MAX2034CTM-T [MAXIM]

Quad-Channel, Ultra-Low-Noise Amplifier with Digitally Programmable Input Impedance; 四通道,超低噪声放大器,具有数字可编程输入阻抗
MAX2034CTM-T
型号: MAX2034CTM-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Quad-Channel, Ultra-Low-Noise Amplifier with Digitally Programmable Input Impedance
四通道,超低噪声放大器,具有数字可编程输入阻抗

消费电路 商用集成电路 放大器
文件: 总13页 (文件大小:345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3969; Rev 1; 3/07  
Quad-Channel, Ultra-Low-Noise Amplifier with  
Digitally Programmable Input Impedance  
General Description  
Features  
High-Level Integration of 4 Channels  
The MAX2034 four-channel, low-power, ultra-low-noise  
preamplifier is designed for ultrasound and medical  
instrumentation applications. Each low-noise amplifier  
has a single-ended input, differential output, a highly  
accurate 19dB fixed gain, and a wide -3dB bandwidth  
of 70MHz. The high-gain accuracy of the amplifier  
allows for exceptional channel-to-channel gain match-  
ing, which is necessary for high-performance ultra-  
sound-imaging applications. The MAX2034 also  
includes an on-chip programmable input impedance  
feature that allows the device to be compatible with a  
variety of common source impedances ranging from  
50to 1k. The input impedance of each amplifier  
uses a feedback topology for active impedance match-  
ing. The active input impedance matching feature  
achieves an exceptionally low 2.2dB noise figure with a  
source and input impedance of 200.  
Digitally Programmable Input Impedance (R ) of  
50, 100, 200, and 1kΩ  
Integrated Input Clamp  
IN  
Integrated Input-Damping Capacitor  
Ultra-Low 2.2dB Noise Figure at R = R = 200Ω  
S
IN  
70MHz, -3dB Bandwidth  
Low 58mW/Channel Power Dissipation  
HD2 of -68dBc at V = 1V and f = 5MHz for  
OUT  
P-P  
IN  
Exceptional Second Harmonic Imaging  
Performance  
Two-Tone Ultrasound-Specific* IMD3 of -55dBc at  
V
= 1V  
and f = 5MHz for Exceptional  
P-P IN  
OUT  
PW/CW Doppler Performance  
Quick Large-Signal Overload Recovery  
Single +5V Supply Operation  
Sleep Mode  
The MAX2034 has excellent dynamic and linearity per-  
formance characteristics optimized for all ultrasound-  
imaging modalities including second harmonic 2D  
imaging and continuous wave Doppler. The device  
achieves a second harmonic distortion of -68dBc at  
Applications  
Ultrasound Imaging  
V
OUT  
= 1V and f = 5MHz, and an ultrasound-spe-  
P-P IN  
Sonar Signal Amplification  
cific* two-tone third-order intermodulation distortion per-  
formance of -55dBc at V = 1V and f = 5MHz.  
OUT  
P-P  
IN  
The MAX2034 is also optimized for quick overload  
recovery for operation under the large input signal con-  
ditions typically found in ultrasound input-buffer imag-  
ing applications.  
Pin Configuration  
TOP VIEW  
The MAX2034 is available in a 48-pin thin QFN pack-  
age with an exposed paddle. Electrical performance is  
guaranteed over a 0°C to +70°C temperature range.  
35 34 33 32 31 30 29 28 27  
36  
26  
25  
OUT4+  
OUT4-  
GND  
37  
38  
24  
23  
V
CC  
Ordering Information  
22 GND  
21 GND  
GND 39  
GND 40  
TEMP  
PIN-  
PKG  
PART  
20  
V
CC  
V
41  
42  
RANGE  
PACKAGE  
CODE  
CC  
D2  
19 D0  
18 D1  
48 Thin QFN-EP**  
(7mm x 7mm)  
MAX2034CTM+ 0°C to +70°C  
MAX2034CTM 0°C to +70°C  
T4877-4  
T4877-4  
T4877-4  
T4877-4  
MAX2034  
PD 43  
17  
16  
15  
V
CC  
V
CC  
V
44  
45  
46  
47  
48  
CC  
CC  
48 Thin QFN-EP**  
(7mm x 7mm)  
V
GND  
GND  
ZF1  
IN1  
48 Thin QFN-EP**  
(7mm x 7mm)  
14 INB4  
13  
MAX2034CTM+T 0°C to +70°C  
MAX2034CTM-T 0°C to +70°C  
INC4  
48 Thin QFN-EP**  
(7mm x 7mm)  
2
3
4
5
6
7
8
9
10  
1
11  
12  
**EP = Exposed paddle.  
+Denotes lead-free package.  
T = Tape-and-reel package.  
THIN QFN  
