MAX2820AETM-T [MAXIM]

暂无描述;
MAX2820AETM-T
型号: MAX2820AETM-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

文件: 总23页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2493; Rev 2; 11/03  
2.4GHz 802.11b Zero-IF Transceivers  
General Description  
Features  
The MAX2820/MAX2821 single-chip zero-IF transceivers  
are designed for the 802.11b (11Mbps) applications  
operating in the 2.4GHz to 2.5GHz ISM band. The trans-  
ceivers are nearly identical, except the MAX2821 pro-  
vides a low-power shutdown mode and an analog  
voltage reference output feature and the MAX2820 does  
not. The transceivers include all the circuitry required to  
implement an 802.11b RF-to-baseband transceiver solu-  
tion, providing a fully integrated receive path, transmit  
path, VCO, frequency synthesis, and baseband/control  
interface. Only a PA, RF switch, RF BPF, and a small  
number of passive components are needed to form the  
complete radio front-end solution.  
2.4GHz to 2.5GHz ISM Band Operation  
802.11b (11Mbps CCK and 22Mbps PBCC) PHY  
Compatible  
Complete RF-to-Baseband Transceiver  
Direct-Conversion Upconverters and  
Downconverters  
Monolithic Low-Phase-Noise VCO  
Integrated Baseband Lowpass Filters  
Integrated PLL with 3-Wire Serial Interface  
Digital Bias Control for External PA  
Transmit Power Control (Range > 25dB)  
Receive Baseband AGC (Range > 65dB)  
Complete Baseband Interface  
The ICs eliminate the need for external IF and base-  
band filters by utilizing a direct-conversion radio archi-  
tecture and monolithic baseband filters for both  
receiver and transmitter. They are specifically opti-  
mized for 802.11b (11Mbps CCK) applications. The  
baseband filtering and RX and TX signal paths support  
the CCK modulation scheme for BER = 10-5 at the  
required sensitivity levels.  
Digital TX/RX Mode Control  
Analog Receive Level Detection  
-97dBm RX Sensitivity at 1Mbps  
-87dBm RX Sensitivity at 11Mbps  
+2dBm Transmit Power (11Mbps CCK)  
Single +2.7V to +3.6V Supply  
The devices are suitable for the full range of 802.11b  
data rates (1Mbps, 2Mbps, 5.5Mbps, and 11Mbps) and  
also the higher-rate 22Mbps PBCCTM standard. The  
MAX2820/MAX2821 are available in the very small 7mm  
× 7mm 48-lead QFN package.  
Low-Current Shutdown Mode (MAX2821 only)  
Very Small 48-Pin QFN Package (s)  
Applications  
802.11b 11Mbps WLAN  
+
Ordering Information  
802.11b 22Mbps PBCC High-Data-Rate WLAN  
802.11a + b Dual-Band WLAN  
2.4GHz ISM Band Radios  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
MAX2820EGM-TD  
MAX2820ETM+TD  
MAX2821EGM-TD  
MAX2821ETM+TD  
48 QFN  
48 QFN Lead Free  
48 QFN  
48 QFN Lead Free  
PBCC is a trademark of Texas Instruments, Inc.  
Pin Configuration/Functional Diagram and Typical  
Application Circuit appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2.4GHz 802.11b Zero-IF Transceivers  
ABSOLUTE MAXIMUM RATINGS  
CC  
RF Inputs: RX_RFP, RX_RFN to GND.........-0.3V to (V  
V
Pins to GND ...................................................-0.3V to +4.2V  
Digital Inputs: RX_ON, TX_ON, SHDNB, CSB, SCLK,  
DIN, RF_GAIN, RX_1K to GND...............-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
RF Outputs: TX_RFP, TX_RFN to GND..................-0.3V to +4.2V  
Baseband Inputs: TX_BBIP, TX_BBIN, TX_BBQP,  
TX_BBQN to GND ...................................-0.3V to (V + 0.3V)  
CC  
Bias Voltages: RBIAS, BYP ..................................+0.9V to +1.5V  
Short-Circuit Duration Digital Outputs: DOUT, RX_DET.........10s  
RF Input Power: RX_RFN, RX_RFP.................................+10dBm  
Baseband Outputs: RX_BBIP, RX_BBIN, RX_BBQP,  
Continuous Power Dissipation (T = +70°C)  
A
RX_BBQN to GND...................................-0.3V to (V  
Analog Inputs: RX_AGC, TX_GC, TUNE, ROSCN,  
ROSCP to GND .......................................-0.3V to (V  
Analog Outputs: PA_BIAS, CP_OUT, VREF  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
48-Lead QFN (derate 27.0mW/°C above +70°C).....2162mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
CC  
CC  
to GND....................................................-0.3V to (V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
CAUTION! ESD SENSITIVE DEVICE  
DC ELECTRICAL CHARACTERISTICS  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, RF_GAIN = V , 0V V  
+2.0V, 0V V  
+2.0V, RBIAS = 12k, no  
CC  
IH  
TX_GC  
RX_AGC  
input signals at RF and baseband inputs, all RF inputs and outputs terminated into 50, receiver baseband outputs are open, trans-  
mitter baseband inputs biased at +1.2V, registers set to default power-up settings, T = -40°C to +85°C, unless otherwise noted.  
A
Typical values are at V  
= +2.7V, T = +25°C, unless otherwise noted.) (Note 1)  
CC  
A
PARAMETERS  
Supply Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2.7  
3.6  
V
Shutdown-Mode Supply Current  
(MAX2821 Only)  
SHDNB = V , RX_ON = V ,  
IL IL  
T
= -40°C to +85°C  
2
50  
µA  
mA  
mA  
mA  
A
TX_ON = V  
IL  
T
A
T
A
T
A
T
A
T
A
T
A
= +25°C  
25  
35  
40  
SHDNB = V , RX_ON = V ,  
IH  
IL  
Standby-Mode Supply Current  
Receive-Mode Supply Current  
Transmit-Mode Supply Current  
TX_ON = V  
IL  
= -40°C to +85°C  
= +25°C  
80  
70  
100  
110  
85  
SHDNB = V , RX_ON = V  
,
IH  
IH  
TX_ON = V  
IL  
= -40°C to +85°C  
= +25°C  
SHDNB = V , RX_ON = V ,  
IH  
IL  
TX_ON = V  
IH  
= -40°C to +85°C  
90  
LOGIC INPUTS: SHDNB, RX_ON, TX_ON, SCLK, DIN, CSB, RF_GAIN  
Digital Input Voltage High (V  
)
V
V
- 0.5  
CC  
V
IH  
Digital Input Voltage Low (V )  
0.5  
+5  
+5  
V
IL  
Digital Input Current High (I  
)
-5  
-5  
µA  
µA  
IH  
Digital Input Current Low (I )  
IL  
LOGIC OUTPUTS: DOUT, RX_DET  
Digital Output Voltage High (V  
)
Sourcing 100µA  
Sinking 100µA  
- 0.5  
CC  
V
V
OH  
Digital Output Voltage Low (V  
RX BASEBAND I/O  
)
OL  
0.5  
RX_AGC Input Resistance  
0V V  
+2.0V  
50  
kΩ  
V
RX_AGC  
RX I/Q Common-Mode Voltage  
RX I/Q Output DC Offsets  
VOLTAGE REFERENCE  
Reference Voltage Output  
Output Impedance  
1.25  
15  
mV  
T
= -40°C to +85°C, I  
=
LOAD  
2mA  
1.1  
1.2  
25  
1.3  
V
A
2
_______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
DC ELECTRICAL CHARACTERISTICS (continued)  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, RF_GAIN = V , 0V V  
+2.0V, 0V V  
+2.0V, RBIAS = 12k, no  
CC  
IH  
TX_GC  
RX_AGC  
input signals at RF and baseband inputs, all RF inputs and outputs terminated into 50, receiver baseband outputs are open, trans-  
mitter baseband inputs biased at +1.2V, registers set to default power-up settings, T = -40°C to +85°C, unless otherwise noted.  
A
Typical values are at V  
= +2.7V, T = +25°C, unless otherwise noted.) (Note 1)  
CC  
A
PARAMETERS  
TX BASEBAND I/O  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TX BB Input Common-Mode  
Range  
1.0  
1.2  
-10  
1.4  
V
TX BBI and BBQ Input Bias  
Current  
µA  
TX BB Input Impedance  
Differential resistance  
0V V +2.0V  
100  
10  
kΩ  
µA  
kΩ  
TX_GC Input Bias Current  
TX_GC Input Impedance  
TX_GC  
Resistance  
250  
REFERENCE OSCILLATOR INPUT  
Reference Oscillator Input  
Impedance  
20  
kΩ  
AC ELECTRICAL CHARACTERISTICS—RECEIVE MODE  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, f and f = 2400MHz to 2499MHz, f  
= 22MHz or 44MHz, receive baseband  
CC  
RF  
LO  
OSC  
outputs = 500mV , SHDNB = RX_ON = V , TX_ON = V , CSB = V , SCLK = DIN = V , RF_GAIN = V , 0V V +2.0V,  
P-P  
IH  
IL  
IH  
IL  
IH  
RX_AGC  
RBIAS = 12k, I = +2mA, BW  
