Slope  
Peak gain slope  
dB/V  
20dB gain step, 80dB to 60dB,  
settling to 1dB  
AGC Response Time  
2
µs  
BASEBAND RX PEAK LEVEL DETECTION (MAX2820/MAX2821 ONLY)  
RF_GAIN = V  
,
IH  
-49  
-54  
RX_DET = V to V  
OL  
OH  
RX Detector Trip Point (at RX_RF)  
CW signal  
dBm  
RF_GAIN = V ,  
IL  
RX_DET = V  
to V  
OL  
OH  
RX Detector Hysteresis  
RX Detector Rise Time  
5
1
dB  
µs  
With 3dB overdrive  
4
_______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
AC ELECTRICAL CHARACTERISTICSTRANSMIT MODE  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, f and f = 2400MHz to 2499MHz, f  
= 22MHz or 44MHz, transmit baseband  
CC  
RF  
LO  
OSC  
inputs = 400mV , SHDNB = TX_ON = V , RX_ON = V , CSB = V , 0V V  
+2.0V, RBIAS = 12k, I = +2mA, BW  
=
P-P  
IH  
IL  
IH  
TX_GC  
CP  
PLL  
45kHz, differential RF output matched to 50through a balun, baseband input biased at +1.2V, registers set to default power-up set-  
tings, T = +25°C, unless otherwise noted. Typical values are at V  
= +2.7V, f = 2437MHz, f  
= 22MHz, unless otherwise noted.)  
A
CC  
LO  
OSC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TRANSMIT SIGNAL PATH: BASEBAND INPUT TO RF OUTPUT  
RF Output Frequency Range  
2400  
2400  
2499  
2499  
MHz  
MHz  
LO Output Frequency Range  
V
= 400mV at  
P-P  
IN  
T
T
= +25°C  
-1  
-2  
+3  
A
5.5MHz,  
= 0V,  
TX RF Output Power  
TX RF ACPR (Note 8)  
dBm  
dBc  
V
TX_GC  
= -40°C to  
A
I/Q CW signal (Note 7)  
+85°C  
-22MHz f  
11MHz f  
-11MHz,  
22MHz  
OFFSET  
OFFSET  
-37  
-59  
-33MHz f  
< -22MHz,  
33MHz  
OFFSET  
OFFSET  
22MHz < f  
Unwanted sideband  
-40  
-30  
-80  
-40  
-55  
-60  
-43  
-45  
-135  
15  
In-Band Spurious Signals Relative to  
Modulated Carrier  
f
= 2400MHz to  
RF  
dBc  
dBm  
dBm  
LO signal  
2483MHz  
Spurs > 22MHz  
2 × f  
3 × f  
LO  
TX RF Harmonics  
LO  
f
f
f
f
< 2400MHz  
RF  
TX RF Spurious Signal Emissions  
(Outside 2400MHz to 2483.5MHz)  
Nonharmonic Signals  
= 2500MHz to 3350MHz  
> 3350MHz  
RF  
RF  
TX RF Output Noise  
22MHz, 0V V  
+2.0V  
TX_GC  
dBm/Hz  
dB  
OFFSET  
TX RF Output Return Loss  
TX BASEBAND FILTER RESPONSE  
-3dB Frequency  
With external match  
10  
25  
50  
MHz  
dB  
At 22MHz  
At 44MHz  
Attenuation Relative to Passband  
TX GAIN-CONTROL CHARACTERISTICS  
Gain-Control Range  
0V V  
+2.0V  
30  
40  
dB  
dB/V  
µs  
TX_GC  
Gain-Control Slope  
Peak gain slope  
= +2.0V to 0V step  
Gain-Control Response Time  
V
0.3  
TX_GC  
_______________________________________________________________________________________  
5
2.4GHz 802.11b Zero-IF Transceivers  
AC ELECTRICAL CHARACTERISTICSPA BIAS  
(MAX2820/MAX2821 EV kit: V  
ters set to default power-up settings, T = +25°C, unless otherwise noted. Typical values are at V  
= +2.7V to +3.6V, SHDNB = V , TX_ON = V , CSB = V , PA_BIAS enabled, RBIAS = 12k, regis-  
CC  
IH IH IH  
= +2.7V, unless otherwise noted.)  
CC  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
4
MAX  
UNITS  
Bits  
µA  
Resolution  
Full-Scale Output Current  
LSB Size  
300  
20  
µA  
Output Voltage Compliance Range  
(Note 11)  
1.0  
1.2  
1.3  
V
Relative to rising edge of CSB, zero to full-  
scale step 0000 1111, settle to 1/2 LSB,  
2pF load  
Settling Time  
1
µs  
AC ELECTRICAL CHARACTERISTICSSYNTHESIZER  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, f and f  
= 2400MHz to 2499MHz, f  
= 22MHz or 44MHz, SHDNB = V ,  
OSC IH  
CC  
RF  
LO  
CSB = V , RBIAS = 12k, I = +2mA, BW  
= 45kHz, registers set to default power-up settings, T = +25°C, unless otherwise  
IH  
CP  
PLL  
A
noted. Typical values are at V  
= +2.7V, f = 2437MHz, f  
= 22MHz, unless otherwise noted.) (Note 11)  
OSC  
CC  
LO  
PARAMETER  
FREQUENCY SYNTHESIZER  
LO Frequency Range  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2400  
2499  
MHz  
MHz  
MHz  
R(0) = 0  
R(0) = 1  
22  
44  
Reference Frequency  
Channel Spacing  
1
ICP = 0  
1
2
2
MAX2820/MAX2821  
Charge-Pump Output Current  
ICP = 1  
mA  
V
MAX2820A/MAX2821A  
Charge-Pump Compliance Range  
0.4  
V
- 0.4  
CC  
-11MHz f  
-22MHz f  
11MHz  
-41  
-75  
OFFSET  
< -11MHz,  
22MHz  
OFFSET  
OFFSET  
Reference Spur Level (Note 10)  
dBc  
11MHz < f  
f
f
f
< -22MHz, f  
> 22MHz  
OFFSET  
-90  
-80  
-87  
OFFSET  
OFFSET  
OFFSET  
= 10kHz  
Closed-Loop Phase Noise  
dBc/Hz  
= 100kHz  
Noise integrated from 100Hz to 10MHz,  
measured at the TX_RF output  
Closed-Loop Integrated Phase Noise  
2.5  
°
RMS  
Reference Oscillator Input Level  
VOLTAGE-CONTROLLED OSCILLATOR  
VCO Tuning Voltage Range  
AC-coupled sine wave input  
200  
0.4  
600  
1000  
2.3  
mV  
P-P  
V
f
f
= 2400MHz  
= 2499MHz  
170  
130  
LO  
VCO Tuning Gain  
MHz/V  
LO  
6
_______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
AC ELECTRICAL CHARACTERISTICSSYSTEM TIMING  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, f and f  
= 2400MHz to 2499MHz, f  
= 22MHz or 44MHz, SHDNB = V ,  
OSC IH  
CC  
RF  
LO  
CSB = V , RBIAS = 12k, I = +2mA, BW  
= 45kHz, registers set to default power-up settings, T = +25°C, unless otherwise  
IH  
CP  
LOOP  
A
noted. Typical values are at V  
= +2.7V, f = 2437MHz, f  
= 22MHz, unless otherwise noted.) (Note 11)  
OSC  
CC  
LO  
PARAMETER  
CONDITIONS  
= 2400MHz 2499MHz,  
MIN  
TYP  
MAX  
UNITS  
f
f
LO  
Channel-Switching Time  
150  
200  
µs  
settles to 10kHz (Note 9)  
LO  
RX to TX, output settles to within 2dB of final value of  
output power, relative to rising edge of TX_ON  
3
5
3
5
RX/TX Turnaround Time  
(Note 11)  
µs  
TX to RX, output settles to within 2dB of final value of  
output power, relative to rising edge of RX_ON  
Standby to TX, output settles to within 2dB of final value  
of output power, relative to rising edge of TX_ON (Note 11)  
Standby-to-Transmit Mode  
Standby-to-Receive Mode  
µs  
µs  
Standby to RX, output settles to within 2dB of final value  
of output power, relative to rising edge of RX_ON (Note 11)  
AC ELECTRICAL CHARACTERISTICSSERIAL INTERFACE TIMING  
(MAX2820/MAX2821 EV kit: V = +2.7V to +3.6V, registers set to default power-up settings, T = +25°C, unless otherwise noted.) (Note 11)  
CC  
A
PARAMETER  
SERIAL INTERFACE TIMING (See Figure 1)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
SCLK rising edge to CSB falling edge wait time  
Falling edge of CSB to rising edge of first SCLK time  
Data-to-serial clock setup time  
5
5
ns  
ns  
CSO  
t
CSS  
t
5
ns  
DS  
DH  
CH  
t
