MAX15569GTG+ [MAXIM]

Switching Controller, Current-mode, 1400kHz Switching Freq-Max, BICMOS, TQFN-24;
MAX15569GTG+
型号: MAX15569GTG+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Controller, Current-mode, 1400kHz Switching Freq-Max, BICMOS, TQFN-24

信息通信管理 开关
文件: 总39页 (文件大小:905K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller  
2
with Serial I C Interface  
General Description  
Benefits and Features  
●ꢀ MultiphaseꢀControllerꢀMaximizesꢀProcessorꢀ  
The MAX15569 step-down controller consists of one  
multiphase regulator. The multiphase CPU regulator uses  
Maxim’s unique 2-phase QuickTune-PWM constant “on-  
time” architecture. The 2-phase CPU regulator runs 180°  
out-of-phase for true interleaved operation, minimizing  
input capacitance.  
Performance  
• 2-Phase QuickTune-PWM CPU Core Regulator  
• Output-Voltage Control  
• Active Load-Line Amplifier with Adjustable Gain  
• ±5mV FB Accuracy Over Line and Load  
• Programmable Slew Rate and Soft-Start  
• Accurate Current Balance and Current Limit  
•ꢀ TrueꢀDifferentialꢀRemoteꢀOutputꢀSense  
•ꢀ 8-BitꢀADCꢀDigitizesꢀCurrentꢀSenseꢀtoꢀStoreꢀinꢀ  
Current Monitor Register  
The device’s VR is controlled by writing appropriate  
data into a function-mapped register file. Output volt-  
ages are dynamically changed through a 2-wire, fast I C  
2
interface (clock, data), allowing the switching regula-  
tor to be programmed to different voltages. A slew-  
rate controller allows controlled voltage transition and  
controlled soft-start. The regulator runs in a unique  
smart, low-power pulse-skipping-state algorithm for  
best efficiency over the full load range and the best  
transient response with respect to common pulse-  
skipping methods.  
●ꢀ TransientꢀPhaseꢀOverlapꢀReducesꢀOutputꢀ  
Capacitance  
●ꢀ ProgrammableꢀFunctionalityꢀAllowsꢀOptimizedꢀDesignꢀ  
Performance  
• Programmable 300kHz to 1400kHz Switching  
Frequency  
•ꢀ ProgrammableꢀSoft-Shutdownꢀ(2kΩꢀDischargeꢀꢀ  
The device includes multiple fault-protection features:  
Output overvoltage protection (OVP), undervoltage pro-  
tection (UVP), and thermal protection. When any of these  
fault-protection features detect a fault condition, the con-  
troller shuts down. A multifunction INT output monitors  
output voltage, overcurrent (OC), overrange (VOUTMAX),  
and thermal faults (VRHOT).  
Switch)  
2
• I C Serial-Interface Control  
●ꢀ RobustꢀProtectionꢀforꢀReliableꢀOperation  
• Overcurrent, Output-Voltage Overrange,  
Overvoltage, Undervoltage, and Thermal-Fault  
Protection  
• System Status Register  
The controller has a programmable switching frequency,  
allowing 300kHz to 1400kHz per each phase of opera-  
tion. The controller operates with a wide variety of drivers  
and MOSFETs, such as the MAX15492 MOSFET driver  
with standard MOSFETs, or with the power stage that  
integrates the drivers and MOSFETs together in a single  
device.  
• Multifunction INT Output  
• 4.5V to 24V Battery Input Range  
Applications  
●ꢀ ARMꢀCoreꢀPowerꢀSupply  
Ordering Information appears at end of data sheet.  
●ꢀ Ultrabook™ꢀandꢀTabletꢀCoreꢀSupplies  
●ꢀ Voltage-PositionedꢀStep-DownꢀConverter  
●ꢀ MultiphaseꢀDC-DCꢀControllers  
Ultrabook is a trademark of Intel Corporation.  
19-6646; Rev 1; 2/15  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Absolute Maximum Ratings  
V
ꢀtoꢀAGND........................................ -0.3V to (V  
+ 0.3V)  
PGNDꢀtoꢀAGND....................................................-0.3V to +0.3V  
TONꢀtoꢀAGND........................................................-0.3V to +26V  
TT  
BIAS  
BIASꢀtoꢀAGND.........................................................-0.3V to +6V  
EN,ꢀSCL,ꢀSDAꢀtoꢀAGND..........................................-0.3V to +6V  
CSP1,ꢀCSN1,ꢀCSP2,ꢀCSN2ꢀtoꢀAGND.....................-0.3V to +6V  
FB,ꢀFBAC,ꢀIMONꢀtoꢀAGND ....................-0.3V to (V  
DRVPWM1,ꢀDRVPWM2ꢀtoꢀPGND .........-0.3V to (V  
DRVSKPꢀtoꢀPGND .................................-0.3V to (V  
INT,ꢀTHERMꢀtoꢀAGND............................................-0.3V to +6V  
ICꢀtoꢀAGND..............................................................-0.3V to +6V  
GNDSꢀtoꢀAGND....................................................-0.3V to +0.3V  
ContinuousꢀPowerꢀDissipationꢀ(T = +70°C)  
A
TQFN (derate 27.8mW above +70°C).............................2.2W  
Operating Temperature Range......................... -40°C to +105°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +165°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
BIAS  
BIAS  
BIAS  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 1)  
Package Thermal Characteristics  
TQFN  
Junction-to-AmbientꢀThermalꢀResistanceꢀ(θ ) ..........36°C/W  
JA  
Junction-to-CaseꢀThermalꢀResistanceꢀ(θ )……..........3°C/W  
JC  
Note 1:ꢀ PackageꢀthermalꢀresistancesꢀwereꢀobtainedꢀusingꢀtheꢀmethodꢀdescribedꢀinꢀJEDECꢀspecificationꢀJESD51-7,ꢀusingꢀaꢀfour-layerꢀ  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics (0°C to +85°C)  
(Circuit of Figure 1. V = 10V, V  
= 5V, V ꢀ=ꢀ1.8V,ꢀENꢀ=ꢀBIAS,ꢀGNDSꢀ=ꢀAGND,ꢀV  
= V = V  
= V  
= 1V [SETVOUT  
IN  
BIAS  
TT  
FBAC  
FB  
CSP_  
CSN_  
register 0x07h set to 0x33h]. T = 0°C to +85°C, unless otherwise noted. Typical values are at +25°C. All devices 100% tested at  
A
+25°C. Limits over temperature are guaranteed by design.)  
PARAMETER  
BIAS CURRENTS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BIAS Voltage Range  
V
4.75  
1.6  
5.25  
4.0  
V
V
BIAS  
2
I C Interface Supply (V  
)
V
TT  
TT  
Skip mode, measured at BIAS,  
Quiescent Supply Current  
(BIAS)  
I
V
= 1.8V; FB forced above the regulation  
2
5
mA  
BIAS  
TT  
point, EN = BIAS  
Shutdown Supply Current  
(BIAS)  
MeasuredꢀatꢀBIAS,ꢀENꢀ=ꢀGND,  
6
µA  
µA  
V
ꢀ=ꢀ1.8VꢀorꢀGND,ꢀT = +25°C  
A
TT  
V
V
= high, EN = low, T = +25°C  
3
BIAS  
A
V
BIAS Current  
I
VTT  
TT  
= high, EN = high, T = +25°C  
50  
BIAS  
A
PWM CONTROLLER  
T
= +25°C; measured at  
A
DCꢀOutputꢀVoltageꢀAccuracyꢀ  
(Note 2)  
FB,ꢀwithꢀrespectꢀtoꢀGNDS;ꢀ DACꢀcodesꢀfromꢀ  
-5  
+5  
mV  
mV  
includes load regulation  
error  
0.50V to 1.60V  
DACꢀcodesꢀfromꢀ  
0.50V to 1.40V  
-8  
+8  
Measured at FB, with  
respectꢀtoꢀGNDS;ꢀincludesꢀ  
load regulation error  
DCꢀOutputꢀVoltageꢀAccuracyꢀ  
(Note 2)  
DACꢀcodesꢀfromꢀ  
1.40V to 1.60V  
-0.7  
+0.7  
%
Line Regulation Error  
V
= 4.75V to 5.25V, V = 5.5V to 20V  
0.1  
mV  
BIAS  
IN  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Electrical Characteristics (0°C to +85°C) (continued)  
(Circuit of Figure 1. V = 10V, V  
= 5V, V ꢀ=ꢀ1.8V,ꢀENꢀ=ꢀBIAS,ꢀGNDSꢀ=ꢀAGND,ꢀV  
= V = V  
= V  
= 1V [SETVOUT  
IN  
BIAS  
TT  
FBAC  
FB  
CSP_  
CSN_  
register 0x07h set to 0x33h]. T = 0°C to +85°C, unless otherwise noted. Typical values are at +25°C. All devices 100% tested at  
A
+25°C. Limits over temperature are guaranteed by design.)  
PARAMETER  
GNDSꢀInputꢀRange  
SYMBOL  
CONDITIONS  
MIN  
-200  
0.97  
-0.5  
TYP  
MAX  
+200  
1.03  
+0.5  
UNITS  
mV  
GNDSꢀGain  
A
1.00  
V/V  
GNDS  
GNDSꢀInputꢀBIASꢀCurrent  
I
T
= +25°C  
µA  
GNDS  
A
ENꢀ=ꢀAGND,ꢀV = 24V,  
IN  
TON Shutdown Current  
0.01  
71  
0.1  
82  
µA  
ns  
V
= 0V or 5V, T = +25°C  
A
BIAS  
MeasuredꢀatꢀDRVPWM_,ꢀ  
ꢀ=ꢀ136.3kΩꢀ(1400kHz)  
60  
92  
R
TON  
DRVPWM_ꢀOn-Time  
(Note 3)  
MeasuredꢀatꢀDRVPWM_,ꢀ  
R ꢀ=ꢀ200kΩꢀ(1000kHz)  
TON  
t
104  
114  
ON  
MeasuredꢀatꢀDRVPWM_,ꢀ  
ꢀ=ꢀ326.7kΩꢀ(600kHz)  
141  
166  
100  
192  
133  
R
TON  
Minimum Off-Time (Note 3)  
t
MeasuredꢀatꢀDRVPWM_  
ns  
%
OFF(MIN)  
Slew rate = 3.5mV/µs , 4.5mV/µs, 5.5mV/µs,  
7mV/µs, 9mV/µs, 11mV/µs, 14mV/µs,  
18mV/µs, 22mV/µs, 28mV/µs, 36mV/µs,  
44mV/µs (nominal)  
Slew-Rate Accuracy (see Table  
8 for Soft-Start and Regular  
Slew-Rate Combinations)  
-20  
FAULT PROTECTION  
Upper INT and Output  
Overvoltage-Protection Trip  
Threshold  
V
Soft-start completed, measured at FB  
FB forced 25mV above trip threshold  
1.78  
1.83  
5
1.88  
V
OVP  
Upper INT and Output  
OvervoltageꢀPropagationꢀDelay  
t
µs  
OVP  
Lower INT and Output  
Undervoltage-Protection Trip  
Threshold  
Measured at FB, with respect to unloaded  
output voltage  
V
-300  
100  
-250  
-200  
350  
mV  
UVP  
Lower INTꢀPropagationꢀDelay  
FB forced 25mV below trip threshold  
FB forced 25mV below trip threshold  
5
µs  
µs  
Output Undervoltage  
PropagationꢀDelay  
t
200  
UVP  
INT Output Low Voltage  
INT Leakage Current  
I
= 4mA  
0.3  
1
V
SINK  
High state, INT forced to 5V, T = +25°C  
µA  
A
INTꢀStartupꢀDelayꢀandꢀ  
Transitions Blanking Time  
Measured from the time when FB reaches the  
target voltage  
t
4
µs  
V
INT  
V
Undervoltage-Lockout  
Rising edge, 50mV typical hysteresis, controller  
disabled below this level  
BIAS  
V
4.3  
4.5  
4.7  
UVLO  
Threshold  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Electrical Characteristics (0°C to +85°C) (continued)  
(Circuit of Figure 1. V = 10V, V  
= 5V, V ꢀ=ꢀ1.8V,ꢀENꢀ=ꢀBIAS,ꢀGNDSꢀ=ꢀAGND,ꢀV  
= V = V  
= V  
= 1V [SETVOUT  
IN  
BIAS  
TT  
FBAC  
FB  
CSP_  
CSN_  
register 0x07h set to 0x33h]. T = 0°C to +85°C, unless otherwise noted. Typical values are at +25°C. All devices 100% tested at  
A
+25°C. Limits over temperature are guaranteed by design.)  
PARAMETER  
THERMAL PROTECTION  
THERM Resistor  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R
Internal pullup resistance  
Measured at THERM, with respect to V  
5.24  
5.35  
5.48  
kΩ  
THERM  
BIAS  
falling edge; specify as % error for all temp max  
DACꢀcodeꢀsettings;ꢀtypicalꢀhysteresisꢀ=ꢀ100mV,ꢀ  
VRHOT Trip Threshold  
49.5  
50.5  
1.1  
%
T
= +25°C to +100°C  
A
THERM Sampling Period  
5% duty cycle  
0.75  
160  
ms  
Internal Thermal-Fault  
Shutdown Threshold  
T
Typical hysteresis = +15°C  
°C  
TSHDN  
VALLEY CURRENT LIMIT AND DROOP  
Valley Current-Limit Threshold  
Voltage (Positive)  
V
V
- V  
CSN_  
35  
20  
38  
23  
41  
26  
mV  
mV  
ILIM  
CSP_  
OC_ALARM Valley Current  
Threshold Voltage (Positive,  
CSP1 Only)  
V
V
OC_ALARM CSP1 - VCSN1  
Current-Balance Offset Voltage  
-1.8  
0.5  
+1.8  
1.6  
mV  
V
Current-Sense Common-Mode  
Input Range  
CSP1, CSN1, CSP2, CSN2  
Current-Sense Input Current  
DischargeꢀSwitchꢀResistance  
FB Input Current  
CSP1, CSN1, CSP2, CSN2, T = +25°C  
A
-0.12  
+0.12  
µA  
kΩ  
µA  
CSN1 only  
2
T
= +25°C  
-0.2  
3
+0.2  
A
V
V
BIAS  
- 0.4  
BIAS  
- 1.0  
Phaseꢀ2ꢀDisableꢀThreshold  
DroopꢀAmplifierꢀ(GMD)ꢀOffset  
CSP2  
V
Average (V  
- V  
) at I = 0mA  
FBAC  
-1.0  
1.182  
+1.0  
mV  
CSP_  
CSN_  
DroopꢀAmplifierꢀ(GMD)ꢀ  
Transconductance  
DI  
/∑D (V  
- V  
), measured at  
FBAC  
CSP_  
CSN_  
G
1.2  
1.218 µA/mV  
m(FBAC)  
FBAC  
CURRENT MONITOR (IMON)  
Current Monitor Output Current  
for Typical Full-Load Conditions  
I
∑(V  
- V ) = 25mV  
CSN_  
124.2  
4.8  
128  
131.8  
µA  
IMON  
CSP_  
DI  
/∑D (V  
- V  
), measured at  
IMON  
CSP_ CSN_  
Current Monitor Gain  
G
5.12  
3.2  
5.44  
3.6  
µA/mV  
V
m(IMON)  
IMON  
Current Monitor Clamp Voltage  
IMON  
DRIVER CONTROL  
DRVPWM_,ꢀDRVSKP#ꢀOutputꢀ  
Logic-High Voltage  
V
BIAS  
- 0.4  
V
I
I
= 3mA  
SOURCE  
V
V
V
OH_DRV  
DRVPWM_,ꢀDRVSKP#ꢀOutputꢀ  
Logic-Low Voltage  
V
= 3mA  
SINK  
0.4  
2.3  
OL_DRV  
DRVPWM_ꢀOutputꢀMidlevelꢀ  
Voltage  
1.6  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Electrical Characteristics (0°C to +85°C) (continued)  
(Circuit of Figure 1. V = 10V, V  
= 5V, V ꢀ=ꢀ1.8V,ꢀENꢀ=ꢀBIAS,ꢀGNDSꢀ=ꢀAGND,ꢀV  
= V = V  
= V  
= 1V [SETVOUT  
IN  
BIAS  
TT  
FBAC  
FB  
CSP_  
CSN_  
register 0x07h set to 0x33h]. T = 0°C to +85°C, unless otherwise noted. Typical values are at +25°C. All devices 100% tested at  
A
+25°C. Limits over temperature are guaranteed by design.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ENABLE LOGIC (EN)  
0.7 x  
EN Input High Voltage  
V
V
IH_EN  
V
TT  
EN Input Low Voltage  
EN Input Current  
V
0.33  
+1  
V
IL_EN  
I
T
= +25°C  
-1  
µA  
µs  
EN  
A
Power-UpꢀCalibrationꢀDelay  
t
850  
150  
CAL  
ENꢀtoꢀfirstꢀswitchingꢀedgeꢀ(fullyꢀdischargedꢀ  
output)  
EnableꢀtoꢀStartupꢀDelay  
t
µs  
STRT  
2
I C INTERFACE (SDA, SCL)  
2
I C Input Low Voltage  
V
0.4  
V
V
IL  
0.7 x  
2
I C Input High Voltage  
V
IH  
V
TT  
2
I C Output Low Level  
V
Open-drain output, 3mA pullup to V  
0.4  
+1  
V
OL  
TT  
(SDAꢀOnly)  
2
I C Logic Inputs Leakage  
T
= +25°C  
-1  
µA  
A
Current  
2
I C TIMING REQUIREMENTS  
2
I C Clock Frequency  
3.4  
MHz  
ns  
Hold Time Repeated START  
Condition  
t
t
(Note 4)  
160  
HD_STA  
SCL Low Period  
SCL High Period  
t
(Note 4)  
(Note 4)  
160  
60  
ns  
ns  
LOW  
t
HIGH  
Setup Time Repeated START  
Condition  
(Note 4)  
160  
ns  
SU_STA  
SDAꢀHoldꢀTime  
t
(Note 4)  
(Note 4)  
(Note 4)  
0
70  
ns  
ns  
ns  
HD_DAT  
SDAꢀSetupꢀTime  
t
10  
SU_DAT  
Setup Time for STOP Condition  
t
160  
SU_STO  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Electrical Characteristics (-40°C to +105°C)  
(Circuit of Figure 1. V = 10V, V  
= 5V, V =1.8V,EN=BIAS,GNDS=ꢀAGND,V  
= V  
FB  
= V  
CSP_  
= V = 1V  
CSN_  
IN BIAS  
TT  
FBAC  
[SETVOUT register 0x07h set to 0x33h]. T = -40°C to +105°C, unless otherwise noted.)  
A
PARAMETER  
BIAS CURRENTS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
BIAS Voltage Range  
V
4.75  
1.6  
5.25  
4.0  
V
V
BIAS  
2
I C Interface Supply (V  
)
V
TT  
TT  
Quiescent Supply Current  
(BIAS)  
Skip mode, measured at BIAS, V = 1.8V; FB  
TT  
forced above the regulation point; EN = BIAS  
I
5
mA  
BIAS  
PWM CONTROLLER  
DACꢀcodesꢀfromꢀ0.50Vꢀ  
to 1V  
Measured at FB,  
with respect to  
-10  
+10  
mV  
DCꢀOutputꢀVoltageꢀAccuracyꢀ  
(Note 2)  
GNDS;ꢀincludesꢀloadꢀ  
regulation error  
1.60V  
DACꢀcodesꢀfromꢀ1Vꢀtoꢀ  
-1.0  
0.97  
60  
+1.0  
1.03  
82  
%
GNDSꢀGain  
A
V/V  
GNDS  
MeasuredꢀatꢀDRVPWM_,ꢀ  
R
ꢀ=ꢀ136.3kΩ,ꢀ(1400kHz)  
TON  
MeasuredꢀatꢀDRVPWM_,ꢀ  
ꢀ=ꢀ200kΩ,ꢀ(1000kHz)  
DRVPWM_ꢀOn-Timeꢀ(Noteꢀ3)  
Minimum Off-Time (Note 3)  
t
92  
114  
ns  
ON  
R
TON  
MeasuredꢀatꢀDRVPWM_,ꢀ  
ꢀ=ꢀ326.7kΩ,ꢀ(600kHz)  
141  
192  
133  
R
TON  
t
MeasuredꢀatꢀDRVPWM_  
ns  
%
OFF(MIN)  
Slew rate = 3.5mV/µs , 4.5mV/µs, 5.5mV/µs,  
7mV/µs, 9mV/µs, 11mV/µs, 14mV/µs, 18mV/µs,  
22mV/µs, 28mV/µs, 36mV/µs, 44mV/µs  
(nominal)  
Slew-Rate Accuracy (see Table  
8 for Soft-Start and Regular  
Slew-Rate Combinations)  
-20  
FAULT PROTECTION  
Upper INT and Output  
Overvoltage-Protection Trip  
Threshold  
V
V
Soft-start completed; measured at FB  
1.78  
1.88  
-200  
V
OVP  
Lower INT and Output  
Undervoltage-Protection Trip  
Threshold  
Measured at FB, with respect to unloaded  
output voltage  
-300  
100  
mV  
UVP  
Output Undervoltage  
PropagationꢀDelay  
t
FB forced 25mV below trip threshold  
350  
0.3  
4.7  
µs  
V
UVP  
INT Output Low Voltage  
I
= 4mA  
SINK  
V
Undervoltage-Lockout  
Rising edge, 50mV typical hysteresis; controller  
disabled below this level  
BIAS  
V
4.3  
V
UVLO  
Threshold  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Electrical Characteristics (-40°C to +105°C) (continued)  
(Circuit of Figure 1. V = 10V, V  
= 5V, V =1.8V,EN=BIAS,GNDS=ꢀAGND,V  
= V  
FB  
= V  
CSP_  
= V = 1V  
CSN_  
IN BIAS  
TT  
FBAC  
[SETVOUT register 0x07h set to 0x33h]. T = -40°C to +105°C, unless otherwise noted.)  
A
PARAMETER  
THERMAL PROTECTION  
THERM Resistor  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
R
Internal pullup resistance  
Measured at THERM, with respect to V  
falling edge; specify as % error for all temp max  
DACꢀcodeꢀsettings;ꢀtypicalꢀhysteresisꢀ=ꢀ100mV;ꢀ  
5.24  
5.48  
50.5  
kΩ  
THERM  
BIAS  
VRHOT Trip Threshold  
49.5  
%
T
= +25°C to +105°C  
A
VALLEY CURRENT LIMIT AND DROOP  
Valley Current-Limit Threshold  
Voltage (Positive)  
V
V
- V  
- V  
35  
20  
41  
26  
mV  
mV  
ILIM  
CSP_  
CSN_  
OC_ALARM Valley Current  
Threshold Voltage (Positive,  
CSP1 Only)  
V
V
OC_ALARM CSP1  
CSN1  
Current-Balance Offset Voltage  
-2.5  
0.5  
+2.5  
1.6  
mV  
V
Current-Sense Common-Mode  
Input Range  
CSP1, CSN1, CSP2, CSN2  
CSP2  
V
BIAS  
- 0.4  
Phaseꢀ2ꢀDisableꢀThreshold  
DroopꢀAmplifierꢀ(GMD)ꢀOffset  
3
V
Average (V  
- V  
) at I = 0mA  
FBAC  
-1.0  
+1.0  
mV  
CSP_  
CSN_  
DroopꢀAmplifierꢀ(GMD)ꢀ  
Transconductance  
DI  
FBAC  
/∑D (V  
- V  
), measured at  
FBAC  
CSP_  
CSN_  
G
1.176  
1.224 µA/mV  
m(FBAC)  
CURRENT MONITOR (IMON)  
Current Monitor Output Current  
for Typical Full-Load Conditions  
I
∑(V  
- V ) = 25mV  
CSN_  
122.2  
4.8  
133.8  
5.44  
µA  
IMON  
CSP_  
DI  
/∑D (V  
- V  
), measured  
IMON  
CSP_ CSN_  
Current Monitor Gain  
G
µA/mV  
m(IMON)  
at IMON  
DRIVER CONTROL  
DRVPWM_,ꢀDRVSKP Output  
Logic-High Voltage  
V
- 0.4  
BIAS  
V
I
I
= 3mA  
SOURCE  
V
V
V
OH_DRV  
DRVPWM_,ꢀDRVSKP Output  
Logic-Low Voltage  
V
= 3mA  
SINK  
0.4  
2.3  
OL_DRV  
DRVPWM_ꢀOutputꢀMidlevelꢀ  
Voltage  
1.6  
ENABLE LOGIC (EN)  
EN Input High Voltage  
EN Input Low Voltage  
0.7 x  
V
V
V
IH_EN  
V
TT  
V
0.33  
IL_EN  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Electrical Characteristics (-40°C to +105°C) (continued)  
(Circuit of Figure 1. V = 10V, V  
= 5V, V =1.8V,EN=BIAS,GNDS=ꢀAGND,V  
= V  
FB  
= V  
CSP_  
= V = 1V  
CSN_  
IN BIAS  
TT  
FBAC  
[SETVOUT register 0x07h set to 0x33h]. T = -40°C to +105°C, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
2
I C TIMING REQUIREMENTS  
2
I C Clock Frequency  
3.4  
MHz  
ns  
Hold Time Repeated START  
Condition  
t
(Note 4)  
160  
HD_STA  
SCL Low Period  
SCL High Period  
t
(Note 4)  
(Note 4)  
160  
60  
ns  
ns  
LOW  
t
HIGH  
Setup Time Repeated START  
Condition  
t
(Note 4)  
160  
ns  
SU_STA  
SDAꢀHoldꢀTime  
t
(Note 4)  
(Note 4)  
(Note 4)  
0
70  
ns  
ns  
ns  
HD_DAT  
SDAꢀSetupꢀTime  
t
10  
SU_DAT  
Setup Time for STOP Condition  
t
160  
SU_STO  
Note 2: The equation for the target voltage V  
is: V  
ꢀ=ꢀtheꢀoutputꢀofꢀslewꢀcontrolꢀDAC,ꢀwhereꢀV  
= 0V for  
TARGET  
TARGET  
DAC  
shutdown, V  
= V  
during startup; otherwise V  
= SETVOUT. The output voltages for all possible codes are  
DAC  
BOOT  
DAC  
given in Table 3.  
Note 3:ꢀ On-timeꢀandꢀminimumꢀoff-timeꢀspecificationsꢀareꢀmeasuredꢀfromꢀ50%ꢀriseꢀtoꢀ50%ꢀfallꢀatꢀtheꢀDRVPWM_ꢀpin.ꢀActualꢀin-circuitꢀ  
times can be different due to MOSFET driver characteristics.  
Note 4: Guaranteed by design. Not production tested.  
Pin Configuration  
TOP VIEW  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
INT 19  
CSP1 20  
CSN1 21  
N.C. 22  
EN  
I.C. (BIAS)  
I.C. (BIAS)  
MAX15569  
SCL  
CSN2  
CSP2  
8
SDA  
23  
24  
*EP  
5
+
7
AGND  
1
2
3
4
6
TQFN  
(4mm x 4mm)  
*EP = EXPOSED PAD. CONNECT TO GROUND.  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Pin Description  
PIN  
NAME  
FUNCTION  
GroundꢀRemote-SenseꢀInput.ꢀConnectꢀGNDSꢀtoꢀtheꢀground-senseꢀpinꢀofꢀtheꢀCPUꢀlocatedꢀdirectlyꢀ  
atꢀtheꢀpointꢀofꢀload.ꢀGNDSꢀinternallyꢀconnectsꢀtoꢀanꢀinternalꢀtransconductanceꢀamplifierꢀthatꢀ  
adjusts the feedback voltage to compensate for voltage drops between the local controller ground  
and the remote load ground.  
1
GNDS  
OutputꢀofꢀtheꢀACꢀVoltageꢀPositioningꢀTransconductanceꢀAmplifier.ꢀTheꢀeffectiveꢀimpedanceꢀ  
(Z  
) between this pin and the positive side of the remote-sensed output voltage sets the  
FBAC  
2
3
FBAC  
transient AC droop. See the Load-Line Amplifier (Steady State and AC Droop) section.  
FBAC is high impedance in shutdown.  
Feedback-Sense Input. An integrator on FB corrects for output ripple and ground-sense offset.  
Connect a resistor (R ) between FB and the positive output of the remote sense (output) to  
setꢀtheꢀDCꢀsteady-stateꢀdroop.ꢀTheꢀimpedanceꢀfromꢀFBACꢀtoꢀFBꢀsetsꢀtheꢀcurrent-loopꢀgainꢀoverꢀ  
frequency, which dominates stability. See the Load-Line Amplifier (Steady State and AC Droop)  
section.  
FB  
FB  
Current Monitor Output. The output current at IMON is:  
I
= G  
x ∑ (CSP_ - CSN_)  
IMON  
= 5.12mS (typ).  
M(IMON)  
where G  
M(IMON)  
An external resistor (R  
)ꢀbetweenꢀIMONꢀandꢀGNDSꢀsetsꢀtheꢀcurrentꢀmonitorꢀoutputꢀvoltage:  
IMON  
= I  
4
5
IMON  
V
x
x G  
x R  
IMON  
LOAD RSENSE  
M(IMON) IMON  
where R  
is the value of the effective current-sense resistance. Choose R  
so that  
IMON  
SENSE  
V
is 2.56V at the desired full current.  
IMON  
IMON is high impedance when in shutdown.  
Thermal-SenseꢀInput.ꢀConnectꢀaꢀ100kΩꢀNTCꢀwithꢀβꢀ=ꢀ4250KꢀfromꢀTHERMꢀtoꢀAGND.ꢀTheꢀNTCꢀatꢀ  
THERM is used to determine the temperature of the power stages. Place near the hottest region  
of the regulator (typically the MOSFETs and inductor of phase 1).  
THERM  
TheꢀVRHOTꢀstatusꢀbitꢀ(D5)ꢀactivatesꢀwhenꢀtheꢀNTCꢀresistanceꢀdropsꢀtoꢀ5.68kΩꢀ(100°Cꢀwhenꢀ  
usingꢀaꢀ100kΩꢀNTCꢀwithꢀβ = 4250K).  
Interface Logic Supply. Power V from a 1.8V to 3.3V ±10% source with a compliance of at least  
TT  
6
7
8
V
TT  
1mA.ꢀDecoupleꢀV with at least 1µF of ceramic capacitance.  
TT  
AGND  
SDA  
Analog Ground  
2
I CꢀSerial-DataꢀInput/Output.ꢀOpen-DrainꢀI/Oꢀpin.ꢀConnectꢀanꢀexternalꢀpullupꢀresistorꢀbetweenꢀ  
2
SDAꢀandꢀtheꢀsupplyꢀusedꢀtoꢀpowerꢀtheꢀI C interface (V ).  
TT  
2
9
SCL  
I.C.  
I CꢀSerial-DataꢀClockꢀInput  
10, 11  
Internally Connected. Connect to BIAS.  
ControllerꢀEnableꢀInput.ꢀDriveꢀENꢀhighꢀorꢀconnectꢀENꢀtoꢀBIASꢀforꢀnormalꢀoperation.ꢀPullꢀtoꢀ  
2
ground to put the controller into its 7µA (max) standby state (I C interface active, regulator not  
switching).  
Duringꢀsoft-start,ꢀtheꢀcontrollerꢀslowlyꢀrampsꢀtheꢀoutputꢀvoltageꢀupꢀtoꢀtheꢀbootꢀvoltageꢀwithꢀ  
theꢀselectedꢀslewꢀrateꢀ(registerꢀ0x06,ꢀdefaultꢀisꢀ4.5mV/µsꢀforꢀstart-upꢀandꢀ9mV/μsꢀforꢀnormalꢀ  
operation).ꢀDuringꢀtheꢀtransitionꢀfromꢀnormalꢀoperationꢀtoꢀstandby,ꢀtheꢀoutputꢀisꢀdischargedꢀ  
throughꢀaꢀ2kΩꢀinternalꢀdischargeꢀMOSFETꢀonꢀCSN1.ꢀ  
12  
EN  
Toggling EN does NOT reset the fault latches. Cycle power (V or BIAS) to trigger the power-on  
TT  
reset (POR) to clear the fault conditions.  
The EN input is rated for up to 5.5V.  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
AnalogꢀandꢀDriverꢀSupplyꢀVoltageꢀInput.ꢀBIASꢀprovidesꢀtheꢀsupplyꢀvoltageꢀforꢀtheꢀdriver’sꢀPWMꢀ  
and skip control outputs. Connect BIAS to the same supply used by the external drivers (typically  
theꢀ4.5Vꢀtoꢀ5.5Vꢀsystemꢀsupplyꢀvoltage).ꢀBypassꢀBIASꢀtoꢀpowerꢀgroundꢀwithꢀaꢀlocalꢀ1μFꢀorꢀ  
greater ceramic capacitor.  
13  
BIAS  
14  
15  
PGND  
Power Ground  
Direct-DriveꢀPWMꢀOutputꢀforꢀControllingꢀtheꢀExternalꢀFirst-PhaseꢀDriver.ꢀTheꢀDRVPWM1ꢀ  
push-pullꢀoutputꢀdrivesꢀtheꢀsignalꢀbetweenꢀBIASꢀandꢀPGND.ꢀDRVPWM1ꢀisꢀhighꢀimpedanceꢀinꢀ  
shutdown and after fault conditions (output overvoltage/undervoltage or thermal fault).  
DRVPWM1  
ExternalꢀDriverꢀSkip-ModeꢀControlꢀOutput.ꢀTheꢀDRVSKP output is low in standby. DRVSKP goes  
high when the controller detects an output overvoltage fault condition, or during dynamic output-  
voltage transitions.  
For applications operating with forced-PWM operation, disable the driver zero-crossing detection  
and leave DRVSKP unconnected.  
16  
17  
DRVSKP  
Direct-DriveꢀPWMꢀOutputꢀforꢀControllingꢀtheꢀExternalꢀSecond-PhaseꢀDriver.ꢀTheꢀDRVPWM2ꢀ  
push-pullꢀoutputꢀdrivesꢀtheꢀsignalꢀbetweenꢀBIASꢀandꢀPGND.ꢀDRVPWM2ꢀisꢀhighꢀimpedanceꢀinꢀ  
shutdown and after fault conditions (output overvoltage, output undervoltage, or thermal fault).  