= 45kHz, differential RF input matched to 50, registers set to default power-up settings, T =  
CP  
PLL  
A
+25°C, unless otherwise noted. Typical values are at V  
= +2.7V, f = 2437MHz, f  
= 22MHz, unless otherwise noted.) (Note 1)  
OSC  
CC  
LO  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RECEIVER CASCADE PERFORMANCE (RF INPUT TO BASEBAND OUTPUT)  
RF Frequency Range  
LO Frequency Range  
2400  
2400  
97  
2499  
2499  
MHz  
MHz  
T
T
= +25°C  
105  
RF_GAIN = V  
,
,
A
IH  
IH  
V
= 0V  
RX_AGC  
= -40°C to +85°C  
95  
A
RF_GAIN = V  
T
T
T
= +25°C  
33  
75  
2
A
A
A
V
= +2.0V  
RX_AGC  
Voltage Gain (Note 2)  
dB  
RF_GAIN = V ,  
IL  
= +25°C  
= +25°C  
V
= 0V  
RX_AGC  
RF_GAIN = V ,  
IL  
V
= +2.0V  
RX_AGC  
RF Gain Step  
From RF_GAIN = V to RF_GAIN =V  
30  
3.5  
4.5  
34  
dB  
dB  
IH  
IL  
RF_GAIN = V , RX gain 80dB  
4.5  
IH  
DSB Noise Figure (Notes 3, 11)  
RF_GAIN = V , RX gain = 50dB  
IH  
RF_GAIN = V , RX gain = 50dB  
IL  
Adjacent Channel Rejection  
RX gain = 70dB (Note 4)  
49  
dB  
RF_GAIN = V , RX gain = 80dB  
-14  
18  
IH  
Input Third-Order Intercept Point (Note 5)  
dBm  
RF_GAIN = V , RX gain = 50dB  
IL  
RF_GAIN = V , RX gain = 80dB  
22  
IH  
Input Second-Order Intercept Point (Note 6)  
dBm  
RF_GAIN = V , RX gain = 50dB  
60  
IL  
_______________________________________________________________________________________  
3
2.4GHz 802.11b Zero-IF Transceivers  
AC ELECTRICAL CHARACTERISTICSRECEIVE MODE (continued)  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, f and f = 2400MHz to 2499MHz, f  
= 22MHz or 44MHz, receive baseband  
CC  
RF  
LO  
OSC  
outputs = 500mV , SHDNB = RX_ON = V , TX_ON = V , CSB = V , SCLK = DIN = V , RF_GAIN = V , 0V V +2.0V,  
P-P  
IH  
IL  
IH  
IL  
IH  
RX_AGC  
RBIAS = 12k, I = +2mA, BW  
= 45kHz, differential RF input matched to 50, registers set to default power-up settings, T =  
CP  
PLL  
A
+25°C, unless otherwise noted. Typical values are at V  
= +2.7V, f = 2437MHz, f  
= 22MHz, unless otherwise noted.) (Note 1)  
OSC  
CC  
LO  
PARAMETER  
CONDITIONS  
MIN  
TYP  
-65  
15  
MAX  
UNITS  
dBm  
dB  
LO Leakage  
Input Return Loss  
With external match  
RECEIVER BASEBAND  
BASEBAND FILTER RESPONSE  
-3dB Frequency  
Default bandwidth setting BW (2:0) = (010)  
7
MHz  
dB  
At 12.5MHz  
At 16MHz  
At 20MHz  
At 25MHz  
40  
65  
70  
85  
Attenuation Relative to Passband  
BASEBAND OUTPUT CHARACTERISTICS  
RX I/Q Gain Imbalance  
-1  
-5  
+1  
+5  
dB  
RX I/Q Phase Quadrature Imbalance  
RX I/Q Output 1dB Compression  
RX I/Q Output THD  
Degrees  
Differential voltage into 5kΩ  
1
V
P-P  
V
= 500mV  
at 5.5MHz, Z = 5k||5pF  
-35  
dBc  
OUT  
P-P  
L
BASEBAND AGC AMPLIFIER  
AGC Range  
V
= 0 to +2.0V  
70  
60  
dB  
RX_AGC  
AGC Slope  
Peak gain slope  
dB/V  
20dB gain step, 80dB to 60dB,  
settling to 1dB  
AGC Response Time  
2
µs  
BASEBAND RX PEAK LEVEL DETECTION  
RF_GAIN = V  
,
IH  
-49  
-54  
RX_DET = V to V  
OL  
OH  
RX Detector Trip Point (at RX_RF)  
CW signal  
dBm  
RF_GAIN = V ,  
IL  
RX_DET = V  
to V  
OL  
OH  
RX Detector Hysteresis  
RX Detector Rise Time  
5
1
dB  
µs  
With 3dB overdrive  
AC ELECTRICAL CHARACTERISTICSTRANSMIT MODE  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, f and f = 2400MHz to 2499MHz, f  
= 22MHz or 44MHz, transmit baseband  
CC  
RF  
LO  
OSC  
inputs = 400mV , SHDNB = TX_ON = V , RX_ON = V , CSB = V , 0V V  
+2.0V, RBIAS = 12k, I = +2mA, BW  
=
P-P  
IH  
IL  
IH  
TX_GC  
CP  
PLL  
45kHz, differential RF output matched to 50through a balun, baseband input biased at +1.2V, registers set to default power-up set-  
tings, T = +25°C, unless otherwise noted. Typical values are at V = +2.7V, f = 2437MHz, f = 22MHz, unless otherwise noted.)  
A
CC  
LO  
OSC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TRANSMIT SIGNAL PATH: BASEBAND INPUT TO RF OUTPUT  
RF Output Frequency Range  
2400  
2400  
2499  
2499  
MHz  
MHz  
LO Output Frequency Range  
4
_______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
AC ELECTRICAL CHARACTERISTICSTRANSMIT MODE (continued)  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, f and f = 2400MHz to 2499MHz, f  
= 22MHz or 44MHz, transmit baseband  
CC  
RF  
LO  
OSC  
inputs = 400mV , SHDNB = TX_ON = V , RX_ON = V , CSB = V , 0V V  
+2.0V, RBIAS = 12k, I = +2mA, BW  
=
P-P  
IH  
IL  
IH  
TX_GC  
CP  
PLL  
45kHz, differential RF output matched to 50through a balun, baseband input biased at +1.2V, registers set to default power-up set-  
tings, T = +25°C, unless otherwise noted. Typical values are at V = +2.7V, f = 2437MHz, f = 22MHz, unless otherwise noted.)  
A
CC  
LO  
OSC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= 400mV at  
P-P  
IN  
T
= +25°C  
-1  
-2  
+3  
A
5.5MHz,  
= 0V,  
TX RF Output Power  
TX RF ACPR (Note 8)  
dBm  
V
TX_GC  
T
= -40°C to  
A
I/Q CW signal (Note 7)  
+85°C  
-22MHz f  
-11MHz,  
22MHz  
OFFSET  
-37  
-59  
11MHz f  
OFFSET  
dBc  
-33MHz f  
< -22MHz,  
33MHz  
OFFSET  
OFFSET  
22MHz < f  
Unwanted sideband  
-40  
-30  
-80  
-40  
-55  
-60  
-43  
-45  
-135  
15  
In-Band Spurious Signals Relative to  
Modulated Carrier  
f
= 2400MHz to  
RF  
LO signal  
dBc  
dBm  
dBm  
2483MHz  
Spurs > 22MHz  
2 × f  
3 × f  
LO  
TX RF Harmonics  
LO  
f
f
f
f
< 2400MHz  
RF  
TX RF Spurious Signal Emissions  
(Outside 2400MHz to 2483.5MHz)  
Nonharmonic Signals  
= 2500MHz to 3350MHz  
> 3350MHz  
RF  
RF  
TX RF Output Noise  
22MHz, 0V V  
+2.0V  
TX_GC  
dBm/Hz  
dB  
OFFSET  
TX RF Output Return Loss  
TX BASEBAND FILTER RESPONSE  
-3dB Frequency  
With external match  
10  
25  
50  
MHz  
dB  
At 22MHz  
At 44MHz  
Attenuation Relative to Passband  
TX GAIN-CONTROL CHARACTERISTICS  
Gain-Control Range  
0V V  
+2.0V  
30  
40  
dB  
dB/V  
µs  
TX_GC  
Gain-Control Slope  
Peak gain slope  
= +2.0V to 0V step  
Gain-Control Response Time  
V
0.3  
TX_GC  
AC ELECTRICAL CHARACTERISTICSPA BIAS  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, SHDNB = V , TX_ON = V , CSB = V , PA_BIAS enabled, RBIAS = 12k, regis-  
CC  
IH IH IH  
ters set to default power-up settings, T = +25°C, unless otherwise noted. Typical values are at V = +2.7V, unless otherwise noted.)  
A
CC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
4
MAX  
UNITS  
Bits  
µA  
Resolution  
Full-Scale Output Current  
LSB Size  
300  
20  
µA  
Output Voltage Compliance Range  
(Note 11)  
1.0  
1.2  
1.3  
V
Relative to rising edge of CSB, zero to full-  
scale step 0000 1111, settle to 1/2 LSB,  
2pF load  
Settling Time  
1
µs  
_______________________________________________________________________________________  
5
2.4GHz 802.11b Zero-IF Transceivers  
AC ELECTRICAL CHARACTERISTICSSYNTHESIZER  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, f and f  
= 2400MHz to 2499MHz, f  
= 22MHz or 44MHz, SHDNB = V ,  
OSC IH  
CC  
RF  
LO  
CSB = V , RBIAS = 12k, I = +2mA, BW  
= 45kHz, registers set to default power-up settings, T = +25°C, unless otherwise  
IH  
CP  
PLL  
A
noted. Typical values are at V  
= +2.7V, f = 2437MHz, f  
= 22MHz, unless otherwise noted.) (Note 11)  
OSC  
CC  
LO  
PARAMETER  
FREQUENCY SYNTHESIZER  
LO Frequency Range  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2400  
2499  
MHz  
MHz  
MHz  
mA  
R(0) = 0  
R(0) = 1  
22  
44  
Reference Frequency  
Channel Spacing  
1
ICP = 0  
ICP = 1  
2
1
Charge-Pump Output Current  
Charge-Pump Compliance Range  
0.4  
V
- 0.4  
V
CC  
-11MHz f  
11MHz  
-41  
-75  
OFFSET  
-22MHz f  
< -11MHz,  