t
Data-to-clock hold time  
10  
10  
10  
5
ns  
Serial clock pulse-width high  
ns  
t
CL  
Clock pulse-width low  
ns  
t
Last SCLK rising edge to rising edge of CSB  
CSB high pulse width  
ns  
CSH  
CSW  
t
10  
5
ns  
t
Time between the rising edge of CSB and the next rising edge of SCLK  
Clock frequency  
ns  
CS1  
f
50  
MHz  
CLK  
Note 1: Parameters are production tested at +25°C only. Min/max limits over temperature are guaranteed by design and characterization.  
Note 2: Defined as the baseband differential RMS output voltage divided by the RMS input voltage (at the RF balun input).  
Note 3: Noise-figure specification excludes the loss of the external balun. The external balun loss is typically ~0.5dB.  
Note 4: CCK interferer at 25MHz offset. Desired signal equals -73dBm. Interferer amplitude increases until baseband output from  
interferer is 10dB below desired signal. Adjacent channel rejection = P  
- P  
.
interferer  
desired  
Note 5: Measured at balun input. Two CW tones at -43dBm with 15MHz and 25MHz spacing from the MAX2820/MAX2821 channel  
frequency. IP3 is computed from 5MHz IMD3 product measured at the RX I/Q output.  
Note 6: Two CW interferers at -38dBm with 24.5MHz and 25.5MHz spacing from the MAX2820/MAX2821 channel frequency. IP2 is  
computed from the 1MHz IMD2 product measured at the RX I/Q output.  
Note 7: Output power measured after the matching and balun. TX gain is set to maximum.  
Note 8: Adjacent and alternate channel power relative to the desired signal. TX gain is adjusted until the output power is -1dBm.  
Power measured with 100kHz video BW and 100kHz resolution BW.  
Note 9: Time required to reprogram the PLL, change the operating channel, and wait for the operating channel center frequency to  
settle within 10kHz of the nominal (final) channel frequency.  
Note 10: Relative amplitude of reference spurious products appearing in the TX RF output spectrum relative to a CW tone at  
0.5MHz offset from the LO.  
Note 11: Min/max limits are guaranteed by design and characterization.  
_______________________________________________________________________________________  
7
2.4GHz 802.11b Zero-IF Transceivers  
Typical Operating Characteristics  
(MAX2820/MAX2821 EV kit, V  
= +2.7V, f  
= 1MHz, f  
= 2450MHz, receive baseband outputs = 500mV , transmit base-  
LO P-P  
CC  
BB  
band inputs = 400mV , I  
input biased at +1.2V, registers set to default power-up settings, T = +25°C, unless otherwise noted.)  
= +2mA, BW  
= 45kHz, differential RF input/output matched to 50through a balun, baseband  
P-P CP  
PLL  
A
RECEIVER VOLTAGE GAIN  
vs. GAIN-CONTROL VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
120  
100  
80  
60  
40  
20  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
RECEIVE, V  
= V  
RECEIVE, V  
= V  
RF_GAIN IH  
RF_GAIN  
IH  
V
= V  
RF_GAIN  
IH  
V
= V  
,
RF_GAIN  
IH  
("A" VERSION)  
V
= V ,  
IL  
RF_GAIN  
TRANSMIT  
TRANSMIT  
RECEIVE, V  
= V  
("A" VERSION)  
RECEIVE, V  
= V  
IL  
RF_GAIN  
IL  
RF_GAIN  
V
= V  
IL  
RF_GAIN  
V
= 500mV  
P-P  
OUT  
STANDBY  
60  
STANDBY  
f
f
= 1MHz  
BB  
LO  
= 2450MHz  
0
0.5  
1.0  
1.5  
2.0  
-40  
-15  
10  
35  
85  
2.7  
3.0  
3.3  
3.6  
V
(V)  
TEMPERATURE (°C)  
V
(V)  
RX_AGC  
CC  
RECEIVER DETECTOR HYSTERESIS  
vs. INPUT POWER  
RECEIVER VOLTAGE GAIN  
vs. RF FREQUENCY  
RECEIVER NOISE FIGURE vs. GAIN  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
MAX2820/MAX2821 ONLY  
f
= 1MHz  
BB  
HIGH  
V
= V  
IL  
RF_GAIN  
V
= V , V  
IH RX_AGC  
= 2.0V  
HIGH-GAIN MODE  
HIGH  
RF_GAIN  
LOW  
LOW  
LOW-GAIN MODE  
V
= V  
IH  
RF_GAIN  
V
= V , V  
IL RX_AGC  
= 2.0V  
2480  
f
f
= 1MHz  
RF_GAIN  
BB  
LO  
= 2450MHz  
0
0
-65  
-60  
-55  
-50  
-45  
-40  
-35  
0
20  
40  
60  
80  
100  
2400  
2420  
2440  
2460  
2500  
P
(dBm)  
RX GAIN (dB)  
RF FREQUENCY (MHz)  
IN  
RECEIVER FILTER RESPONSE  
(1kHz TO 1MHz)  
RECEIVER FILTER RESPONSE  
(1MHz TO 100MHz)  
RECEIVER LEAKAGE SPECTRUM  
10  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-120  
V
LO  
= V  
IH  
RF_GAIN  
= 2400MHz  
f
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
RX_1K = V  
RX_1K = V  
IH  
,
IH  
"A" VERSION  
("A" VERSION)  
RX_1K = V ,  
IL  
(BOTH VERSIONS)  
1
10  
100  
1000  
1
10  
FREQUENCY (MHz)  
100  
0
0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0  
FREQUENCY (GHz)  
FREQUENCY (kHz)  
8
_______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
Typical Operating Characteristics (continued)  
(MAX2820/MAX2821 EV kit, V  
= +2.7V, f  
= 1MHz, f  
= 2450MHz, receive baseband outputs = 500mV , transmit base-  
LO P-P  
CC  
BB  
band inputs = 400mV , I  
input biased at +1.2V, registers set to default power-up settings, T = +25°C, unless otherwise noted.)  
= +2mA, BW  
= 45kHz, differential RF input/output matched to 50through a balun, baseband  
P-P CP  
PLL  
A
TRANSMITTER OUTPUT POWER  
vs. FREQUENCY  
RECEIVER BASEBAND OUTPUT SPECTRUM  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
= V  
IH  
RF_GAIN  
RX GAIN = 50dB  
-40°C  
("A" VERSION)  
f
f
= 5MHz  
= 2450MHz  
BB  
LO  
+25°C  
-40°C  
+25°C  
+85°C  
("A" VERSION)  
+85°C  
("A" VERSION)  
V
= 400mV  
P-P  
IN  
V
= 0V  
TX_GC  
11Mbps CCK  
2400  
2420  
2440 2460 2480 2500  
FREQUENCY (MHz)  
0
2.7  
0
5
10 15 20 25 30 35 40 45 50  
FREQUENCY (MHz)  
TRANSMITTER OUTPUT POWER  
vs. SUPPLY VOLTAGE  
TRANSMITTER OUTPUT SPECTRUM  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
RBW = 100kHz  
V
= 400mV  
IN  
P-P  
-40°C ("A" VERSION)  
11Mbps CCK  
P
= -1dBm  
-40°C  
OUT  
+25°C ("A" VERSION)  
+85°C ("A" VERSION)  
+25°C  
+85°C  
V
= 400mV  
P-P  
TX_GC  
IN  
V
= 0V  
11Mbps CCK  
3.0  
3.3  
3.6  
-33  
-22  
-11  
0
11  
22  
33  
V
(V)  
FREQUENCY OFFSET FROM CARRIER (MHz)  
CC  
TRANSMITTER GAIN  
vs. GAIN-CONTROL VOLTAGE  
TRANSMITTER OUTPUT SPECTRUM  
10  
0
5
0
-40°C  
CW SIGNAL  
f
f
= 3.3MHz  
= 2450MHz  
BB  
LO  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-5  
+25°C +85°C  
-10  
-15  
-20  
-25  
-30  
-35  
-40°C ("A" VERSION)  
+25°C ("A" VERSION)  
+85°C ("A" VERSION)  
0dB = MAX P  
IN  
AT +25°C  
OUT  
P-P  
V
= 400mV  
11Mbps CCK  
0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0  
FREQUENCY (GHz)  
0
0.5  
1.0  
1.5  
2.0  
V
(V)  
TX_GC  
_______________________________________________________________________________________  
9
2.4GHz 802.11b Zero-IF Transceivers  
Typical Operating Characteristics (continued)  