*See the Ultrasound-Specific IMD3 Specification in the  
Applications Information section.  
Typical Application Circuit appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Quad-Channel, Ultra-Low-Noise Amplifier with  
Digitally Programmable Input Impedance  
ABSOLUTE MAXIMUM RATINGS  
V
to GND...........................................................-0.3V to +5.5V  
Operating Temperature Range...............................0°C to +70°C  
Junction Temperature......................................................+150°C  
CC  
Any Other Pins to GND...............................-0.3V to (V  
+ 0.3V)  
CC  
IN_ to INB_ ..................................................................-2V to +2V  
INC_ to GND .....................................................-24mA to +24mA  
θ
θ
...................................................................................0.8°C/W  
....................................................................................25°C/W  
JC  
JA  
Continuous Power Dissipation (T = +70°C)  
A
48-Pin TQFN (derated 40mW/°C above +70°C)........3200mW  
Storage Temperature Range.............................-40°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(MAX2034 Typical Application Circuit, V  
= +4.75V to +5.25V, no input signal applied between IN1–IN4 and GND, T = 0°C to +70°C.  
CC  
A
Typical values are at V = +5.0V and T = +25°C, unless otherwise noted.) (Note 1)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Supply Voltage  
V
4.75  
5.0  
5.25  
54.5  
4
V
CC  
Normal mode (PD = 0), no signals applied, see  
I
the Typical Operating Characteristics for I  
as  
46.5  
0.8  
CC  
CC  
Total Supply Current  
mA  
a function of input signal  
I
Sleep mode (PD = 1), V  
= 112mV  
at 5MHz  
CC,PD  
IN_  
P-P  
LOGIC INPUTS (PD, D2, D1, D0)  
Input High Voltage  
V
4.0  
V
V
IH  
Input Low Voltage  
V
1.0  
1
IL  
Input Current with Logic-High  
Input Current with Logic-Low  
I
µA  
µA  
IH  
I
1
IL  
AC ELECTRICAL CHARACTERISTICS  
(MAX2034 Typical Application Circuit, V = +4.75V to +5.25V, source impedance R = 200, PD = 0, D2/D1/D0 = 0/1/0 (R = 200),  
CC  
S
IN  
signal AC-coupled to IN_, INB_ is AC grounded, V  
is the differential output between OUT_+ and OUT_-, f  
= 5MHz, R = 200Ω  
IN_ L  
OUT  
between the differential outputs, C = 20pF from each output to ground, T = 0°C to +70°C. Typical values are at V  
= 5.0V and T =  
A
L
A
CC  
+25°C, unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
53  
MAX UNITS  
D2/D1/D0 = 0/0/0  
D2/D1/D0 = 0/0/1  
D2/D1/D0 = 0/1/0  
D2/D1/D0 = 0/1/1  
105  
206  
870  
Input Resistance  
R
IN  
Typical Input Resistance Variation  
from Nominal Programmed  
1
%
Input Capacitance  
Gain  
C
40  
19  
pF  
dB  
IN  
A
(OUT_+ - OUT_-) / IN_  
= +25oC, R = 20010%  
V
Part-to-Part Gain Variation from  
Nominal  
T
A
0
0.1  
0.5  
dB  
L
-3dB Small-Signal Gain  
Bandwidth  
D2/D1/D0 = 0/0/0, (50input impedance),  
= 0.2V  
f
70  
MHz  
V/µs  
-3dB  
V
OUT  
P-P  
Slew Rate  
280  
2
_______________________________________________________________________________________  
Quad-Channel, Ultra-Low-Noise Amplifier with  
Digitally Programmable Input Impedance  
AC ELECTRICAL CHARACTERISTICS (continued)  
(MAX2034 Typical Application Circuit, V = +4.75V to +5.25V, source impedance R = 200, PD = 0, D2/D1/D0 = 0/1/0 (R = 200),  
CC  
S
IN  
signal AC-coupled to IN_, INB_ is AC grounded, V  
is the differential output between OUT_+ and OUT_-, f  
= 5MHz, R = 200Ω  
IN_ L  
OUT  
between the differential outputs, C = 20pF from each output to ground, T = 0°C to +70°C. Typical values are at V  
= 5.0V and T =  
A
L
A
CC  
+25°C, unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
4.1  
2.9  
2.2  
1.4  
0.87  
2.1  
-68  
-66  
-50  
-44  
MAX UNITS  
R = R = 50Ω  