22MHz  
OFFSET  
OFFSET  
Reference Spur Level (Note 10)  
dBc  
11MHz < f  
f
f
f
< -22MHz, f  
> 22MHz  
OFFSET  
-90  
-80  
-87  
OFFSET  
OFFSET  
OFFSET  
= 10kHz  
Closed-Loop Phase Noise  
dBc/Hz  
= 100kHz  
Noise integrated from 100Hz to 10MHz,  
measured at the TX_RF output  
Closed-Loop Integrated Phase Noise  
2.5  
°
RMS  
Reference Oscillator Input Level  
VOLTAGE-CONTROLLED OSCILLATOR  
VCO Tuning Voltage Range  
AC-coupled sine wave input  
200  
0.4  
300  
500  
2.3  
mV  
P-P  
V
f
f
= 2400MHz  
= 2499MHz  
170  
130  
LO  
VCO Tuning Gain  
MHz/V  
LO  
AC ELECTRICAL CHARACTERISTICSSYSTEM TIMING  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, f and f  
= 2400MHz to 2499MHz, f  
= 22MHz or 44MHz, SHDNB = V ,  
OSC IH  
CC  
RF  
LO  
CSB = V , RBIAS = 12k, I = +2mA, BW  
= 45kHz, registers set to default power-up settings, T = +25°C, unless otherwise  
IH  
CP  
LOOP  
A
noted. Typical values are at V  
= +2.7V, f = 2437MHz, f  
= 22MHz, unless otherwise noted.) (Note 11)  
CC  
LO  
OSC  
PARAMETER  
Channel-Switching Time  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
f
= 2400MHz 2499MHz,  
settles to 10kHz (Note 9)  
LO  
150  
200  
µs  
LO  
RX to TX, f settles to within  
LO  
30kHz, relative to rising edge of TX_ON  
5
RX/TX Turnaround Time  
µs  
TX to RX, f settles to within  
LO  
30kHz, relative to rising edge of RX_ON  
10  
6
_______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
AC ELECTRICAL CHARACTERISTICSSYSTEM TIMING (continued)  
(MAX2820/MAX2821 EV kit: V  
= +2.7V to +3.6V, f and f  
= 2400MHz to 2499MHz, f  
= 22MHz or 44MHz, SHDNB = V ,  
CC  
RF  
LO  
OSC IH  
CSB = V , RBIAS = 12k, I = +2mA, BW  
= 45kHz, registers set to default power-up settings, T = +25°C, unless otherwise  
IH  
CP  
LOOP  
LO  
A
noted. Typical values are at V  
= +2.7V, f = 2437MHz, f  
= 22MHz, unless otherwise noted.)  
CC  
OSC  
PARAMETER  
Standby-to-Receive Mode  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Standby to RX, f settles to within  
LO  
30kHz, relative to rising edge of RX_ON  
5
µs  
Standby to TX, f settles to within  
LO  
30kHz, relative to rising edge of TX_ON  
Standby-to-Transmit Mode  
10  
µs  
AC ELECTRICAL CHARACTERISTICSSERIAL INTERFACE TIMING  
(MAX2820/MAX2821 EV kit: V  
(Note 11)  
= +2.7V to +3.6V, registers set to default power-up settings, T = +25°C, unless otherwise noted.  
A
CC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SERIAL INTERFACE TIMING (See Figure 1)  
t
SCLK rising edge to CSB falling edge wait time  
Falling edge of CSB to rising edge of first SCLK time  
Data-to-serial clock setup time  
5
5
ns  
ns  
CSO  
t
CSS  
t
5
ns  
DS  
DH  
CH  
t
t
Data-to-clock hold time  
10  
10  
10  
5
ns  
Serial clock pulse-width high  
ns  
t
CL  
Clock pulse-width low  
ns  
t
Last SCLK rising edge to rising edge of CSB  
CSB high pulse width  
ns  
CSH  
CSW  
t
10  
5
ns  
t
Time between the rising edge of CSB and the next rising edge of SCLK  
Clock frequency  
ns  
CS1  
f
50  
MHz  
CLK  
Note 1: Parameters are production tested at +25°C only. Min/max limits over temperature are guaranteed by design and charac-  
terization.  
Note 2: Defined as the baseband differential RMS output voltage divided by the RMS input voltage (at the RF balun input).  
Note 3: Noise-figure specification excludes the loss of the external balun. The external balun loss is typically ~0.5dB.  
Note 4: CCK interferer at 25MHz offset. Desired signal equals -73dBm. Interferer amplitude increases until baseband output from  
interferer is 10dB below desired signal. Adjacent channel rejection = P  
- P  
.
interferer  
desired  
Note 5: Measured at balun input. Two CW tones at -43dBm with 15MHz and 25MHz spacing from the MAX2820/MAX2821 channel  
frequency. IP3 is computed from 5MHz IMD3 product measured at the RX I/Q output.  
Note 6: Two CW interferers at -38dBm with 24.5MHz and 25.5MHz spacing from the MAX2820/MAX2821 channel frequency. IP2 is  
computed from the 1MHz IMD2 product measured at the RX I/Q output.  
Note 7: Output power measured after the matching and balun. TX gain is set to maximum.  
Note 8: Adjacent and alternate channel power relative to the desired signal. TX gain is adjusted until the output power is -1dBm.  
Power measured with 100kHz video BW and 100kHz resolution BW.  
Note 9: Time required to reprogram the PLL, change the operating channel, and wait for the operating channel center frequency to  
settle within 10kHz of the nominal (final) channel frequency.  
Note 10: Relative amplitude of reference spurious products appearing in the TX RF output spectrum relative to a CW tone at  
0.5MHz offset from the LO.  
Note 11: Min/max limits are guaranteed by design and characterization.  
_______________________________________________________________________________________  
7
2.4GHz 802.11b Zero-IF Transceivers  
Typical Operating Characteristics  
(MAX2820/MAX2821 EV kit, V  
= +2.7V, f  
= 1MHz, f  
= 2450MHz, receive baseband outputs = 500mV , transmit base-  
LO P-P  
CC  
BB  
band inputs = 400mV , I  
input biased at +1.2V, registers set to default power-up settings, T = +25°C, unless otherwise noted.)  
= +2mA, BW  
= 45kHz, differential RF input/output matched to 50through a balun, baseband  
P-P CP  
PLL  
A
RECEIVER VOLTAGE GAIN  
vs. GAIN-CONTROL VOLTAGE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
RECEIVE, V  
= V  
IH  
RECEIVE, V  
= V  
IH  
RF_GAIN  
RF_GAIN  
V
= V  
IH  
RF_GAIN  
TRANSMIT  
TRANSMIT  
RECEIVE, V  
= V  
RECEIVE, V  
= V  
RF_GAIN IL  
RF_GAIN  
IL  
V
V
= V  
IL  
RF_GAIN  
= 500mV  
= 1MHz  
= 2450MHz  
0.5  
OUT  
P-P  
f
f
BB  
LO  
STANDBY  
60  
STANDBY  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
85  
0
1.0  
1.5  
2.0  
V
(V)  
TEMPERATURE (°C)  
V
(V)  
CC  
RX_AGC  
RECEIVER VOLTAGE GAIN  
vs. RF FREQUENCY  
RECEIVER DETECTOR HYSTERESIS  
vs. INPUT POWER  
RECEIVER NOISE FIGURE vs. GAIN  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
f
= 1MHz  
BB  
HIGH  
V
= V  
IL  
RF_GAIN  
V
= V , V  
IH RX_AGC  
= 2.0V  
HIGH-GAIN MODE  
HIGH  
RF_GAIN  
LOW  
LOW-GAIN MODE  
V
= V  
IH  
RF_GAIN  
f
f
= 1MHz  
= 2450MHz  
V
= V , V  
= 2.0V  
2480  
BB  
LO  
RF_GAIN  
IL RX_AGC  
LOW  
0
0
0
20  
40  
60  
80  
100  
2400  
2420  
2440  
2460  
2500  
-65  
-60  
-55  
-50  
-45  
-40  
-35  
RX GAIN (dB)  
RF FREQUENCY (MHz)  
P
(dBm)  
IN  
RECEIVER FILTER RESPONSE  
(1kHz TO 1MHz)  
RECEIVER FILTER RESPONSE  
(1MHz TO 100MHz)  
RECEIVER LEAKAGE SPECTRUM  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-120  
10  
0
10  
0
V
LO  
= V  
IH  
RF_GAIN  
f = 2400MHz  
f
= 8.5MHz  
-3dB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f
= 7.5MHz  
RX_1K = V  
IH  
-3dB  
RX_1K = V  
IL  
0
0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0  
FREQUENCY (GHz)  
1
10  
100  
1000  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (kHz)  
8
_______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
Typical Operating Characteristics (continued)  
(MAX2820/MAX2821 EV kit, V  
= +2.7V, f  
= 1MHz, f  
= 2450MHz, receive baseband outputs = 500mV , transmit base-  
LO P-P  
CC  
BB  
band inputs = 400mV , I  
input biased at +1.2V, registers set to default power-up settings, T = +25°C, unless otherwise noted.)  
= +2mA, BW  
= 45kHz, differential RF input/output matched to 50through a balun, baseband  
P-P CP  
PLL  
A
TRANSMITTER OUTPUT POWER  
vs. FREQUENCY  
RECEIVER BASEBAND OUTPUT SPECTRUM  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
= V  