(MAX2820/MAX2821 EV kit, V  
= +2.7V, f = 1MHz, f = 2450MHz, receive baseband outputs = 500mV , transmit baseband  
BB LO P-P  
CC  
inputs = 400mV , I  
= +2mA, BW  
= 45kHz, differential RF input/output matched to 50through a balun, baseband input  
P-P CP  
PLL  
biased at +1.2V, registers set to default power-up settings, T = +25°C, unless otherwise noted.)  
A
OPEN-LOOP PHASE NOISE  
vs. OFFSET FREQUENCY  
TRANSMITTER BASEBAND FILTER RESPONSE  
10  
LO FREQUENCY vs. TUNING VOLTAGE  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
-40  
-50  
f
= 2450MHz  
LO  
f
= 2450MHz  
LO  
0
MEASURED AT  
TX OUTPUT  
-60  
-10  
-20  
-30  
-40  
-50  
-60  
-40°C  
-70  
-80  
+25°C  
-90  
-100  
-110  
-120  
-130  
-140  
+85°C  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (MHz)  
0
0.5  
1.0  
V
1.5  
(V)  
2.0  
2.5  
1
10  
100  
1000  
TUNE  
OFFSET FREQUENCY (kHz)  
CLOSED-LOOP PHASE NOISE  
vs. OFFSET FREQUENCY  
VCO/PLL SETTING TIME  
50  
40  
-50  
-60  
f
= 2450MHz  
LOOP  
BW  
= 45kHz  
LO  
BW  
I
LOOP  
= 45kHz  
f
= 2499MHz TO 2400MHz  
LO  
30  
= 2mA  
= 2.1°  
CP  
INT  
MAX2820/MAX2821  
-70  
φ
RMS  
20  
-80  
10  
0
-90  
MAX2820/MAX2821  
("A" VERSION)  
-10  
-20  
-30  
-40  
-50  
-100  
-110  
-120  
-130  
0
40 80 120 160 200 240 280 320 360 400  
100  
1k  
10k  
100k  
1M  
TIME (µs)  
OFFSET FREQUENCY (Hz)  
10 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
Pin Configuration/Functional Diagram  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
VCC_LNA  
1
2
36 SHDNB  
35 VCC_RXF  
34 VCC_LO  
PROGRAMMING AND  
MODE CONTROL  
RX LEVEL  
DETECTOR  
VREF  
(MAX2821/MAX2821A)  
3
RF_GAIN  
RX_RFN  
RX_RFP  
VCC_REF  
RBIAS  
4
33  
VCC_VCO  
32 BYP  
31  
5
6
TUNE  
90  
0
0
7
30 GND_VCO  
29 GND_CP  
28 CP_OUT  
27 VCC_CP  
26 CSB  
MAX2820/  
MAX2821  
INTEGER-N  
SYNTHESIZER  
90  
TX_RFP  
TX_RFN  
PA_BIAS  
8
9
10  
VOS COMP  
SERIAL  
INTERFACE  
VCC_DRVR 11  
TX_GC 12  
25 SCLK  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
______________________________________________________________________________________ 11  
2.4GHz 802.11b Zero-IF Transceivers  
Pin Description  
PIN  
NAME  
DESCRIPTION  
Supply Voltage for LNA. Bypass with a capacitor as close to the pin as possible. Do not share the  
bypass capacitor ground vias with other branches.  
1
VCC_LNA  
N.C.  
VREF  
No Connection. Not internally connected (MAX2820/MAX2820A only).  
Voltage Reference Output (MAX2821/MAX2821A only).  
2
3
4
RF_GAIN  
LNA Gain Select Logic Input. Logic high for LNA high-gain mode, logic low for LNA low-gain mode.  
Receiver LNA Negative Input. On-chip AC-coupling. Requires off-chip impedance match and  
connection to 2:1 balun.  
RX_RFN  
RX_RFP  
Receiver LNA Positive Input. On-chip AC-coupling. Requires off-chip impedance match and  
connection to 2:1 balun.  
5
Supply Voltage for Bias Circuitry and Autotuner. Bypass with a capacitor as close to the pin as  
possible. Do not share the bypass capacitor ground vias with other branches.  
6
7
8
VCC_REF  
RBIAS  
Precision Bias Resistor Pin. Connect a 12kprecision resistor (2%) to GND.  
Transmit Driver Amplifier Positive Output. On-chip pullup choke to V . Requires off-chip impedance  
CC  
match and connection to 4:1 balun.  
TX_RFP  
Transmit Driver Amplifier Negative Output. On-chip pullup choke to V . Requires off-chip  
CC  
impedance match and connection to 4:1 balun.  
9
TX_RFN  
PA_BIAS  
VCC_DRVR  
TX_GC  
Power-Amplifier Bias-Current Control Signal. Analog output. High-impedance, open-drain current  
source. Connect directly to bias-current control input on external PA.  
10  
11  
12  
13  
14  
15  
16  
17  
Supply Voltage for Transmit Driver. Bypass with a capacitor as close to the pin as possible. Do not  
share the bypass capacitor ground vias with other branches.  
Transmit Gain-Control Input. Analog high-impedance input. Connect directly to baseband IC DAC  
output. See the Typical Operating Characteristics for Transmitter Gain vs. Gain-Control Voltage.  
Supply Voltage for Transmit Mixer and VGA. Bypass with a capacitor as close to the pin as possible.  
Do not share the bypass capacitor ground vias with other branches.  
VCC_TMX  
TX_BBIN  
TX_BBIP  
TX_BBQP  
TX_BBQN  
Transmit Negative In-Phase Baseband Input. Analog high-impedance differential input. Connect  
directly to baseband IC DAC voltage output. Requires a 1.2V common-mode voltage.  
Transmit Positive In-Phase Baseband Input. Analog high-impedance differential input. Connect  
directly to baseband IC DAC voltage output. Requires a 1.2V common-mode voltage.  
Transmit Positive Quadrature Baseband Input. Analog high-impedance differential input. Connect  
directly to baseband IC DAC voltage output. Requires a 1.2V common-mode voltage.  
Transmit Negative Quadrature Baseband Input. Analog high-impedance differential input. Connect  
directly to baseband IC DAC voltage output. Requires a 1.2V common-mode voltage.  
Supply Voltage for Transmit Baseband Filter. Bypass with a capacitor as close to the pin as possible.  
Do not share the bypass capacitor ground vias with other branches.  
18  
19  
VCC_TXF  
GND_DIG  
Digital Ground  
12 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
Pin Description (continued)  
PIN  
20  
NAME  
VCC_DIG  
N.C.  
DESCRIPTION  
Supply Voltage for Digital Circuitry. Bypass with a capacitor as close to the pin as possible. Do not  
share the bypass capacitor ground vias with other branches.  
21  
No Connection. Not internally connected.  
Reference Oscillator Positive Input. Analog high-impedance differential input. DC-coupled. Requires  
external AC-coupling. Connect an external reference oscillator to this analog input.  
22  
ROSCP  
Reference Oscillator Negative Input. Analog high-impedance differential input. DC-coupled. Requires  
external AC-coupling. Bypass this analog input to ground with a capacitor for single-ended operation.  
23  
24  
25  
26  
27  
28  
ROSCN  
DIN  
3-Wire Serial-Interface Data Input. Digital high-impedance input. Connect directly to baseband IC  
serial-interface CMOS output (SPI/QSPI/MICROWIREcompatible).  
3-Wire Serial-Interface Clock Input. Digital high-impedance input. Connect this digital input directly to  
baseband IC serial-interface CMOS output (SPI/QSPI/MICROWIRE compatible).  
SCLK  
CSB  
3-Wire Serial-Interface Enable Input. Digital high-impedance input. Connect directly to baseband IC  