S
IN  
R = R = 100Ω  
S
IN  
Noise Figure  
NF  
dB  
R = R = 200Ω  
S
IN  
R = R = 1000Ω  
S
IN  
Input-Referred Noise Voltage  
Input-Referred Noise Current  
D2 = 1 (high input impedance), f  
D2 = 1 (high input impedance), f  
= 5MHz  
= 5MHz  
nV/Hz  
pA/Hz  
IN_  
IN_  
f
f
f
f
= 5MHz, V  
= 1V  
differential  
-50  
-45  
IN_  
IN_  
IN_  
IN_  
OUT  
P-P  
Second Harmonic  
Third Harmonic  
HD2  
HD3  
dBc  
dBc  
= 10MHz, V  
= 1V  
differential  
OUT  
P-P  
= 5MHz, V  
= 1V  
differential  
differential  
OUT  
P-P  
= 10MHz, V  
= 1V  
P-P  
OUT  
4.99MHz tone relative to the second tone at  
5.01MHz, which is 25dB lower than the first tone  
-55  
-52  
at 5.00MHz, V  
= 1V  
differential  
P-P  
OUT  
Two-Tone Intermodulation  
Distortion (Note 2)  
IMD3  
dBc  
7.49MHz tone relative to the second tone at  
7.51MHz, which is 25dB lower than the first tone  
at 7.50MHz, V  
= 1V  
differential  
P-P  
OUT  
Maximum Output Signal  
Amplitude  
Differential output  
Gain at V = 112mV  
4.4  
0.5  
V
P-P  
relative to gain at  
P-P  
IN_  
Gain Compression  
3
dB  
V
= 550mV  
P-P  
IN_  
Output Common-Mode Level  
Output Impedance  
2.45  
5.3  
V
Single-ended  
Phase difference between channels with V  
Phase Matching Between  
Channels  
=
IN_  
1.5  
66  
deg  
dB  
195mV peak (-3dB full scale), f  
= 10MHz  
IN_  
Channel-to-Channel Crosstalk  
f
= 10MHz, V  
= 1V adjacent channels  
P-P,  
50  
IN_  
OUT  
Switch Time from Normal to Sleep  
Mode  
Supply current settles to 90% of nominal sleep-  
mode current I  
0.3  
ms  
CC,PD  
Switch Time from Sleep to Normal  
Mode  
V
settles to 90% of final 1V  
output  
0.3  
ms  
OUT  
P-P  
Note 1: Min and max limits at T = +25°C and +70°C are guaranteed by design, characterization, and/or production test.  
A
Note 2: See the Ultrasound-Specific IMD3 Specification in the Applications Information section.  
_______________________________________________________________________________________  
3
Quad-Channel, Ultra-Low-Noise Amplifier with  
Digitally Programmable Input Impedance  
Typical Operating Characteristics  
(MAX2034 Typical Application Circuit, V = +4.75V to +5.25V, source impedance R = 200, PD = 0, D2/D1/D0 = 0/1/0 (R = 200),  
CC  
S
IN  
signal AC-coupled to IN_, INB_ is AC grounded, V  
is the differential output between OUT_+ and OUT_-, f  
= 5MHz, R = 200Ω  
IN_ L  
OUT  
between the differential outputs, C = 20pF from each output to ground, T = 0°C to +70°C, unless otherwise specified.)  
L
A
SMALL-SIGNAL BANDWIDTH  
vs. FREQUENCY  
SMALL-SIGNAL BANDWIDTH  
vs. FREQUENCY  
LARGE-SIGNAL BANDWIDTH  
vs. FREQUENCY  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
25  
20  
15  
10  
5
V
= 112mV  
,
V
R
= 112mV  
V
IN  
= 500mV  
,
IN_  
P-P  
IN  
P-P  
IN_  
P-P  
R
IN  
= 200  
= 50Ω  
R = 200Ω  
IN  
0
0
0
-5  
-5  
-5  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
COMPLEX INPUT IMPEDANCE MAGNITUDE  
vs. FREQUENCY  
LARGE-SIGNAL BANDWIDTH  
vs. FREQUENCY  
COMPLEX INPUT IMPEDANCE MAGNITUDE  
vs. FREQUENCY  
140  
130  
120  
110  
100  
90  
25  
20  
15  
10  
5
70  
D2/D1/D0 = 0/0/1  
D2/D1/D0 = 0/0/0  
IN  
V
= 500mV  
= 50Ω  
IN  
P-P  
R
IN  
= 100Ω  
R
= 50Ω  
R
IN  
65  
60  
55  
50  
45  
40  
35  
30  
80  
0
70  
60  
-5  
0
5
10  
15  
20  
25  
30  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
COMPLEX INPUT IMPEDANCE MAGNITUDE  
vs. FREQUENCY  
COMPLEX INPUT IMPEDANCE MAGNITUDE  
vs. FREQUENCY  
HARMONIC DISTORTION  
vs. FREQUENCY  
1150  
275  
250  
225  
200  
175  
150  
125  
100  
D2/D1/D0 = 0/1/1  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
R
L
= 1V DIFFERENTIAL  
P-P  
= 200Ω  
D2/D1/D0 = 0/1/0  
OUT  
R
IN  
= 1kΩ  
1000  
850  
700  
550  
400  
250  
100  
R
IN  
= 200Ω  