DRVPWM2  
Switching Frequency Adjustment Input. An external resistor between the input power source and  
TON sets the switching period (per phase) according to the following equation:  
f
= (R  
ꢀ+ꢀ6.5kΩ)ꢀxꢀ5pF  
SW  
TON  
18  
19  
20  
TON  
where f  
= 1/f ꢀisꢀtheꢀnominalꢀswitchingꢀfrequency.ꢀAꢀ200kΩꢀresistorꢀprovidesꢀaꢀtypicalꢀ  
operating frequency of 1MHz.  
TON is high impedance in shutdown.  
SW  
SW  
Open-DrainꢀInterruptꢀOutput.ꢀINT is triggered by latched faults (output undervoltage, output  
overvoltage, thermal shutdown), sticky alarms (internal overcurrent (OC), non-sticky alarms  
(voltageꢀregulatorꢀhotꢀ(VRHOT),ꢀandꢀVIDꢀcodeꢀviolationsꢀ(VOUTMAX)).ꢀTheꢀfaultꢀconditionsꢀandꢀ  
alarms can be masked through register 0x05h. Masking these signals only prevents INT from  
being asserted; the STATUS register still asserts when any of these conditions occur.  
INT remains high in standby mode (EN pulled low) to reduce power through the pullup resistor.  
INT is pulled low during soft-start. After completing the soft-start sequence, INT becomes high  
impedance as long as FB remains in regulation and there are no active alarms.  
INT  
To obtain a logic signal, pull up INT with an external resistor connected to a logic supply.  
Positive Current-Sense Input for the First Phase.  
1) ConnectꢀCSP1ꢀtoꢀtheꢀpositiveꢀsideꢀofꢀtheꢀcurrent-senseꢀresistorꢀorꢀtheꢀDCRꢀsenseꢀfilterꢀ  
capacitor of phase 1, as shown in Figure 4.  
2) Connect CSP1 to the IOUT pin of the smart power stage (MAX15515). A resistor across  
CSP1 and CSN1 sets the current-sense gain, as shown in Figure 3.  
See the Current Sense section.  
CSP1  
Negative Current-Sense Input for the First Phase. Connect CSN1 to the negative side of the  
current-senseꢀelement,ꢀasꢀshownꢀinꢀFigureꢀ4.ꢀAnꢀinternalꢀ2kΩꢀdischargeꢀMOSFETꢀbetweenꢀCSN1ꢀ  
and ground is enabled under an input UVLO or shutdown condition.  
21  
22  
CSN1  
N.C.  
No Connection Internally  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Negative Current-Sense Input for the Second Phase. Connect CSN2 to the negative side of the  
current-sense element, as shown in Figure 4.  
23  
CSN2  
Positive Current-Sense Input for the Second Phase.  
1) ConnectꢀCSP2ꢀtoꢀtheꢀpositiveꢀsideꢀofꢀtheꢀcurrent-senseꢀresistorꢀorꢀtheꢀDCRꢀsenseꢀfilterꢀ  
capacitor of phase 2, as shown in Figure 4.  
2) Connect CSP2 to the IOUT pin of the smart power stage (MAX15515). A resistor across  
CSP2 and CSN2 sets the current-sense gain, as shown in Figure 3.  
See the Current Sense section. To disable phase 2, short CSP2 to BIAS.  
24  
CSP2  
EP  
Exposed Pad. The substrate of the controller is internally connected to the exposed pad. Connect  
EP to the ground plane through multiple vias to maintain low thermal impedance.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
R
TON  
5V TO 20V  
OUTPUT  
1% 0402  
13  
10  
11  
18  
C
IN  
5V BIAS  
BIAS  
I.C.  
TON  
C
VCC  
2.2µF 6V  
R
0  
BST1  
PWR  
3
4
2
8
V
5V  
BST  
DD  
I.C.  
C
BST1  
0.1µF  
MAX15492  
22  
12  
DH  
GND  
N.C.  
EN  
L1  
6
7
15  
16  
1
5
DRVPWM1  
DRVSKP  
PWM  
SKIP  
LX  
DL  
VR_ENABLE  
1.8V  
6
EP  
V
TT  
C
VCC  
2.2µF 6V  
PWR  
20  
21  
CSP1  
CSN1  
OUTPUT  
R
INT  
10kΩ  
5% 0402  
R
I2C  
1kΩ  
C
OUT  
R
0Ω  
BST1  
MAX15569  
5V  
V
IN  
3
4
2
8
5% 0402  
V
BST  
DD  
C
BST1  
0.1µF  
19  
8
MAX15492  
INT  
DH  
GND  
2
I C  
L2  
SDA  
SCL  
6
7
INTERFACE  
17  
1
5
DRVPWM2  
PWM  
SKIP  
LX  
DL  
5
THERM  
EP  
PWR  
24  
23  
CSP2  
CSN2  
NTC  
THERM  
PWR  
R
FBAC  
1% 0402  
4
2
3
1
FEEDBACK FILTERS  
IMON  
IMON  
FBAC  
FB  
C
C
IMON  
0402  
FBAC  
0402  
R
R
R10 10Ω  
5% 0402  
FB  
IMON  
1% 0402  
1% 0402  
REMOTE OUTPUT SENSE  
REMOTE GROUND SENSE  
7
AGND  
PGND  
C
FB  
R11 10Ω  
5% 0402  
1nF 6V  
0402  
14  
GNDS  
PWR  
C
GNDS  
1nF 6V  
0402  
POWER GROUND  
ANALOG GROUND  
PWR  
PWR  
EP  
AGND  
AGND  
Figure 1. MAX15569 Typical Application Circuit (with MAX15492 Driver and MOSFET)  
Maxim Integrated  
12  
www.maximintegrated.com  
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Table 1. Components for Typical Application Circuit  
2-PHASE DESIGN EXAMPLE  
TYPE  
REF  
(1MHz OPERATION)  
OPERATING CONDITIONS  
Input Voltage  
V
5V to 20V  
IN  
Output Voltage  
Output Current  
Load Transient  
Current Limit  
V
1V  
OUT  
I
20A (max), 14A RMS  
OUT  
DI  
25A  
40A  
1MHz  
2
OUT  
I
OCP  
Switching Frequency  
Number of Phases  
COMPONENTS  
TON  
f
SW  
N
PH  
R
200kΩꢀ1%  
TON  
L
0.2µH/9.5mΩ/9.5Aꢀinductor  
(4.06mm x 4.55mm x 1.2mm)  
Vishay IHLP-1616AB-1A  
Inductor  
MOSFETꢀDriver  
DRV  
MAX15492  
High-Side MOSFET  
N
H
Low-Side MOSFET  
N
L
Current Sense  
R
CS  
Bulk Output Capacitors (Mid Frequency)  
Ceramic Output Capacitors (High Frequency)  
Input Capacitors  
C
C
OUT  
OUT  
20 x 22µF ceramic capacitors  
2 x 10µF, 16V X5R ceramic capacitors  
C
IN  
R
= R ꢀ=ꢀ1kΩꢀ1%  
FB  
FBAC  
C
= 4.7nF  
FBAC  
FBꢀDroopꢀSetting  
AC droop = -1.5mV/A  
DCꢀdroopꢀ=ꢀ0mV/A  
R
ꢀ=ꢀ5.62kΩꢀ1%  
IMON  
C
R
C
,
IMON  
IMON  
= 47nF  
IMON  
IMON  
(260µs time constant)  
100kΩ,ꢀ5%ꢀNTCꢀthermistor  
β = 4250K (0603)  
THERM NTC  
R
Murata NCP18WF104J03RB  
TDKꢀNTCG163JF104Jꢀ(0402)ꢀor  
Panasonic ERT-J1VR104J  
THERM  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
CSP2  
CSN2  
ILIM  
BIAS  
DRVPWM2  
PHASE 2  
CONTROL  
CSP1  
CSN1  
Q
TRIG  
MAX15569  
IMON  
FBAC  
ON-TIME  
CSP2  
CSN2  
CSP1  
CSN2  
G
G
m(CCI)  
ONE-SHOT  
(PHASE 2)  
CSP2  
CSN2  
TRIG  
Q
m(CCI)  
MINIMUM  
OFF-TIME  
ONE-SHOT  
FB  
ONE-SHOT  
ON-TIME  
CSP1  
CSN1  
ILIM  
TON  
(PHASE 1)  
Q
TRIG  
BIAS  
R
S
DRVPWM1  
DRVSKP  
BIAS  
EN  
Q
SET  
TARGET  
2
1
BIAS  
DAC  
PHASE  
SELECT  
TRIG  
TARGET  
CCV  
THERM  
INT  
THERM  
AMP  
SKIP  
PHASE CONTROL  
SLOPE  
DIGITAL  
CORE  
SCL  
SDA  
FB  
SET DAC  
TARGET  
GNDS  
AGND  
PGND  
Figure 2. Functional Block Diagram  
Maxim Integrated  
14  
www.maximintegrated.com  
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
For SETVOUT voltages below 0.9V, the device uses a  
fixed 0.9V instead to determine the on-time. Switching  
frequency is reduced, improving low-voltage efficiency.  
Detailed Description  
For system power management, the MAX15569 controller  
includes a current gauge and thermal status (VRHOT)  
that can be monitored over the I C interface. In addition,  
the device’s multiple fault-protection features include:  
Output overvoltage protection (OVP), undervoltage  
protection (UVP), and thermal protection. When any of  
these fault-protection features detect a fault condition, the  
controller shuts down.  
2
t
(0.9V+0.075V)  
SW  
t
=
ON  
V
IN  
The one-shot for the second phase varies the on-time in  
response to the input voltage and the difference between  
the main and the second inductor currents. Two identi-  
cal transconductance amplifiers integrate the difference  
between the first and second current-sense signals. The  
respective error signals are used to correct the on-time  
of the high-side MOSFETs for the second phase and to  
maintain current balanced between the two phases.  
Free-Running Constant On-Time Controller  
with Input Feed-Forward  
The QuickTune-PWM control architecture consists of a  
pseudo-fixed frequency, constant on-time, and current-  
mode regulator with voltage feed-forward (Figure 2). The  
control algorithm is simple; the high-side switch on-time is  
determined solely by a one-shot, whose period is inversely  
proportional to input voltage and directly proportional to  
the feedback voltage or the difference between the main  
and secondary inductor currents (see the On-Time One-  
Shot section). Another one-shot sets a minimum off-time.  
On-times translate only roughly to switching frequencies.  
The on-times guaranteed in the Electrical Characteristics  
section are influenced by parasitics in the conduction  
paths and propagation delays. The following equation  
shows the effect of the propagation delays on t  
:
ON  
t
(V +0.075V)  
SW FB  
t
=
+ t  
- t  
ON  
D(OFF) D(ON)  
V
IN  
The on-time one-shot triggers when the inverting input  
to the error comparator falls below the target voltage,  
the inductor current of the selected phase is below the  
valley current-limit threshold, and the minimum off-time  
one-shot times out. The regulator maintains 180° out-of-  
phase operation by alternately triggering the two phases  
after the error comparator drops below the output-voltage  
set point.  
where t  
is the delay from the falling edge of the PWM  
D(OFF)  
signal to the to the time that the high-side MOSFET turns  
off. t is the delay from the rising edge of the PWM  
D(ON)  
signal to the time that the high-side MOSFET turns on.  
For loads above the critical conduction point, where the  
dead-time effect (LX flying high and conducting through  
the high-side FET body diode) is no longer a factor, the  
actual switching frequency (per phase) is:  
Switching Frequency  
Connect a resistor (R  
) between TON and the input  
TON  
(V  
+ V  
)
OUT  
DIS  
supply (V ) to set the switching period (t  
= 1/f ) per  
f
=
IN  
SW  
SW  
SW  
t
(V + V  
+ V  
)
CHG  
phase using the following equation:  
ON IN  
DIS  
where V  
is the sum of the parasitic voltage drops in the  
t
(R  
+ 6.5kΩ) x 5pF  
DIS  
SW  
TON  
inductor discharge and charge paths, including MOSFET,  
High-frequency (600kHz to 1.4MHz) operation optimizes  
the application for the smallest component size. A 200kΩ  
resistor sets a typical operating frequency of 1MHz.  
inductor, and PCB resistances; V is the sum of the  
CHG  
parasitic voltage drops in the inductor charge path, includ-  
ing high-side switch, inductor, and PCB resistances; and  
On-Time One-Shot  
t
is the on-time as determined in the prior equation.  
ON  
The device contains fast, low-jitter, adjustable one-shots  
that set the respective high-side MOSFET on-times  
through the DRVPWM_ outputs. The one-shot for the  
main phase varies the on-time in response to the input  
180° Out-of-Phase Operation  
The two phases in the device operate 180° out-of-phase  
to minimize input and output filtering requirements,  
reduce EMI, and improve efficiency. This effectively low-  
ers component count—reducing cost, board space, and  
component power requirements—making this device  
ideal for high-power applications. The device shares the  
current between two phases that operate 180° out-of-  
phase under steady-state conditions.  
and feedback voltage (V ). V  
equals the SETVOUT  
FB  
FB  
voltage in steady-state. The main high-side switch  
on-time is inversely proportional to the input voltage as  
measured at V , and proportional to V  
:
IN  
FB  
t
(V +0.075V)  
SW FB  
t
=
(Ignoring propagation delays)  
ON  
V
IN  
Maxim Integrated  
15  
www.maximintegrated.com  
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
The instantaneous input current of each phase is  
effectively reduced, resulting in reduced input-voltage  
ripple, ESR power loss, and RMS ripple current (see  
the Input Capacitor Selection section). Therefore, the  
same performance can be achieved with fewer or less-  
expensive input capacitors.  
Current Sense  
The device senses the inductor current of each phase,  
allowing the use of current-sense resistors, inductor  
DCR,ꢀorꢀtheꢀcurrent-senseꢀsignalꢀprovidedꢀbyꢀtheꢀexternalꢀ  
power stage (MAX15515). Low-offset amplifiers are used  
for current balance, load-line gain, current monitor, and  
current limit.  
5V Bias Supply  
The QuickTune-PWM controller requires an external 5V  
bias supply in addition to the system supply. Typically,  
the system has a regulated 5V bias for interface (USB)  
or hard-drive support that can be used. The maximum  
current drawn from the 5V bias supply is provided in the  
Electrical Characteristics section. If the 5V bias supply is  
powered up prior to the system supply, the enable signal  
(EN going from low to high) should be delayed until the  
system voltage is present to ensure startup.  
Power Stage Current-Sense Support  
(MAX15515 Only)  
The MAX15515 features a transconductance current-  
sense amplifier with a current monitor output (I  
an output current of:  
) with  
OUT  
I
= A × I  
LX  
OUT  
-5  
where A is 10 (typ) and I is the inductor current. I  
LX  
OUT  
is internally temperature compensated and therefore,  
external temperature compensation is not required. Refer  
to the MAX15515 data sheet for more information.  
A resistor between CSP_ and CSN_ (see Figure 3) sets  
the gain of the current-sense signal to the controller.  
CSP1  
IMON  
BST  
C
L
L
MAX15515  
BST  
BST  
R
ILIM1  
LX  
CSN1  
CSP2  
IMON  
BST  
C
MAX15515  
R
ILIM2  
MAX15569  
LX  
C
OUT  
CSN2  
FB  
R
DROOP  
FBAC  
(MAX15515) – WITH DC LOAD REGULATION  
A) MAX15569 AND SMART POWER STAGE  
CSP1  
IMON  
BST  
C
BST  
L
L
MAX15515  
R
ILIM1  
LX  
CSN1  
CSP2  
IMON  
BST  
C
BST  
R
ILIM2  
MAX15515  
MAX15569  
LX  
CSN2  
FB  
C
OUT  
R
FB  
C
FB  
R
FBAC  
FBAC  
(MAX15515) – NO DC LOAD REGULATION  
B) MAX15569 AND SMART POWER STAGE  
Figure 3. The MAX15569 Using the MAX15515 Internal Current-Sense Method  
Maxim Integrated  
16  
www.maximintegrated.com  
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
INDUCTOR  
R
BST  
LX  
C
BST  
DCR  
L
R2  
R
R
=
R
CS  
DCR  
+
R1 + R2  
C
OUT  
MAX15569  
POWER  
STAGE  
L
1
1
=
R1  
R2  
DCR  
C
R1 R2  
EQ  
C
EQ  
FOR THERMAL COMPENSATION:  
R2 SHOULD CONSIST OF AN NTC RESISTOR  
IN SERIES WITH A STANDARD THIN-FILM RESISTOR  
CSP_  
CSN_  
A) LOSSLESS INDUCTOR SENSING  
SENSE RESISTOR  
R
BST  
LX  
C
BST  
SENSE  
L
L
ESL  
L
ESL  
C
R
=
EQ EQ  
R
SENSE  
MAX15569  
POWER  
STAGE  
R1  
C
EQ  
CSP_  
CSN_  
B) OUTPUT SERIES RESISTOR SENSING  
Figure 4. Sense Resistor and DCR Current-Sense Methods  
inputs (I  
and I  
), choose R1||R2 to be less than  
Inductor DCR and Sense Resistor Current Sense  
Usingꢀ theꢀ DCꢀ resistanceꢀ (R ) of the output inductor  
CSP_  
CSN_  
2kΩꢀ andꢀ useꢀ theꢀ previousꢀ equationꢀ toꢀ determineꢀ theꢀ  
sense capacitance (C ). Choose capacitors with 5%  
tolerance and resistors with 1% tolerance specifications.  
Temperature compensation is recommended for this cur-  
rent-sense method. See the Load-Line Amplifier (Steady  
State and AC Droop) section for detailed information.  
DCR  
EQ  
allows higher efficiency compared to using a current-  
sense resistor. The initial tolerance and temperature  
coefficientꢀ ofꢀ theꢀ inductor’sꢀ DCRꢀ mustꢀ beꢀ accountedꢀ  
for in the output-voltage droop-error budget and current  
monitor. This current-sense method uses an RC filter  
network to extract the current information from the output  
inductor (see Figure 4).  
When using a current-sense resistor for accurate output  
load-line control, the circuit requires a differential RC filter  
to eliminate the AC voltage step caused by the equivalent  
series inductance (L  
(see Figure 4). The ESL-induced voltage step might affect  
the average current-sense voltage. The time constant  
of the RC filter should match the L  
constant formed by the parasitic inductance of the  
current-sense resistor:  
The RC network should match the time constant of the  
) of the current-sense resistor  
ESL  
inductor (L/R  
):  
DCR  
R2  
R
=
R
DCR  
CS  
R1+ R2  
/R  
time  
ESL SENSE  
and:  
L
1
1
L
R
=
+
ESL  
DCR  
= C  
R
EQ EQ  
C
R1 R2  
EQ  
R
SENSE  
where R  
is the required current-sense resistance and  
CS  
where L  
current-sense resistor, R  
resistance value, and C  
matching components.  
is the equivalent series inductance of the  
ESL  
R
ꢀ isꢀ theꢀ inductor’sꢀ seriesꢀ DCꢀ resistance.ꢀ Useꢀ theꢀ  
DCR  
is the current-sense  
SENSE  
typical inductance and R  
inductor manufacturer. To minimize the current-sense  
error, due to the leakage current of the current-sense  
values provided by the  
DCR  
and R  
are the time-constant  
EQ  
EQ  
Maxim Integrated  
17  
www.maximintegrated.com  
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
The positive valley current-limit threshold is preset for the  
MAX15569. See the Electrical Characteristics section.  
Current Balance  
The device integrates the difference between the current-  
sense voltages and adjusts the on-time of the second  
phase to maintain current balance. The current balance  
relies on the accuracy of the current-sense signals across  
theꢀ current-senseꢀ resistor,ꢀ inductorꢀ DCR,ꢀ orꢀ providedꢀ  
by the power stage (MAX15515). With active current  
balancing, the current mismatch is determined by the  
current-sense element values and the offset voltage of the  
transconductance amplifiers:  
Current Limit Using Inductor DCR  
or Sense Resistors  
Whenꢀ usingꢀ senseꢀ resistorsꢀ orꢀ inductorꢀ DCRꢀ asꢀ  
current-sensing elements, calculate the required sense  
resistance (R  
) with the following equation:  
SENSE  
V
LIM(MIN)  
R
=
SENSE  
I
LX(VALLEY)  
V
where I  
is the inductor valley current at OCP,  
is 38mV ±3mV.  
LX(VALLEY)  
OS(IBAL)  
I
= I  
-I  
=
OS(IBAL)  
LMAIN LSEC  
and V  
ILIM(MIN)  
R
SENSE  
Carefully observe the PCB layout guidelines to ensure  
that noise and trace errors do not corrupt the current-  
sense signals seen by the current-sense inputs (CSP_,  
CSN_).  
where R  
CSP_, CSN_, and V  
is the equivalent sense resistance across  
SENSE  
is the current-balance off-  
OS(IBAL)  
set specification in the Electrical Characteristics section.  
The worst-case current mismatch occurs immediately  
after a load transient due to inductor value mismatches,  
resulting in different dI/dt for the two phases. The time it  
takes for the current-balance loop to correct the transient  
imbalance depends on the mismatch between the  
inductor values and switching frequency.  
Current Limit with the MAX15515 Current Sense  
When using the current-sensing method of the MAX15515,  
calculate the CSP_ - CSN_ resistor (R  
) using the  
CSP_  
following equation:  
V
LIM(MIN)  
R
=
CSP_  
A×I  
LX(VALLEY)  
Current Limit  
The current-limit circuit employs a “valley” current-sensing  
algorithm that senses the voltage across the current-  
sense inputs (CSP_ and CSN_). If the current-sense  
-5  
where A is 10 , I  
is the inductor valley current  
is 38mV ±3mV.  
LX(VALLEY)  
at OCP, and V  
ILIM(MIN)  
Current Monitoring (IMON)  
signal (V  
, V  
or V  
, V  
) of the selected  
CSP2 CSN2  
CSP1 CSN1  
phase is above the current-limit threshold (V  
), the  
The device includes a current monitoring function. A  
simplified data-acquisition system is employed to convert  
the analog signals from the current-sense inputs to 8-bit  
values in the IMON register (see Figure 5).ꢀTheꢀADCꢀcon-  
verter filters the current-sense signal by averaging over  
eight samples. The acquisition rate is 100µs. The content  
of the IMON register is updated every 400µs.  
ILIM  
PWM controller does not initiate a new cycle for that  
phase until its inductor current drops below the valley  
current-limit threshold. Since only the valley current is  
actively limited, the actual peak current is greater than  
the current-limit threshold by an amount equal to 1/2 the  
inductor ripple current:  
DI  
2
The device includes a unidirectional transconductance  
amplifier that sources current proportional to the posi-  
tive current-sense voltage. The IMON output current is  
defined by:  
I
=I  
+
LOAD  
LX PEAK  
(
)
DI  
2
I
=I  
-
LOAD  
LX VALLEY  
(
)
I
= G  
x ∑(V  
- V  
)
IMON  
m(IMON)  
CSP_  
CSN_  
where :  
= G  
x I  
x R  
LOAD SENSE  
m(IMON)  
t
(V - V  
)
OUT  
ON IN  
DI =  
where G  
is the transconductance-amplifier  
m(IMON)  
L
gain, as defined in the Electrical Characteristics section  
(5.12µA/mV typ).  
where L is the inductance value, t  
is the on-time of  
ON  
the high-side MOSFET, V  
is the output voltage, and  
An external resistor (R  
)betweenIMONandꢀAGNDꢀ  
OUT  
IMON  
V
IN  
is the input voltage. Therefore, the exact current-limit  
sets the current monitor output voltage:  
= I x R  
IMON  
characteristic and maximum load capability are functions  
of the current-sense resistance, inductor value, and  
battery voltage.  
V
IMON  
IMON  
Maxim Integrated  
18  
www.maximintegrated.com  
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
MAX15569  
IMON REGISTER  
8-BIT DAC  
R
C
= 2.56V/(R  
x G  
x I  
)
IMON  
IMON  
SENSE_  
m(IMON) OUT(MAX)  
0 TO 2.56V RANGE  
x R  
= 150µs  
IMON  
CSP1  
CSN1  
I
IMON  
G
m(IMON)  
R
I
IMON  
SENSE1  
(V  
- V  
)
V
IMON  
CSP1 CSN1  
NETWORK  
R
C
IMON  
IMON  
CSP2  
CSN2  
R
SENSE2  
(V  
- V  
)
CSP2 CSN2  
NETWORK  
3.2V  
IMON CLAMP  
Figure 5. IMON Network  
where R  
is the value of the effective current-sense  
V
= V  
- (R  
× I  
)
SENSE  
OUT  
TARGET  
DROOP  
FBAC  
resistance. Choose R  
full load current.  
so that V  
is 2.56V at the  
IMON  
IMON  
where the target voltage (V  
Nominal Output-Voltage Selection section, and FBAC  
) is defined in the  
TARGET  
C
is the IMON averaging capacitor. IMON is  
amplifier’s output current (I ) is determined by the  
FBAC  
IMON  
sampled every 400µs. Choose C  
such that R  
current-sense voltage:  
IMON  
IMON  
x C  
(see Figure 5).  
gives a time constant of approximately 150µs  
IMON  
I
= G  
ꢀ×ꢀΣ(V  
- V  
)
FBAC  
m(FBAC)  
CSP_  
CSN_  
where G  
= 1.2µA/mV (typ), as defined in the  
m(FBAC)  
The IMON voltage is internally clamped to a maximum  
3.2V (typ), preventing the IMON output from exceeding  
the IMON voltage rating even under overload or short-  
circuit conditions. IMON is high impedance when in  
shutdown.  
Electrical Characteristics section. Since the feedback  
voltage (V ) is regulated to the SETVOUT voltage, the  
output voltage changes in response to the FBAC current  
) to create a load-line with accuracy defined by the  
characteristics of the R  
FB  
(I  
FBAC  
network and G  
.
DROOP  
m(FBAC)  
Feedback Adjustment Amplifier  
TheꢀdeviceꢀsupportsꢀflexibleꢀcombinationsꢀofꢀACꢀandꢀDCꢀ  
load-lines:ꢀAnꢀACꢀload-lineꢀ>ꢀDCꢀload-line,ꢀanꢀACꢀload-lineꢀ  
=ꢀDCꢀload-line,ꢀandꢀanꢀACꢀload-lineꢀ<ꢀDCꢀload-line.  
Load-Line Amplifier (Steady State and AC Droop)  
The device includes a transconductance amplifier for  
controlling the load-line regardless of the sense imped-  
ance value. The input signal of the amplifier is the sum of  
●ꢀ The effective impedance (Z  
) between the output  
FBAC  
of the load-line transconductance amplifier (FBAC)  
and the positive side of the remote-sensed output  
voltage sets the transient AC droop.  
the current-sense voltages (V  
, V  
, and V  
,
CSP1 CSN1  
CSP2  
V
CSN2  
), which differentially sense the current-sense volt-  
age. See Figure 6.  
●ꢀ Theꢀeffectiveꢀimpedanceꢀ(Z ) between the feedback-  
FB  
sense input (FB) and the positive side of the feedback  
remoteꢀsenseꢀsetsꢀtheꢀstaticꢀ(DC)ꢀdroop.  
The AC-droop amplifier output (FBAC) connects to the  
remote-sense point of the output through a resistor network  
(R  
)ꢀthatꢀsetsꢀtheꢀDCꢀandꢀACꢀcurrent-loopꢀgain:  
DROOP  
Maxim Integrated  
19  
www.maximintegrated.com  
 