serial-interface CMOS output (SPI/QSPI/MICROWIRE compatible).  
Supply Voltage for PLL Charge Pump. Bypass with a capacitor as close to the pin as possible. Do not  
share the bypass capacitor ground vias with other branches.  
VCC_CP  
PLL Charge-Pump Output. Analog high-impedance output. Current source. Connect directly to the  
PLL loop filter input.  
CP_OUT  
GND_CP  
29  
30  
PLL Charge-Pump Ground. Connect to PC board ground plane.  
GND_VCO VCO Ground. Connect to PC board ground plane.  
VCO Frequency Tuning Input. Analog high-impedance voltage input. Connect directly to the PLL loop  
filter output.  
31  
32  
TUNE  
BYP  
VCO Bias Bypass. Bypass with a 2000pF capacitor to ground.  
Supply Voltage for VCO. Bypass with a capacitor as close to the pin as possible. Do not share the  
bypass capacitor ground vias with other branches. Important note: Operate from separate regulated  
supply voltage.  
33  
VCC_VCO  
Supply Voltage for VCO, LO Buffers, and LO Quadrature Circuitry. Bypass with a capacitor as close  
to the pin as possible. Do not share the bypass capacitor ground vias with other branches.  
34  
35  
VCC_LO  
Supply Voltage for Receiver Baseband Filter. Bypass with a capacitor as close to the pin as possible.  
Do not share the bypass capacitor ground vias with other branches.  
VCC_RXF  
Active-Low Shutdown Input. Digital high-impedance CMOS input. Connect directly to baseband IC  
mode control CMOS output. Logic low to disable all device functions. Logic high to enable normal  
chip operation.  
36  
37  
38  
SHDNB  
DOUT  
Serial-Interface Data Output. Digital CMOS output. Optional connection.  
Receiver 1kHz Highpass Bandwidth Control. Digital CMOS input. Connect directly to baseband IC  
CMOS output. Controls receiver baseband highpass -3dB corner frequency; logic low for 10kHz,  
logic high for 1kHz. See the Applications Information section for proper use of this function.  
RX_1K  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
______________________________________________________________________________________ 13  
2.4GHz 802.11b Zero-IF Transceivers  
Pin Description (continued)  
PIN  
NAME  
DESCRIPTION  
Receive Positive Quadrature Baseband Output. Analog low-impedance differential buffer output.  
Connect output directly to baseband ADC input. Internally biased to 1.2V common-mode voltage and  
can drive loads up to 5k|| 5pF.  
39  
RX_BBQP  
Receive Negative Quadrature Baseband Output. Analog low-impedance differential buffer output.  
Connect output directly to baseband ADC input. Internally biased to 1.2V common-mode voltage and  
can drive loads up to 5k|| 5pF.  
40  
41  
42  
RX_BBQN  
RX_BBIN  
RX_BBIP  
RX_DET  
Receive Negative In-Phase Baseband Output. Analog low-impedance differential buffer output.  
Connect output directly to baseband ADC input. Internally biased to 1.2V common-mode voltage and  
can drive loads up to 5k|| 5pF.  
Receive Positive In-Phase Baseband Output. Analog low-impedance differential buffer output.  
Connect output directly to baseband ADC input. Internally biased to 1.2V and can drive loads up to  
5k|| 5pF.  
Receive Level Detection Output. Digital CMOS output. Connect output directly to baseband IC input.  
Used to indicate RF input level. Logic high for input levels above -49dBm (typ). Logic low for levels  
below -54dBm (typ). (MAX2820 and MAX2821)  
43  
N.C.  
No Connection (MAX2820A/MAX2821A)  
Supply Voltage for Receiver Baseband Buffer. Bypass with a capacitor as close to the pin as  
possible. Do not share the bypass capacitor ground vias with other branches.  
44  
45  
46  
VCC_BUF  
RX_ON  
Receiver-On Control Input. Digital CMOS input. Connect to baseband IC mode control CMOS output.  
Supply Voltage for Receiver Downconverter. Bypass with a capacitor as close to the pin as possible.  
Do not share the bypass capacitor ground vias with other branches.  
VCC_RMX  
Transmitter-On Control Input. Digital CMOS input. Connect directly to baseband IC mode control  
CMOS output.  
47  
48  
TX_ON  
RX_AGC  
GND  
Receive AGC Control. Analog high-impedance input. Connect directly to baseband IC DAC voltage  
output. See the Typical Operating Characteristics for Gain vs. V  
.
RX_AGC  
Exposed  
Paddle  
DC and AC Ground Return for IC. Connect to PC board ground plane using multiple vias.  
Receive Filter  
Changes in “A” Version  
The original device has the ability to control the base-  
band LPF corner; the Aversion sets the LPF corner at  
8.0MHz. Register bits RECEIVE:D2D0 are now dont  
cares.”  
The MAX2820A/MAX2821A are cost-reduced versions  
of the original MAX2820/MAX2821, intended as a drop-  
in replacementno changes to PC board layout, BOM,  
or control software are required. Functionally, the A”  
version removes unused functions and programmability  
while maintaining virtually identical performance char-  
acteristics. The changes are detailed below.  
Receive-Level Detector (RSSI)  
The original device has a receive-level detect output (pin  
43, RX_DET); the Aversion removes this functionality.  
Pin 43 is a no-connect (N.C.) on the Aversion.  
Synthesizer  
The original device has the ability to program the  
charge-pump source/sink current ( 1mA or 2mA); the  
Aversion sets the charge-pump current at 2mA, and  
bit SYNTH:D6 (ICP) should now always be pro-  
grammed to be 1.  
14 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
CSB  
t
CSW  
t
CSO  
t
t
CSH  
CSS  
SCLK  
t
DS  
t
t
t
CS1  
DH  
CH  
t
CL  
DIN  
BIT 1  
BIT 2  
BIT 6  
BIT 7  
BIT 8  
BIT 14  
BIT 8  
BIT 15  
BIT 16  
t
DV  
t
TR  
t
DO  
DOUT  
BIT 1  
BIT 2  
BIT 6  
BIT 7  
BIT 14  
BIT 15  
BIT 16  
Figure 1. MAX2820/MAX2821 Serial-Interface Timing Diagram  
Table 1. Operating-Mode Truth Table  
MODE CONTROL INPUTS  
CIRCUIT BLOCK STATES  
OPERATING MODE  
SHDNB  
TX_ON  
RX_ON  
RX_PATH  
OFF  
TX_PATH  
OFF  
PLL/VCO/LO GEN.  
Shutdown  
Standby  
Receive  
Transmit  
0
1
1
1
X
0
0
1
X
0
1
0
OFF  
ON  
ON  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
values at any time. Refer to the serial-interface specifi-  
cation for details.  
Operating Modes  
The MAX2820/MAX2821 have four primary modes of  
operation: shutdown, standby, receive active, and  
transmit active. The modes are controlled by the digital  
inputs SHDNB, TX_ON, and RX_ON. Table 1 shows the  
operating mode vs. the digital mode control input.  
Receive Mode  
Receive mode is enabled by driving the digital inputs  