THIRD HARMONIC  
SECOND HARMONIC  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
4
_______________________________________________________________________________________  
Quad-Channel, Ultra-Low-Noise Amplifier with  
Digitally Programmable Input Impedance  
Typical Operating Characteristics (continued)  
(MAX2034 Typical Application Circuit, V = +4.75V to +5.25V, source impedance R = 200, PD = 0, D2/D1/D0 = 0/1/0 (R = 200),  
CC  
S
IN  
signal AC-coupled to IN_, INB_ is AC grounded, V  
is the differential output between OUT_+ and OUT_-, f  
= 5MHz, R = 200Ω  
IN_ L  
OUT  
between the differential outputs, C = 20pF from each output to ground, T = 0°C to +70°C, unless otherwise specified.)  
L
A
TWO-TONE ULTRASOUND-SPECIFIC IMD3  
vs. FREQUENCY  
LARGE-SIGNAL NOISE FIGURE  
vs. OFFSET FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
6
5
4
3
2
1
0
V
R
L
= 1V DIFFERENTIAL  
P-P  
OUT  
= 200Ω  
R
= 200Ω  
= 200Ω  
= 5MHz  
IN  
R
L
IN_  
f
V
= 300mV  
P-P  
IN  
V
= 200mV  
P-P  
IN  
V
IN  
= 112mV  
P-P  
SMALL-SIGNAL  
NOISE FIGURE  
0
5
10  
15  
20  
25  
30  
0.1  
1
10  
100  
FREQUENCY (MHz)  
OFFSET FREQUENCY (kHz)  
CHANNEL-TO-CHANNEL CROSSTALK  
vs. FREQUENCY  
GAIN-ERROR HISTOGRAM  
SAMPLE SIZE = 243 UNITS  
-30  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 1V DIFFERENTIAL  
P-P  
OUT  
R = 200Ω  
L
f
= 5MHz, V = 112mV  
IN_  
IN  
P-P  
-40  
-50  
-60  
-70  
-80  
ADJACENT CHANNELS  
-90  
-100  
0
1
10  
100  
FREQUENCY (MHz)  
GAIN ERROR (dB)  
SUPPLY CURRENT  
vs. DIFFERENTIAL OUTPUT VOLTAGE  
LARGE-SIGNAL RECOVERY  
MAX2034 toc15  
130  
110  
90  
ALL CHANNELS ACTIVE  
f
= 5MHz  
IN_  
INPUT IN_  
500mV/div  
R
= 200Ω  
L
DIFFERENTIAL  
OUTPUT  
70  
OUT_+ - OUT_-  
2.0V/div  
NO LOAD  
50  
30  
0
1
2
3
4
400ns/div  
DIFFERENTIAL OUTPUT VOLTAGE (V  
)
P-P  
_______________________________________________________________________________________  
5
Quad-Channel, Ultra-Low-Noise Amplifier with  
Digitally Programmable Input Impedance  
Typical Operating Characteristics (continued)  
(MAX2034 Typical Application Circuit, V = +4.75V to +5.25V, source impedance R = 200, PD = 0, D2/D1/D0 = 0/1/0 (R = 200),  
CC  
S
IN  
signal AC-coupled to IN_, INB_ is AC grounded, V  
is the differential output between OUT_+ and OUT_-, f  
= 5MHz, R = 200Ω  
IN_ L  
OUT  
between the differential outputs, C = 20pF from each output to ground, T = 0°C to +70°C, unless otherwise specified.)  
L
A
CLAMP SYMMETRY UNDER  
TRANSMIT RECOVERY  
LARGE-SIGNAL RECOVERY  
MAX2034 toc17  
MAX2034 toc16  
f
= 5MHz  
IN_  
f
= 10MHz  
IN_  
SINGLE-ENDED  
OUTPUT OUT_+  
1V/div  
INPUT IN_  
500mV/div  
DIFFERENTIAL  
OUTPUT  
OUT_+ - OUT_-  
2.0V/div  
SINGLE-ENDED  
OUTPUT OUT_-  
1V/div  
200ns/div  
400ns/div  
Pin Description  
PIN  
1
NAME  
INC1  
INB1  
ZF2  
FUNCTION  
Channel 1 Analog Input Clamp. Input port to the integrated clamping diodes.  
2
Channel 1 Analog Bypass Input. Connect a capacitor to GND as close as possible to the pin.  
Channel 2 Active Impedance-Matching Port. AC-couple to the source circuit with a capacitor.  
3
Channel 2 LNA Analog Input. Single-ended input for channel 2 amplifier. Connect the analog input to  
the source circuit through a series capacitor.  
4
IN2  
5
6
7
INC2  
INB2  
ZF3  
Channel 2 Analog Input Clamp. Input port to the integrated clamping diodes.  
Channel 2 Analog Bypass Input. Connect a capacitor to GND as close as possible to the pin.  
Channel 3 Active Impedance-Matching Port. AC-couple to the source circuit with a capacitor.  
Channel 3 LNA Analog Input. Single-ended input for channel 3 amplifier. Connect the analog input to  
the source circuit through a series capacitor.  
8
IN3  
9
INC3  
INB3  
ZF4  
Channel 3 Analog Input Clamp. Input port to the integrated clamping diodes.  