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
●ꢀ A capacitor from FBAC to FB (C  
) couples the AC  
outputꢀ(forꢀACꢀdroop)ꢀorꢀtheꢀFBꢀinputꢀ(forꢀDCꢀdroop)ꢀandꢀ  
the positive side of the remote-sensed output voltage.  
See Table 2forAC-andDC-droopꢀ settingscircuitcon-  
figuration.  
FBAC  
ripple from the output of the load-line transconduc-  
tance amplifier to the feedback sense input.  
•ꢀ An integrator on FB corrects for output ripple and  
ground-sense offset (see Figure 6).  
Whenꢀ theꢀ inductor’sꢀ DCRꢀ isꢀ usedꢀ asꢀ theꢀ current-senseꢀ  
element, the current-sense inputs should include an NTC  
thermistor to minimize the temperature dependence of  
theꢀload-lineꢀvariationꢀdueꢀtoꢀtheꢀDCRꢀtemperatureꢀcoef-  
ficient. FBAC and FB are high impedance in shutdown.  
When the device is used with differential current sensing:  
R
ꢀ≈ꢀR  
× R  
× G  
LL  
DROOP  
SENSE  
m(FBAC)  
where R  
is the load-line, R  
is the effective  
LL  
SENSE  
current-sense resistance across CSP_ and CSN_.  
is the effective resistance between the FBAC  
R
DROOP  
Z
x I  
SETS THE AC LOAD-LINE  
FBAC FBAC  
MAX15569  
C
x R  
= t TO (10 x t  
DROOP SW  
)
FBAC  
SW  
RIPPLE-  
COMPENSATION  
CAPACITOR  
R
DROOP  
I
R
FBAC  
FBAC  
OUTPUT  
C
FBAC  
FB  
Σ(CSP_ - CSN_)  
R
FB  
C
10Ω  
10Ω  
FBAC  
R
OUT  
10Ω  
FBS  
TO ERROR  
AMPLIFIER  
CPU V  
CC  
SENSE  
C
FB  
1nF  
Z
x I  
SETS THE STATIC LOAD-LINE  
FB FBAC  
10Ω  
GNDS  
CPU GND  
SENSE  
C
GNDS  
1nF  
HIGH-FREQUENCY CATCH RESISTORS  
FILTER  
SO FB REMAINS  
CLOSED LOOPED  
WITHOUT CPU  
PRESENT  
Figure 6. FB Network (Load-Line Control and Remote Sensing)  
Table 2. AC-Droop and DC-Droop Settings  
DC LOAD-LINE AC LOAD-LINE  
R
R
R
C
FBAC  
NOTE  
= R  
DROOP_AC  
DROOP_DC  
FB  
(mV/A)  
(mV/A)  
0
R
R
║R  
*
0Ω  
Open  
C
R
*
FBS  
LL_AC  
LL_AC  
FBAC  
FBS  
FBAC  
FBAC  
FBAC  
R
* + R  
R
*
FBS  
FB  
FBS  
R
R
R
C
DCꢀload-lineꢀ<ꢀACꢀload-line  
DCꢀload-lineꢀ=ꢀACꢀload-line  
LL_DC  
FB  
(R  
= open)  
(R  
= open)  
FBAC  
FBAC  
R
R
Open  
R *  
FBS  
0Ω  
Open  
LL  
LL  
*See Figure 6.  
Maxim Integrated  
20  
www.maximintegrated.com  
 