SHDNB high, RX_ON high, and TX_ON low. In receive  
mode, all receive circuit blocks are powered on and all  
VCO, PLL, and autotuner circuits are powered on. None of  
the transmit path blocks are active in this mode. Although  
the receiver blocks turn on quickly, the DC offset nulling  
requires ~10µs to settle. The receiver signal path is ready  
~10µs after a low-to-high transition on RX_ON.  
Shutdown Mode  
Shutdown mode is achieved by driving SHDNB low. In  
shutdown mode, all circuit blocks are powered down,  
except for the serial interface circuitry. While the device  
is in shutdown, the serial interface registers can still be  
loaded by applying V  
to the digital supply voltage  
Transmit Mode  
Transmit mode is achieved by driving the digital inputs  
SHDNB high, RX_ON low, and TX_ON high. In transmit  
mode, all transmit circuit blocks are powered on and all  
VCO, PLL, and autotuner circuits are powered on.  
None of the receive path blocks is active in this mode.  
Although the transmitter blocks turn on quickly, the  
baseband DC offset calibration requires ~2.2µs to  
complete. In addition, the TX driver amplifier is ramped  
from the low-gain state (minimum RF output) to high-  
gain state (peak RF output) over the next 1µs to 2µs.  
The transmit signal path is ready ~4µs after a low-to-  
high transition on TX_ON.  
CC  
(VCC_DIG). All previously programmed register values  
are preserved during the shutdown mode, as long as  
VCC_DIG is applied.  
Standby Mode  
Standby mode is achieved by driving SHDNB high and  
RX_ON and TX_ON low. In standby mode, the PLL,  
VCO, LO generator, LO buffer, LO quadrature, and fil-  
ter autotuner are powered on by default. The standby  
mode is intended to provide time for the slower-settling  
circuitry (PLL and autotuner) to turn on and settle to the  
correct frequency before making RX or TX active. The  
3-wire serial interface is active and can load register  
______________________________________________________________________________________ 15  
2.4GHz 802.11b Zero-IF Transceivers  
Table 2. Programming Register Definition Summary (Address and Data)  
4 ADDRESS BITS  
12 DATA BITS  
REGISTER  
NAME  
A3  
A2  
A1  
14  
0
A0  
13  
0
D11  
12  
0
D10  
11  
0
D9  
10  
0
D8  
9
D7  
8
D6  
7
D5  
6
D4  
5
D3  
4
D2  
3
D1  
2
D0  
LSB  
1
MSB 15  
TEST  
ENABLE  
SYNTH  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
E11  
X
E10  
X
E9  
X
E8  
X
E7  
X
E6  
ICP  
E5  
R5  
E4  
R4  
E3  
R3  
E2  
R2  
E1  
R1  
E0  
1
0
R0  
SYNTH  
(AVERSION)  
0
0
1
0
X
X
X
X
X
X
R5  
R4  
R3  
R2  
R1  
R0  
CHANNEL  
RECEIVE  
0
0
0
1
1
0
1
0
X
X
X
X
X
CF6  
1C0  
CF5  
DL1  
CF4  
DL0  
CF3  
SF  
CF2  
CF1  
CF0  
2C2  
2C1  
2C0  
1C2  
1C1  
BW2 BW1 BW0  
RECEIVE  
(AVERSION)  
0
0
1
1
0
0
0
1
2C2  
X
2C1  
X
2C0  
X
1C2  
X
1C1  
X
1C0  
X
0
X
1
X
0
X
X
X
TRANSMIT  
PA3  
PA2  
PA1  
PA0  
X = Dont care.  
Power-Up Default States  
Programmable Registers  
The devices provide power-up loading of default states  
for each of the registers. The states are loaded on a  
The MAX2820/MAX2820A and MAX2821/MAX2821A  
(the MAX2820 family) contain programmable registers  
to control various modes of operation for the major cir-  
cuit blocks. The registers can be programmed through  
the 3-wire SPI/QSPI/MICROWIRE-compatible serial  
port. The MAX2820 family includes five programmable  
registers:  
VCC_DIG supply voltage transition from 0V to V . The  
CC  
default values are retained until reprogrammed through  
the serial interface or the power supply voltage is taken  
to 0V. The default state of each register is described in  
Table 3. Note: Putting the IC in shutdown mode does  
not change the contents of the programming registers.  
1) Test register (always program as in Table 2).  
2) Block-enable register  
Block-Enable Register  
The block-enable register permits individual control of the  
enable state for each major circuit block in the transceiver.  
The actual enable condition of the circuit block is a logical  
function of the block-enable bit setting and other control  
input states. Table 4 documents the logical definition of  
state for each major circuit block.  
3) Synthesizer register  
4) Channel frequency register  
5) Receiver settings register  
6) Transmitter settings register  
Synthesizer Register  
The synthesizer register (SYNTH) controls the reference  
frequency divider and charge-pump current of the PLL.  
See Table 5 for a description of the bit settings.  
Each register consists of 16 bits. The four most signifi-  
cant bits (MSBs) are the registers address. The twelve  
least significant bits (LSBs) are used for register data.  
Table 2 summarizes the register configuration. A  
detailed description of each register is provided in  
Tables 36.  
Channel Frequency Register  
The channel frequency register (CHANNEL) sets the  
RF carrier frequency for the radio. The channel is pro-  
grammed as a number from 0 to 99. The actual frequency  
is 2400 + channel in MHz. The default setting is 37 for  
2437MHz. See Table 6 for a description of the bit settings.  
Data is shifted in the MSB first. The data sent to the  
transceiver, in 16-bit words, is framed by CSB. When  
CSB is low, the clock is active and data is shifted with  
the rising edge of the clock. When CSB transitions to  
high, the shift register is latched into the register select-  
ed by the contents of the address bits. Only the last 16  
bits shifted into the device are retained in the shift reg-  
ister. No check is made on the number of clock pulses.  
Figure 1 documents the serial interface timing for the  
MAX2820 family.  
Receiver Settings Register  
(MAX2820/MAX2821 Only)  
The receive settings register (RECEIVE) controls the  
receive filter -3dB corner frequency, RX level detector  
midpoint, and VGA DC offset nulling parameters. The  
defaults are intended to provide proper operation.  
16 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
Table 3. Register Power-Up Default States  
REGISTER  
ADDRESS  
DEFAULT  
FUNCTION  
Block-Enable Control Settings (E)  
ENABLE  
0001  
000000011110  
Synthesizer Settings:  
Reference frequency (R)  
Lock-detect enable (LD)  
Charge-pump current (ICP) (MAX2820/MAX2821 only)  
SYNTH  
0010  
0011  
000001000000  
000000100101  
CHANNEL  
Channel frequency settings (CF)  
Receiver Settings:  
VGA DC offset nulling parameter 1 (1C)  
VGA DC offset nulling parameter 2 (2C)  