IH  
RF_GAIN  
RX GAIN = 50dB  
-40°C  
f
f
= 5MHz  
= 2450MHz  
BB  
LO  
+25°C  
+85°C  
V
= 400mV  
P-P  
TX_GC  
IN  
V
= 0V  
11Mbps CCK  
2400  
2420  
2440 2460 2480 2500  
FREQUENCY (MHz)  
0
5
10 15 20 25 30 35 40 45 50  
FREQUENCY (MHz)  
TRANSMITTER OUTPUT POWER  
vs. SUPPLY VOLTAGE  
TRANSMITTER OUTPUT SPECTRUM  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-10  
RBW = 100kHz  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
V
= 400mV  
IN  
P-P  
-40°C  
11Mbps CCK  
P
= -1dBm  
OUT  
+25°C  
+85°C  
V
= 400mV  
P-P  
TX_GC  
IN  
V
= 0V  
11Mbps CCK  
2.7  
3.0  
3.3  
3.6  
-33  
-22  
-11  
0
11  
22  
33  
V
(V)  
FREQUENCY OFFSET FROM CARRIER (MHz)  
CC  
TRANSMITTER GAIN  
vs. GAIN-CONTROL VOLTAGE  
TRANSMITTER OUTPUT SPECTRUM  
5
10  
0
-40°C  
CW SIGNAL  
0
-5  
f
f
= 3.3MHz  
= 2450MHz  
BB  
LO  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
+25°C +85°C  
-10  
-15  
-20  
-25  
-30  
-35  
0dB = MAX P  
IN  
11Mbps CCK  
AT +25°C  
OUT  
P-P  
V
= 400mV  
0
0.5  
1.0  
1.5  
2.0  
0
0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0  
FREQUENCY (GHz)  
V
(V)  
TX_GC  
_______________________________________________________________________________________  
9
2.4GHz 802.11b Zero-IF Transceivers  
Typical Operating Characteristics (continued)  
(MAX2820/MAX2821 EV kit, V  
= +2.7V, f = 1MHz, f = 2450MHz, receive baseband outputs = 500mV , transmit baseband  
BB LO P-P  
CC  
inputs = 400mV , I  
= +2mA, BW  
= 45kHz, differential RF input/output matched to 50through a balun, baseband input  
P-P CP  
PLL  
biased at +1.2V, registers set to default power-up settings, T = +25°C, unless otherwise noted.)  
A
OPEN-LOOP PHASE NOISE  
vs. OFFSET FREQUENCY  
TRANSMITTER BASEBAND FILTER RESPONSE  
LO FREQUENCY vs. TUNING VOLTAGE  
10  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
-40  
-50  
f
= 2450MHz  
LO  
f
= 2450MHz  
MEASURED AT  
LO  
0
TX OUTPUT  
-60  
-10  
-20  
-30  
-40  
-50  
-60  
-40°C  
-70  
-80  
+25°C  
-90  
-100  
-110  
-120  
-130  
-140  
+85°C  
1
10  
100  
1000  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (MHz)  
0
0.5  
1.0  
V
1.5  
(V)  
2.0  
2.5  
OFFSET FREQUENCY (kHz)  
TUNE  
CLOSED-LOOP PHASE NOISE  
vs. OFFSET FREQUENCY  
VCO/PLL SETTING TIME  
50  
-50  
BW  
= 45kHz  
f
= 2450MHz  
LOOP  
LOOP  
LO  
BW  
I
40  
30  
-60  
-70  
f
LO  
= 2499MHz TO 2400MHz  
= 45kHz  
= 2mA  
= 2.1°  
CP  
INT  
φ
RMS  
20  
-80  
10  
0
-90  
-10  
-20  
-30  
-40  
-50  
-100  
-110  
-120  
-130  
0
40 80 120 160 200 240 280 320 360 400  
100  
1k  
10k  
100k  
1M  
TIME (µs)  
OFFSET FREQUENCY (Hz)  
10 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
Pin Configuration/Functional Diagram  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
VCC_LNA  
1
2
36 SHDNB  
35 VCC_RXF  
34 VCC_LO  
PROGRAMMING AND  
MODE CONTROL  
RX LEVEL  
DETECTOR  
VREF  
(MAX2821 ONLY)  
3
RF_GAIN  
RX_RFN  
RX_RFP  
VCC_REF  
RBIAS  
4
33  
VCC_VCO  
32 BYP  
31  
5
6
TUNE  
90  
0
0
7
30 GND_VCO  
29 GND_CP  
28 CP_OUT  
27 VCC_CP  
26 CSB  
MAX2820/  
MAX2821  
INTEGER-N  
SYNTHESIZER  
90  
TX_RFP  
TX_RFN  
PA_BIAS  
8
9
10  
VOS COMP  
SERIAL  
INTERFACE  
VCC_DRVR 11  
TX_GC 12  
25 SCLK  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
______________________________________________________________________________________ 11  
2.4GHz 802.11b Zero-IF Transceivers  
Pin Description  
PIN  
NAME  
DESCRIPTION  
Supply Voltage for LNA. Bypass with a capacitor as close to the pin as possible. Do not share the  
bypass capacitor ground vias with other branches.  
1
VCC_LNA  
N.C.  
VREF  
No Connection. Not internally connected. (MAX2820 only)  
2
3
4
Voltage Reference Output. (MAX2821 only)  
RF_GAIN  
LNA Gain Select Logic Input. Logic high for LNA high-gain mode, logic low for LNA low-gain mode.  
Receiver LNA Negative Input. On-chip AC-coupling. Requires off-chip impedance match and  
connection to 2:1 balun.  
RX_RFN  
RX_RFP  
Receiver LNA Positive Input. On-chip AC-coupling. Requires off-chip impedance match and  
connection to 2:1 balun.  
5
Supply Voltage for Bias Circuitry and Autotuner. Bypass with a capacitor as close to the pin as  
possible. Do not share the bypass capacitor ground vias with other branches.  
6
7
8
VCC_REF  
RBIAS  
Precision Bias Resistor Pin. Connect a 12kprecision resistor (2%) to GND.  
Transmit Driver Amplifier Positive Output. On-chip pullup choke to V . Requires off-chip impedance  
CC  
match and connection to 4:1 balun.  
TX_RFP  
Transmit Driver Amplifier Negative Output. On-chip pullup choke to V . Requires off-chip  
CC  
impedance match and connection to 4:1 balun.  
9
TX_RFN  
PA_BIAS  
VCC_DRVR  
TX_GC  
Power-Amplifier Bias-Current Control Signal. Analog output. High-impedance, open-drain current  
source. Connect directly to bias-current control input on external PA.  
10  
11  
12  
13  
14  
15  
16  
17  
Supply Voltage for Transmit Driver. Bypass with a capacitor as close to the pin as possible. Do not  
share the bypass capacitor ground vias with other branches.  
Transmit Gain-Control Input. Analog high-impedance input. Connect directly to baseband IC DAC  
output. See the Typical Operating Characteristics for Transmitter Gain vs. Gain-Control Voltage.  
Supply Voltage for Transmit Mixer and VGA. Bypass with a capacitor as close to the pin as possible.  
Do not share the bypass capacitor ground vias with other branches.  
VCC_TMX  
TX_BBIN  
TX_BBIP  
TX_BBQP  
TX_BBQN  
Transmit Negative In-Phase Baseband Input. Analog high-impedance differential input. Connect  
directly to baseband IC DAC voltage output. Requires a 1.2V common-mode voltage.  
Transmit Positive In-Phase Baseband Input. Analog high-impedance differential input. Connect  
directly to baseband IC DAC voltage output. Requires a 1.2V common-mode voltage.  
Transmit Positive Quadrature Baseband Input. Analog high-impedance differential input. Connect  
directly to baseband IC DAC voltage output. Requires a 1.2V common-mode voltage.  
Transmit Negative Quadrature Baseband Input. Analog high-impedance differential input. Connect  
directly to baseband IC DAC voltage output. Requires a 1.2V common-mode voltage.  
Supply Voltage for Transmit Baseband Filter. Bypass with capacitor as close to the pin as possible.  
Do not share the bypass capacitor ground vias with other branches.  
18  
19  
VCC_TXF  
GND_DIG  
Digital Ground  
12 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
Pin Description (continued)  
PIN  
20  
NAME  
VCC_DIG  
N.C.  
DESCRIPTION  
Supply Voltage for Digital Circuitry. Bypass with capacitor as close to the pin as possible. Do not  
share the bypass capacitor ground vias with other branches.  
21  
No Connection. Not internally connected.  
Reference Oscillator Positive Input. Analog, high-impedance differential input. DC-coupled. Requires  
external AC-coupling. Connect an external reference oscillator to this analog input.  
22  
ROSCP  
Reference Oscillator Negative Input. Analog, high-impedance differential input. DC-coupled.  
Requires external AC-coupling. Bypass this analog input to ground with capacitor for single-ended  
operation.  
23  
ROSCN  
3-Wire Serial Interface Data Input. Digital, high-impedance input. Connect directly to baseband IC  
serial interface CMOS output. (SPI/QSPI/MICROWIRE compatible)  
24  
25  
26  
27  
28  
DIN  
SCLK  
3-Wire Serial Interface Clock Input. Digital, high-impedance input. Connect this digital input directly to  