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
ground-sense adjustment (V  
following equation:  
), as defined in the  
Differential Output-Voltage Remote Sense  
GNDS  
The device includes differential, remote-sense inputs  
to eliminate the effects of voltage drops along the PCB  
traces and through the power pins of the processor. The  
feedback-sense node connects to the load-line resistor/  
V
= V - V  
+ V  
TARGET  
FB  
DACꢀ GNDS  
where V  
is the selected output voltage.  
DAC  
On startup, the device slews the target voltage from  
ground to the default 1V boot voltage unless a different  
voltage code is selected before EN is pulled high.  
capacitor network (R  
/C  
). The ground-sense  
DROOP FBAC  
(GNDS)ꢀ inputꢀ connectsꢀ toꢀ anꢀ amplifierꢀ thatꢀ adjustsꢀ theꢀ  
feedback voltage to counteract the voltage drop in the  
ground plane. Connect the load-line resistor (R  
)
DROOP  
Dynamic Output-Voltage Transitions  
andꢀ ground-senseꢀ (GNDS)ꢀ inputꢀ directlyꢀ toꢀ theꢀ remote-  
sense outputs of the processor, as shown in Figure 6. The  
correction range is bounded to less than ±200mV. The  
remote-sense lines draw less than ±0.5µA to minimize  
the offset errors.  
The device’s transition time depends on the slew-rate  
setting, the selected SETVOUT voltage difference, and  
the accuracy of the slew-rate controller (see the slew rate  
section in the Electrical Characteristics section). The slew  
rate is not dependent on the total output capacitance, as  
long as the required transition current plus existing load  
currentꢀremainsꢀbelowꢀtheꢀcurrentꢀlimit.ꢀForꢀdynamicꢀVIDꢀ  
Steady-State Integrator Amplifier  
The device utilizes internal integrator amplifiers that force  
theꢀ DCꢀ averageꢀ ofꢀ theꢀ FBꢀ voltageꢀ toꢀ equalꢀ theꢀ targetꢀ  
voltage,ꢀ allowingꢀ accurateꢀ DCꢀ output-voltageꢀ regula-  
tion regardless of the output voltage. The integrator is  
designed to correct for the steady-state offsets/errors.  
transitions, the transition time (t ) is given by:  
TRAN  
V
-V  
NEW OLD  
t
=
TRAN  
dV  
TARGET  
dt  
(
)
Nominal Output-Voltage Selection  
where dV  
/dt is the slew rate (register 0x06h),  
TARGET  
The nominal no-load output voltage (V  
) is defined  
TARGET  
V
is the original output voltage, and V  
is the new  
OLD  
NEW  
by the selected voltage reference, plus the remote  
target voltage (see Table 3).  
Table 3. Output-Voltage Selection  
LINE  
0
BIT 7*  
X
BIT 6  
0
BIT 5  
0
BIT 4  
0
BIT 3  
0
BIT 2  
0
BIT 1  
0
BIT 0  
0
HEX  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
VOLTAGE  
0.000  
0.500  
0.510  
0.520  
0.530  
0.540  
0.550  
0.560  
0.570  
0.580  
0.590  
0.600  
0.610  
0.620  
0.630  
0.640  
0.650  
0.660  
1
X
0
0
0
0
0
0
1
2
X
0
0
0
0
0
1
0
3
X
0
0
0
0
0
1
1
4
X
0
0
0
0
1
0
0
5
X
0
0
0
0
1
0
1
6
X
0
0
0
0
1
1
0
7
X
0
0
0
0
1
1
1
8
X
0
0
0
1
0
0
0
9
X
0
0
0
1
0
0
1
10  
11  
12  
13  
14  
15  
16  
17  
X
0
0
0
1
0
1
0
X
0
0
0
1
0
1
1
X
0
0
0
1
1
0
0
X
0
0
0
1
1
0
1
X
0
0
0
1
1
1
0
X
0
0
0
1
1
1
1
X
0
0
1
0
0
0
0
X
0
0
1
0
0
0
1
Maxim Integrated  
21  
www.maximintegrated.com  
 