10  
11  
Channel 3 Analog Bypass Input. Connect a capacitor to GND as close as possible to the pin.  
Channel 4 Active Impedance-Matching Port. AC-couple to the source circuit with a capacitor.  
Channel 4 LNA Analog Input. Single-ended input for channel 4 amplifier. Connect the analog input to  
the source circuit through a series capacitor.  
12  
IN4  
13  
14  
INC4  
INB4  
Channel 4 Analog Input Clamp. Input port to the integrated clamping diodes.  
Channel 4 Analog Bypass Input. Connect a capacitor to GND as close as possible to the pin.  
15, 21, 22, 25,  
26, 33, 37, 39,  
40, 46  
GND  
Ground  
16, 17, 20, 27,  
30, 34, 38, 41,  
44, 45  
5V Power Supply. Supply for the four LNAs. Bypass each V  
close as possible to the pin.  
supply with a 100nF capacitor as  
CC  
V
CC  
6
_______________________________________________________________________________________  
Quad-Channel, Ultra-Low-Noise Amplifier with  
Digitally Programmable Input Impedance  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Digitally Programmable Inputs. Programs the input impedance of each amplifier. See Table 1 on  
input impedance programming information.  
18, 19, 42  
D1, D0, D2  
23  
24  
28  
29  
31  
32  
35  
36  
43  
47  
OUT4-  
OUT4+  
OUT3-  
OUT3+  
OUT2-  
OUT2+  
OUT1-  
OUT1+  
PD  
Channel 4 LNA Analog Inverting Output  
Channel 4 LNA Analog Noninverting Output  
Channel 3 LNA Analog Inverting Output  
Channel 3 LNA Analog Noninverting Output  
Channel 2 LNA Analog Inverting Output  
Channel 2 LNA Analog Noninverting Output  
Channel 1 LNA Analog Inverting Output  
Channel 1 LNA Analog Noninverting Output  
Power-Down. Drive PD high to put the device in sleep mode. Drive PD low for normal mode.  
Channel 1 Active Impedance-Matching Port. AC-couple to the source circuit with a capacitor.  
ZF1  
Channel 1 LNA Analog Input. Single-ended input for channel 1 amplifier. Connect the analog input to  
the source circuit through a series capacitor.  
48  
EP  
IN1  
GND  
Exposed Paddle. Solder the exposed paddle to the ground plane using multiple vias.  
amplifier, A, being defined with a differential output. For  
Detailed Description  
common input impedances, the internal digitally pro-  
grammed impedances can be used (see Table 1). For  
other input impedances, program the impedance for  
external resistor operation, and then use an externally  
supplied resistor to set the input impedance according  
to the above formula.  
The MAX2034 is a four-channel, ultra-low-noise pream-  
plifier. Each amplifier features single-ended inputs, dif-  
ferential outputs, and provides an accurate fixed gain of  
19dB with a wide -3dB bandwidth of 70MHz. The high-  
gain accuracy of the amplifier allows for exceptional  
channel-to-channel gain matching, which is necessary  
for high-performance ultrasound-imaging applications.  
The device has an exceptionally low noise figure, making  
it ideal for use in ultrasound front-end designs. Noise fig-  
ure is typically 2.2dB for a source impedance and pro-  
grammed input impedance of 200.  
The gain and input impedance of the MAX2034 vs. fre-  
quency are shown in the Typical Operating Char-  
acteristics. Both gain and input impedance are well  
behaved, with no peaking characteristics. This allows  
the device to be used with a variety of input networks,  
with no requirement for series ferrite beads or shunt  
capacitors for stability control.  
The MAX2034 is optimized for excellent dynamic range  
and linearity performance characteristics, making it ideal  
for ultrasound-imaging modalities including second har-  
monic 2D imaging and continuous wave Doppler. The  
Table 1. Digitally Programmable Input  
Impedance  