baseband IC serial interface CMOS output. (SPI/QSPI/MICROWIRE compatible).  
3-Wire Serial Interface Enable Input. Digital, high-impedance input. Connect directly to baseband IC  
serial interface CMOS output. (SPI/QSPI/MICROWIRE compatible)  
CSB  
Supply Voltage for PLL Charge Pump. Bypass with capacitor as close to the pin as possible. Do not  
share the bypass capacitor ground vias with other branches.  
VCC_CP  
PLL Charge-Pump Output. Analog, high-impedance output. Current source. Connect directly to the  
PLL loop filter input.  
CP_OUT  
GND_CP  
29  
30  
PLL Charge-Pump Ground. Connect to PC board ground plane.  
GND_VCO VCO Ground. Connect to PC board ground plane.  
VCO Frequency Tuning Input. Analog voltage input. High impedance. Connect directly to the PLL  
loop filter output.  
31  
32  
TUNE  
BYP  
VCO Bias Bypass Pin. Bypass with a 2000pF capacitor to ground.  
Supply Voltage for VCO. Bypass with capacitor as close to the pin as possible. Do not share the  
bypass capacitor ground vias with other branches. Important note: Operate off separate regulated  
supply voltage.  
33  
VCC_VCO  
Supply Voltage for VCO, LO Buffers, and LO Quadrature Circuitry. Bypass with capacitor as close to  
the pin as possible. Do not share the bypass capacitor ground vias with other branches.  
34  
35  
VCC_LO  
Supply Voltage for Receiver Baseband Filter. Bypass with capacitor as close to the pin as possible.  
Do not share the bypass capacitor ground vias with other branches.  
VCC_RXF  
Active Low Shutdown Input. Digital CMOS input. High impedance. Connect directly to baseband IC  
mode control CMOS output. Logic low to disable all device functions. Logic high to enable normal  
chip operation.  
36  
37  
38  
SHDNB  
DOUT  
Serial Interface Data Output. Digital CMOS output. Optional connection.  
Receiver 1kHz Highpass Bandwidth Control. Digital CMOS input. Connect directly to baseband IC  
CMOS output. Controls receiver baseband highpass -3dB corner frequency; logic low for 10kHz,  
logic high for 1kHz. See the Applications Information section for proper use of this function.  
RX_1K  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
______________________________________________________________________________________ 13  
2.4GHz 802.11b Zero-IF Transceivers  
Pin Description (continued)  
PIN  
NAME  
DESCRIPTION  
Receive Positive Quadrature Baseband Output. Analog low-impedance differential buffer output.  
Connect output directly to baseband ADC input. Internally biased to 1.2V common-mode voltage and  
can drive loads up to 5k|| 5pF.  
39  
RX_BBQP  
Receive Negative Quadrature Baseband Output. Analog low-impedance differential buffer output.  
Connect output directly to baseband ADC input. Internally biased to 1.2V common-mode voltage and  
can drive loads up to 5k|| 5pF.  
40  
41  
42  
43  
RX_BBQN  
RX_BBIN  
RX_BBIP  
RX_DET  
Receive Negative In-Phase Baseband Output. Analog low-impedance differential buffer output.  
Connect output directly to baseband ADC input. Internally biased to 1.2V common-mode voltage and  
can drive loads up to 5k|| 5pF.  
Receive Positive In-Phase Baseband Output. Analog low-impedance differential buffer output.  
Connect output directly to baseband ADC input. Internally biased to 1.2V and can drive loads up to  
5k|| 5pF.  
Receive Level Detection Output. Digital CMOS output. Connect output directly to baseband IC input.  
Used to indicate RF input level. Logic high for input levels above -49dBm (typ). Logic low for levels  
below -54dBm (typ).  
Supply Voltage for Receiver Baseband Buffer. Bypass with capacitor as close to the pin as possible.  
Do not share the bypass capacitor ground vias with other branches.  
44  
45  
46  
VCC_BUF  
RX_ON  
Receiver-On Control Input. Digital CMOS input. Connect to baseband IC mode control CMOS output.  
Supply Voltage for Receiver Downconverter. Bypass with capacitor as close to the pin as possible.  
Do not share the bypass capacitor ground vias with other branches.  
VCC_RMX  
Transmitter-On Control Input. Digital CMOS input. Connect directly to baseband IC mode control  
CMOS output.  
47  
48  
TX_ON  
RX_AGC  
GND  
Receive AGC Control. Analog high-impedance input. Connect directly to baseband IC DAC voltage  
output. See the Typical Operating Characteristics for Gain vs. V  
.
RX_AGC  
Exposed  
Paddle  
DC and AC Ground Return for IC. Connect to PC board ground plane using multiple vias.  
14 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
CSB  
t
CSW  
t
CSO  
t
t
CSH  
CSS  
SCLK  
t
DS  
t
t
t
CS1  
DH  
CH  
t
CL  
DIN  
BIT 1  
BIT 2  
BIT 6  
BIT 7  
BIT 8  
BIT 14  
BIT 8  
BIT 15  
BIT 16  
t
DV  
t
TR  
t
DO  
DOUT  
BIT 1  
BIT 2  
BIT 6  
BIT 7  
BIT 14  
BIT 15  
BIT 16  
Figure 1. MAX2820/MAX2821 Serial Interface Timing Diagram  
Table 1. Operating Mode Truth Table  
MODE CONTROL INPUTS  
CIRCUIT BLOCK STATES  
OPERATING MODE  
SHDNB  
TX_ON  
RX_ON  
RX_PATH  
OFF  
TX_PATH  
OFF  
PLL/VCO/LO GEN.  
Shutdown  
Standby  
Receive  
Transmit  
0
1
1
1
X
0
0
1
X
0
1
0
OFF  
ON  
ON  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
values at any time. Refer to serial interface specification  
for details.  
Operating Modes  
The MAX2820/MAX2821 have four primary modes of  
operation: shutdown, standby, receive active, and  
transmit active. The modes are controlled by the digital  
inputs SHDNB, TX_ON, and RX_ON. Table 1 shows the  
operating mode vs. the digital mode control input.  
Receive Mode  
Receive mode is enabled by driving the digital inputs  
SHDNB high, RX_ON high, and TX_ON low. In receive  
mode, all receive circuit blocks are powered on and all  
VCO, PLL, and autotuner circuits are powered on. None of  
the transmit path blocks are active in this mode. Although  
the receiver blocks turn on quickly, the DC offset nulling  
requires ~10µs to settle. The receiver signal path is ready  
~10µs after a low-to-high transition on RX_ON.  
Shutdown Mode  
Shutdown mode is achieved by driving SHDNB low. In  
shutdown mode, all circuit blocks are powered down,  
except for the serial interface circuitry. While the device  
is in shutdown, the serial interface registers can still be  
loaded by applying V  
to the digital supply voltage  
Transmit Mode  
Transmit mode is achieved by driving the digital inputs  
SHDNB high, RX_ON low, and TX_ON high. In transmit  
mode, all transmit circuit blocks are powered on and all  
VCO, PLL, and autotuner circuits are powered on.  
None of the receive path blocks is active in this mode.  
Although the transmitter blocks turn on quickly, the  
baseband DC offset calibration requires ~2.2µs to  
complete. In addition, the TX driver amplifier is ramped  
from the low-gain state (minimum RF output) to high-  
gain state (peak RF output) over the next 1µs to 2µs.  
The transmit signal path is ready ~4µs after a low-to-  
high transition on TX_ON.  
CC  
(VCC_DIG). All previously programmed register values  
are preserved during the shutdown mode, as long as  
VCC_DIG is applied.  
Standby Mode  
Standby mode is achieved by driving SHDNB high,  
RX_ON, and TX_ON low. In standby mode, the PLL,  
VCO, LO generator, LO buffer, LO quadrature, and fil-  
ter autotuner are powered on by default. The standby  
mode is intended to provide time for the slower-settling  
circuitry (PLL and autotuner) to turn on and settle to the  
correct frequency before making RX or TX active. The  
3-wire serial interface is active and can load register  