-3dB lowpass filter bandwidth (BW)  
Detector midpoint level (DL)  
Special function bit (SF)  
RECEIVE  
0100  
0101  
111111010010  
000000000000  
Transmit Settings:  
TRANSMIT  
PA bias (PA)  
Table 4. Block-Enable Register (ENABLE)  
ADDRESS  
DATA BIT CONTENT DEFAULT  
DESCRIPTION AND LOGICAL DEFINITION  
D11  
E(11)  
0
Reserved  
PA Bias-Control Enable (PAB_EN)  
PAB_EN = SHDNB (E(10) + TX_ON)  
D10  
E(10)  
0
Transmit Baseband Filters Enable (TXFLT_EN)  
TXFLT_EN = SHDNB (E(9) + TX_ON)  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
E(9)  
E(8)  
E(7)  
E(6)  
E(5)  
E(4)  
E(3)  
E(2)  
0
0
0
0
0
1
1
1
TX Upconverter + VGA + Driver Amp Enable (TXUVD_EN)  
TXUVD_EN = SHDNB (E(8) + TX_ON)  
Receive Detector Enable (DET_EN)  
DET_EN = SHDNB (E(7) + RX_ON)  
RX Downconverter + Filters + AGC Amps Enable (RXDFA_EN)  
RXDFA_EN = SHDNB (E(6) + RX_ON)  
0 0 0 1  
Receive LNA Enable (RXLNA_EN)  
RXLNA_EN = SHDNB (E(5) + RX_ON )  
Autotuner Enable (AT_EN)  
AT_EN = SHDNB (E(4) + RX_ON + TX_ON)  
PLL Charge-Pump Enable (CP_EN)  
CP_EN = SHDNB E(3)  
PLL Enable (PLL_EN)  
PLL_EN = SHDNB E(2)  
VCO Enable (VCO_EN)  
VCO_EN = SHDNB E(1)  
D1  
D0  
E(1)  
E(0)  
1
0
Reserved  
______________________________________________________________________________________ 17  
2.4GHz 802.11b Zero-IF Transceivers  
Table 5. Synthesizer Register (SYNTH)  
ADDRESS  
DATA BIT  
CONTENT  
DEFAULT  
DESCRIPTION  
D11:D7  
X
00000  
Reserved  
ICP  
Charge-Pump Current Select  
(MAX2820/  
MAX2821)  
1
1
0 = 1mA charge-pump current  
1 = 2mA charge-pump current  
D6  
0 0 1 0  
X (MAX2820A/  
MAX2821A)  
Reserved  
Reference Frequency Divider  
000000 = 22MHz  
D5:D0  
R(5:0)  
000000  
000001 = 44MHz  
Table 6. Channel Frequency Block Register (CHANNEL)  
ADDRESS  
DATA BIT  
CONTENT  
DEFAULT  
DESCRIPTION  
D11:D7  
X
00000  
Reserved  
Channel Frequency Select: f = (2400 + CF(6:0))MHz  
LO  
0000000 = 2400MHz  
0000001 = 2401MHz  
…………  
0 0 1 1  
D6:D0  
CF(6:0)  
0100101  
1100010 = 2498MHz  
1100011 = 2499MHz  
Table 7a. Receive Settings Register (RECEIVE), (MAX2820/MAX2821 Only)  
ADDRESS  
DATA BIT  
D11:D9  
D8:D6  
CONTENT  
2C(2:0)  
DEFAULT  
111  
DESCRIPTION  
VGA DC Offset Nulling Parameter 2  
VGA DC Offset Nulling Parameter 1  
RX Level Detector Midpoint Select  
1C(2:0)  
111  
11 = 01 = 50.2mV  
P
D5:D4  
D3  
DL(1:0)  
SF(0)  
01  
0
10 = 70.9mV  
00 = 35.5mV  
P
P
Special Function Select (not presently used)  
0 = OFF  
1 = ON  
0 1 0 0  
Receive Filter -3dB Frequency Select (frequencies are  
approximate)  
000 = 8.5MHz  
001 = 8.0MHz  
010 = 7.5MHz  
011 = 7.0MHz  
100 = 6.5MHz  
101 = 6.0MHz  
D2:D0  
BW(2:0)  
010  
18 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
Table 7b. Receive Settings Register (RECEIVE), (MAX2820A/MAX2821A Only)  
ADDRESS  
DATA BIT  
D11:D9  
D8:D6  
CONTENT  
DEFAULT  
111  
DESCRIPTION  
VGA DC Offset Nulling Parameter 2  
2C (2:0)  
1C (2:0)  
111  
VGA DC Offset Nulling Parameter 1  
0100  
D5:D3  
X
X
010  
ReservedSet to these Values  
D2:D0  
010  
ReservedX = Dont Care. Rx filter is not programmable.  
Table 8. Transmit Settings Register (TRANSMIT)  
ADDRESS  
DATA BIT  
CONTENT  
DEFAULT  
DESCRIPTION  
D11:D4  
X
X
Reserved  
PA Bias Select:  
0 1 0 1  
1111 = Highest PA bias  
…………  
0000 = Lowest PA bias  
D3:D0  
PA(3:0)  
0000  
However, the filter frequency and detector can be modi-  
fied if desired. Do not reprogram VGA DC offset nulling  
parameters. These settings were optimized during devel-  
opment. See Table 7 for a description of the bit settings.  
The receivers have two LNA gain modes that are digitally  
controlled by the logic signal applied to RF_GAIN.  
RF_GAIN high enables the high-gain mode, and  
RF_GAIN low enables the low-gain mode. The LNA gain  
step is nominally 30dB. In most applications, RF_GAIN is  
connected directly to a CMOS output of the baseband  
IC, and the baseband IC controls the state of the LNA  
gain based on the detected signal amplitude.  
Transmitter Settings Register  
The transmitter settings register (TRANSMIT) controls  
the 4-bit PA bias DAC. The 4 bits correspond to a PA  
bias current between 0 and full scale (~300µA). See  
Table 8 for the bit settings.  
Receiver Baseband Lowpass Filtering  
The on-chip receive lowpass filters provide the steep  
filtering necessary to attenuate the out-of-band  
(>11MHz) interfering signals to sufficiently low levels to  
preserve receiver sensitivity. The filter frequency  
response is precisely controlled on-chip and does not  
require user adjustment. In the MAX2820/MAX2821, a  
provision is made to permit the -3dB corner frequency  
and entire response to be slightly shifted up or down in  
frequency. This is intended to offer some flexibility in  
trading off adjacent channel rejection vs. passband  
distortion. The filter -3dB frequency is programmed  
through the serial interface. The specific bit setting vs.  
-3dB frequency is shown in Table 7. The typical receive  
baseband filter gain vs. frequency profile is shown in  
the Typical Operating Characteristics.  
Applications Information  
Receive Path  
LNA  
The RX_RF inputs are high-impedance RF differential  
inputs AC-coupled on-chip to the LNA. The LNA inputs  
require external impedance matching and differential to  
single-ended conversion. The balanced to single-  
ended conversion and interface to 50is achieved  
through the use of an off-chip 2:1 balun transformer,  
such as the small surface-mount baluns offered by  
Murata and TOKO. In the case of the 2:1 balun, the RX  
RF input must be impedance-matched to a differen-  
tial/balanced impedance of 100. A simple LC network  
is sufficient to impedance-match the LNA to the balun.  
The Typical Application Circuit shows the balun, induc-  
tors, and capacitors that constitute the matching net-  
work. Refer to the MAX2820/MAX2821 EV kit schematic  
for component values of the matching network.  
Receive Gain Control and DC Offset Nulling  
The receive path gain is varied through an external volt-  
age applied to the pin RX_AGC. Maximum gain is at  
V
= 0V and minimum gain is at V  
= 2V.  
RX_AGC  
RX_AGC  
The line lengths and parasitics have a noticeable impact  
on the matching element values in the board-level circuit.  
Some empirical adjustment of LC component values is  
likely. Balanced line layout on the differential input traces  
is essential to maintaining good IP2 performance and RF  