device achieves an HD2 of -68dBc at V  
= 1V  
and  
OUT  
P-P  
f
= 5MHz, and an ultrasound-specific two-tone IMD3  
IN_  
performance of -55dBc at V  
= 1V  
and f  
=
IN_  
OUT  
P-P  
D2  
0
D1  
0
D0  
0
R
()  
IN  
5MHz. See the Ultrasound-Specific IMD3 Specification in  
the Applications Information section.  
50  
0
0
1
100  
200  
1k  
Active Impedance Matching  
To provide exceptional noise-figure characteristics, the  
input impedance of each amplifier uses a feedback  
topology for active impedance matching. A feedback  
0
1
0
0
1
1
1
0
0
resistor of the value (1 + (A / 2)) x R is added between  
S
1
0
1
the inverting output of the amplifier to the input. The  
Defined by external resistor  
1
1
0
input impedance is the feedback resistor, Z , divided  
F
by 1 + (A / 2). The factor of two is due to the gain of the  
1
1
1
_______________________________________________________________________________________  
7
Quad-Channel, Ultra-Low-Noise Amplifier with  
Digitally Programmable Input Impedance  
Digitally Programmable Input Impedance  
Functional Diagram  
The MAX2034 features an on-chip digitally programma-  
ble input impedance, which makes the part compatible  
D2/D1/D0  
with a variety of source impedances ranging from 50Ω  
to 1k. The input impedance can be programmed for  
PD  
50, 100, 200, or 1kthrough the digital inputs D2,  
D1, and D0. See Table 1 for programming details. In  
addition to these fixed values, virtually any other input  
ZF1  
impedance can be supported by using an off-chip  
external feedback resistor, R . To utilize this feature, set  
F
D2, D1, and D0 to any of the four external resistor-con-  
trolled states shown in Table 1. The value of the off-chip  
feedback resistor can be determined by using the fol-  
lowing relationship:  
IN1  
OUT1-  
OUT1+  
INC1  
R = (1 + (A / 2)) x R  
F
S
MAX2034  
INB1  
where R is the source impedance, and A is the gain of  
S
the amplifier (A = 9) defined with a differential output.  
Noise Figure  
The MAX2034 is designed to provide maximum input  
sensitivity with its exceptionally low noise figure. The  
input active devices are selected for very low equiva-  
lent input noise voltage and current, and they have  
been optimized for source impedances from 50to  
1000. Additionally, the noise contribution of the  
matching resistor is effectively divided by 1 + (A / 2).  
Using this scheme, typical noise figure of the amplifier  
ZF2  
IN2  
OUT2-  
OUT2+  
INC2  
INB2  
is approximately 2.2dB for R = R = 200. Table 2  
IN  
S
illustrates the noise figure for other input impedances.  
Table 2. Noise Figure vs. Source and  
Input Impedances  
ZF3  
Rs ()  
50  
R
()  
NF (dB)  
4.1  
IN  
50  
IN3  
OUT3-  
OUT3+  
INC3  
100  
100  
200  
2.9  
200  
2.2  
1000  
1000  
1.4  
INB3  
Input Clamp  
The MAX2034 includes configurable integrated input-  
clamping diodes. The diodes are clamped to ground at  
275mV. The input-clamping diodes can be used to  
prevent large transmit signals from overdriving the inputs  
of the amplifiers. Overdriving the inputs could possibly  
place charge on the input-coupling capacitor, causing  
longer transmit overload recovery times. Input signals  
are AC-coupled to the single-ended inputs IN1–IN4, but  
are clamped with the INC1–INC4 inputs. See the Typical  
Application Circuit. If external clamping devices are pre-  
ferred, simply leave INC1–INC4 unconnected.  
ZF4  
IN4  
OUT4-  
OUT4+  
INC4  
INB4  
8
_______________________________________________________________________________________  
Quad-Channel, Ultra-Low-Noise Amplifier with  
Digitally Programmable Input Impedance  
The Typical Application Circuit illustrates these cou-  
pling capacitors. If a ground-referenced current-limiting  