______________________________________________________________________________________ 15  
2.4GHz 802.11b Zero-IF Transceivers  
Table 2. Programming Register Definition Summary (Address and Data)  
4 ADDRESS BITS  
12 DATA BITS  
REGISTER  
NAME  
A3  
A2  
A1  
14  
0
A0  
13  
1
D11  
12  
E11  
X
D10  
11  
E10  
X
D9  
10  
E9  
X
D8  
9
D7  
8
D6  
7
D5  
6
D4  
5
D3  
4
D2  
3
D1  
2
D0  
LSB  
E0  
MSB 15  
ENABLE  
SYNTH  
0
0
0
0
0
0
0
0
1
1
E8  
X
E7  
PD  
X
E6  
E5  
R5  
CF5  
DL1  
X
E4  
R4  
CF4  
DL0  
X
E3  
E2  
R2  
CF2  
E1  
R1  
CF1  
1
0
ICP  
CF6  
1C0  
X
R3  
CF3  
SF  
R0  
CHANNEL  
RECEIVE  
TRANSMIT  
1
1
X
X
X
X
CF0  
0
0
2C2  
X
2C1  
X
2C0  
X
1C2  
X
1C1  
X
BW2 BW1 BW0  
PA2 PA1 PA0  
0
1
PA3  
X = Dont care.  
register is described in Table 3. Note: Putting the IC in  
shutdown mode does not change the contents of the  
programming registers.  
Programmable Registers  
The MAX2820/MAX2821 contain programmable regis-  
ters to control various modes of operation for the major  
circuit blocks. The registers can be programmed  
through the 3-wire SPI/QSPI/MICROWIRE-compatible  
serial port. The MAX2820/MAX2821 include five pro-  
grammable registers:  
Block-Enable Register  
The block-enable register permits individual control of the  
enable state for each major circuit block in the  
MAX2820/MAX2821. The actual enable condition of the  
circuit block is a logical function of the block-enable bit  
setting and other control input states. Table 4 documents  
the logical definition of state for each major circuit block.  
1) Block-enable register  
2) Synthesizer register  
3) Channel frequency register  
4) Receiver settings register  
5) Transmitter settings register  
Synthesizer Register  
The synthesizer register (SYNTH) controls the reference  
frequency divider and charge-pump current of the PLL.  
See Table 5 for a description of the bit settings.  
Each register consists of 16 bits. The four most signifi-  
cant bits (MSBs) are the registers address. The twelve  
least significant bits (LSBs) are used for register data.  
Table 2 summarizes the register configuration. A  
detailed description of each register is provided in  
Tables 36.  
Channel Frequency Register  
The channel frequency register (CHANNEL) sets the  
RF carrier frequency for the MAX2820/MAX2821. The  
channel is programmed as a number from 0 to 99. The  
actual frequency is 2400 + channel in MHz. The default  
setting is 37 for 2437MHz. See Table 6 for a description  
of the bit settings.  
Data is shifted in the MSB first. The data sent to the  
MAX2820/MAX2821, in 16-bit words, is framed by CSB.  
When CSB is low, the clock is active and data is shifted  
with the rising edge of the clock. When CSB transitions  
to high, the shift register is latched into the register  
selected by the contents of the address bits. Only the  
last 16 bits shifted into the MAX2820/MAX2821 are  
retained in the shift register. No check is made on the  
number of clock pulses. Figure 1 documents the serial  
interface timing for the MAX2820/MAX2821.  
Receiver Settings Register  
The receive settings register (RECEIVE) controls the  
receive filter -3dB corner frequency, RX level detector  
midpoint, and VGA DC offset nulling parameters. The  
defaults are intended to provide proper operation.  
However, the filter frequency and detector can be modi-  
fied if desired. Do not reprogram VGA DC offset nulling  
parameters. These settings were optimized during devel-  
opment. See Table 7 for a description of the bit settings.  
Power-Up Default States  
The MAX2820/MAX2821 provide power-up loading of  
default states for each of the registers. The states are  
loaded on a VCC_DIG supply voltage transition from 0V  
Transmitter Settings Register  
The transmitter settings register (TRANSMIT) controls  
the 4-bit PA bias DAC. The 4 bits correspond to a PA  
bias current between 0 and full scale (~300µA). See  
Table 8 for the bit settings.  
to V . The default values are retained until repro-  
CC  
grammed through the serial interface or the power sup-  
ply voltage is taken to 0V. The default state of each  
16 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
Table 3. Register Power-Up Default States  
REGISTER  
ADDRESS  
DEFAULT  
FUNCTION  
Block-Enable Control Settings (E)  
ENABLE  
0001  
000000011110  
Synthesizer Settings:  
Reference frequency (R)  
Charge-pump current (ICP)  
PLL phase detector (PD)  
SYNTH  
0010  
0011  
000001000000  
000000100101  
CHANNEL  
Channel frequency settings (CF)  
Receiver Settings:  
VGA DC offset nulling parameter 1 (1C)  
VGA DC offset nulling parameter 2 (2C)  
-3dB lowpass filter bandwidth (BW)  
Detector midpoint level (DL)  
Special function bit (SF)  
RECEIVE  
0100  
0101  
111111010010  
000000000000  
Transmit Settings:  
TRANSMIT  
PA bias (PA)  
Table 4. Block-Enable Register (ENABLE)  
ADDRESS  
DATA BIT CONTENT DEFAULT  
DESCRIPTION AND LOGICAL DEFINITION  
D11  
E(11)  
0
Reserved  
PA Bias-Control Enable (PAB_EN)  
PAB_EN = SHDNB (E(10) + TX_ON)  
D10  
E(10)  
0
Transmit Baseband Filters Enable (TXFLT_EN)  
TXFLT_EN = SHDNB (E(9) + TX_ON)  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
E(9)  
E(8)  
E(7)  
E(6)  
E(5)  
E(4)  
E(3)  
E(2)  
0
0
0
0
0
1
1
1
TX Upconverter + VGA + Driver Amp Enable (TXUVD_EN)  
TXUVD_EN = SHDNB (E(8) + TX_ON)  
Receive Detector Enable (DET_EN)  
DET_EN = SHDNB (E(7) + RX_ON)  
RX Downconverter + Filters + AGC Amps Enable (RXDFA_EN)  
RXDFA_EN = SHDNB (E(6) + RX_ON)  
0 0 0 1  
Receive LNA Enable (RXLNA_EN)  
RXLNA_EN = SHDNB (E(5) + RX_ON )  
Autotuner Enable (AT_EN)  
AT_EN = SHDNB (E(4) + RX_ON + TX_ON)  
PLL Charge-Pump Enable (CP_EN)  
CP_EN = SHDNB E(3)  
PLL Enable (PLL_EN)  
PLL_EN = SHDNB E(2)  
VCO Enable (VCO_EN)  
VCO_EN = SHDNB E(1)  
D1  
D0  
E(1)  
E(0)  
1
0
Reserved  
______________________________________________________________________________________ 17  
2.4GHz 802.11b Zero-IF Transceivers  
Table 5. Synthesizer Register (SYNTH)  
ADDRESS  
DATA BIT  
CONTENT  
DEFAULT  
DESCRIPTION  
D11:D8  
X
0000  
Reserved  
Phase-Detector Polarity Select  
0 = No phase inversion  
1 = Not permitted  
D7  
D6  
PD  
ICP  
0
1
Charge-Pump Current Select  
0 = 1mA charge-pump current  
1 = 2mA charge-pump current  
0 0 1 0  
Reference Frequency Divider  
000000 = 22MHz  
D5:D0  
R(5:0)  
000000  
000001 = 44MHz  
Table 6. Channel Frequency Block Register (CHANNEL)  
ADDRESS  
DATA BIT  
CONTENT  
DEFAULT  
DESCRIPTION  
D11:D7  
X
00000  
Reserved  
Channel Frequency Select: f = (2400 + CF(6:0))MHz  
LO  
0000000 = 2400MHz  
0000001 = 2401MHz  
…………  
0 0 1 1  
D6:D0  
CF(6:0)  
0100101  
1100010 = 2498MHz  
1100011 = 2499MHz  
The MAX2820/MAX2821 have two LNA gain modes that  
are digitally controlled by the logic signal applied to  
RF_GAIN. RF_GAIN high enables the high-gain mode,  
and RF_GAIN low enables the low-gain mode. The LNA  
gain step is nominally 30dB. In most applications,  
RF_GAIN is connected directly to a CMOS output of the  
baseband IC, and the baseband IC controls the state of  
the LNA gain based on the detected signal amplitude.  
Applications Information  
Receive Path  
LNA  
The MAX2820/MAX2821 RX_RF inputs are high-  
impedance RF differential inputs AC-coupled on-chip  
to the LNA. The LNA inputs require external impedance  
matching and differential to single-ended conversion.  
The balanced to single-ended conversion and interface  
to 50is achieved through the use of an off-chip 2:1  
balun transformer, such as the small surface-mount  