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Table 3. Output-Voltage Selection (continued)  
LINE  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
BIT 7*  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
BIT 6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT 5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
BIT 4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
BIT 3  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
BIT 2  
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
BIT 1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
BIT 0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
HEX  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
VOLTAGE  
0.670  
0.680  
0.690  
0.700  
0.710  
0.720  
0.730  
0.740  
0.750  
0.760  
0.770  
0.780  
0.790  
0.800  
0.810  
0.820  
0.830  
0.840  
0.850  
0.860  
0.870  
0.880  
0.890  
0.900  
0.910  
0.920  
0.930  
0.940  
0.950  
0.960  
0.970  
0.980  
0.990  
1.000  
1.010  
1.020  
1.030  
1.040  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Table 3. Output-Voltage Selection (continued)  
LINE  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
BIT 7*  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
BIT 6  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
BIT 5  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT 4  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
BIT 3  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
BIT 2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
BIT 1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
BIT 0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
HEX  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
40h  
41h  
42h  
43h  
44h  
45h  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
58h  
59h  
5Ah  
5Bh  
5Ch  
5Dh  
VOLTAGE  
1.050  
1.060  
1.070  
1.080  
1.090  
1.100  
1.110  
1.120  
1.130  
1.140  
1.150  
1.160  
1.170  
1.180  
1.190  
1.200  
1.210  
1.220  
1.230  
1.240  
1.250  
1.260  
1.270  
1.280  
1.290  
1.300  
1.310  
1.320  
1.330  
1.340  
1.350  
1.360  
1.370  
1.380  
1.390  
1.400  
1.410  
1.420  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Table 3. Output-Voltage Selection (continued)  
LINE  
94  
BIT 7*  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
BIT 6  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
BIT 5  
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
BIT 4  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
BIT 3  
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
BIT 2  
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
BIT 1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
BIT 0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
HEX  
5Eh  
5Fh  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
6Ch  
6Dh  
6Eh  
6Fh  
70h  
71h  
72h  
73h  
74h  
75h  
76h  
77h  
78h  
79h  
7Ah  
7Bh  
7Ch  
7Dh  
7Eh  
7Fh  
VOLTAGE  
1.430  
1.440  
1.450  
1.460  
1.470  
1.480  
1.490  
1.500  
1.510  
1.520  
1.530  
1.540  
1.550  
1.560  
1.570  
1.580  
1.590  
1.600  
1.610  
1.620  
1.630  
1.640  
1.650  
1.660  
1.670  
1.680  
1.690  
1.700  
1.710  
1.720  
1.730  
1.740  
1.750  
1.760  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
*Bit 7 is ignored (don’t care), but listed here to match the VOUTMAX register.  
X = Don’t care.  
Note: DAC codes above 1.6V are not advised due to proximity to the overvoltage threshold.  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Soft-start uses the slow slew rate, as set by the default  
setting in the SRREG register, which is a fraction of the  
fast slew rate. See the slew-rate accuracy specification in  
the Electrical Characteristics section. The average induc-  
tor current per phase that is required to make an output-  
voltage transition is given by:  
threshold between pulse-skipping PFM and non-skipping  
PWM operation to coincide with the boundary between  
continuous and discontinuous inductor-current operation.  
The PFM/PWM crossover occurs when the load current of  
each phase is equal to 1/2 the peak-to-peak ripple current  
that is a function of the inductor value. Even for wide 4.5V  
to 14V input voltage ranges, this crossover is relatively  
constant, with only a minor dependence on the input volt-  
age due to the typically low duty cycles. The total load cur-  
C
dV  
OUT  
TARGET  
dt  
I =  
×
L
N
PH  
rent at the PFM/PWM crossover threshold (I  
is approximately:  
))  
LOAD(SKIP  
where dV  
the total output capacitance, and N  
active phases.  
/dt is the required slew rate, C  
is  
TARGET  
OUT  
is the number of  
PH  
(V -V  
)t  
IN OUT ON  
2L  
I
=
LOAD(SKIP)  
At the beginning of an output-voltage transition, the  
device blanks the INT, so the open-drain output enters a  
high-impedance state during output-voltage transitions.  
The controller releases the INT output approximately  
4µs (typ) after the slew-rate controller reaches the target  
output voltage.  
Power-Up Sequence (POR, UVLO)  
Power-on reset (POR) occurs when V  
and V  
TT  
BIAS  
rise above approximately 2V. POR resets the fault  
latch and loads the default register settings. The V  
UVLO circuitry inhibits switching until V  
BIAS  
rises  
BIAS  
Automatic Pulse-Skipping Operation  
above 4.5V. The controller powers up the reference  
once the system enables the controller, V is above  
BIAS  
The device automatically operates with a 2-phase pulse-  
skipping control scheme. A logic-low level on DRVSKP  
enables the zero-crossing comparator of the driver  
(MAX17492) or power stage (MAX15515). Therefore,  
these devices disable their low-side MOSFETs when they  
detect “zero” inductor current. This keeps the inductor  
from discharging the output capacitors and forces the  
controller to skip pulses under light-load conditions to  
avoid overcharging the output.  
4.5V, and EN is driven high (see Figure 2). With the  
reference in regulation, the controller ramps up to the  
selected output voltage (register 0x07h) at the selected  
slow slew rate (register 0x06h)  
After this initialization, the PWM controller begins  
switching:  
V
BOOT  
t
=
TRAN(START)  
(dV  
/dt)  
TARGET  
IfꢀtheꢀsystemꢀchangesꢀtheꢀVIDꢀcodeꢀtoꢀaꢀlowerꢀvoltage,ꢀtheꢀ  
device drives DRVSKP high to disable the pulse-skipping  
mode. This allows the regulator to actively discharge the  
output at the programmed slew rate.  
where dV  
/dt is the slew rate. The soft-start slew  
TARGET  
rate is the slow slew rate set by the default setting in the  
SRREG register. The soft-start circuitry does not use a  
variable current limit, so full output current is available  
immediately.  
To disable pulse-skipping mode so the regulator continu-  
ally operates in forced-PWM operation, leave DRVSKP  
unconnected and connect the pulse-skipping control input  
on the driver or power stage to ground.  
Interrupt (INT)  
The device provides an active-low interrupt output (INT)  
to indicate that the startup sequence is complete and  
the output voltageꢀ hasꢀ movedꢀ toꢀ theꢀ programmedꢀ VIDꢀ  
value. This signal is intended for system monitoring of  
the device. INT remains high impedance during normal  
DC-DCꢀoperation.ꢀTheꢀcontrollerꢀassertsꢀINT to alert the  
system of an alarm event or if a fault condition occurs.  
See the Alarms and Fault Protection (Latched) sections  
for details (and Figure 7).  
Automatic Pulse-Skipping Switchover  
In pulse-skipping mode, an inherent automatic switchover  
to PFM takes place at light loads. This switchover is affect-  
ed by a comparator that truncates the low-side switch  
on-time at the inductor current’s zero crossing. The zero-  
crossing detection is designed into the MAX17492 driver  
and the MAX15515 power stage. They sense the inductor  
current across the low-side MOSFET. Once the LX volt-  
age crosses the zero-crossing comparator threshold, the  
low-side MOSFET turns off. This mechanism causes the  
Use an external pullup resistor between INT and 3.3V to  
deliver a valid logic-level output.  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
t
= 0ns  
EN  
V
BIAS  
V
TT  
ENABLE  
INT  
V
OUT  
t
t
SS  
STRT  
t
t
SS  
CAL  
Figure 7. Startup Sequence  
The fixed 23mV OC_ALARM threshold is 15mV  
lower than the valley current-limit threshold to provide  
sufficientdesignmarginbeforetheregulatorlimitstheoutput  
current. Additionally, the controller includes a IMON  
register that can be monitored by the system.  
Alarms  
Temperature Comparator (VRHOT)  
The device features an independent comparator with  
input at THERM. This comparator has an accurate thresh-  
old of 0.5 x V  
TheꢀNTCꢀresistanceꢀdropsꢀtoꢀ5.68kΩꢀwhenꢀtheꢀtempera-  
ture reaches +100°C. The NTC forms a divider with the  
internalꢀ 5.35kΩꢀ pullupꢀ resistance,ꢀ soꢀ theꢀ voltageꢀ dropsꢀ  
.ꢀUseꢀaꢀ100kΩꢀNTCꢀwithꢀaꢀβꢀofꢀ4250K.ꢀ  
BIAS  
Output-Code Violation (VOUTMAX)  
The controller includes a maximum output register  
(VOUTMAX register 0x02h) to protect against target  
output voltage codes that could violate the absolute maxi-  
mum rating of the load. The value of this configuration  
register limits the output range. If a target output voltage  
is loaded into register 0x07h, the regulator sets the appro-  
priate status bit. If the warning is not masked, the control-  
ler asserts the INT output to alert the system to the over-  
current condition. The output voltage attempts to ramp to  
the new target, but the regulator effectively clamps the  
output to the VOUTMAX voltage to avoid an overvoltage  
below the 0.5 x V  
threshold. VRHOT is then asserted.  
BIAS  
Theꢀinternalꢀ5.35kΩꢀresistorꢀisꢀdisconnectedꢀinꢀshutdown,ꢀ  
saving power.  
Overcurrent Warning (OC)  
The device includes an overcurrent-warning threshold  
that samples the phase 1 current-sense signal before  
each phase 1 on-time. When the CSP1 - CSN1 voltage  
exceedsthe23mV(typ)threshold,thestatusbit(D2)inꢀ  
register 0x04h) is asserted. If the warning is not masked,  
the controller asserts the INT output to alert the system to  
the overcurrent condition.  
2
condition. See the I C Commands and Registers section  
for additional details.  
Maxim Integrated  
26  
www.maximintegrated.com  
 