stage precedes the MAX2034 inputs, its output can be  
connected to the integrated clamping diodes on pins  
INC1–INC4 to facilitate very rapid recovery from tran-  
sient overloads associated with transmitter operation in  
ultrasound applications.  
Integrated Input Damping Capacitor  
At high frequencies, gain peaking can occur due to an  
active input termination becoming less effective when  
the gain rolls off. Although an external shunting capaci-  
tor can be used to mitigate this effect, different input  
impedance modes require different capacitor values.  
The MAX2034 integrates a damping capacitor for each  
of the four programmed input impedance modes. When  
the input impedance is programmed by applying the  
appropriate D2/D1/D0, an optimal capacitor value is  
also chosen for the particular input impedance mode,  
eliminating the need for external capacitors.  
Analog Output Coupling  
The differential outputs of the MAX2034 are capable of  
driving a differential load impedance of 200or  
greater. The differential output has a common-mode  
bias of approximately 2.45V. AC-couple these differen-  
tial outputs if the next stage has a different common-  
mode input range.  
Overload Recovery  
The device is also optimized for quick overload recov-  
ery for operation under the large input signal conditions  
that are typically found in ultrasound input-buffer imag-  
ing applications. Internal signal clipping is symmetrical.  
Input overloads can be prevented with the input-clamp-  
ing diodes. See the Typical Operating Characteristics  
that illustrate the rapid recovery time from a transmit-  
related overload.  
Board Layout  
The pin configuration of the MAX2034 is optimized to  
facilitate a very compact physical layout of the device  
and its associated discrete components. A typical  
application for this device might incorporate several  
devices in close proximity to handle multiple channels  
of signal processing.  
Sleep Mode  
The sleep mode function allows the MAX2034 to be  
configured in a low-power state when the amplifiers are  
not being used. In sleep mode, all amplifiers are pow-  
ered down, the total supply current of the device  
reduces to 0.8mA, and the input impedance of each  
amplifier is set at high impedance. Drive the PD input  
high to activate sleep mode. For normal operation,  
drive the PD input low.  
The exposed paddle (EP) of the MAX2034’s thin QFN-  
EP package provides a low thermal-resistance path to  
the die. It is important that the PC board on which the  
MAX2034 is mounted be designed to conduct heat  
from the EP. In addition, provide the EP with a low-  
inductance path to electrical ground. The EP MUST be  
soldered to a ground plane on the PC board, either  
directly or through an array of plated via holes.  
Applications Information  
Analog Input Coupling  
AC-couple to ground the analog bypass input by con-  
necting a 0.1µF capacitor at the INB1–INB4 input to  
GND (0.1µF recommended). Since the amplifiers are  
designed with a differential input stage, bypassing the  
INB1–INB4 inputs configures the MAX2034 for single-  
ended inputs at IN1–IN4.  
-25dB  
ULTRASOUND IMD3  
Connect the IN1–IN4 inputs to their source circuits  
through 0.1µF series capacitors. Connect the feedback  
ports ZF1–ZF4 to the source circuits through 0.018µF  
capacitors. (These capacitors will be 1/(5.5) as large as  
the input-coupling capacitors. This equalizes the high-  
pass filter characteristic of both the input and feedback  
input ports, due to the feedback resistance related by a  
factor of 1/(5.5) to the input impedance.)  
Note that the active input circuitry of the MAX2034 is  
stable, and does not require external ferrite beads or  
shunt capacitors to achieve high-frequency stability.  