baluns offered by Murata and Toko. In the case of the  
2:1 balun, the RX RF input must be impedance-  
matched to a differential/balanced impedance of 100.  
A simple LC network is sufficient to impedance-match  
the LNA to the balun. The Typical Application Circuit  
shows the balun, inductors, and capacitors that consti-  
tute the matching network. Refer to the MAX2820/  
MAX2821 EV kit schematic for component values of the  
matching network.  
Receiver Baseband Lowpass Filtering  
The MAX2820/MAX2821 on-chip receive lowpass filters  
provide the steep filtering necessary to attenuate the  
out-of-band (> 11MHz) interfering signals to sufficiently  
low levels to preserve receiver sensitivity. The filter fre-  
quency response is precisely controlled on-chip and  
does not require user adjustment. However, a provision  
is made to permit the -3dB corner frequency and entire  
response to be slightly shifted up or down in frequency.  
This is intended to offer some flexibility in trading off  
adjacent channel rejection vs. passband distortion. The  
filter -3dB frequency is programmed through the serial  
interface. The specific bit setting vs. -3dB frequency is  
shown in Table 7. The typical receive baseband filter  
gain vs. frequency profile is shown in the Typical  
Operating Characteristics.  
The line lengths and parasitics have a noticeable impact  
on the matching element values in the board-level circuit.  
Some empirical adjustment of LC component values is  
likely. Balanced line layout on the differential input traces  
is essential to maintaining good IP2 performance and RF  
common-mode noise rejection.  
18 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
Table 7. Receive Settings Register (RECEIVE)  
ADDRESS  
DATA BIT  
D11:D9  
D8:D6  
CONTENT  
2C(2:0)  
DEFAULT  
111  
DESCRIPTION  
VGA DC Offset Nulling Parameter 2  
VGA DC Offset Nulling Parameter 1  
RX Level Detector Midpoint Select  
1C(2:0)  
111  
11 = 01 = 50.2mV  
P
D5:D4  
D3  
DL(1:0)  
SF(0)  
01  
0
10 = 70.9mV  
00 = 35.5mV  
P
P
Special Function Select (not presently used)  
0 = OFF  
1 = ON  
0 1 0 0  
Receive Filter -3dB Frequency Select (frequencies are  
approximate)  
000 = 8.5MHz  
001 = 8.0MHz  
010 = 7.5MHz  
011 = 7.0MHz  
100 = 6.5MHz  
101 = 6.0MHz  
D2:D0  
BW(2:0)  
010  
Table 8. Transmit Settings Register (TRANSMIT)  
ADDRESS  
DATA BIT  
CONTENT  
DEFAULT  
DESCRIPTION  
D11:D4  
X
X
Reserved  
PA Bias Select:  
0 1 0 1  
1111 = Highest PA bias  
…………  
0000 = Lowest PA bias  
D3:D0  
PA(3:0)  
0000  
Receive Gain Control and DC Offset Nulling  
The MAX2820/MAX2821 receive path gain is varied  
through an external voltage applied to the pin RX_AGC.  
are designed to be directly connected (DC-coupled) to  
the in-phase (I) and quadrature-phase (Q) ADC inputs  
of the baseband IC. The RX I/Q outputs are internally  
biased to +1.2V common-mode voltage. The outputs  
are capable of driving loads up to 5k|| 5pF with the  
full bandwidth baseband signals at a differential ampli-  
Maximum gain is at V  
= 0V and minimum gain is  
RX_AGC  
at V  
= 2V. The RX_AGC input is a high-imped-  
RX_AGC  
ance analog input designed for direct connection to the  
RX_AGC DAC output of the baseband IC. The gain-  
control range, which is continuously variable, is typical-  
ly 70dB. The gain-control characteristic is shown in the  
Typical Operating Characteristics section graph  
Receiver Voltage Gain vs. Gain-Control Voltage.  
tude of 500mV  
.
P-P  
Proper board layout is essential to maintain good bal-  
ance between I/Q traces. This provides good quadra-  
ture phase accuracy.  
Receiver Power Detector  
The MAX2820/MAX2821 receiver level detector is a  
digital output from an internal threshold detector that is  
used to determine when to change the LNA gain state.  
In most applications, it is connected directly to a com-  
parator input of the baseband IC. The threshold level  
can be programmed through the MAX2820/MAX2821  
control software.  
Some local noise filtering through a simple RC network  
at the input is permissible. However, the time constant  
of this network should be kept sufficiently low in order  
not to limit the desired response time of the RX gain-  
control function.  
Receiver Baseband Amplifier Outputs  
The MAX2820/MAX2821 receiver baseband outputs  
(RX_BBIP, RX_BBIN, RX_BBQP, and RX_BBQN) are  
differential low-impedance buffer outputs. The outputs  
______________________________________________________________________________________ 19  
2.4GHz 802.11b Zero-IF Transceivers  
Power Amplifier Driver Output  
Transmit Path  
The MAX2820/MAX2821 TX_RF outputs are high-  
impedance RF differential outputs directly connected to  
the driver amplifier. The outputs are essentially open-  
collector outputs with an on-chip inductor choke con-  
nected to VCC_DRVR. The power amplifier driver  
outputs require external impedance matching and dif-  
ferential to single-ended conversion. The balanced to  
single-ended conversion and interface to 50is  
achieved through the use of an off-chip 4:1 balun trans-  
former, such as one from Murata or Toko. In this case,  
the TX RF output must be impedance-matched to a dif-  
ferential/balanced impedance of 200. The Typical  
Application Circuit shows the balun, inductors, and  
capacitors that constitute the matching network of the  
power amplifier driver outputs. The output match  
should be adjusted until the return loss at the balun out-  
put is > 10dB.  
Transmitter Baseband Inputs  
The MAX2820/MAX2821 transmitter baseband inputs  
(TX_BBIP, TX_BBIN, TX_BBQP, and TX_BBQN) are  
high-impedance differential analog inputs. The inputs  
are designed to be directly connected (DC-coupled) to  
the in-phase (I) and quadrature-phase (Q) DAC outputs  
of the baseband IC. The inputs must be externally  
biased to +1.2V common-mode voltage. Typically, the  
DAC outputs are current outputs with external resistor  
loads to ground. I and Q are nominally driven by a  
400mV  
differential baseband signal.  
P-P  
Proper board layout is essential to maintain good bal-  
ance between I/Q traces. This provides good quadra-  
ture phase accuracy by maintaining equal parasitic  
capacitance on the lines. In addition, it is important not  
to expose the TX I/Q circuit board traces going from the  
digital baseband IC to the MAX2820/MAX2821. The  
lines should be shielded on an inner layer to prevent  
coupling of RF to these TX I/Q inputs and possible  
envelope demodulation of the RF signal.  
Transmit Gain Control  
The transmit gain-control input provides a direct analog  
control over the transmit path gain. The transmit gain of  
the MAX2820/MAX2821 is controlled by an external  
voltage at pin TX_GC. The typical gain-control charac-  
teristic is provided in the Typical Operating  
Characteristics graph Transmitter Gain Control vs.  
Gain-Control Voltage. The input is a high-impedance  
analog input designed to directly connect to to the DAC  
output of the baseband IC. Some local noise filtering  
through a simple RC network at the input is permissi-  
ble. However, the time constant of this network should  
be kept sufficiently low so the desired response time of  
the TX gain-control function is not limited.  
Transmit Path Baseband Lowpass Filtering  
The MAX2820/MAX2821 on-chip transmit lowpass fil-  
ters provide the filtering necessary to attenuate the  
unwanted higher-frequency spurious signal content  
that arises from the DAC clock feedthrough and sam-  