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
DRVPWM_ꢀoutputsꢀgoꢀtoꢀtheꢀhigh-impedanceꢀmodeꢀandꢀ  
DRVSKP is pulled low.  
Fault Protection (Latched)  
TON Open-Circuit Protection  
The TON input includes open-circuit protection to avoid  
long, uncontrolled on-times that could result in an over-  
voltage condition on the output. The device detects an  
open-circuit fault if the TON current drops below 6µA  
2
After the fault condition occurs, the I C interface remains  
active so the STATUS register can be read to determine  
what triggered the fault. Toggle EN or cycle power (BIAS)  
below 1V to clear the fault latch. With the fault latch  
cleared and the fault condition removed, the regulator  
powers back up and the fault conditions are deasserted  
in the STATUS register.  
(typ) for any reason (e.g., the TON resistor (R  
) is  
TON  
unpopulated, a high-resistance value is used, the input  
voltage is low, etc.). Under these conditions, the device  
stopsꢀswitchingꢀ(DRVPWM_ꢀoutputsꢀbecomeꢀhighꢀimped-  
ance and DRVSKP is pulled low) and immediately sets  
the fault latch.  
Thermal-Fault Protection (TSHDN)  
The device features an internal thermal-fault protec-  
tion circuit. When the junction temperature rises above  
+160°C, a thermal sensor sets the fault latch and  
DRVPWM_ꢀbecomesꢀhighꢀimpedance.  
Toggle EN or cycle power (BIAS) below 1V to clear the  
fault latch and reactivate the controller. The TON open-  
circuit fault is not indicated in the STATUS register.  
2
After the fault condition occurs, the I C interface remains  
active so the STATUS register can be read to determine  
what triggered the fault. Toggle EN or cycle power (BIAS)  
below 1V to clear the fault latch. With the fault latch  
cleared, the regulator powers back up and the fault condi-  
tions are deasserted in the STATUS register, as long as  
the regulator has cooled by 15°C (typ).  
Output Overvoltage Protection (OVP)  
The OVP circuit is designed to protect the load against a  
shorted high-side MOSFET by drawing high current and  
activating the adapter or battery protection circuits. The  
device continuously monitors the output for an overvolt-  
age fault. An OVP fault is detected if the output voltage  
exceedsꢀtheꢀVIDꢀDACꢀvoltageꢀbyꢀmoreꢀthanꢀ300mVꢀ(min),ꢀ  
orꢀtheꢀfixedꢀ1.83Vꢀ(typ)ꢀthresholdꢀduringꢀaꢀdownwardꢀVIDꢀ  
transition in skip mode.  
External Driver and Disabling Phases  
The device supports an external driver (MAX15515) for  
bothꢀphases.ꢀTheꢀDRVPWM_ꢀoutputsꢀprovideꢀtheꢀsignalsꢀ  
to trigger the drivers. Connecting CSP2 to BIAS of the  
device disables the second phase.  
Duringꢀ pulse-skippingꢀ operation,ꢀ theꢀ OVPꢀ thresholdꢀ  
trackstheVIDDACvoltageassoonastheoutputisinꢀ  
regulation; otherwise, the fixed 1.83V (typ) threshold is  
used. When the OVP circuit detects an overvoltage fault,  
theꢀDRVPWM_ꢀoutputsꢀbecomeꢀhighꢀimpedanceꢀandꢀtheꢀ  
DRVSKP output is pulled high. OVP is disabled in the  
standby power state (EN pulled low).  
The device provides a pulse-skipping-mode control output  
(DRVSKP) for the external driver control. DRVSKP goes  
high when the controller detects an output overvoltage-  
fault condition. DRVSKP is high during output-voltage  
transitions. The DRVSKP output is unconnected in shut-  
down.  
2
After the fault condition occurs, the I C interface remains  
active so the STATUS register can be read to determine  
what triggered the fault. Toggle EN or cycle power (BIAS)  
below 1V to clear the fault latch. With the fault latch  
cleared and the fault condition removed, the regulator  
powers back up and the fault conditions are deasserted  
in the STATUS register.  
2
I C Interface, Commands, Registers,  
and Digital Control  
A simplified register summery of the I C interface for the  
device is shown in Table 4. The I C interface consists of  
a high-speed transceiver capable of 3.4MHz data rate.  
2
2
Output Undervoltage Protection (UVP)  
Regulator Address  
The device does not feature programmable addressing.  
These devices are hard-coded with bus address 70h.  
If the output voltage is 200mV (min) below the target volt-  
age and stays below this level for 200µs (typ), the con-  
troller activates the shutdown sequence. The regulator  
turnsꢀonꢀaꢀ2kΩꢀdischargeꢀresistorꢀandꢀsetsꢀtheꢀfaultꢀlatch.ꢀ  
Maxim Integrated  
27  
www.maximintegrated.com  
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
2
Table 4. I C Command and Data Register Summary  
MASTER  
PAYLOAD  
SLAVE  
PAYLOAD  
COMMAND  
DESCRIPTION  
HEX NAME  
WRITE  
READ  
00h  
01h  
Reserved.  
Reserved.  
The maximum allowable output voltage (0.510V to 1.76V) that can  
2
Configuresꢀ  
maximum output  
code  
Returns maximum be set by user. In case the I C interface receives a set voltage  
02h  
03h  
VOUTMAX  
output code  
command higher than the VOUTMAX value, the regulator slews the  
outputꢀtoꢀVOUTMAXꢀsetꢀvoltage.ꢀDefaultꢀisꢀ51hꢀ(1.3V).  
Reserved.  
BitsꢀD[5:0]ꢀofꢀthisꢀregisterꢀconsistꢀofꢀtheꢀVRHOTꢀflagꢀ(bitꢀD5),ꢀ  
undervoltageꢀflagꢀ(bitꢀD4),ꢀovervoltageꢀflagꢀ(bitꢀD3),ꢀovercurrentꢀ  
flagꢀ(bitꢀD2),ꢀVOUTMAXꢀflagꢀ(bitꢀD1),ꢀandꢀINTꢀflagꢀ(bitꢀD0).ꢀBitsꢀ  
D[7:6]ꢀareꢀnotꢀusedꢀandꢀreturnꢀ0.ꢀForꢀaꢀdetailedꢀdescription,ꢀseeꢀ  
the Regulator Status (0x04h) section. The STATUS register is set  
regardless of the MASK register (0x05) content.  
Regulator  
status  
04h  
05h  
STATUS  
MASK  
Writing to this register prevents the assertion of the INT output when  
theꢀspecificꢀfaultꢀorꢀalarmꢀisꢀmasked.ꢀThisꢀregisterꢀdoesꢀnotꢀmaskꢀ  
the STATUS register indication.  
Configuresꢀmaskꢀ  
Current mask  
status  
status  
Defaultꢀisꢀ00hꢀ(noꢀmasking).  
Writing to this register sets the slew rate (volt/second) of the  
output voltage during the initial startup and dynamic output-voltage  
transitions.  
Defaultꢀisꢀ04hꢀ(4.5mV/µsꢀforꢀsoft-startꢀandꢀ9mV/µsꢀforꢀdynamicꢀ  
transitions).  
Configuresꢀtheꢀ  
output-voltage  
slew rate  
Returns the  
output-voltage  
slew rate  
06h SLEW_RATE  
The 07h command sets the target output voltage. The regulator  
transitions up or down to the new output voltage 0.5µs after the  
command is acknowledged.  
Selects the  
output code  
Returns the  
output code  
07h  
08h  
SETVOUT  
IMON  
Defaultꢀisꢀ33hꢀ(1V).  
Returns the output This register returns the average output current value. IMON is  
current value  
updated every 400µs.  
2
Regulator Status (0x04h)  
I C Commands and Registers  
This register consists of six flags that determine the status  
of the regulator in case of thermal warning, overvoltage  
fault, undervoltage fault, output overcurrent warning, and  
maximum output violation. The INTꢀbitꢀ(D0)ꢀisꢀassertedꢀinꢀ  
case of any unmasked event. See Table 6 for bit descrip-  
tions.  
The device supports the following commands and  
registers shown in Table 4.  
VOUTMAX Control (0x02h)  
This register is programmed by the bus master to the  
maximum output voltage the regulator is allowed to sup-  
port. Any attempts to set the SETVOUT above VOUTMAX  
are acknowledged by setting the output voltage to the  
content of the VOUTMAX register. The default value is  
51h (1.3V). See Table 5 for bit descriptions.  
1)ꢀ Theꢀ VRHOTꢀ bitꢀ (D5)ꢀ isꢀ setꢀ whenꢀ theꢀ voltageꢀ atꢀ  
THERM pin goes below its nominal threshold (see the  
Electrical Characteristics section).  
2)ꢀ TheꢀUVꢀbitꢀ(D4)ꢀisꢀsetꢀwhenꢀtheꢀoutputꢀvoltageꢀdropsꢀ  
200mV lower than SETVOUT value for 200µs.  
Maxim Integrated  
28  
www.maximintegrated.com  
 