F1 - (F2 - F1)  
F1  
F2  
F2 + (F2 - F1)  
Figure 1. Ultrasound IMD3 Measurement Technique  
_______________________________________________________________________________________  
9
Quad-Channel, Ultra-Low-Noise Amplifier with  
Digitally Programmable Input Impedance  
D2/D1/D0  
PD  
+V  
ZF_  
18nF  
100nF  
100nF  
100nF  
IN_  
OUT_-  
OUT_+  
INC_  
ONE CHANNEL  
INB_  
MAX2034  
-V  
100nF  
Figure 2. Typical Single-Channel Ultrasound Application Circuit  
Ultrasound-Specific IMD3 Specification  
Unlike typical communications specs, the two input  
tones are not equal in magnitude for the ultrasound-  
specific IMD3 two-tone specification. In this measure-  
ment, F1 represents reflections from tissue and F2  
represents reflections from blood. The latter reflections  
are typically 25dB lower in magnitude, and hence the  
measurement is defined with one input tone 25dB lower  
than the other. The IMD3 product of interest (F1 - (F2 -  
F1)) presents itself as an undesired Doppler error sig-  
nal in ultrasound applications. See Figure 1.  
10 ______________________________________________________________________________________  
Quad-Channel, Ultra-Low-Noise Amplifier with  
Digitally Programmable Input Impedance  
Typical 200Application Circuit  
+5V  
100nF  
100nF  
18nF  
100nF  
47 46 45 44 43 42 41 40 39  
37  
48  
38  
INC1  
100nF  
100nF  
OUT1+  
OUT1-  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
R
= 200  
S
INB1  
ZF2  
V
CC  
100nF  
100nF  
3
GND  
IN2  
18nF  
100nF  
100nF  
4
100nF  
OUT2+  
OUT2-  
100nF  
100nF  
INC2  
INB2  
ZF3  
5
R
= 200Ω  
S
6
V
CC  
MAX2034  
7
IN3  
18nF  
100nF  
100nF  
OUT3+  
OUT3-  
8
100nF  
INC3  
9
EXPOSED PADDLE  
R
= 200Ω  
S
V
CC  
INB3  
ZF4  
IN4  
10  
11  
12  
GND  
GND  
100nF  
100nF  
18nF  
100nF  
14 15 16 17 18 19 20 21 22  
24  
13  
23  
R
= 200Ω  
S
100nF  
100nF  
100nF  
100nF  
100nF  
+5V  
+5V  
______________________________________________________________________________________ 11  
Quad-Channel, Ultra-Low-Noise Amplifier with  
Digitally Programmable Input Impedance  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
E
DETAIL A  
(NE-1) X  
e
E/2  
k
e
D/2  
C
(ND-1) X  
e
D2  
D
L
D2/2  
b
L
E2/2  
C
L
k
DETAIL B  
E2  
e
C
C
L
L
L
L1  
L
L
e
e
A
A1  
A2  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
1
21-0144  
E
2
12 ______________________________________________________________________________________  
Quad-Channel, Ultra-Low-Noise Amplifier with  
Digitally Programmable Input Impedance  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
2
21-0144  
E
2
Revision History  
Pages changed at Rev 1: 1, 3, 4, 11, 12  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
Springer  

相关型号:

MAX2035

Ultrasound Variable-Gain Amplifier
MAXIM

MAX20353

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li Systems
MAXIM

MAX20353AEWN+

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li Systems
MAXIM

MAX20353AEWN+T

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li Systems
MAXIM

MAX20353BEWN+

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li Systems
MAXIM

MAX20353BEWN+T

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li Systems
MAXIM

MAX20353CEWN+

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li Systems
MAXIM

MAX20353CEWN+T

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li Systems
MAXIM

MAX20353EVKIT

Fully Assembled and Tested
MAXIM

MAX2035CCQ

Audio Amplifier, 8 Channel(s), 1 Func, PQFP100, 14 X 14 MM, 1 MM HEIGHT, MS-026, TQFP-100
MAXIM

MAX2035CCQ+

Audio Amplifier, 8 Channel(s), 1 Func, PQFP100, 14 X 14 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026, TQFP-100
MAXIM

MAX2035CCQ+D

Ultrasound Variable-Gain Amplifier
MAXIM