common-mode noise rejection.  
The RX_AGC input is a high-impedance analog input  
designed for direct connection to the RX_AGC DAC  
output of the baseband IC. The gain-control range,  
which is continuously variable, is typically 70dB. The  
gain-control characteristic is shown in the Typ ic a l  
______________________________________________________________________________________ 19  
2.4GHz 802.11b Zero-IF Transceivers  
Op e ra ting Cha ra c te ris tic s section graph Receiver  
Transmit Path Baseband Lowpass Filtering  
Voltage Gain vs. Gain-Control Voltage.  
The on-chip transmit lowpass filters provide the filtering  
necessary to attenuate the unwanted higher-frequency  
spurious signal content that arises from the DAC clock  
feedthrough and sampling images. In addition, the filter  
provides additional attenuation of the second sidelobe  
of signal spectrum. The filter frequency response is set  
on-chip. No user adjustment or programming is  
required. The Typical Gain vs. Frequency profile is  
shown in the Typical Operating Characteristics.  
Some local noise filtering through a simple RC network  
at the input is permissible. However, the time constant  
of this network should be kept sufficiently low in order  
not to limit the desired response time of the RX gain-  
control function.  
Receiver Baseband Amplifier Outputs  
The receiver baseband outputs (RX_BBIP, RX_BBIN,  
RX_BBQP, and RX_BBQN) are differential low-imped-  
ance buffer outputs. The outputs are designed to be  
directly connected (DC-coupled) to the in-phase (I) and  
quadrature-phase (Q) ADC inputs of the baseband IC.  
The RX I/Q outputs are internally biased to +1.2V com-  
mon-mode voltage. The outputs are capable of driving  
loads up to 5k|| 5pF with the full bandwidth baseband  
Transmitter DC Offset Calibration  
In a zero-IF system, in order to achieve low LO leakage  
at the RF output, the DC offset of the TX baseband sig-  
nal path must be reduced to as near zero as possible.  
Given that the amplifier stages, baseband filters, and  
TX DAC possesses some finite DC offset that is too  
large for the required LO leakage specification, it is  
necessary to nullthe DC offset. The MAX2820 family  
accomplishes this through an on-chip calibration  
sequence. During this sequence, the net TX baseband  
signal path offsets are sampled and cancelled in the  
baseband amplifiers. This calibration occurs in the first  
~2.2µs after TX_ON is taken high. During this time, it is  
essential that the TX DAC output is in the 0V differential  
state. The calibration corrects for any DAC offset.  
However, if the DAC is set to a value other than the 0V  
state, then an offset is erroneously sampled by the TX  
offset calibration. The TX DAC output must be put into  
the 0V differential state at or before the time TX_ON is  
taken high.  
signals at a differential amplitude of 500mV  
.
P-P  
Proper board layout is essential to maintain good bal-  
ance between I/Q traces. This provides good quadra-  
ture phase accuracy.  
Receiver Power Detector (MAX2820/MAX2821 Only)  
The receiver level detector is a digital output from an  
internal threshold detector that is used to determine  
when to change the LNA gain state. In most applications,  
it is connected directly to a comparator input of the base-  
band IC. The threshold level can be programmed  
through the MAX2820/MAX2821 control software.  
Transmit Path  
Transmitter Baseband Inputs  
The transmitter baseband inputs (TX_BBIP, TX_BBIN,  
TX_BBQP, and TX_BBQN) are high-impedance differ-  
ential analog inputs. The inputs are designed to be  
directly connected (DC-coupled) to the in-phase (I) and  
quadrature-phase (Q) DAC outputs of the baseband IC.  
The inputs must be externally biased to +1.2V common-  
mode voltage. Typically, the DAC outputs are current  
outputs with external resistor loads to ground. I and Q  
Power-Amplifier Driver Output  
The TX_RF outputs are high-impedance RF differential  
outputs directly connected to the driver amplifier. The  
outputs are essentially open-collector outputs with an  
on-chip inductor choke connected to VCC_DRVR. The  
power-amplifier driver outputs require external imped-  
ance matching and differential to single-ended conver-  
sion. The balanced to single-ended conversion and  
interface to 50is achieved through the use of an off-  
chip 4:1 balun transformer, such as one from Murata or  
TOKO. In this case, the TX RF output must be imped-  
ance-matched to a differential/balanced impedance of  
200. The Typical Application Circuit shows the balun,  
inductors, and capacitors that constitute the matching  
network of the power amplifier driver outputs. The out-  
put match should be adjusted until the return loss at the  
balun output is >10dB.  
are nominally driven by a 400mV  
band signal.  
differential base-  
P-P  
Proper board layout is essential to maintain good bal-  
ance between I/Q traces. This provides good quadra-  
ture phase accuracy by maintaining equal parasitic  
capacitance on the lines. In addition, it is important not  
to expose the TX I/Q circuit board traces going from the  
digital baseband IC to the TX_BB inputs. The lines  
should be shielded on an inner layer to prevent cou-  
pling of RF to these TX I/Q inputs and possible enve-  
lope demodulation of the RF signal.  
20 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
Transmit Gain Control  
The transmit gain-control input provides a direct analog  
control over the transmit path gain. The transmit gain is  
controlled by an external voltage at pin TX_GC. The typ-  
ical gain-control characteristic is provided in the Typical  
Op e ra ting Cha ra c te ris tic s graph Transmitter Gain  
Control vs. Gain-Control Voltage. The input is a high-  
impedance analog input designed to directly connect to  
the DAC output of the baseband IC. Some local noise  
filtering through a simple RC network at the input is per-  
missible. However, the time constant of this network  
should be kept sufficiently low so the desired response  
time of the TX gain-control function is not limited.  
ed to cover only the required 802.11b channel spacing  
and the two possible crystal oscillator options used in  
the radios.  
Reference Oscillator Input  
The reference oscillator inputs ROSCP and ROSCN are  
high-impedance analog inputs. They are designed to  
be connected to the reference oscillator output through  