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Table 5. VOUTMAX (Maximum Output Voltage Allowed)  
2
I C  
DEFAULT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
COMMAND  
TYPE  
0x02h  
BIT  
D7  
0x51h  
VMAX_7 VMAX_6 VMAX_5 VMAX_4 VMAX_3 VMAX_2 VMAX_1 VMAX_0  
DESCRIPTION  
NAME  
VMAX_7  
VMAX_6  
VMAX_5  
VMAX_4  
VMAX_3  
VMAX_2  
VMAX_1  
VMAX_0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Don’tꢀcareꢀbit.ꢀReturnsꢀ0ꢀwhenꢀread.  
D6  
MSB of the maximum allowed output voltage code.  
D5  
D4  
D3  
D2  
D1  
D0  
LSB of the maximum allowed output voltage code. 10mV resolution.  
Table 6. STATUS (Regulator Status)  
2
I C  
DEFAULT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
COMMAND  
TYPE  
0x04h  
BIT  
D7  
0x00h  
NAME  
X
X
VRHOT  
UV  
OV  
OC  
VMERR  
INT#  
DESCRIPTION  
R
R
R
R
R
Always reads 0.  
Always reads 0.  
VRHOT  
D6  
D5  
VRHOT  
UV  
D4  
UV (V  
undervoltage)  
overvoltage)  
OUT  
OUT  
D3  
OV  
OV (V  
OC (output current over current limit). This bit is sticky and cleared when read if the OC fault  
is no longer present.  
D2  
OC  
R
D1  
D0  
VMERR  
R
R
VOUTMAX error.ꢀSetꢀ=ꢀ1ꢀifꢀ(VIDꢀ>ꢀVOUTMAX)  
NORedꢀbitsꢀD[5:1],ꢀread-only,ꢀsetsꢀtheꢀINT output.  
INT  
X = Don’t care.  
3)ꢀ TheOVbit(D3)issetwhentheoutputvoltagerisesꢀ  
is still set if the fault occurs, regardless of the status  
maskꢀsetting.ꢀTheꢀOCꢀbitꢀ(D2)ꢀisꢀsticky,ꢀbutꢀitꢀdoesꢀnotꢀ  
hold INT low when the OC fault goes away. This allows  
the system to determine what event triggered INT to  
go low. All other fault bits are not sticky. Reading the  
register after the OC event clears the flag.  
300mV above (or 1.83V fixed) the output voltage.  
4)ꢀ TheOCbit(D2)issetwhenthevalleyof(∑CSP1-ꢀ  
CSN1) current signal exceeds 23mV (OC_ALARM).  
The current-limit protection threshold is 15mV higher  
than the OC_ALARM.  
Mask Status (0x05h)  
5)ꢀ Theꢀ VMERRꢀ bitꢀ (D1)ꢀ isꢀ setꢀ inꢀ caseꢀ theꢀ SETVOUTꢀ  
exceeds the content of VOUTMAX. Changing SETVOUT  
to values lower than VOUTMAX clears the VMERR warn-  
ing.  
Masking of the status bit only prevents the INTbit(D0)ꢀ  
from being set by the specific status bit. The status bit is  
still set if the fault occurs, regardless of the Status Mask  
setting. See Table 7 for bit descriptions.  
6) Masking of the status bit only prevents the INTꢀbitꢀ(D0)ꢀ  
from being set by the specific status bit. The status bit  
Maxim Integrated  
29  
www.maximintegrated.com  
 
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Table 7. MASK (Regulator Status Mask Register)  
2
I C COMMAND  
DEFAULT  
0x00h  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x05h  
TYPE  
X
X
VRHMSK UVMSK OVMSK OCMSK VMERRMSK Reserved  
BIT  
NAME  
DESCRIPTION  
D7  
R
R
Always reads 0.  
Always reads 0.  
D6  
D5  
VRHMSK  
UVMSK  
OVMSK  
OCMSK  
VMERRMSK  
R/W VRHOT masking bit.  
D4  
R/W Undervoltage-fault masking bit.  
R/W Overvoltage-fault masking bit.  
R/W Overcurrent-fault masking bit.  
R/W VOUTMAX error masking bit.  
D3  
D2  
D1  
D0  
R
Always reads 0.  
X = Don’t care.  
Note: In the event of UV, OC, OV, VRHOT, or VMERR, the signal is ANDed by the complement of the MASK register content.  
STATUS REGISTER  
STATUS BIT 0  
FAULT OR ALARM EVENT  
MASK REGISTER  
INT  
OUTPUT PIN  
(INT STATE)  
OTHER STATUS  
LOGIC  
Figure 8. Status Bit Masking  
Table 8. SRREG (Slew-Rate Setting Register)  
2
I C COMMAND  
DEFAULT  
0x04h  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x06h  
TYPE  
X
X
SRREG_5 SRREG_4 SRREG_3 SRREG_2 SRREG_1 SRREG_0  
BIT  
NAME  
DESCRIPTION  
D7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
See Table 9  
See Table 9  
See Table 9  
See Table 9  
See Table 9  
See Table 9  
See Table 9  
See Table 9  
D6  
D5  
SRREG_5  
SRREG_4  
SRREG_3  
SRREG_2  
SRREG_1  
SRREG_0  
D4  
D3  
D2  
D1  
D0  
X = Don’t care.  
Maxim Integrated  
30  
www.maximintegrated.com  
 
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
rates (4.5mV/µs to 44mV/µs) that cover the initial startup  
Slew-Rate Configuration (0x06h)  
(soft-start) and dynamic output-voltage transition with  
different slew rates in one setting. See Table 8 for bit  
descriptions and Table 9 for slew-rate selections.  
The content of the SRREG register determines the slew  
rate at both initial startup and dynamic output-voltage  
transition. There are 52 possibilities of selectable slew  
Table 9. Slew-Rate Selections (Register 0x06h)  
SOFT-START SLEW RATE  
(mV/µs)  
REGULAR SLEW RATE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(mV/µs)  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
0
1
1
0
0
1
1
0
0
X
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
X
X
0
0
1
0
1
0
1
0
1
0
1
X
0
0
1
0
1
0
1
18  
9
18  
18  
18  
9
4.5  
9
4.5*  
36  
18  
9
9*  
36  
36  
36  
36  
4.5  
9
4.5  
4.5  
4.5  
4.5  
4.5  
22  
11  
9
9
22  
22  
22  
11  
11  
44  
44  
44  
44  
5.5  
11  
11  
14  
14  
14  
7
5.5  
11  
5.5  
44  
22  
11  
5.5  
5.5  
5.5  
5.5  
14  
7
3.5  
7
3.5  
28  
7
28  
Maxim Integrated  
31  
www.maximintegrated.com  
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Table 9. Slew-Rate Selections (Register 0x06h) (continued)  
SOFT-START SLEW RATE  
REGULAR SLEW RATE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(mV/µs)  
(mV/µs)  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
X
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
0
1
X
0
14  
7
28  
28  
28  
3.5  
7
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
18  
9
7
7
7
7
18  
18  
18  
9
4.5  
9
4.5  
36  
18  
9
9
36  
36  
36  
36  
4.5  
9
4.5  
4.5  
4.5  
4.5  
9
*POR default setting.  
X = Don’t care.  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Output-Voltage Set Register (0x07h)  
Current Monitor Register (0x08h)  
The SETVOUT register slews the output voltage 0.5µs  
after the SETVOUT command is acknowledged. The  
slew rate of the change in output voltage is equal to the  
valueꢀ setꢀ byꢀ SRREG.ꢀ Theꢀ deviceꢀ DACꢀ supportsꢀ volt-  
ages between 0.5V and 1.6V. See Table 3 for the output-  
voltage codes and Table 10 for bit descriptions.  
The device includes a current monitoring function. An  
internalꢀADCꢀconvertsꢀtheꢀanalogꢀsignalsꢀfromꢀtheꢀIMONꢀ  
pinꢀoutputꢀtoꢀ8-bitꢀvaluesꢀinꢀtheꢀIMONꢀregister.ꢀTheꢀADCꢀ  
converter filters the current-sense signal by averaging  
over four samples. The acquisition rate is 100µs. The  
content of this register is updated every 400µs. For more  
information on how to set the desired value for IMON  
resolution, see the Current Monitoring (IMON) section.  
See Table 11 for bit descriptions.  
Table 10. SETVOUT (Output-Voltage Set Register)  
2
I C COMMAND  
DEFAULT  
0x33  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x07  
BIT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TYPE  
VID_7  
VID_6  
VID_5  
VID_4  
VID_3  
VID_2  
VID_1  
VID_0  
NAME  
VID_7  
VID_6  
VID_5  
VID_4  
VID_3  
VID_2  
VID_1  
VID_0  
DESCRIPTION  
R
R
R
R
R
R
R
R
Don’tꢀcareꢀbit.ꢀReturnsꢀ0ꢀwhenꢀread.  
MSB of the maximum allowed output voltage code  
See Table 3 for the actual output-voltage code.  
LSB of the maximum allowed output-voltage code. 10mV resolution.  
Table 11. IMON (Current Monitor Register)  
2
I C COMMAND  
DEFAULT  
0x00h  
NAME  
IM_7  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x08h  
BIT  
D7  
TYPE  
DESCRIPTION  
R
R
R
R
R
R
R
R
D6  
IM_6  
D5  
IM_5  
D4  
IM_4  
D3  
IM_3  
D2  
IM_2  
D1  
IM_1  
D0  
IM_0  
Maxim Integrated  
33  
www.maximintegrated.com  
 