pling images. In addition, the filter provides additional  
attenuation of the second sidelobe of signal spectrum.  
The filter frequency response is set on-chip. No user  
adjustment or programming is required. The Typical  
Gain vs. Frequency profile is shown in the Typical  
Operating Characteristics.  
During the TX turn-on sequence, internally the gain is  
set at the minimum while the TX baseband offset cali-  
bration is taking place. The RF output is effectively  
blankedfor the first 2.2µs after TX_ON is taken high.  
After 2.2µs, the blankingis released, and the gain-  
control amplifier ramps to the gain set by the external  
voltage applied to the TX_GC input.  
Transmitter DC Offset Calibration  
In a zero-IF system, in order to achieve low LO leakage  
at the RF output, the DC offset of the TX baseband sig-  
nal path must be reduced to as near zero as possible.  
Given that the amplifier stages, baseband filters, and  
TX DAC possesses some finite DC offset that is too  
large for the required LO leakage specification, it is  
necessary to nullthe DC offset. The MAX2820/  
MAX2821 accomplish this through an on-chip calibra-  
tion sequence. During this sequence, the net TX base-  
band signal path offsets are sampled and cancelled in  
the baseband amplifiers. This calibration occurs in the  
first ~2.2µs after TX_ON is taken high. During this time,  
it is essential that the TX DAC output is in the 0V differ-  
ential state. The calibration corrects for any DAC offset.  
However, if the DAC is set to a value other than the 0V  
state, then an offset is erroneously sampled by the  
MAX2820/MAX2821 TX offset calibration. The TX DAC  
output must be put into the 0V differential state at or  
before the time TX_ON is taken high.  
PA Bias DAC Output  
The MAX2820/MAX2821 provide a programmable ana-  
log current source output for use in biasing the RF  
power amplifier, such as the MAX2242. The output is  
essentially an open-drain output of a current source  
DAC. The output is designed to directly connect to the  
bias current pin on the power amplifier. The value of the  
current is determined by the 4 bits programmed into the  
internal register on the MAX2820/MAX2821. This pro-  
grammability permits optimizing of the power amplifier  
idle current based on the output power level of the PA.  
Care must be taken in the layout of this line. Avoid run-  
ning the line in parallel with the RF line. RF might couple  
20 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
onto the line, given the high impedance of the output.  
This might result in rectified RF, altering the value of the  
bias current and causing erratic PA operation.  
Loop Filter  
The PLL uses a classical charge pump into an external  
loop filter (C-RC) in which the filter output connects to  
the voltage tuning input of the VCO. This simple third-  
order lowpass loop filter closes the loop around the  
synthesizer. The Typical Application Circuit shows the  
loop filter elements around the MAX2820/MAX2821.The  
capacitor and resistor values are set to provide the  
loop bandwidth required to achieve the desired lock  
time while also maintaining loop stability. Refer to the  
MAX2820/MAX2821 EV kit schematic for component  
values. A 45kHz loop bandwidth is recommended to  
ensure that the loop settles quickly enough to achieve  
5µs TX turnaround time and 10µs RX turnaround time.  
This is the loop filter on the EV kit. Narrowing the loop  
bandwidth increases the settling time and results in  
unacceptable TX-RX turnaround time performance.  
Synthesizer  
Channel Frequency and Reference Frequency  
The synthesizer/PLL channel frequency and reference  
settings establish the divider/counter settings in the inte-  
ger-N synthesizer of the MAX2820/MAX2821. Both the  
channel frequency and reference oscillator frequency  
are programmable through the serial interface. The  
channel frequency is programmed as a channel num-  
ber 0 to 99 to set the carrier frequency to 2400MHz to  
2499MHz (LO frequency = channel + 2400). The refer-  
ence frequency is programmable to 22MHz or 44MHz.  
These settings are intended to cover only the required  
802.11b channel spacing and the two possible crystal  
oscillator options used in the radios.  
Reference Oscillator Input  
The reference oscillator inputs ROSCP and ROSCN are  
high-impedance analog inputs. They are designed to  
be connected to the reference oscillator output through  
a coupling capacitor. The input amplitude can range  
Chip Information  
TRANSISTOR COUNT: 13,607  
from 200mV  
to 500mV ; therefore, in the case of a  
P-P  
P-P  
reference oscillator with a CMOS output, the signal  
must be attenuated before being applied to the ROSC  
inputs. The signal can be attenuated with a resistor- or  
capacitor-divider network.  
Reference Voltage Output  
A voltage reference output is provided from pin 2,  
VREF, for use with certain baseband ICs. The nominal  
output voltage is 1.2V. The reference voltage is first-  
order compensated over temperature to provide a rea-  
sonably low drift output, 1.1V to 1.3V over temperature,  
under load conditions. The output stage is designed to  
drive 2mA loads with up to 20pF of load capacitance.  
The VREF output is designed to directly connect to the  
baseband reference input.  
______________________________________________________________________________________ 21  
2.4GHz 802.11b Zero-IF Transceivers  
Typical Application Circuit  
DIGITAL MODE CONTROL SIGNALS  
FROM/TO BASEBAND IC  
RX ANALOG OUTPUT SIGNAL  
TO BASEBAND IC  
DIGITAL MODE CONTROL  
SIGNALS TO/FROM BASEBAND IC  
DAC OUTPUT  
FROM BASEBAND IC  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
SHDNB  
VCC_LNA  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PROGRAMMING AND  
MODE CONTROL  
RX LEVEL  
OPTIONAL CONNECTION  
TO BASEBAND  
DETECTOR  
VCC_RXF  
VCC_LO  
VREF  
(MAX2821 ONLY)  
2
RX GAIN-CONTROL SIGNALS  
TO/FROM BASEBAND IC  
RF_GAIN  
3
RX_RFN  
4
VCC_VCO  
BYP  
RX RF INPUT FROM  
SWITCH AND BPF  
RX_RFP  
5
VCC_REF  
6
TUNE  
90  
0
0
GND_VCO  
GND_CP  
CP_OUT  
VCC_CP  
CSB  
RBIAS  
7
MAX2820/  
MAX2821  
INTEGER-N  
SYNTHESIZER  
TX_RFP  
8
90  
TX RF OUTPUT TO  
SWITCH AND BPF  
TX_RFN  
9
LOOP FILTER  
PA_BIAS  
10  
TO PA BIAS INPUT  
VOS COMP  
VCC_DRVR  
11  
SERIAL  
INTERFACE  
SCLK  
TX_GC  
12  
SERIAL INTERFACE  
TO BASEBAND IC  
DAC OUTPUT  
FROM BASEBAND IC  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
REFERENCE  
OSCILLATOR INPUT  
TX ANALOG INPUT SIGNAL  
FROM BASEBAND IC  
22 ______________________________________________________________________________________  
2.4GHz 802.11b Zero-IF Transceivers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
32,44,48L QFN, 7x7x0.90 MM  
1
21-0092  
H
2
PACKAGE OUTLINE,  
32,44,48L QFN, 7x7x0.90 MM  
2
21-0092  
H
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX2820AETM-TD

2.4GHz 802.11b Zero-IF Transceivers
MAXIM

MAX2820EGM-TD

2.4GHz 802.11b Zero-IF Transceivers
MAXIM

MAX2820ETM

Support Circuit
MAXIM

MAX2820ETM+

Support Circuit
MAXIM

MAX2820ETM+T

Support Circuit
MAXIM

MAX2820ETM+TD

2.4GHz 802.11b Zero-IF Transceivers
MAXIM

MAX2820ETM-T

暂无描述
MAXIM

MAX2820ETM-TD

2.4GHz 802.11b Zero-IF Transceivers
MAXIM

MAX2820EVKIT

Evaluation Kits for the MAX2820/MAX2821
MAXIM

MAX2820|MAX2820A|MAX2821|MAX2821A

2.4GHz 802.11b Zero-IF Transceivers
MAXIM

MAX2821

2.4GHz 802.11b Zero-IF Transceivers
MAXIM

MAX2821AETM

Support Circuit
MAXIM