a coupling capacitor. The input amplitude can range  
from 200mV  
to 1000mV ; therefore, in the case of  
P-P  
P-P  
a reference oscillator with a CMOS output, the signal  
must be attenuated before being applied to the ROSC  
inputs. The signal can be attenuated with a resistor- or  
capacitor-divider network.  
During the TX turn-on sequence, the gain is internally  
set at the minimum while the TX baseband offset cali-  
bration is taking place. The RF output is effectively  
blankedfor the first 2.2µs after TX_ON is taken high.  
After 2.2µs, the blankingis released, and the gain-  
control amplifier ramps to the gain set by the external  
voltage applied to the TX_GC input.  
Reference Voltage Output  
A voltage reference output is provided on the MAX2821/  
MAX2821A from pin 2, VREF, for use with certain base-  
band ICs. The nominal output voltage is 1.2V. The ref-  
erence voltage is first- order compensated over  
temperature to provide a reasonably low drift output,  
1.1V to 1.3V over temperature, under load conditions.  
The output stage is designed to drive 2mA loads with  
up to 20pF of load capacitance. The VREF output is  
designed to directly connect to the baseband refer-  
ence input.  
PA Bias DAC Output  
The MAX2820 family provides a programmable analog  
current source output for use in biasing the RF power  
amplifier, such as the MAX2242. The output is essentially  
an open-drain output of a current source DAC. The output  
is designed to directly connect to the bias-current pin on  
the power amplifier. The value of the current is deter-  
mined by the 4 bits programmed into transmit (D3:D0).  
This programmability permits optimizing of the power-  
amplifier idle current based on the output power level of  
the PA. Care must be taken in the layout of this line. Avoid  
running the line in parallel with the RF line. RF might cou-  
ple onto the line, given the high impedance of the output.  
This might result in rectified RF, altering the value of the  
bias current and causing erratic PA operation.  
Loop Filter  
The PLL uses a classical charge pump into an external  
loop filter (C-RC) in which the filter output connects to  
the voltage tuning input of the VCO. This simple third-  
order lowpass loop filter closes the loop around the  
synthesizer. The Typical Application Circuit shows the  
loop filter elements around the transceiver. The capaci-  
tor and resistor values are set to provide the loop band-  
width required to achieve the desired lock time while  
also maintaining loop stability. Refer to the MAX2820/  
MAX2821 EV kit schematic for component values. A  
45kHz loop bandwidth is recommended to ensure that  
the loop settles quickly enough to achieve 5µs TX turn-  
around time and 10µs RX turnaround time. This is the  
loop filter on the EV kit. Narrowing the loop bandwidth  
increases the settling time and results in unacceptable  
TX-RX turnaround time performance.  
Synthesizer  
Channel Frequency and Reference Frequency  
The synthesizer/PLL channel frequency and reference  
settings establish the divider/counter settings in the inte-  
ger-N synthesizer. Both the channel frequency and ref-  
erence oscillator frequency are programmable through  
the serial interface. The channel frequency is pro-  
grammed as a channel number 0 to 99 to set the carri-  
er frequency to 2400MHz to 2499MHz (LO frequency =  
channel + 2400). The reference frequency is program-  
mable to 22MHz or 44MHz. These settings are intend-  
Chip Information  
TRANSISTOR COUNT: 13,607  
______________________________________________________________________________________ 21  
2.4GHz 802.11b Zero-IF Transceivers  
Typical Application Circuit  
DIGITAL MODE CONTROL SIGNALS  
FROM/TO BASEBAND IC  
RX ANALOG OUTPUT SIGNAL  
TO BASEBAND IC  
DIGITAL MODE CONTROL  
SIGNALS TO/FROM BASEBAND IC  
DAC OUTPUT  
FROM BASEBAND IC  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
SHDNB  
VCC_LNA  
1
OPTIONAL CONNECTION  
TO BASEBAND  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PROGRAMMING AND  
MODE CONTROL  
RX LEVEL  
DETECTOR  
VCC_RXF  
VCC_LO  
VREF (MAX2821/MAX2821A)  
2
RX GAIN-CONTROL SIGNALS  
TO/FROM BASEBAND IC  
RF_GAIN  
3
RX_RFN  
4
VCC_VCO  
BYP  
RX RF INPUT FROM  
SWITCH AND BPF  
RX_RFP  
5
VCC_REF  
6
TUNE  
90  
0
0
GND_VCO  
GND_CP  
CP_OUT  
VCC_CP  
CSB  
RBIAS  
7
8
MAX2820/MAX2820A/  
MAX2821/MAX2821A  
INTEGER-N  
SYNTHESIZER  
TX_RFP  
TX_RFN  
90  
TX RF OUTPUT TO  
SWITCH AND BPF  
9
LOOP FILTER  
PA_BIAS  
10  
11  
12  
TO PA BIAS INPUT  
VOS COMP  
VCC_DRVR  
SERIAL  
INTERFACE  
SCLK  
TX_GC  
SERIAL INTERFACE  
TO BASEBAND IC  
DAC OUTPUT  
FROM BASEBAND IC  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
REFERENCE  
OSCILLATOR INPUT  
TX ANALOG INPUT SIGNAL  
FROM BASEBAND IC  
22 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
32,44,48L QFN, 7x7x0.90 MM  
1
21-0092  
H
2
______________________________________________________________________________________ 23  
2.4GHz 802.11b Zero-IF Transceivers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE,  
32,44,48L QFN, 7x7x0.90 MM  
2
21-0092  
H
2
24 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
C
L
b
D2/2  
D/2  
k
E/2  
E2/2  
C
(NE-1) X  
e
E
E2  
L
k
L
DETAIL A  
e
(ND-1) X  
e
DETAIL B  
e
C
C
L
L
L
L1  
L
L
e
e
DALLAS  
SEMICONDUCTOR  
A
A1  
A2  
PROPRIETARYINFORMATION  
TITLE:  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0144  
D
2
______________________________________________________________________________________ 25  
2.4GHz 802.11b Zero-IF Transceivers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
DALLAS  
SEMICONDUCTOR  
PROPRIETARYINFORMATION  
TITLE:  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0144  
D
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
26 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX2820AETM-T

暂无描述
MAXIM

MAX2820AETM-TD

2.4GHz 802.11b Zero-IF Transceivers
MAXIM

MAX2820EGM-TD

2.4GHz 802.11b Zero-IF Transceivers
MAXIM

MAX2820ETM

Support Circuit
MAXIM

MAX2820ETM+

Support Circuit
MAXIM

MAX2820ETM+T

Support Circuit
MAXIM

MAX2820ETM+TD

2.4GHz 802.11b Zero-IF Transceivers
MAXIM

MAX2820ETM-T

暂无描述
MAXIM

MAX2820ETM-TD

2.4GHz 802.11b Zero-IF Transceivers
MAXIM

MAX2820EVKIT

Evaluation Kits for the MAX2820/MAX2821
MAXIM

MAX2820|MAX2820A|MAX2821|MAX2821A

2.4GHz 802.11b Zero-IF Transceivers
MAXIM

MAX2821

2.4GHz 802.11b Zero-IF Transceivers
MAXIM