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
current just touches zero with every cycle at maximum  
Multiphase QuickTune-PWM Design  
Procedure  
Firmly establish the input voltage range and maximum  
load current before choosing a switching frequency  
and inductor operating point (ripple-current ratio). The  
primary design trade-off lies in choosing a good switching  
frequency and inductor operating point, and the following  
four factors dictate the rest of the design:  
load). Inductor values lower than this grant no further  
size-reduction benefit. The optimum operating point is  
usually between 30% and 50% ripple current. For a  
multiphase core regulator, select an LIR value of ~0.4.  
Inductor Selection  
The switching frequency and operating point (% ripple  
current or LIR) determine the inductor value as follows:  
1) Input Voltage Range: The maximum value (V  
)
IN(MAX)  
V
- V  
V
OUT  
IN  
OUT  
L = N  
must accommodate the worst-case high AC adapt-  
er voltage. The minimum value (V ) must  
PH  
f
×I  
×LIR  
V
SW LOAD(MAX)  
IN   
IN(MIN)  
account for the lowest input voltage after drops due to  
connectors, fuses, and battery selector switches. If  
there is a choice at all, lower input voltages result in  
better efficiency.  
where N  
is the total number of phases. Find a low-loss  
PH  
inductorꢀhavingꢀtheꢀlowestꢀpossibleꢀDCꢀresistanceꢀthatꢀfitsꢀ  
in the allotted dimensions. The core must not saturate at  
the peak-inductor current (I  
):  
PEAK  
2) Maximum Load Current: There are two values to  
I
LIR  
2
LOAD(MAX)  
consider. The peak load current (I  
) deter-  
I
=
1+  
LOAD(MAX)  
PEAK  
N
mines the instantaneous component stresses and  
filtering requirements, and drives output-capacitor  
selection, inductor saturation rating, and the design of  
the current-limit circuit. The continuous-load current  
PH  
Output Capacitor Selection  
Output capacitor selection is determined by the controller  
stability and the transient soar and sag requirements of  
the application.  
(I  
) determines the thermal stresses and drives  
LOAD  
the selection of the input capacitors, MOSFETs, and  
other critical heat-contributing components. Modern  
Output Capacitor ESR  
notebook CPUs generally exhibit I  
= 0.8 x  
LOAD  
The output filter capacitor must have low enough  
effective series resistance (ESR) to meet output-ripple  
and load-transient requirements, yet have high enough  
I
. For multiphase systems, each phase  
LOAD(MAX)  
supports a fraction of the load, depending on the  
current balancing. When properly balanced, the load  
current is evenly distributed among phases:  
ESR to satisfy stability requirements. In CPU V  
CORE  
converters and other applications where the output is  
subject to large-load transients, the size of the output  
capacitor typically depends on how much ESR is needed  
to prevent the output from dipping too low under a load  
transient. Ignoring the sag due to finite capacitance:  
I
LOAD  
I
=
LOAD(PHASE)  
N
PH  
where N  
is the total number of active phases.  
PH  
3) Switching Frequency: This choice determines the  
basic trade-off between size and efficiency. The  
optimal frequency is largely a function of maximum  
V
STEP  
LOAD(MAX)  
(R  
+ R  
) ≤  
PCB  
ESR  
DI  
input voltage due to MOSFET switching losses  
2
The output-voltage ripple of a step-down controller equals  
the total inductor ripple current multiplied by the output  
capacitor’s ESR. When operating multiphase out-of-  
phase systems, the peak inductor currents of each phase  
are staggered, resulting in lower output ripple voltage by  
reducing the total inductor ripple current. For multiphase  
operation, the maximum ESR to meet ripple requirements  
is given in the following equation:  
that are proportional to frequency and V . The  
IN  
optimum frequency is also a moving target due to rapid  
improvements in MOSFET technology that are making  
higher frequencies more practical.  
4) Inductor Operation Point: This choice provides trade-  
offs between size vs. efficiency and transient respons-  
es vs. output noise. Low inductor values provide better  
transient response and smaller physical size, but also  
result in lower efficiency and higher output noise due  
to increased ripple current. The minimum practical  
inductor value is one that causes the circuit to operate  
at the edge of critical conduction (where the inductor  
V
× f  
×L  
IN SW  
R
V
RIPPLE  
ESR  
(V (N × V  
))V  
OUT  
IN  
PH  
OUT  
where NPH is the total number of active phases and f  
is the switching frequency per phase.  
SW  
Maxim Integrated  
34  
www.maximintegrated.com  
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
The actual capacitance value required relates to the  
physical size needed to achieve low ESR, as well as to  
the chemistry of the capacitor technology. The capacitor is  
usually selected by ESR and voltage rating rather than by  
capacitance value (this is true for polymer types). When  
using low-capacity ceramic filter capacitors, capacitor size  
is usually determined by the capacity needed to prevent  
Double Pulsing and Feedback-Loop Instability  
Doubleꢀ pulsingꢀ occursꢀ dueꢀ toꢀ noiseꢀ onꢀ theꢀ outputꢀ orꢀ  
because the ESR is so low that there is not enough volt-  
age ramp in the output-voltage signal. This “fools” the error  
comparator into triggering a new cycle immediately after  
theminimumoff-timeperiodhasexpired.Doublepulsingꢀ  
is more annoying than harmful, resulting in nothing worse  
than increased output ripple. However, it can indicate the  
possible presence of loop instability due to insufficient  
ESR. Loop instability can result in oscillations at the out-  
put after line or load steps. Such perturbations are usually  
damped, but can cause the output voltage to rise above  
or fall below the tolerance limits. The easiest method  
for checking stability is to apply a very fast 10% to 90%  
maximum load transient and carefully observe the output-  
voltage ripple envelope for overshoot and ringing. It can  
help to simultaneously monitor the inductor current with  
anꢀACcurrentprobe.Donotallowmorethanonecycleꢀ  
of ringing after the initial step-response under/overshoot.  
V
SAG  
and V  
from causing problems during load  
SOAR  
transients. Generally, once enough capacitance is added  
to meet the overshoot requirement, undershoot at the  
rising load edge is no longer a problem (see the V  
SAG  
and V  
equations in the Transient Response section).  
SOAR  
Output Capacitor Stability Considerations  
For QuickTune-PWM controllers, stability is determined  
by the value of the ESR zero relative to the switching  
frequency. The boundary of instability is given by the  
following equation:  
f
SW  
π
f
ESR  
Transient Response  
The inductor-ripple current impacts transient-response  
where:  
1
performance, especially at low V - V  
differentials.  
f
=
IN  
OUT  
ESR  
2π ×R  
× C  
OUT  
EFF  
Low inductor values allow the inductor current to slew  
faster, replenishing charge removed from the output filter  
capacitors by a sudden load step. The amount of output  
sag is also a function of the maximum duty factor, which  
can be calculated from the on-time and minimum off-time.  
For a multiphase controller, the worst-case output sag  
voltage can be determined by:  
and:  
R
= R  
+ R + R  
ESR LL PCB  
EFF  
where C  
is the total output capacitance, R  
is the  
OUT  
ESR  
total equivalent series resistance, R is the load-line  
LL  
gain, and R  
is the parasitic board resistance between  
PCB  
the output capacitors and sense resistors. For a 1MHz  
application, the ESR zero frequency must be well below  
300kHz, preferably below 100kHz. SANYO POSCAP  
and Panasonic SP capacitors are widely used and have  
typical ESR zero frequencies below 100kHz.  
2
L(DI  
)
t
LOAD(MAX)  
MIN  
- t  
V
×
SAG  
2N × C  
× V  
t
PH  
OUT  
OUT  
SW MIN  
and:  
t
= t  
+ t  
ON OFF(MIN)  
MIN  
Ceramic capacitors have a high-ESR zero frequency,  
butꢀ applicationsꢀ withꢀ significantꢀ load-lineꢀ (DC-coupledꢀ  
or AC-coupled) can take advantage of their size and  
low ESR. When using only ceramic output capacitors,  
where t  
is the minimum off-time (see the Electrical  
OFF(MIN)  
Characteristics section), t  
is the programmed switch-  
is the total number of active phases.  
mustꢀbeꢀlessꢀthanꢀtheꢀtransientꢀdroop,ꢀΔI  
x R . The capacitive soar voltage due to stored inductor  
SW  
ing period, and N  
PH  
output overshoot (V ) typically determines the mini-  
SOAR  
V
SAG  
LOAD(MAX)  
mum output-capacitance requirement. Their relatively  
low capacitance value favors high-switching-frequency  
operation with small inductor values to minimize the  
energy transferred from inductor to capacitor during load-  
step recovery. Unstable operation manifests itself in two  
relatedbutdistinctlydifferentways:Doublepulsingandꢀ  
feedback-loop instability.  
LL  
energy can be calculated as:  
2
(DI  
) L  
LOAD(MAX)  
V
SOAR  
2N × C  
× V  
OUT  
PH  
OUT  
The actual peak of the soar voltage depends on the time  
where the decaying ESR step and rising capacitive soar  
are at their maximum. This is best simulated or measured.  
Maxim Integrated  
35  
www.maximintegrated.com  
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
●ꢀ Connectꢀ allꢀ analogꢀ groundsꢀ toꢀ aꢀ separateꢀ solid-  
Input Capacitor Selection  
copper plane that connects to the ground pin of the  
The input capacitor must meet the ripple-current require-  
ment (I ) imposed by the switching currents. The  
QuickTune-PWM controller. This includes the V  
BIAS  
RMS  
bypassꢀcapacitor,ꢀFB,ꢀandꢀGNDSꢀbypassꢀcapacitors.  
multiphase QuickTune-PWM controllers operate out-of  
phase, reducing the RMS input. The I requirements  
can be determined by the following equation:  
●ꢀ Keepꢀ theꢀ powerꢀ tracesꢀ andꢀ loadꢀ connectionsꢀ short.ꢀ  
This is essential for high efficiency. The use of thick  
copper PCB (2oz vs. 1oz) can enhance full-load  
efficiency by 1% or more. Correctly routing PCB traces  
is a difficult task that must be approached in terms of  
fractionsꢀofꢀcentimeters,ꢀwhereꢀaꢀsingleꢀmΩꢀofꢀexcessꢀ  
trace resistance causes a measurable efficiency  
penalty.  
RMS  
I
LOAD  
× V  
I
=
N
× V  
V
- N × V  
(
)
)
(
RMS  
PH  
OUT IN PH OUT  
N
PH  
IN   
The worst-case RMS current requirement occurs when  
operating with V = 2 (N  
× V  
). Therefore, the  
OUT  
IN  
PH  
above equation simplifies to I  
= 0.5 x (I  
).  
RMS  
LOAD/NPH  
●ꢀ CSP_ꢀandꢀCSN_ꢀconnectionsꢀforꢀcurrentꢀlimiting,ꢀload-  
line control, and current monitoring must be made  
using Kelvin-sense connections to guarantee the  
current-sense accuracy.  
Choose an input capacitor that exhibits less than 10°C  
temperature rise at the RMS input current for optimal  
circuit longevity.  
Applications Information  
●ꢀ Whentrade-offsintracelengthsmustbemade,itisꢀ  
preferable to allow the inductor charging path to be  
made longer than the discharge path. For example,  
it is better to allow some extra distance between the  
input capacitors and the high-side MOSFET than to  
allow distance between the inductor and the low-side  
MOSFET, or between the inductor and the output filter  
capacitor.  
PCB Layout Guidelines  
Careful PCB layout is critical to achieve low switching  
losses and clean, stable operation. The switching power  
stage requires particular attention. If possible, mount  
all the power components on the top side of the board,  
with their ground terminals flush against one another.  
The layout of the device is intimately related to the  
layout of the CPU. The high-current output paths from the  
regulator must flow cleanly into the high-current inputs  
on the processor. For VR12.6 processors, these inputs  
are orthogonal. This arrangement effectively forces the  
regulator to be located diagonally, with respect to the  
processor. Refer to the MAX15569 evaluation kit speci-  
fications for layout examples and follow these guidelines  
for good PCB layout:  
●ꢀ Routehigh-speedswitchingnodesawayfromsensi-  
tive analog areas (i.e., FB, FBAC, CSP_, CSN_, etc.).  
See Table 12 for layout procedures.  
●ꢀ Keepꢀ theꢀ high-currentꢀ pathsꢀ short,ꢀ especiallyꢀ atꢀ theꢀ  
ground terminals. This is essential for stable, jitter-free  
operation.  
Maxim Integrated  
36  
www.maximintegrated.com  
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Table 12. Layout Procedures  
COMPONENTS  
DESCRIPTION  
Theꢀgeneralꢀruleꢀisꢀthatꢀcapacitorsꢀtakeꢀpriorityꢀoverꢀresistorsꢀsinceꢀtheyꢀprovideꢀaꢀfilteringꢀfunction.ꢀTheꢀlistꢀ  
below is in order of priority:  
1)  
V
Capacitors:ꢀPlaceꢀtheseꢀnearꢀtheꢀICꢀpinsꢀwithꢀwideꢀtracesꢀandꢀgoodꢀconnectionꢀtoꢀPGND.ꢀ  
BIAS  
2) CSP_ - CSN_ Differential Filter Capacitors: Place the capacitors and the step resistor near the IC pins.  
These inputs are critical because they are used for regulation and load-line, as well as current limit and  
current balance.  
Capacitors  
3) Common-Mode Capacitors:ꢀTheꢀcapacitorsꢀtoꢀAGNDꢀtakeꢀtheꢀnextꢀpriority.ꢀ  
4) FB and GNDS Capacitors: The FB capacitor can be slightly farther away from the IC since the FB resistor  
has priority to be closer to the IC.  
FB and FBAC  
Current Sense  
The FB and FBAC resistors should be near the respective pins. Keep the trace short to reduce any inductance.  
Use Kelvin-sense connection to the sense element (inductor or sense resistor).  
Route CSP_ traces near CSN_. Avoid any switching signals, especially LX when routing these current-sensing  
signals.  
Thermistors  
TheꢀNTCꢀforꢀTHERMꢀsensingꢀshouldꢀbeꢀplacedꢀnearꢀtheꢀpowerꢀcomponentsꢀofꢀtheꢀfirstꢀphase.ꢀ  
Catch resistors should be placed near the point of load so that the output-voltage trace does not need to route  
backꢀtoꢀtheꢀIC.ꢀTheꢀgroundꢀcatchꢀresistorꢀisꢀlessꢀcriticalꢀasꢀitꢀonlyꢀrequiresꢀaꢀviaꢀtoꢀconnectꢀtoꢀtheꢀPGNDꢀplane.ꢀ  
Catch Resistors  
Remote Sense  
Route together in a quiet layer, avoiding any switching signals, especially LX.  
2
Pullups for I C Interface and INT do not need to be too close to the IC and can be placed farther away to make  
space for other more important components near the IC.  
2
I C  
Place a small 0.1µF decoupling capacitor for the V near the pullup resistors.  
TT  
KeepꢀtheꢀAGNDꢀpolygonꢀjustꢀlargeꢀenoughꢀtoꢀcoverꢀAGNDꢀcomponents.ꢀDoꢀnotꢀmakeꢀitꢀanyꢀlargerꢀthanꢀ  
necessary.ꢀTheꢀAGNDꢀpolygonꢀshouldꢀnotꢀrunꢀunderꢀanyꢀhigh-voltageꢀswitchingꢀtracesꢀsinceꢀallꢀAGNDꢀ  
connections should be on the other side of the IC, away from the driver pins.  
AGND  
AGND-PGNDꢀconnectionꢀshouldꢀbeꢀmadeꢀawayꢀfromꢀtheꢀPGNDꢀpinsꢀsoꢀasꢀnotꢀtoꢀbeꢀinꢀtheꢀpathꢀofꢀtheꢀ  
DRVPWM_ꢀdriveꢀcurrents.ꢀAꢀgoodꢀlocationꢀisꢀnearꢀtheꢀBIASꢀpin.ꢀ  
AGND-PGND  
Exposed Pad  
ConnectꢀtoꢀAGND.  
Power  
Components  
Place the power components close to keep the current loop small. Avoid large LX nodes. Use multiple vias to  
keep the impedance low and to carry the high currents.  
Maxim Integrated  
37  
www.maximintegrated.com  
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Chip Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
thatꢀaꢀ“+”,ꢀ“#”,ꢀorꢀ“-”ꢀinꢀtheꢀpackageꢀcodeꢀindicatesꢀRoHSꢀstatusꢀ  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +105°C  
PIN-PACKAGE  
24 TQFN-EP*  
MAX15569GTG+  
PACKAGE PACKAGE  
TYPE CODE  
OUTLINE  
NO.  
LAND PATTERN  
NO.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
24 TQFN-EP T2444+4  
21-0139  
90-0022  
Maxim Integrated  
38  
www.maximintegrated.com  
 
MAX15569  
2-Phase/1-Phase QuickTune-PWM Controller with  
2
Serial I C Interface  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
3/13  
2/15  
Initial release  
Updated the Benefits and Features section  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2015 Maxim Integrated Products, Inc.  
39  

相关型号:

MAX15569GTG+T

Switching Controller, Current-mode, 1400kHz Switching Freq-Max, BICMOS, TQFN-24
MAXIM

MAX1556A

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1556AETB

Switching Regulator, Current-mode, 2.25A, 1100kHz Switching Freq-Max, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEED-3, TDFN-10
MAXIM

MAX1556AETB+

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1556AETB+T

Switching Regulator/Controller, Current-mode, 1100kHz Switching Freq-Max, BICMOS, PDSO10,
MAXIM

MAX1556ETB

16レA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1556ETB+

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1556ETB+T

Switching Regulator, Current-mode, 2.25A, 1100kHz Switching Freq-Max, BICMOS, PDSO10, 3 X 3 MM, ROHS COMPLIANT, TDFN-10
MAXIM

MAX1556ETB-T

Switching Regulator, Current-mode, 2.25A, 1100kHz Switching Freq-Max, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEED-3, TDFN-10
MAXIM

MAX1556ETB/V+

Switching Regulator, Current-mode, 1.2A, 1100kHz Switching Freq-Max, BICMOS, PDSO10,
MAXIM

MAX1556ETB/V+T

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1556EVKIT

MAX1556 Evaluation Kit
MAXIM